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Gruppenpest!

Wolfgang Pauli 1
NUCLEAR STRUCTURE

AND SYMMETRIES

ABSTRACT

In this introductory chapter, a brief overview is given on nuclear struc-
ture physics and how symmetry principles can enhance insight in the
solutions of the Schrödinger equation. A pairing Hamiltonian is dis-
cussed as an example of the power of Lie algebras, and extended to-
wards the Interacting Boson Model (IBM). Via a mean field approach,
the connection between the IBM and geometric collective models is
shown and the topic of quantum shape phase transitions is intro-
duced.

Section 1.1 Different levels of nuclear structure

’The atomic nucleus is like a huge soccer team: although the actions are set by the
individual players, in the end, it is the team that wins the game’.
The physical meaning of this metaphor is that all the interactions between the
players in the field (protons and neutrons) contribute to the final structure of the
team. Nevertheless, no matter how tempting, one cannot extend the metaphor
over the whole line. In contrast to the popular sport discipline, the interactions
between the particles are not fully known nor understood. This is partly due to
the fact that the protons and neutrons are not elementary particles, rather com-
posite particles in the sense that they are also built from other constituent parts,
which means that one is forced to start from the underlying quark degrees of free-
dom if a fundamental nucleon-nucleon interaction is desired. Another problem
is that the atomic nucleus is a typical example of a many-body system. One could
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chapter 1 Nuclear structure and symmetries

start from the bottom up and describe the A number of nucleons from a micro-
scopic nucleon-nucleon interaction (containing n-body forces), the so-called ab-
initio calculations [Car98] (see figure 1.1(a)), but such calculations are restricted
to very light nuclei (typically A ∼ 10) as the Hilbertspace quickly becomes in-
tractably expanded. From the other side, the number of particles in the nuclear
many-body system is way too low to successfully apply statistical methods. As a
consequence, we need to settle with nuclear structure models when studying the
structure of atomic nuclei. Fortunately, there are a number of different comple-
mentary approaches, either based on microscopic or macroscopic assumptions.

The Hartree-Fock (HF) method is a typical example of the microscopic approach.
Starting from two-body nucleon-nucleon (density-dependent) interactions, the
Hartree-Fock approach generates a mean field in which the individual nucleons
move like independent particles in a one-body potential, created in an iterative
self-consistent way [Fet71].
Along a similar line, the nuclear shell model can also be regarded as a microscopic
model [Hey94]. It starts from the observation that nuclei with particular num-
ber of protons- and neutrons (The so called magic numbers 8, 20, 28, 50, etc.)
are more strongly bound than predicted by macroscopic liquid-drop models. A
similar phenomenon was already observed in the shell structure of electrons in
an atom, which led to the idea that the protons and neutrons can also be or-
ganised in shells. However, contrary to the electronic shell model, no external
central-force field is present to generate the shell structure. Legimitation for the
use of such a field, can be derived from HF-theory, which shows that the single
nucleons can be approximated very well as moving in a mean field, evoked by
the interactions of the other particles (see figure 1.1(b)). Rather than using a HF
alike technique, one quite often uses a phenomenological and solvable potential
(such as the three-dimensional (3D) harmonic oscillator potential) and corrects
for residual interactions, not incorporated in this potential.

Historically the first nuclear model is the macroscopic liquid-drop model [Wei35,
Bet36]. Since binding energies (or masses) were among the first observables one
was able to measure in atomic nuclei, there was need for an intuitive model to
describe these experimental data. Starting from the assumption that atomic nu-
clei are made up from constituent particles, we can compare it to a charged liquid
drop (see figure 1.1(c)). This resulted in the Bethe-Weizsäcker formula that was
able to describe the binding energies of atomic nuclei in an empirical way.
Nevertheless, the systematic deviations of this binding energy formula with the
experimental data around the magic numbers instigated the development of the

2



section 1.1 Different levels of nuclear structure

Figure 1.1: The different levels of nuclear structure. In (a) the nucleus is seen as
a bunch of particles that interact with one another, the starting point for ab-initio
calculations. Figure (b) schematically shows that the interactions of all particles can
be substituted by means of a mean field in which the particles can move. In (c), all
microscopic substructure has been replaced by a macroscopic charged liquid drop.

nuclear shell model, and the macroscopic interpretation was driven to the back-
ground. Until it became clear that the observed large quadrupole moments could
not be explained by the shell model [Rai50] at the time of speaking1. To cure for
the problem, it was suggested that all nucleons cooperate in a collective way to the
deformation of the nucleus. The idea was to recover the liquid-drop approach,
and extend it to a dynamical picture in which a single nucleon can be coupled to
the excitations of the atomic surface [Boh52, Boh53]. The Bohr-Mottelson collec-
tive model was conceived, giving rise to a macroscopic picture of nuclear struc-
ture, complementary to microscopic models, such as the nuclear shell model.

These different models can give rise to an intuitive physical insight in the struc-
ture of atomic nuclei. However still, since it is a quantum mechanical system,
we cannot fully trust our intuition and need to rely on the technical side of the
models, i.e. solving the (Schrödinger) equations. To do so, many methods have
been introduced into the literature since the dawn of quantum mechanics, such as
the theory of special functions [Arf01], diagrammatic perturbation theory [Fet71]
and many others. One among them is based on symmetry principles, a concept
which has already proven to be very useful when handling quantum mechanical
problems. This will be demonstrated in the following section.

1It should be noted that, with the advent of large-scale shell-model calculations, collectivity can be
accessed by means of the microscopic shell model, as long as large-scale model spaces are used.
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chapter 1 Nuclear structure and symmetries

Section 1.2 Symmetries

1.2.1 Why do we rely on symmetries?

The answer to this question is simple though cryptic at the same time: the concept
of symmetry is strongly intertwined with quantum mechanics. The main goal of
a quantum physicist is to find the equation of state of a quantum system, better
known as the Schrödinger equation, and solve it

Ĥ|ψ〉 = E|ψ〉. (1.1)

Knowledge of the symmetries of a system leads to an enhanced insight in the
construction of the Hamiltonian, and furthermore in finding its solutions. The
question, however, remains: how to track the symmetry in a system and exploit
it? If we start from nothing but the raw experimental data, the occurrence of
degeneracy in spectral data is a clear smoking gun for the presence of symme-
try. Suppose e.g. that there are n independent solutions |ψn〉 of the Schrödinger
equation (1.1) with the same eigen value En, and that there exists a set of trans-
formations {P̂θ} that leaves the system invariant. The action of a transformation
on the Schrödinger equation (1.1) gives

P̂θ ĤP̂−1
θ P̂θ|ψn〉 = EnP̂θ|ψn〉. (1.2)

This is identical to the original equation if

[Ĥ, P̂θ] = 0, P̂θ|ψn〉 = ∑
m

Dnm(θ)|ψm〉. (1.3)

The set G = {P̂θ} is said to form a group under combination, since it fulfils the
four defining criteria [McW02, Ham64]

1. the set comprises the identity,

2. the inverse of every element is also present in the set,

3. the combination of two elements is also a member of the set,

4. the combination is associative.

From group theory, we learn that the matrix D(θ) forms a matrix representation
of the group with the solutions |ψn〉 as associated basis functions. Therefore,
if we know the representations of a group that leaves a Schrödinger equation in-
variant, we immediately obtain the solutions of the equation for free. So, tracking

4



section 1.2 Symmetries

the symmetry in a quantum mechanical system is equivalent to solving the asso-
ciated equations of state.

Unfortunately, life is not allways that straightforward, especially in nuclear struc-
ture physics. Apart from the degeneracy stemming from the rotational symmetry,
no other degeneracies are observed in experimental spectra. Therefore, it is diffi-
cult to pinpoint the actual symmetries in the system and construct Hamiltonians
from this perspective. So one is obliged to start from a model, where, thanks to
the theory of Lie groups, symmetries can still be used to grasp an understanding
of the model and the physics it is aiming to describe.
Lie groups are also known under the name of continuous groups, which means
that the group elements can be expressed in terms of a continuous parameter (θ),
such as e.g. the orthogonal group O(3), which incorporates all rotations in the
3D Euclidian space. Every Lie-group element in general can be expressed in an
exponential form

P̂θ = eiθ·Ĝ . (1.4)

This has the consequence that we can reduce our study of the infinite set (θ is a
continuous parameter) of group elements to a discrete set of generators Ĝ. This set
of generators is said to form a Lie algebra, associated to the Lie group. The most
eye-catching feature of a Lie algebra, is the fact that the elements close under
commutation [Wyb74]

[Ĝi , Ĝ j] = ∑
k

ck
i jĜk. (1.5)

The coefficients ck
i j are called the structure constants, and act more or less2 as

the fingerprints of a given Lie algebra. Moreover, if we calculate the commuta-
tion relations of the operators making up a model Hamiltonian, and we find out
that they close similarly to (1.5), we can associate the same Lie algebra to this set
of model operators, independent from the specific realisation (whether the op-
erators are expressed in terms of differential operators, or in the framework of
second quantization, etc.). The set of operators is then said to span a Lie algebra,
associated with a Lie group. This has a major consequence: at this point, we can
revert to Lie group theory which teaches us how the generators act on the basis
functions of the Lie group. In other terms, Lie group theory offers a suitable basis
in which the model Hamiltonian can be diagonalized.
The next subsection will demonstrate these ideas using a simple pairing problem.

2Caution is necessary here: the structure constants are determined up to a rotation, as will be
shown in chapter 3
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chapter 1 Nuclear structure and symmetries

1.2.2 A simple pairing problem

In the nuclear shell model, protons and neutrons are allowed to fill up orbitals
generated by a mean field potential created by the other particles in the medium
[Hey94]. A particle, occupying a given orbital, is characterised by a complete
set of quantum numbers |n jlm〉 and the associated single particle energies εn jl .
However, even though the larger part of the nucleon-nucleon interactions can
be absorbed in the one-body potential, there are of course remaining residual
two-body interactions to be taken care of when treating nuclei with a number of
nucleons outside the closed-shell core. So we can construct a Hamiltonian for an
A-body system within a shell-model approximation as follows3

Ĥ = Ĥsp + Ĥ2b (1.6)

= ∑
α

εaa†αaα + 1
4 ∑
αβγδ

〈αβ|V|γδ〉nasa†αa†βaδaγ , (1.7)

Taking a look at experimental spectra, we notice a degeneracy in the magnetic
quantum number of the total spin, which means that we can expand the Hamil-
tonian into total spin (J) invariant components. [Bru77]

Ĥsp = ∑
a
εa
√

2 ja + 1[a†ja
ã ja ]

0 = ∑
a
εan̂a, (1.8)

Ĥ2b = − 1
4 ∑

J
∑

abcd

√
(1 + δab)(1 + δcd)〈ab, JM|V|cd, JM〉

√
2J + 1[[a†ja

a†jb ]
J [ã jc ã jd ]

J ]0 (1.9)

with ã j,m ≡ (−) j+ma j,−m. Considering the case that the particles can only oc-
cupy a single orbital (a = b = c = d), and interact with a short-range interac-
tion typical for nuclear systems (e.g. a δ-force), then it can be shown [Bri05] that
the extra binding energy contributions in the two-particle configuration decrease
with increasing spin J. If we restrict the sum over J to the J = 0 part only (the
lowest-order term), we obtain the well known pairing Hamiltonian

Ĥpair = ε jn̂ j + g(a†j · a†j )(ã j · ã j) (1.10)

3A note on the notation: α denotes the full set of quantum numbers α ≡ (na , la , ja , ma), whereas
with a the full set excluding the magnetic quantum number is addressed a ≡ (na , la , ja). The notation
’nas’ is an abbreviation of ’normalised antisymmetric’.
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section 1.2 Symmetries

This Hamiltonian can now easily be diagonalized making use of Lie algebras. If
we define the following operators

Ŝ0
j = 1

2 n̂ j − 1
4 Ω j, (1.11)

Ŝ†j = 1
2 (a†j · a†j ), (1.12)

Ŝ j = 1
2 (ã j · ã j), (1.13)

(with Ω j ≡ 2 j + 1 the degeneracy in the j-shell), we notice that these operators
close according to the SU(2) commutation relations [Wyb74]

[Ŝ†j , Ŝ j] = 2Ŝ0
j , [Ŝ0

j , Ŝ†j ] = Ŝ†j , [Ŝ0
j , Ŝ j] = −Ŝ j. (1.14)

The quadratic Casimir (or invariant) operator for SU(2) is given by

Ĉ2SU(2) j
= (Ŝ0

j )
2 + 1

2 (Ŝ†j Ŝ j + Ŝ j Ŝ
†
j ). (1.15)

Since the Casimir operator commutes with any generator of the Lie algebra by
definition, we have a basis |SMS〉 at our disposal, defined by

Ĉ2SU(2) j
|S j MS j〉 = S j(S j + 1)|S j MS j〉, (1.16)

Ŝ0
j |S j MS j〉 = MS j|S j MS j〉, (1.17)

(with MS j = −S j, . . . , S j). We are now in the position to diagonalize the pairing
Hamiltonian (1.10). Rewriting the Hamiltonian using the generators of SU(2)
leads to the result

Ĥpair = ε j(2Ŝ0
j + 1

2 Ω j) + 4g(Ĉ2SU(2) j
− Ŝ0

j (Ŝ0
j − 1)). (1.18)

This Hamiltonian is completely diagonal in the basis |S j MS j〉, with the eigenval-
ues

Epair = ε j(2MS j + 1
2 Ω j) + 4g(S j(S j + 1)− MS j(MS j − 1)). (1.19)

A typical spectrum for a pairing system for a single j = 11
2 shell is given in figure

(1.2)

It is noteworthy that, although SU(2) is not a symmetry for the pairing Hamil-
tonian, the Hamiltonian is still diagonal in the SU(2) basis. This is due to the
particular structure of the Hamiltonian, as it can be expressed entirely in terms
of Casimir operators of the group reduction chain of SU(2)4. Therefore, SU(2) is

7



chapter 1 Nuclear structure and symmetries
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Figure 1.2: Spectrum of a pairing Hamiltonian (1.10) in one j = 11
2 shell with ε j=50

keV and g=-50 keV. The open dots are for n even states and the filled dots are for n
odd nuclei. The seniority v is given for every S j multiplet.

not a symmetry but a dynamical symmetry of the system [Iac93, Iac99, Fra94].

Making use of Lie algebras does not only have technical advantages, we can also
extract physical information from them, e.g. for the quantum numbers. The con-
nection of the quantum number MS j with the number of particles n j is obvious
from the definition of the generators (eq. (1.11)). However, also the Casimir quan-
tum number S j has a most interesting physical meaning. Acting with the pair
lowering operator Ŝ j on a lowest-weight state |S j, MS j = −S j〉 renders identi-
cally zero. Thus, no particles pairwise coupled to zero are present in the lowest
weight states. Acting with the pair creation operator Ŝ†j alters the number of
particles, but not the Casimir quantum number so the number of particles not
coupled to zero, called the seniority v [Tal93], stays constant within an S j multi-
plet. All S j multiplets in figure (1.2) are denoted by full lines and labeled by the
seniority v. The connection of the SU(2) quantum numbers with the physically

4In this case of SU(2), the sub-group is O(2) with only operator and thus Casimir operator Ŝ0
j .
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section 1.2 Symmetries

relevant quantum numbers is given by the following relations

S j = 1
4 Ω j − 1

2 v j, (1.20)

MS j = 1
2 n j − 1

4 Ω j. (1.21)

This particular example of a simple pairing problem has demonstrated the power
of symmetries and Lie algebras in the treatment of quantum mechanical systems.
In the following chapters, similar approaches will be used to handle collective
model Hamiltonians in all of its facets.

1.2.3 The Interacting Boson Model (IBM), a truncated shell-
model approach

The previous subsection already pointed out that, in a single j shell system, the
J = 0 coupled pair states correspond to the strongest binding energy configu-
rations, relative to the unperturbed single-particle energy. This holds more gen-
erally when the model space is expanded to encompass many j-shells. In this
case, it will turn out that it suffices to consider the J = 0 and J = 2 components
to cover most of the important low-lying modes in atomic nuclei, especially for
medium and heavy mass nuclei (excluding the double closed-shell nuclei). How-
ever, completing a full shell-model calculation based on expansion (1.8-1.9) is a
tremendous task, since the model space increases extremely fast with increasing
particle number, and computational demands quickly become infeasible. For-
tunately, the IBM comes to help. If we take e.g. the J = 0 pair creation and
annihilation operators, and recover the commutation relation (1.14)

[Ŝ j, Ŝ†j ] = −n̂ j + 1
2 Ω j, (1.22)

we can justify an approximation in the regime of large degenerate shells. When-
ever the number of particles n j remains reasonably small compared to the degen-
eracy Ω, and we redefine the generators as

ŝ =
√

2√
Ω j

Ŝ j, ŝ† =
√

2√
Ω j

Ŝ†j , (1.23)

we obtain the fundamental boson commutation relation (for ŝ and ŝ†) to a good
approximation

[ŝ, ŝ†] ≈ 1. (1.24)

The same procedure can now be used for the J = 2 coupled pair states, which
gives rise to the d-boson. The combination of the 5 spin projection components of
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chapter 1 Nuclear structure and symmetries

the dµ-boson with the single s-boson can be regarded as the 6 vector components
in the 6D unitary space. Or, in other words, the s- and dµ-bosons form the funda-
mental representation of U(6), which is the fundamental group of the Interacting
Boson Model (IBM) [Iac87].

O(6)

U(5)

0

2

4

6

SU(3)

0
2

4

6

0

2

4

6

Figure 1.3: The Casten triangle with the limits of the IBM. A typical spectrum of the
ground band with its spins is given with every limit.

The linear Casimir operator N̂ = ŝ† ŝ + d̂† · ˆ̃d of U(6) counts the number of bosons,
or equivalently half the number of fermions outside a closed-shell core. Within
the framework of a regular shell-model calculation (without particle-hole excita-
tions across the closed shell), this number is kept as a constant, so the Hamilto-
nian must commute with the linear Casimir operator of U(6). This is guaranteed
if the Hamiltonian is built from the generators of U(6). A common way to rep-
resent the Hamiltonian, is the consistent-Q formalism, where it appears in the
following form [War82]

ĤCQ = εn̂d +κQ̂(χ) · Q̂(χ), (1.25)

with

n̂d = d† · d̃, (1.26)

Q̂(χ)µ = sd†µ + s†d̃µ + χ[d†d̃]2µ . (1.27)

This representation generates a simple though rich structure, depending on the
choice of the parameter set (ε,κ, χ). First of all, the consistent-Q formalism con-
tains the 3 limiting cases of the model, each single one corresponding to a reduc-
tion chain of U(6) preserving the rotational symmetry O(3).

10



section 1.3 Quantum shape phase transitions

1. U(5): for κ = 0, the Hamiltonian (1.25) reduces to one single term n̂d which
is the Casimir operator of the U(5) group. This limit is able to describe
vibrational-like structures.

2. SU(3): for ε = 0, and χ = ±
√

7/2, the dynamical symmetry of the system
is lowered from U(6) to SU(3), which enables a description of rotational
structures.

3. O(6): for ε = 0, and χ = 0, the dynamical symmetry becomes O(6). This
symmetry corresponds to a γ-soft rotational structure, as is known from the
coherent-state IBM (see next section).

Secondly, the consistent-Q Hamiltonian is not limited to these particular symme-
tries, but can also be used to describe intermediate cases where none of the three
groups form dynamical symmetries for the Hamiltonian. This is also the reason
why the IBM has proven to be successful in the description of nuclear structure
phenomena in medium-heavy and heavy nuclei at low excitation energy. In re-
gions of the nuclear chart where shell-model calculations are far beyond com-
putational reach, the IBM can be applied. On the one hand because it is able to
describe a large variety of different structures, and on the other hand since it is
still firmly rooted in the microscopy of the nuclear shell model [Cas93].

Section 1.3 Quantum shape phase transitions

In the previous section, it was shown that the IBM can be connected to the nuclear
shell-model. However, it is also possible to make a link with the geometrical
collective model. This can be performed using a coherent-state formalism [Gin80,
Die80, Boh80]. Within this formalism, the standard IBM bosons are replaced by a
Γ boson, which couples the s and d bosons to a deformation fieldα.

(s†, d†µ) → Γ †(α) = 1√
1+α·α (s† +α · d†). (1.28)

Γ is again a boson, so we can build a normalised trial wave function to study the
IBM Hamiltonian in a variational way. The free parameters α can be related to
the collective quadrupole deformation parameters (see equation (2.2)), so we can
rotate them to the intrinsic frame of the ellipsoid. The total energy surface then

11



chapter 1 Nuclear structure and symmetries

becomes, using the consistent-Q Hamiltonian (1.25)

E(β,γ;ε,κ, χ) =
1

N!
〈0|(Γ)N ĤCQ(Γ †)N |0〉 (1.29)

= εN
β2

1 +β2 +κ
[

N[5 + (1 + χ2)β2]
1 +β2

+
N(N − 1)
(1 +β2)2

(
2
7
χ2β4 − 4

√
2
7
χβ3 cos 3γ + 4β2

)]
(1.30)

Finding the global minimum for this energy surface with respect to the collective
quadrupole coordinates (β,γ) corresponds to fixing an upper bound for the bind-
ing energy of the associated Hamiltonian. Once the global minimum is found,
we not only obtain an estimate for the binding energy, but we can also asso-
ciate a shape to the Hamiltonian. Indeed, the solution5 (β0,γ0) of the variational
procedure can be related to the collective quadrupole parameters, describing an
ellipsoid in the intrinsic framework of the geometrical model. The coherent state
formalism sets up a bridge between the IBM and geometrical models (see chapter
2 and 3 for an introduction on geometrical models).

The coherent-state formalism does not only provide a convenient tool to study
ground-state properties (such as e.g. binding energies and separation energies)
of a given Hamiltonian in particular. We can also study the structural changes in
the solutions of the Hamiltonian when the parameters of the model are varied,
which brings us into the domain of quantum phase transitions [Iac87] The study of
a quantum phase transition is the study of a system which is composed from two
sub-Hamiltonians Ĥ1 and Ĥ2 that are incompatible with one another in the sense
that they correspond to different physics cases within the same Hilbert space

Ĥ = ξ Ĥ1 + (1−ξ)Ĥ2 (1.31)

The IBM is tailor made for such systems as we have three classes of Hamilto-
nians that correspond to different physical situations i.e. the three limits of the
model, U(5), O(6) and SU(3). In principle, one needs to diagonalize the Hamil-
tonian (1.31) as the parameter ξ varies from one limit to the other. However, the
coherent-state formalism helps to shed light on the problem. Since the energy
surface is a function of a number of variables and control parameters, catastro-
phe theory [Gil81] can be used to study the qualitative changes of the expression
(1.30) as the parameters are varied. It has been found [Lóp95] that the ground-
state properties of the IBM Hamiltonian (1.31) are subject to considerable changes

5or class of solutions, as is e.g. the case in O(5) symmetric IBM Hamiltonians.
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section 1.3 Quantum shape phase transitions

around the critical point ξc So, the next question is of course to what extent these
changes persist in the original IBM Hamiltonian around the critical point. This
resulted in a number of studies (e.g. [Cej03, Gar05, Hei06]) concentrating on the
transitions from one limit to another.

Not only the IBM is suitable to study quantum phase transitions; many more
models can be used to explore this phenomenon. However, there exists a par-
ticularly convenient model for the study of quantum shape phase transitions: the
geometrical or Bohr-Mottelson collective model [Boh53], which will be discussed
in detail in chapter 2. Considering two different collective potentials V1(β,γ) and
V2(β,γ), characterising different underlying physics, we can construct a Hamil-
tonian in the spirit of the quantum phase transitions (1.31). In particular, a tran-
sition from a spherical to a γ-independent β-deformed system can be simulated
by means of the potentials

V1(β,γ) = 1
2β

2, (1.32)

V2(β,γ) = 1
4 (1−β2)2. (1.33)

Thus, the composite Hamiltonian (1.31) can be written as

Ĥ = T̂ + Vξ(β) (1.34)

= T̂ + 1
2ξβ

2 + 1
4 (1−ξ)(1−β2)2. (1.35)

The total potential is plotted in figure (1.4) for different values of ξ . Qualitatively,
the potential can be divided in two different classes, depending onξ . Forξ > 1/2,
the potential has a spherical minimum , while forξ < 1/2, a deformed minimum
results and starts to grow. This means that the value ξ = 1/2 draws the border
between the two classes. Catastrophe theory teaches us that the criticality condi-
tions of the potential are fulfilled at ξ = 1

2 , corresponding to a β4 potential. Now
it would be very interesting to know the solutions of the Hamiltonian in the im-
mediate neighbourhood of the critical point in an analytic way. Then it can serve
as a benchmark for the study of the structural changes around the critical point.
Unfortunately, the β4 potential is not analytically solvable [Gar05], although an
approximation exists [Iac00].

The characterising property of a critical potential is the flat behaviour of the po-
tential around the origin, as can be seen in figure (1.4). An analytically solvable
potential with a similar behaviour at the origin, is the infinite square-well poten-
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8

ξ=1/2

ξ=1/4

ξ=3/4

ξ=0

ξ=1
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w

ξ
V

(β
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V (β)
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 0.5

Figure 1.4: The potential of the Hamiltonian (1.35) for different values of ξ (shifted
to V(β = 0) = 0). The infinite well potential Vw(β) is also depicted to show that
the infinite well is able to mimic the flat behaviour of the β4 critical potential around
β = 0.

tial (see figure (1.4))

Vw(β) =
{

0 β < βw,∞ β > βw.
(1.36)

As a consequence, Vw(β) can serve as a substitute for the critical point potential,
going from a spherical- towards a deformed system [Iac00]. The eigenfunctions
of Vw(β) are the Bessel functions, constrained in such a way that the zeros of
the functions coincide with the wall of the potential (βw). At the same time, this
boundary condition provides the quantization of the spectrum. A remarkable
feature of the eigenvalues of Vw(β) is that, although the eigenvalues are directly
related to the positioning of the wall, the scaled relative spectrum is independent
from βw. This suggests, together with the Bessel solutions, that the structure
of the Hamiltonian is mainly determined by the flat behaviour of the potential,
something which is necessary to be a good candidate for the description of critical
point potentials. As a result, Vw(β) was baptised as the E(5) solution for critical
points, since the Bessel functions provide a representation for plane waves in the
5D Euclidean space.

