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List of abbreviations 

_________________________________________________________________________________________ 
 

AFLP  amplified fragment length polymorphism 

ATCC  American Type Culture Collection 

ATM  ataxia telangiectasia mutated  

ATP  adenosine triphosphate 

ATR  ATM and Rad3 related 

BHI  brain heart infusion 

BLAST basic local alignment search tool 

bp  base pairs 

cagA  cytotoxic-associated gene A 

CCUG  Culture Collection of the University of Göteborg 

CDT  cytolethal distending toxin 

CFU  colony forming units 

CHO  Chinese hamster ovary 

CLO  Centrum voor Landbouwkundig Onderzoek; huidig Instituut voor Landbouw 

en Visserijonderzoek (ILVO) 

CPE cytopathic effect 

DNA deoxyribonucleic acid 

DMEM Dulbecco’s modified Eagle’s medium 

DSBs  double strand breaks 

ECACC European Collection of Cell Cultures 

EHS  enterohepatic Helicobacter species 

EMEM  Eagle’s minimum essential medium 

GCT  granulating cytotoxin 

HMP  heat-modifiable protein 

IBD  inflammatory bowel disease 

ICLS  International Council for Laboratory Standards 
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IR  irradiation 

kDa  kilo Dalton 

MIC  Minimum Inhibitory Concentration 

MWCO molecular weight cut off 

NCCLS National Committee for Clinical Laboratory Standards 

NCTC  National Collection of Type Cultures 

OMP  outer membrane preparation 

ORF  open reading frame 

PAI  pathogenicity island 

PBP  penicillin-binding protein 

PBS  phosphate-buffered saline 

PCR  polymerase chain reaction 

RNA  ribonucleic acid 

rRNA  ribosomal RNA 

SCID  severe combined immunodeficiency 

SPF  specific pathogen free 

spp.  species 

TAE  tris-acetate-EDTA 

Taq  Thermophilus aquaticus 

TEM  transmission electron microscopy 

U  unit 
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Scientific Background 
_________________________________________________________________________________________ 
 

The genus Helicobacter (H.) is a fast growing group of Gram-negative microbial organisms 

that are able to persistently colonize a diversity of mammalian host species and in some cases 

may cause major clinical disease. The clinical significance of the gastric Helicobacter species 

H. pylori, occurring in half of the world’s human population, nowadays is becoming clear. 

The prevalence and clinical relevance of the enterohepatic Helicobacter species (EHS), 

however, remain to be established.   

H. pullorum is an EHS which originally was isolated from the caeca of clinically healthy 

broiler chickens and from the liver and intestines of laying hens suffering from vibrionic 

hepatitis.  

In human beings, H. pullorum is occasionally detected in faeces obtained from patients with 

gastroenteritis and is increasingly reported in the gallbladder from persons suffering from 

chronic cholecystitis and biliary cancer. 

Despite the emerging character of this pathogen, hitherto, only a handful of studies have been 

performed involving H. pullorum, leaving large gaps in the knowledge about its actual 

prevalence and possible hazardous effects on human and animal health. 
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Enterohepatic Helicobacter species: a review of 
the literature 
_________________________________________________________________________________________ 
 

The genus Helicobacter nowadays includes at least 26 formally named species, with 

additional novel species in the process of being characterized (Fox, 1997; Whary and Fox, 

2004). The genus can roughly be divided into gastric and enterohepatic Helicobacter species 

(EHS). 

All gastric Helicobacter species have strong urease activity. They manage to survive gastric 

acidity by expressing urease at a level higher than that of any other known microorganism 

(Clyne et al., 1995; Dunn et al., 1997; Sachs et al., 2003). 

EHS do not normally colonize the gastric mucosa, but do have characteristics of ultrastructure 

and physiology in common with the gastric Helicobacter species. To date, these bacterial 

agents have been identified in the intestinal tract and/or the liver of humans, mammals, and 

birds (Fox, 1997; Solnick and Schauer, 2001; Inglis et al., 2006). EHS infections are 

associated mostly with intestinal and hepatobiliary disease in a wide range of animals. These 

bacteria also may interfere with results obtained from experimental research in laboratory 

animals in which they are highly prevalent, and thus may lead to misinterpretation of data 

(Fox et al., 1994; Ward et al., 1994; Rogers and Fox, 2004; Bohr et al., 2006). Finally, 

members of the enterohepatic Helicobacter group may have zoonotic potential causing 

gastroenteritis, hepatitis and other disease signs in humans (Solnick and Schauer, 2001; Ljung 

and Wadstrom, 2002). For all these reasons, the potential importance of these emerging 

pathogens cannot be overlooked and undoubtedly merits further investigation. 

The discovery of EHS has sparked an interest in exploring the pathogenic potential of these 

organisms mainly in laboratory rodents. Consequently, hitherto, most data in literature on 

EHS are dealing with these animal species. Hence, the following review of the literature 

mainly includes data on EHS associated with laboratory rats and mice. 
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1. Taxonomy 

 

H. pylori, the type species of the Helicobacter genus, was initially described as a 

Campylobacter (C.) species (Marshall and Warren, 1984). Nonetheless, the 16S rRNA gene 

sequence was noticeably different from the latter genus, so the agent got its own genus in 

1989 (Dewhirst et al., 2000; On et al., 2002; Whary and Fox, 2004). Analysis of the 16S 

rRNA gene sequence of more than 225 Helicobacter isolates from birds and mammals 

demonstrated the genus to be phylogenetically diverse, containing over 30 taxa of species 

status (Dewhirst et al., 1999). 

Currently, the Helicobacter genus is assigned to the rRNA superfamily VI which additionally 

includes the genera Campylobacter and Arcobacter and a number of other taxa. For 

simplicity, all of these agents may be referred to as Campylobacteria, a term that reveals their 

morphological resemblances on the whole (On et al, 1996). The most common EHS are 

presented in Table 1.  

 

Table 1 The most common enterohepatic Helicobacter species and their hosts 

 

Enterohepatic Helicobacter species 

Species Host Species Host 

H. bilis mouse, human H. pullorum chicken, human 

H. canis dog, cat, human H. canadensis human, bird, pig 

H. cinaedi hamster, human H. rodentium mouse 

H. cholecystus hamster H. trogontum rat 

H. fennelliae human H. typhlonius mouse 

H. hepaticus mouse, gerbil, human H. mesocricetorum hamster 

H. muridarum mouse, rat H. aurati hamster 

H. pametensis bird, swine 

H. ganmani mouse 

Helicobacter sp. 

flexispira taxon 5 

sheep, dog, human, 

mouse 
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2. Morphology and in vitro culture 

 

Members of the EHS group are Gram-negative, non-spore forming, spiral, curved or fusiform 

rods of 0.3-0.6 µm width and 1-5 µm length. Early transmission electron microscopic studies 

described two types of EHS. A first group resembles Campylobacter spp., though they are 

longer and have one or more polar flagella at each end. In most species, these flagella are 

sheathed. A second group, including the Lockhard 1 type organism, possesses periplasmic 

fibrils and bipolar tufts of sheathed flagella. This group of organisms constitutes one of the 

three assemblies of spiral bacteria detected in thin sections of gastric mucosa from dogs and 

represents straight cylinders with a fibril tightly coiled around their bodies (Lockhard and 

Boler, 1970). 

To date, only motile helicobacters are known. However, in old cultures or under 

certain circumstances, the organisms may loose their motility (Dewhirst et al., 2000). The 

spiral morphology and flagella of these bacteria could enhance their speed in viscous 

surroundings such as methylcellulose solution (Jung et al., 1997). 

The bacteria may transform into coccoid or spherical cells, particularly in older 

cultures or upon exposure to air (Dewhirst et al., 2000). The actual phenomenon of 

transformation from a bacillary form with a spiral or helical shape into a coccoid form has 

been investigated in H. pylori but not in other Helicobacter spp. Several factors may influence 

the spiral to coccoid conversion of H. pylori, such as acid pH, stress, oxygen, temperature, 

nutritional starvation. In comparison to spiral forms, coccoid shapes of H. pylori have been 

demonstrated to possess damaged genomic DNA, less total amounts of DNA and RNA, a loss 

of membrane potential and considerably diminished levels of intracellular ATP, indicative of a 

metabolic state of cellular degeneration (Taneera et al., 2002).  

In vitro culture of EHS is difficult and may be hampered by the fastidious growth 

requirements of these species. Their fastidious nature requires nutrient-rich complex media 

and long incubation times. Therefore the frequency of occurrence of infections with these 

microorganisms probably is underestimated (Shames et al., 1995; Taneera et al., 2002). 

Additionally, the phenotypic similarity between member species of the genera Helicobacter 

and Campylobacter may result in misidentification (Nilsson et al., 2000a). 
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Agar-grown EHS usually present as swarming or single pointed colonies (Euzéby, 2000; 

2002). 

Columbia, Trypticase Soy and Brucella agar supplemented with 5 % sheep or horse blood and 

occasionally TVP (trimethoprim, vancomycin, polymyxin) are mainly used as cultivation agar 

media. EHS associated with laboratory rodents and other mammals grow best in a 

microaerobic environment at 37°C. Several species also may grow at 42°C, but not at 25°C. 

H. ganmani is unusual in that this species grows anaerobically at 37°C, but cannot be 

cultivated under microaerobic conditions. Isolation can take place using nylon or cellulose 

acetate filters with a pore size of 0.45 µm or 0.65 µm which may reduce contamination by 

other bacteria (Figure 1) (Steele and McDermott, 1984; Fox et al., 1994; 1995; 1996a,b; 

Franklin et al., 1996; Mendes et al., 1996; Livingston et al., 1997; Atabay et al., 1998; Foltz et 

al., 1998; Whary et al., 1998; Chien et al., 2000; Euzéby, 2000; Franklin et al., 2001; 

Robertson et al., 2001; Euzéby, 2002; Garcia et al., 2002). Brucella broth supplemented with 

5 % fetal calf serum also can be adopted for isolation. 

Corry and Atabay (1997) mentioned the growth of two H. pullorum strains both on the 

selective CAT (cefoperazone amphotericin teicoplanin) and to a lesser extent mCCDA 

(modified charcoal cefoperazone deoxycholate) medium. No growth was however seen on 

ISTBA (iso-sensitest) agar medium containing 5 % lysed horse blood either with or without 

cefoperazone for inexplicable reasons (Corry and Atabay, 1997). Taneera et al. (2002) 

suggested that activated charcoal enhances growth of several EHS including H. pullorum, 

probably due to the capacity of this supplement to remove toxic compounds in culture media. 

In contrast to the former conclusions, Atabay et al. (1998) reported that H. pullorum was not 

able to grow on CAT medium neither on mCCDA medium in their experiment. 
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Figure 1 Isolation of EHS using a cellulose acetate filter with a pore size of 0.45 µm. 

A. A sterile cellulose acetate membrane filter is applied onto the surface of a blood plate. B. 

Approximately 250 µl of homogenized tissue is put in the middle of the filter. C. The agar 

blood plate is incubated at 37°C during half an hour. D. The filter is removed and the filtrate 

is streaked on the blood plate with a loop 

 

3. Clinical signs and lesions associated with EHS infections in animals 

 

For most of the EHS, the actual clinical significance is not very well known. Much debate on 

whether EHS are components of the normal microbiota or these bacteria actually have the 

ability to cause intestinal and hepatobiliary illness has been pursued (Fox et al., 1997; Zenner 

et al., 1999; Solnick and Schauer, 2001). So far, only H. hepaticus, first isolated from 

laboratory mice, has been clearly recognized as a pathogen and has been associated with a 

variety of hepatic lesions depending on the mouse strain (Solnick and Schauer, 2001; Ljungh 
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and Wadstrom, 2002). It can cause chronic active hepatitis and typhlocolitis in 

immunocompetent mice (Ward et al., 1994; Fox et al., 1996a,b; Whary et al., 1998; Rogers et 

al., 2004) and can also lead to liver carcinoma in mice of susceptible strains (Ward et al., 

1994; Fox et al., 1994; 1996a; Hailey et al., 1998; Whary et al., 1998). In addition, natural and 

experimental infection with H. hepaticus in certain immunodeficient mice can induce 

inflammatory bowel disease (IBD) (Ward et al., 1996a; Cahill et al., 1997; Kullberg et al., 

1998; Chin et al., 2000).  

H. bilis has been associated with multifocal hepatitis in mice without clinical signs (Fox et al., 

1995). H. bilis infection however, also has been linked to typhlocolitis and diarrhoea in 

immunodeficient rodents (Franklin et al., 1998; Haines et al., 1998). SCID mice naturally 

infected with H. bilis and/or H. rodentium may reveal acute diarrhoea (Shomer et al., 1998). 

H. cholecystus is considered as a cause of cholangiofibrosis and centrilobular pancreatitis in 

Syrian hamsters (Franklin et al., 1996). 

Recently, Maurer et al. (2005) suggested that H. hepaticus, H. bilis, H. rodentium and H. 

cinaedi play an important role in the pathophysiology of cholesterol gallstone development in 

mice and possibly in humans. A certain percentage of C57L/J mice infected with one or two 

of these EHS and fed a lithogenic diet, developed cholesterol gallstones. 

Apart from rodents, EHS also have been associated with intestinal and hepatobiliary 

disease in other mammals and birds (Fox et al., 1997; Zenner et al., 1999; Solnick and 

Schauer, 2001), such as H. canis and H. pullorum. H. canis has been isolated from a puppy 

suffering from multifocal necrotizing hepatitis (Fox et al., 1996c) and a cat with episodic 

diarrhoea (Foley et al., 1999). H. pullorum has been linked with vibrionic hepatitis in laying 

hens by some authors (Stanley et al., 1994; Burnens et al., 1996). This association, however, 

merely is based on the fact that the bacterial species originally was isolated from laying hens 

suffering from vibrionic hepatitis (Burnens et al., 1996). Vibrionic hepatitis is primarily 

characterized by swelling and necrosis of the liver and may cause economic loss by rising 

poultry flock cull rates (Berry and Whitenack, 1991). The significance of H. pullorum in 

hepatobiliary and intestinal disease in poultry still has to be determined.  
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4. Zoonotic potential of EHS 

 

During the last two decades, Helicobacter colonization of the gastrointestinal tract of humans 

has been the subject of intensive research (Solnick and Schauer, 2001; Fox, 2002; Ljungh and 

Wadstrom, 2002). 

The recovery of different helicobacters from both immunocompromised and 

immunocompetent human patients suffering from enteric and hepatobiliary disease has raised 

the question about the origin and impact of these infections. Hitherto, the causal role of EHS 

in human hepatoenteric disease often is mostly presumptive (Fox, 1997; Fox et al., 1998; 

Avenaud et al., 2000; Nilsson et al., 1999; 2000b; 2001; Solnick and Schauer, 2001; Fox, 

2002; Rocha et al., 2005).   

The rodent EHS H. hepaticus, H. bilis and H. cinaedi are generally considered as 

zoonotic. H. hepaticus may play a role in liver carcinogenesis, IBD, irritable bowel syndrome 

(IBS) and chronic pancreatitis in humans (Nilsson et al., 2000b; Ge et al., 2001a; Apostolov et 

al., 2005; Nilsson et al., 2006; Zhang et al., 2006). 

H. bilis is the only murine EHS that has actually been isolated from human gallbladder 

(Andersen, 2001) and has been associated with the development of chronic cholecystitis, 

biliary duct and gallbladder cancer (Fox et al., 1998; Solnick and Schauer, 2001; Matsukura et 

al., 2002; Murata et al., 2004; Kobayashi et al., 2005). 

H. cinaedi was first isolated from homosexual men, both asymptomatic individuals and men 

suffering from proctitis, proctocolitis and enteritis. The name ‘cinaedi’ means homosexual in 

Latin (Fennell et al., 1984). Next, many reports regarding individuals infected with H. cinaedi 

have been documented. The agent is mainly found in immunocompromised persons often 

causing a non-lethal disease with a large possibility for recurrence (Uckay et al., 2006). H. 

cinaedi infection has been associated with septicaemia and meningitis in a neonate (Orlicek et 

al., 1993), bacteraemia in an afebrile patient with X-linked agammaglobulinemia (Simons et 

al., 2004), acute diarrhoea (Tee et al., 1987), bacteraemia in immunosuppressed persons due 

to AIDS or cancer (Cimolai et al., 1987; Ng et al., 1987; Sacks et al., 1991; Mammen et al., 

1995; Sullivan et al., 1997; Uckay et al., 2006) and multifocal cellulitis and monoarticular 

arthritis  (Burman et al., 1995; Sullivan et al., 1997). Van der Ven et al. (1996) reported a case 

of a HIV-seropositive man who was suffering from a H. cinaedi bacteraemia with 
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involvement of the soft tissue in the right lower leg causing a localized pain in this area. It 

was illustrated that endovascular infection was present and may thus be a feature of H. 

cinaedi bacteraemia. Despite the association of this species with extragastric infections, Peňa 

et al. (2002) detected H. cinaedi DNA in antral gastric biopsies obtained from patients. One 

patient was diagnosed with erosive gastritis. Another patient had a history of colitis. Very 

recently, H. cinaedi DNA was detected in patients with pancreatic exocrine cancer (Nilsson et 

al., 2006).   

Other EHS present in mammals which may be transmitted to human beings are H. ganmani 

and H. canis. H. ganmani has been reported in pediatric patients with liver disorders (Tolia et 

al., 2004), while H. canis has been detected in a boy with gastroenteritis and an 

immunocompetent patient suffering from bacteremia and multifocal cellulitis (Burnens et al., 

1993; Solnick and Schauer, 2001; Leemann et al., 2006). 

H. pullorum, an EHS occurring in poultry is also believed to be a zoonotic pathogen 

(Stanley et al., 1994; Steinbrueckner et al., 1997; Atabay et al., 1998; Fox et al., 1998; Ljungh 

and Wadstrom, 2002; On et al., 2002). Various human cases of gastroenteritis revealed as 

diarrhoea and hepatobiliary disease as reflected by liver swelling, an increase of liver 

enzymes and gallbladder cancer associated with H. pullorum infection have been reported 

(Burnens et al., 1994; Stanley et al., 1994; Fox, 1997; Steinbrueckner et al., 1997; Fox et al., 

1998; Ponzetto et al., 2000; On et al., 2002). It has also been suggested that H. pullorum plays 

a role in Crohn’s disease (Andersson et al., 2002; Bohr et al., 2002). Finally, a case-report 

about an H. pullorum-like organism associated septicaemia has been published (Tee et al., 

2001).  

 H. canadensis, which was originally classified as H. pullorum, was cultured for the 

first time from Canadian patients with diarrhoea, but has afterwards been shown to colonize 

also wild geese (Fox et al., 2000; Waldenstrom et al., 2003). Very recently, atypical H. 

canadensis strains have been detected in swine (Inglis et al., 2006). H. canadensis has geese 

as reservoir and is acquired by humans as a zoonosis (Waldenstrom et al., 2003). 

 Altogether, data from studies on biliary and hepatic diseases, as well as pancreatic 

disorders, suggest that bile-tolerant Helicobacter species may induce a chronic infection with 

possible malignant transformation. Whether they truly participate in the genesis of biliary 

disease requires, however, additional investigation. At least, there is evidence that both gastric 
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and intestinal Helicobacters occur in human bile (Queiroz et al., 2003; Kobayashi et al., 

2005). 

 

5. Bacterium-host interaction 

 

5.1. Overview 

The pathogenesis of most EHS infections is poorly understood both in terms of production of 

lesions in intestines and liver and in terms of the relationship of the organism to the host 

tissues at a molecular level. To date, mainly interactions of H. hepaticus and H. bilis with 

their hosts have been examined.  

Spread of EHS infection by faecal-oral contact between animals is hypothesized (Fox 

et al., 1996b; Whary et al., 2000). Livingston et al. (1997) demonstrated that H. hepaticus-free 

animals can develop antibodies against this EHS within four weeks after contact with dirty 

cage bedding from H. hepaticus-infected mice. Vertical transmission of H. hepaticus has been 

suggested by Li et al. (1998), but may depend on the mouse strain involved. Nonetheless, it 

has been recommended to foster pups within 24 h of birth to remain free of H. hepaticus 

(Singletary et al., 2003). Results of a study performed by Scavizzi and Raspa (2006) on the 

contrary, showed that H. typhlonius was present in sex organs of mice without vertical 

transmission. 

The genome of H. hepaticus is the only one which has been sequenced completely of 

all EHS (Suerbaum et al., 2003). Proteins of H. hepaticus have orthologs from both H. pylori 

and C. jejuni, but H. hepaticus is deficient in orthologs from most known H. pylori virulence 

factors, including adhesins, VacA cytotoxin, and nearly all cag pathogenicity island (PAI) 

proteins. However, H. hepaticus has orthologs of the C. jejuni adhesin PEB1 and the 

cytolethal distending toxin (CDT), a 71-kb genomic island (HHGI1). H. hepaticus also has 

several genomic islands with a different G+C content than the other sequences of the genome. 

Interestingly, HHGI1, possessing three basic elements of a type IV secretion system and other 

virulence protein homologs, constitutes a putative PAI. Within H. hepaticus, a large 

divergence of genome content, including the genomic island HHGI1, is present (Suerbaum et 

al., 2003). A recent study using male A/JCr mice, demonstrated the role of this PAI in the 

development of hepatitis in these animals (Boutin et al., 2005). 
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Almost one decade ago, auto-immunity was demonstrated to contribute to hepatocellular 

damage in H. hepaticus infection. H. hepaticus-infected mice indeed may build up antibodies 

against heat shock protein 70 expressed both by the bacterial agent and injured liver cells 

(Ward et al., 1996b; Whary et al., 1998). 

Ge et al. (2001b) found outer membrane preparation (OMP) proteins in four H. bilis 

strains derived from different host species which were similar to each other but revealed a 

protein profile different from H. pylori, suggesting H. bilis has a conserved, unique OMP 

profile. The divergence in the OMP structure of these two helicobacters was also illustrated 

by the absence of cross antigenicity between the H. bilis OMP and a number of H. pylori 

OMP proteins except for their flagellins. Another finding in this study was the presence of 

five heat-modifiable proteins (HMP) in the H. bilis OMP. Whether these proteins act as porins 

in vivo still needs to be elucidated (Ge et al., 2001b). 

H. hepaticus and to a lesser extent H. bilis, H. mastomyrinus, H. aurati, H. trogontum, 

H. muridarum and H. typhlonius all express urease activity. H. hepaticus has urease structural 

genes which are homologous to those of the gastric Helicobacter species (Shen et al., 1998; 

Beckwith et al., 2001). It contains approximately half of the urease activity of H. pylori 

(Sachs et al., 2003). It is not clear why this urease activity would be essential in the lower 

bowel and liver, both non-acidic environments. Potential roles for this enzyme in EHS 

embrace better endurance during passage through the stomach and generating ammonia as a 

source of nitrogen for protein biosynthesis. Urease activity may also be a factor in pathology, 

given that ammonia harms host cells and urease itself provokes phagocyte chemotaxis, 

stimulates immune cells, and induces cytokine production (Beckwith et al., 2001).  

Additionally, in H. hepaticus, a toxin activity has been identified that causes vacuole 

formation in a murine liver cell line resulting in a granular appearance of the affected cells. 

The toxin was called granulating cytotoxin (GCT) referring to the induced morphological cell 

changes (Taylor et al., 1995). Despite the innovative and interesting character of this finding, 

no further research involving this toxin was performed for almost a decade. Only recently, 

Young et al. (2004) alleged that cytopathic effect induced by GCT could be CDT-mediated. 

In 2000, Young et al. (2000a) identified three genes encoding CDT and CDT activity 

in H. hepaticus. Genetic and phenotypic evidence of CDT also has been found in H. bilis, H. 

pullorum, H. cinaedi and H. canis (Chien et al., 2000; Young et al., 2000a,b; Kostia et al., 
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2003; Taylor et al., 2003). Since CDT is believed to be a virulence factor within EHS, it will 

be discussed more in detail. 

 

5.2. CDT, a possible virulence factor of EHS (adapted from Microbiological Research 2006, 

161, p 109-120).   

 

Background 

CDT was first documented as a toxin occurring in Escherichia (E.) coli strains by Johnson 

and Lior in 1987. They discerned that inoculation of the supernatant of several E. coli strains 

onto cultured Chinese hamster ovary (CHO) cells resulted in progressive cell distention and 

eventually cell death (Johnson and Lior, 1987a). They further discovered that isolates of C. 

jejuni and E. coli Shigella spp. (the former Shigella species) were able to induce similar cell 

changes (Johnson and Lior, 1987b; Johnson and Lior, 1988a). The name of the toxin refers to 

the morphological cell changes caused by the toxin (Johnson and Lior, 1987a; Johnson and 

Lior 1988b). To date, various Gram-negative bacterial species including H. pullorum, have 

been shown to produce CDT (Johnson and Lior, 1987a,b; Johnson and Lior, 1988a,b; Pickett 

et al., 1996; Cope et al., 1997; Okuda et al., 1997; Sugai et al., 1998; Chien et al., 2000; 

Young et al., 2000a,b; Mooney et al., 2001, Taylor et al, 2003). In Salmonella enterica 

species, a CdtB homologous protein has been demonstrated (De Rycke and Oswald, 2001; 

Haghjoo and Galan, 2004). 

 

Genetics of CDT 

CDT is encoded by three adjacent or slightly overlapping open reading frames (ORFs) 

assigned cdtA, cdtB and cdtC, assumed to be arranged in an operon. The expression of all 

three genes is required for CDT activity (Pickett et al., 1994; Scott and Kaper, 1994; Cope et 

al., 1997). No information has been published on the actual regulation of expression. The 

expression of the encoded genes however, is variable (Okuda et al., 1995; Pickett et al., 1996; 

Chien et al., 2000; Bang et al., 2001). It is worthwhile noting that the nucleotide and amino 

acid sequences do not have any major homology to known genes or proteins and that all three 

genes have a consensus leader sequence (Pickett et al., 1994; Scott and Kaper, 1994; Cope et 

al., 1997). The cdtB gene appears to be the most conserved gene amongst all cdt genes in 
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terms of differences between bacterial species (Pickett et al., 1996; Mayer et al., 1999; Young 

et al., 2000a,b; Frisan et al., 2002). Nevertheless, the degree of similarity of this gene and the 

amino acid sequence of the derived protein may vary between different species. 

 

Structure and action of CDT 

Cytolethal distending toxins may be classified in the second group of exotoxins designating 

true or apparent dimeric toxins. These molecules are composed of the B subunit(s) accounting 

for the attachment of the toxin to the target cell and the A subunit which encloses the toxic 

action of the holotoxin (Lara-Tejero and Galan, 2000; Dreyfus, 2003; Salyers and Whitt, 

2003). Still, no conclusive evidence about the actual structure of the CDT holotoxin has been 

provided so far (Aragon et al., 1997; Pickett and Whitehouse, 1999). Several authors (Pickett 

et al., 1994; Scott and Kaper, 1994; Shenker et al., 2000; Akifusa et al., 2001; Shenker et al., 

2004) illustrated that CDT is composed of three polypeptides, while Pickett and Whitehouse 

(1999) question that the mere assembly of these polypeptides equals the holotoxin.  

CDT blocks cell proliferation by activating DNA damage induced cell cycle 

checkpoint responses (Li et al., 2002). CdtB appears to be both functionally and structurally 

homologous to the mammalian deoxyribonuclease I (DNAse I) (Elwell and Dreyfus, 2000; 

Lara-Tejero and Galan, 2000; Avenaud et al., 2004) and the biologically active subunit of the 

holotoxin. Nonetheless, Dlakic (2000; 2001) suggested that cdtB might also exhibit 

phosphatase activity. Transient expression of cdtB in eukaryotic cells also resulted in 

prominent changes in the chromatin of transfected cells (Lara-Tejero and Galan, 2000; 

Nishikubo et al., 2003). This peptide has the unique ability to directly harm the cellular DNA 

resulting in cell cycle arrest. 

Cells are irreversibly stopped in the G1, S or G2 phase and do not enter into mitosis (Elledge, 

1996; De Rycke and Oswald, 2001). The phase, during which the block is induced, is 

dependent on the cell type (Johnson and Lior, 1988a; Cortes-Bratti et al., 2001b; Frisan et al., 

2002). Frisan et al. (2002) noted that CDT produced by Haemophilus ducreyi arrested 

epithelial cell lines (HeLa, Hep-2) and normal keratinocytes in the G2 phase, while primary 

human fibroblasts were blocked in the G1 phase as well (Frisan et al., 2002). B lymphocytes 

undergo apoptosis (Cortes-Bratti et al., 2001b; Frisan et al., 2002). T lymphocytes also may 

be targeted by CDT and are even suggested to be five times more sensitive to the toxin than 
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HeLa cells (Gelfanova et al., 1999; Shenker et al., 1999; Mooney et al., 2001; Ohara et al., 

2004). 3T3 fibroblasts and mouse Y-1 adrenal cells on the contrary seem to be resistant to 

CDT (Johnson and Lior, 1988a; Cope et al., 1997; Cortes-Bratti et al., 1999). It was 

hypothesized that these cells lack the receptor on the cell surface required for binding CDT 

(Cortes-Bratti et al., 2001a). 

CDT induces DNA double strand breaks (DSBs) in eukaryotic cells (Elwell and 

Dreyfus, 2000; Lara-Tejero and Galan, 2000; Shenker et al., 2000; Frisan et al., 2002). DNA 

damage is detected by the proteins kinases ‘Ataxia telangiectasia mutated’ (ATM) and ‘ATM 

and Rad3 related’ (ATR) (Alby et al., 2001; Cortes-Bratti et al., 2001b; Li et al., 2002) 

Mainly ATM is believed to be activated in response to DNA DSBs (Cortes-Bratti et al., 

2001a; Shiloh, 2001; D’Amours and Jackson, 2002). Another group of researchers proved 

that a protein different from ATM, hitherto unidentified and a member of the phospho-inositol 

(PI) 3 kinase family, is triggered by DSBs. Whether this kinase is ATR remains to be 

investigated (Alby et al., 2001). 

Possible sensors of DNA damage are on the one hand histone H2AX and on the other 

hand the Mre11 complex, a multisubunit nuclease, comprised of Mre 11, Rad 50 and Nbs 1 

proteins. Several reports demonstrate that irradiation (IR) induces extensive phosphorylation 

of the histone H2AX forming plain foci at the site of damaged DNA (Nelms et al., 1998; 

Rogakou et al., 1998; Paull et al., 2000). This phosphorylation depends on ATM when cells 

are treated with IR (D’Amours and Jackson, 2002). In addition, upon IR and also following 

CDT intoxication, the Mre 11 complex, usually homogeneously distributed within the nucleus 

in undamaged cells, co-localizes with the phosphorylated H2AX and reorganizes to form 

large nuclear foci (Nelms et al., 1998; Li et al., 2002; Hassane et al., 2003). These events are 

characteristic for the normal cellular response after DNA DSBs (D’Amours and Jackson, 

2002) and occur both in proliferating and non-proliferating cells (Li et al., 2002).  

Once ATM or a related kinase is activated in response to CDT-induced DNA damage, 

a cascade of events happens resulting in cell cycle arrest. Figure 2 represents schematically 

the mode of action of CDT. 

Concerning the G2 checkpoint response, the protein kinases chk1 and chk2 are activated via 

phosphorylation in response to DNA lesions, and both kinases are able to inhibit the 

phosphatase cdc25C via phosphorylation of serine 216 in vitro (Sanchez et al., 1997; 
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Matsuoka et al., 1998) in the S phase (Alby et al., 2001). In the unperturbed cell cycle, cdc2 is 

kept inactive via phosphorylation on threonine 14 and tyrosine 15 by the wee1 and myt1 

kinases. The cdc25C phosphatase dephosphorylates these residues and activates the cyclin 

dependent kinase cdc2/cyclinB complex. This is a step needed for entry into mitosis. CDT 

intoxicated cells however, remain in the G2 phase since the lack of the dephosphorylation step 

of the cdc2/cyclinB complex results in an inactive hyperphosphorylated state of cdc2 (Cortes-

Bratti et al., 2001b). 

As mentioned above, other cell types are blocked in the S and/or G1 phase as well, 

such as fibroblasts (Cortes-Bratti et al., 2001a,b; Frisan et al., 2002). In this situation, p53 

tumor suppressor serves as a checkpoint for the DNA damage. P53 is a transcription factor 

that directly activates other genes such as the cyclin dependent kinase inhibitor p21. The 

oncoprotein MDM2 targets p53 for ubiquitin-dependent degradation and thereby regulates 

partially the levels of p53. In disconcerted cells, such as CDT poisoned fibroblasts or 

keratinocytes, p53 is phosphorylated on serine 20 by the chk2 protein kinase resulting in a 

dissociation of its negative regulator MDM2 which is disturbed in its inhibition of p53-

dependent transactivation (Shieh et al., 1997; Cortes-Bratti et al., 2001b; Shiloh, 2001). This 

event leads to an increased expression of the p53-regulated cyclin-dependent kinase inhibitor 

p21 and upregulation of p27. Subsequently, the cdk2/cyclinE complex is inactivated by p21 

and cells become arrested at the G1 stage Cortes-Bratti et al., 2001a,b; Frisan et al., 2002).  

 Another phenomenon observed in CDT intoxicated cells is an assembly of actin stress 

fibers (Aragon et al., 1997; Cortes-Bratti et al., 1999; Frisan et al., 2003). Nearly all cell types 

are able to produce stress fibers which are comprised of polymerized actin subunits. They are 

responsible for the attachment of cells to a substrate and for the cellular shape. They also 

might be involved in the mobility of cells. Frisan et al. (2003) demonstrated a rearrangement 

of actin cytoskeleton upon CDT intoxication which appears to be RhoA GTPase mediated and 

which is part of the ATM-dependent response to DNA damage. The small GTPases of the 

RhoA protein family are involved in the formation of stress fibers, focal adhesions (Hall, 

1998) and cell proliferation (Olson et al., 1995). The activation of this signalling pathway is 

not toxin dependent, but occurs in response to any genotoxic stress. Frisan and coworkers 

(2003) suggest a RhoA GTPase dependent linkage between DNA damage, which may be 

induced by CDT, and alterations in the actin cytoskeleton, possibly needed to prolong cell 
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survival. Indeed, only a short exposure, to be specific 2 min (Aragon et al., 1997) or 15 min 

(Cortes-Bratti et al., 1999), to CDT is necessary to induce slowly developing irreversible 

cellular changes resulting ultimately in cell death (Aragon et al., 1997).              

In contrast to the cdtB subunit, the individual role of cdtA and cdtC is markedly less 

clearly elucidated (Cortes-Bratti et al., 2001a; De Rycke and Oswald, 2001; Avenaud et al. 

2004). Several reports present conflicting results regarding their contribution (Cope et al., 

1997; Purvén et al., 1997; Shenker et al., 1999; Frisk et al., 2001; Lara-Tejero and Galan, 

2001; Mao and DiRienzo, 2002), but in general, it is accepted that cdtB requires cdtA and/or 

cdtC to get internalized in the target cell preceding cytotoxicity (Cortes-Bratti et al., 2001; 

Deng et al., 2001; Frisan et al., 2002; Avenaud et al., 2004; AbuOun et al., 2005) which 

probably occurs by endocytosis via clathrin-coated pits (Cortes-Bratti et al., 2000).  

 

Role of CDT in pathogenesis 

To date, a number of authors have studied the mode of action and effects of CDT of various 

Gram-negative bacteria on epithelial and blood cells in animal models. The possible actions 

of this toxin are firstly inhibition of epithelial cell proliferation and apoptosis allowing 

bacterial invasion, secondly cell cycle arrest of immune cells ensuing local 

immunosuppression and finally inhibition of fibrotic response. Pertaining to the clinical 

outcome, CDT seems to be an adaptable toxin that operates in many bacteria resulting in 

different virulence characteristics (Albert et al., 1996; Okuda et al., 1997; Purvén et al., 1997; 

Stevens et al., 1999; Purdy et al., 2000; Young et al., 2001; Wising et al., 2002; Young et al., 

2004). 

Only few studies about the role of CDT in the pathogenesis of EHS infections have 

been reported thus far. Ge et al. (2005) illustrated that H. hepaticus CDT is crucial in the 

persistent colonization of this bacterial agent in the gut of outbred Swiss Webster Mice, 

especially in males. They observed additionally a correlation between H. hepaticus 

colonization and down-regulation of interleukin (IL)-10, which is pivotal in blocking IBD. 

Also Young et al. (2004) demonstrated a role for CDT in generating IBD in IL-10-/- mice 

infected with H. hepaticus. The latter research group constructed a CDT-negative H. 

hepaticus mutant using a transposon shuttle mutagenesis system and challenged C57/BL6 

interleukin 10 (-/-) mice with this mutant strain. They noticed that, although the isogenic H. 



   

 21

hepaticus CDT mutant maintained the capacity to colonize C57BL/6 IL-10–/– mice, animals 

inoculated with the mutant developed markedly less severe disease than mice inoculated with 

a wild-type H. hepaticus strain (Young et al., 2004). Very recently, Pratt et al. (2006) 

determined the role of CDT in the modulation of the host response to H. hepaticus using 

C57BL/6 IL-10-/- mice which were challenged with wild-type H. hepaticus and a CDT-

deficient isogenic mutant. Only the wild-type strain and not the CDT-deficient mutant was 

detected till the end of the 8 month-during experiment. Animals infected with the wild-type 

strain developed severe typhlocolitis and additionally revealed elevated levels of 

immunoglobulins, while this was not the case for animals infected with the CDT-deficient 

mutant strain. These results suggest that CDT has an important immunomodulatory function 

allowing persistence of H. hepaticus in IL-10-/- mice. In addition, CDT may alter the host 

immune response resulting in the development of colitis (Pratt et al., 2006). 
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Figure 2 Scheme of mode of action of CDT 
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6. Treatment of EHS infections in animals and human beings 

 

Hitherto, limited information about an efficient treatment of EHS infections in both animals 

and humans is available. For birds, no data are presented in literature. Studies about this 

subject have mainly been performed in H. hepaticus- and H. bilis-infected laboratory rodents. 

Since EHS infections not only may cause gastrointestinal disease in these animals, but also 

may interfere with in vivo experiments leading to misinterpretation of data, it is of course 

important to eliminate EHS from laboratory rodent colonies (Rogers and Fox, 2004; Jacobsen 

et al., 2005). 

The best option to get Helicobacter-free rodent colonies may be rederivation by means 

of embryo transfer. Embryo transfer has been used to free mouse strains from H. hepaticus 

(Van Keuren en Saunders, 2004; Watson et al., 2005). Another possibility to get rid of H. 

hepaticus infection could be caesarean section (Bergin et al., 2005). Since vertical 

transmission of this bacterium has been implied (Li et al., 1998), the latter may not be 

appropriate. In contrast, the presence of H. typhlonius in sex organs of mice without vertical 

transmission to their offspring was documented very recently (Scavizzi and Raspa, 2006). 

Antibiotic treatment of EHS infected mice and rats might be an alternative (Russel et al., 

1995; Foltz et al., 1996; Shomer et al., 1998; Bergin et al., 2005; Jury et al., 2005; Kerton and 

Warden, 2006). Russell et al. (1995) claimed that orally administered amoxicillin during two 

weeks eliminates or prevents H. hepaticus infection in weanlings, but not in older mice with 

established enteric colonization. A triple therapy of amoxicillin, metronidazole and bismuth 

administered orally appears to be effective for eradication of H. hepaticus, but not H. bilis and 

H. rodentium infections (Foltz et al., 1995; 1996; Shomer et al., 1998). Also recently, an 

amoxicillin-based triple therapy proved to be successful for the eradication of Helicobacter 

infections in several mouse strains when administered in a diet and in combination with cross-

fostering on to Helicobacter-free foster mothers (Kerton and Warden, 2006). 

With respect to antibiotic treatment for EHS infections in humans, tetracycline, 

chloramphenicol, ceftriaxone, macrolides and aminoglycosides may be efficient. 

Ciprofloxacin however, appears to be a poor option for the elimination of H. cinaedi 

infections in humans (Fox et al., 1997; Kuijper et al., 2003; Uckey et al., 2006).  
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Scientific aims  
_________________________________________________________________________________________ 
 

During the last decade, the number of case reports on the presence of Helicobacter pullorum 

in samples obtained from human patients suffering from liver and intestinal disease has 

increased tremendously. In addition, a preliminary study showed that H. pullorum was present 

on 60 % of poultry carcasses pointing to H. pullorum as a potentially important food-

associated human pathogen. Despite these findings, there is a marked lack of information on 

the actual prevalence of this species in poultry and humans. Furthermore, very few studies 

concerning the pathogenesis of H. pullorum infections in both poultry and human beings have 

been performed hitherto. 

The general aim of this thesis was hence to investigate the occurrence of H. pullorum in 

poultry and human beings and to study interaction of H. pullorum with its animal host. 

 

The specific scientific aims were to: 

1. determine the occurrence of H. pullorum in Belgian broilers  

2. determine the prevalence of H. pullorum in humans with and without 

gastrointestinal disease 

3. determine the genetic relatedness between H. pullorum isolates and their in vitro  

susceptibility to different antimicrobial agents 

4. characterize potential virulence factors of H. pullorum  isolates 

5. study the in vivo interactions of H. pullorum isolates with broiler chickens 
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Chapter 1 

_________________________________________________________________________________________ 

 

The agent Helicobacter pullorum: prevalence and 

in vitro susceptibility to different antimicrobial 

agents 

 

  

1.1 Occurrence of Helicobacter pullorum in broiler chickens and comparison of isolates using 

amplified fragment length polymorphism profiling 

 

1.2 Prevalence of Helicobacter pullorum among patients with gastrointestinal disease and 

clinically healthy persons 

 

1.3 In vitro susceptibility of Helicobacter pullorum isolates to different antimicrobial agents 
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ABSTRACT 

 

A total of 110 broilers from 11 flocks were tested for Helicobacter pullorum by polymerase 

chain reaction; positive samples were re-examined with a conventional isolation method. 

Helicobacter pullorum isolates were examined by amplified fragment length polymorphism 

(AFLP) fingerprinting for interstrain genetic diversity and relatedness. Sixteen isolates from 

caecal samples from 2 different flocks were obtained. AFLP analysis showed that these 

isolates and 4 additional isolates from a different flock, clustered with respect to their origin, 

which indicates that Helicobacter pullorum colonization may occur with a single strain that 

disseminates throughout the flock. Strains isolated from different hosts or geographical 

sources, displayed a distinctive pattern. 

Helicobacter pullorum is present in approximately one third of live chickens in Belgium and 

may represent a risk to human health.  
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INTRODUCTION 

 

Helicobacter pullorum was originally isolated from the faeces and injurious livers of broilers 

and laying hens (Burnens et al., 1994; Stanley et al., 1994). It was defined as a new species in 

1994 by Stanley et al. H. pullorum represents a Gram-negative, slightly curved rod with 

monopolar non-sheathed flagella. It is bile-resistant and requires a microaerobic environment 

supplemented with H2 in which growth occurs at 37 and 42°C (Stanley et al., 1994; On et al., 

1996; Fox, 1997; Steinbrueckner et al., 1997; Atabay et al., 1998). 

Enterohepatic Helicobacter species, including H. pullorum, are increasingly 

recognized as microbial pathogens both in humans and animals (Burnens et al., 1996; On et 

al., 1996; Fox, 1997; Fox et al., 1998; On et al., 2002). H. pullorum has been linked with 

hepatitis in laying hens and also diarrhoea, gastroenteritis and liver disease in humans 

(Burnens et al., 1994; Stanley et al., 1994; Burnens et al., 1996; Fox, 1997; Steinbrueckner et 

al., 1997; Fox et al., 1998; Ceelen et al., 2005). H. pullorum can contaminate poultry 

carcasses at the abattoir. Therefore, some authors consider this bacterial species to be a food-

borne human pathogen (Atabay et al., 1998; Fox et al., 1998; Gibson et al., 1999). 

Hitherto, almost no data are available on the actual prevalence of this species in 

poultry. Research that could generate these data is hampered by the fastidious growth 

requirements of H. pullorum on the one hand and the phenotypic similarity between member 

species of the genera Helicobacter and Campylobacter on the other hand (On et al., 1996; 

Atabay et al., 1998; Gibson et al., 1999). The occurrence of H. pullorum in chickens has 

merely been studied on only two occasions to our knowledge where the organism was 

detected using isolation (Burnens et al., 1996; Atabay et al., 1998). Furthermore, no valid 

epidemiological research methodologies have been recommended thus far. 

The objective of the present study was to determine the occurrence of H. pullorum in 

broilers using both PCR and isolation. In addition, amplified fragment length polymorphism 

profiling was carried out to investigate the genetic relatedness between H. pullorum isolates.  
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MATERIALS AND METHODS 

 

Sample origin 

One hundred and ten gastrointestinal tracts and livers of broiler chickens, ten per flock (flock 

n° 1 – n° 11), collected at a poultry abattoir, were included in this study. Each gastrointestinal 

tract and liver were deposited in a separate waterproof plastic bag. Samples were taken from 

the liver, caeca, jejunum and colon for PCR and isolation within three hours after collection. 

All samples were stored at -20°C and -70°C for PCR and isolation, respectively, until further 

analysis as described below. 

 

Sample processing 

PCR and gel electrophoresis 

DNA was extracted from approximately 25 mg caecum, colon, jejunum and liver tissue 

applying a commercial tissue kit (DNeasy® Tissue Kit, Qiagen, Venlo, The Netherlands). A 

PCR assay amplifying a 447 bp fragment of the 16S rRNA gene of H. pullorum was then used 

for detection purposes (Stanley et al., 1994). From each sample, 2 µl of the template was 

added to 8 µl of the PCR mixture, containing 0.03 U/µl Taq polymerase Platinum (Invitrogen 

Life Technologies, Merelbeke, Belgium), 10 x PCR Buffer (Invitrogen Life Technologies), 3 

mM MgCl2 (Invitrogen, Life Technologies), 40 µM of each deoxynucleoside triphosphate 

(Invitrogen Life Technologies), a final primer concentration of 0.5 µM and sterile distilled 

water. The conditions used for the amplifications were the following: an initial denaturation at 

94°C for 5 minutes, followed by 35 cycles of denaturation at 94°C for 1 min, annealing at 

60°C for 90 seconds and elongation at 72°C for 90 s, and a final elongation at 72°C for 5 min.  

Five microliters of the PCR products of each sample were mixed with 3 µl of sample 

buffer 5X (50 % glycerol, 1 mM cresol red) and were electrophoresed through an agarose gel 

containing 1.5 % Multi Purpose agarose (Boehringer, Mannheim, Germany) and 50 ng  

ethidium bromide per ml 1 x TAE buffer (Amresco, Ohio, USA), pH 8. As molecular size 

marker, the Gene Ruler 100 bp DNA ladder plus (MBI Fermentas, St. Leon-Rot, Germany) 

was used. Electrophoresis was implemented at a constant voltage of 170 V in 0.5 x TAE 

buffer during 75 min. The gels were visualised using the Image Master® VDS (Pharmacia 

Biotech, Puurs, Belgium). 
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Table 1 Helicobacter pullorum isolates studied using AFLP 

 

Strain Source Geographic origin 

CE III 2 Caecal droppings, broiler chicken 

CE III 3 Caecal droppings, broiler chicken 

CE III 4 Caecal droppings, broiler chicken 

CE III 5 

Flock 

CLOa 

Worker’s boot 

Belgium 

 

CE II 1 Caecal tissue, broiler chicken 

CE II 2 Caecal tissue, broiler chicken 

CE II 3 Caecal tissue, broiler chicken 

CE II 4 Caecal tissue, broiler chicken 

CE II 5 Caecal tissue, broiler chicken 

CE II 6 Caecal tissue, broiler chicken 

CE II 7 Caecal tissue, broiler chicken 

CE II 8 

Flock 

n° 5 

 

Caecal tissue, broiler chicken 

Belgium 

CE I 1 Caecal tissue, broiler chicken 

CE I 2 Caecal tissue, broiler chicken 

CE I 3 Caecal tissue, broiler chicken 

CE I 4 Caecal tissue, broiler chicken 

CE I 5 Caecal tissue, broiler chicken 

CE I 6 Caecal tissue, broiler chicken 

CE I 7 Caecal tissue, broiler chicken 

CE I 8 

Flock 

n° 9 

Caecal tissue, broiler chicken 

Belgium 

CCUGb 33837 Healthy broiler chicken Switzerland 

CCUG 33838 Laying hen, hepatitis Switzerland 

CCUG 33839 Stool, gastroenteritis and hepatitis, human Switzerland 

CCUG 33840 Stool, gastroenteritis, human Switzerland 

G 214 

NAc 

Stool, gastroenteritis, human 
Belgium (Ceelen et al., 

2005) 
 

a CLO: Centrum voor Landbouwkundig Onderzoek, b CCUG: Culture Collection of the 

University of Göteborg, c NA: Not applicable for identification 
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Isolation of H. pullorum  

Recovery of H. pullorum isolates was attempted on all samples positive in the PCR analysis 

described above. The samples (200 mg) for isolation of H. pullorum were put in a 1.5 ml tube 

with 400 µl of a mixture composed of 7.5 g glucose, 25 ml brain heart infusion (BHI) broth 

(Oxoid, Basingstoke, England) and 75 ml sterile inactivated horse serum and were 

homogenized. The various isolates were inoculated on BHI agar, supplemented with 10 % 

horse blood, amphotericin B 20 µg/ml (Fungizone; Bristol-Myers Squibb, Epernon, France) 

and Vitox (Oxoid) (blood agar). A modified filter technique of Steele and McDermott was 

then used. Briefly, a sterile cellulose acetate membrane filter (0.45 µm) was applied with a 

sterile pair of tweezers directly onto the surface of the agar. When the filter was adsorbed 

totally on the agar, approximately 300 µl of the mixture was put in the middle of the filter. 

After at least one hour of incubation at 37°C and 5 % CO2, the filter was removed with a 

sterile pair of tweezers and the filtrate was streaked on the agar with a loop. Incubation was 

done in microaerobic conditions (5  % H2, 5  % CO2, 5  % O2 and 85  % N2) at 37°C for 

minimum three days. Very small, greyish-white, haemolytic colonies were selected and 

purified on a blood agar plate. The colonial morphology and phenotypic characteristics 

(Gram-negative, slightly curved rod, catalase and oxidase positive, indoxyl acetate negative) 

of the isolates were used for presumptive identification. Confirmation of the presumed 

identity was done on the basis of PCR and sequencing of a 447 bp fragment of the 16S 

ribosomal RNA gene as described below.   