Much attention has been paid to E(5) within this introductory chapter, since it
was the germ for many other studies on quantum shape phase transitions. On
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section 1.3 Quantum shape phase transitions

the one hand, a number of theoretical projects have been put on track, finding
a firm basis in either analytic or algebraic models and techniques. On the other
hand, it also stimulated a number of experimental groups to explore the nuclear
chart in search for unambiguous fingerprints of shape phase transitions. Giving a
complete overview of all present state-of-the-art achievements, is a tremendous if
not overwhelming task. For this purpose, the reader is kindly referred to a recent
overview [Cas07] on the growing field of quantum shape phase transitions.

Figure 1.5: The nuclear chart around the Z = 82 shell closure. Only the even-even
nuclei are depicted.

The work described here is also inspired by the field of shape phase transitions.
Around the Z = 82 closed shell region (see figure 1.5), a number of structural
changes occur in the low-energy structure of atomic nuclei, as has been pointed
out by experiments and theoretical models. In the Os isotopes e.g. one can find
indications for triaxial deformations, whereas the Pt isotopes are more considered
to be β-deformed γ-independent rotors. Moreover, in the Pb isotopes, three dif-
ferent shape configurations coexist within a small excitation energy range. From
a theoretical point of view, the interpretation mainly comes from a large variety
of models, starting from potential energy surfaces over mean-field descriptions to
truncated shell-model calculations (IBM). Therefore, we intend to deliver a com-
plementary and consistent description within the geometrical model, in which
the concept of shapes is naturally incorporated.
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chapter 1 Nuclear structure and symmetries

The following chapters are devoted to solving the Bohr Hamiltonian (2.13). In
chapter 2, analytic and algebraic techniques are presented and used to solve for
schematic types of Hamiltonians. In chapter 3, we discuss a pure algebraic tech-
nique in the spirit of Cartan-Weyl, in order to solve general types of collective
Hamiltonians.
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Where there is matter, there is geometry.

Johannes Kepler 2
GEOMETRICAL MODEL: ANALYTIC

AND ALGEBRAIC APPROACHES

ABSTRACT

A broad introduction to the geometric Bohr-Mottelson is presented
with the emphasise on analytically solvable potentials. It is shown,
by means of the time-honoured harmonic oscillator potential, how
special-function theory and algebraic techniques can be exploited to
solve the differential eigenvalue equations in the intrinsic framework.
These ideas are applied to the case of triaxiality. Two schematic types
of triaxial deformed potentials are introduced. A first one describ-
ing soft triaxial rotors with general triaxiality, while the second has a
fixed triaxiality yet respecting the periodic symmetry of the collective
model. Both potentials are solved (approximately) and confronted
with experimental data.

Section 2.1 The Geometrical Model

2.1.1 The shape of the nucleus

The Geometrical Model is a macroscopic model in the sense that it looks to the
geometry of the surface and its excitation modes, provoked by the collective be-
haviour of the underlying nucleons. Due to the strong attractive nucleon-nucleon
interaction, this surface will roughly be spherical. However, deviations from this
highly symmetric shape are possible. An appropriate way to incorporate such
deviations from a spherical shape, is to carry out a multipole expansion of the
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chapter 2 Geometrical model: analytic and algebraic approaches

radial dependence R(θ,φ) as [Eis87, Boh98]

R(θ,φ) = R0[1 + ∑
λ

αλ ·Yλ(θ,φ)], (2.1)

with Yλµ(θ,φ) the spherical harmonics. It is significant to start from this multi-
pole expansion since every term has a physical meaning. The λ = 0 term is a vol-
ume term, associated with monopole excitations1. For small deviations (αλµ � 1),
the λ = 1 dipole term is merely a translation of the centre of mass, and is therefore
neglected. This leaves the λ = 2 quadrupole term as the first important defor-
mation mode of the atomic nucleus at low excitation energy. We can truncate
equation (2.1) to2

R(θ,φ) = R0[1 +α ·Y2(θ,φ)]. (2.2)

This equation describes an ellipsoid in the laboratory frame. To move over to the
intrinsic frame (where the ellipsoids main axis’ are chosen as a reference frame),
we need to carry out a 3D rotation over the Euler angles (θi). Now, the ellip-
soids surface is described by the intrinsic variables aµ , which are connected to the
laboratory variablesαν by means of the rotation

aµ = ∑
ν

D2
νµ(θi)αν (2.3)

with D2
νµ(θi) the Wigner-D functions [Ros57]. Since the variables aµ are chosen

such as to describe the ellipsoid in the intrinsic frame, we have

a2 = a−2, a1 = a−1 = 0, (2.4)

which leaves 2 independent variables (a0, a2) to describe the ellipsoid. It is con-
venient to rewrite them as

a0 = β cosγ

a2 = 1√
2
β sinγ (2.5)

with β the 5D radial variable and γ a polar coordinate. For general values of the
intrinsic variables (β,γ), we obtain a general ellipsoid with 3 different lengths of
the main axis’. Nevertheless, the rotational symmetry of the ellipsoid can (par-
tially) be restored for some specific values

1As no volume conservation is apparent from equation (2.1), the monopole variable can be con-
strained with this purpose.

2From this point onwards, the quadrupole variablesα2
µ will be abbreviated toαµ .
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section 2.1 The Geometrical Model

1. Independent from γ, if β = 0 the ellipsoid reduces to a sphere. This is
depicted in figure 2.1 (a).

2. For β > 0 and γ = (2n + 1) π3 , two of the three main axis have equal length.
Since the 3rd axis has a shorter length than the other 2, we obtain an oblate
shape (see figure 2.1 (b))

3. Another case for which the O(2) symmetry is restored around one of the
main axis is the case for which β > 0 and γ = 2n π3 . Here, one of the axis’ is
relatively longer than the other two so we obtain a prolate shape (see figure
2.1 (c)).

4. Figure 2.1 (d) shows the special case for which γ = (n + 1
2 ) π3 . This corre-

sponds to an ellipsoid where the ratios of the axis lengths differ maximally
from 1, which will be denoted as the case of maximal triaxiality. Although
this object is not symmetric in the geometrical sense, one can exploit the
symmetry in the moments of inertia to describe the rotational dynamics of
this type of ellipsoid (see section 2.4)

Figure 2.1: The different shapes for the ellipsoid, depending on the intrinsic variables
(β,γ). A spherical (a), oblate (b), prolate (c) shape are depicted. Figure (d) shows an
ellipsoid for which the triaxiality is maximal.
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2.1.2 Inserting the dynamics

Until now, we have considered the atomic nucleus as a static object. Because
of the Heisenberg principle, the surface will undergo excitations from the ener-
getically favourable configuration, the so called vibrations and rotations. In a
classical picture, the surface oscillations can be obtained from the Lagrangian

L = T(α̇)−V(α) (2.6)

= B2
2 α̇ · α̇ −V(α), (2.7)

with B2 the mass parameter, associated with the surface stiffness. Going over to a
classical Hamilton description, we introduce the canonic conjugate momenta πµ
so that the Hamiltonian can be written as

H = 1
2B2
π · π + V(α). (2.8)

As the nucleus is a quantum mechanical system, we need to quantise the surface
oscillations. To do so, we replace the classical conjugate momenta by its quan-
tum mechanical counterpart, in such a way that the following basic commutation
rules are fulfilled

[π̂µ , α̂ν ] = −ih̄δµν , (∀µ,ν). (2.9)

A standard realisation of this relation is

α̂ν → αν , π̂µ → −ih̄
∂

∂αµ
. (2.10)

As a result, the classical Hamiltonian transforms into its quantum mechanical
analogon.

Ĥ = 1
2B2
π̂ · π̂ + V(α). (2.11)

Although the kinetic energy term in equation (2.11) has a simple form, it is far
from clear at first sight what kind of physics it contains. In order to obtain a
better comprehension, it is convenient to move over to the intrinsic frame of the
ellipsoid. Starting from the standard realisation of the variables and conjugate
momenta (2.10), Aage Bohr used the prescriptions from curved-coordinates vec-
tor analysis [Pod28] to derive the kinetic energy term in the intrinsic variables
[Boh52]

T̂B = − h̄2

2B2

[
1
β4

∂

∂β
β4 ∂

∂β
+

1
β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

]
+

h̄2

8B2
∑

i=1,2,3

L̂′2i
β2 sin2(γ − 2π i

3 )
. (2.12)
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section 2.1 The Geometrical Model

If we rewrite the potential energy V(α) in terms of the intrinsic variables and add
it to the kinetic energy (2.12), we obtain the Bohr Hamiltonian

ĤB = T̂B + V(β,γ) (2.13)

In (2.12), we notice that T̂B is built up from 3 different terms.

1. A first term T̂β, accounting for the kinetic energy of the β-excitations.

T̂β = − h̄2

2B2

1
β4

∂

∂β
β4 ∂

∂β
, (2.14)

2. the second term T̂γ describes the kinetic energy, associated with the γ-
excitations

T̂γ = − h̄2

2B2

1
β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
, (2.15)

3. The third term T̂rot is referred to as the rotational term since it has the struc-
ture of a rotational Hamiltonian

T̂rot =
h̄2

8B2
∑

i=1,2,3

L̂′2i
β2 sin2(γ − 2π i

3 )
, (2.16)

with L̂′i the component of the angular momentum around the intrinsic i-axis
and the functions β2 sin2(γ− 2π i

3 ) ≡ Ji denote the moments of inertia with
respect to the i-axis. These are called soft moments of inertia, since they are
different from those derived from a rigid rotor system (see section 2.3.1)

Although the 3 different terms describe different aspects of the collective exci-
tations, they are still coupled. The coupling to the β excitations is rather loose
and can be dealt with in some specific cases, depending on the potential in the
Hamiltonian [Wil56]. Much stronger is the coupling of the γ-excitations to the
rotational degrees of freedom by means of the γ-dependent moments of inertia
Ji, appearing in T̂rot. As a consequence, the γ-rotational motion can only be de-
coupled in some very specific situations in which an approximate treatment of
the Hamiltonian is justified. However, since T̂γ and T̂rot are tightly connected in
an algebraic way, the decoupling is not always necessary (see chapter 3.2).

Besides the kinetic energy in the Bohr Hamiltonian (2.13), the potential energy
term also plays a role and accounts generally for the major part of the physics in
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chapter 2 Geometrical model: analytic and algebraic approaches

the Hamiltonian. This potential can either be constructed from a microscopic the-
ory [Kum74] or through phenomenological considerations. If the latter strategy is
followed, one can choose an analytically solvable potential that contains the basic
physics, or resort to a more general expression in terms of the collective variables.
Since the collective variables αµ describe small amplitude deviations (2.2), most
potentials can be written as an angular momentum scalar Taylor expansion in α.
Unfortunately, the Taylor expansion of a potential is not analytically solvable, so
one needs to construct a suitable basis to construct a matrix representation of the
Hamiltonian to diagonalise, a topic which will be discussed in detail in chapter 3.
The advantage of analytically solvable potentials is the clear parameter depen-
dency of the solutions. These parameters are of utmost importance in fixing the
potential and as such, a transparent one-to-one correspondence can be achieved
of the solutions of the Hamiltonian with the physics described by the parame-
ters. Therefore, it is of interest to construct analytically solvable potentials, and to
confront them with experimental data. In the following section, a brief overview
of solvable potentials is presented. Much attention will be given to the David-
son potential because of its ”potential” use in the description of triaxial modes of
motion (see next section 2.3.2).

Section 2.2 How to solve the Bohr Hamiltonian?

2.2.1 Decoupling the Hamiltonian

The question whether a potential can be analytically solvable is closely connected
with the question if the potential enables a decoupling of the Hamiltonian. The
Bohr Hamiltonian lives in a 5D Hilbert space, which means that it is represented
by a second-order differential equation with 5 variables. If it would be possible
to decouple this 5D equation into 5 different 1D equations, one would be able
to solve these 5 equations separately, depending on the solvability of the decou-
pled potentials. As already mentioned, it is impossible to separate the γ- from
the rotational degrees of freedom in an exact way, so the best one can get is the
case where the β degree of freedom is decoupled from the others. This can be
accomplished using a potential of the Wilets & Jean type [Wil56]

V(β,γ) = V1(β) +
V2(γ)
β2 . (2.17)
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In the case of this potential, the Bohr Hamiltonian separates in two differential
equations{

− 1
β4

∂

∂β
β4 ∂

∂β
+ u1(β)−ε+

ω

β2

}
ξ(β) = 0, (2.18){

− 1
sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+ ∑

i=1,2,3

L̂′2i
4 sin2(γ − 2π i/3)

+ u2(γ)−ω
}
ψ(γ,θι) = 0, (2.19)

whereω is the separation constant, ε = (2B2/h̄2)E and uk = (2B2/h̄2)Vk (k=1,2).
It is clear from these equations that we can only solve the Bohr Hamiltonian ex-
actly whenever ω is determined exactly. At present, only one class of poten-
tials V2(γ) is known for which equation (2.19) can be solved analytically, i.e.
V2(γ) = 0, which is denoted as the class of γ-independent potentials [Wil56]. In
this particular case, equation (2.19) reduces to{

− 1
sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+ ∑

i=1,2,3

L̂′2i
4 sin2(γ − 2π i/3)

−ω
}
ψ(γ,θι) = 0. (2.20)

It is of particular importance to know the solutions (ω and ψ(γ,θi)) of this dif-
ferential equation. Not only because the coupling constantω is needed as input
in equation (2.18) in the case of γ-independent potentials, but the complete set of
eigenfunctionsψ(γ,θi) can serve as a suitable basis for the matrix representation
of a more general type of potentials.
Many techniques have been proposed in the literature to solve equation (2.20),
relying either on algebraic or analytic methods. Shortly after the development
of the Bohr Hamiltonian, it was realised that, making use of elementary group
theory [Rak57], the coupling constantω takes the values

ω = v(v + 3), (v ∈ N), (2.21)

where v is called the seniority. However, finding the associated eigenfunctions
with ω was a less elementary task. The major complication in solving equation
(2.20) is that the solutionsψ(γ,θi) must exhibit a good angular momentum quan-
tum number L (and subsequently M), as the Bohr Hamiltonian is rotationally
invariant. Therefore, one needs to seek for solutions of the form3 [Eis87]

ψL
M(γ,θi) = ∑

K
gK(γ)[DL∗

MK(θi) + (−)LDL∗
M−K] (2.22)

3Note that the symmetrisation of the wavefunction according to the choice of the intrinsic frame is
already implemented.
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since the complex conjugate Wigner-D functions form good angular momentum
tensors [Ros57]. The summation over the magnetic quantum number K along the
intrinsic z′ axis goes according the following rule

K =
{

K = 0, 2, . . . L, L = even
K = 2, 4, . . . L− 1, L = odd

(2.23)

As a consequence, we need to find the functions gK(γ) of (2.22). Pioneering
work has been carried out by Bès [Bès59], who determined the explicit γ-soft
wavefunctions through a coupled differential-equation method. Unfortunately,
this technique becomes tremendously complicated for spin states, higher than
L = 6. Therefore, other techniques have been developed, based on the 5D har-
monic oscillator potential and its underlying SU(1, 1) × O(5) group structure.
Here, the angular momentum invariance causes complications in the sense that
the 3D orthogonal group is not naturally contained in the reduction of SU(1, 1)×
O(5). As a consequence one is forced to construct explicit wavefunctions, start-
ing either from basic building blocks [Cor76, Cha76, Cha77] or from a projec-
tive coherent state formalism [Ghe78], constituting an orthonormal basis [Spi80,
Góź80] with good angular momentum L. Even within the last decennium, some
new techniques have been introduced. First, the vector coherent state formalism
[Row94a, Row94b, Row95, Tur06] and much more recently an algebraic tractable
model [Row04, Row05b, Tur05] were developed, enabling the construction of
quadrupole harmonic oscillator representations with good angular momentum
L. Without elaborating on the different techniques and the subtleties involved,
we summarise here the reduction rules for L within a seniority v [Cha76, Fra94]

v = 3ν∆ +µ, (ν∆,µ) ∈ N×N, (2.24)

L = µ,µ + 1, . . . , 2µ − 2, 2µ. (2.25)

This reduction scheme is illustrated in table 2.1 up to seniority v = 6. From this
table, it can be seen that a degeneracy occurs in the L = 6 states for the seniority
v = 6. For higher seniorities, this degeneracy persists, and is also present for
other spin states. As a consequence, one of the two quantum numbers (ν∆,µ) is
needed to distinguish between the different L states. Preference goes to ν∆. Al-
though it is impossible to obtain ν∆ from the eigenvalues of any operator, it has a
physical meaning since it can be associated with the maximal number of triplets
coupled to angular momentum L = 0. We call ν∆ the additional- or missing quan-
tum number, needed to unambiguously label the basis states.

Once ω is determined (2.21), it is used as input in equation (2.18). We obtain
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v (ν∆,µ) L
0 (0,0) 0
1 (0,1) 2
2 (0,2) 2,4
3 (0,3) 3,4,6

(1,0) 0
4 (0,4) 4,5,6,8

(1,1) 2
5 (0,5) 5,6,7,8,10

(1,2) 2,4
6 (0,6) 6,7,8,9,10,12

(1,3) 3,4,6
(2,0) 0

Table 2.1: Reduction rule for the possible L states within a seniority v. States upto
v = 6 are presented to show that degeneracies in the L states are plausible (here:
L = 6).

{
− 1
β4

∂

∂β
β4 ∂

∂β
+ u1(β)−ε+

v(v + 3)
β2

}
ξ(β) = 0. (2.26)

A vast number of γ-independent solvable potentials has been introduced in the
literature, so instead of presenting a gallery of potentials we refer the reader to
a recent overview on the use of solvable potentials in the Bohr-Mottelson model
[For05a]. In the next subsection, we limit ourselves to a discussion of the 5D
harmonic oscillator potential and its Davidson extension.

2.2.2 The 5D harmonic oscillator

The harmonic oscillator was historically the first collective potential ever intro-
duced and solved [Boh52]. The physical legimitation for the use of such a schema-
tic potential comes from classical arguments: if we consider the atomic nucleus
as a macroscopic charged liquid drop, we need to supply energy to deform it
from the spherical shape, due to the surface stiffness and the change in Coulomb
energy. These energy contributions are of the order β2, so we can write

V(β) = 1
2 Cβ2. (2.27)
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chapter 2 Geometrical model: analytic and algebraic approaches

Since the harmonic oscillator is a γ-independent potential, it can be catalogued
as a trivial Wilets & Jean type of potential, and can be decoupled (see (2.18)){

− 1
β4

∂

∂β
β4 ∂

∂β
+

v(v + 3)
β2 + k2β2

}
ξ(β) = εξ(β), (2.28)

with k2 = B2C/h̄2. If we rewrite ξ(β) = βve−
kβ2

2 f (β), we obtain

∂2 f (β)
∂β2 +

[
2v + 4
β

− 2kβ
]

∂ f (β)
∂β

+ [ε− k(2v + 5)] f (β) = 0, (2.29)

which is equivalent to

xF′′(x) + [v + 5
2 − x]F′(x) + 1

4 [εk − (2v + 5)]F(x) = 0, (2.30)

if x = kβ2. Equation (2.30) is the differential equation for the associated Laguerre
polynomials [Arf01] of order v + 3

2 , so the total solution reads

ξv
n(β) = NβvLv+ 3

2
n (kβ2)e−

kβ2
2 . (2.31)

This solution is normalised if n = 1
4 [εk − (2v + 5)] is an integer, which leads to-

wards the discrete eigenvalues of the total Hamiltonian

E = h̄Ω(2n + v + 5
2 ), (2.32)

with Ω =
√

C/B2 and the normalisation constant N is then given by

N =

√√√√ 2kv+ 5
2 n!

Γ(n + v + 5
2 )

. (2.33)

Figure 2.2 organises the spectrum (equation (2.32)) according the quantum num-
bers. A remarkable fact about the harmonic oscillator potential is the large degen-
eracy in the spectrum, due to the linear dependence on the quantum numbers.
These properties serve as major indications to investigate whether an atomic nu-
cleus has a vibrational-like structure. Although it is very unlikely to encounter or
discover a pure vibrational nucleus in experimental data, it still is a good bench-
mark for collective nuclear structure physics, partly because it has a simple and
elegant structure that is not too far removed from real experimental data and
partly because it can be fully solved and understood.

To solve for the harmonic oscillator, we made use of a class of special functions,
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Figure 2.2: The spectrum of a 5D harmonic oscillator potential (2.32), organised ac-
cording to the seniority v. The degeneracy in L for a given v state is not given in the
figure.

i.e. the associated Laguerre polynomials. However, there exist other techniques
to solve the eigenvalue differential equations. One among them makes use of
symmetries or Lie algebras. The following treatment strongly resembles the dis-
cussion of pairing in section 1.2.2, although in the present case, the generators are
expressed using differential operators instead of the second quantisation repre-
sentations. We start by defining the following three operators

B̂1 =
1
4

[
1
k

(
− 1
β4

∂

∂β
β4 ∂

∂β
+

v(v + 3)
β2

)
− kβ2

]
,

B̂2 =− i
2

[
5
2

+β
∂

∂β

]
, (2.34)

B̂3 =
1
4

[
1
k

(
− 1
β4

∂

∂β
β4 ∂

∂β
+

v(v + 3)
β2

)
+ kβ2

]
.

By calculating the commutation relations, we notice that they close according the
non-compact Lie algebra of SU(1, 1), which is the non-compact isomorphic twin
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of SU(2) [Wyb74, Iac06]

[B̂1, B̂2] = −iB̂3, [B̂2, B̂3] = iB̂1, [B̂3, B̂1] = iB̂2. (2.35)

Since SU(1, 1) is a rank 1 algebra, two quantum numbers are required to unam-
biguously label the irreducible representations. So we need two non-identical
commuting operators to associate a quantum number to. The first one can be
chosen from (2.34) (we choose B̂3) and the second one is the quadratic Casimir
operator, given by

ĈSU(1,1) = B̂2
3 − B̂2

2 − B̂2
1 . (2.36)

The irreducible representations (irreps) |λn〉are defined by means of [Row96]

ĈSU(1,1)|λn〉 = 1
4λ(λ− 2)|λn〉, (λ ∈ R+), (2.37)

B̂3|λn〉 = 1
2 (λ+ 2n)|λn〉, (n ∈ N). (2.38)

To know the action of the other generators on this basis, it is convenient to intro-
duce the raising and lowering operators, defined by

B̂± = B̂1 ± iB̂2, B̂0 = B̂3. (2.39)

These operators close according to the following commutation relations

[B̂0, B̂±] = ±B̂±, [B̂−, B̂+] = 2B̂0, (2.40)

and their action on the irreps is [Row96]

B̂+|λn〉 =
√

(λ+ n)(n + 1)|λ, n + 1〉, (2.41)

B̂−|λn〉 =
√

(λ+ n− 1)n|λ, n− 1〉, (2.42)

B̂0|λn〉 = 1
2 (λ+ 2n)|λn〉, (2.43)

hence, their name.
Although λ is defined from a group-theoretical point of view, it has a clear-cut
connection with the physics of γ-independent potentials. Rewriting the Casimir
operator (2.36) making use of the explicit β-realisation (2.34) of the SU(1, 1) alge-
bra, we obtain

ĈSU(1,1)) = 1
4 (v + 5

2 )(v + 1
2 ). (2.44)

As a consequence, we can associate the Casimir quantum number λ with the
seniority quantum number v

λ(λ− 2) = (v + 5
2 )(v + 1

2 ), (2.45)
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which has λ = v + 5
2 , as an only solution since only positive values of λ are al-

lowed. Moreover, the quantum number n can also be connected to a physical
quantity. In the case of a harmonic oscillator potential, we recognise the decou-
pled differential equation (2.28) as the generator B̂0 of the SU(1, 1) algebra, up to
a factor

4kB̂0|ξ〉 = ε|ξ〉. (2.46)

Because |ξ〉 is an eigenstate of B̂0, it must be an irreps (2.38), so we obtain the
eigenvalue ε in a straightforward way as

ε = 2k(2n + λ). (2.47)

Taking the various definitions of ε, k, Ω and λ into account, we regain the energy
expression for the harmonic oscillator (2.32)

Env = h̄Ω(2n + v + 5
2 ), (2.48)

which means that the SU(1, 1) quantum number n can be associated to the β-
phonons of the 5D harmonic oscillator.

As a conclusion, in the present subsection we have shown that different paths
can lead towards the same solution of a problem. One can e.g. transform the in-
volved differential equations until a ”well-known” form appears. Unfortunately,
this a method that might turn out to be rather technically involved. Another
method makes use of symmetries. This method has a major advantage over the
former that it is less technical in the calculations although the connection with
the physics might not be immediately clear. However, even for more compli-
cated problems than the harmonic oscillator potential, symmetries might shed
light on the physics in a given problem and the solutions, as will be shown for
the Davidson potential.

2.2.3 The Davidson potential as an extension of the harmonic
oscillator

Davidson introduced the potential, bearing his name, to study the rotation-vibra-
tional coupling of diatomic molecules [Dav32] in 3D. However, this potential can
also be used in the collective Bohr-Mottelsen model as a γ-independent potential
with a deformed minimum at β0 > 0 as proposed by [Ell86]. The potential has
the form

V(β) =
C
2

(
β2 +

β4
0
β2

)
, (2.49)
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and is depicted in figure 2.3 for different values of β0. It can be seen as an exten-
sion of the harmonic oscillator potential, since it adds a centrifugal term to the β2

potential. This centrifugal term is parametrised in such a way that the potential
has a minimum at β0.
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Figure 2.3: The Davidson potential for different values of β0

The Bohr Hamiltonian can be solved in a similar way as for the harmonic os-
cillator. If we replace the seniority v in the expressions of the SU(1, 1) generators
(2.34) by the parameter ṽ, defined by

ṽ(ṽ + 3) = v(v + 3) + k2β4
0 (2.50)

(with k2 = B2C/h̄2), the Hamiltonian can once again be associated with the gen-
erator B̂0. So the energy spectrum of the Davidson potential becomes

ED
nṽ = h̄Ω(2n + ṽ + 5

2 ). (2.51)

This potential can be used to study the transition from a spherical into a β-
deformed system, as all observables can be calculated analytically along the tran-
sition path [Bon04]. In figure 2.4, the excitation energy is plotted as a function
of the deformation parameter β0. On the left side, we start from a vibrational
spectrum, and move towards the situation in which all n = 0 states are lowered
in the energy spectrum to form a ground band.
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Figure 2.4: The excitation energy spectrum of the Davidson potential as a function of
the deformation parameter β0.

To summarise, it is shown by means of an example that symmetries or special-
function theory can come in very handy when solving γ-independent potentials
in the Bohr Hamiltonian. Moreover, the only known analytically solvable poten-
tials are γ-independent [For05a]. This is due to the fact that, for n-dimensional
systems with n > 2, the only two completely exactly solvable systems are the
Davidson and Kratzer problems which can be regarded respectively as exten-
sions of the harmonic oscillator and Coulomb potentials in n dimensions [Iac06]
(see [For03] for a discussion within the framework of the collective model). From
a nuclear physicists point of view, this is not a satisfactory situation since it is
very unlikely to find fingerprints for pure γ-independent structures in experi-
mental data (as e.g. the degeneracy in the seniority quantum number v). There-
fore, we also require solvable potentials for γ-dependent potentials, in order to
describe prolate, oblate, triaxial or even more complicated structures in the col-
lective model.
To cope with prolate (or oblate) structures, the rotation-vibration (RV) model was
developed in which the rotations of an axial deformed object are coupled to the
vibrations of the surface [Fae62, Eis87]. This model is an approximative model,
since it is only valid in the vicinity of (β0 > 0,γ = 0) and corrections are to be
treated in a perturbative way. Nevertheless, the RV model still serves as a good
benchmark for axial soft rotational nuclei. In the next section, a similar strategy is
followed as the RV model to solve for triaxial modes of motion, though a poten-
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tial is chosen in the spirit of Wilets & Jean to decouple theβ- from the γ-rotational
degrees of freedom in an exact way.

Section 2.3 Triaxiality in the Bohr Hamiltonian

2.3.1 From rigid...

Historically, non-axial or triaxial nuclei were first addressed by means of a rigid
model, which came as a limiting case of the Bohr-Mottelson model [Dav58, Dav59].
Within the language of the BM model, an atomic nucleus is considered rigid if it
takes an infinite amount of energy to deform the nucleus from its equilibrium
shape. The potential V(β,γ) in the Bohr Hamiltonian must then be of the follow-
ing form

V(β,γ) = δ(β−β0)δ(γ −γ0). (2.52)

As a consequence, the kinetic excitations disappear in the Bohr Hamiltonian (2.13),
and we are left with (2.16)

Ĥrot =
h̄2

8B2
∑

i=1,2,3

L̂′2i
β2

0 sin2(γ0 − 2π i
3 )

, (2.53)

where the (β,γ) variables have been frozen to the rigid values (β0,γ0). The form
of Ĥrot suggests that the dynamics is restricted to rotations of a rigid body, with
the moments of inertia given by

Ji = 4B2β
2
0 sin2(γ0 − 2π i

3 ). (2.54)

These are called the soft moments of inertia, since they result from the BM model,
which considers the atomic nucleus to be soft as a starting point. Therefore,
the triaxial rigid Davydov Hamiltonian (2.53) can be interpreted as a rotational
Hamiltonian originating from the rigid limit of the Bohr Hamiltonian.
However, this is not the only path leading towards a rotational Hamiltonian. If
we consider the atomic nucleus to be a rigid body as a starting point, we can
also deduce a quantum mechanical rotational Hamiltonian starting from a semi-
classical point of view [Cas31]

Ĥrigid = ∑
i=1,2,3

(h̄L̂′i)
2

2Ji
. (2.55)
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Alternatively to the collective model, the moments of inertia are now derived
from classical mechanics [Hey99]

Ji = 2
5 mAR2

0

[
1−

√
5

4πβ0 cos(γ0 − 2π i
3 )
]

, (2.56)

with m the nucleon mass. These moments of inertia are clearly different from the

26

[a
.u

]
E

[a
.u

]
E

25

36

34

15

24

13

22

21

01

41

61

01

21

41

61

22

13

24

26

15

34

25

36

46

0 0

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0
 0

 10

 30

 40

 50

 60

 70

 80

 0

γ
 π/3 π/6

 20

 π/3 π/6
γ

Figure 2.5: The spectrum of the rigid rotor, using the different expressions for the
moments of inertia Ji. On the left-hand side, the frozen soft moments of inertia from
the Bohr Hamiltonian are used (2.54), while on the right-hand side the classical mo-
ments of inertia (2.56) are chosen. The energy is measured relative to h̄2/(8B2) on the
left-hand side and to 5h̄2/(4mAR2

0) on the right-hand side where β0 = 1 is chosen to
enhance the visualisation of the effects.

soft ones, derived in the framework of the collective model, which will have a
serious effect on the energy spectrum. In figure 2.5, both the spectrum4 for the
Davydov Hamiltonian (left-hand side), as for the semi-classical rotational Hamil-
tonian (right-hand side) is shown, as a function of the triaxiality γ0. Significant
similarities and differences can be observed. The overall trend of the ground band

4Details of the calculation are given in appendix A.1
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(in blue) is very much the same in both situations, though for the other bands,
large discrepancies arise, especially in the limits of axial symmetry (γ0 = 0, π/3).
Since one of the soft moments of inertia (2.54) identically vanishes for axial sym-
metry, we obtain divergencies in the spectrum of the Davydov model (figure 2.5,
left-hand side). From a classical point of view, it is incomprehensible how a mo-
ment of inertia could vanish, as it would take a zero amount of energy to accel-
erate the rotation of this axial rigid body around the corresponding main axis.
This anomaly is an artefact, stemming from the forced decoupling of the rota-
tions from the γ-softness of the ellipsoid. Moreover, the rotation-vibration model
proves that the coupling of the γ-degree of freedom to the rotations along the
axial symmetry axis eliminates the divergencies, so the K 6= 0 bands are substan-
tially lowered in the spectrum. For triaxial modes, this coupling is less significant,
and since the moments of inertia have a finite value, the K 6= 0 are observed in
the spectrum. From figure 2.5 (right-hand side), we can see that the semi-classical
model does not suffer from these divergencies (as long as β0 stays sufficiently
small).

It is clear from this discussion that the only unknown parameters in the rigid tri-
axial rotor model are the moments of inertia Ji. To determine these parameters,
we can compare them with the moments of inertia, as extracted from experimen-
tal data [Boh98, Hey99]. As a result, we find that the experimental moments of
inertia lie in between the classical rigid moments of inertia and the ones obtained
from the Davydov model5. In this respect, a recent study [Woo04] relaxed the
functional dependence of the moments of inertia, treating them as free parame-
ters in a fit to experimental data. This led to an improvement of the description
of nuclear observables, suggesting that the semi-classical or irrotational Davydov
interpretation of (triaxial) rotations might have to be abandoned. However, it is
not clear to what extent the softness could compensate for the corrections, ob-
tained by the free parameter fit. Eventually, the softness needs to be taken into
account, as any rigid model cannot explain the occurrence of multiple L = 0 col-
lective states in the low-energy structure of atomic nuclei, something which is
observed frequently in experimental data, as e.g. in the Os isotopes.

2.3.2 ... to soft

From the former discussion, it becomes clear that the rigid triaxial model served
well as a first attempt, though the softness needs to be incorporated if a com-
plete description of the low-energy structure is desired. This means that the Bohr

5with the assumption of an irrotational mass parameter B2. (see equation 2.65).
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Hamiltonian is to be solved -something which is a nontrivial task- for potentials
with a γ dependence. Making use of schematic harmonic oscillator potentials in
β and γ, the Bohr Hamiltonian can be solved approximately [Dav60, Dav61], or
one can also resort to more general expressions of the potentials which need to be
diagonalised in a basis, obtained from e.g. the γ-independent solutions (see sec-
tion 2.2). However, the transparency provided by analytic solutions is lost with
the latter strategy. For this purpose, we studied a schematic potential of the form
[For06]

V(β,γ) =
h̄2

2B2

[
ADβ

2 +
C(γ −γ0)2 + BD

β2

]
, (2.57)

which exhibits a minimum at (β = 4
√

BD/AD ,γ = γ0). This is a potential of the
Wilets & Jean type, thus the γ-degrees of freedom can be decoupled exactly from
the β degree of freedom. Concerning the β-excitations, we obtain a Davidson
type of potential (eq. (2.49)), which has been elaborately discussed in section
2.2.3. For the decoupled γ excitations, we now obtain (2.19){

− 1
sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+ ∑

i=1,2,3

L̂′2i
4 sin2(γ − 2π i/3)

+ C(γ −γ0)2 −ω
}
ψ(γ,θι) = 0. (2.58)

Since we are mainly interested in triaxial modes, we can assume that γ0 is signif-
icantly different from 0 or π/3 (γ0 ∼ [π/12, π/4]), which justifies the following
approximations

◦ Because the rigid triaxial Davydov model is not divergent in the triaxial
region, we can again freeze out the γ dependence in the moments of inertia

Ai = 1
4 sin2(γ− 2π i

3 )
→ 1

4 sin2(γ0−
2π i

3 )
. (2.59)

◦ The excitations are localised around the triaxial minimum γ0, so we can
approximate the kinetic energy term to (with x ≡ γ −γ0)

− 1
sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
∼ − 1

sin 3γ0

∂

∂x
sin 3γ0

∂

∂x
= − ∂2

∂x2 . (2.60)

As a consequence, we obtain a 1D harmonic oscillator Hamiltonian around a tri-
axial minimum γ0, to which the rigid Davydov rotor is added with the corre-
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sponding triaxiality parameter{
− ∂2

∂x2 + ∑
i=1,2,3

Ai L̂′2i + Cx2 −ω
}
ψ(x,θι) = 0. (2.61)

This equation can be decoupled into a γ-vibrational and a rotational part which
is reflected in the solution of the decoupling coefficientω

ω =
√

C(2nγ + 1) +ωrot. (2.62)

The vibrational term
√

C(2nγ + 1) comes from the harmonic oscillator term and
ωrot is the solution of the rotational part. In some particular cases, ωrot can be
determined analytically, as long as the Hilbert space stays reasonably small. E.g.
for the L = 2 states e.g., we obtain the result (see appendix A.1)

ωrot(L = 2) = 2 ∑
i

Ai ± 2
√

∑
i

A2
i − ∑

i< j
Ai A j, (2.63)

identically to the Davydov triaxial rotor. Combining the results from the three
decoupled equations (Davidson, 1D Harmonic oscillator and Davydov rotor), we
obtain the total approximative solution of the Davidson deformed triaxial rotor

ELi
nβnγ = h̄2

B2

√
AD

[
2nβ + 1 +

√
9
4 +

√
C(2nγ + 1) +ωLi

rot + BD

]
. (2.64)

Now that we have an analytic solution, it is interesting to confront them with ex-
perimental data in regions of the nuclear chart where evidence for triaxial modes
has been observed, such as in the chain of Os isotopes.

2.3.3 Applications in the Os-isotopes

The Os isotopes have been the subject of many studies concerning the collec-
tivity and geometry around the Z = 82 shell closure (see figure 1.5). Starting
from a microscopic effective nucleon-nucleon interaction, self-consistent Hartree-
Fock-Bogoliubov (HFB) calculations have been carried out, constructing ground
state energy surfaces as a function of the deformation variables β and γ [Kum68,
Ans86, Ans88]. The main result from these calculations was that the Os isotopes
experience a transition from a prolate to an oblate structure for increasing mass
number A, exhibiting soft triaxial minima in the energy surface along the transi-
tion line, depending on the interaction. More recently, the Davydov model (sec-
tion 2.3.1) has been revisited to extract the rigid deformation parameters of the Os
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Figure 2.6: Experimental spectra of Os isotopes. Data is taken from the Nuclear Data
Sheets [Fir89, Bro94, Sin95b, Sin95a, Bag98, Bro99, Sin02, Sin03, Bag03, Wu03, Bas06]

isotopes and neighbouring isotopic chains [Ess97]. The transition was found to
be much smoother than the HFB predictions. This might be due to the softness of
the calculated energy surfaces, as it is argued in [Ess97] that the evaluated rigid
values correspond to the root mean square values of softβ and γ solutions, which
will evolve more smoothly along the transition path than the values minimising
the energy surface. Another study worth mentioning makes use of K-shape in-
variants to extract the β and γ values of a given nucleus [Wer05]. Although this
technique starts from the Davydov model, it relies heavily on experimental data
in order to extract the K-shape invariants and subsequently the deformation vari-
ables β and γ. A recent IBM study [McC05] also covered the Os isotopes, mak-
ing use of the consistent-Q Hamiltonian (see section 1.2.3). It should be noted
that the geometrical interpretation of the IBM1 consistent-Q formalism does not
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allow triaxial minima in the energy surface (1.30), as the Hamiltonian is trun-
cated up to 2-boson interactions. To enable a triaxial geometry in the IBM, we
either incorporate higher-order interactions, or consider the proton-neutron IBM
(IBM2) [Cap04, Cap05]. A numerical study of the Os isotopes in the framework
of IBM2 has been carried out [Bij80], although no geometrical interpretation has
been given in the mentioned work.

A study of the triaxial deformed Davidson potential (2.57) can give a valuable
contribution to the discussion, since the parameters in the model (B2,AD,BD,C
and γ0) all have a direct physical meaning. The β deformation and softness is
governed by the mass parameter B2 and the Davidson parameters AD and BD,
while the γ softness is controlled by C and the triaxiality by γ0. Fitting these pa-
rameters to the experimental data will result in a good or a bad description. If
the present approach is successful, we can associate physical significance to the
parameters. If it fails,the assumption of the Os isotopes as triaxial soft rotors is
wrong, which means that we need to resort to other models for a better under-
standing of the Os isotopes. However at any time, it is good to keep in mind the
schematic nature of the potential.

The experimental energy spectra of the Os isotopes are plotted in figure 2.6.
We use these spectra to fit the parameters. From the theoretical energy formula
(2.64), we learn that the excitation energy is independent from the ratio

√
AD/B2.

Moreover, the relative spectrum (normalised to the first L = 2+ state) is not
affected by the ratio

√
AD/B2, which leaves us 3 independent parameters (BD,

C and γ0) to fit the data. The chosen states, considered in our theoretical fit,
are the 2+

1 and 4+
1 from the ground band, and the band heads of the supposed

(nβ = 0, nγ = 0, K∗ = 2) and (nβ = 0, nγ = 1, K∗ = 0) bands. The K∗ quantum
number is used as a label to distinguish between different Li-states in the deter-
mination of ωrot. We use the notation K∗ so as to make the connection with the
K quantum number of the axial rigid rotor clear(see figure 2.5). A typical theo-
retical normalised energy spectrum (for 188Os) is given in figure 2.7, where the
comparison is made with experiment

Calculations have been carried out for the whole chain of Os isotopes with A =
172− 192, except for 182Os, where no information was available on the supposed
nγ = 1 band. Extensive comparison of the theoretical calculations and the ex-
perimental energy spectra has been given in figure 2.8. It can be seen from fig-
ure 2.8 (a) that the groundband is well described by the theory. This is not very
surprising since the L = 41 and L = 61 excitation energy have been chosen as
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Figure 2.7: Normalised excitation spectrum for 188Os, experimentally (exp) and the-
oretically (theo) (figure adopted from [For06])

experimental input in the fit. Moreover, the ratio
√

AD/B2 has been chosen to re-
produce the excitation energy of the L = 21 ground band member. Nevertheless,
the L = 81 and L = 101 are still well described by the model (the deviations are
around or below 100 keV for each A), which proves that the ground band indeed
is a collective rotational band, as was tacitly assumed.

The other bands are more interesting with respect to the model description. There
is much data available for the K∗ = 2 band, which is presented in figure 2.8 (b).
The L = 2+

2 is very well described (in magnitude and in trend), which does not
come as a surprise neither as it is contained in the fitting procedure. From this
figure 2.8 (b), we clearly see that the spectrum can be divided in two parts with
A = 184 as the breaking point. For heavier masses (A > 184), we notice the band
rapidly dropping in excitation energy, suggesting that the collectivity rises from
this point. This is also the region where the band is best described by the model.
However, it should be noted that the staggering effect is more washed out in the
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experimental spectrum as compared with the calculated structure, which can be
seen from the behaviour of the 4+

2 state. This might be a side-effect of the harsh
decoupling of the γ vibrations from the triaxial vibrations in the model, since the
K = 2 band is rather sensitive to this coupling. The K∗ = 2 band of the isotopes
with the lower masses (A < 184) is less well reproduced quantitatively, although
the general constant slope is also observed in the calculations. Since the model
we are working with is a pure phenomenological model, we cannot provide a
fundamental reason for the structural changes at A = 184 within this framework.

The next band to be discussed is the nγ = 1 band, depicted in figure 2.8 (c).
This band is suggested to be based on γ-vibrations of the nucleus around the
equilibrium γ0. The L = 0+

2 bandhead is, as expected, well described since it is
contained in the fit. The other states follow a similar trend as the K∗ = 2 band
with respect to the A = 184 break point. However, one cannot make conclusive
statements from the data because for the masses (A > 184), few data is known
from the Nuclear Data Sheets. Relying on the data for 186Os, it seems that the γ
band is quenched beyond A = 184. This is something which is not reproduced
by the model. On the other side, the constant slope for the lower masses is well
predicted, although the scaling is, just like for the K∗ = 2 band, underestimated.

It is interesting to study the variation of the parameters along the series of iso-
topes. In figure 2.9, the fitted parameters (BD, C and γ0) are given. We can again
roughly divide the results into two regions. For masses below A = 184, the pa-
rameters C and BD are relatively small, which means that the potential (2.57) is
rather soft. Nevertheless, there is an upward slope with increasing mass. This is
reflected in the excitation energy of the nγ = 1 band head 0+

2 , which follows a
similar slope as the parameter C (see figure 2.8 (c)). The triaxiality γ0 stays more
or less constant γ0 ∼ 14◦ in this region, which is also observed in the evolution
of the K∗ = 2 band (see figure 2.8 (b)). For masses larger than 184, the situation
becomes more rigid and the triaxiality increases. As a consequence, the situation
evolves towards a triaxial rigid rotor, something which can be seen in the exper-
imental spectrum, where the K∗ = 2 band drops below the nγ = 1 band. This is
also indicated by the comparison of γ0 with other methods in figure 2.9 (c). From
this figure it is clearly seen that the comparison is best with the method of [Ess97]
(black circles), which is related to the rigid triaxial Davydov model.

The parameters (BD, C and γ0) are obtained from the fitting procedure. There-
fore, we are left with two free parameters (B2 and AD) to describe experimental
observables. As can be seen from the energy formula (2.64), the ratio

√
AD/B2
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Figure 2.8: Comparison of experimental data with the calculated values. On the left-
hand side (a), the groundband results are given, while un the upper right side, the
results for the (nβ = 0, nγ = 0, K∗ = 2) are presented. In the lower right-hand side
(c), the (nβ = 0, nγ = 1, K∗ = 0) γ-band is given. The labelling of the spins refers to
figure 2.6.

can be adjusted to match the scale of the theoretical calculation versus the exper-
imental spectrum. In the present calculation, it is used to match the excitation
energy of the 2+

1 state. As a consequence, we only need one extra condition to
complete the determination of the set of parameters.
One strategy to do so is to assume that the mass parameter B2 can be obtained
using irrotational collective motion [Flü41, Eis87]. In this case, the mass parameter
is given by

B2 = 1
2ρR5

0, (2.65)
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Figure 2.9: Plot of the fitted parameters BD (a), C (b) and γ0 (c). In the lowest panel
(c), the calculated values of γ0 are given in blue and compared to those obtained with
other methods as described in the text (circles (γe) and diamonds (γb) refer to [Ess97],
whereas squares are taken from [Wer05])

with ρ the mass density of the nucleus and R0 defined by means of equation (2.2).
We are able to verify this expression using the known quadrupole moments of the
nucleus. The quadrupole moment is defined by

Q =
√

16π
5

3ZR2
0

4π

(
2 2 2
−2 0 2

)
〈2+

1 ||α
∗||2+

1 〉, (2.66)
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and can be calculated for the triaxial Davidson potential. The result is given by
(the derivation is presented in detail in appendix A.2)

Q =
√

1
5π

6
7 ZR2

0
Γ(ṽ+1/2)
A1/4

D Γ(ṽ)
(1− 1

4
√

C
)[cosγ0(a2

2 − a2
0) + 2a2a0 sinγ0]. (2.67)

This expression contains AD as the only free parameter. If we assume irrota-
tional flow for the mass parameter and fix AD to fit the scale of the spectrum,
AD is no longer a free parameter for the quadrupole moment (2.67). The results
of the irrotational flow assumption in calculating the quadrupole moments are
given in figure 2.10. From the figure it is clearly seen that the sign and slope
of the quadrupole moments are well reproduced, although the absolute value is
overestimated by a factor of 2.5 in average. This shows that the assumption of
irrotational flow is not validated and we better leave the mass parameter as a
free parameter. However, it should be stressed that the Davidson potential does
not allow an unambiguous fit from the energy spectrum alone. Therefore, we
need to resort to the quadrupole moments in order to obtain a reasonable esti-
mate of the mass parameter B2. This will be the philosophy when dealing with
more general types of potentials to describe nuclear observables such as energy
spectra, quadrupole moments and electromagnetic transitions that require a more
detailed and refined determination of the eigenstates, as will be discussed in the
following chapters.

theo
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Figure 2.10: Plot of the quadrupole moments of the first excited 2+
1 state of the Os

isotopes. The experimental data is taken from [Rag89].

To conclude, it is possible to give a description of triaxial modes of motion us-
ing a very schematic potential of the Davidson type (2.57) that can be confronted
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with experimental data to a reasonable extent. Energy spectra are rather well
described and can be interpreted according to the parameters in the fitting pro-
cedure. However, it should be stressed that the proposed potential is very sche-
matic. Since the potential in γ is a harmonic oscillator potential, the symmetry of
choice of the intrinsic framework is violated. To restore this symmetry, we need
to work with potentials that are periodic in γ with periodicity π/3. Typical terms
respecting this symmetry are of the form cos 3γ, and can be handled within the
general collective model of the Frankfurt group [Gne71, Eis87], the recently pro-
posed algebraic tractable model by the Toronto group [Row04, Row05b, Tur05]
or the Cartan framework, discussed in the next chapter. The drawback of the
latter models is that the analytical solvability is completely lost, and therefore, it
would be informative to have a benchmarking periodic potential at hand that can
be solved in an (approximative) analytical way. Such a potential can be found in
the form of a Pöschl-Teller Potential of the second kind, and will be discussed in
the next section.