 

Analysis of nucleotide sequences 

The PCR product of the retrieved H. pullorum isolates was purified with the Qiaquick PCR 

purification kit (Qiagen) and sequenced using the same primers applied in the PCR assay with 

the BigDye Terminator cycle sequencing kit (Applied Biosystems, Lennik, Belgium). 

Sequencing products were run on the ABI prismTM 3100 Genetic Analyzer (Applied 

Biosystems), using 50 cm capillaries filled with Performance-Optimized-Polymer 6. The 

electrophoregrams were exported and converted to the Kodon software package (Applied 

Maths, Sint-Martens-Latem, Belgium). Sequences were compared to published H. pullorum 

16S rRNA gene sequences obtained from GenBank (accession numbers AY631956, L36143 

and L36144) by using BLAST software. 
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AFLP  

Twenty-two poultry and three human isolates were fingerprinted by AFLP (Table1). These 

included 16 isolates obtained from flocks n° 5 and n° 9 screened in the present study. In 

addition, four isolates previously isolated from caecal drops of broilers and farmer’s boots 

from another flock, four reference strains (two of chicken and two of human origin), and one 

human strain isolated from diarrheic stool in our laboratory were likewise included for 

comparison. 

 

Restriction endonuclease digestion and ligation of adaptors for AFLP  

DNA of H. pullorum isolates was extracted using a commercial tissue kit (DNeasy® Tissue 

Kit, Qiagen). An aliquot containing 200 ng DNA, determined by optic density (260/280nm) 

measurement using the Spectra Fluor (TECAN, Grödig, Salzburg, Austria), was digested for 

two hours at 37°C with BglII (10U/µl) and Csp6I (10U/µl) (MBI Fermentas) in TAC-buffer 

as described by Vos et al. Five microliters of DNA digest was used in a ligation reaction 

containing 130 µg/ml Bgl II adaptor-oligonucleotide and 13 µg/ml Csp6I adaptor-

oligonucleotide (Invitrogen) (14), 10 X T4 DNA ligase buffer, T4 DNA ligase (1U/µl) 

(Amersham Pharmacia) and TAC-buffer in a final volume of 20 µl. After incubation for two 

hours at 25°C, the 20 µl ligation reaction was diluted 25 times.  

 

Direct selective PCR amplification of diluted ligation 

Five microliters of the diluted ligation reaction were applied in the PCR assay. The primers 

used in this PCR assay were primers BGL2F-0, 5’-GAG TAC ACT GTC GAT CT-3’ (FAM 

labeled, 5’-end) and CSP6I-A, 5’-GAG CTC TCC AGT ACT ACA-3’ (Kokotovic and On, 

1999). The used PCR conditions were the following: an initial denaturation at 94°C for 3 min, 

followed by 35 cycles of denaturation at 94°C for 1 min, annealing at 54°C for 1 min and 

elongation at 72°C for 90 s, and a final elongation at 72°C for 10 min. 

 

Capillary electrophoresis 

PCR products were run on the ABI prismTM 3100 Genetic Analyzer (Applied Biosystems), 

using the Fragile X Rox-1000 size standard and 50 cm capillaries filled with Performance-
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Optimized-Polymer 6. Electropherograms were analyzed with Genemapper U 3.5 Software 

(Applied Biosystems).  

 

Numerical analyses of AFLP profiles 

The program BioNumerics version 2.5 (Applied Maths) was used to perform numerical 

analyses of AFLP profiles. Strain relationships were inferred by use of the Pearson product-

moment correlation coefficient and Unweighted Pair-Group with Mathematical Average 

(UPGMA) clustering, and depicted in a dendrogram (On et al., 2003). 

 

RESULTS 

 

PCR 

In table 2, the number of H. pullorum DNA positive samples originating from the intestinal 

tract and liver is presented. In four flocks all samples were negative for H. pullorum. In the 

other seven flocks positive samples were found. In the caecum and colon, a PCR reaction for 

H. pullorum gave positive results in 33.6 % and 31.8 % of the samples, respectively. In total, 

10.9 % and 4.6 % of all jejunum and liver samples, respectively, were positive for H. 

pullorum.  

 

Isolation of H. pullorum 

Eight H. pullorum isolates from flock n° 5 and eight H. pullorum isolates from flock n° 9, all 

from the caecum, were obtained. The sequences of the amplified 447 bp fragment of the H. 

pullorum 16S rRNA gene of the H. pullorum isolates revealed a similarity of 98 to 100 % to 

those from Genbank (AY631956, L36142 and L36143).  

 

AFLP 

AFLP analysis revealed that isolates derived from each of the individual flocks examined 

clustered with respect to their flock of origin. The remaining chicken isolates and human 

strains each displayed a unique profile (Figure). 

 

 



   

 62

Table 2 Number of positive poultry tissue samples for Helicobacter pullorum in PCR 

 

Tissue 

Caecum Colon Jejunum Liver 
 

Flock n° 
Number of positive samples 

1 2* 2 1 0 

2 3 8 4 0 

3 4 1 1 0 

4 7 4 1 0 

5 8 8 0 0 

6 0 0 0 0 

7 4 4 0 1 

8 0 0 0 0 

9 9 8 5 4 

10 0 0 0 0 

11 0 0 0 0 

Total 37 35 12 5 

 

* Number of positive animals of ten screened per flock 
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Figure AFLP profiles of Helicobacter pullorum isolates and reference strains 

 

DISCUSSION 

 

This report demonstrates that H. pullorum is present in 33.6 % of the caecal samples of broiler 

chickens collected at a poultry slaughterhouse during evisceration using PCR. This 

microorganism was found in seven flocks out of the 11, while four flocks were negative.  

Burnens et al. (1996) found a prevalence rate of 4 % upon sampling caecal contents of 

broilers. The organism was however detected by isolation, which in view of the fastidious 

nature of this organism, could explain this markedly lower percentage positive birds. In 

addition, in our study, the actual caecal tissue was examined for the presence of the organism 

rather than caecal contents. Microorganisms related to H. pullorum have been shown to 
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adhere closely to the mucosa of the gastrointestinal tract. It has been reported that the 

phylogenetically related microorganism C. jejuni may tightly adhere to the brush borders of 

the intestine in chickens (Ruiz-Palacios et al., 1981; Sanyal et al., 1984). The same 

phenomenon has also been documented for H. pylori in the stomach (Clyne and Drumm, 

1993). 

Comparing our study results to those obtained by Atabay et al., the latter research 

group found a higher occurrence of H. pullorum (60 %) on poultry carcasses. This apparent 

discrepancy could be due to cross-contamination with caecal contents on the surface of broiler 

carcasses during poultry processing (Atabay et al., 1998; Fox et al., 1998). Furthermore, 

contamination of the chicken body surface may occur during transport to the abattoir. Faecal 

excretion of Campylobacter may be increased due to stress during transport and consequently 

contaminate carcasses (Whyte et al., 2001). 

H. pullorum DNA was detected in only five liver (4.6 %) and 11 jejunal (10.9 %) 

samples as opposed to 35 colonic (31.8 %) and 37 caecal (33.6 %) samples. One may hence 

assume that the lower segments of the intestinal tract are the predominant colonization sites 

for H. pullorum in broiler chickens. H. pullorum may gain access to the liver by retrograde 

transfer from the duodenum. Alternatively, it may translocate from the gut lumen to the portal 

circulation. 

H. pullorum has been associated with vibrionic hepatitis in laying hens, both macroscopically 

and microscopically (Burnens et al., 1996). In the present study, no gross pathologic lesions 

were observed in the livers during sampling (data not shown).  

Our modest isolation rate of H. pullorum from caecal samples may have been the 

result of examining frozen, compared with fresh samples. However, we successfully 

recovered 16 isolates from two flocks, allowing (for the first time, to our knowledge) some 

analysis of the epidemiology of H. pullorum in broiler flocks to be undertaken. We used 

AFLP profiling for this purpose, a highly discriminatory method that has been successfully 

applied to molecular epidemiological studies of several related species including H. pylori 

(Fox, 1997; Ananieva et al., 2002), Arcobacter spp. (Kokotovic and On, 1999) and 

Campylobacter spp.(Siemer et al., 2004; 2005). Isolates derived from each of the individual 

flocks clustered respectively together, indicating a clonal relationship. In contrast, field and 

reference strains isolated from different hosts or geographical sources displayed a distinctive 
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pattern. These data suggest that, as for the related species noted above, AFLP profiling 

appears to have considerable potential for molecular epidemiological studies of H. pullorum. 

Several authors have suggested that H. pullorum has zoonotic potential and is involved in the 

pathogenesis of diarrhoea and chronic liver diseases in humans (Burnens et al., 1994; Fox et 

al., 1998; Young et al., 2000; Ceelen et al., 2005). Retail raw poultry meats and other poultry 

products may constitute vehicles for a H. pullorum infection of humans through carcass 

contamination as previously reported for Arcobacter and Campylobacter species (Fox et al., 

1998; Houf et al., 2000; Antolin et al., 2001; Houf et al., 2001). Concerning health 

monitoring, PCR may be a helpful method to detect this pathogen not only in intestinal tissue 

but also in caecal drops from broiler chickens.  

In conclusion, this study shows that H. pullorum is a rather frequent intestinal 

coloniser of broiler chickens. PCR and isolation are useful tools for detecting the species in 

intestinal tissue and in caecal drops. AFLP profiling appears to be a useful tool for molecular 

epidemiological studies of this species.  
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ABSTRACT 

 

The objective of this study was to determine the prevalence of Helicobacter pullorum in 

patients with gastrointestinal disease and in clinically healthy people. 

Faecal samples from 531 patients with gastrointestinal disease and 100 clinically healthy 

individuals were tested for the presence of Helicobacter pullorum using PCR analysis based 

on the 16S rRNA gene. Samples proving positive in PCR were inoculated onto BHI agar 

supplemented with 10% horse blood and incubated in a microaerobic atmosphere at 37°C for 

minimum three days for isolation purposes. 

Helicobacter pullorum DNA was demonstrated in faecal material from 4.3 % of patients with 

gastrointestinal disease, but also from 4.0 % of clinically healthy persons. One strain was 

isolated from one patient with gastrointestinal disease. 

It was concluded that Helicobacter pullorum is fairly regularly present in faecal samples from 

humans. Its role in gastrointestinal disease needs further investigation. 
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INTRODUCTION 

 

In the last two decades, more than 30 species have been described within the genus 

Helicobacter (On et al., 2002). One of these is Helicobacter pullorum, a Gram-negative, 

motile, slightly curved, non spore-forming rod which is oxidase positive, negative for indoxyl 

acetate esterase, urease production and hippurate hydrolysis. The organism is sensitive to 

nalidixic acid and mostly catalase positive (On et al., 1996). H. pullorum is bile-resistant and 

requires a microaerobic environment supplemented with H2 in which growth occurs at 37°C 

and 42°C (Stanley et al., 1994; On et al., 1996; Fox, 1997; Steinbrueckner et al., 1997). 

Identification to the species level can be done on the basis of the above mentioned phenotypic 

traits, although the results of these tests are sometimes difficult to interpret. The correct 

identity of the species can be confirmed by means of polymerase chain reaction (PCR) 

(Stanley et al., 1994). 

H. pullorum has been detected on several occasions in the caecum and on the carcass 

of broiler chickens, in the intestine of laying hens and in the faeces of humans. DNA of this 

bacterial species has been demonstrated in the liver of laying hens and in the biliary tree of 

humans (Burnens et al., 1994; 1996; Fox, 1997; Fox et al., 1998; Gibson et al., 1999; 

Steinbrueckner et al., 1997; Young et al., 2000). A number of research groups have associated 

this organism with vibrionic hepatitis in poultry and with gastroenteritis, diarrhoea, liver and 

gallbladder disease in human patients (Stanley et al., 1994; Fox, 1997; Fox et al., 1998; 

Young et al., 2000 ). It has been suggested that H. pullorum also may play a role in Crohn’s 

disease (Andersson et al., 2002; Bohr et al., 2002). 

Broilers seem to be the source of infection for humans, due to contamination of the 

carcass with intestinal contents in the abattoir (Fox, 1997; Atabay et al., 1998). The number of 

infections with H. pullorum in people most probably has been and still is underestimated 

because of the phenotypic similarities between the genera Helicobacter and Campylobacter 

on the one hand and the specific isolation requirements of H. pullorum on the other hand 

(Steinbrueckner et al., 1997; Atabay et al., 1998; Gibson et al., 1999; Young et al., 2000). 

Consequently, a significant number of patients with diarrhoea may have been misdiagnosed in 

the past (Steinbrueckner et al., 1997; Atabay et al., 1998; Young et al., 2000). 
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Despite the increasing number of reports stating H. pullorum as a significant food-associated 

human pathogen, there is a total lack of information on the prevalence of this species in 

human beings. In fact, no data whatsoever on the actual carrier rates in humans are available.  

The aim of the present study was to determine the prevalence of H. pullorum in human 

patients with gastrointestinal disease. For comparatory purposes, clinically healthy persons 

were likewise included.  

   

MATERIALS AND METHODS 

 

Sample origin 

Five hundred and thirty-one faecal samples were obtained from patients with gastrointestinal 

disease and anonymized at the Department of Gastroenterology, University Hospital of Ghent, 

Belgium, before being analyzed.  

One hundred faecal samples were collected on an anonymous basis from clinically healthy 

volunteers. 

All samples were stored at -20°C and -70°C for PCR and isolation respectively, until further 

analysis. 

  

Sample processing 

PCR and gel electrophoresis 

DNA was extracted from faeces (weighing approximately 200 mg) using a commercial stool 

kit (QIAamp® DNA Stool Mini Kit, Qiagen, Venlo, The Netherlands).  

A PCR assay amplifying a 447 bp fragment of the 16S rRNA gene of H. pullorum was used 

(Stanley et al., 1994). Per sample 2 µl of the prepared DNA was added to 8 µl of the PCR 

mixture, containing 0.03 U/µl taq polymerase platinum (Invitrogen, Life Technologies, 

Merelbeke, Belgium), 10 x PCR Buffer (Invitrogen, Life Technologies), 3 mM MgCl2 

(Invitrogen, Life Technologies), 40 µM of each deoxynucleoside triphosphate (Invitrogen, 

Life Technologies), a final primer concentration of 0.5 µM and sterile distilled water. The 

conditions used for the amplifications were the following: an initial denaturation at 94°C for 5 

minutes, followed by 35 cycles of denaturation at 94°C for 1 min, annealing at 60°C for 90 s 

and elongation at 72°C for 90 s, and a final elongation at 72°C for 5 min.  
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Five microliters of the PCR products of each sample were mixed with 3 µl of sample buffer 

5X (50 % glycerol, 1 mM cresol red) and electrophoresed through an agarose gel containing 

1.5 % Multi Purpose agarose (Boehringer, Mannheim, Germany) in 1 x TAE buffer 

(Amresco, Ohio, USA), pH 8 and containing 50 ng  ethidium bromide per ml. As molecular 

size marker the Gene Ruler 100 bp DNA ladder plus (MBI Fermentas, St. Leon-Rot, 

Germany) was used. Electrophoresis was implemented at a constant voltage of 170 V in 0.5 x 

TAE buffer during 75 minutes. The gels were visualised using the Image Master® VDS 

(Pharmacia Biotech, Puurs, Belgium). 

 

Isolation of H. pullorum  

All samples positive in the PCR were qualified for isolation. The samples (200 mg) for 

isolation were put in a 1.5 ml tube with 400 µl of a mixture composed of 7.5 g glucose, 25 ml 

brain heart infusion (BHI) (Oxoid, Basingstoke, England) and 75 ml sterile inactivated horse 

serum and homogenized.  

The various samples were inoculated on BHI agar, supplemented with 10 % horse blood, 

amphotericin B 20 µg/ml (Fungizone; Bristol-Myers Squibb, Epernon, France) and Vitox 

(Oxoid). The filter technique of Steele and McDermott (1984) was used, although slightly 

modified. Briefly, a sterile cellulose acetate membrane filter (0.45 µm) was applied with a 

sterile set of tweezers directly to the surface of the agar. When the filter was absorbed totally 

on the agar, approximately 300 µl of the mixture was put in the middle of the filter. After at 

least one hour of incubation at 37°C and 5 % CO2, the filter was removed with a sterile set of 

tweezers and the filtrate was streaked on the agar with a loup. Incubation was done in 

microaerobic conditions (5 % H2, 5 % CO2, 5 % O2 and 85 % N2) at 37°C for minimum three 

days. Very small, greyish-white, haemolytic colonies were selected and purified on a BHI 

agar blood plate. The colonial morphology and phenotypic characteristics (Gram-negative, 

slightly curved rod, catalase and oxidase positive, indoxyl acetate esterase negative) of the 

isolates were used for presumptive identification. Confirmation of the presumed identity was 

done on the basis of PCR and sequencing of the 16S ribosomal RNA gene as described 

below.   
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Analysis of nucleotide sequences 

The PCR product of the retrieved H. pullorum isolate was purified with the Qiaquick PCR 

purification kit (Qiagen) and sequenced using the same primers applied in the PCR assay with 

the BigDye Terminator cycle sequencing kit (Applied Biosystems, Lennik, Belgium). 

Sequencing products were run on the ABI prismtm 3100 Genetic Analyzer (Applied 

Biosystems), using 50 cm capillaries filled with Performance-Optimized-Polymer 6. The 

electropherograms were exported and converted to the Kodon software package (Applied 

Maths, Sint-Martens Latem, Belgium). Sequences were compared to published H. pullorum 

16S rRNA sequences obtained from GenBank (accession numbers AY631956, L36143 and 

L36144) by using BLAST software. 

 

RESULTS 

 

Twenty-three out of the 531 faecal samples (4.3 %) from gastrointestinal patients were found 

positive for H. pullorum in the PCR. In the group of clinically healthy individuals, four out of 

the 100 samples harboured H. pullorum DNA. 

H. pullorum was isolated of the faeces from one gastrointestinal patient. 

The sequence of the amplified 447 bp fragment of the H. pullorum 16S ribosomal RNA gene 

of the H. pullorum isolate revealed a similarity of 99 % to those from Genbank (AY631956, 

L36143 and L36144).  
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DISCUSSION 

 

The present study shows that faecal material from 4.3 % of patients with gastrointestinal 

disease, but also from 4.0 % of clinically healthy persons harbours H. pullorum DNA. The 

finding of equivalent percentages in both groups may question the presumed association of H. 

pullorum with gastrointestinal and liver disease. One could indeed state that H. pullorum may 

reside in the normal gut flora of human beings. Its presence in faecal samples might also be 

passive, representing acquisition from contaminated food without replication of the organism 

in the intestinal tract. It can hence not be excluded that demonstration of H. pullorum in 

human faeces might be an accidental finding. 

Several authors have, however, related H. pullorum to gastroenteritis resulting in diarrhoea, 

and liver and gallbladder disease in humans (Burnens et al., 1994; Steinbrueckner et al., 1997; 

Fox et al., 1998). Encountering H. pullorum DNA in faeces from gastrointestinal patients as 

well as from clinically healthy individuals does not necessarily exclude this microorganism 

from being pathogenic. Indeed, predisposing factors which are hitherto unknown may cause 

some of the H. pullorum strains to make the transition from being a harmless inhabitant or 

passer-by of the intestinal tract to causing clinical disease. This hypothesis may be 

complemented with the possible existence of strains with differing virulence, with the highly 

virulent strains triggering diarrhoeal disease. Differences in virulence between strains have 

been described for other Helicobacter species such as H. hepaticus (Suerbaum et al., 2003) 

and H. pylori (Dunn et al., 1997; Israel et al., 2001). In fact, 70 to 90 % of the population in 

developing countries carries H. pylori, while only 25 to 50 % of them develop gastric disease 

(Dunn et al., 1997). The actual evolvement into gastric disease depends on bacterial factors, 

host characteristics and/or interaction between host and bacterium (Israel et al., 2001). A well-

known phenomenon is that strains possessing the cagA gene, a component of the 

pathogenicity island (cagA+), are substantially more virulent than cagA- strains (Kuipers et 

al., 1995; Lee et al., 1997; Sharma et al., 1998; Israel et al., 2001).  

For H. pullorum, very few data are available on the actual virulence markers despite 

the increasing number of clinical reports involving this pathogen. The only study entering 

upon this research area demonstrates the production of the cytolethal distending toxin (CDT) 
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by H. pullorum which is speculated to play an aetiological role in the development of 

diarrhoea (Young et al., 2000). 

Host factors such as age, genetic background and immune response but also ethnical aspects 

and regional factors might also play a role in the clinical outcome of a H. pullorum infection. 

These all have been discussed for H. pylori on numerous occasions (Taylor et al., 1995; Dunn 

et al., 1997; Kim et al., 2004; Vilaichone et al., 2004) and to a lesser extent for H. hepaticus 

(Ward et al., 1996; Ihrig et al., 1999; Whary et al., 2001). A report of Whary et al. (2001) who 

infected different mouse strains with H. hepaticus emphasizes the significance of the host 

response. Various studies about the development of hepatitis, liver cancer and inflammatory 

bowel disease (IBD) in mice infected with H. hepaticus demonstrate that a genetic basis for 

susceptibility to Helicobacter-induced disease is of importance. Indeed, differences between 

mouse strains regarding the development of liver disease or IBD are commonly noticed (Ihrig 

et al., 1999; Ward et al., 1994a,b; 1996).  

Only one H. pullorum strain originating from a patient with gastrointestinal disease 

was obtained by culture stressing the difficulty to isolate this microorganism from human 

stool. It is indeed common knowledge that Helicobacter species are fastidious bacterial 

pathogens that are difficult to isolate (Andersen et al., 2001; Al-Soud et al., 2003, Silva et al., 

2003).  

In conclusion, this is the first elaborate report on the prevalence of H. pullorum in both 

patients with gastrointestinal disease and clinically healthy humans proving that H. pullorum 

is fairly regularly present in the stool of people belonging to both groups. To date, the 

molecular basis of H. pullorum colonization and virulence is poorly understood and further 

studies to unlock more of the secrets of the lifestyle of this potential pathogen and its 

encumbrance for public health are hence necessary.          
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ABSTRACT 

 

The in vitro activity of 13 antimicrobial agents against 23 Helicobacter pullorum isolates 

from poultry (21) and human (2) origin and one human Helicobacter canadensis strain was 

tested by the agar dilution method. With the Helicobacter pullorum isolates, monomodal 

distributions of Minimum Inhibitory Concentrations were seen with lincomycin, doxycycline, 

gentamicin, tobramycin, erythromycin, tylosin, metronidazole and enrofloxacin in 

concentration ranges considered as indicating susceptibility in other bacteria. The normal 

susceptibility level for nalidixic acid was situated at or slightly above the MIC breakpoints 

proposed for Campylobacteriaceae. Ampicillin, ceftriaxone and sulphamethoxazole-

trimethoprim showed poor activity against Helicobacter pullorum. For the Helicobacter 

canadensis strain, a similar susceptibility pattern was seen, except for nalidixic acid and 

enrofloxacin, whose MIC of > 512 µg/ml and 8 µg/ml respectively, indicated resistance of 

this agent. With spectinomycin, a bimodal distribution of the MICs was noted for the tested 

strains; eight Helicobacter pullorum isolates originating from one flock showed acquired 

resistance (MIC > 512 µg/ml).       
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INTRODUCTION 

 

Helicobacter pullorum was first described by Stanley et al. (1994). The species constitutes a 

Gram-negative, non-spore forming, gently curved, slender rod with monopolar non-sheathed 

flagella (Stanley et al., 1994; On, 1996; Atabay et al., 1998). H. pullorum is associated with 

vibrionic hepatitis in laying hens and enteritis and diarrhoea in humans (Stanley et al., 1994; 

Fox et al., 1998; Young et al., 2000). Several authors have suggested that H. pullorum is 

involved in the pathogenesis of chronic liver diseases in humans (Fox et al., 1998; Gibson et 

al., 1999; Ananieva et al., 2002).  Broilers appear to constitute the source of infection for 

humans, due to carcass contamination with intestinal contents during the slaughter process 

(Atabay et al., 1998; Fox et al., 1998). A significant portion of cases of human diarrhoea 

could have been misdiagnosed in the past, because of the specific requisites for isolation of 

the species on the one hand and biochemical similarities between the Helicobacter genus and 

Campylobacter genus on the other hand (Atabay et al., 1998; Gibson et al., 1999).   

Despite the increasing number of reports emphasizing the significance of H. pullorum 

in human beings, hardly any data about the antibiotic sensitivity of H. pullorum are available 

in the literature. H. pullorum is naturally sensitive to polymyxin B, a phenotypic characteristic 

distinguishing this species from the other Helicobacter spp (Atabay et al., 1998. Resistance to 

cefalotin and cefoperazone has been reported (Stanley et al., 1994; On, 1996). Different 

resistance percentages exhibited by H. pullorum to nalidixic acid were encountered by several 

research groups. On (1996) and Atabay et al. (1998) reported 6 % and 28 % in vitro resistance 

respectively, while antimicrobial susceptibility assays showed 55 % resistance to this 

antimicrobial agent among the tested strains in a study of Melito et al. (2000). Thus far, no 

susceptibility studies comprising widely used antibiotics with H. pullorum strains have been 

reported. 