Section 2.4 A solvable periodic potential

2.4.1 Spectrum of the Pöschl-Teller potential of the second kind

We can start from a potential of the Wilets & Jean type to decouple theβ-degree of
freedom so we can focus on the study of a periodic potential in γ. The decoupled
γ-rotational differential equation is (2.19)

{
− 1

sin 3γ
∂

∂γ
sin 3γ

∂

∂γ
+ ∑

i=1,2,3

L̂′2i
4 sin2(γ − 2π i/3)

+ u2(γ)−ω
}
ψ(γ,θι) = 0. (2.68)

It is worth mentioning that in the specific case of Lπ = 0+ states, the rotational
energy trivially vanishes, which leaves the γ-variable completely decoupled. If
we choose the potential in γ to be completely soft (u2(γ) = 0), the differential
equation (2.68) reduces to the Legendre differential equation with x = cos(3γ),
as already pointed out in [Boh52, Bès59]{

9
∂

∂x

(
(1− x2)

∂

∂x

)
+ω

}
ψ(γ,θι)L=0 = 0. (2.69)

The normalised eigenfunctions of these equations are the Legendre polynomials
if ω = 9λ(λ + 1). Rewriting this as ω = 3λ(3λ + 3), the correspondence to the
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coupling constantω = v(v + 3) for γ-independent potentials is clear with v = 3λ
(see section 2.2.1).
Now we abandon the path of γ-independency and introduce the following po-
tential [DB06]

u2(γ) =
µ

sin2 3γ
. (2.70)

which is a Pöschl-Teller potential of the second kind [Iac06]. This potential, de-
picted in figure 2.11 (a), has some interesting characteristics. The behaviour is
rather flat at the minimum, but diverges very quickly towards γ = 0 and γ =
π/3. This will push the wavefunction away from the boundaries, imposing a lo-
calisation around γ = π/6. This effect is not as drastic as expected at first sight,
because the components of the soft moments of inertia (2.54) exhibit a similar
behaviour at the boundaries as can be seen in figure 2.11 (b). Moreover, in the
specific case of L = 3, the rotational part reduces to an expression, proportional
to 1/ sin2 3γ. Sandwiching the rotational part with the L = 3 state gives (using
equations (A.16) in appendix A.1)

〈3M, K = 2|∑
i

L̂′2i
4 sin2(γ− 2iπ

3 )
|3M, K = 2〉 = ∑

i

1
sin2(γ− 2iπ

3 )
= 9

sin2 3γ
. (2.71)

This particular result has been used to identify the associated Legendre functions
P1
λ (cos 3γ) [Arf01] with the L = 3 γ-independent wavefunctions [Bès59]. For

other spin states, the situation is a little more complicated because of the occur-
rence of multiple K-states, though (2.71) suggests that the Pöschl-Teller potential
can be considered as an average field covering for the rotational part of the Bohr
Hamiltonian, which makes the potential physically liable.
Another interesting property of the potential is that the minimum is exactly lo-
cated at γ = π/6. As already mentioned, the rotational Hamiltonian has an
unexpected symmetry at maximal triaxiality. This symmetry is not of a geo-
metrical nature, but comes from the moments of inertia. At γ = π/6, two of
the three moments of inertia are equal, leading to a diagonal rotational Hamil-
tonian if the intrinsic projection axis of the angular momentum is chosen along
the 1′ axis. This was first observed by Meyer-Ter-Vehn [Mey75], and later ex-
ploited to find approximative solutions for potentials with a minimum at γ =
π/6 [Bon05, For04, For05b]. Also in the present case, it will facilitate an approxi-
mative solution of the Hamiltonian.
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Figure 2.11: The potential (2.70) is depicted at the left side (a) and the inverse soft
moments of inertia (2.54) Ji on the right side (b).

Inserting the potential (2.70) in (2.68) leads to

{
− 1

sin 3γ
∂

∂γ
sin 3γ

∂

∂γ
+ ∑

i=1,2,3

L̂′2i
4 sin2(γ − 2π i/3)

+
µ

sin2 3γ
−ω

}
ψ(γ,θι) = 0. (2.72)

Here the approximation comes into play. As the potential is minimal at γ = π/6,
we can apply the freeze-out approximation (see section 2.3.2) and substitute the
expectation value of γ = γ0 = π/6 in the expressions of the moments of inertia.
The rotational Hamiltonian then reads

Ĥrot = ∑
i=1,2,3

L̂′2i
4 sin2(γ0 − 2π i/3)

= L̂′2 − 3
4

L̂′21 . (2.73)

Therefore, we can further separate the differential equation(2.72) by imposing
ψ(γ,θi) = φ(γ)D(θι), obtaining the following set of differential equations{

1
sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
− µ

sin2 3γ
+ω

}
φ(γ) = ηφ(γ), (2.74){

L̂′
2 − 3

4
L̂′21

}
D(θι) = ηD(θι). (2.75)
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The eigenvalues of equation (2.75) are easily found since L̂′2 is the quadratic Ca-
simir operator of O(3) and L̂′1 is the projection of the angular momentum on the
1′-axis, which means that a diagonal representation can be found for both. These
are the symmetrised Wigner D-functions, quantised around the 1′-axis, and are
given by6

DL
MR(θi) =

√
2L + 1

16π2(1 + δR0)
(DL∗

MR + (−1)LDL∗
M−R). (2.76)

We call R the eigenvalue of L̂′1 to distinguish it from the band quantum number
K, associated with L̂′3, the projection on the 3′-axis. Thus one obtains

η = L(L + 1)− 3
4

R2. (2.77)

Equation (2.74) can now be written as (with x = cos(3γ)){
∂

∂x

(
(1− x2)

∂

∂x

)
− µ′2

1− x2

}
φ(x) = (η′ −ω′)φ(x), (2.78)

with µ′ =
√
µ/9, η′ = η/9 and ω′ = ω/9. The eigensolutions are obtained in

terms of the hypergeometric functions [Arf01]

φλµ′(x) ∼ (1− x2)µ
′/2

2F1

(
µ′ − λ,µ′ + λ+ 1;µ′ + 1;

1− x
2

)
. (2.79)

The hypergeometric functions are normalised when λ = µ′ + i (i ∈ N). A discrete
eigenspectrum results for

ω = 9λ(λ+ 1) + η, (2.80)

or

ω = 9λ(λ+ 1) + L(L + 1)− 3
4

R2. (2.81)

Note that in case µ′ ∈ N, the hypergeometric functions become the well known
Legendre functions.
The main difference between the resulting spectrum (2.81) and a harmonic oscil-
lator treatment [For04] is the specific form of the γ-excitation. Instead of a linear

6Note that the Euler angles define a rotation to the intrinsic frame so that the 1′ axis is the projection
axis.
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spectrum, we obtain a quadratic spectrum in the quantum number λ. This is due
to the typical behaviour of the chosen potential which causes a stronger confine-
ment in comparison to the harmonic well. However, it should be stressed that,
although the spectrum of the decoupling constant ω is quadratic, this does not
imply that the total spectrum of the Bohr Hamiltonian needs to be quadratic in
the quantum numbers, as it depends on the specific form of u1(β) in the Wilets
& Jean potential. If we consider a potential of the Davidson type, we notice that
ω (and therefore the γ-excitation) varies as a square-root, (2.64) so the total spec-
trum will rather be linear than quadratic in the quantum number λ [DB06].

Another point of interest is the classification of the lowest even L+ state (see
figure 2.12). Although we can construct a rotational R = 0 band on top of the
(L = 0, R = 0) state, the members of this band are not the lowest to be found
in the spectrum for a fixed spin. Moreover, from eq. (2.81), it is easily seen that
L = R holds for the lowest state (which means that the system favours the spin
maximally aligned with the 1′-axis). Nevertheless it is not preferable to organ-
ise these states as members of the groundband. Constructing the other states
into bands results in staggering effects that totally wash out the rotational struc-
ture. Moreover, the E2-transitions between two states with equal R are enhanced
above transitions between two states that differ in R (see next section). Therefore,
a classification into bands according the quantum number R seems preferable.

2.4.2 Electromagnetic transitions

Electromagnetic transitions are an important observable of a model as they are
very sensitive to the specific structure of the wavefunctions. The collective ge-
ometrical model is in lowest order approximation mainly based on quadrupole
deformation. Therefore, the E2 transitions are the most meaningful fingerprints
to investigate the wavefunctions. The operator for electric E2 transitions upto
lowest order reads [Eis87]

T̂(E2)µ =
3ZR2

0
4π

α∗2µ , (2.82)

where

α∗2µ = β
[

D2
µ0 cosγ + 1√

2

(
D2
µ−2 + D2

µ2

)
sinγ

]
. (2.83)

The reduced transition probability B(E2; Li → L f ) is given by

B(E2; Li → L f ) = e2
∑
µ,M f

|〈L f M f |T̂(E2)µ |Li Mi〉|2. (2.84)
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Figure 2.12: Spectrum corresponding to equation (2.81). Only the R = 0, 2, 4 band
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Here we need the specific wavefunctions, corresponding to the eigenstates

Ψnλµ′LMR(β,γ,θι) = ξn(β)φλµ′(cos(3γ))DL
MR(θι). (2.85)

The functionξn(β) corresponds with the nth solution of equation (2.18),φλ
µ′(cos(3γ))

is given by (2.79) and DL
MR(θι), given by (2.76), is the symmetrised eigenfunction

of the angular momentum. The B(E2)-values are then given by

B(E2; niλiLiRi → n f λ f L f R f )

= e2
(

3ZR2
0

4π

)2
|〈ni|β|n f 〉|2

2(2L f +1)
(16π2)2 × |〈L f ||D(2)||Li〉|2

×
∣∣∣∣√2

(
L f 2 Li
−R f 0 Ri

)
〈λ f | cosγ|λi〉

+
√

(1 + δRi0)(1 + δR f 0)
(

LR> 2 LR<

−R> 2 R<

)
〈λ f | sinγ|λi〉

∣∣∣∣2 , (2.86)

where ξn(β) ≡ 〈β|n〉, and φλ
µ′(cos(3γ)) ≡ 〈γ|λ〉 (µ′ has been omitted as it is

equal for all basis states). An effective charge e is inserted and 〈L f ||D(2)||Li〉 is
the reduced matrix element of the Wigner D(2)-functions, with respect to both
the projection on the intrinsic as well as the laboratory axis. This reduced matrix
element can be deduced using well known formulas from angular momentum
theory [Ros57]

〈L f ||D(2)||Li〉 = 8π2. (2.87)

As an example, the B(E2)-values within an R = 0 band are given by

B(E2; nλLiRi = 0 → nλL f R f = 0)

= e2
(

3ZR2
0

4π

)2
|〈n|β|n〉|2(2L f + 1)

(
L f 2 Li
0 0 0

)2

|〈λ| cosγ|λ〉|2. (2.88)

If we restrict to transitions within bands with equal quantum number n of the β
excitation, it is useful to express the B(E2) values relative to

B(E2; nλmin2, 0 → nλmin, 0, 0)

= e2
(

3ZR2
0

4π

)2
|〈n|β|n〉|2 |〈λmin | cosγ|λmin〉|2

5 , (2.89)
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which will be denoted as Brel(E2). Thus, the relative transitions within one R
band become (for the lowest λ excitation)

Brel(E2; nλminLiR → nλminL f R) = 5(2L f + 1)
(

L f 2 Li
−R 0 R

)2

. (2.90)

We can compare these to the E2-transitions between states with different R quan-
tum number (but equal λ = λmin). Because of the symmetry of the 3 j symbol
(2.86), a selection rule prohibits transitions between two states unless |∆R| = 2.
The relative B(E2)rel becomes

Brel(E2; nλminLiRi → nλminL f R f ) =
5(2L f + 1)

2
|〈λmin| sinγ|λmin〉|2
|〈λmin| cosγ|λmin〉|2

× (1 + δRi0)(1 + δR f 0)
(

LR> 2 LR<

−R> 2 R<

)2

. (2.91)

For the relative intraband transitions (2.90), only the rotational structure of the
wavefunction is the decisive element, whereas for the relative interband tran-
sitions (2.91), the specific γ-dependence of the problem plays a significant role.
Unfortunately, the γ-part cannot be manipulated by means of symmetry argu-
ments, and it becomes inevitable to apply a numerical treatment in order to eval-
uate the matrix elements. Nevertheless, in the specific case of µ′ ∈ N (2.78), the
solutions of the equations are the Associated Legendre Functions. Through the
use of recursion relationships [Arf01] the matrix elements can easily be obtained
numerically, as will be shown in the appendix A.3. For the sake of simplicity,
we choose µ′ = 1 from now on. The matrix elements for λmin = µ′ = 1 be-
come 〈1| cosγ|1〉 = 2187/2560 and 〈1| sinγ|1〉 = 729

√
3/2560 with the ratio

1/
√

3. By substituting this ratio in equation (2.91), we can compare the relative
interband transitions (2.91) with the intraband (2.90) transitions. These results are
included in figure 2.12. We notice that the transitions within the R = 0 band are
much stronger than those between the L = R states. In order to obtain a good
band classification, we rely on sequences of aligned E2-transitions, as would be
the case from an experimental point of view. Classifying the R = 0 band as the
groundband is thus justified (see figure 2.12) and other R-bands are constructed
in a similar way.

Another point of interest are the relative transitions between different λ-excitation
bands. Therefore, one needs the matrix elements 〈λ| cosγ|λ′〉 and 〈λ| sinγ|λ′〉.
These can be calculated using the results derived in appendix A.3. The squared
matrix elements |〈λmin| cosγ|λ〉|2 relative to |〈λmin| cosγ|λmin〉|2 are depicted in
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Figure 2.13: Relative squared matrix elements |〈1| cosγ|λ〉|2/|〈1| cosγ|1〉|2 (squares)
and |〈1| sinγ|λ〉|2/|〈1| cosγ|1〉|2 (circles). It is clearly seen that the matrix elements
diminish strongly for larger γ excitations. As a consequence, the transitions towards
the lowest λ band originating from high λ are very small.

figure 2.13 and point out that the transitions within a fixed γ excitation band are
much stronger than the bands which differ in λ quantum number (see also the
results in table 2.2).

2.4.3 Justification of the approximation

The best way to justify the approximation is to solve the problem without it,
which means: diagonalising the Hamiltonian. An adequate means to study the
exact solutions of the problem is to choose an appropriate basis, calculate the
matrix elements of the Hamiltonian in this basis, and perform a numerical diago-
nalisation. Since the decoupling of the β-part from the γ-rotational part is carried
out in an exact way, we focus on the γ-rotational part only (2.72). It would have
been interesting to make use of the basis of the algebraic tractable model as it is
expressed in the language of the intrinsic variables (see section 2.2.1). Unfortu-
nately, 1/ sin2 3γ is not a proper seniority tensor. Even worse, it is an infinite sum
of polynomials of good seniority tensor character cos 3γ, leading to divergencies
in the needed matrix elements. So we rather make use of the set of hypergeomet-
ric functions with fixed µ′ as a basis for the γ-part, because these functions are
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section 2.4 A solvable periodic potential

〈λ| cosγ|λ′〉 λ′ = 1 λ′ = 2 λ′ = 3 λ′ = 4 λ′ = 5
λ = 1 0.854 0.081 -0.014 0.005 -0.002
λ = 2 0.081 0.839 0.092 -0.018 0.007
λ = 3 -0.014 0.092 0.834 0.097 -0.020
λ = 4 0.005 -0.018 0.097 0.832 -0.099
λ = 5 -0.002 0.007 -0.020 0.099 0.893

〈λ| sinγ|λ′〉 λ′ = 1 λ′ = 2 λ′ = 3 λ′ = 4 λ′ = 5
λ = 1 0.493 -0.141 -0.008 -0.009 -0.001
λ = 2 -0.141 0.484 -0.160 -0.010 -0.012
λ = 3 -0.008 -0.160 0.481 -0.167 -0.011
λ = 4 -0.009 -0.010 -0.167 0.480 -0.171
λ = 4 -0.001 -0.012 -0.011 -0.171 0.479

Table 2.2: Matrix elements 〈λ| cosγ|λ′〉 and 〈λ| sinγ|λ′〉.

the eigensolutions of a differential equation{
− 1

sin 3γ
∂

∂γ
sin 3γ

∂

∂γ
+

(3µ′)2

sin2 3γ
−ω

}
φλµ′(cos(3γ)) = 0, (2.92)

with ω = 9λ(λ + 1). For the rotational part, the convenient basis consists of
the symmetrised eigenfunctions of the angular momentum (2.76). So, a general
solution of (2.72) can be written as

ψLi M(γ,θι) = ∑
λ,R

Li cR
λφ

λ
µ′(cos(3γ))DL

MR(θι). (2.93)

Calculating the matrix elements of the eigenvalue equation (2.72), one notices that
one part of the eigenvalue equation is trivially diagonal (the part corresponding
with the term between curly brackets in equation (2.92)), whereas the rotational
part is not. Therefore, we still need to perform a numerical integration of the
rotational part in the basis of the hypergeometrical functions

〈λLMR|Ĥrot|λ′LMR′〉 = ∑
i=1,2,3

〈LMR|L̂′2i |LMR′〉

∫ π/3

0

φλ
µ′(cos(3γ))φλ

′
µ′(cos(3γ))

4 sin2(γ − 2π i/3)
sin 3γdγ. (2.94)

In order to compare with the analytically obtained solution, we choose µ′ = 1 ∈
N. As a consequence, the hypergeometric functions can be recognised as Asso-
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chapter 2 Geometrical model: analytic and algebraic approaches

ciated Legendre Functions, for which the matrix elements can be derived using
appropriate recursion relations (see appendix A.3). Thus, we are in the posi-
tion to diagonalise the matrix. As a drawback of the model, the Hilbert space of
the hypergeometric functions is infinite dimensional. To deal with this problem,
we start from a selected number of basis states, corresponding with the lowest
quantum numbers, and construct a truncated matrix to diagonalise. Following a
standard procedure, we subsequently incorporate an increasing number of basis
states with higher quantum numbers until convergence is obtained for the low-
est excited states. Here, we require, for a fixed L, convergence up to 10−6 for the
eigenstates corresponding to the 2 lowestγ-excitations. Once the eigenstates have
been determined, B(E2)-values can be calculated, relative to the B(E2; 2+ → 0+)
of the ground band. The results of the spectrum and B(E2)rel values are depicted
in figure 2.14

One notices an overall good agreement between the analytically obtained spec-
trum using the approximation discussed before (see figure 2.12) and the full diag-
onalisation of the problem (see figure 2.14). On the one hand, one clearly recog-
nises the connection between the states depicted in figure 2.14 and the analyti-
cally obtained states considering the excitation ω and occurrence in the spectra.
On the other hand, there is a strong agreement in the interband and intraband
B(E2)rel values resulting from the two calculations, enabling us to classify the
states into different bands. This agreement can be understood quite easily by in-
specting the specific structure of the wavefunctions (See coefficients in table 2.3),
from which we notice that the low-lying states are all dominated by one specific
state with quantum numbers (λ, R). Note, however, that we no longer label the
bands with quantum numbers.

However, a closer inspection of figure 2.12 and figure 2.14 reveals some differ-
ences, e.g. the staggering effect within a band (figure 2.14), associated with the
triaxiality of the system, melts away in the approximative solution because the
γ-softness of the moments of inertia is not treated exactly. Also, a lowering of
the excitation energies can be observed. Applying the approximation, we re-
place the specific γ-dependent moments of inertia by their expectation value at
γ0 = π/6. As a consequence, they do not longer act as a strongly localising poten-
tial at γ0 = π/6. This delocalises the wavefunctions somewhat and consequently
lowers the corresponding excitation energies.

Nonetheless, there still is a good overall good agreement between the analytical
solution with approximation and the full diagonalisation of the problem, indicat-
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Figure 2.14: Spectrum obtained after diagonalisation. Only those states correspond-
ing to the states given in figure 2.12 are given. The B(E2)rel are denoted by means of
the arrows (numbers and relative thickness) andω is given at each level. All numbers
are dimensionless.
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L+ ω λ = 1 λ = 2
R =0 R = 2 R = 4 R = 0 R = 2 R = 4

0+ 18.0 1.000 . . 0.000 . .
54.0 0.000 . . 1.000 . .

2+ 21.7 0.000 0.996 . 0.084 0.000 .
26.4 -0.992 0.000 . 0.000 -0.112 .
59.7 0.106 0.000 . 0.000 -0.988 .
67.9 0.000 0.081 . -0.984 0.000 .

3+ 30.7 . 0.997 . . 0.000 .
74.2 . 0.000 . . -0.994 .

4+ 27.4 0.076 0.000 0.991 0.000 0.109 0.000
37.9 0.000 0.960 0.000 0.209 0.000 0.181
42.8 -0.961 0.000 0.098 0.000 -0.244 0.000
67.6 0.000 0.180 0.000 -0.026 0.000 -0.971
85.5 0.221 0.000 0.079 0.000 -0.896 0.000
92.8 0.000 -0.165 0.000 0.916 0.000 -0.101

Table 2.3: Coefficients Li cR
λ of the wavefunctions (eq. 2.93) of the low-lying states.

Only states up to Lπ = 4+ depicted in figure 2.14 are given. (higher-spin states can
be found in [DB06]

ing that the approximation may be considered as a meaningful choice.

2.4.4 A tentative example

The major drawback of the Pöschl-Teller potential (2.70) is its restriction to struc-
ture appearing near γ = π/6. As a consequence, this potential is not applicable
to systems with more general triaxiality, as is the case for the triaxial deformed
Davidson potential, unless the triaxiality is maximal. However, it appears that
such cases do exist. According to the work by Esser [Ess97], a number of the Pt-
isotopes can be interpreted as triaxial rigid rotors in the vicinity of maximal triax-
iality. The most remarkable isotope is 196Pt, in which the value of γb is identically
30◦. So it would be interesting to see whether the Pöschl-Teller potential can be
applied to this situation. In addition to the Pöschl-Teller potential in γ (u2(γ)), a
harmonic oscillator u1(β) = ADβ

2 is chosen in the Wilets & Jean potential. This
leads to the energy expression

ELi
nβλR = h̄2

B2

√
AD(2nβ + 1 +

√
9
4 +ωLi ), (2.95)
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section 2.4 A solvable periodic potential

with ωLi given by equation (2.81). Similar to the discussion in the previous sec-
tion 2.3.3, the spectrum scales with the ratio

√
AD/B2, so we fix this parameter to

fit the 2+
1 state exactly. This leaves only one parameter µ to fit the energy spec-

trum. One may notice that the parameter BD of the Davidson potential is not
included in the fit. This is due to the particular shape of the Pöschl-Teller poten-
tial u2(γ). Contrary to the harmonic oscillator potential in γ, the parameter µ in
u2(γ) does not only control the γ softness of the potential, but also the β defor-
mation since it takes over the role of BD at the minimum (u2(γ) = µ holds for
γ = π/6). The result of the fit is given in figure 2.15
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Figure 2.15: Experimental (exp) and theoretical (theo) spectrum of 196Pt. The the-
oretical calculations are obtained with a Pöschl-Teller type of potential (2.70) with
µ = 8.07285. Bands are organised according to the occurrence of the spin in the spec-
trum. (L = R for the ground band and λ = µ + 1 band. The middle band has R = 4
for L = 5, R = 2 for L = 3, 4 and R = 0 for L = 2.

All states are quite well reproduced within 200 keV, with the exception of the
L = 4 state in the second band. This might be due to the peculiar band structure
as already discussed in section 2.4.1. There it was discussed that odd stagger-
ing modes arise when constructing the bands according to the occurency of the
spins in the spectrum, as is done to meet the experimental level scheme. This is
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a theoretical effect, and should not affect the description of the experimentally
observed bands. Otherwise, the aberrant behaviour of the L = 4 state might be
related to excitations outside of the collective quadrupole models space. Indeed,
apart from E2 quadrupole transitions observed by via Coulomb excitation, con-
siderable B(E4) strengths have been observed, pointing towards an admixture
of quadrupole and hexadecupole degrees of freedom [Set91, Chu98], something
which was studied in an extensive sd-g IBM-1 calculation7 in [Set91]. Moreover,
multiple 4+ states have been found in a small energy region (close to 1500 keV)
with considerable admixture of quadrupole and hexadecupole modes (dashed
lines in figure 2.15), so it is difficult to single out one of them and associate that
state with the (R = 2) 4+ state of the Pöschl-Teller potential.
Nevertheless, from the general resemblance of the energy spectrum between ex-
periment and theory, we can conclude that the Pöschl-Teller potential stood the
test. As a remark, the potential has been fitted to other Pt-isotopes that were
found to lie in the vicinity of maximal triaxiality. Although the errors obtained
by the different fits change little, it should be noted that 196Pt rendered the best
fit. This is not surprising, since it was already considered to be a case of maximal
triaxiality [Ess97]. Therefore, only the results of this isotope are presented here.

In conclusion, solvable schematic potentials provide a powerful tool in the global
understanding of collective modes of motion. We start from a typical physics
case we are aiming to understand. Then we can construct a phenomenologi-
cal potential, keeping the parametrisation as transparent as possible, keeping in
mind that the potential needs to be solvable (up to physically justified approxi-
mations). Once the potential is solved, the solutions can be confronted to experi-
mental data in order to grasp the influence of the parameters on the description
of the data. In the present chapter, these ideas have been applied to the case of
triaxiality. Two different potentials in the spirit of Wilets & Jean have been con-
structed, solved and compared to the bulk of experimental data. The general
conclusion is that, despite the schematic nature of the potential, a good overall
agreement of the models with the data is obtained, with physically meaningful
parameters as a result. However, if we intend to extend our understanding of
triaxial nuclei (e.g. fine tuning the quadrupole matrix elements in Q and B(E2)
values), we have to reach beyond schematic models. These observables are very
sensitive to the exact structure of the wave functions, so we need to solve more
general types of potentials in a non-approximative framework. How to do so will
be discussed in the following chapter.

7The g-boson is a hexadecupole boson with basis angular momentum L = 4 [Cas93].
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Algebra is generous: she often gives
more than is asked for.

Jean d’Alembert 3
GEOMETRICAL MODEL: A CARTAN’S

PERSPECTIVE

ABSTRACT

General potentials are discussed. Starting from a semi-classical argu-
ment, a general form of potential is deduced. It is shown how the
resulting Hamiltonian can be treated in an SU(1, 1) × O(5) Cartan-
Weyl basis. Matrix elements of the collective variables, as well as the
canonic conjugate momenta and boson creation- and annihilation op-
erators are obtained, making use of an intermediate state method in
the natural basis. Applications in the spirit of shape phase transitions
are presented.

Section 3.1 A general potential

3.1.1 A classical point of view

In the previous chapter, solvable schematic potentials have been used to study
triaxiality in the chain of Os (and Pt) isotopes within the framework of the col-
lective geometrical model. The parametrisation of these potentials is very trans-
parent, which makes them ideal tools to examine the physics one is interested in.
However, there is no underlying (microscopic) reason to justify the choice of the
particular form of the potential so its validation is always a posteriori. Therefore,
if we go beyond type-case studies (such as e.g. triaxiality) by trying to study col-
lectivity in all its facets, we need a general type of potential, supported by physics
arguments.
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The form of this general type of potential can be deduced from a semi-classical
argument. Starting from the nucleon wavefunctions, giving rise to a finite density
ρ(~r), one can make the interaction between the particles also density dependent.
As a result, the interaction density between two infinitesimal pieces of nuclear
matter can be written as (see figure 3.1)

V(r ,r )1 2

dr1

dr2

Figure 3.1: Classical construction of the collective potential V(α)

ρ(~r1)Vint(~r1,~r2)ρ(~r2)d~r1d~r2. (3.1)

As a consequence, the total interaction energy of the atomic nucleus is given by

Vtot =
∫

d~r1

∫
d~r2ρ(~r1)Vint(~r1,~r2)ρ(~r2). (3.2)

At this point, we can make use of the geometry of the problem. The collective
model assumes that the atomic nucleus exhibits a homogeneous density with a
sharp surface, described by the formula (2.2). The total interaction then becomes
(in spherical coordinates)

V(α) = ρ2
∫ R(θ1 ,φ1)

r1=0
r2

1dr1dΩ1

∫ R(θ2 ,φ2)

r2=0
r2

2dr2dΩ2Vint(~r1,~r2), (3.3)

It is noteworthy that Vtot has become a function of the collective variablesα. Thus,
the cumulative interaction energy of the atomic nucleus not only depends on the
microscopic interaction Vint, but also on the specific shape of the nucleus R(θ,φ),
which means that we can label Vtot(α) as a collective potential energy. The main
ingredient in (3.3) is the interaction Vint(~r1,~r2), which has typically a short-ranged
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attractive nature, such as e.g. the Yukawa potential. Unfortunately, extracting an
(analytic) expression for the collective potential V(α) from the Yukawa potential
is extremely involved and goes beyond the scope of this introduction [Kra79,
Jön96]. For this purpose we revert to a harmonic oscillator potential which is also
an attractive interaction, although in a much more schematic way

Vint(~r1,~r2) = k|~r1 −~r2|2 = k(r2
1 + r2

2 − 2r1r2 cosθ12), (3.4)

with cosθ12 the angle between the vectors~r1 and~r2. Substituting this interaction
in equation (3.3) gives

V(α) =kρ2
[∫

dΩ1

∫ R1

0
dr1r4

1

] [∫
dΩ2

∫ R2

0
dr2r2

2

]
+ kρ2

[∫
dΩ1

∫ R1

0
dr1r2

1

] [∫
dΩ2

∫ R2

0
dr2r4

2

]
− kρ2

∫
dΩ1

∫
dΩ2P1(cosθ12)

∫ R1

0
dr1r3

1

∫ R2

0
dr2r3

2, (3.5)

with Ri the shorthand notation for R(θi ,φi) and P1(cosθ12) the rank 1 Legendre
polynomial. Calculating the radial integrals, substituting the expression for the
radius R(θ,φ) and making use of the addition theorem and angular momentum
theory [Ros57] in order to evaluate the integrals of polynomials of the spherical
harmonics, we obtain the following expression for V(α) upto 4th order inα

V(α) = V0[(4π)2 + 52π(α ·α)− 26
√

10π
7 (α · [αα](2))

+ 285
7 (α ·α)2 +O(α5)], (3.6)

with V0 = 2kR8
0/15. This potential is a multipole decomposition where all terms

are angular momentum scalars. In principle, this potential is a polynomial in α
up to 8th order, but since the deviations from the spherical shape (R0) are small,
we can neglect the higher-order terms. There are some more remarkable features.
The potential (3.6) has a distinct spherical minimum, which is not surprising since
we have started from an attractive interaction. Because of the presence of the
α · [αα](2), there is a small tendency towards oblate excitations. This is due to the
attractive interaction, favouring a minimisation of the volume of the ellipsoid1.
The only unphysical property of the harmonic oscillator, regarding the nucleon-
nucleon interaction, is the range. Contrary to the Yukawa potential, the harmonic
oscillator does not exhibit a short range interaction. However, it has been found

1Which is remarkable as more prolate than oblate nuclei are observed in experimental data.
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that the typical range of the Yukawa potential (1.4fm) is still too large to suc-
cessfully describe heavy-ion elastic scattering data within this framework, so one
needed to modify the Yukawa potential for this purpose [Kra79, Jön96]. How-
ever, heavy-ion reactions require higher multipole order components of the sur-
face than only the quadrupole deformations. For low-energy nuclear structure
phenomena, we can limit the model to the quadrupole degrees of freedom α2,
which are small quantities by definition. As a consequence, every potential (3.3)
can be written as a multipole expansion in the collective variables (e.g. expression
(3.6)), with only the coefficients dependent of the interaction Vint. We obtain

V(α) = c2(α ·α) + c3(α · [αα](2)) + c4(α ·α)2

+ c5(α ·α)(α · [αα](2)) + c6(α ·α)3 + d6(α · [αα](2))2 + . . . (3.7)

3.1.2 Dealing with the general potential

This potential (3.7) was the starting point for the General Collective Model (GCM)
of the Frankfurt group [Gne71, Eis87]. Invoking higher-order terms, an extension
of the standard Bohr kinetic energy term was proposed

T̂GCM = 1
2B2
π̂ · π̂ + B3[π̂α](2) · π̂ + . . . . (3.8)

The physical motivation for this extension is that the higher-order multipoles in
the kinetic energy can correct for the irrotational assumption on the nature of the
mass parameter B2 (see chapter 2.3.3 and [Flü41, Eis87]). The total GCM Hamil-
tonian contains a significant number of free parameters to fit to the experimen-
tal data. These parameters can be obtained from a microscopic theory [Kum74],
though it is more pragmatic to directly fit them to the data. In this respect, Caprio
[Cap03] introduced a more tractable version of the GCM, where only the standard
Bohr kinetic energy term and potential energy terms up to order 4 are included.
The Hamiltonian then reduces to

Ĥ = 1
2B2
π̂ · π̂ + c2(α ·α) + c3(α · [αα](2)) + c4(α ·α)2. (3.9)

Although this Hamiltonian is a simplified version with respect to the total GCM
Hamiltonian, still it is able to account for most of the basic physics in the collective
model, such as the harmonic oscillator, axial- and γ-soft rotational structures.
This point can be clarified by transforming to the intrinsic representations of the
collective model. The potential then becomes

V(β,γ) = c2β
2 −

√
2
7 c3β

3 cos 3γ + c4β
4. (3.10)
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This potential exhibits a spherical minimum whenever (9c2
3 − 112c2c4) ≤ 0 and a

deformed minimum otherwise. In the latter case, an oblate minimum is found for
c3 < 0 and a prolate minimum for c3 > 0. These two regions are clearly separated
by c3 = 0, corresponding to a γ-independent potential. In all cases, it is assumed
that c4 > 0 to ensure the localisation of the wavefunction. Thus, we learn that the
potential (3.10) can reproduce the basis structures of the collective model, which
is already sufficient for certain atomic nuclei such as e.g. 102Pd [Cap03]. How-
ever, if we intend to include more complex structures such as triaxiality or shape
coexistence, we definitely have to incorporate higher order terms (up to order 6).

Once the potential (3.7) is chosen, we need a powerful tool to solve the above
Hamiltonian. One can start from a harmonic oscillator basis to construct the ma-
trix representation of the Hamiltonian. As already discussed in chapter 2.2.2,
the 5D harmonic oscillator is a γ-independent model and many techniques have
been proposed in the literature to construct the γ-independent basis wavefunc-
tions. Apart from those techniques, one particular method is worth mentioning
as it starts from the Cartan-Weyl [Car94, Wyb74, Iac06] reduction scheme of the
covering SU(1, 1) × O(5) group. This strategy was followed by Hecht [Hec65]
to construct fractional parentage coefficients for spin-2 phonons, that were sub-
sequently used by the Frankfurt group in order to obtain the necessary matrix
elements in the development of the GCM.

In the next section, the path of the natural Cartan-Weyl reduction is followed.
It will be shown that the matrix elements of the quadrupole variable can be ex-
tracted within this basis, without making use of the explicit representations in
terms of the collective variables [DB07]. In the end, it will turn out that the ba-
sic commutation relations of the collective variables suffice to fix the complete
structure of the algebra, and furthermore the dynamics of the Hamiltonian.

Section 3.2 Collective variables in the Cartan basis

3.2.1 The SU(1, 1)×O(5) group structure

We start from the standard commutation relations2

[πµ′ ,αµ ] = −ih̄δµµ′ , [πµ′ , πµ ] = 0, [αµ′ ,αµ ] = 0. (3.11)

2Note that the variables have become operators, though we silently omit the operator symbol to
avoid overload in the notation.
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chapter 3 Geometrical model: a Cartan’s perspective

To establish the SU(1, 1)×O(5) group structure, it is convenient to introduce the
following recoupling formula

(α ·α)(π∗ · π∗) =(α · π∗)(α · π∗) + 3ih̄(α · π∗)

− 2([απ∗](1) · [απ∗](1) + [απ∗](3) · [απ∗](3)), (3.12)

where the complex conjugate π∗ is introduced to ensure for good angular mo-
mentum transformation properties. The 3 operators (α ·α), (π∗ · π∗) and (α · π∗)
generate the algebra of an SU(1, 1) group, which forms a direct product together
with the O(5) group, built from the 10 operators [απ∗](1)

M and [απ∗](3)
M .

Both groups have a distinct physical interpretation in the intrinsic frame; SU(1, 1)
is strongly linked with the excitations in the radial variable β, whereas O(5) en-
compasses the γ-rotational excitations. Expressing the SU(1, 1) generators in
terms of the intrinsic variables, we obtain the realisation3 (2.34), with the only
difference that the quadratic Casimir of O(5) has been replaced by its eigen-
value v(v + 3). Comparison of the generator B0, the recoupling formula (3.12)
and equations (2.18 & 2.19) shows that the γ-rotational coupling coefficientω =
v(v + 3) can be associated with the Casimir operator of O(5). Therefore, we can
associate O(5) to the group encompassing the γ vibrations coupled to the rota-
tional structure.

In a first part, we concentrate on the application of the Cartan-Weyl scheme on
the O(5) group, leaving a freedom of choice for a suitable SU(1, 1) basis, since
there is an ambiguity involved whether the intrinsic or lab-frame realisation of
the collective variables is used.

3.2.2 The Cartan-Weyl reduction of O(5)

The commutation relations of the operators LM and OM, defined by

[απ∗](1)
M = ih̄√

10
LM, [απ∗](3)

M = ih̄√
10

OM, (3.13)

span the algebra of the O(5) group

[Lm, Lm′ ] = −
√

2〈1m1m′|1m + m′〉Lm+m′ , (3.14)

[Lm, Om′ ] = −2
√

3〈1m3m′|3m + m′〉Om+m′ , (3.15)

[Om, Om′ ] = −2
√

7〈3m3m′|1m + m′〉Lm+m′

+
√

6〈3m3m′|3m + m′〉Om+m′ . (3.16)

3(up to a rotation)
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section 3.2 Collective variables in the Cartan basis

The M = 0 projections {L0, O0} form an intuitive choice of the Cartan subalgebra
within the set {Lm, Om′}. This set has the advantage of incorporating the angular
momentum projection operator L0 in the physical group reduction chain O(5) ⊃
O(3) ⊃ O(2). Nevertheless, it is not explicitly contained in the natural Cartan-
Weyl reduction chain O(5) ⊃ O(4) ∼= SU(2) × SU(2) which can be realised
through the following rotation [Cor76, Row94b]:

X+ = − 1
5 (
√

2L+1 +
√

3O+1), Y+ = − 1√
5

O+3,

X− = 1
5 (
√

2L−1 +
√

3O−1), Y− = 1√
5

O−3,

X0 = 1
10 (L0 + 3O0), Y0 = 1

10 (3L0 −O0),
T− 1

2
1
2

= − 1√
50

(
√

3L+1 −
√

2O+1), T1
2

1
2

= 1√
10

O+2,

T1
2−

1
2

= 1√
50

(
√

3L−1 −
√

2O−1), T− 1
2−

1
2

= − 1√
10

O−2.

(3.17)

The group reduction is immediately clear, as the sets {X0, X±} and {Y0, Y±} both
span standard SU(2) algebras. Furthermore all generators of the one SU(2) al-
gebra commute with all generators of the other. The commutation relations are
given by

[X0, X±] = ±X±, [X+, X−] = 2X0,
[Y0, Y±] = ±Y±, [Y+, Y−] = 2Y0,
[X0, Y0] = 0, [X±, Y±] = [X±, Y∓] = 0.

(3.18)

So the reduction is O(5) ⊃ O(4) ∼= SU(2)X × SU(2)Y. The non-O(4) operators
Tµν can be identified as the 4 components of a bitensor of character { 1

2 , 1
2} within

the SU(2) × SU(2) scheme, according to Racah’s definition [Rac42]. The index
µ denotes the bitensor component relative to the SU(2)X group, while ν is the
component with respect to SU(2)Y

[X0, Tµν ] = µTµν , (3.19)

[X±, Tµν ] =
√

( 1
2 ∓µ)( 1

2 ±µ + 1)Tµ±1ν , (3.20)

[Y0, Tµν ] = νTµν , (3.21)

[Y±, Tµν ] =
√

( 1
2 ∓ ν)( 1

2 ± ν + 1)Tµν±1. (3.22)

The internal commutation relations of the T bitensor completes the Cartan-Weyl
structure, which can be found in table (3.1).

Once the commutation relations have been determined within the Cartan-Weyl
basis, it is instructive to construct the root diagram. Figure 3.2 shows 2 differ-
ent realisations of the same root diagram, depending on the choice of the Cartan
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∗ T− 1
2−

1
2

T1
2−

1
2

T− 1
2

1
2

T1
2

1
2

T− 1
2−

1
2

0 1
2 Y− 1

2 X−
1
2 (X0 + Y0)

T1
2−

1
2

− 1
2 Y− 0 1

2 (X0 −Y0) − 1
2 X+

T− 1
2

1
2

− 1
2 X− − 1

2 (X0 −Y0) 0 − 1
2 Y+

T1
2

1
2

− 1
2 (X0 + Y0) 1

2 X+
1
2 Y+ 0

Table 3.1: Multiplication table for the internal commutation relations of the T biten-
sor. The multiplication ∗ symbolises the standard commutation.

subalgebra. On the left side (Fig. 3.2(a)) a standard root diagram with respect to
the {X0, Y0} Cartan subalgebra is depicted, while on the right side (Fig. 3.2(b)),
a more physical subalgebra {L0, O0} is chosen as a reference frame. The lat-
ter framework has a visual advantage, since the projection of the generators on
the L0-axis is readily established. This enhances the insight in the problem of
constructing wavefunctions with good angular momentum from the weight dia-
grams in the Cartan-Weyl basis (see section 3.3).

T1/2,1/2

T−1/2,−1/2

T1/2,−1/2

T−1/2,1/2

_X

Y+

X+

_Y
Y0

X0

(a)

1/2

1

1/2 1

_(b)

+X

T1/2,−1/2

3

2

1

1 2 3
L

O0

0

Y_
T1/2,1/2

T−1/2,−1/2 Y+

X

T−1/2,1/2

Figure 3.2: The root diagrams of the O(5) algebra in the Cartan-Weyl basis for either
the (a) natural {X0 , Y0} or (b) physical {L0 , O0} Cartan subalgebra.

3.2.3 Representations of O(5)

Every subgroup in the group reduction chain provides an associated Casimir
operator. The quadratic Casimir operator of O(5) can be constructed from the
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section 3.2 Collective variables in the Cartan basis

Killing form [Wyb74]

C2[O(5)] = 1
5 (L · L + O ·O), (3.23)

= 2(X2 + Y2 − 2[TT](00)). (3.24)

with [TT](00) denoting the scalar Clebsch Gordan coupling with respect to both
SU(2)X and SU(2)Y, and X2 and Y2 the quadratic Casimir operator of the respec-
tive SU(2) groups

X2 = X2
0 + 1

2 (X+X− + X−X+), (3.25)

Y2 = Y2
0 + 1

2 (Y+Y− + Y−Y+). (3.26)

Starting from the explicit expressions of the generators (see appendix B.1) in
terms of the collective variables and the canonic conjugate momenta, the follow-
ing operator identity can be proven

X2 −Y2 ≡ 0, (3.27)

which is true in general for symmetric representations [Cor76]. The consequence
of this identity is that we are left with 4 operators that commute among each oth-
ers, i.e. the quadratic Casimir operator of O(5), the quadratic Casimir operator of
SU(2)X and SU(2)Y (X2 ≡ Y2) and the Cartan subalgebra {X0, Y0} which are the
respective linear Casimir operators of the O(2)X and O(2)Y subgroups. As a re-
sult, we obtain a representation which is determined by 4 independent quantum
numbers

|vXMX MY〉, (3.28)

with

C2[O(5)]|vXMX MY〉 = v(v + 3)|vXMX MY〉, (3.29)

X2|vXMX MY〉 = Y2|vXMX MY〉 = X(X + 1)|vXMX MY〉, (3.30)

X0|vXMX MY〉 = MX |vXMX MY〉, (3.31)

Y0|vXMX MY〉 = MY|vXMX MY〉. (3.32)

Now that the basis to work in is fixed, we can study the action of the generators
as they hop through the representations with fixed quantum number v. Acting
with the O(4) ∼= SU(2)X × SU(2)Y generators on |vXMX MY〉 is trivial because
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chapter 3 Geometrical model: a Cartan’s perspective

of the well-known angular momentum theory

X±|vXMX MY〉 =
√

(X ∓ MX)(X ± MX + 1)|vXMX ± 1, MY〉, (3.33)

X0|vXMX MY〉 = MX |vXMX MY〉, (3.34)

Y±|vXMX MY〉 =
√

(X ∓ MY)(X ± MY + 1)|vXMX , MY ± 1〉, (3.35)

Y0|vXMX MY〉 = MY|vXMX MY〉. (3.36)

The action of Tµν on |vXMX MY〉 is less trivial, though the bitensorial character of
T can be well exploited. Since T is a { 1

2
1
2} bitensor, it can only connect represen-

tations that differ 1
2 in quantum number X

Tµν |vXMX MY〉 = a|v, X + 1
2 , MX +µ, MY + ν〉

+ b|v, X − 1
2 , MX +µ, MY + ν〉. (3.37)

The coefficients a and b are not only dependent on v and X, but also on the pro-
jection quantum numbers µ, ν, MX and MY. However, these projections can be
filtered out by means of the Wigner-Eckart theorem. As the SU(2)X forms a direct
product with SU(2)Y, we can apply the theorem for both groups, independently
from each other. As a result, the dependency on the projection quantum num-
bers is completely factored out in the Wigner-3 j symbols. This leaves a double
reduced matrix element 4 to be calculated:

a = 〈v, X + 1
2 , MX +µ, MY + ν|Tµν |vXMX MY〉

= (−)k
(

X + 1
2

1
2 X

−MX −µ µ MX

)(
X + 1

2
1
2 X

−MY − ν ν MY

)
× 〈vX + 1

2 ||T||vX〉, (3.38)

b = 〈v, X − 1
2 , MX +µ, MY + ν|Tµν |vXMX MY〉

= (−)k
(

X − 1
2

1
2 X

−MX −µ µ MX

)(
X − 1

2
1
2 X

−MY − ν ν MY

)
× 〈vX − 1

2 ||T||vX〉, (3.39)

with k = 2X + 1− MX − MY −µ − ν.
In order to calculate the double reduced matrix element, we have 2 types of ex-
pressions at hand. On the one hand the internal commutation relations of the

4In this section, we formally use the single reduced matrix notation in order to express the double
reduced matrix, as any confusion between normal and double reduced matrix element is excluded
within this section.
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T bitensor (see table 3.1) and on the other hand the Casimir operator of O(5)
(3.24). First we consider the internal commutation relations, in which case it is
instructive to proceed by means of an example although the obtained result is
generally valid. Take e.g. the commutation relation [T− 1

2−
1
2
, T1

2
1
2
] = 1

2 (X0 + Y0),
and sandwich it with the state |vXMX MY〉

〈vXMX MY|T− 1
2−

1
2

T1
2

1
2
|vXMX MY〉 − 〈vXMX MY|T1

2
1
2

T− 1
2−

1
2
|vXMX MY〉

= 1
2 (MX + MY). (3.40)

At this point, we can insert a complete set of intermediate states |v′X′M′
X M′

Y〉
between the two generators.

∑
v′X′M′

X M′
Y

〈vXMX MY|T− 1
2−

1
2
|v′X′M′

X M′
Y〉〈v′X′M′

X M′
Y|T1

2
1
2
|vXMX MY〉

− ∑
v′X′M′

X M′
Y

〈vXMX MY|T1
2

1
2
|v′X′M′

X M′
Y〉〈v′X′M′

X M′
Y|T− 1

2−
1
2
|vXMX MY〉

= 1
2 (MX + MY). (3.41)

Due to symmetry considerations, a large amount of the matrix elements in the
summation are identically zero. First of all the SU(2)X × SU(2)Y bitensor char-
acter of T dictates strict selection rules with respect to X, MX and MY. As a result
the summation over X′, M′

X and M′
X is restricted to specific values which are

completely governed by the Wigner-3 j symbol in (3.38,3.39). Secondly, the com-
ponents Tµν of T are O(5) generators, which cannot alter the seniority quantum
number v. So, the summation over v′ is reduced to one seniority v′ = v.
Once the restriction in the summation is carried out, it is convenient to apply
the Wigner-Eckart theorem (3.38,3.39) and after some tedious algebra we obtain
a relationship for the double reduced matrix elements

〈vX||T||vX + 1
2 〉〈vX + 1

2 ||T||vX〉
2X + 2

−
〈vX||T||vX − 1

2 〉〈vX − 1
2 ||T||vX〉

2X

=
(2X + 1)2

2
. (3.42)

The same procedure can be followed for the quadratic Casimir of O(5). Sand-
wiching equation (3.24) with |vXMX MY〉 yields

〈vXMX MY|(T− 1
2

1
2

T1
2−

1
2
+ T1

2−
1
2

T− 1
2

1
2
− T− 1

2−
1
2

T1
2

1
2
− T1

2
1
2

T− 1
2−

1
2
)|vXMX MY〉

= v(v + 3)− 4X(X + 1). (3.43)
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By inserting again a complete set, applying the Wigner-Eckart theorem and mak-
ing use of the previously derived relation (3.42), we obtain the result

− 4〈vX||T||vX + 1
2 〉〈vX + 1

2 ||T||vX〉
= (v− 2X)(v + 2X + 3)(2X + 1)(2X + 2). (3.44)

This can slightly be rewritten, if one takes the Hermitian conjugate of the T biten-
sor into consideration.

T†µν = (−1)µ+νT−µ−ν . (3.45)

It can be proven that this leads towards the following expression for the double
reduced matrix elements

〈v, X||T||v, X + 1
2 〉
∗ = −〈v, X + 1

2 ||T||v, X〉. (3.46)

As a result, we can write

|〈vX||T||vX + 1
2 〉|

2 = 1
4 (v− 2X)(v + 2X + 3)(2X + 1)(2X + 2), (3.47)

|〈vX||T||vX − 1
2 〉|

2 = 1
4 (v− 2X + 1)(v + 2X + 2)(2X)(2X + 1). (3.48)

So the double reduced matrix elements are determined up to a phase. Here we fix
the relative sign of 〈vX||T||vX + 1

2 〉 and 〈vX||T||vX − 1
2 〉 to be opposite, as it is

the only way to obtain eigenstates with real angular momentum L in the physical
basis (see section (3.3)).

Once that the double reduced matrix elements are determined, they can be plugged
into equations (3.38,3.39), yielding the action of the bitensor T components.

T1
2

1
2
|vXMX MY〉

=
√

(X+MX+1)(X+MY+1)(v−2X)(v+2X+3)
2
√

(2X+1)(2X+2)
|vX + 1

2 , MX + 1
2 , MY + 1

2 〉

−
√

(X−MX)(X−MY)(v−2X+1)(v+2X+2)
2
√

(2X)(2X+1)
|vX − 1

2 , MX + 1
2 , MY + 1

2 〉, (3.49)

T1
2−

1
2
|vXMX MY〉

=
√

(X+MX+1)(X−MY+1)(v−2X)(v+2X+3)
2
√

(2X+1)(2X+2)
|vX + 1

2 , MX + 1
2 , MY − 1

2 〉

+
√

(X−MX)(X+MY)(v−2X+1)(v+2X+2)
2
√

(2X)(2X+1)
|vX − 1

2 , MX + 1
2 , MY − 1

2 〉, (3.50)
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T− 1
2

1
2
|vXMX MY〉

=
√

(X−MX+1)(X+MY+1)(v−2X)(v+2X+3)
2
√

(2X+1)(2X+2)
|vX + 1

2 , MX − 1
2 , MY + 1

2 〉

+
√

(X+MX)(X−MY)(v−2X+1)(v+2X+2)
2
√

(2X)(2X+1)
|vX − 1

2 , MX − 1
2 , MY + 1

2 〉, (3.51)

T− 1
2−

1
2
|vXMX MY〉

=
√

(X−MX+1)(X−MY+1)(v−2X)(v+2X+3)
2
√

(2X+1)(2X+2)
|vX + 1

2 , MX − 1
2 , MY − 1

2 〉

−
√

(X+MX)(X+MY)(v−2X+1)(v+2X+2)
2
√

(2X)(2X+1)
|vX − 1

2 , MX − 1
2 , MY − 1

2 〉. (3.52)

From these expressions it is clearly seen that no representations can be constructed
with X > v

2 , as the representations must have a positive definite norm. Combin-
ing these results with the standard quantum reduction rules for the SU(2) group,
we can label all basis states of a representation with fixed v as follows

X = 0 . . . v/2, MX = −X . . . X, MY = −X . . . X. (3.53)

Figure (3.3) gives a visual interpretation of the reduction rules for the representa-
tion v = 2.