In the present study, the susceptibility of 23 H. pullorum isolates and one H. 

canadensis strain against 13 antimicrobial agents was investigated by the agar dilution 

method.         
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MATERIALS AND METHODS 

 

Bacterial strains 

A total of 23 isolates of H. pullorum were tested: 21 poultry isolates and two human isolates. 

The poultry strains originated from five different flocks in Belgium and Switzerland. One H. 

canadensis strain (CCUG 47163) was tested likewise (Table 1). The H. pullorum strains from 

the Belgian flocks were isolated from caecal samples using the filter technique of Steele and 

McDermott. The identity of H. pullorum was presumed on the basis of the bacteria being 

Gram-negative, slightly curved and rod-shaped, oxidase and catalase positive, indoxyl acetate 

esterase negative and sensitive to polymyxin B. The correct identity of the species was 

confirmed using a PCR assay developed by Stanley et al. (1994). Escherichia coli (ATCC 

25922) and Staphylococcus aureus (ATCC 29213) were included as control strains. The 

Helicobacter strains were inoculated on brain heart infusion (BHI) agar (Oxoid, Basingstoke, 

England) and incubation occurred for minimally three days in a microaerobic environment (5 

% H2, 5 % CO2, 5 % O2 and 85 % N2) at 37°C. 

 

Antimicrobial agents 

The following antibiotics were tested: ampicillin, lincomycin, doxycycline, spectinomycin, 

gentamicin, tobramycin, ceftriaxone, metronidazole, erythromycin, tylosin, nalidixic acid and 

sulphamethoxazole-trimethoprim, all purchased from Sigma (St. Louis, MO, USA) and 

enrofloxacin (Bayer, Brussels, Belgium). Drug solutions were prepared immediately prior to 

use.  
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Table 1 Bacterial isolates used in this study 

 

Strain number Source 

CCUG* 33837 Broiler, Switzerland 

CCUG 33838 Human stool, Switzerland 

CCUG 33839 Human stool, Switzerland 

 

 

Reference strains of H. pullorum 

CCUG 33840 Laying hen, Switzerland 

CE I 1 Caecal droppings 

CE I 2 Caecal droppings  

CE I 3 Caecal droppings 

CE I 4 Caecal droppings  

 

 

 

 

 

 

Flock I 

B I 1 Farmer’s boots 

CE II 1 Caecum  

CE II 2 Caecum 

CE II 3 Caecum 

CE II 4 Caecum 

CE II 5 Caecum 

CE II 6 Caecum 

CE II 7 Caecum 

 

 

 

 

Flock II 

CE II 8 Caecum 

CE III 1 Caecum 

CE III 2 Caecum 

 

 

Field isolates of 

H. pullorum 

isolated from 

broilers in 

Belgium 

 

 

Flock III CE III 3 Caecum 

CE III 4 Caecum 

CE III 5 Caecum 

  

CE III 6 Caecum 

Type strain of H. canadensis CCUG 47163  Human stool, Canada 

 

* CCUG: Culture Collection of the University of Göteborg 

 

Agar dilution method 

The Minimum Inhibitory Concentrations (MICs) of the tested antimicrobial agents were 

determined by the agar dilution method using BHI agar, containing doubling dilutions of the 

above stated antimicrobials with final concentrations ranging from 0.03 to 512 µg/ml. Inocula 

of the Helicobacter strains were prepared in phosphate-buffered saline by adjusting bacterial 
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suspensions directly derived from the culture plate to a density of 3 on the McFarland 

turbidity scale. The control strains were utilized at a density of 0.5 McFarland standard and 

consequently 1:10 diluted. The various strains were seeded on the antibiotic-containing plates 

and on antibiotic-free control plates with a Steers inoculum replicator (MAST, London, UK). 

Incubation followed in a microaerobic environment for three days at 37°C. The MIC was 

defined as the lowest concentration that almost entirely inhibited growth. The MIC tests were 

performed in duplicate. 

 

RESULTS 

 

The results of the MIC tests are summarized in Table 2. A monomodal distribution for the 

MICs was seen for all antimicrobial agents, except for spectinomycin having a bimodal 

appearance with a second peak at > 512 µg/ml, i.e. the MIC value for all isolates retrieved 

from flock II. These isolates may hence be designated as having acquired resistance to this 

antibiotic. Lowered susceptibility or resistance to ampicillin, ceftriaxone and 

sulphamethoxazole-trimethoprim of all isolates was noted. Susceptibility to lincomycin, 

doxycycline, gentamicin, tobramycin, erythromycin, tylosin, metronidazole, enrofloxacin and 

nalidixic acid may be assumed. H. canadensis however, was resistant to enrofloxacin and 

nalidixic acid. 
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Table 2 MIC distribution of various antimicrobials for Helicobacter pullorum and Helicobacter canadensis isolates 

 

Number of H. pullorum and H. canadensis strains with MIC of (µg/ml) 
Antimicrobial ≤0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512 >512
Ampicillin           8 10* 2 2 1 1 
Lincomycin        3 4 14 3*      
Doxycycline   3 7 9 4 1*          
Gentamicin   1 1 12 10*           
Spectinomycin         1 12* 1 1 1   8 
Tobramycin    1 4 9 7* 3         
Ceftriaxone a          2* 2 5 13    
Metronidazole       3 13 7* 1       
Enrofloxacin 20 3       1*        
Erythromycin     11 12* 1          
Tylosin       3 5 7 6* 3      
Sulphamethoxazole-trimethoprim b             4 16* 1 2 
Nalidixic acid         2 1 6 9 5   1* 
 

a MIC values of two strains were not determined 
b MIC value of one strain was not determined 

* Including the Helicobacter canadensis strain 
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DISCUSSION 

 

This study constitutes the first report of in vitro susceptibility testing of H. pullorum and H. 

canadensis strains against various antimicrobial agents. The selection of these antimicrobials 

was based on current recommendations of the National Committee of Clinical Laboratory 

Standards (M31-A2) (2002). This list was completed with other antibiotics that are fairly 

frequently used in human patients with gastrointestinal disease and poultry. Nalidixic acid 

was included in the tests to clarify the alleged susceptibility of H. pullorum against this 

antibiotic.  

According to the NCCLS, the agar dilution is the method of choice for testing H. 

pylori, Campylobacter jejuni and related species (M31-A2) (2002) (Solnick, 2003). Since 

Campylobacter and Helicobacter spp. necessitate comparable incubation circumstances and 

time, the agar dilution method was used in the present study to determine the minimum 

inhibitory concentrations for H. pullorum and H. canadensis.  

Hitherto, for Helicobacter spp., no internationally accepted criteria for susceptibility 

testing are available. Part of the explanation probably lies herein that the specific growth 

requirements and the fastidious nature of Helicobacter make it difficult for establishing 

standardized MIC determination procedures. The quality control limits given for 

nonfastidious bacteria in aerobic environment are not conforming (Hakanen et al., 2002). For 

Campylobacter and Arcobacter spp., breakpoint values for a number of antimicrobials used in 

the present study (ampicillin, doxycycline, gentamicin, tobramycin, ceftriaxone, 

sulphamethoxazole-trimethoprim, nalidixic acid) have been suggested by several authors 

(Van Looveren et al., 2001; ter Kuile et al., 2002; Fera et al., 2003) Based on these 

breakpoints, one may assume that the H. pullorum strains are sensitive to doxycycline, 

gentamicin, tobramycin, enrofloxacin and erythromycin and resistant to ampicillin, 

ceftriaxone and sulphamethoxazole-trimethoprim. The high MIC values for ampicillin are 

noteworthy since other tested Helicobacter species are mostly sensitive to this antimicrobial 

agent (Flores et al., 1985; Fox, 1997; Kiehlbauch et al., 1995; Hachem et al., 1996; Loo et al., 

1997. For nalidixic acid, it is difficult to draw clear-cut conclusions about susceptibility 

versus resistance of the tested H. pullorum strains, based on the breakpoints (16-32 µg/ml) for 

Campylobacter spp. and Arcobacter spp. given by the authors mentioned above. Also 
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according to Stanley et al. (1994), a H. pullorum strain may be denoted as being resistant to 

this antimicrobial when the MIC is higher than 32 µg/ml. In the present study, the MIC values 

of nalidixic acid for 20 tested H. pullorum strains are situated at or above 32 µg/ml. This 

represents the normal susceptibility level of this species to nalidixic acid and does not imply 

these strains display acquired resistance to nalidixic acid.  

A bimodal frequency distribution of MICs for spectinomycin was seen. The MIC for 

all isolates from flock II was higher than 512 µg/ml, while the MICs of the other tested 

isolates ranged from 8 to 128 µg/ml. The former isolates hence may be designated as having 

acquired resistance. Spectinomycin is an aminocyclitol antibiotic which binds to the 30 S 

ribosomal subunit and acts on the protein synthesis during the mRNA-ribosome interaction by 

preventing elongation of the polypeptide chain at the translocation step (Prescott, 2000). 

Acquired resistance to spectinomycin may develop as a result of a single step mutation in the 

chromosomal gene rpsE, coding for the ribosomal small subunit protein S5 (Bilgin et al., 

1990; Wilcox et al., 2001). Escherichia coli mutants with alterations at position 1192 in 16S 

rRNA, namely G/C changing to G/U base pair, have been described as well (Sigmund et al., 

19984; Bilgin et al., 1990). Plasmid-mediated resistance to spectinomycin is uncommon 

(Prescott, 2000), although resistance due to R-plasmid specified adenylylation and 

phosphorylation of the antibiotic has been described in several bacteria including 

Campylobacter spp (Kawabe et al., 1987; Pinto-alphandary et al., 1990, Prescott, 2000).      

The other tested antimicrobial agents showed a monomodal distribution of MICs 

indicating that MIC values obtained in this study reflect normal susceptibility levels of this 

species to these antibiotics.  

In the present study the MIC of nalidixic acid for the H. canadensis strain was found 

to be higher than 512 µg/ml, that of enrofloxacin was 8 µg/ml which is remarkably higher 

than the MICs recorded for H. pullorum (≤ 0.03-0.06). This confirms the results of Fox et al. 

(2000) who found four H. canadensis isolates to be resistant to nalidixic acid in a disk 

diffusion test. Resistance to nalidixic acid is considered to be specific for the species H. 

canadensis.  

In conclusion, notwithstanding the lack of standardized guidelines on MIC testing for 

the species H. pullorum, this study allows to assess the normal in vitro susceptibility of this 

species for several antimicrobials. Acquired resistance was only detected to spectinomycin. 
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ABSTRACT 

 

Helicobacter pullorum has been associated with diarrhoea, gastroenteritis and liver disease in 

humans and with hepatitis in poultry. The purpose of the present study was to examine 

whether cytolethal distending toxin was present among ten poultry and three human 

Helicobacter pullorum isolates and whether a different level of cytolethal distending toxin 

activity was noted. A PCR assay was performed to detect the cdtB gene. In addition, epithelial 

Hep-2 cells inoculated with sonicate from all strains were observed microscopically and DNA 

analysis of these cells was done by flow cytometry. All Helicobacter pullorum isolates 

harboured the cdtB gene, but functional cytolethal distending toxin activity was only 

demonstrated in the human Helicobacter pullorum strain CCUG 33839. A significant number 

of cells treated with sonicate from this strain were enlarged. The nuclei were distended 

proportionally. Giant cells and multinucleated cells were observed as well. In addition, stress 

fibers accumulated. DNA analysis by flow cytometry revealed 31 % of these cells at the S/G2 

stage of the cell cycle. The tested poultry and human Helicobacter pullorum isolates all 

possess the cdtB gene, but under the circumstances adopted in this study only the human 

strain CCUG 33839 seems to show biological activity typical for CDT in vitro. 
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INTRODUCTION 

 

Helicobacter pullorum is an enterohepatic pathogen with the manifest ability to colonize the 

distal intestinal tract and liver of poultry and human beings. This species has been associated 

with diarrhoea in gastrointestinal patients and hepatitis in chickens (Stanley et al., 1994; 

Steinbrueckner et al., 1997; Atabay et al., 1998; Fox et al., 1998). Despite the increasing 

number of reported clinical cases involving this pathogen, hitherto, very few data are 

available on the pathogenesis of the infection. To our knowledge, the only two studies 

entering upon this research area demonstrate the chemical and biological characterization of 

lipopolysaccharides in H. pullorum (Hynes et al., 2004) and the production of the cytolethal 

distending toxin (CDT) by mainly human isolates (Young et al., 2000a). CDT is a toxin which 

originally was described by Johnson and Lior in Escherichia coli strains (Johnson and Lior, 

1987a). Since then, CDT activity has been apprenticed in other Gram-negative bacteria as 

well, including Campylobacter spp., some Shigella spp., Salmonella enterica serovar Typhi, a 

number of enterohepatic Helicobacter spp., Haemophilus ducreyi and Actinobacillus 

actinomycetemcomitans (Johnson and Lior, 1987b; Johnson and Lior, 1988; Pickett et al., 

1996; Okuda et al., 1997 ; Sugai et al., 1998; Cortes-Bratti et al., 1999; Chien et al., 2000; 

Young et al., 2000a,b; Svensson et al., 2002; Kostia et al., 2003; Taylor et al., 2003; Haghjoo 

and Galan, 2004). CDT is composed of three polypeptides (subunits cdtA, cdtB and cdtC) 

encoded by three genes designated as cdtA, cdtB and cdtC which all are required for the 

production of an active CDT (Frisk et al., 2001; Lara-Tejero and Galan, 2001). The toxin has 

the unique ability to stop the proliferation of various cells (De Rycke and Oswald, 2001; 

Frisan et al., 2002). Cells are blocked before entering into mitosis (Whitehouse et al., 1998; 

Elwell and Dreyfus, 2000; De Rycke and Oswald, 2001). The toxic effect is characterized by 

cellular enlargement and distention, resulting in cell death (Whitehouse et al., 1998; Cortes-

Bratti et al. 1999). Additionally, a CDT-mediated accumulation of actin stress fibers has been 

described by Aragon et al. (1997).  

CdtB is the biologically active subunit of the holotoxin. It is generally accepted that 

cdtB requires cdtA and/or cdtC to get internalized in the target cell preceding cytotoxicity 

(Elwell et al., 2001; Cortes-Bratti et al., 2001; Deng et al., 2001; Frisan et al., 2002; Avenaud 

et al., 2004; AbuOun et al., 2005) which probably occurs by endocytosis via clathrin-coated 
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pits (Cortes-Bratti et al., 2000). The true individual role of the cdtA and cdtC units however, 

has not been elucidated yet (Cortes-Bratti et al., 2001; De Rycke and Oswald, 2001; Lee et al., 

2003; Avenaud et al., 2004).  

In the present study, a PCR test was used to investigate to what extent the cdtB gene 

was present among a collection of H. pullorum isolates from poultry and human origin. 

Secondly, it was meant to determine whether a different CDT-like activity in between these 

isolates was noticeable. The latter information was gathered by inoculating Hep-2 cells with 

filtered bacterial sonicate and using flow cytometry, haemacolor and phalloidin staining as 

assessment techniques. 

 

MATERIALS AND METHODS 

 

Bacterial strains 

The H. pullorum strains from poultry and human origin used in this study are listed in Table 

1. Campylobacter jejuni NCTC 11168 which has been proven to harbour the cdt genes and 

produce CDT (Purdy et al., 2000), was included as a positive control. Helicobacter 

canadensis CCUG 47163 (Fox et al., 2000) was adopted as a negative control. Bacterial 

strains were stored at -70°C in a medium consisting of 7.5 g glucose, 25 ml brain heart 

infusion (BHI) broth (Oxoid, Basingstoke, England) and 75 ml sterile inactivated horse 

serum. The bacterial strains were inoculated on BHI agar, supplemented with 10 % horse 

blood and Vitox (Oxoid) and incubated for 72 hours under microaerobic (5 % H2, 5 % CO2, 5 

% O2 and 85 % N2) conditions at 37°C. 

 

Detection of cdtB gene using PCR  

DNA from agar-grown cultures of H. pullorum, C. jejuni and H. canadensis was extracted 

with a commercial kit (QIAamp DNA Mini Kit, Qiagen, Hilden, Germany) according to the 

recommendations of the manufacturer. DNA from C. jejuni, C. coli, C. lari, H. bilis, H. canis 

and H. hepaticus served as positive control whereas DNA from H. canadensis, H. pylori and 

H. fennelliae was included as negative control (Pickett et al., 1996; Young et al., 2000a,b; 

Chien et al., 2000; Fox et al., 2000). A PCR assay amplifying a 714 bp fragment of the cdtB 

gene was used (Chien et al., 2000). For this purpose, degenerate primers VAT2 (forward, 
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GTNGCNACBTGGAAYCTNCARGG) and DHF1 (reverse, DACNGGRAARTGRTC), 

which are based on the amino acid sequence of the cdtB subunit, were synthesized (Invitrogen 

Life Technologies, Merelbeke, Belgium) and applied in the PCR assay. Per sample, 2 µl of 

the prepared DNA was added to 8 µl of the PCR mixture, containing 0.04 U/µl Taq 

polymerase platinum (Invitrogen Life Technologies), 10 x PCR Buffer (Invitrogen Life 

Technologies), 1.5 mM MgCl2 (Invitrogen Life Technologies), 200 µM of each 

deoxynucleoside triphosphate (Amersham Pharmacia Biotech, Puurs, Belgium), a final primer 

concentration of 0.8 µM and sterile distilled water. The used conditions for the amplifications 

were the following: an initial denaturation at 94°C for 5 minutes, followed by 35 cycles of 

denaturation at 94°C for 1 min, annealing at 42°C for 2 min and elongation at 72°C for 3 min, 

and a final elongation at 72°C for 8 min. 

Amplified fragments (5 µl aliquots) were separated by electrophoresis in an agarose gel 

containing 1.5 % Multi Purpose agarose (Boehringer, Mannheim, Germany) in 1 x TAE 

buffer, pH 8 and were stained with ethidium bromide. The gels were visualised using the 

Image Master® VDS (Pharmacia, Biotech). 

 

Analysis of nucleotide sequences 

The cdtB PCR products were purified with the Qiaquick PCR purification kit (Qiagen) and 

sequenced using the primers VAT2 and DHF1 with the BigDye Terminator cycle sequencing 

kit (Applied Biosystems, Lennik, Belgium). Sequencing products were run on the ABI 

prismtm 3100 Genetic Analyzer (Applied Biosystems), using 50 cm capillaries filled with 

Performance-Optimized-Polymer 6. The electropherograms were exported and converted to 

the Kodon software package (Applied Maths, Sint-Martens Latem, Belgium) and compared to 

known cdtB sequences in the databases using multiple sequence alignment. The accession 

numbers for the nucleotide sequences of the cdtB gene obtained in this study are AF123536 

and AF220065.     

 

In vitro Hep-2 cell line assay 

Preparation of bacterial cell sonicates 

Bacterial cultures grown for 72 h on BHI agar blood plates were harvested by washing the 

plates with phosphate-buffered saline (PBS) followed by centrifugation (4000 x g, 20 min, 
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4°C) and resuspending the pellet in 1.5 ml PBS. The bacteria were disrupted by eight 30-s 

pulses on ice with the Sonicator, ultrasonic processor, XL 2015 (MISONIX, Farmingdale, 

NY), a process followed by centrifugation for 10 min (4000 x g, 4°C). Then, the sonicated 

lysate was filtered through a 0.45 µm and subsequently 0.20 µm pore size filter (IWAKI, 

International Medical, Brussels, Belgium). The protein concentration was determined using 

the Bio-Rad (Hercules, CA, U.S.A.) protein assay method with bovine serum albumin 

(Sigma, St. Louis, MO, USA) as a standard and stored at -70°C. Before using them in 

experimental assays, all preparations were thawed and diluted to 750 µg/ml total protein. 

 

Cell line 

The cultured Hep-2 cell line was obtained from the European Collection of Cell Cultures 

(ECACC). Cells were grown in Eagle’s Minimum Essential Medium (EMEM) (Gibco, 

Invitrogen, Merelbeke, Belgium) containing 10 % fetal calf serum, 1 % glutamine and 1 % 

non essential amino acids. 

 

Morphological changes in cultured cells 

Hep-2 cells were seeded onto 13-mm-circular glass slides (VWR, Leuven, Belgium) in a 24-

well plate at a concentration of 1 x 104cells/ml and were incubated at 37°C in 5 % CO2 for 3 

h. Following, 10 µl of the filtered bacterial sonicate (non-diluted and two fold serial dilutions 

ranging from 1:2 till 1:16) was added. PBS was likewise included as a negative control. After 

an incubation time of 72 h at 37°C in 5 % CO2, cells were washed three times with PBS and 

then stained with haemacolor stain. Glass slides were mounted with coverslips and observed 

microscopically in at least three time-independent assays. Attention was especially paid to 

cellular and nuclear distention.    

 

Flow cytometry 

Flow cytometry assay of the DNA content of the cultured cells was performed as described by 

Young et al. (2000b). Briefly, cells were seeded in 25-square-centimeter tissue culture flasks 

at a concentration of 1 × 105 cells/ml and subsequently inoculated with 100 µl filtered 

bacterial sonicate (non-diluted and two fold serial dilutions ranging from 1:2 till 1:16). PBS 

was likewise included as a negative control. Following incubation for 72 h at 37°C in 5 % 
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CO2, the cells were removed by trypsinization and transferred to a falcon tube. After 

centrifugation, the pellet was resuspended in a solution containing Triton X-100 and kept at 

37°C for 20 min. Subsequently, a staining solution comprising propidium iodide was added. 

Cells were incubated at 4°C for 3 h before DNA content was analyzed on a FACScalibur flow 

cytometer (Beckton-Dickenson, San Jose, California, USA). Data acquisition was performed 

on 1 x 104 cells for each experiment using Cell Quest software.  

 

Staining of F-actin with phalloidin-Texas Red X 

Hep-2 cells were seeded onto 13-mm-coverslips in a 24-well plate at a concentration of 2 x 

104 cells/ml. After 3 h, cell cultures were inoculated with 20 µl of non-diluted filtered 

sonicate of C. jejuni, H. canadensis and H. pullorum CCUG 33839 and incubated for 72 h at 

37°C in 5 % CO2. PBS served as negative control. Thereafter, they were gently washed twice 

with 0.5 ml PBS+ (PBS containing Ca2+ and Mg2+) at 37°C, fixed with 0.5 ml 3 % 

paraformaldehyde for 10 min at room temperature, gently washed again with 0.5 ml PBS+ 

and then permeabilized with 0.5 ml 0.1 % Triton X-100 in PBS+ for 2 min at room 

temperature. Following washing with PBS+, 0.25 ml phalloidin-Texas Red X (Molecular 

Probes, Eugene, Oregon, USA) (1:100 in PBS+) was added to each well and the 24-well plate 

was incubated at 37°C for 1 h. To remove unbound phalloidin, coverslips were gently washed 

twice with 0.5 ml PBS+ before visualization of the actin filaments with a Leica TCS SP2 laser 

scanning spectral confocal system (Leica Microsystems GmbH, Heidelberg, Germany). 

 

RESULTS 

 

Detection of cdtB gene using PCR 

PCR amplification with the primer pair VAT2 and DHF1 resulted in a 714 bp fragment for all 

H. pullorum strains, indicating all tested H. pullorum strains possess the cdtB gene. C. jejuni, 

H. bilis and H. canis likewise harboured the cdtB gene. H. canadensis, H. pylori and H. 

fennelliae were negative in the PCR.  
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Analysis of nucleotide sequences 

The sequences of the amplified 714 bp fragment of the cdtB gene of the H. pullorum isolates 

revealed a similarity of 98 to 99 % to those from Genbank.  

 

Production of CDT 

Morphological changes in cultured Hep-2 cells 

C. jejuni caused marked morphological alterations given that a majority of Hep-2 cells were 

detached from the bottom of the wells and were enlarged with a rounded appearance. The 

nucleus had a proportionally increased size. Several Hep-2 cells revealed two nuclei. Giant 

cells and multi-nucleated cells were observed as well, although the latter was not a frequently 

observed phenomenon (Figure 1). These changes were noticeable up until the last dilution of 

the bacterial sonicate (1:16).   