3.2.4 Matrix elements of the collective coordinates

The Hamiltonian describing a system undergoing quadrupole collective excita-
tions contains a potential V(α), written in terms of the collective variables αµ .
Even orders of αµ are only dependent on β and can easily be handled by means
of the SU(1, 1) generators. Odd powers of αµ are a little more cumbersome, as
they introduce also a γ dependency. Indeed, it turns out that

[αα](2) ·α = −
√

2
7β

3 cos 3γ, (3.54)

can be considered as the building block of the γ part of the potential V(β,γ) in
the intrinsic frame. Therefore, matrix elements of αµ within a suitable basis are
needed for the construction of the matrix representation of the Hamiltonian. As
the chosen framework in the present paper is the Cartan-Weyl natural basis, we
proceed within this basis and show that all matrix elements can be calculated by
means of an algebraic procedure, similar to the one proposed in the preceding
section.
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Figure 3.3: Visual interpretation of an O(5) representation with v = 2. Every sphere
denotes a single basis state. The representation is organised in planes with distinct X
quantum number, which contain (2X + 1)2 (MX , MY) projection states.

First, we need to establish the bitensor character of the collective variables αµ
with respect to SU(2)X × SU(2)Y. Calculating the commutation relations of αµ
with the SU(2) generators (which is done most conveniently using the explicit
expressions given in appendix B.1), we can summarise them as

[X0,αλλµν ] = µαλλµν , (3.55)

[X±,αλλµν ] =
√

(λ∓µ)(λ±µ + 1)αλλµ±1ν , (3.56)

[Y0,αλλµν ] = ναλλµν , (3.57)

[Y±,αλλµν ] =
√

(λ∓ ν)(λ± ν + 1)αλλµν±1, (3.58)

where the 5 collective variables have been relabelled as follows{
α2 = α

1
2

1
2

1
2

1
2

,α1 = α
1
2

1
2

− 1
2

1
2
,α−1 = α

1
2

1
2

1
2−

1
2
,α−2 = α

1
2

1
2

− 1
2−

1
2

}
,{

α0 = α00
00

}
. (3.59)

This clearly states that the 5 projections ofα can be divided into the 4 components
of a { 1

2
1
2} bispinor and a single biscalar, according to Racah [Rac42]. We can again
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define double reduced matrix elements

〈vXMX MY|αλλµν |v′X′M′
X M′

Y〉

= (−)k
(

X λ X′

−MX µ M′
X

)(
X λ X′

−MY ν M′
Y

)
〈vX||αλ||v′X′〉, (3.60)

with k = 2X−MX −MY. It is noteworthy that, contrary to the matrix elements of
the generators Tµν , v′ is not necessarily equal to v. To obtain explicit expressions
for the double reduced matrix elements, we start from the commutation relations

[Tµν ,α
1
2

1
2

µ′ν′ ] =
(−)(µ+ν)
√

2
δ−µµ′δ−νν′α

00
00 , (3.61)

[Tµν ,α00
00 ] =

1√
2
α

1
2

1
2

µν , (3.62)

[αλλµν ,αλ
′λ′
µ′ν′ ] = 0. (3.63)

First a relationship between 〈vX||α0||v′X′〉 and 〈vX||α 1
2 ||v′X′〉 needs to be es-

tablished. This can be accomplished using the commutation relations (3.61). We

consider the specific case [T1
2

1
2
,α

1
2

1
2

1
2

1
2
] = 0 and construct the following matrix ele-

ments

〈vX ± 1
2 , MX + 1

2 , MY + 1
2 |[T1

2
1
2
,α

1
2

1
2

1
2

1
2
]|v′X ∓ 1

2 , MX − 1
2 , MY − 1

2 〉, (3.64)

〈vXMX MY|[T1
2

1
2
,α

1
2

1
2

1
2

1
2
]|v′XMX − 1, MY − 1〉, (3.65)

in terms of the double reduced matrix elements. This can be achieved by insert-
ing a complete set of basis states between the generator T1

2
1
2

and the variable

α
1
2

1
2

1
2

1
2

, then making use of the Tµν matrix elements (3.49) obtained in the previous

subsection and the Wigner-Eckart theorem (3.60). The outcome of these tedious
although straightforward calculations are, respectively for (3.64) (with minus and
positive sign) and (3.65)

〈vX − 1
2 ||α

1
2 ||v′X〉

√
(v′ − 2X)(v′ + 2X + 3)√

2X

− 〈vX||α
1
2 ||v′X + 1

2 〉
√

(v− 2X + 1)(v + 2X + 2)√
2X + 2

= 0, (3.66)
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〈vX + 1
2 ||α

1
2 ||v′X〉

√
(v′ − 2X + 1)(v′ + 2X + 2)√

2X + 2

− 〈vX||α
1
2 ||v′X − 1

2 〉
√

(v− 2X)(v + 2X + 3)√
2X

= 0, (3.67)

〈vX + 1
2 ||α

1
2 ||v′X〉√

(v− 2X)(v + 2X + 3)

[
(v′ + 1)(v′ + 2)

2X
− (v + 1)(v + 2)

2X + 2

]
(3.68)

+
〈vX||α 1

2 ||v′X + 1
2 〉√

(v′ − 2X)(v′ + 2X + 3)

[
(v + 1)(v + 2)

2X
− (v′ + 1)(v′ + 2)

2X + 2

]
= 0.

The same procedure can be repeated for the commutation relation [T1
2

1
2
,α

1
2

1
2

− 1
2

1
2
] =

0. We obtain again (3.66) and (3.67), accompanied by the following expression

〈vX+ 1
2 ||α

1
2 ||v′X〉√

(v−2X)(v+2X+3)

[
(v− 2X)(v + 2X + 3)− (v′ − 2X + 1)(v′ + 2X + 2)

]
+ 〈vX||α

1
2 ||v′X+ 1

2 〉√
(v′−2X)(v′+2X+3)

[
(v− 2X + 1)(v + 2X + 2)− (v′ − 2X)(v′ + 2X + 3)

]
= 0. (3.69)

Combining (3.68) with (3.69) gives a homogeneous set of two equations in two
variables 〈vX + 1

2 ||α
1
2 ||v′X〉 and 〈vX||α 1

2 ||v′X + 1
2 〉, rendering the trivial zero so-

lution, unless the determinant of the associated matrix identically vanishes. This
is only possible when v′ = v ± 1, which proves the common knowledge that α
forms an O(5)-tensor of rank 1.

Finally, we repeat the procedure for [T1
2

1
2
,α

1
2

1
2

− 1
2−

1
2
] = − 1√

2
α00

00 . Besides (3.66) and

(3.67), we obtain the expression

〈vX+ 1
2 ||α

1
2 ||v′X〉√

(v−2X)(v+2X+3)

[
X(v′ + 1)(v′ + 2)

− (X + 1)(v + 1)(v + 2) + 2(2X + 1)2
]

+ 〈vX||α
1
2 ||v′X+ 1

2 〉√
(v′−2X)(v′+2X+3)

[
X(v + 1)(v + 2)

− (X + 1)(v′ + 1)(v′ + 2) + 2(2X + 1)2
]

= −2
√

2
√

(2X + 1)(2X + 2)〈vX||α0||v′X〉. (3.70)
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Solving the set of equations (3.69) and (3.70) (or equivalently (3.68) and (3.70))
results in expressions of all possible double reduced matrix elements of α

1
2 as a

function of the double reduced matrix elements ofα0.
From this point on, we will explicitly take into account that the α variable con-
nects representations with ∆v = 1, omitting all other matrix elements which are
identically zero. For v′ = v + 1 we obtain

〈v, X + 1
2 ||α

1
2 ||v + 1, X〉 = − 1√

2

√
2X+2
2X+1

√
v−2X

v+2X+3 〈vX||α0||v + 1, X〉, (3.71)

〈v, X||α
1
2 ||v + 1, X + 1

2 〉 = 1√
2

√
2X+2
2X+1

√
v+2X+4
v−2X+1 〈vX||α0||v + 1, X〉, (3.72)

and for v′ = v− 1

〈v, X + 1
2 ||α

1
2 ||v− 1, X〉 = 1√

2

√
2X+2
2X+1

√
v+2X+3

v−2X 〈vX||α0||v− 1, X〉, (3.73)

〈v, X||α
1
2 ||v− 1, X + 1

2 〉 = − 1√
2

√
2X+2
2X+1

√
v−2X−1
v+2X+2 〈vX||α0||v− 1, X〉. (3.74)

So, we only have to determine the biscalar double reduced matrix elements. Al-
though the commutation relations (3.63) seem trivial, they are convenient in the
derivation of the {00} double reduced matrix elements. If we consider only the
non-trivial commutation relations for which λ = 1

2 and λ′ = 1
2 , and apply again

the same procedure which has been used throughout the present paper, we obtain
the following result:

∑v′〈vX||α 1
2 ||v′X + 1

2 〉〈v′X + 1
2 ||α

1
2 ||vX〉

2X + 2

− ∑v′〈vX||α 1
2 ||v′X − 1

2 〉〈v′X − 1
2 ||α

1
2 ||vX〉

2X
= 0. (3.75)

Now, taking all derived expressions (3.66),(3.67) and (3.71) to (3.74) into account,
we can rewrite the relation (3.75) as

(2v + 5)
(v− 2X + 1)(v + 2X + 3)

〈vX||α0||v + 1X〉〈v + 1X||α0||vX〉

=
(2v + 1)

(v + 2X + 2)(v− 2X)
〈vX||α0||v− 1X〉〈v− 1X||α0||vX〉. (3.76)

This relation differs from the previously derived expressions with respect to the
quantum numbers. The expressions (3.66) to (3.74) relate matrix elements with
different X connections, though the seniority connection (v to v′ = v ± 1) was
fixed. Now, (3.76) relates matrix elements with different seniority connection,
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leaving the X quantum number unaltered.
At last, in order to obtain explicit expressions, we return to the geometry of the
problem. It has been mentioned earlier that the operatorα ·α commutes with all
the generators of O(5), making it an O(5) scalar. Therefore, this operator can be
treated as a constant with respect to the O(5) scheme. We call this constant β2,
referring to the radial deformation parameter in (2.5). As a consequence, we can
write

〈vXMX MY|α ·α|vXMX MY〉 = β2. (3.77)

The procedure used culminates into closed expressions of the matrix elements.
By inserting a complete set of basis states between the variables of (3.77), we can
rewrite this expression in terms of double reduced matrix elements:

β2 =
1

(2X + 1)2 ∑
v′

[〈vX||α0||v′X〉〈v′X||α0||vX〉

+ 〈vX||α
1
2 ||v′X + 1

2 〉〈v
′X + 1

2 ||α
1
2 ||vX〉

+ 〈vX||α
1
2 ||v′X − 1

2 〉〈v
′X − 1

2 ||α
1
2 ||vX〉]. (3.78)

All these different matrix elements can be reduced to a single one by means of the
reduction rules (3.66) to (3.76). As a result, we obtain

〈vX||α0||v + 1X〉〈v + 1X||α0||vX〉 = (v−2X+1)(v+2X+3)
(2v+3)(2v+5) (2X + 1)2β2 (3.79)

〈vX||α0||v− 1X〉〈v− 1X||α0||vX〉 = (v−2X)(v+2X+2)
(2v+1)(2v+3) (2X + 1)2β2. (3.80)

Taking into account thatα†0 = α0, we can write

〈vX||α0||v′X〉∗ = 〈v′X||α0||vX〉, (3.81)

and summarise

|〈v, X||α0||v + 1, X〉|2 = (v−2X+1)(v+2X+3)
(2v+3)(2v+5) (2X + 1)2β2, (3.82)

|〈v, X||α0||v− 1, X〉|2 = (v−2X)(v+2X+2)
(2v+1)(2v+3) (2X + 1)2β2, (3.83)

which is equivalent to

〈v, X||α0||v + 1, X〉 =
√

(v−2X+1)(v+2X+3)
(2v+3)(2v+5) (2X + 1)β, (3.84)

〈v, X||α0||v− 1, X〉 =
√

(v−2X)(v+2X+2)
(2v+1)(2v+3) (2X + 1)β, (3.85)
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becauseα0 is a hermitian operator.
Making use of the relations (3.71-3.74), we can construct all double reduced ma-
trix elements of theα variable. Taking the appropriate Wigner-3 j coefficients into
account, the total matrix elements of the α variable can easily be derived. As an
example we evaluate the matrix element

〈vXMX MY|α00
00 |v′XMX MY〉 (3.86)

= (−)k
(

X 0 X
−MX 0 MX

)(
X 0 X

−MY 0 MY

)
〈vX||α0||v′, X〉,

with k = 2X − MX − MY. This leads to the closed expression

〈vXMX MY|α00
00 |v + 1, XMX MY〉 = β

√
(v−2X+1)(v+2X+3)

(2v+3)(2v+5) , (3.87)

〈vXMX MY|α00
00 |v− 1, XMX MY〉 = β

√
(v−2X)(v+2X+2)

(2v+1)(2v+3) . (3.88)

There is a subtlety involved with equation (3.77). β2 can either be regarded as
the radial variable in the 5-dimensional Euclidean space, which is a constant by
definition under rotations of the O(5) orthogonal group, or it can be recognised
as a generator of the aforementioned SU(1, 1) algebra. In the latter scheme, the
O(5) Hilbert space needs to be extended to incorporate this SU(1, 1) basis. Then,
it is more convenient to move over to a boson creation and annihilation realisation

b†µ = 1√
2
(
√

kαµ + i√
kh̄
π∗µ), b̃µ = 1√

2
(
√

kαµ − i√
kh̄
π∗µ), (3.89)

with [bµ , b†ν ] = δµν and b̃µ = (−1)µb−µ , as it gives immediately rise to the
SU(1, 1) algebra spanned by

B+ = 1
2 b† · b†, B− = 1

2 b̃ · b̃, B0 = 1
4 (b† · b̃ + b̃ · b†), (3.90)

which is closely connected to the SU(1, 1) algebra, defined with the intrinsic re-
alisation (see equations (2.34) in section 2.2.2 ). The only difference between the
SU(1, 1) algebra in the previous chapter and this SU(1, 1) is that the quadratic
Casimir of O(5), emerging from (3.90) has been replaced by its eigenvalue v(v +
3). This will be discussed in more detail in section 3.2.6.
A similar technique, as presented for the collective variables in the O(5) basis, can
be applied to obtain the matrix elements of the boson creation and annihilation
operators (3.89) in the SU(1, 1) basis. However, as the boson operators are built
from the collective variables ánd the canonic conjugate momenta, we also require
the matrix elements of the canonical conjugate momenta in the O(5) basis.
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chapter 3 Geometrical model: a Cartan’s perspective

3.2.5 Matrix elements of the canonical conjugate momenta

The calculation of the matrix elements of π∗µ is very parallel to the algorithm,
discussed in the previous section. Indeed, it can be proven that the canonical
conjugate momenta have the same transformation properties as the variables in
the Cartan-Weyl basis. Relabelling the conjugate momenta as{

π∗2 = π∗
1
2

1
2

1
2

1
2
, π∗1 = π∗

1
2

1
2

− 1
2

1
2
, π∗−1 = π∗

1
2

1
2

1
2−

1
2
, π∗−2 = π∗

1
2

1
2

− 1
2−

1
2

}
,{

π∗0 = π∗00
00

}
, (3.91)

we can see that the five projections can also be divided in four components of
a { 1

2
1
2} bispinor and a {00} biscalar, by means of the definition given by Racah

[Rac42]

[X0, π∗λλµν ] = µπ∗λλµν , (3.92)

[X±, π∗λλµν ] =
√

(λ∓µ)(λ±µ + 1)π∗λλµ±1ν , (3.93)

[Y0, π∗λλµν ] = νπ∗λλµν , (3.94)

[Y±, π∗λλµν ] =
√

(λ∓ ν)(λ± ν + 1)π∗λλµν±1. (3.95)

Moreover, the commutation relations with the non-SU(2) generators Tµν give the
same results as equations (3.61) and (3.62)

[Tµν , π∗
1
2

1
2

µ′ν′ ] =
(−)(µ+ν)
√

2
δ−µµ′δ−νν′π

∗00
00, (3.96)

[Tµν , π∗00
00] =

1√
2
π∗

1
2

1
2

µν . (3.97)

As a consequence, we can copy the results from the previous section, as long as
they are only relying on the bitensor and biscalar transformation properties in the
Cartan-Weyl basis. We obtain for v′ = v + 1

〈vX + 1
2 ||π

∗ 1
2 ||v + 1X〉 = − 1√

2

√
2X+2
2X+1

√
v−2X

v+2X+3 〈vX||π∗0||v + 1X〉, (3.98)

〈vX||π∗
1
2 ||v + 1, X + 1

2 〉 = 1√
2

√
2X+2
2X+1

√
v+2X+4
v−2X+1 〈vX||π∗0||v + 1, X〉, (3.99)

and for v′ = v− 1

〈vX + 1
2 ||π

∗ 1
2 ||v− 1, X〉 = 1√

2

√
2X+2
2X+1

√
v+2X+3

v−2X 〈vX||π∗0||v− 1, X〉, (3.100)

〈vX||π∗
1
2 ||v− 1X + 1

2 〉 = − 1√
2

√
2X+2
2X+1

√
v−2X−1
v+2X+2 〈vX||π∗0||v− 1X〉, (3.101)
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with 〈vX||π∗λ||v′X′〉 the double reduced matrix elements, defined by

〈vXMX MY|π∗λλµν |v′X′M′
X M′

Y〉

= (−)k
(

X λ X′

−MX µ M′
X

)(
X λ X′

−MY ν M′
Y

)
〈vX||π∗λ||v′X′〉, (3.102)

(k = 2X − MX − MY).
So now we are at the point of calculating the biscalar double reduced matrix ele-
ment. Since theα double reduced matrix elements are known, it is convenient to
start from the generator (see appendix B.1)

X+ = i
h̄ (α2π

∗
−1 −α−1π

∗
2 ). (3.103)

Sandwiching this generator and making use of the intermediate state method,
together with reduction rules (3.98 to 3.101) gives

2v+5
(v−2X+1)(v+2X+3) 〈vX||α0||v + 1, X〉〈v + 1, X||π∗0||vX〉

− 2v+1
(v+2X+2)(v−2X) 〈vX||α0||v− 1, X〉〈v− 1, X||π∗0||vX〉

= −ih̄(2X + 1)2. (3.104)

Now we can insert the geometry of the problem. If we take the SU(1, 1) generator
α · π∗, it can be proven that the intrinsic realisation of this operator is

α · π∗ = ih̄β
∂

∂β
. (3.105)

Once again, this operator can be considered as a constant in the O(5) basis, since
the SU(1, 1) generators commute with all generators of O(5). Sandwiching this
generator results in

(v+3)(2v+5)
(v+2X+3)(v−2X+1) 〈vX||α0||v + 1, X〉〈v + 1, X||π∗0||vX〉

+ v(2v+1)
(v+2X+2)(v−2X) 〈vX||α0||v− 1, X〉〈v− 1, X||π∗0||vX〉

= ih̄(2X + 1)2β
∂

∂β
. (3.106)

Combining equation (3.104) with (3.106), and substituting the closed expressions
for the double reducedα matrix elements, we obtain

〈v + 1, X||π∗0||vX〉 =
√

(v+2X+3)(v−2X+1)
(2v+3)(2v+5) (2X + 1)ih̄

[
∂

∂β
− v
β

]
, (3.107)

〈v− 1, X||π∗0||vX〉 =
√

(v+2X+2)(v−2X)
(2v+1)(2v+3) (2X + 1)ih̄

[
∂

∂β
+

v + 3
β

]
, (3.108)
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or, inserting the Wigner-3 j symbols

〈v + 1XMX MY|π∗0|vXMX MY〉 =
√

(v+2X+3)(v−2X+1)
(2v+3)(2v+5) ih̄

[
∂

∂β
− v
β

]
,

(3.109)

〈v− 1XMX MY|π∗0|vXMX MY〉 =
√

(v+2X+2)(v−2X)
(2v+1)(2v+3) ih̄

[
∂

∂β
+

v + 3
β

]
.

(3.110)

These expressions in terms of the partial derivatives in β are remarkable though
not surprising, as similar expressions have been found for the canonical conju-
gate momentum in the framework of the factorisation method [Inf51, Row05a]5.
Nevertheless, we can verify the validity of equation (3.109) and (3.110) twofold.
The first verification checks the hermiticity of the matrix elements. We know that
π
†
0 = π0 so the hermitian conjugates of the matrix elements6 read

〈vXMX MY|π∗0 |v′XMX MY〉† = 〈v′XMX MY|π∗0 |vXMX MY〉. (3.111)

We proceed with v′ = v− 1,

〈vXMX MY|π∗0 |v− 1XMX MY〉†

=
√

(v+2X+2)(v−2X)
(2v+1)(2v+3) (−ih̄)

[(
∂

∂β

)†
− v− 1

β

]
. (3.112)

It can be shown by means of equation (3.105) that(
∂

∂β

)†
= − 4

β
− ∂

∂β
, (3.113)

which confirms the first check, when substituting in equation (3.112).
A second check involves the kinetic energy term π∗ · π∗. Rewriting equation
(3.12), making use of the intrinsic variable β while recognising the quadratic Ca-
simir of O(5) (3.24), we obtain an alternative expression for the kinetic energy

π∗ · π∗ = −h̄2
(

1
β4

∂

∂β
β4 ∂

∂β
− C2[O(5)]

β2

)
. (3.114)

5Differences with formulas (107,108) of [Row05a] are due to the inclusion of the volume element
β4 in the mentioned work.

6The O(5) matrix elements are actually still operators in the SU(1, 1) space, hence the hermitian
conjugate instead of complex conjugate.
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The matrix element 〈vXMX MY|π∗ · π∗|vXMX MY〉 then becomes

〈vXMX MY|π∗ · π∗|vXMX MY〉 = −h̄2
(

1
β4

∂

∂β
β4 ∂

∂β
− v(v + 3)

β2

)
, (3.115)

as only the quadratic Casimir affects the O(5) basis state. To check the ma-
trix elements of the conjugate momenta, we can apply the intermediate state
method on the matrix element, combining it with the trivial commutation rela-
tion [π∗µ , π∗ν ] = 0:

〈vXMX MY|π∗ · π∗|vXMX MY〉

= 1
(2X+1)2

(2v+3)(2v+5)
(v+2X+3)(v−2X+1) 〈vX||π∗0||v + 1, X〉〈v + 1, X||π∗0||vX〉

= −h̄2
(

∂

∂β
+

v + 4
β

)(
∂

∂β
− v
β

)
= −h̄2

(
1
β4

∂

∂β
β4 ∂

∂β
− v(v + 3)

β2

)
, (3.116)

which is exactly the expression of the kinetic energy operator in the Cartan-Weyl
basis. More than just a test for the matrix elements of the conjugate momenta,
these checks can also act as verifications for the matrix elements of the collective
coordinates, as they where used during the calculation of the conjugate momenta
matrix elements.