Concerning the H. pullorum strains, the non-diluted sonicate from the H. pullorum strain 

CCUG 33839 elicited the same morphological changes as C. jejuni, though to a lesser extent 

(Figure 1). Hep-2 cells inoculated with sonicate derived from the other H. pullorum strains 

showed no difference to the control cells treated with PBS or sonicate from H. canadensis. 
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Table 1 Bacterial strains used in this study and results of flow cytometry assay using Hep-2 

cells treated with non-diluted filtered sonicate of 13 Helicobacter pullorum isolates, 

Campylobacter jejuni NCTC 11168 and Helicobacter canadensis CCUG 47163 

 

Strain Source 
Mean percentage of cells 

in S/G2 phase ± SD* 

H. canadensis CCUG**47163 
Patient suffering from diarrhoea, faeces, 

U.K. 
6.0 ± 0.6 

C. jejuni NCTC *** 11168 
Patient suffering from diarrhoea, faeces, 

Canada 
70.6 ± 9.5 

H. pullorum CCUG 33837 

 
Broiler at slaughter, Switzerland 6.5 ± 3.4 

H. pullorum CCUG 33838 

 

Patient suffering from gastroenteritis and 

hepatitis,  faeces, Switzerland 
6.2 ± 1.9 

H. pullorum CCUG 33839 

 
Human faeces, Switzerland 31.0 ± 6.1 

H. pullorum CCUG 33840 

 
Laying hen with hepatitis, Switzerland 7.2 ± 1.6 

H. pullorum CE I 1 

 
Caecal drops, flock I 9.7 ± 2.7 

H. pullorum CE I 2 

 
Caecal drops, flock I 7.9 ± 2.5 

H. pullorum CE I 3 

 
Caecal drops, flock I 6.8 ± 1.1 

H. pullorum B I 1 

 
Farmer’s boots, flock I 8.2 ± 3.2 

H. pullorum CE II 1 

 
Caecum, flock II 7.4 ± 0.9 

H. pullorum CE II 2 

 
Caecum, flock II 8.3 ± 1.0 

H. pullorum CE III 1 

 
Caecum, flock III 6.1 ± 1.9 

H. pullorum CE III 2 

 
Caecum, flock III 6.7 ± 0.3 

H. pullorum G  214 
Patient suffering from diarrhoea, faeces, 

Belgium 
8.9 ± 0.7 

PBS 3.8 ± 0.8 

 

* SD: standard deviation, **CCUG: Culture Collection of the University of Göteborg, *** 

NCTC: National Collection of Type Cultures 
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Table 2 DNA content analyses of Hep-2 cells treated with two-fold serial dilutions of filtered 

sonicate of Helicobacter pullorum CCUG 33839 and Campylobacter jejuni NCTC 11168 

 

Strain Dilution 

 

Percentage of cells in S/G2 phase 

1:2 81.1 

1:4 78.9 

1:8 59.7 

C. jejuni NCTC* 

11168 

1:16 51.9 

1:2 17.6 

1:4 8.7 

1:8 3.8 

H. pullorum 

CCUG** 33839 

1:16 3.0 

 

*NCTC: National Collection of Type Cultures, **CCUG: Culture Collection of the 

University of Göteborg 

 

Flow cytometry 

The results are shown in Tables 1 and 2. CDT of the C. jejuni strain caused an arrest in the 

S/G2 phase in 70.6 % of the inoculated Hep-2 cells. Only 3.8 % and 6.0 % of the Hep-2 cells 

inoculated with PBS or sonicate from H. canadensis respectively, were at the S/G2 stage 

(Figure 2). From the 13 tested H. pullorum sonicates, only CDT of the human H. pullorum 

strain CCUG 33839 notably haltered cell division, resulting in 31.0 % of Hep-2 cells being in 

the S/G2 phase when non-diluted filtered sonicate was added (Figure 2). The number of 

cultured cells to be found in the S/G2 phase diminished in parallel with the two-fold dilutions 

of the added sonicate up to a 1:4 dilution at which an effect was no longer apprenticed (Table 

2). The portion of Hep-2 cells situated in the S/G2 phase following inoculation with sonicate 

from the other H. pullorum strains was merely slightly above that of Hep-2 cells treated with 

sonicate from H. canadensis (Table 1).  
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Figure 1 Hep-2 cells exposed to non-diluted filtered cell sonicates of Helicobacter pullorum 

CCUG 33839 (A), Campylobacter jejuni NCTC 11168 (positive control) (B) and 

Helicobacter canadensis CCUG 47163 (negative control) (C) for 72 hours (Haemacolor, 400 

x). The arrows demonstrate enlarged multinucleated cells 

 

 
 

Figure 2 Analysis of DNA content by flow cytometry revealed an accumulation of cells in the 

S/G2 phase treated with non-diluted cell sonicate originating from Helicobacter pullorum 

CCUG 33839 (A), Campylobacter jejuni NCTC 11168 (B), specifically 70.6 % and 31.0 % 

respectively. Only 6.0 % of the cells treated with non-diluted filtered sonicate from 

Helicobacter canadensis (C) was situated at the S/G2 stage 

A C B 
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Staining of F-actin with phalloidin-Texas Red X 

An accumulation of stress fibers was observed in Hep-2 cells treated with sonicate originating 

from C. jejuni, and to a lesser extent in cells inoculated with sonicate from H. pullorum 

CCUG 33839. Of the Hep-2 cells brought in contact with sonicate from H. canadensis or 

PBS, only a few showed accumulations of actin stress fibers (Figure 3).  

 

 
 

Figure 3 Confocal microscopy changes of actin filaments in Hep-2 cells treated with non-

diluted cell sonicate from Helicobacter pullorum CCUG 33839 (A), Campylobacter jejuni 

NCTC 11168 (B), Helicobacter canadensis CCUG 47163 (C) and PBS (D). The arrows 

demonstrate an accumulation of F-actin stress fibers (bar = 10 µm) 

 

 

 

A 

D C 

B 
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DISCUSSION 

 

This study is the first to report the testing of human and poultry H. pullorum strains for the 

presence of the cdtB gene and the production of CDT using three techniques. Haemacolor 

staining and flow cytometry were used to detect the antiproliferative effect of CDT by 

demonstrating cellular and nuclear enlargement and analyzing DNA content, respectively. As 

an additional phenotypic criterium for assessing CDT production, the appearance of stress 

fibers was investigated. Frisan et al. (2003) demonstrated a rearrangement of the actin 

cytoskeleton upon CDT intoxication which appears to be RhoA GTPase mediated and which 

is part of the ‘Ataxia telangiectasia mutated’ (ATM)-dependent response to DNA damage. 

The small GTPases of the RhoA protein family are involved in the formation of stress fibers, 

focal adhesions (Hall, 1998) and cell proliferation (Olson et al., 1995). Frisan et al. (2003) 

suggest a RhoA GTPase dependent linkage between DNA damage, which may be induced by 

CDT, and alterations in the actin cytoskeleton, possibly needed to prolong cell survival 

(Frisan et al., 2003). 

The results of the present study exhibit that all tested H. pullorum isolates harbour the 

cdtB gene, but that CDT activity was only substantially present in the human H. pullorum 

strain CCUG 33839. The other H. pullorum strains did not show significant CDT activity 

despite harbouring the cdtB subunit encoding cdtB gene as demonstrated by PCR and 

sequencing. CdtB is considered to be the biologically active subunit of the holotoxin. 

Variation in posttranslational modification of this subunit between the H. pullorum strain 

CCUG 33839 and the other H. pullorum strains might result in differences in CDT activity 

between these strains.  

Since cdtA and cdtC genes are also required for activity of the holotoxin (Elwell and 

Dreyfus, 2000; Frisk et al., 2001; Lara-Tejero and Galan, 2001), variation in these genes may 

result in differences in CDT activity. Abuoun et al. (2005) suggested that a point mutation at 

codon 167 in the cdtC gene could have consequences for the activity of the holotoxin. In a 

study of Bang et al. (2003), the cdtB gene was present in all tested C. coli and C. jejuni 

strains, whereas cdtA and cdtC were only detected in 95 % of the C. coli strains and 90 % of 

the C. jejuni strains. Isolates missing one of the latter genes demonstrated very low or no CDT 

activity. In none the H. pullorum strains used in the present studies, cdtA and cdtC genes were 
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demonstrated by PCR although several primers described in literature for the amplification of 

these genes in H. hepaticus and Campylobacter spp. (Eyigor et al., 1999a; Bang et al., 2003) 

or developed on the basis of a consensus of the gene sequences of H. hepaticus and C. jejuni 

using KODON (Applied Maths) were used (data not shown). This might indicate that these 

genes are absent in our strains. It may, however, also be due to variation in the degree of 

similarity of the cdtA and cdtC genes between and within different bacterial species (Scott and 

Kaper, 1994; Pickett et al., 1996; Pickett and Whitehouse, 1999; Cortes-Bratti et al., 2001; 

Frisan et al., 2002; Lee et al., 2003), resulting in non-annealing of the primers. 

Polymorphisms in the cdtABC flanking regions might be another reason for variation in CDT 

activity among the tested strains, although they all possessed the cdtB gene. Yamano et al. 

(2003) suggested that the cdtABC flanking region in A. actinomycetemcomitans is very 

polymorphic and may explain the variability in CDT titers among several strains. They 

suggested that the DNA area upstream of orf1 in A. actinomycetemcomitans is important for 

expression of the entire gene. 

In the present study, CDT activity was tested in Hep-2 cells. Although these cells have 

been used to demonstrate CDT activity in several bacterial species (Johnson and Lior, 1988; 

Purven and Lagergard, 1992; Scott and Kaper, 1994; Pickett and Whitehouse, 1999), it can 

not be excluded that they are not very sensitive to CDT produced by H. pullorum strains. The 

degree of similarity between the amino acid sequences of cdtA and cdtC subunits, which most 

probably are involved in attachment of the toxin to the host-cell surface and in internalization 

of cdtB, may vary tremendously between and within different bacterial species (Scott and 

Kaper, 1994; Pickett et al., 1996, 1999; Cortes-Bratti et al., 2001; Frisan et al., 2002; Lee et 

al., 2003). This may result in variation in sensitivity of host cells for CDT produced by 

different bacterial species or possibly strains. Eyigor et al. (1999b) hypothesized that low 

CDT activity of C. coli isolates might be due to low sensitivity of the HeLa cells used in their 

study. 

In conclusion, the tested poultry and human H. pullorum isolates all possess the cdtB 

gene, but under the circumstances used in this study only the human H. pullorum strain 

CCUG 33839 seems to show biological activity typical for CDT in vitro. The existence of 

other virulence markers including the production of other toxins and the phenomenon of 
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adhesion and colonization capacity need to be examined to unlock more of the secrets of the 

lifestyle of this emerging pathogen. 
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ABSTRACT 

 

Helicobacter pullorum is a member of the enterohepatic Helicobacter species group. 

Helicobacter pullorum has the ability to produce cytolethal distending toxin which induces 

cell cycle arrest in a number of cell types resulting in cellular distention and eventually cell 

death. 

The mouse hepatic cell line H 2.35 was exposed to filtered cell sonicate from 11 poultry and 

three human Helicobacter pullorum isolates. Morphological changes were investigated using 

light microscopy, transmission electron microscopy and time-lapse video microscopy. 

Additionally, DNA analysis of treated cells was done by flow cytometry. 

Cytotoxicity was seen for all Helicobacter pullorum isolates after incubation for 72 hours 

with different levels of toxic activity. Features characteristic for mitotic catastrophe were 

noticed involving chromatin condensation, formation of multinuclear distended cells and 

micronucleation. In addition, intranuclear pseudoinclusions were observed in sonicate treated 

cells. Finally, cells exposed to sonicate eventually underwent cell death with the 

morphological features of necrosis. The toxic factor proved to be soluble, trypsin–sensitive 

and stable at 56°C and at -70°C. The molecular weight was estimated to be over 50 kDa. 

These characteristics are equal to those of cytolethal distending toxin indicating that this toxin 

is involved in the morphological cell changes observed in the mouse liver cell line. 
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INTRODUCTION 

 

Helicobacter pullorum is a member of the enterohepatic Helicobacter species (EHS) group 

(Fox, 1997). This species may infect the intestinal tract of poultry and human beings. It has 

also been detected in the liver of laying hens and biliary tree and gallbladder of humans 

(Stanley et al., 1994; Fox et al., 1998). H. pullorum has been associated with vibrionic 

hepatitis in poultry and with diarrhoea, gastroenteritis and hepatobiliary disease in human 

beings (Stanley et al., 1994; Steinbrueckner et al., 1997; Atabay et al., 1998; Fox et al., 1998; 

Ceelen et al., 2005) as reflected by liver swelling, an increase of liver enzymes and 

gallbladder cancer (Fox et al., 1998). Despite the awareness of the potential hazard of H. 

pullorum for human health, very few studies on the pathogenicity of this species have been 

reported. Hynes et al. (2004) characterized the lipopolysaccharides in H. pullorum chemically 

and biologically. Young and co-researchers (2000a) and our research group (Ceelen et al., 

2006a) showed that several H. pullorum strains produce the cytolethal distending toxin (CDT) 

which induces cell cycle arrest in a number of cell types resulting in cellular distention and 

eventually cell death. On molecular level, only the cdtB gene encoding the active compound 

of the toxin has been sequenced (Young et al., 2000; Ceelen et al., 2006). Hitherto, no other 

potential virulence markers have been studied in H. pullorum. 

Taylor et al.(1995) showed that another EHS, H. hepaticus, produces a toxic factor 

causing a cytopathic effect (CPE) characterized microscopically by granule formation in a 

mouse liver cell line (CCL 9.1). This toxin was called granulating cytotoxin (GCT) referring 

to the induced morphological cell changes. Despite the innovative and interesting character of 

this finding, no further research involving this toxin was performed for almost a decade. Only 

recently did Young et al. (2004) hypothesize that CPE induced by GCT could in fact be CDT 

mediated. 

In the present study it was light microscopically examined whether and to what extent 

H. pullorum isolates from poultry and human origin cause CPE in mouse liver cells. The CPE 

was additionally scrutinized using transmission electron microscopy and time-lapse video 

microscopy. DNA content analysis of treated cells was performed using flow cytometry. 

Finally, the nature and molecular weight of the toxic factor were partially determined.  
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METHODS 

 

Cytotoxic assay 

Bacterial strains 

 The 14 H. pullorum strains from poultry and human origin used in this study are listed in 

Table 1. H. hepaticus ATCC 51448, H. canadensis CCUG 47163 and Campylobacter jejuni 

NCTC 11168 were included as well. Bacterial strains were stored at -70 °C in a medium 

consisting of 7.5 g glucose, 25 ml brain heart infusion (BHI) broth (Oxoid, Basingstoke, 

England) and 75 ml sterile inactivated horse serum. The bacterial strains were inoculated on 

BHI agar supplemented with 10 % horse blood and Vitox (Oxoid) (BHI agar blood plates) 

and incubated for 72 hours under microaerobic conditions at 37°C. This microaerobic 

environment was maintained in vented jars (Led Techno, Heusden-Zolder, Belgium) which 

were evacuated to -20 mm Hg and then equilibrated with a gas mixture consisting of 5 % H2, 5 

% CO2, 5 % O2 and 85 % N2.  

 

Preparation of bacterial cell sonicates 

Bacterial cultures grown for 72 h on BHI agar blood plates were harvested by washing the 

cultures with phosphate-buffered saline (PBS) followed by centrifugation (1500 x g, 20 min, 

4°C) and resuspending the pellet in 1.5 ml PBS. The bacteria were disrupted by eight 30-s 

pulses on ice with a sonicator, ultrasonic processor, XL 2015 (MISONIX, Farmingdale, NY), 

a process followed by centrifugation for 10 min (1500 x g, 4°C). Then, the sonicate was 

filtered through a 0.45 µm and subsequently 0.20 µm pore size filter (IWAKI, International 

Medical, Brussels, Belgium). The protein concentration was determined using the Bio-Rad 

(Hercules, CA, U.S.A.) protein assay method with bovine serum albumin (Sigma, St. Louis, 

MO, USA) dissolved in PBS as a standard. The sonicate was stored at -70°C. All preparations 

were thawed and diluted to 750 µg total protein/ml before using them in experimental assays. 

 

Cell line 

The H 2.35 mouse hepatocyte cell line was obtained from the European Collection of Cell 

Cultures (ECACC). Cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) 

(Gibco, Invitrogen, Merelbeke, Belgium) according to the manufacturer’s recommendations. 
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Table 1 Bacterial strains used in this study 

 

Strain number Source 

CCUG* 33837 Broiler at slaughter, Switzerland 

CCUG 33838 Patient suffering from gastroenteritis 

and hepatitis,  faeces, Switzerland 

CCUG 33839 Human faeces, Switzerland 

Reference strains of H.  pullorum 

CCUG 33840 Laying hen with hepatitis, 

Switzerland 

CE I 1 Caecal droppings 

CE I 2 Caecal droppings 

CE I 3 Caecal droppings 

CE I 4 Caecal droppings 

Flock I 

B I 1 Farmer’s boots 

CE II 1 Caecum 
Flock II 

CE II 2 Caecum 

CE III 1 Caecum 

Field isolates of H.  

pullorum isolated 

from broilers in 

Belgium 

Flock III 
CE III 2 Caecum 

Human strain of H. pullorum G 214 
Patient suffering from diarrhoea, 

faeces, Belgium 

C.  jejuni NCTC** 11168 
Patient suffering from 

diarrhoea, faeces, U.K. 

Type strain of H. hepaticus ATCC*** 51448 Liver, mouse 

Type strain of H. canadensis CCUG 47163 
Patient suffering from diarrhoea, 

faeces, Canada 

 

*CCUG: Culture Collection of the University of Göteborg, **NCTC: National Collection of 

Type Cultures, ***ATCC: American Type Culture Collection   

 

Cytotoxicity assay 

H 2.35 cells were seeded in 24-well plates or in 25-square-centimeter tissue culture flasks at a 

concentration of 1 x 105cells/ml and were incubated at 37°C in 5 % CO2 for 3 h. Thereafter, 

100 µl of bacterial sonicate (hence containing 75 µg of total protein) was added. PBS was 

likewise included as a negative control.  
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The 24-well plate cell cultures were used for light microscopical and transmission electron 

microscopical examination as well as for time lapse video microscopy analysis. The tissue 

culture flask cell cultures were used for flow cytometry. 

 

Light microscopy 

The inoculated and control cells were further incubated at 37°C in 5 % CO2 and examined for 

cytotoxic effect by means of light microscopy every 24 h till 96 h post-inoculation in at least 

three time-independent assays.  

 

Flow cytometry 

Following incubation of the inoculated and control cells flasks for 72 h, the cells were 

removed by trypsinization and transferred to a falcon tube. After centrifugation, the pellet was 

resuspended in a solution containing Triton X-100 and kept at 37°C for 20 min. Subsequently, 

a staining solution comprising propidium iodide was added. Cells were incubated at 4°C for 

three hours before DNA content was analyzed on a FACScalibur flow cytometer (Beckton-

Dickinson, San Jose, California, USA). Data acquisition was performed on 1 x 104 cells for 

each experiment using Cell Quest software. DNA content analyses were performed in three 

time-independent assays.  

 

Transmission electron microscopy 

Inoculated and control cells were fixed in glutaraldehyde 2 % buffered with 0.1 M Na-

cacodylate (pH 7.4) after 48 h incubation. Following post-fixation in 1 % osmiumtetroxide 

overnight, cultures were dehydrated in a graded series of ethanol (70 %, 85 %, 95 %, 100 %, 

10 min each) and embedded in LX medium. Semithin sections of 2 µm were stained with 

Toluidine blue and examined using a Leitz Aristoplan light microscope equipped with a Leitz 

orthomat E photocamera. Ultrathin sections of 60 nm were cut with a diamond knife on a 

Reichert Jung Ultracut U microtome (Jung, Vienna, Austria), mounted on formvar-coated 

copper grids and stained with uranyl acetate and lead citrate. Samples were viewed with a Jeol 

EXII transmission electron microscope at 80 kV.  In this assay, only H. pullorum CCUG 

33839 sonicate was included. 
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Time-lapse video microscopy 

Following incubation of the inoculated and control cell cultures during 48 h, cells were placed 

on an invert microscope (Fluovert Leitz, Wetzlar, BRD, Germany) in a temperature-

controlled space at 37°C for an additional 24 h. The cells were viewed with a 40 x objective 

lens and images were collected via a camera C-1966-01 (Hamamatsu Phototonics, 

Mamamatsu-City, Japan) which was connected to a U-matic video recorder VO-5850P (Sony, 

Tokyo, Japan). One image was recorded every 20 sec via an interval timer (VEL, Leuven, 

Belgium). Data were registered on a videotape using a video typewriter VTW-210 (FOR.A, 

Japan) and images were played at a rate of 25 images per second which is analogous to an 

acceleration of 500 x. Special attention was paid to cellular alterations as well as cell 

movements. As in the previous assay only H. pullorum CCUG 33839 sonicate was included. 

 

Partial characterisation of the toxic factor 

Pretreatment of bacterial sonicate with trypsin, heat and cold 

When CPE was detected, the CPE inducing sonicate was subjected to the following 

treatments: (1) 100 µl of sonicate was incubated for 30 min at 37°C with 10 µl 2.5 % trypsin 

(Sigma). Thereafter, the activity of trypsin was stopped by adding soybean trypsin inhibitor 

(Type II-S: Sigma; 10 mg of soybean was added to 2.5 % trypsin). Finally, the treated 

bacterial sonicate and 1 % penicillin-streptomycin were added to the cultured cells as 

described above. Cells inoculated with non-treated bacterial sonicate served as positive 

control. Negative controls included PBS, trypsin, soybean trypsin inhibitor and 1 % 

penicillin-streptomycin; (2) bacterial sonicate was incubated at 56°C, 70°C and 100°C for 30 

min, 15 min and 10 min, respectively. Thereafter, the heated bacterial sonicate was added to 

the cultured cells. Non-heated sonicate and PBS were included as positive and negative 

controls, respectively; (3) bacterial sonicate was kept at -70°C for six months. Following 

thawing of the aliquots, the cold treated bacterial sonicate was added to the cultured cells. 

Non-long-term-frozen sonicate and PBS were included as positive and negative controls, 

respectively. All pretreatments of bacterial sonicate were carried out in three time-

independent assays. Cell cultures inoculated with these sonicates were examined light 

microscopically, as described above. 
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Molecular weight estimation 

The bacterial sonicates of H. pullorum CCUG 33839, I CE 2 and I B 1 were subjected to 

ultrafiltration using Amicon Ultra-15 centrifugal filter devices (Millipore, Bedford, U.S.A) 

with a molecular weight cut off (MWCO) of 30 and 50 kDa. Cells were inoculated with 100 

µl of the retentate or permeate fractions and examined light microscopically, as described 

above. Non-filtered sonicate and PBS were likewise included. Molecular weight estimation 

was performed in at least three time-independent assays. 

 

RESULTS 

 

Cytotoxic assay 

Light microscopy 

No CPE was detected in the negative control (Figure 1D) and in the cells inoculated with H. 

canadensis sonicate. Sonicates of all H. pullorum isolates induced CPE, albeit with varying 

degrees. Concerning the level of induced CPE, the tested strains can indeed be subdivided 

into three groups (Table 2). A first group of H. pullorum isolates as well as the H. hepaticus 

and C. jejuni strains induced a strong cytopathic effect, characterized by enlarged 

multinucleated cells. Cells decreased in number finally undergoing cell death by necrosis after 

72-96 h (Figure 1, 2). H. hepaticus sonicate treated cells, however, already became necrotic 

after 36-48 h. A second category encomprised H. pullorum strains which induced a moderate 

CPE on the cultured mouse cells, which were enlarged and possessed two or more nuclei. 

Granulated rounded and detached necrotic cells were detected as well, but to a lesser extent 

than when cells were treated with sonicate of strains classified in the previous group. A third 

category was typified by minor CPE. The cells were somewhat distended and cell death was 

seldomly seen. In this third category, not all cells in a well were affected. 

 

Flow cytometry 

Analysis of DNA content revealed that sonicate from H. pullorum caused an increase of the 

DNA amount in treated H 2.35 cells. With regard to the latter, strains could be divided into 

three groups, confirming the division of strains based on light microscopical analysis (Table 

2). 
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Table 2 Results of light microscopy and flow cytometry of H 2.35 cell cultures inoculated 

with sonicate of different Helicobacter pullorum (Hp) isolates, Helicobacter hepaticus (Hh) 

ATCC 51448, Helicobacter canadensis (Hc) CCUG 47163 and Campylobacter jejuni (Cj) 

NCTC 11168 
 

Isolate number 

 

Light microscopy (degree of 

CPE*) 

Flow cytometry (median fluorescence intensity) 

± SD° 

Hp CCUG 33839 +++ 1022 ± 13.28 

Hp G 214 +++ 939 ± 45.30 

Hp I CE 1 +++ 956 ± 0.58 

Hp I CE 2 +++ 956 ± 0.58 

Hp I B 1 +++ 944 ± 16.74 

Hp II CE 1 +++ 924 ± 45.35 

Hp II CE 2 +++ 964 ± 0.58 

Hp III CE 2 +++ 885 ± 137.38 

Hp CCUG 33837 +++ 905 ± 84.70 

Hh ATCC 51448 +++ NT** 

Cj NCTC 11168 +++ 805 ± 94.51 

Hp I CE 4 ++ 659 ± 42.44 

Hp III CE 1 ++ 669 ± 28.04 

Hp CCUG 33838 ++ 679 ±  84.82 

Hp I CE 3 + 423 ± 20.05 

Hp CCUG 33840 + 463 ± 4.24 

Hc CCUG 47163 - 375 ± 12.63 

PBS - 290 ± 36.98 

 

*CPE: cytopathic effect (+++: strong, ++: moderate, +: weak, -: absent), **NT: not tested, °SD: 

standard deviation 
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Figure 1 Cytopathic effect on H 2.35 cells 48 h following exposure to filtered Helicobacter 

pullorum sonicate (strain CCUG 33839). Cells are enlarged: a cell dying by necrosis 

possessing one nucleus and two micronuclei is arrowed (A), a sonicate treated multinucleated 

(arrows) cell (B), a sonicate treated cell possessing a multilobular nucleus (arrows) (C). 

Normal confluent control H 2.35 cells after inoculation with PBS showing a homogenous 

diameter and polygonal outline (D) (H&E) (Bar, 100 µm) 

 

 
 

Figure 2 H 2.35 cells 96 h following inoculation with filtered Helicobacter pullorum sonicate 

(strain CCUG 33839) showing cell death by necrosis (phase contrast microscopy) (40 x) 
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Transmission electron microscopy 

In the confluent control cultures, most cells showed a homogenous diameter and had a 

polygonal outline. In cell cultures exposed to the H. pullorum CCUG 33839 sonicate for 48 h, 

characteristic ultrastructural changes were observed. The most prominent changes were 

noticed in the nuclear compartment and consisted of multinucleation with either the presence 

of several nuclei of normal dimension or the formation of micronuclei (Figure 3C). Besides 

the number of nuclei, a change in chromatin configuration with distinct chromatin 

condensation was observed. The presence of pseudoinclusions with cytoplasmic content and 

lipid droplets inside the nucleus could likewise be observed (Figure 3A-B). Cells in the 

treated cultures displaying the nuclear changes had become very large. Vacuolization of the 

cytoplasm was observed in the enlarged cells, but was not an obligatory feature. The cell 

density of the treated cell cultures was much lower as compared to that of untreated cultures, 

due to cell death with the morphological features of necrosis. Nuclei in mitosis were absent in 

treated cultures. Apoptotic cells were noticed very seldomly in treated cultures. Their number 

was not increased in comparison to control cultures.  

 

Time-lapse video microscopy analysis 

The confluent control cells had a homogenous diameter and a polygonal outline. Almost no 

cell death by necrosis in these cells nor striking cell movements were observed. The H. 

pullorum sonicate treated cells were enlarged and displayed cell extensions and occasionally 

more than one nucleus could be seen. The cells displayed cell surface movements. Ultimately 

the cells detached and died by necrosis. Time-lapse video microscopy confirmed that 

vacuolization of the cytoplasm was not an obligatory event in the giant cells.  

 

Partial characterisation of the toxic factor 

Molecular weight estimation 

Toxic effects were noticed when the 30-kDa and 50-kDa retentate fractions were added to the 

cell cultures, but not when permeate fractions were added. This indicates that the molecular 

weight of the toxic substance was more than 50 kDa.   
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Pretreatment of bacterial sonicate with trypsin, heat and cold 

The toxic factor was inactivated by trypsin 0.25 %; cells treated with the trypsinised sonicate 

were showing the same morphology as cells inoculated with PBS. Toxic activity of bacterial 

sonicate was resistant to heating at 56°C for 30 min, was inactivated by heating at 70°C and 

100°C for 15 and 10 min, respectively and was stable at -70°C for six months. 

 

  
 

 
 

Figure 3 Transmission electron microscopical analysis of H 2.35 cells treated with filtered 

Helicobacter pullorum sonicate (strain CCUG 33839) 48 h post-treatment: intranuclear 

pseudoinclusions (arrows) with cytoplasmic content and lipid droplets inside (A-B), 

micronucleus (arrow) (C) (Bar, 100 µm)  

 

 

 

 

 

 

C 
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DISCUSSION 

 

The present study highlights that H. pullorum sonicate treated H 2.35 cells exhibit 

phenotypic changes characteristic for mitotic catastrophe, a cell death occurring during or 

shortly after a dysregulated or failed mitosis. The formation of binucleated cells, 

micronucleation and multinuclear giant cells observed in the present study are characteristic 

morphological alterations of this type of cell death (Chan et al., 1999; Erenpreisa et al., 2000; 

Huang et al., 2005; Michalakis et al., 2005; Perletti et al., 2005; Malorni and Fiorentini, 

2006). The Nomenclature Committee on Cell death (NCDD) recommends the use of the 

terms such as "cell death preceded by multinucleation" or "cell death occurring during the 

metaphase”, which are more precise and more informative (Kroemer et al., 2005). No 

consensus about the morphological changes of chromatin has been achieved hitherto. Some 

authors mention cells revealing decondensed chromatin (Ianzini and Mackey, 1997; 

Roninson et al., 2001), while others talk about clumps of condensed chromatin in cells 

undergoing mitotic catastrophe (Chan et al., 1999; Erenpreisa et al., 2000; Michalakis et al., 

2005). The latter phenomenon was noted in the present study. Additionally, nuclear 

pseudoinclusions were detected in sonicate treated H 2.35 cells. The research group of Fox 

likewise described the presence of intranuclear pseudoinclusions in vivo in A/JCr mice 

suffering from proliferative hepatitis following a persistent infection with H. hepaticus (Fox 

et al., 1996). 

Analogous changes were observed in cells treated with sonicate prepared from H. hepaticus 

and C. jejuni strains. In view of this, we speculate that also H. hepaticus and C. jejuni induce 

cell death by mitotic catastrophe.  

In our experiments, treated cells died by necrosis, a phenomenon that was detected by means 

of time-lapse video microscopy, TEM analysis and a trypan blue exclusion method (data not 

shown). Mitotic catastrophe usually results in apoptosis, although mitotic blockade also may 

culminate in necrosis (Yeung et al., 1999; Michalakis et al., 2005). 

Mitotic catastrophe may be considered as a molecular apparatus in mammalian cells 

that avoids aneuploidization of daughter cells. A DNA damage checkpoint triggers a 

signalling pathway involving different protein kinases which results in a cell block and 

cellular damage. The main function of this checkpoint is to block the cell cycle at the G1 or G2 
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stage before entering mitosis or to delay mitotic exit and consequently to prevent cytokinesis 

(Erenpreisa et al., 2000; Bayart et al., 2004; Huang et al., 2005; Niida et al., 2005). DNA 

damage involves pyrimidine dimers and double strand breaks and can be due to exposing of 

cells to γ-irradiation (Castedo et al., 2004; Huang et al., 2005) or to cytolethal distending toxin 

(CDT) (Cortes-Bratti et al., 2001; Ceelen et al., 2006b). CDT is a bacterial protein that is 

widely distributed among Gram-negative bacteria including H. pullorum (Johnson and Lior, 

1987a,b; Johnson and Lior, 1988; Pickett et al., 1996; Cope et al., 1997; Okuda et al., 1997; 

Sugai et al., 1998; Chien et al., 2000; Young et al., 2000a,b; Mooney et al., 2001). The toxin 

activates identical signalling pathways in response to DNA damage as described for mitotic 

catastrophe (Chan et al., 1999; Castedo et al., 2004; Huang et al., 2005; Niida et al., 2005) 

with in the middle of the network the protein kinases ‘Ataxia telangiectasia mutated’ (ATM) 

and ‘ATM and Rad3 related’ (ATR) (Cortes-Bratti et al., 2001; Li et al., 2002; Ceelen et al., 

2006b). Exposing various cell lines to CDT results in enlarged multinucleated cells as 

observed in several studies (Pickett et al., 1996; Ceelen et al., 2006b). In our study the 

cytotoxic activity on the mouse hepatocytes was destroyed by treatment with trypsin or 

heating (70 and 100°C) and the toxin appeared to have a molecular mass of more than 50 

kDa. Moreover, cytotoxicity appeared 72-96 h post-inoculation. All these characteristics are 

equal to those of CDT (Johnson and Lior, 1987a; Johnson and Lior, 1988; Albert et al., 1996; 

Pickett et al., 1996). H. hepaticus and C. jejuni strains both possess CDT activity (Purdy et 

al., 2000; Young et al., 2000b; Young et al., 2004; Ceelen et al., 2006a) and induced similar 

cell changes as H. pullorum, whereas sonicate from the H. canadensis strain, which does not 

show CDT activity (Young et al., 2000a; Ceelen et al., 2006a), did not cause any CPE. 

Taking all these observations into consideration, we may hypothesize that CDT is 

probably responsible for the cellular changes described in the present study. Nonetheless, 

whether these observations can be allocated to CDT only is not actually proven, but mainly 

indicative. It can in fact not be excluded that H. pullorum produces another not yet identified 

toxic factor which may cause these cellular changes in itself or may work synergistically with 

CDT. Taylor et al. (1995) demonstrated that a toxic factor is present in sonicate of H. 

hepaticus that induces granule formation in a mouse liver cell line. This factor was therefore 

named GCT. More recently however, Young et al. (2004) illustrated that CPE induced by 
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GCT could be CDT mediated. Results from our study confirm these indications. These 

research areas need hence undoubtedly to be further explored. 

To conclude, this study is the first to report induction of features characteristic for 

mitotic catastrophe in liver cells exposed to sonicate of human and poultry H. pullorum 

isolates. Different levels of toxic activity were seen for different H. pullorum isolates. 

Microscopical investigation and DNA analysis of sonicate treated cells suggest that CDT may 

play a role in induction of CPE. Further research is necessary to determine the exact role of 

CDT in hepatocyte toxicity. 
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ABSTRACT 

 

Four groups of 23 broilers were inoculated at one day of age with one of four different 

Helicobacter pullorum strains from human and poultry origin. A fifth group of eight control 

animals was inoculated with phosphate-buffered saline. At five time points post-inoculation, 

up to slaughter age, animals of every group were sacrificed and caecum, colon, jejunum and 

liver were examined both macroscopically and microscopically. In addition, bacterial titration 

and PCR analysis for Helicobacter pullorum were performed. Faecal material was also 

collected on a regular basis for PCR analysis for Helicobacter pullorum. 

Chickens remained clinically healthy throughout the experiment. At necropsy, macroscopic 

lesions characterized by red streaks on the serosa of the jejunum and foamy content in the 

caeca with on its serosal side dark brownish streaks, were noticed.  

Helicobacter pullorum was detected from the start till the end of the experiment in all infected 

groups. The predominant site of colonization was the caecum and the bacterium was excreted 

in the faeces till at least 42 days of age. This implies that broiler chickens may act as a 

reservoir for Helicobacter pullorum hence constituting a possible source of infection for 

human beings.  
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INTRODUCTION 

 

Helicobacter pullorum belongs to the group of urease-negative enterohepatic Helicobacter 

species (EHS). It was isolated for the first time from the caecum of asymptomatic broilers and 

the liver and intestine of laying hens suffering from vibrionic hepatitis (Stanley et al., 1994; 

Burnens et al., 1996). H. pullorum was detected on 60 % of poultry carcasses (Atabay et al., 

1998) and in 33.6 % of caecal content of broilers at slaughter (Ceelen et al., 2006). Hitherto, 

there is still much debate on the actual pathogenic potential of H. pullorum in the chicken.  

This agent has also been found in the faeces of humans with gastrointestinal disease and 

clinically healthy people (Ceelen et al., 2005). Fox et al. (1998) additionally detected H. 

pullorum DNA in the biliary tree and gallbladder of Chilean women suffering from chronic 

cholecystitis. In human beings, H. pullorum has mainly been associated with diarrhoea, 

gastroenteritis and hepatobiliary disease (Stanley et al., 1994; Atabay et al., 1998, 

Steinbrueckner et al., 1997; Fox et al., 1998; Ceelen et al., 2005) as reflected by liver 

swelling, an increase of liver enzymes and gallbladder cancer (Fox et al., 1998). 

In view of the above, this bacterial species represents an emerging pathogen that may cause 

food-borne illness due to carcass contamination of broilers at slaughter (Atabay et al., 1998; 

Fox et al., 1998; Ceelen et al., 2006). 

Despite the fairly frequent occurrence of H. pullorum in chickens and its possible association 

with hepatoenteric disease, up until now, no experimental study involving H. pullorum has yet 

been performed to discover more about the interactions of H. pullorum with its natural host. 

Consequently, the present study was set up to investigate the colonization capacity, preferred 

colonization site and the level of faecal excretion of H. pullorum in poultry. Attention was 

also paid to the possible induction of inflammation and lesions in the intestines and liver of 

the inoculated animals. 
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MATERIALS AND METHODS 

 

Chickens 

Fertilized eggs from broiler breeder hens (Claeys, Kruishoutem, Belgium) were used in this 

study. The eggs were hatched at our laboratory and 100 chickens were housed on litter with 

free access to food and water. The animals received 12 h of light per day.  

 

H. pullorum strains 

The poultry H. pullorum strains CE II 1 and CCUG 33840 and human H. pullorum strains 

LMG 16318 and G 214 (Table 1), stored at -70°C, were used in this study. They were grown 

on brain heart infusion (BHI, Oxoid, Drongen, Belgium) agar, supplemented with 10 % horse 

blood, amphotericin B 20 µg/ml (Fungizone; Bristol-Myers Squibb, Epernon, France) and 

Vitox (Oxoid) (BHI blood agar). Incubation was done under microaerobic conditions (5 % H2, 

5 % CO2, 5 % O2 and 85 % N2) at 37°C for 72 hours. H. pullorum cultures were harvested by 

washing the plates with phosphate-buffered saline (PBS) followed by centrifugation (1500 g, 

10 min, 4°C). The pellet was subsequently resuspended in PBS to an optical density (OD) of 

0.7 at 600 nm which corresponds to approximately 7.5 log10 CFU/ml. 

 

Experimental design 

The broilers were randomly divided at the day of hatching into four groups (A-D) of 23 birds 

and one group (E) of eight animals, and transferred to separate units of the experimental 

facility. All animals of groups A-D were inoculated with one of the H. pullorum strains at one 

day of age (Table 1). Two-hundred µl of bacterial inoculum containing 6.8 log10 CFU was 

given to each chicken via the gizzard. Group E was maintained as a control group and 

received 200 µl PBS. All chickens were clinically examined on a daily basis. 

At day 3, 10, 17, 24 and 41 post-inoculation (PI), pooled faecal samples were collected from 

every group for PCR analysis as described below. 

At day 1, 8, 15 and 22 PI, four animals in groups A-D and one animal in group E were 

euthanized. The remaining animals were sacrificed at day 42 PI. 

Necropsy was subsequently performed on all euthanized chickens and attention was paid to 

possible macroscopic lesions. Samples were taken from the liver, jejunum, caecum and colon 
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for detection of H. pullorum using PCR, isolation, immunohistochemistry and for histological 

examination of lesions as described below. 

The experiment was performed with the approval of the Ethical Committee of the Faculty of 

Veterinary Medicine, Ghent University.  

 

Table 1 Groups of broilers inoculated with four Helicobacter pullorum strains and one control 

group inoculated with PBS 

 

Group of broilers H. pullorum strain Source of H. pullorum strain 

A CE II 1 Caecal tissue, broiler chicken, Belgium 

B CCUG 33840 Laying hen with hepatitis, Switzerland 

C LMG 16318 Human faeces, Switzerland 

D G 214 Human faeces, gastroenteritis, human, Belgium 

E PBS 

 

PCR analysis and gel electrophoresis 

DNA was extracted from approximately 25 mg liver, jejunum, caecum and colon tissue 

applying a commercial tissue kit (DNeasy® Tissue Kit, Qiagen, Venlo, The Netherlands). 

DNA was extracted from faeces (weighing approximately 200 mg) using a commercial stool 

kit (QIAamp® DNA Stool Mini Kit, Qiagen). 

A PCR assay amplifying a 447 bp fragment of the 16S rRNA gene of H. pullorum was then 

used followed by agarose gel electrophoresis as previously described (Stanley et al., 1994; 

Burnens et al., 1996).  

 

Isolation of H. pullorum 

A 20 % weight/volume suspension of the samples (tissue and contents) in PBS was prepared. 

The number of CFU per gram of sample was determined by plating 100 µl of 10-fold serial 

dilutions in PBS on BHI blood agar plates which were incubated microaerobically for five 

days at 37°C. In doing this, a previously described technique was used adopting a sterile 

cellulose acetate membrane filter (0.45 µm) to diminish bacterial contamination (Steele and 
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McDermott, 1984; Ceelen et al., 2006). On day 42 PI, no serial dilutions were made, and only 

100 µl of the undiluted tissue suspension was inoculated. 

 

Amplified fragment length polymorphism (AFLP) 

The H. pullorum strains used for inoculation and H. pullorum isolates retrieved from the 

various caecal tissue samples PI were fingerprinted by AFLP (Ceelen et al., 2006).   

 

Histological and immunohistochemical analysis 

Following fixation in 10 % formaldehyde for 48 h, the tissues were embedded in paraffin, 

sectioned at 5 µm, mounted on glass slides and stained with haematoxylin and eosin using 

standard procedures. When bacteria showed close association with epithelial (intestine) or 

liver cells, immunohistochemistry was performed additionally. For the latter, polyclonal anti-

H. pylori antibodies (DakoCytomation, Heverlee, Belgium) were adopted (Ananieva et al., 

2002). 

Five-μm sections of paraffin-embedded tissues were placed on super Frost slides coated with 

(3-aminopropyl)triethoxy-silane  (minimum 98 %) (Sigma-Aldrich, Bornem, Belgium). 

Sections were deparaffinized, rehydrated, and pretreated by the antigen retrieval microwave 

technique. After washing, slides were incubated with endogenous peroxidase and were 

washed afterwards using PBS. Slides then underwent sequential application of 30 % goat 

serum, the primary rabbit anti-H. pylori B 0471 Dako 1/320 antibody (DakoCytomation), 

biotinylated goat anti-rabbit antibody 1/500 (DakoCytomation), 

StreptABComplex/horseradish peroxidase (DakoCytomation), and finally 3,3’-diamino 

benzidine tetrahydrochloride (Sigma-Aldrich) with each time a wash step. Sections were 

counterstained by use of an aqueous-based hematoxylin staining and mounted with a 

permanent mounting medium (Prosan, Merelbeke, Belgium).  

 

Statistics 

Possible difference in the number of bacteria in the caecum and colon at the different time 

points PI were investigated using analysis of variance. Therefore, the number of bacteria (log 

transformed) was included as dependent variable and group as fixed variable. Post-hoc 

pairwise comparisons between the groups were performed using Scheffe's tests. In case the 
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assumptions of normality and homogeneity of variance were not fulfilled, non-parametric 

Kruskal-Wallis analysis of variance was used. Differences were considered statistically 

significant when P-values were lower than 0.05. Bacterial numbers on the other sampled sites 

were not analysed statistically because of the very low colonisation levels. Statistical analyses 

were performed using SPSS version 14.00.  

 

RESULTS 

 

Clinical signs 

No obvious clinical signs were noticed. Two animals in group D died at the age of one week. 

No lesions were noticed during necropsy of these animals nor could any poultry-specific 

bacterial pathogens be isolated from caecum, jejunum, liver or spleen.   

 

PCR analysis and gel electrophoresis 

In group E, all faecal and tissue samples were negative for H. pullorum. 

In group A-D, all faecal samples were positive in PCR for H. pullorum till day 42 PI. 

The results of PCR analysis of liver, jejunum, caecum and colon are given in Table 2. At day 

1 PI, no H. pullorum DNA was detected in liver and jejunum samples except for group C. At 

the next time points, irrespective of the group, H. pullorum DNA was occasionally present in 

liver and jejunum. The majority of the caecum and colon samples were positive for H. 

pullorum from day 1 until day 42 PI among all H. pullorum-inoculated groups.  

 

Isolation of H. pullorum 

H. pullorum was not isolated from any of the animals from the control group. 

Results of the bacteriological titration of the caecum and colon of the groups A-D at 

various times until day 22 PI are shown in Figure 1. 

Significant differences for the H. pullorum titres in the caecum and colon were seen at day 1 

and 22 PI, but not at the other time points. At day 1 PI, caecal titres in group A and C differed 

significantly from each other, but not from the other groups; colon titres were borderline 

significantly different in the overall analysis of variance (P=0.034), but none of the pairwise 

comparisons between the groups were statistically significant using the Scheffé's test 
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(P=0.078 for group C and D). At day 22 PI, only the caecal titres in group B and D were 

significantly different, but not the other comparison in pairs. Colon titres were different in the 

overall analysis (P < 0.001).  The p-values of the significant comparisons in pairs between 

groups A-D, B-C and B-D were 0.008, 0.012 and 0.001, respectively. 

At day 42 PI, H. pullorum was isolated from all the caecum samples except for one sample in 

group B, from one colon sample in groups A and B and from five and three colon samples in 

groups C and D, respectively.  

At day 1, 8 and 15 PI, H. pullorum was isolated from one jejunum sample in group C 

(4.9;5.1;1.7 log10 CFU/g tissue,  respectively) and at day 22 PI, two samples were positive 

(2.7;3 log10 CFU/g tissue) in this group. At day 22 PI, a titre of 4.4 log10 CFU/g tissue was 

demonstrated in one jejunum in group A and at day 42 PI a titre of 2.7 log10 CFU/g tissue was 

found in one jejunum in group B. H. pullorum was not isolated from the remaining jejunum 

samples. 

From none of the H. pullorum-inoculated animals, H. pullorum could be isolated from 

the liver tissue. 

 

AFLP 

AFLP analysis revealed that the four strains used for inoculation each displayed a unique 

profile. All retrieved isolates from the caeca of one and the same group clustered with the 

strain used for inoculation. 
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Table 2 PCR results of Helicobacter pullorum isolated from different organs from broilers inoculated with four strains 

Group A Group B 
Organ 

1 day a 8 days 15 days 22 days 42 days 1 day 8 days 15 days 22 days 42 days 

Liver -/-/-/- b -/+/-/- -/-/+/+ -/-/+/- -/-/-/-/-/+/+ -/-/-/- +/-/+/- -/-/+/+ +/-/+/- -/-/-/-/-/-/- 

Jejunum -/-/-/- -/-/-/+ -/+/-/- +/-/-/+ -/-/-/-/-/-/- -/-/-/- -/+/+/+ -/-/+/- -/-/-/- -/+/-/-/-/+/- 

Caecum +/+/+/+ +/+/+/+ +/+/-/+ +/+/-/- +/+/+/-+/+/- -/+/+/+ +/+/+/- +/-/-/+ +/+/-/+ -/+/-/+/-/+/- 

Colon +/+/+/- +/+/-/- -/-/-/- +/-/+/+ +/-/-/+/+/+/+ +/+/+/+ +/+/-/- +/+/+/+ -/-/+/+ +/+/+/+/+/+/+ 

 
 

Group C 
 

Group D 
 

Liver -/-/-/- -/+/-/- -/-/-/- +/-/-/- -/-/-/-/-/-/- -/-/-/- -/-/-/+ -/-/-/- -/-/+/- -/-/+/+/+ 

Jejunum -/-/+/+ -/-/-/- +/-/-/+ +/-/-/- -/-/+/-/-/-/- -/-/-/- -/-/-/- -/-/-/- +/-/-/- -/+/+/+/-  

Caecum +/+/+/+ +/-/+/+ +/+/+/- +/+/+/- -/+/+/+/-/-/- +/+/+/+ +/+/+/+ +/+/-/+ -/-/+/- +/+/-+/-  

Colon +/+/+/+ -/+/+/- +/-/-/- +/+/+/+ +/+/+/-/-/-/- +/+/+/+ +/-/-/+ -/-/+/- +/+/+/+ +/-/+/+/+  

 

a Number of days post-inoculation, b In all groups, four animals were examined  at day 1, 8, 15 and 22 days post-inoculation. At day 42 post-inoculation, seven 

animals were tested except for group D in which only five animals were included 
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 Titres (log10 CFU/g) of H. pullorum in caecum for groups A-D 
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Figure 1 Titres (log10 CFU/g) of Helicobacter pullorum in groups A-D at day 1, 8, 15 and 22 

post-inoculation. Caecum (A), colon (B) 

 

Necropsy findings 

Marked macroscopic lesions were not observed in group E. 

No lesions were apparent in the liver nor colon in groups A-D at any time point. 

At day 1 PI, the vast majority of animals of groups A-D revealed yellowish caeca with a 

foamy content which was most overt in group C (Figure 2). No macroscopic lesions were 

seen in the jejunum of the animals of group A-D at this point of time. 

A 

B 
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At day 8 PI, caeca were swollen, especially in group D. Foamy caecal contents were seen in 

most animals of groups A-D. The contents were yellowish to brownish in colour. No marked 

lesions were observed in the jejunum of these animals. 

At day 15 PI, half of the caeca and jejuni had foamy contents distributed evenly over groups 

A-D. 

At day 22 PI, most of the caeca in group A-D were swollen and presented dark brown-

blackish longitudinal streaks on the serosal surface (Figure 3). Some of these also displayed 

foamy contents. One to two animals of each group (A-D) additionally had a jejunum 

presenting transverse red streaks on the serosal surface with occasionally and irrespective of 

the group, a foamy content. The jejunum of one animal in group D had a swollen appearance 

(Figure 4).  

At day 42 PI, two-third of the caeca revealed dark brownish longitudinal streaks and were 

enlarged. One chicken in group B revealed a very pale, inflated caecum with yellowish 

malodorous content. Approximately half of the inoculated chickens showed jejuni with a focal 

swollen aspect and foamy contents. Again, no marked differences between groups were noted 

at this time point.  

 

Histological and immunohistochemical analysis 

In the control group (group E), in general, no marked microscopic changes were noticed in the 

intestines. In two caecal samples of this group however, mild focal aggregates of 

lymphoplasmahistiocytic cells and some heterophils were noticed in the lamina propria at day 

42 PI. The caecal epithelium remained undamaged. No lesions were present in the liver of the 

uninfected animals at day 1, 8, 15 and 22 PI. A very mild portal infiltration of round cells was 

noticed in half of the livers sampled at day 42 PI. 

At day 1 PI, histological abnormalities were observed in the caeca of animals from 

groups A-D. A moderate infiltration of heterophils was found in the lamina propria in all 

animals of these groups. In the other samples, no microscopic changes were observed. 