3.2.6 SU(1, 1) from the U(5) boson realisation

Starting from the boson creation and annihilation operators (3.89), several alge-
bras can be created. One among them is the U(5) algebra, which is spanned by
the following 25 generators [Iac87, Fra94]

GLM = [b† b̃]L
M, (3.117)

with L = 0, . . . , 4 and M = −L, . . . , L. Filtering the odd L generators from the set
of U(5) generators, we obtain the 10 generators of O(5), which comprises the 3
angular momentum generators of O(3) (L = 1). It is noteworthy that this O(5)
algebra equals the one defined by LM and OM, defined in equation (3.13), up to a
factor.
Another algebra is the one associated with SU(1, 1) [Ui68, Ari76, Ari79]. Indeed,
reconsidering the operators (3.90)

B+ = 1
2 b† · b†, B− = 1

2 b̃ · b̃, B0 = 1
4 (b† · b̃ + b̃ · b†), (3.118)
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we notice that they close under the standard SU(1, 1) commutation relations

[B0, B±] = ±B±, [B−, B+] = 2B0. (3.119)

The action of these generators on a given representation |λn〉 is [Row96]

B+|λn〉 =
√

(λ+ n)(n + 1)|λn + 1〉, (3.120)

B−|λn〉 =
√

(λ+ n− 1)n|λn− 1〉, (3.121)

B0|λn〉 = 1
2 (λ+ 2n)|λn〉, (3.122)

CSU(1,1)|λn〉 = 1
4λ(λ− 2)|λn〉, (3.123)

where the quadratic Casimir operator is given by [Wyb74]

CSU(1,1) = B2
0 − B0 − B+B−. (3.124)

This operator, expressed in terms of the (α,π∗) realisation, renders the following
important identity

CSU(1,1) = 1
4 (C2[O(5)] + 5

4 ). (3.125)

As a consequence, the seniority v can be related to the Casimir quantum number
λ of SU(1, 1):

λ(λ− 2) = v(v + 3) + 5
4 → λ = v + 5

2 . (3.126)

This relation points out that, although the mutual generators of SU(1, 1) and
O(5) commute, the two algebras are still connected by means of the quadratic
Casimir quantum number, i.e. the seniority v. Consequently, we require both
bases to calculate the matrix elements of the boson creation and annihilation op-
erators. We start from the SU(1, 1) basis, defined by |λn〉, and later incorporate
the O(5) Cartan-Weyl representations. First, we deduce selection rules for the
matrix elements in the SU(1, 1) basis. For this purpose, we write down the com-
mutation relations

[B−, b†µ ] = b̃µ , [B−, b̃µ ] = 0,
[B0, b†µ ] = 1

2 b†µ , [B0, b̃µ ] = − 1
2 b̃µ ,

[B+, b†µ ] = 0, [B+, b̃µ ] = −b†µ .
(3.127)

Calculating the matrix elements of the commutation relations with B0

〈λ′n′|[B0, b†µ ]|λn〉 = 1
2 〈λ

′n′|b†µ |λn〉, (3.128)

〈λ′n′|[B0, b̃µ ]|λn〉 = − 1
2 〈λ

′n′|b̃µ |λn〉, (3.129)
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gives rise to the selection rules

λ′ + 2n′ − λ− 2n− 1 = 0 for 〈λ′n′|b†µ |λn〉, (3.130)

λ′ + 2n′ − λ− 2n + 1 = 0 for 〈λ′n′|b̃µ |λn〉. (3.131)

More selection rules can be obtained from the other commutation relations:

〈λ′n′ + 1|[B+, b†µ ]|λn− 1〉 = 0, (3.132)

〈λ′n′ + 1|[B+, b̃µ ]|λn〉 = −〈λ′n′ + 1|b†µ |λn〉, (3.133)

〈λ′n′|[B−, b†µ ]|λn〉 = 〈λ′n′|b̃µ |λn〉, (3.134)

〈λ′n′|[B−, b̃µ ]|λn + 1〉 = 0. (3.135)

The above relations result in the following four equations√
(λ′ + n′)(n′ + 1)〈λ′n′|b†µ |λn− 1〉 −

√
(λ+ n− 1)n〈λ′n′ + 1|b†µ |λn〉

= 0, (3.136)√
(λ′ + n′)(n′ + 1)〈λ′n′|b̃µ |λn〉 −

√
(λ+ n)(n + 1)〈λ′n′ + 1|b̃µ |λn + 1〉

= −〈λ′n′ + 1|b†µ |λn〉, (3.137)√
(λ′ + n′)(n′ + 1)〈λ′n′ + 1|b†µ |λn〉 −

√
(λ+ n− 1)n〈λ′n′|b†µ |λn− 1〉

= 〈λ′n′|b̃µ |λn〉, (3.138)√
(λ′ + n′)(n′ + 1)〈λ′n′ + 1|b̃µ |λn + 1〉 −

√
(λ+ n)(n + 1)〈λ′n′|b̃µ |λn〉

= 0, (3.139)

which is a homogeneous set of four equations in four variables (the matrix el-
ements). This means that these matrix elements are identically zero unless the
determinant of the matrix identically vanishes. Solving the determinant, real-
ising that the four matrix elements are chosen such that the selection rule λ′ +
2n′ − λ − 2n + 1 = 0 holds (3.130 & 3.131) for all of them, we obtain the general
selection rules

{λ′ = λ− 1, n′ = n}, (3.140)

{λ′ = λ+ 1, n′ = n− 1}. (3.141)

Thus the non-vanishing matrix elements are

〈λ+ 1, n|b†µ |λn〉, 〈λ+ 1, n− 1|b̃µ |λn〉,
〈λ− 1, n + 1|b†µ |λn〉, 〈λ− 1, n|b̃µ |λn〉.

(3.142)
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Although we already knew that αµ and π∗µ are v = 1 O(5) tensors, this was
not explicitly taken into account in the calculation, but emerged naturally from
the selection criteria. However, these selection rules also contain a physical in-
terpretation. It is comprehended from the definition of the generator B+ that n
denotes the number of boson pairs coupled to angular momentum zero. Since
B0 counts the total number of bosons, λ can be associated to the number of pairs
not coupled to zero, i.e. the seniority v. To conclude, the allowed solutions of the
homogeneous set of equations are summarised. Some solutions relate the matrix
elements with different pair number n

√
λ+ n + 1〈λ+ 1, n|b†µ |λn〉 =

√
λ+ n〈λ+ 1, n + 1|b†µ |λn + 1〉, (3.143)

√
n + 1〈λ− 1, n|b†µ |λ, n− 1〉 =

√
n〈λ− 1, n + 1|b†µ |λn〉, (3.144)

and
√

n〈λ+ 1, n|b̃µ |λn + 1〉 =
√

n + 1〈λ+ 1, n− 1|b̃µ |λn〉, (3.145)
√
λ+ n− 1〈λ− 1, n + 1|b̃µ |λ, n + 1〉 =

√
λ+ n〈λ− 1, n|b̃µ |λn〉, (3.146)

while other relate the matrix elements of creation and annihilation operators

√
n〈λ+ 1, n|b†µ |λn〉 =

√
λ+ n〈λ+ 1, n− 1|b̃µ |λn〉, (3.147)

√
λ+ n− 1〈λ− 1, n + 1|b†µ |λn〉 =

√
n + 1〈λ− 1, n|b̃µ |λn〉. (3.148)

From this point onwards, we proceed by including the O(5) basis. As the creation
and annihilation operator matrix elements can be related by means of equation
(3.147) and (3.148), we only consider b† (b̃ is analogous). Both the collective coor-
dinatesαµ and canonical conjugate momenta π∗µ can be divided in the four com-
ponents of a bispinor and a single biscalar in the SU(2)X × SU(2)Y subgroup of
the Cartan-Weyl reduction (see equation (3.59) and (3.91)). As the bosons creation
operators are merely a sum of the two (see equation 3.89), the transformation
properties are preserved. We can now relabel the operators{

b†2 = b†
1
2

1
2

1
2

1
2
, b†1 = b†

1
2

1
2

− 1
2

1
2
, b†−1 = b†

1
2

1
2

1
2−

1
2
, b†−2 = b†

1
2

1
2

− 1
2−

1
2

}
, (3.149){

b†0 = b†
00
00

}
. (3.150)

Applying the Wigner-Eckart theorem twice we can extract a double reduced ma-
trix element. The only difference with the previously defined double matrix ele-
ments is the presence of the SU(1, 1) quantum number n and λ. However, as the
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latter quantum number is in one-to-one correspondence with v (λ = v + 5/2), it
will be omitted not to overload the notation. So we can write

〈nvXMX MY|b†
λλ

µν |n′v′X′M′
X M′

Y〉 (3.151)

= (−)k
(

X λ X′

−MX µ M′
X

)(
X λ X′

−MY ν M′
Y

)
〈nvX||b†λ||n′v′X′〉,

with k = 2X − MX − MY. The commutation relations of b† with the components
of the T bispinor are also identical to (3.61-3.62) and (3.96-3.97)

[Tµν , b†
1
2

1
2

µ′ν′ ] =
(−)(µ+ν)
√

2
δ−µµ′δ−νν′b

†00
00, (3.152)

[Tµν , b†
00
00] =

1√
2

b†
1
2

1
2

µν . (3.153)

As a result, we can write all { 1
2

1
2} double reduced matrix elements as a function

of {00}, similar to equations (3.71) to (3.74). Taking the SU(1, 1) selection rules
for n and λ into account (3.140 & 3.141), we can incorporate them in the relations
for the matrix elements. Thus we obtain for v′ = v + 1:

〈nv, X + 1
2 ||b

†
1
2 ||n− 1, v + 1, X〉

= − 1√
2

√
2X+2
2X+1

√
v−2X

v+2X+3 〈vX||b†0||n− 1, v + 1, X〉, (3.154)

〈nv, X||b†
1
2 ||n− 1, v + 1, X + 1

2 〉

= 1√
2

√
2X+2
2X+1

√
v+2X+4
v−2X+1 〈vX||b†0||n− 1, v + 1, X〉, (3.155)

and for v′ = v− 1:

〈nv, X + 1
2 ||b

†
1
2 ||n, v− 1, X〉

= 1√
2

√
2X+2
2X+1

√
v+2X+3

v−2X 〈nvX||b†0||n, v− 1, X〉, (3.156)

〈nv, X||b†
1
2 ||n, v− 1, X + 1

2 〉

= − 1√
2

√
2X+2
2X+1

√
v−2X−1
v+2X+2 〈nvX||b†0||n, v− 1, X〉. (3.157)

At the end, we only need to determine two double reduced {00}matrix elements.
For this purpose, we have two additional expressions at hand: the commutation
relation [b̃0, b†0] = 1 and the SU(1, 1) generator B+ = 1

2 b† · b†. We construct the
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following matrix elements

〈nvXMX MY|[b̃0, b†0]|nvXMX MY〉 = 1, (3.158)

〈n + 1, vXMX MY|b† · b†|nvXMX MY〉 = 2
√

(λ+ n)(n + 1). (3.159)

Applying the intermediate state method, making use of the relations (3.143 to
3.148) and (3.154 to 3.157), we obtain the closed result

〈n + 1vX||b†0||n, v + 1, X〉〈n, v + 1, X||b†0||nvX〉

= (v+2X+3)(v−2X+1)
(2v+5)(2v+3) 2(2X + 1)2

√
(λ+ n)(n + 1), (3.160)

〈n + 1vX||b†0||n + 1, v− 1, X〉〈n + 1, v− 1, X||b†0||nvX〉

= (v+2X+2)(v−2X)
(2v+1)(2v+3) 2(2X + 1)2

√
(λ+ n)(n + 1). (3.161)

Since (b†0)
† = b0 ≡ b̃0, we obtain the boson creation double reduced matrix ele-

ments

〈n, v + 1, X||b†0||nvX〉 =
√

(v+2X+3)(v−2X+1)
(2v+5)(2v+3)

√
2(2X + 1)

√
λ+ n, (3.162)

〈n + 1, v− 1, X||b†0||nvX〉 =
√

(v+2X+2)(v−2X)
(2v+1)(2v+3)

√
2(2X + 1)

√
n + 1, (3.163)

and likewise for the boson annihilation double reduced matrix elements

〈n− 1, v + 1, X||b̃0||nvX〉 =
√

(v+2X+3)(v−2X+1)
(2v+5)(2v+3)

√
2(2X + 1)

√
n, (3.164)

〈n, v− 1, X||b̃0||nvX〉 =
√

(v+2X+2)(v−2X)
(2v+1)(2v+3)

√
2(2X + 1)

√
λ+ n− 1. (3.165)

3.2.7 SU(1, 1) from the intrinsic realisation.

At the present point, we have all necessary ingredients to start the cooking. In
principle, every term in the GCM Hamiltonian can be dealt with in the SU(1, 1)×
O(5) scheme, using the boson formalism of the previous chapter. Even powers
ofα and π∗ are treated most easily in the SU(1, 1) basis, whereas the odd powers
need to be addressed in the O(5) basis. This can become quite involved, as every
collective variable is expressed as the sum of a boson creation and annihilation
operator. Since

[αα](2) ·α = −
√

2
7β

3 cos 3γ, (3.166)
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it is convenient to know the matrix elements of β in the SU(1, 1) basis. We can
use the previously derived results for this purpose. The collective coordinate with
angular momentum projection zero reads

α0 = 1√
2k

(b†0 + b̃0). (3.167)

Making use of the expressions (3.87) and (3.88) for the α0 matrix element and
(3.162) to (3.165) for the boson matrix elements, we can filter out the O(5) depen-
dency of the matrix elements. As a result, we are left with the β matrix elements

〈λ+ 1, n|β|λn〉 = 1√
k

√
λ+ n, 〈λ+ 1, n− 1|β|λn〉 = 1√

k

√
n,

〈λ− 1, n|β|λn〉 = 1√
k

√
λ+ n− 1, 〈λ− 1, n + 1|β|λn〉 = 1√

k

√
n + 1.

(3.168)

It is noteworthy that the same matrix elements have been derived in the frame-
work of the factorisation method [Row05a].

Section 3.3 Rotation to the physical basis

3.3.1 The rotation

The drawback of the Cartan-Weyl reduction is that its basis is not naturally com-
patible with the physical angular momentum quantum number L which emerges
from experimental energy spectra. This comes from the fact that L · L does not
commute with X2, implying that a basis diagonalizing both operators is non-
existent. Therefore, a rotation from the natural group chain O(5) ⊃ O(4) ∼=
SU(2)× SU(2) to the physical chain O(5) ⊃ O(3) ⊃ O(2) is needed. Fortunately,
the Casimir operator L0 associated with the physical O(2) group is diagonal in
the Cartan-Weyl basis, leaving L · L the only operator to diagonalize.

L · L = L2
0 + 1

2 (L+L− + L−L+). (3.169)

Rewriting the O(3) generators in terms of the Cartan-Weyl generators gives

L± = 2X± +
√

12T∓ 1
2±

1
2
, (3.170)

L0 = X0 + 3Y0, (3.171)

so that L · L can be written as

L · L = 4X2 − 3[(X0 − 3Y0 + 1
2 )(X0 + Y0 + 1

2 )− 1
4 ]

+ 4
√

3[T− 1
2

1
2

X− + T1
2−

1
2

X+] + 12T1
2−

1
2

T− 1
2

1
2
. (3.172)
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The action of all generators are known in the natural basis (see section 3.2.3), so
the matrix elements of a matrix representation can easily be calculated. The di-
mension of the matrix is governed by the seniority quantum number since the
generators involved in the expression L · L cannot alter the O(5) quantum num-
ber, which means that there is an associated matrix with every v. This matrix
is even further reducible if one takes the L0 operator into account. Since L0 can
be written as L0 = X0 + 3Y0, it is immediately diagonal in the Cartan-Weyl ba-
sis, making M = MX + 3MY a good quantum number. As a consequence, the
total matrix representation of L · L can be divided in separate sub-matrices with
distinct M quantum number. The possible basis states |vXMX MY〉 spanning the
sub-matrices with M = MX + 3MY can easily be recognised in the tilted weight
diagrams (Figure 3.4). The diagram is tilted with respect to the angular momen-
tum operator L0, so that the vertical projection of every basis state immediately
gives the L0 component. As a result, all basis states, lying on the same vertical
projection line form a subspace of states for which M = MX + 3MY holds.

An important issue with respect to actual calculations is the dimension of the
matrix representations of L · L. It is unresolved up to the present whether the
rotation can be carried out in an analytic way by making use of non-commuting
Clebsch-Gordan recoupling. We know from the Cartan-Weyl reduction that the
set

{X0, X+, X−}, (3.173)

spans an SU(2) algebra. The same is valid for the set

{Y0 − X0, 2T− 1
2

1
2
, 2T1

2−
1
2
}, (3.174)

and it can be proven that the set of angular momentum generators LM is the only
linear combination of the two mentioned SU(2) algebras, able to span another
SU(2) in itself. However, the two algebras (3.173 & 3.174) do not commute which
means that the recoupling is not feasible with the standard Clebsch-Gordan re-
coupling. As a consequence, we need to resort to numerical diagonalisation pro-
cedures, as e.g. the LAPACK routines [And99].

With respect to computation time, the dimensions of the representations have
to be kept under control. The total number of basis states within a representation
v can be determined as

v/2

∑
X=0

(2X + 1)2 =
1
6
(2v + 3)(v + 2)(v + 1). (3.175)
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7 81

1

O0

0L

v=4

Figure 3.4: Projections of the v = 4 irreps on the L0 axis, connecting all basis states
for which M = MX + 3MY is equal. The line most on the right only projects the
MX = v/2, MY = v/2 state on the L0 axis, resulting in an M = 2v state. For v = 4 the
maximal L0 projection corresponds to M = 8

However, the dimensions of the M = 0 sub-blocks are lower than the total v rep-
resentation space. These dimensions can be calculated according to the following
formula, depending whether v is even or odd. If we define Xm = v/2, the number
of M = 0 projections is then given by

3(Xm|3)2 + [Xmmod3 + 1][2(Xm|3) + 1] + 3[(Xm + 1)|3− 1][(Xm + 1)|3]
+ 2[(Xm + 1)|3][(Xm + 1)mod3 + 1], (3.176)

for even v. For odd v we obtain

3[(Xm + 3
2 )|3− 1][(Xm + 3

2 )|3] + 2[(Xm + 3
2 )|3][(Xm + 3

2 )mod3 + 1]

+ 3[(Xm − 1
2 )|3]2 + [(Xm − 1

2 )mod3 + 1][2((Xm − 1
2 )|3) + 1]. (3.177)
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These two dimension formulas are plotted in figure 3.5. From this figure, it is

=0 dimM

1e6

1e5

1e4

1e3

1e2

1e1

1e0
 1  10  100

v

total dim

Figure 3.5: Total dimension of a representations with a given seniority v, compared
to the dimension of the subspace of states with M = 0. It is clear that the dimension
of the M = 0 subspace increases quadratically with increasing seniority, however it
remains feasible for realistic calculations. For v = 100, the dimension of M = 0 space
is 1717, while the total dimension is 348551.

clear that the dimension of the M = 0 subspace stays reasonable with respect
to modern computation standards, as long as relatively low-order seniorities are
considered. Anyhow, when performing realistic calculations, the transformation
from the natural to the physical basis does not need to be repeated for every
calculation, as the rotation is independent of the specific physical system (Hamil-
tonian) under study. In practical calculations, the rotation has to be carried out
only once and stored for later use.

3.3.2 Some specific cases

Although the rotation from the natural towards the physical basis corresponds to
a standard diagonalization problem, it is useful to study some specific cases. It is
readily seen from figure 3.4 that the projection M = 2v can only be constructed
from one single basis state |v, X = v

2 , MX = v
2 , MY = v

2 〉, as there is only one
projection state. Therefore, the matrix representation is one dimensional

〈v, v
2 ( v

2
v
2 )|L · L|v, v

2 ( v
2

v
2 )〉 = 2v(2v + 1). (3.178)
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The same is valid for M = 2v− 1. The only basis state with this M projection is
|v, X = v

2 , MX = v
2 − 1, MY = v

2 〉, giving the same eigenvalue 2v(2v + 1). For
M = 2v− 2, there are two different states: |v, X = v

2 , MX = v
2 − 2, MY = v

2 〉 and
|v, X = v

2 −
1
2 , MX = v

2 −
1
2 , MY = v

2 −
1
2 〉. which gives a 2 dimensional matrix

with eigenvalues and accompanying eigenvectors

λ+ = 2v(2v + 1) →
(√

4(v−1)
4v−1 ,

√
3

4v−1

)
, (3.179)

λ− = (2v− 2)(2v− 1) →
(√

3
4v−1 ,−

√
4(v−1)
4v−1

)
. (3.180)

So it is clear that the associated eigenvector of λ+ belongs to the L = 2v multi-
plet while the eigenvector of λ− will be the heighest M state of the L = 2v − 2
multiplet. Basically, this procedure can be repeated up to M = 0 by means of a
symbolic mathematical computer program or by means of numerical procedures.
However, only the M = 0 rotation needs to be carried out, since every L state
within a representation v contains an M = 0 projection. However, M 6= 0 projec-
tions are also required in the calculation of the Hamiltonian as all projections ofα
are present. This can be overcome by making use of the reduced matrix elements,
defined by the Wigner-Eckart theorem7

〈LM|Ol
m|L′M′〉 = (−)L−M

(
L l L′

−M m M′

)
〈L||Ol ||L′〉. (3.181)

Diagonalising the L · L matrix for M = 0 analytically up to v = 3, we can deduce
the reduced matrix elements 〈vL||α||v′L′〉 explicitly. These matrix elements are
given in table 3.2.

Section 3.4 Building the Hamiltonian

Within the previous sections, it has been shown how the matrix elements of the
collective variables, can be obtained in the physical SU(1, 1) × O(5) basis. As
the potential in the Hamiltonian can be expressed as an angular momentum in-
variant Taylor expansion in the variables, it is possible to calculate the matrix
elements of all possible terms in the Hamiltonian using standard angular mo-
mentum recoupling procedures, and obtain a matrix representation of the col-
lective Hamiltonian. Once this matrix representation is constructed, we need to
rely on numerical diagonalisation procedures to compute the eigenvalues of the

7From now on, 〈L||Ol ||L′〉 denotes the standard single reduced matrix elements.
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v = 0 v = 1 v = 2 v = 3
v L L = 0 L = 2 L = 2 L = 4 L = 0 L = 3 L = 4 L = 6

0 0 . 1 . . . . .

1 2 1 . −
√

10
7 3

√
2
7 . . . .

2 2 . −
√

10
7 . . −

√
1
3

√
5
3 −

√
11
7 0

4 . 3
√

2
7 . . 0

√
2
3

√
10
7

√
13
3

3 0 . . −
√

1
3 0 . . . .

3 . . −
√

5
3 −

√
2
3 . . . .

4 . . −
√

11
7

√
10
7 . . . .

6 . . 0
√

13
3 . . . .

Table 3.2: Reduced matrix elements 〈vL||α||v′L′〉, scaled to the factor β. Reduced
matrix elements are given upto v = 3.

Schrödinger equation. Unfortunately, the Hilbert space of the collective models
is infinite dimensional (which is reflected in the non-compactness of the SU(1, 1)
group). A common way to cope with this problem is to gradually expand the
Hilbert space by incorporating more basis states until convergence is reached in
the lowest eigenvalues. As a consequence, we can finetune the free parameters
in the basis in order to optimise the convergence. Cunning ways to do so are
already available in the literature and will briefly be discussed in the present sec-
tion, though we start with the construction of the matrix elements.

3.4.1 Matrix elements

We start from the collective model Hamiltonian

Ĥ = 1
2B2

(π∗ · π∗) + c2(α ·α) + c3([αα](2) ·α) + c4(α ·α)2

+ c5([αα](2) ·α)(α ·α) + c6(α ·α)3 + . . . , (3.182)

which we want to diagonalise

Ĥ|Ψ〉 = E|Ψ〉. (3.183)

As the Hamiltonian is rotationally invariant, L and M are good quantum num-
bers. The eigen states |Ψ〉 of Ĥ can be expanded in the SU(1, 1)×O(5) physical
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basis

|Ψ〉 = |L(i)M〉 = ∑
nvν

aL(i)M
nv(ν) |nvL(ν)M〉. (3.184)

The index (i) denotes the occurrence of the spin L in the spectrum of the Hamil-
tonian, whereas the Greek index (ν) differentiates between the spins L, resulting
from the rotation from the Cartan to the physical basis; it may be considered as
the missing quantum number (see chapter 2.2.1). Going over to the reduced ma-
trix element framework, the diagonalisation can be written as follows

∑
nvν
〈n′v′L(ν′)||Ĥ||nvL(ν)〉aL(i)

vnν = εaL(i)
n′v′ν′ , (3.185)

with ε = 〈n′v′L(ν′)||1̂||nvL(ν)〉E and the index M omitted. The different terms
in the Hamiltonian can all be treated using the SU(1, 1)×O(5) basis.
The even powers ofα or π∗ can be brought back to the SU(1, 1) generators (3.118)
and are diagonal in the O(5) basis. Writing expressions (3.118) as a function ofα
and π∗ and inverting, we obtain

〈n′vL(ν)||α ·α||nvL(ν)〉 = 1
k

√
2L + 1〈λn′|2B0 + B+ + B−|λn〉, (3.186)

〈n′vL(ν)||π∗ · π∗||nvL(ν)〉 = kh̄2√2L + 1〈λn′|2B0 − B+ − B−|λn〉. (3.187)

Concerning the odd powers, the O(5) basis is also involved. However, every odd
term in the Hamiltonian can be reduced to the reduced matrix elements of α as
e.g.

〈n′v′L(ν′)||[αα](2) ·α||nvL(ν)〉

=
√

5√
2L+1 ∑

niviνi Li

{
2 2 2
L1 L L2

}
〈n′v′L(ν′)||α||n1v1L1(ν1)〉

× 〈n1v1L1(ν1)||α||n2v2L2(ν2)〉〈n2v2L2(ν2)||α||nvL(ν)〉, (3.188)

where {niviνiLi} denotes the double sum over {n1v1ν1L1} and {n2v2ν2L2}. With
respect to numerical computations, it is more convenient to consider a sidestep.
The reduced matrix element can also be written as

〈n′v′L(ν′)||[αα](2) ·α||nvL(ν)〉

= 1√
2L+1 ∑

n1v1ν1 L1

(−)L+L1〈n′v′L(ν′)||[αα](2)||n1v1L1(ν1)〉

× 〈n1v1L1(ν1)||α||nvL(ν)〉, (3.189)
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where the reduced matrix element of [αα](2) is given by

〈n′v′L(ν′)||[αα](2) ·α||nvL(ν)〉

=
√

5(−)L+L1 ∑
n2v2ν2 L2

{
2 2 2
L1 L L2

}
〈n′v′L(ν′)||α||n2v2L2(ν2)〉

× 〈n2v2L2(ν2)||α||nvL(ν)〉. (3.190)

From an algorithmic point of view, it is convenient to first calculate the matrix
elements of [αα](2), and then couple an extra variable α to it in order to obtain
the reduced matrix elements of [αα](2) ·α. On the one hand because it enables
a transparent implementation and on the other hand since the reduced matrix
elements of [αα](2) need to be calculated anyway whenever second-order terms
are included in the calculation of T(E2) matrix elements. It is noteworthy that
all these matrix elements can partly be calculated beforehand and recalled when
a particular Hamiltonian is constructed for diagonalisation. This is particularly
convenient for the part of the matrix elements, associated with the O(5) substruc-
ture, since the rotation from the Cartan-Weyl basis to the physical basis cannot be
done analytically8 and demands considerable computation time. Concerning the
SU(1, 1) substructure, it matters less whether the matrix elements have been de-
termined beforehand or still need to be calculated at the time of constructing the
Hamiltonian, since the matrix elements are known in closed form and can thus
be incorporated by means of a function call.
It can be shown in general that all matrix elements can be factorised into two
parts: one part depending on the SU(1, 1) quantum numbers, and the other part
depending on the O(5) quantum numbers. Indeed, the matrix element ofα in the
physical basis can be written as

〈n′v′L′(ν′)M′|αµ |nvL(ν)M〉 = 1√
2k
〈n′v′L′(ν′)M′|(b†µ + b̃µ)|nvL(ν)M〉. (3.191)

Realising that the physical states can be developed in the Cartan-Weyl basis by
means of the rotation, defined by the diagonalisation of L · L (see section 3.3)

|nvL(ν)M〉 =
MX+3MY=M

∑
XMX MY

cnvL(ν)M
vXMX MY

|nvXMX MY〉, (3.192)

we can rewrite the equation (3.191) as

〈n′v′L′(ν′)M′|αµ |nvL(ν)M〉 = 1√
2k ∑

XMX MY

∑
X′M′

X M′
Y

cnvL(ν)M
vXMX MY

cn′v′L′(ν′)M′

v′X′M′
X M′

Y

× 〈n′v′X′M′
X M′

Y|(b†µ + b̃µ)|nvXMX MY〉. (3.193)
8regarding the present knowledge of the rotation (see section 3.3)
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Inspecting equations (3.162) to (3.165), we realise that the matrix elements of α
(and therefore also the reduced matrix elements) can be factorised in a part con-
taining the n and λ quantum numbers of SU(1, 1) and a part containing the resid-
ual O(5) quantum numbers

〈n′v′L′(ν′)||α||nvL(ν)〉 = 〈λ′n′|F1|λn〉〈v′L′(ν′)||G1||vL(ν)〉, (3.194)

where the functions 〈n′λ′|F1|nλ〉 can be chosen as the matrix elements of β (see
equations (3.168)). At this point it can be shown in a straightforward though
tedious way that this factorisation persists when higher-order couplings of α are
considered, i.e.