At day 8 PI, scattered heterophils were found in the caecal lamina propria of two chickens 

(group D). No signs of inflammation were visible in the caeca of other animals, nor in the 

colon, jejunum and liver of any animal at this point of time. 
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Fifteen days following inoculation, one animal in group A revealed a mild heterophilic 

infiltration in both the caecum and colon. In one animal of group C, a very mild 

monomorphonuclear infiltrate was present in the caecum. Inflammation was not noticed in the 

caecum and colon of the other broilers, nor in the jejunum and liver samples. 

At day 22 PI, the mucosa of the majority of the caeca was infiltrated with a small amount of 

monomorphonuclear cells, a finding which was evenly distributed over the groups.  

At day 42 PI, a mild to moderate inflammation was present in the caeca of three-quarters of 

the infected animals with no marked differences between the groups. In most samples a slight 

to modest increase of round cells and occasionally heterophils was noticed. Focal blunting 

and fusion of villi were visible. Sporadically, karyorrhectic cells were seen in the surface 

epithelium. In one animal (group A), a slight loss of enterocytes and a mildly flattened surface 

epithelium were noticed. In another animal (group B), ulceration of the surface epithelium 

was noticed, the number of crypts was markedly decreased and a diffuse infiltration of a 

mixture of inflammatory cells was present in the lamina propria. 

Most of the liver samples did not show significant microscopic lesions. A minority of the 

samples revealed small monomorphonuclear aggregates ad random irrespective of the group. 

None of the livers showed microscopic lesions characteristic for vibrionic hepatitis. The 

colonic samples showed no pathological alterations. 

At day 1 PI, small rod-shaped, slightly curved bacteria positively stained with 

polyclonal anti-H. pylori antibodies were present mainly in the lumen of the caecum in all 

inoculated groups. Additionally, a small number was associated with the caecal epithelium. 

These bacteria were found in the lumen of the colon as well, albeit to a minor extent. At the 

following points of time, these rod-shaped bacteria remained to be noted in the caecum. Most 

of these showed close association with the epithelium and a significant portion was found in 

the caecal crypts. The bacteria were also seen in association with the colonic epithelium, but 

not consistently (Figure 5). These rod-shaped bacteria were not found in the jejunum nor liver 

samples of groups A-D and in any samples of group E.  
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Figure 2 Yellowish distended caeca within foamy content (arrows) (day 1 post-inoculation, 

group C) (A), distended foamy caecum (above; group C) compared with normal caecum 

(below; group E) at day 1 post-inoculation (B) 

 

 
 

Figure 3 Dark brown-blackish longitudinal streaks (arrows) on the serosal side of the caeca 

(day 22 post-inoculation, group C) 

 

A B 
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Figure 4 Jejunum revealing transversal red streaks (arrows) on the outside (day 22 post-

inoculation, group D) 

 

 

 

Figure 5 Immunohistochemistry using anti-Helicobacter pylori antibodies reacting with 

Helicobacter pullorum. Small rod-shaped, slightly curved bacteria are present in the lumen 

and crypts of the caecum and colon, but not in the jejunum. Bacteria are also associated with 

the epithelium of the caecum and colon. Caecum (day 15 post-inoculation, group B) (A), 

colon (day 8 post-inoculation, group C) (B), jejunum (day 22 post-inoculation, group C) (C). 

40 x 

 

 

 

C B A 
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DISCUSSION 

 

In the experiment presented here, the intestines and liver from experimentally H. pullorum-

infected chickens were macroscopically and microscopically examined at five time points PI. 

Noteworthy is the presence of distended caeca with foamy contents 1 and 8 days PI in most of 

the H. pullorum-infected chickens. Chickens exposed to a toxigenic Campylobacter jejuni 

strain may also reveal a distended intestinal tract with foamy contents, a feature hitherto 

considered a criterion corresponding to C. jejuni-induced disease (Clark and Bueschkens, 

1988). The findings in this study question the statement as to C. jejuni being solely 

responsible for these marked necropsy findings. 

At the end of the experiment, large caeca with dark brownish streaks on the serosal side were 

visible in a substantial part of the H. pullorum-inoculated animals. They were not detected in 

the control group. The animals were tested weekly for the presence of Campylobacter spp. by 

means of PCR analysis (Shen et al., 2001) and Salmonella spp. by enrichment in tetrathionate 

broth followed by subculture on Brilliant Green agar. All samples remained negative till the 

end of the experiment (data not shown) indicating that these common chicken pathogens 

(Welkos, 1984; Shane et al., 1992; Desmidt et al., 1998) were not the source of the lesions 

noticed mainly in the caeca. 

H. pullorum infection in laying hens has in the past been associated with vibrionic hepatitis 

(Stanley et al., 1994; Burnens et al., 1996), a disease primarily characterized by swelling and 

necrosis of the liver and possibly causing economic loss by increased poultry flock cull rates 

(Berry and Whitenack, 1991). In the current experiment, no macroscopic nor microscopic 

lesions were present in the liver samples. This could be explained by the relatively young age 

of the broiler chickens and thus the lack of hepatic lesions when euthanizing the animals. 

Similar phenomena have been noticed in H. hepaticus-infected mice where hepatic lesions 

only start to develop at an older age depending on the mouse strain (Li et al., 1998; Whary et 

al., 1998). 

At the onset of this study, the caecum in chickens was considered the preferred 

colonization site by this agent, although no clear evidence on this had been given in literature. 

The present study actually showed that the bacterial agent was indeed mainly present in the 
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caeca, and specifically interacted with the epithelial cells starting from the age of 

approximately one week. The bacterium was also observed frequently in the caecal crypts.  

In general, a concordance between the three detection techniques for H. pullorum was noticed 

indicating isolation, PCR and immunohistochemistry are valuable identification methods. 

Nonetheless, in a minority of animals, samples tested positive in PCR while no H. pullorum 

was yielded using isolation. The higher sensitivity of PCR could account for this. 

Sporadically however, the opposite was seen which could be explained by the fact that only a 

small sample of tissue was used for PCR analysis, whereas both contents and a larger section 

of tissue were adopted for the isolation method. Immunohistochemistry showed the 

localisation of the bacteria in their niche, but generally is considered a less sensitive and less 

specific detection method than isolation and PCR (Livingston et al., 1997; Rogers et al., 

2004). 

At the age of 42 days, H. pullorum was detected in high numbers in the caecal samples 

proving that the agent is able to colonize broilers in high quantities at least till the age of 

slaughter. Moreover, the bacterium was excreted in the faeces up until slaughter age, which 

may lead to carcass contamination during the slaughter process. Infected chickens apparently 

do not develop obvious clinical signs such as diarrhoea and may therefore act as carriers of H. 

pullorum infection. These findings are of particular importance because of the fact that H. 

pullorum is considered as a food-borne pathogen responsible for causing several gastro-

intestinal and liver diseases in humans (Stanley et al., 1994, Steinbrueckner et al., 1997; Fox 

et al., 1998; Andersson et al., 2002; Bohr et al., 2002; Ceelen et al., 2005). The 

microorganism has indeed been detected in a significant portion of living meat chickens and 

laying hens and on poultry carcasses on several occasions (Burnens et al., 1996; Atabay et al., 

1998; Ceelen et al., 2006; Miller et al., 2006). 

In conclusion, the results of this experiment demonstrate that H. pullorum is able to 

colonize broiler chickens and additionally is excreted in their faeces at least until the age of 42 

days. The preferred colonization site is the caecum wherein the bacterium shows close 

association with the surface epithelium. Infected chickens apparently reveal no clinical signs, 

although macroscopic pathological changes on the caeca may be present. Microscopically, in 

general only mild lesions are noticed. Consequently, one may conclude that broilers may act 

as carriers of H. pullorum hence constituting a possible source of infection for human beings. 
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This study is only a first step in the investigation of the interaction of H. pullorum with its 

chicken host and stipulates further research. 
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General discussion 
_________________________________________________________________________________________ 

 

Burnens et al. (1996) demonstrated the presence of Helicobacter pullorum in the caecal 

content of four percent of broilers by isolation. However, due to the fastidious character of H. 

pullorum and its requirement for special growth conditions, isolation is in all probability not 

the most appropriate technique for demonstrating the prevalence of this EHS. Therefore, in 

the present thesis, we resorted to a PCR technique based on the 16S rRNA gene (Stanley et 

al., 1994). Using this assay, H. pullorum was detected in 33.6 % of the caeca of 110 Belgian 

broilers. One could question whether the number of animals included in this experiment is 

sufficient and allows to conclude that one-third of the Belgian chicken population may be 

positive. We like to argue that the animals were originating from 11 flocks spread over the 

territory, and not from a selected region. It is nonetheless reasonable to state that more 

animals in different countries including Belgium need to be screened for the presence of H. 

pullorum to get a trustworthy impression about the true prevalence of this bacterial agent 

amongst the world chicken population.  

Atabay et al. (1998) isolated H. pullorum from 9 of 15 poultry carcasses. Although the 

number of carcasses they sampled is low, this high occurrence of H. pullorum even using 

isolation may, at first sight, seem surprising. It has, however, been suggested that the surface 

of chicken carcasses may be cross-contaminated with caecal contents during poultry 

processing (Atabay et al., 1998; Fox et al., 1998) similary to Campylobacter spp. and 

Salmonella spp. (Oosterom et al., 1983; Hald et al., 2001; Olsen et al., 2003; Goksoy et al., 

2004). Additionally, contamination of the chicken body surface may arise during transport to 

the abattoir as has also been described for Campylobacter spp. (Whyte et al., 2001). Hence, 

the discrepancy between our study results and those obtained by Atabay and his research 

group may be more apparent than factual.  

We illustrated that H. pullorum is fairly regularly present both in clinically healthy 

humans and patients suffering from gastrointestinal disease. Most faecal samples obtained 

from the latter group of people had an abnormal appearance, but unfortunately, no additional 

clinical data were available. There may be different reasons for detecting H. pullorum DNA in 

the stool of clinically healthy human beings. 
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First of all, it is possible that H. pullorum belongs to the normal human intestinal microbiota. 

Secondly, it may be speculated that a certain number of the clinically healthy persons found 

positive for H. pullorum included in our study, could have been carriers of this EHS. 

Steinbrueckner et al. (1997) reported a case of human enteritis strongly associated with H. 

pullorum. It concerned a female patient with several episodes of diarrhoea from which only 

H. pullorum was recovered, and no other diarrheic bacterial nor parasitic pathogens. H. 

pullorum remained detectable when disease signs were no longer present and until three 

months after the first presentation; a carrier status hence was suggested (Steinbrueckner et al., 

1997). 

Thirdly, some H. pullorum strains may be of very low virulence, resulting in absence of 

clinically detectable signs of infection. Differences in virulence between strains have been 

described for other Helicobacter species such as H. hepaticus (Suerbaum et al., 2003) and H. 

pylori (Dunn et al., 1997; Israel et al., 2001). In fact, 70 to 90 % of the population in 

developing countries carries H. pylori, while only 25 to 50 % of them develop gastric disease 

(Dunn et al., 1997; Falkow, 2006). The actual evolvement into gastric disease depends on 

bacterial virulence factors, host characteristics and/or interaction between host and bacterium 

(Israel et al., 2001). For H. pullorum, only little information is available on the actual 

virulence factors despite the growing number of clinical reports related to this pathogen. Only 

few studies dealing with this research area have been published in particular demonstrating 

the production of cytolethal distending toxin (CDT) by H. pullorum which is hypothesized to 

play an aetiological role in the development of diarrhoea (Ceelen et al., 2006a). The latter 

feature was our focus point in chapters 2.1.1 and 2.1.2 and will be discussed below. 

A fourth possible reason for the presence of H. pullorum DNA in the stool of clinically 

healthy people is the difference in host factors such as age, genetic background and immune 

response. Also ethnicity and regional factors might play a role in the clinical outcome of H. 

pullorum infection. These all have been discussed for H. pylori on numerous occasions 

(Taylor and Parsonnet, 1995; Dunn et al., 1997; Kim et al., 2004; Vilaichone et al., 2004) and 

to a lesser extent for H. hepaticus (Ward et al., 1996; Ihrig et al., 1999; Whary et al., 2001). 

In the present studies, faecal material was tested for the presence of H. pullorum DNA 

using a PCR method based on the 16S rRNA gene following DNA extraction by means of a 

commercial stool kit (QIAamp® DNA Stool Mini Kit, Qiagen, Venlo, The Netherlands). 
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Although PCR theoretically allows us to obtain accurate results, this method has some 

disadvantages, particularly due to the preceding methods of sampling and extraction of DNA 

from human stool. The sensitivity of the PCR method was tested before application by 

spiking human faecal samples with known concentrations of the human H. pullorum strain 

LMG 16318. A H. pullorum concentration of 2000 colony forming units per ml faecal 

suspension was the lower detection limit (data not shown). Lower DNA concentrations may 

hence not have been detected in the faeces. We additionally do not know whether H. pullorum 

is excreted in faeces continuously or intermittently. Should the latter be the case for H. 

pullorum as has been described for Salmonella enterica serovar Typhimurium (Falkow, 

2006), then its occurrence can be underestimated due to sampling at only one time point. 

Finally, according to the DNA extraction process as outlined by the manufacturer, we started 

the procedure with an amount of 200 mg of faeces. Since this amount may be considered as 

being fairly small, one may hypothesize this issue as a third possible reason for an 

underestimation of the prevalence of H. pullorum in the faeces of people. 

 

Although it has not yet been clearly proven that H. pullorum has zoonotic potential, the 

increasing number of reports about H. pullorum-associated diarrhoea, gastroenteritis and 

biliary disease in humans illustrates the possible significance of this microbe as a human 

pathogen (Burnens et al., 1994; Stanley et al., 1994; Burnens et al., 1996; Fox, 1997; 

Steinbrueckner et al., 1997; Fox et al., 1998). The actual contribution of H. pullorum in 

pathological processes has probably been underestimated due to the specific requirements for 

culture of the species, the use of unsuitable culture media and the frequent incorrect 

classification of H. pullorum as C. coli and C. lari with which various major phenotypic 

characteristics are shared. As an example, H. pullorum is susceptible to polymyxin B, an 

antibiotic present in most Campylobacter isolation media (Corry et al., 1995; On et al., 1996; 

Atabay et al., 1998; Young et al., 2000). 

H. pullorum is considered as a potential food-borne human pathogen by a number of authors 

(Burnens et al., 1994; Stanley et al., 1994; Atabay et al., 1998; Fox et al., 1998). Results from 

an experimental study as described in this thesis illustrate that the bacterium can colonize the 

intestine of chickens and may be excreted in the faeces up until slaughter age. This implies 

that these animals indeed may act as a reservoir for H. pullorum and constitute one of the 



   

 177

sources of infection for human beings. Atabay et al. (1998) were able to isolate the species 

from chicken carcasses. We additionally demonstrated in our laboratory that a human H. 

pullorum strain was able to survive for an extended period outside the chicken gut at low 

temperature, although under conditions of high moisture (data not shown). This may to some 

extent support the assumption of H. pullorum being a food-borne pathogen due to 

contamination of the carcasses at the slaughterhouse. One may suppose that a part of the 

human exposure to H. pullorum may originate from cross-contamination in kitchens during 

food handling. An upgrading of the hygiene in domestic kitchens hence is important, even if 

one is not yet sure about the actual clinical relevance of H. pullorum in human beings. This 

likewise markedly may reduce the number of Campylobacter spp. and Salmonella spp. 

infections as demonstrated previously. It is indeed essential to wash hands on a regular basis 

and to use separate surfaces or alternatively to correctly rinse surfaces while raw and cooked 

foods are being prepared (Humphrey, 2000; Gorman et al., 2002; Barker et al., 2003; 

Kusumaningrum et al., 2004). 

H. pullorum may be translocated to people due to contact with live chickens and their faeces 

as well. H. pullorum was detected by means of PCR and isolation in faeces of two privately 

owned chickens out of the 53 sampled animals in a small experiment in our laboratory (data 

not shown). We thus may assume that faecal material also may be an infection source of this 

pathogen for chicken farmers and hobbyists. 

Recently, we reported for the first time the occurrence of H. pullorum in a parakeet, more 

specifically a Psephotus haematogaster, during an episode of diarrhoea (Ceelen et al., 2006b). 

These animals may possibly act as another vehicle of H. pullorum infection for human beings, 

although further research involving more aviary birds species is needed before any firm 

conclusions can be made in this area. 

 

One of the objectives of this dissertation was to determine the in vitro susceptibility of various 

H. pullorum isolates to a series of antimicrobial agents. When we started our experiments, it 

was only known that H. pullorum is naturally sensitive to polymyxin B and resistant to 

cefalotin and cefoperazone (Stanley et al., 1994; On, 1996; Atabay et al., 1998). In addition, 

resistance percentages of 6 to 55 % to nalidixic acid were reported by several research groups 

(On, 1996; Atabay et al., 1998; Melito et al., 2000). 
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In our study, Minimum Inhibitory Concentration (MIC) determinations were carried 

out on a relatively limited number of H. pullorum isolates. Amplified fragment length 

polymorphism (AFLP) analysis revealed that isolates obtained from the same flock, clustered 

together, indicating clonal origin. Therefore, probably, a smaller number of H. pullorum 

strains was actually used for MIC determinations than initially thought. This however, does 

not alter the fact that this report is the first to give some indications on the normal in vitro 

susceptibility of this species for several antimicrobials. It also demonstrates that development 

of acquired resistance may occur as illustrated here for spectinomycin. Still, it is obvious that 

more H. pullorum isolates need to be tested in the future. It should be emphasized that the 

fastidious nature of this species in terms of in vitro isolation limits the number of strains that 

can be included in a similar study. 

All isolates obtained from herd II showed acquired resistance to spectinomycin. Although 

AFLP analysis revealed clonal origin of these isolates, an eight-fold difference in MIC was 

seen for instance between strains CE II 1 and CE II 2 for gentamicin (1 and 0.12, respectively) 

and between strains CE II 3 and CE II 4 for tylosin (16 and 2, respectively). This variation in 

MIC values between these clonal isolates may be due to the specific growth requirements and 

the fastidious nature of Helicobacter making it difficult to institute standardized MIC 

determination procedures. Up until now, for Helicobacter spp., no internationally accepted 

criteria for susceptibility testing are available. The quality control limits given for 

nonfastidious bacteria in aerobic atmosphere are not in compliance. Nevertheless, the agar 

dilution method used in the present study hitherto, is the most suitable way to determine the 

MIC values for H. pullorum and H. canadensis, since, according to the International Council 

for Laboratory Standards (ICLS), this method is the choice for testing H. pylori, C.  jejuni and 

related species (M31-A2) (2002). Indeed, Campylobacter spp. and EHS require similar 

incubation circumstances and time (Solnick, 2003). 

High MIC values of ampicillin were noticed for all H. pullorum isolates indicating 

intrinsic resistance against this antibiotic. Other Helicobacter spp., on the contrary, are 

generally considered as naturally sensitive to ampicillin and amoxicillin, both belonging to 

the group of the aminobenzylpenicillins displaying a similar antimicrobial activity (Prescott, 

2000). Amoxicillin is often used for the treatment of Helicobacter infections in humans and 

animals, usually in combination with metronidazole and omeprazole/bismuth. The finding of 
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MIC values ≥ 32 µg/ml of ampicillin for the tested H. pullorum isolates is hence interesting 

because H. pullorum-infected persons may not benefit from a treatment with ampicillin or 

amoxicillin. 

We mentioned throughout this thesis the fastidious growth requirements for H. pullorum 

rendering its isolation very sensitive for overgrowth by contaminating organisms. In view of 

this, the high MIC values of ampicillin may also be useful for preparing a selective medium to 

improve the cultivation of this EHS. 

The mechanism of resistance against ampicillin in H. pullorum in not known. Resistance to β-

lactam antibiotics in Campylobacter spp. may be due to restricted ability of these antibiotics 

to bind penicillin binding proteins (PBPs) or the capacity of the bacterial strains to produce β-

lactamase enzymes (Prescott, 2000; Engberg et al., 2006). Low affinity PBPs due to a 

modification in one or more of the peptides has also been described in H. pylori (Dore et al., 

1998; van Zwet et al., 1998; Dore et al., 1999; Mégraud, 2001; Wang et al., 2001).  We tested 

β-lactamase activity in our H. pullorum strains using diagnostic ROSCO tablets (ROSCO, 

Taastrup, Denmark) (data not shown). The test gave negative results, indicating that this 

resistance mechanism is not responsible for the high MIC values in H. pullorum. However, 

although this diagnostic test is recommended by ICLS for demonstrating β-lactamase activity, 

we do not know for certain whether this test is accurate to detect β-lactamase activity in 

Helicobacter spp. Indeed, regarding C. jejuni, the β-lactamase provides resistance to the 

overall neutrally charged amoxicillin, ampicillin, and ticarcillin but not to the negatively 

charged penicillin G which constitutes the antibiotic component in the diagnostic ROSCO test 

(Engberg et al., 2006).  

 

Since the discovery of H. pullorum (Stanley et al., 1994), only very few virulence studies with 

this microbe have been performed. Young et al. (2000) mentioned the presence of CDT 

activity in human and poultry H. pullorum isolates. Hynes et al. (2004) reported about 

chemical and biological characterization of lipopolysaccharides in H. pullorum. 

With a view to expand our knowledge about the pathogenicity of this EHS, we 

examined both poultry and human H. pullorum strains for CDT production. Using Hep-2 

cells, we only noticed obvious activity characteristic for CDT in one human strain. 

Previously, Young et al. (2000) assessed the presence of CDT activity in a collection of nine 
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human isolates, and two chicken isolates. The two latter, plus one human isolate were tested 

in both the experiment of Young et al. (2000) and ours. While we concluded that the majority 

of H. pullorum isolates did not clearly show CDT activity, Young et al. asserted that their 

tested isolates did produce CDT. Nonetheless, the results of Young and his group (2000) 

demonstrated that the cytotoxic titres produced by H. pullorum were 12 to 81 times lower 

than observed in the H. hepaticus strain included as a positive control. One may wonder 

whether the CDT activity reported has any significance in vivo. In both in vitro assays, 

epithelial cultured cell lines were adopted to look for CDT activity, more precisely HeLa cells 

in the study of Young et al. (2000) and a Hep-2 cell line constituting a HeLa derivate in our 

experiment. Both cell lines were used occasionally in the past to demonstrate CDT activity in 

various Gram-negative bacteria (Johnson and Lior, 1988; Purvén and Lagergård, 1992; Scott 

and Kaper, 1994; Pickett and Whitehouse, 1999). However, we cannot rule out that Hep-2 

cells are less susceptible to CDT generated by H. pullorum strains, which may explain the 

apparent discrepancy between our results and those of Young et al. (2000). The degree of 

similarity between the amino acid sequences of cdtA and cdtC subunits, which most probably 

are involved in attachment of the toxin to the host-cell surface and in internalization of cdtB, 

may differ enormously between and within different bacterial species (Scott and Kaper, 1994; 

Pickett et al., 1996; Cortes-Bratti et al., 2001; Frisan et al., 2002; Lee et al., 2003). This may 

give rise to variation in sensitivity of host cells for CDT generated by different bacterial 

species or possibly strains. Eyigor et al. (1999) theorized that apparently low CDT production 

by C. coli isolates might be due to low sensitivity of the HeLa cells used in their investigation.  

In view of this, we performed a toxicity assay in a mouse liver cell line with the same 

collection of H. pullorum isolates using the same amount of total proteins from sonicate as in 

the previous experiment. In this assay on the contrary, we did notice cell changes 

characteristic for CDT for all isolates. The cell changes included an increase of the cell size 

with proportional nuclear distention. Binucleated cells and micronucleation were observed as 

well. These findings imply that hepatocytes may be more sensitive to CDT produced by H. 

pullorum than other epithelial cells. Nonetheless, whether these observations can be allocated 

to only CDT is not actually proven, but mainly indicative. We indeed cannot exclude that H. 

pullorum produces another yet unidentified toxic factor which may cause these cellular 

changes in itself or may work synergistically with CDT. 
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CDT is composed of three subunits designated as cdtA, cdtB and cdtC, encoded by the genes 

cdtA, cdtB and cdtC, as described in the literature review on EHS of this thesis. The variation 

in these genes among Gram-negative bacteria is well known. The sequence of the cdtB gene 

encoding the cdtB subunit is recognized as the most conserved, but still can vary to a certain 

extent between different bacterial species. We were able to amplify this gene partially in all 

tested H. pullorum strains using the degenerative primers developed by Chien et al. (2000). 

The presence of the cdtB gene is however no proof for CDT activity. The cdtB compound is 

indeed mainly responsible for CDT activity, but the cdtA and cdtC subunits apparently are 

required as well (Pickett et al., 1994; Scott and Kaper, 1994; Aragon et al., 1997; Okuda et al., 

1997; Mayer et al., 1999; Pickett and Whitehouse, 1999; Shenker et al., 2000; Saiki et al., 

2001; Shenker et al., 2004). In an attempt to detect and identify the total sequences of the cdtA 

and cdtC genes, we only succeeded in sequencing the cdtA gene partially using the forward 

primer GNW (Bang et al., 2003) and a self-designed reverse primer. We were not able to 

amplify the cdtC gene. The large variability of these genes among different bacterial agents 

can be demonstrated by the fact that the partial cdtA gene sequence found in H. pullorum was 

not comparable to other cdtA gene sequences from the GenBank database. However, the 

sequence of the deducted amino acids corresponded to that of the cdtA peptide in several 

thermophilic Campylobacter spp. and H. hepaticus from the GenBank database following 

multiple sequence alignment.  

 

At the start of this research, the pathogenic significance of H. pullorum in poultry was not 

clear. We were able to develop a chicken model which is suitable for studying the 

pathogenesis of H. pullorum infection. The animals remained clinically healthy till the age of 

slaughter. This study was not set up to detect reductions in feed conversion or weight loss. 

Therefore, we cannot exclude that H. pullorum infection may have effects on performance. 

We did not notice lesions characteristic for vibrionic hepatitis which have earlier been 

described in H. pullorum-infected laying chickens (Burnens et al., 1996). This could be 

explained by the relatively young age of the broiler chickens at euthanasia. Similar 

phenomena have been noticed in H. hepaticus-infected mice where hepatic lesions only start 

to develop at an advanced age depending on the mouse strain (Li et al., 1998; Whary et al., 

1998). 
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No laying hens were included in the study and a potential negative outcome of H. pullorum-

infection in these animals on the egg laying has not been investigated. Further studies may 

focus on developing a similar in vivo model with layers to test the economic impact of H. 

pullorum infection in these animals as well. 

 

Future research needs to focus on the role of H. pullorum CDT in vivo. This implies the 

knowledge of the total sequence of the cdt gene complex and the purification of the CDT 

toxin. In addition, the construction of a CDT-negative H. pullorum mutant undoubtedly may 

allow to study the exact role of CDT in pathogenicity of this bacterial agent. A H. pullorum 

mutant with a disrupted CDT coding region may therefore be created similar to that described 

for H. hepaticus (Young et al., 2004). 

Furthermore, exploration of new virulence factors is required to entirely elucidate the 

pathogenicity of H. pullorum and its capacity to cause disorders related to liver, intestine 

and/or pancreas in human beings. In this respect, both in vitro assays and animal models need 

to be developed. In vitro research needs to be undertaken to examine the potential adhesion 

and invasion capacity of this bacterium. In vitro assays also may allow to discover toxic 

activity in H. pullorum other than CDT activity linked to the presence of certain virulence 

genes. 

H. pullorum or its DNA has been detected in gallbladder tissue from Chilean women (Fox et 

al., 1998), liver tissue from hepatocellular carcinoma patients (Ponzetto et al., 2000) and liver 

and bile from laying hens suffering from vibrionic hepatitis (Burnens et al., 1996). In our 

studies, H. pullorum sonicate was clearly more toxic for a murine hepatocyte cell line than for 

another epithelial cell culture. This might also indicate a tropism of the bacterium or its 

metabolites for the liver and perhaps gallbladder. Therefore, further in vitro studies using liver 

cell lines from different host species and the development of in vivo models to study liver and 

gallbladder pathology may be useful. The A/JCr mouse line is known to easily develop 

hepatic and biliary pathology. This mouse model is moreover a universally accepted model 

for studying Helicobacter-induced pathology in humans and therefore, may provide 

supplementary information about the interaction of H. pullorum with its hosts (Fox et al., 

1996; Fox and Lee, 1997). 
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Finally, the developed chicken model can be further extended by inoculating laying hens in a 

similar way, keeping broilers and layers for a longer time period with the aim to investigate 

possible liver injuries and by including more H. pullorum strains, both wild type strains and 

CDT-negative H. pullorum mutants. 

 

In conclusion, we demonstrated that H. pullorum is present in Belgian broiler chickens. The 

bacterial agent colonizes the caeca and may remain present in chickens till the age of 

slaughter. One may deem that these animals are a potential source of infection for human 

beings due to contamination of the bird’s carcasses in the abattoir. We also presented a case 

report of a H. pullorum-infected parakeet potentially constituting another reservoir and source 

of infection for people. Still, the absence of clear-cut evidence of zoonotic behaviour of H. 

pullorum needs to be underlined. Furthermore, persons both clinically healthy and suffering 

from gastrointestinal disease may harbour this bacterium fairly frequently. The H. pullorum 

isolates retrieved in these experiments showed decreased susceptibility or were resistant to 

ampicillin, ceftriaxone and sulphamethoxazole-trimethoprim with consequent implications for 

the treatment of H. pullorum-infected individuals. The contribution of this EHS to human 

intestinal, hepatic and/or pancreatic disorders is hitherto, however, not very clear. Finally, 

only little CDT activity of H. pullorum was generally noticed in Hep-2 cells. Liver cells on 

the contrary, revealed damage quite characteristic for CDT. The true role of this toxin in vivo 

nevertheless, remains questionable. 
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Summary 
_________________________________________________________________________________________ 
 

Starting approximately two decades ago, research about Helicobacter organisms has 

progressively gained importance. One of the enterohepatic Helicobacter species (EHS) was 

isolated from chickens and humans and assigned Helicobacter pullorum. Although the 

scientific community tagged this species as a potential emerging pathogen, little information 

about its actual significance was available at the beginning of this thesis.  

This thesis starts with an introduction about the relevant literature on the EHS 

highlighting the need for additional research. 

The purpose of the thesis was to investigate the occurrence of H. pullorum in poultry 

and human beings, to study the interaction of H. pullorum with its animal host and to analyze 

some clinical relevant properties of this microorganism. 

The experimental research is divided into two main parts, chapters 1 and 2. Chapter 1 

includes the prevalence of H. pullorum in humans and chickens and its in vitro susceptibility 

to different antimicrobial agents. In chapter 2, bacteria-host interactions are studied both in 

vitro and in vivo. 

 

In the first study of chapter 1, the occurrence of H. pullorum in broiler chickens was 

determined. 

The caeca, colon, jejunum and liver of 110 animals obtained from 11 different flocks, were 

tested for the presence of H. pullorum using a PCR method based on the 16S rRNA gene; 

positive samples were re-examined with a conventional isolation method. Therefore, samples 

were inoculated onto brain heart infusion (BHI) agar supplemented with 10 % horse blood 

and subsequently incubated in a microaerobic atmosphere at 37°C for minimum three days. 

The retrieved H. pullorum isolates were examined by amplified fragment length 

polymorphism (AFLP) fingerprinting for investigating genetic diversity and relatedness 

between strains. 

In the caecum and colon, the PCR reaction for H. pullorum gave positive results in 33.6 % 

and 31.8 % of the samples, respectively. In total, 10.9 % and 4.6 % of all jejunum and liver 

samples, respectively, were positive for H. pullorum DNA. 
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Sixteen isolates from caecal samples of chickens from two different flocks were obtained. 

AFLP analysis showed that these isolates and four additional isolates previously obtained 

from another flock, clustered with respect to their origin. This indicates that H. pullorum 

colonization may occur with a single strain that disseminates throughout the flock. Isolates 

obtained from different host species or geographical sources, displayed a distinctive pattern. 

 
Because literature data illustrated that this Helicobacter species may also be present in human 

beings, the objective of the second study of chapter 1 was to determine the prevalence of H. 

pullorum both in patients with gastrointestinal disease and clinically healthy people. 

In this experiment, faecal material from 531 individuals with gastrointestinal disease and 100 

clinically healthy persons was examined for the presence of H. pullorum by the same PCR 

method as used in the first study. Samples proving positive in PCR were selected for isolation 

purposes in a similar way to the aforementioned study. 

H. pullorum DNA was demonstrated in faeces from 4.3 % of patients with gastrointestinal 

disease, but also from 4.0 % of clinically healthy persons. We were furthermore able to isolate 

one strain from a patient suffering from diarrhoea. 

 
To complete this first chapter, the in vitro activity of 13 antimicrobial agents against 21 

poultry and two human H. pullorum isolates and one human H. canadensis strain was tested 

by the agar dilution method. With the H. pullorum isolates, monomodal distributions of 

Minimum Inhibitory Concentrations (MICs) were seen with lincomycin, doxycycline, 

gentamicin, tobramycin, erythromycin, tylosin, metronidazole and enrofloxacin in 

concentration ranges considered as indicating susceptibility in other bacterial species. The 

normal susceptibility level for nalidixic acid was situated at or slightly above the MIC 

breakpoints proposed for Campylobacteriaceae. Ampicillin, ceftriaxone and 

sulphamethoxazole-trimethoprim showed poor activity against H. pullorum. With 

spectinomycin, a bimodal distribution of the MICs was noted for the tested strains; eight H. 

pullorum isolates originating from one flock showed acquired resistance (MIC > 512 µg/ml). 

For the H. canadensis strain, a similar susceptibility pattern was seen, except for nalidixic 

acid and enrofloxacin, where the MIC was > 512 µg/ml and 8 µg/ml, respectively, indicating 

resistance.    
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Chapter 2 is composed of two cardinal parts dealing with pathogen-host interactions 

examined in in vitro assays and an in vivo model. 

Exploration of the literature urged us to hypothesize that cytolethal distending toxin (CDT) 

could be present in H. pullorum. This toxin is able to cause double strand breaks in the DNA 

of eukaryotic cells which become enlarged, with proportionally distended nuclei, and finally 

die due to apoptosis. The effect of H. pullorum sonicate was consequently tested on a Hep-2 

and a liver cell line in the first two studies of chapter 2.  

The presence of the cdtB gene among a collection of H. pullorum isolates was investigated 

using PCR in a first experiment described in chapter 2.1.1. We examined herein also the level 

of the toxic activity and looked for differences between the included isolates. For that reason, 

epithelial Hep-2 cells inoculated with filtered sonicate from each strain were observed 

microscopically. Because the presence of enlarged, multinucleated cells is characteristic for 

CDT activity, DNA analysis using flow cytometry of the treated cells was done as well. 

All isolates harboured the cdtB gene, but functional CDT activity was only demonstrated in 

the human H. pullorum strain CCUG 33839. A significant number of cells treated with 

sonicate from this strain were enlarged. The nuclei were distended proportionally. Giant cells 

and multinucleated cells were observed as well. In addition, stress fibers accumulated. DNA 

analysis by flow cytometry revealed 31 % of these cells at the S/G2 stage of the cell cycle. We 

thus can conclude that the tested poultry and human H. pullorum isolates all possess the cdtB 

gene, but that under the circumstances adopted in this study, only the human strain CCUG 

33839 showed biological activity typical for CDT in vitro. 

The description of a cytopathic effect of H. hepaticus on liver cells in the middle of the 

nineties urged us to test filtered cell sonicate from the same H. pullorum isolates as adopted in 

the previous study on the mouse hepatic cell line H 2.35. Chapter 2.1.2 describes this study 

and discusses the results obtained. 

Morphological changes in the cultured liver cells exposed to the cell sonicate were 

investigated using light microscopy, transmission electron microscopy and time-lapse video 

microscopy. Additionally, DNA analysis of treated cells was done by flow cytometry. 

Cytotoxicity was seen for all H. pullorum isolates after incubation for 72 h with different 

levels of toxic activity. Features characteristic for mitotic catastrophe were noticed involving 

chromatin condensation, formation of multinuclear distended cells and micronucleation. In 
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addition, intranuclear pseudoinclusions were observed in sonicate treated cells. Finally, cells 

exposed to sonicate eventually underwent cell death with the morphological features of 

necrosis. 

The toxic factor proved to be water soluble, trypsin-sensitive and stable at 56°C and at -70°C. 

The molecular weight was estimated to be over 50 kDa. These characteristics are equal to 

those described for CDT indicating that this toxin is, at least partially, involved in the 

morphological changes observed in this cell line. 

 

A final study described in chapter 2.2 constitutes an experiment on the in vivo interaction of 

H. pullorum with the chicken host. No experiments in chickens with this bacterial agent had 

been performed in the past. Four groups of 23 one-day old broilers were inoculated with two 

strains from poultry and two strains from human origin. A fifth group of eight control animals 

was inoculated with phosphate-buffered saline. At five time points post-inoculation, up to 

slaughter age, animals of every group were culled and caecum, colon, jejunum and liver were 

examined both macroscopically and microscopically. In addition, bacterial titration and PCR 

analysis for H. pullorum were performed on the same samples. Faecal material was also 

collected on a regular basis for PCR analysis for this bacterial agent. 

All animals remained clinically healthy throughout the experiment. At necropsy, there were 

red streaks on the serosa of the jejunum of animals in the H. pullorum-inoculated groups. The 

caeca of these animals also had dark brownish streaks on the serosa and foamy contents.  

The control group remained negative for the presence of H. pullorum during the entire 

experiment. H. pullorum was detected from the start till the end of the experiment in all 

infected groups. The predominant colonization site was the caecum and the bacterium was 

excreted in the faeces till at least 42 days of age. This implies that broiler chickens may act as 

a reservoir for H. pullorum and may shed the bacteria up to slaughter age, hence constituting a 

potential source of infection for human beings. 

 

In conclusion, H. pullorum appears to be highly prevalent in broilers and may induce mild 

subclinical lesions. The CDT production may be important for virulence. A limited 

percentage of people are infected, but the role in human disease remains controversial. The 

intrinsic antimicrobial susceptibility pattern will need to be taken into account when 
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envisaging treatment of patients. Future research should focus on the significance of H. 

pullorum in human beings. In addition, long term effects of the infections in layers and/or 

parent chickens should be examined.   
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Samenvatting 

_________________________________________________________________________________ 

 

Sinds ongeveer twee decennia heeft onderzoek over Helicobacter organismen enorm aan 

belang gewonnen. Eén van de enterohepatische Helicobacter species (EHS) werd uit kippen 

en mensen geïsoleerd en Helicobacter pullorum genoemd. Hoewel de wetenschappelijke 

gemeenschap deze species als een mogelijke opkomende pathogeen bestempelde, was er 

weinig informatie voorhanden over haar daadwerkelijk belang. Op het moment dat het 

onderzoek beschreven in deze thesis aangevat werd, had men het raden naar de werkelijke 

prevalentie van H. pullorum bij de mens en kip en informatie over virulentiefactoren was heel 

schaars. 

Deze thesis start met een inleiding over de relevante literatuur over de EHS waarin de 

noodzaak voor verder onderzoek wordt benadrukt. 

De doelstelling van deze thesis was het bestuderen van het voorkomen van H. 

pullorum bij pluimvee en mensen, het onderzoeken van de interactie van H. pullorum met 

haar gastheren en het analyseren van enkele klinisch relevante eigenschappen van dit 

microorganisme. 

 Het experimentele onderzoek is opgedeeld in twee hoofdstukken. Hoofdstuk 1 omvat 

de prevalentie en in vitro gevoeligheid van H. pullorum ten opzichte van verschillende 

antimicrobiële agentia. In hoofdstuk 2 worden bacterie-gastheer interacties bestudeerd, zowel 

in vitro als in vivo. 

 

In de eerste studie van hoofdstuk 1 werd het voorkomen van H. pullorum bij braadkippen 

bepaald.  

De caeca, het colon, het jejunum en de lever van 110 dieren afkomstig van 11 tomen, werden 

getest op de aanwezigheid van H. pullorum waarbij gebruik werd gemaakt van een PCR 

methode gebaseerd op het 16S rRNA gen; positieve stalen werden opnieuw onderzocht door 

middel van een conventionele isolatie methode. Hierbij werden de stalen geïnoculeerd op 

brain heart infusion (BHI) agar met 10 % paardenbloed en vervolgens geïncubeerd in een 

micro-aërofiel milieu bij 37°C gedurende minimum drie dagen. 
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Genetische diversiteit en verwantschap van de bekomen H. pullorum isolaten werden 

onderzocht door amplified fragment lenght polymorphism (AFLP) ‘fingerprinting’. 

Wat betreft het caecum en colon, gaf de PCR reactie voor H. pullorum positieve resultaten bij 

respectievelijk 33,6 % en 31,8 % van de stalen. In totaal waren respectievelijk 10,9 % en 4,6 

% van alle jejunum en lever stalen positief voor H. pullorum DNA. 

Zestien isolaten van caecale stalen afkomstig van dieren van twee verschillende tomen 

werden bekomen. AFLP analyse toonde aan dat deze isolaten en vier voorheen bekomen 

isolaten van een andere toom, een cluster vormden in relatie tot hun afkomst. Dit duidt erop 

dat H. pullorum kolonisatie kan gebeuren met één enkele stam die zich verspreidt doorheen de 

toom. Isolaten bekomen uit diverse gastheren of van een verschillende geografische herkomst, 

vertoonden elk een apart patroon. 

 

Omdat gegevens in de literatuur aantoonden dat deze Helicobacter species ook mogelijk 

voorkomt bij mensen, was de doelstelling van de tweede studie van hoofdstuk 1 het nagaan 

van de prevalentie van H. pullorum in zowel patiënten met gastro-intestinale aandoeningen als 

klinisch gezonde mensen. 

In deze proef werd faecaal materiaal van 531 individuen met gastro-intestinale problemen en 

van 100 klinisch gezonde personen onderzocht op het voorkomen van H. pullorum door 

middel van dezelfde PCR methode gebruikt in de eerste studie. De PCR positieve stalen 

werden geselecteerd voor cultivatie die op dezelfde wijze werd uitgevoerd als in de eerste 

studie. 

H. pullorum DNA werd aangetoond in de faeces van 4,3 % van de patiënten met gastro-

intestinale aandoeningen, maar eveneens in 4,0 % van de klinisch gezonde personen. We 

slaagden erin een stam te isoleren uit een patiënt met diarree. 

 

Om dit hoofdstuk te vervolledigen, werd de in vitro gevoeligheid van 21 kippen, twee humane 

H. pullorum isolaten en één H. canadensis stam tegenover 13 antimicrobiële agentia getest 

door middel van de agar dilutie methode. 

Bij de H. pullorum isolaten werd een monomodale verdeling van Minimum Inhibitorische 

Concentratie (MIC) waarden gezien voor lincomycine, doxycycline, gentamicine, 

tobramycine, erythromycine, tylosine, metronidazole en enrofloxacine in concentraties welke 
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beschouwd worden als gevoelig bij andere bacteriële species. De normale gevoeligheid voor 

nalidixinezuur lag rond of net boven de MIC breekpunten aanbevolen voor 

Campylobacteriaceae. Ampicilline, ceftriaxone en sulphamethoxazole-trimethoprim 

vertoonden weinig activiteit tegenover H. pullorum. Bij spectinomycine werd een bimodale 

verdeling van MIC waarden opgemerkt voor de geteste stammen; acht H. pullorum isolaten 

afkomstig van éénzelfde toom vertoonden verworven resistentie (MIC > 512 µg/ml). Wat de 

H. canadensis stam betreft, werd een gelijkaardig gevoeligheidspatroon waargenomen, 

behalve voor nalidixinezuur en enrofloxacine waar de MIC waarden van respectievelijk > 512 

µg/ml en 8 µg/ml aantonen dat dit agens resistent is aan deze antimicrobiële middelen. 

 

Hoofdstuk 2 bestaat uit twee grote delen met betrekking tot pathogeen-gastheer interacties die 

onderzocht werden in zowel in vitro proeven als in een in vivo model. 

Het doornemen van de relevante literatuur deed ons vermoeden dat het “cytolethal distending 

toxin” (CDT) aanwezig zou kunnen zijn bij H. pullorum. Dit toxine is in staat om het DNA 

ter hoogte van beide strengen in eukaryotische cellen te beschadigen die vervolgens 

opzwellen met binnenin proportioneel vergrote kernen en uiteindelijk sterven door apoptose. 

Het effect van H. pullorum sonicaat werd daarom getest op een Hep-2 en een levercellijn in 

de eerste twee studies van hoofdstuk 2. 

Het voorkomen van het cdtB gen bij een collectie H. pullorum isolaten werd onderzocht door 

middel van een PCR techniek in een eerste experiment dat is beschreven in hoofdstuk 2.1.1. 

We onderzochten ook de graad van toxische activiteit en keken naar verschillen tussen de 

ingesloten isolaten. Hiervoor werden epitheliale Hep-2 cellen geïnoculeerd met gefilterd 

sonicaat van elke stam afzonderlijk, microscopisch bekeken. Omdat de aanwezigheid van 

vergrote, meerkernige cellen karakteristiek is voor CDT activiteit, werd eveneens DNA 

analyse van de behandelde cellen door middel van flowcytometrie uitgevoerd. 

Alle isolaten hadden het cdtB gen, maar functionele CDT activiteit werd enkel aangetoond in 

de humane H. pullorum stam CCUG 33839. Een significant aantal cellen behandeld met 

sonicaat van deze stam waren opgezwollen. De kernen waren proportioneel vergroot. 

Reuzencellen en meerkernige cellen werden eveneens opgemerkt. Voorts was er accumulatie 

van stressvezels zichtbaar. DNA analyse door flowcytometrie toonde aan dat 31 % van deze 

cellen zich bevond in de S/G2 fase van de celcyclus.  
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We kunnen dus concluderen dat alle geteste kippen en humane H. pullorum isolaten het cdtB 

gen bevatten, maar dat onder de omstandigheden in deze studie enkel de humane stam CCUG 

33839 biologische activiteit typisch voor CDT in vitro vertoonde.  

 

In het midden van de jaren negentig werd een cytopathisch effect van H. hepaticus op 

muizencellen beschreven. Dit zette ons aan om gefilterd celsonicaat van dezelfde H. pullorum 

isolaten als gebruikt in de vorige studie, te testen op de muizenlevercellijn H 2.35. Hoofdstuk 

2.1.2 beschrijft deze studie en bediscussieert de bekomen resultaten. 

Morfologische veranderingen in de levercellijn blootgesteld aan het celsonicaat werden licht-, 

transmissie elektronen en time-lapse video microscopisch onderzocht. Bijkomend werd DNA 

analyse van de behandelde cellen uitgevoerd door flowcytometrie. 

Cytotoxiciteit werd gezien voor alle H. pullorum isolaten na een 72 uur durende incubatie met 

verschillende gradaties van toxische activiteit. Kenmerken typisch voor mitotische catastrofe 

werden opgemerkt zoals chromatine condensatie, vorming van meerkernige, vergrote cellen 

en micronucleatie. Intranucleaire pseudo-inclusies werden ook teruggevonden in met sonicaat 

behandelde cellen. Uiteindelijk stierven alle cellen die behandeld werden met sonicaat af en 

vertoonden deze morfologische kenmerken van necrose. 

De toxische factor was wateroplosbaar, trypsinegevoelig en stabiel bij 56°C en -70°C. Het 

moleculaire gewicht bedroeg meer dan 50 kDa. Deze karakteristieken komen overeen met 

deze van CDT wat een indicatie kan zijn dat dit toxine, minstens gedeeltelijk, betrokken is bij 

de morfologische veranderingen opgemerkt in deze cellijn. 

 

Een laatste studie, beschreven in hoofdstuk 2.2, omvat een experiment over de in vivo 

interactie van H. pullorum met haar kippengastheer. In het verleden werden nog geen 

experimentele infecties met dit agens bij kippen uitgevoerd. Vier groepen van 23 

ééndagskuikens werden geïnoculeerd met twee stammen van kippen en twee stammen van 

humane oorsprong. Een vijfde groep van acht controledieren werd geïnoculeerd met fosfaat 

gebufferde zoutoplossing. Dieren werden opgeofferd op vijf tijdstippen post-inoculatie tot op 

slachtleeftijd en caecum, colon, jejunum en lever werden zowel macro- als microscopisch 

onderzocht. Bijkomend werden bacteriële titratie en PCR analyse voor H. pullorum 
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uitgevoerd. Eveneens werd faecaal materiaal op regelmatige tijdstippen verzameld voor PCR 

analyse van dit bacterieel agens. 

Alle dieren bleven klinisch gezond doorheen het volledige experiment. Bij autopsie werden 

rode strepen op de serosale zijde van het jejunum opgemerkt bij dieren geïnoculeerd met H. 

pullorum. De caeca van deze dieren vertoonden eveneens donkerbruine strepen ter hoogte van 

de serosa en een schuimige inhoud.  

De controlegroep bleef negatief op de aanwezigheid van H. pullorum gedurende het volledige 

experiment. H. pullorum werd gedetecteerd vanaf de start tot het einde van de proef in alle 

geïnfecteerde groepen. De voornaamste kolonisatieplaats was het caecum en de bacterie werd 

in de faeces uitgescheiden tot op een leeftijd van tenminste 42 dagen. Dit duidt erop dat 

braadkippen kunnen fungeren als reservoir voor H. pullorum en mogelijk de kiem uitscheiden 

tot op slachtleeftijd. Zij vormen dus een potentiële infectiebron voor de mens. 

 

Als besluit kan worden gesteld dat H. pullorum in hoge mate voorkomt bij braadkippen en 

mogelijk milde subklinische letsels induceert. De CDT productie zou belangrijk kunnen zijn 

voor virulentie. Een beperkt aantal mensen is besmet met H. pullorum, maar de klinische 

betekenis van infecties met dit microorganisme voor de mens blijft omstreden. Dit bacterieel 

agens is van nature weinig gevoelig aan ampicilline, ceftriaxone en sulphamethoxazole-

trimethoprim, wat in acht moet worden genomen tijdens de behandeling van patiënten. Verder 

onderzoek naar het belang van H. pullorum bij de mens is zeker een noodzaak. Eveneens 

zouden de effecten van een infectie met H. pullorum bij leghennen en/of ouderkippen moeten 

worden onderzocht.  
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