〈n′v′L′(ν′)||[αα](2)||nvL(ν)〉 = 〈λ′n′|F2|λn〉〈v′L′(ν′)||G2||vL(ν)〉, (3.195)

〈n′v′L(ν′)||[αα](2) ·α||nvL(ν)〉 = 〈λ′n′|F3|λn〉〈v′L(ν′)||G3||vL(ν)〉.
(3.196)

Here, the functions G2 and G3 are defined such as to meet the standard angular
momentum recoupling relations

〈v′L′(ν′)||G2||vL(ν)〉 (3.197)

=
√

5(−)L+L1 ∑
v2ν2 L2

{
2 2 2
L1 L L2

}
〈v′L(ν′)||G1||v2L2(ν2)〉

× 〈v2L2(ν2)||G1||vL(ν)〉,

and

〈v′L(ν′)||G3||vL(ν)〉 (3.198)

= 1√
2L+1 ∑

v1ν1 L1

(−)L+L1〈v′L(ν′)||G2||v1L1(ν1)〉〈v1L1(ν1)||G1||vL(ν)〉.

As the functions Gi are well defined, we can calculate the associated factors Fi as
well. The result of these calculations (upto i = 3) are given in appendix B.2.

3.4.2 Choice of the basis

From the results of the previous subsection, we can construct the matrix repre-
sentation of the Hamiltonian as input for numerical diagonalisation procedures.
As already mentioned, the Hilbert space of the collective model is infinite dimen-
sional, which is intractable in theory. Typically, one makes use of an expansion
method to circumvent this problem. The idea is to increase the dimension of the
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Hilbert space until convergence is reached for the lowest eigenvalues within an
acceptable error. To optimise this convergency process, we have a parameter in
the SU(1, 1) basis at our disposal. Inspection of equations (3.186-3.187) and the
functions Fi in appendix B.2 reveals that there is a dependency of the matrix rep-
resentation on the SU(1, 1) basis parameter k, which is not determined by the
dynamics of the Hamiltonian. Therefore, we can exploit this parameter in the
quest towards the optimised basis with respect to convergency issues. In former
calculations [Gne71, Hab74, Sei84], the dimension of the Hamiltonian was trun-
cated upto 30 harmonic oscillator shells (n = 15) to ensure convergency. In order
to find the best values for the eigenvalues, the parameter k was varied to find
the value which minimises the binding energy of the Hamiltonian. However,
this method is a little cumbersome since one needs to scan the whole k parame-
ter range for every different Hamiltonian, and moreover the convergency of this
method is only guaranteed after close inspection and verification. To cure for
the former problem, Margetan & Williams [Mar82] proposed a technique to pre-
dict a reasonable value of k, without the need of scanning the whole parameter
range. This technique is based on a variational principle for the diagonal matrix
elements of the Hamiltonian. The idea is to minimise the diagonal matrix ele-
ments of the lowest basis states so they lie already close to the actual eigenvalues,
which will considerably enhance the convergency process. Due to limitations of
computing power, the calculations were still truncated upto 30 harmonic oscilla-
tor shells, so the convergency was still to be verified a posteriori. This limitation
can now be withdrawn, making use of present desktop computing power. Start-
ing from the Margetan & Williams ansatz for the parameter k, the dimension of
the Hamiltonian can be increased gradually up to the point where convergence is
guaranteed. If accuracies of the order of 1eV are imposed, no more than 50 basis
states need to be incorporated, which can be handled within a reasonable time (a
couple of seconds) on a modern desktop computer.

It is worth mentioning that, with the development of the algebraic tractable model
[Row04, Row05b, Tur05], an alternative method has been proposed to obtain a
reasonable ansatz for k [Row05a]. This method is based on the physically intu-
itive idea that one can choose the eigenstates of an analytically solvable potential
as a basis for a more complex Hamiltonian in such a way that the potential used
in the basis mimics the behaviour of the potential of the Hamiltonian at the global
minimum. As every analytically solvable potential can be chosen, the available
bases are no longer limited to harmonic oscillators, but can be extended to e.g.
Davidson type of potentials [Row05a].
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As a consequence, we need to make a considerate choice about the convergence
method to be used. For this purpose, a study has been undertaken to look for the
most reliable method with respect to realistic Hamiltonians. The aim is to obtain a
method, assuring sufficient convergence for a broad range of different potentials.
Therefore, a transitional Hamiltonian covering the transitions from a spherical
harmonic oscillator to a deformed γ-independent rotor has been constructed (see
next section). The particular Hamiltonian can be written as follows

Ĥ(ξ) = 1
2B2
π · π + (1−ξ)V1 +ξV2, (3.199)

with the potentials defined as

V1 = c1
2α ·α, (3.200)

V2 = c2
2α ·α + c2

4(α ·α)2, (3.201)

where c1
2 = 50 MeV, c2

2 = −50 MeV and c2
4 = 625 MeV. The mass parameter B2

has been chosen so that h̄2/B2 = 1 keV, which is a realistic value with respect to
the irrotational assumption. V1 describes a spherical harmonic oscillator, whereas
V2 describes a deformed γ-independent rotor with a global minimum atβ0 = 0.2
and depth V(β0) = −1 MeV. It is noteworthy that for the case ξ = 1/2, the tran-
sitional potential becomes the critical β4 potential.

For every value of ξ , 3 optimal guesses of the harmonic oscillator9 basis param-
eter k have been calculated and for every guess, the basis was expanded until
the 5 lowest eigenvalues have converged independently, within 1 eV. Once the
basis has converged, the dimension of the resulting basis was plotted (see figure
3.6). It should be noted that the potential used at present has an O(5) symmetry,
which means that basis states with different seniority do not mix. Due to this
symmetry, the diagonalisation can be handled solely within an SU(1, 1) frame-
work without the need to include the O(5) representations. The 3 guesses have
been determined as follows

1. The first guess makes use of the technique of Margetan & Williams. In this
particular case, k has been chosen such that the first 5 diagonal matrix ele-
ments are minimised. The dimension of the converged basis are given by
the blue line in figure 3.6.

2. The second guess relies on the particular shape of the harmonic oscillator
potential. The parameter k was adjusted such that the curvature of the ba-
sis potential becomes identical to the second derivative of the potential in

9In one of the cases, the basis has been extended to a Davidson-type of potential.
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equation (3.199) at the global minimum. The resulting dimensions for this
guess are represented by the black full line in the figure.

3. The third guess makes use of a Davidson-type of potential (see chapter
2.2.3). In this particular case, not only the curvature of the basis was ad-
justed, but also the position of the minimum of the basis potential was fit-
ted to match the global minimum of the potential in equation (3.199). This
is possible since the Davidson potential exhibits an extra parameter with
respect to the harmonic oscillator, enabling a description of deformed struc-
tures. The results for this guess are depicted by the dashed line. It is worth
mentioning that for values of ξ 6 1/2, this guess coincides with the second
guess, as the minimum of the potential is located at β0 = 0.

n

first mat
shape HO
shape Dav
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 20

 40
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 100

 0  0.2  0.4  0.6  0.8  1
ξ

 80

Figure 3.6: The dimensions of the bases, once convergence is reached. The number
n denotes the quantum number n of the SU(1, 1) representations and coincides thus
with half the number of harmonic oscillator shells (as v = 0).

Inspecting figure 3.6, one notices that the optimised harmonic oscillator bases
(guesses 1 and 2, depicted by full lines) provide good convergence in the neigh-
bourhood of the limiting cases of the transition path. For both methods, the eigen-
values have converged within n ∼ 15 SU(1, 1) representations (which coincided
with N ∼ 30 harmonic oscillator shells). However, the situation is different in
the vicinity of the β4 potential (ξ ∼ 1/2), where only the method of Margetan
& Williams seems to provide reliable results. It is not surprising that the shape
comparison method fails at this point, since the second derivative of β4 iden-
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tically vanishes at the minimum (β = 0). As a consequence, the curvature of
the potential describing the basis is not well determined, and therefore we are
confronted with divergencies. More surprising is the failure of the Davidson po-
tential in defining a basis, since it was proposed and reported as a possible alter-
native basis to handle deformed potentials [Row05a]. The answer to this paradox
lies in the fact that in the present study, the deformation β0 at the global minima
of the transitional Hamiltonians does not exceed the value β0 = 0.2. Moreover
the depth of the potential (order of magnitude 1 MeV) is not sufficient to localise
the wavefunctions corresponding to the lowest eigenstates entirely into the well.
As a result, these wavefunctions still exhibit a finite density at β = 0, something
which cannot be described by a Davidson potential because of the repulsive na-
ture of the potential at β = 0 (see figure 2.3).

Therefore and to conclude this study, we will make use of the method introduced
by Margetan & Williams in all further applications since it provides robust and
reliable results for a broad range of realistic Hamiltonians.

Section 3.5 Shape phase transitions

At the present point all necessary matrix elements have been constructed (section
3.4.1) and a reliable basis with good convergence properties is at hand (section
3.4.2). So we have all the ingredients to develop a computer code and study
the properties of general type of collective Hamiltonians, both from a theoretical
point of view as with respect to experimental data.

A first thing on the list is to study the transitional Hamiltonians, starting from
spherical, going overγ-independent to end with axial deformed structures. These
structures can all be described with the covering Hamiltonian (3.10)

Ĥ = 1
2B2
π · π + c2(α ·α) + c3([αα]2 ·α) + c4(α ·α)2. (3.202)

3.5.1 Three limiting cases

Before addressing the transition paths, it is interesting to consider the three limit-
ing cases which can be described using the Hamiltonian (3.202), i.e. the spherical-,
γ-independent rotor and the axial rotor. These limits are respectively described
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h̄2/B2 c2 c3 c4

Vspher 4 keV 200 MeV 0 MeV 0 MeV
Vγ-rot 4 keV -200 MeV 0 MeV 2500 MeV
Vrot 4 keV -200 MeV 700 MeV 2500 MeV

Table 3.3: Parameters used in the potentials (3.203-3.205) of the Hamiltonian (3.202).

by the following potentials

Vspher = cspher
2 (α ·α), (3.203)

Vγ-rot = cγ-rot
2 (α ·α) + cγ-rot

4 (α ·α)2, (3.204)

Vrot = crot
2 (α ·α) + crot

3 ([αα](2) ·α) + crot
4 (α ·α)2, (3.205)

with the specific parameter choices for the different potentials as given in table
3.3. The motivation for these choices of the parameters is twofold. Within the re-
strictions of the given limit under study, the parameters have been chosen equal
wherever possible. This allows us to relate the differences arising in the structure
to the particular parameter which has been varied. On the other hand, although
the sets of parameters give rise to schematic potentials, the connection with ex-
perimental observables was never totally neglected. As a consequence, the three
Hamiltonians can each act as a starting point to a profound study of atomic nuclei
where fingerprints of the given limiting cases have been observed.
One could argue that the parameters appear to be rather large, especially since it
was demonstrated in section 3.1 that the general collective potential can be con-
sidered as a Taylor expansion in the collective quadrupole coordinate α. How-
ever, one should realise that the collective coordinates describe small deforma-
tions, which makes them small quantities by definition (typical order of magni-
tude β0 ∼ 0.1). Therefore, in order to contribute significantly to the structure of
the potential at small deformation, the parameters of the higher-order terms need
to be sufficiently large. If we consider e.g. Vγ-rot, we can compare the mutual ef-
fects of the parameters c2 and c4 around the global minimum β0 = 0.2. Whereas
c2 lowers the potential with 200 MeV(0.2)2 = 8 MeV, c4 gives a correction of
2500 MeV(0.2)4 = 4 MeV. As a result, the effect of c4 is smaller than that of c2,
so we can still consider the Hamiltonian as a Taylor expansion.

We now discuss the three limiting Hamiltonians separately. For every Hamil-
tonian, the calculated observables have been obtained by means of the method
described in the previous sections. Therefore, more than only a type-case study,
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the next results serve as a genuine test for the presented technique.

The harmonic oscillator

We start with the harmonic oscillator potential Vspher. Contrary to the other two
limiting cases, the harmonic oscillator potentials is a ’true’ limit in the sense that
it can be described by means of a spectrum generating algebra (U(5) or SU(1, 1)).
The eigenvalues can be obtained analytically as was already profoundly dis-
cussed in chapter 2.2.2. Solving this potential numerically is therefore trivial since
the basis we start from is chosen identical to the Hamiltonians eigenfunctions. We
obtain a linear energy spectrum with large degeneracies, as can be seen in figure
3.7. There are two main reasons for these degeneracies. First of all, the Hamil-
tonian is an O(5) invariant, which implies the degeneracy within a given senior-
ity v. Secondly, the Hamiltonian can be identified with one of the generators of
SU(1, 1), which makes SU(1, 1) a dynamical symmetry of the system. However,
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Figure 3.7: The energy spectrum and B(E2) values of a harmonic oscillator potential.
Energy eigenvalues are given relative to the first L = 2 state and B(E2) values relative
to B(E2; 21 → 01) (See the text for more details).

not every observable has the same symmetry properties as the Hamiltonian. In
order to study B(E2) values or quadrupole moments, we need to know the ma-
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trix elements of the collective coordinatesα. It is clear from the previous sections
that α is not an O(5) invariant, which means that the B(E2) values distinguish
between the different states within a seniority representation v. This is clearly
visible in figure 3.7, where the states have been organised in bands, following the
cascade of relatively large B(E2) values.
Within this figure, up to harmonic oscillator shell Nho = 3, all eigenstates are
given, together with all non-vanishing B(E2) values. For the Nho = 4 excitation
states, only the states which can be placed in one of the bands are depicted. Apart
from the ground state band, one can notice that a K = 2 band, and two K = 0
bands, built on respectively the 22, 02, and 03 tend to develop according to the
cascade of B(E2) values.
Within the figure, all eigenvalues are given relative to the excitation energy of the
first excited 21 state, whereas the B(E2) values are given relative to the B(E2; 21 →
01) value. The absolute energy scale of the figure corresponds with the particular
set of parameters for Vspher as given in table 3.3. The excitation energy of this
21 state is 1264.91 keV and the B(E2; 21 → 01) = 0.00158 in units relative to
(3ZR2

0)
2/(4π)2.

The γ-independent rotor

The second limit to be considered is theγ-independent rotor, described by the po-
tential Vγ-rot. What makes this potential essentially different from the harmonic
oscillator potential, is the occurrence of a global minimum at non-zero deforma-
tion β0. Consequently, this potential is able to generate solutions which can be
associated with definite deformations.
Although the Hamiltonian does not correspond to an algebraic solvable limit,
still it exhibits some remarkable symmetry properties. Similar to the case of the
harmonic oscillator, the Hamiltonian is an O(5) invariant, leading towards de-
generacies within a given representation v. This is illustrated in figure 3.8, where
for all bands, except the one in the middle, the states with equal seniority v have
the same eigenvalue. The main difference between Vγ-rot and Vspher with respect
to the covering group SU(1, 1) is that, although the Hamiltonian can be entirely
written as a function of the generators of this group, it does not any longer form
a dynamical symmetry for the Hamiltonian. In this particular case, it causes the
n 6= 0 states of the harmonic oscillator to be lifted up in the spectrum. This is
illustrated in figure 3.8 by the band in the middle, which lies much higher in the
excitation spectrum than the corresponding band of the harmonic oscillator (fig-
ure 3.7).
Similar to figure 3.7, all eigenstates with an excitation energy, lower than or equal
to the excitation energy of the 61 state are depicted in figure 3.8, together with
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Figure 3.8: The energy spectrum and B(E2) values of a γ-independent rotor Hamilto-
nian. Energy eigenvalues are given relative to the first L = 2 state and B(E2) values
relative to B(E2;21 → 01) (see the text for details).

all non-vanishing B(E2) values. For the higher-lying excited states, only those
states are given that fit into a given band, as well as the corresponding intraband
B(E2) values to justify this classification. All eigenvalues are again given rela-
tive to the 21 state, which has an absolute excitation energy of 233.8 keV and the
B(E2; 21 → 01)=0.00759, measured in units (3ZR2

0)
2/(4π)2.

The axial deformed rotor

The third limit describes axial deformed rotational structures. In this particular
case, we insert the term [αα](2) ·α in the potential, breaking all the remaining
degeneracies from the γ-independent rotor case. Moreover, the classification into
bands by following cascades of B(E2) values is even more pronounced as the
bands all occur at different energy scales in the spectrum. Whereas the bands
built on top of the 22 state in the harmonic oscillator and γ-independent rotor
limit, had energy scales comparable with respect to the ground-state band energy
scale, in this particular case, they are now observed at much higher excitation en-
ergies. This has been illustrated in figure 3.9 by the dashed box, pointing out that
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the K = 2 and K = 0 band, built on top of respectively the 22 and 02 state, result
in the spectrum above the 121 state of the groundband.
From an experimental point of view, this might be an unsatisfactory situation, as
it can occur that the excitation bands, built on the 22 and 02 states, can descend
low into the excitation spectrum, to side the rotational groundband (see e.g. 180Hf
[Wu03]). However, the chosen potential (3.205) does not contain many free pa-
rameters to tune the excitation energy of the associated bands while keeping the
minimum at a physical deformation β0 ∼ 0.1. We can as well adjust the mass pa-
rameter B2 of the kinetic energy. A decrease of the mass parameter would lead to
an overall lowering of the excitation energy of the excited bands, but this would
also affect the ground state band, which would lose its rotational character. To
cope with this issue, a modified kinetic energy term was proposed in the GCM
(3.8) in order to lower the excited bands without affecting the rotational structure
of the bands.

In the figure 3.9, only the three lowest bands are depicted, with energies rela-
tive to the 21 state and B(E2) values relative to B(E2; 21 → 01). The excitation
energy of the 21 state is 71.29 keV and B(E2; 21 → 01) = 0.01245 in units of
(3ZR2

0)
2/(4π)2.

We can compare the outcome of this calculation with the results obtained in the
Rotation-Vibration model (RVM) [Fae62, Eis87]. The latter model starts from the
assumption that an axially deformed nucleus can be described by means of a har-
monic oscillator potential, both in γ and β around the minimum in the potential.
Then the Bohr Hamiltonian can be analytically solved up to some approximations
regarding the decoupling of the γ-rotational degrees of freedom. Now it would
be interesting to treat the potential Vγ-rot in the framework of the RVM and com-
pare the approximate solutions with the full diagonalisation. The solutions of the
RVM model can be written as [Eis87]

ELKn2n0 = [L(L + 1)− K2] 1
2ε+ [ 1

2 |K|+ 1 + 2n2]Eγ + [n0 + 1
2 ]Eβ, (3.206)

with K the angular momentum projection quantum number along the intrinsic
axis and (n2,n0) the vibrational quantum numbers associated with respectively
the vibrations in the γ- and β-direction. Eγ , Eβ and ε are parameters, determined
by the shape and localisation of the RVM potential. Rewriting the potential Vγ-rot
around the minimum β0 = 0.264 as a Taylor expansion in β and γ, gives rise
to the following parameters of the RVM: Eγ = 1885.22 keV, Eβ = 2093.96 keV
and ε = 19.15 keV. Substituting these parameters in equation (3.206) gives some
remarkable results, compared to the solutions of Vγ-rot (see figure 3.9). First, the
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Figure 3.9: The energy spectrum and B(E2) values of an axial deformed rotor. Energy
eigenvalues are given relative to the first L = 2 state and B(E2) values relative to
B(E2;21 → 01). Details are described in the text.

spacing of the different levels within a given band are well reproduced by the
parameter ε. Second, the position of the first K = 2 band is to be expected at
Eγ = 1888.22 keV according to the RVM, something which is very well fulfilled
as can be seen from figure 3.9. More interesting is the classification of the first
excited K = 0-band, built on top of the 02 state. Within the language of the RVM
model, we can either associate this band with a β- vibrational (n0 = 1, n2 = 0)
or γ-vibrational (n0 = 0, n2 = 1). Substituting the corresponding quantum num-
bers (n0, n2) into equation (3.206) gives us the following predictions: the exci-
tation energy of the 0γ bandhead of the γ-vibrational band is to be expected at
2Eγ = 3770.44 keV, whereas the 0β bandhead of the β-vibrational band can be
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found at Eβ = 2093.96 keV. Comparison of these values with the excitation en-
ergies from the diagonalisation of the axial deformed Hamiltonian leads towards
the conclusion that the lowest excited K = 0 band can best be associated with the
β-band of the RVM.

To conclude, we can state that we are able to cover typical cases of collective po-
tentials within the framework, developed in the present chapter. Therefore, we
can start a study on transitional classes of Hamiltonians, for which the potentials
discussed in the present section can serve as limiting benchmark potentials.

3.5.2 Along the transition paths

From the previous discussion, we know the specific structure of the Hamiltonian
(3.202) in three limiting cases (spherical, γ-rotational and axial rotational). In the
present section, we explore how these structures evolve when going over from
one limit to another. We consider the three transitional Hamiltonians

Ĥ12 = h̄2

2B2
π · π + (1−ξ)Vspher +ξVγ−rot, (3.207)

Ĥ23 = h̄2

2B2
π · π + (1−ξ)Vγ−rot +ξVrot, (3.208)

Ĥ31 = h̄2

2B2
π · π + (1−ξ)Vrot +ξVspher, (3.209)

for which we calculate the excitation energy and electric quadrupole observables
along the transition path. The results are presented in the following figures. For
easy comparison, the three different transition paths (respectively Ĥ12, Ĥ23 and
Ĥ31) are plotted next to each other using the same scaling.

We start with the discussion of the energy spectra. In figure 3.10, the energy spec-
tra are plotted as a function ofξ . In the left panel, the transition from the spherical
to the γ-independent rotor is presented. Since O(5) is a symmetry of both limits
of the transition, it is also a symmetry for every intermediate Hamiltonian Ĥ12,
which makes the seniority quantum number v a good quantum number along the
whole path. As a consequence, together with the ground band, the bands, built
on top of the 03 and 22 state in figure 3.7, are lowered in the energy spectrum as
long as the associated states exhibit the same seniority quantum number v as the
ground band states. The only band in the low-energy region which does not fol-
low the trend of the ground band is the band, built on top of the 02 state of figure
3.7. Following the transition path from vibrational to γ-independent rotor limit,
we notice that the 03 state of the γ independent rotor (figure 3.8) originates from
the 02 state in the vibrational limit (figure 3.7), so these two states undergo a pure
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Figure 3.10: The energy spectra for the transitional Hamiltonians (3.207, 3.208 &
3.209) as a function of ξ .

crossing at ξ = 0.75. From the B(E2) values (see figure 3.11), one can also see
that the band on top of the 02 (up to ξ = 0.75) state behaves differently from the
lower-lying excited bands, as the B(E2; 02 → 21)/B(E2; 21 → 01) value decreases
faster than the values B(E2; L1 → (L− 2)1)/B(E2; 21 → 01) of the ground-band
members or even the B(E2; 31 → 22)/B(E2; 21 → 01). In order to simplify the
notation, it is convenient to introduce the following quantity

R(E2, Li → L f ) =
B(E2; Li → L f )
B(E2; 21 → 01)

, (3.210)

for the B(E2) values, relative to B(E2; 21 → 01) as plotted in figure 3.11.

In the middle panel of figure 3.10, the transition from the γ-independent to ax-
ial deformed rotor is plotted (see equation 3.208). By introducing the seniority
breaking term [αα] ·α in the Hamiltonian, the remaining O(5) symmetry of the
γ-independent rotor is lifted. This happens in a rather prompt way for small val-
ues of ξ , so the development into separate bands rapidly appears into the spec-
trum. At the right-end of the transition path (ξ = 1), a clear picture arises with
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Figure 3.11: Selected B(E2) values along the transition lines, relative to the B(E2; 21 →
01 transition (see equation (3.210)).

separate rotational and vibrational-like bands at different energy scales. The fact
that the states can now unambiguously be organised into bands is also reflected
in the R(E2, Li → L f ) values in the middle panel of figure 3.11. There it can be
seen that the value R(E2, 22 → 21) quickly drops while R(E2, 31 → 22) stays
reasonable unaffected along the transition line, which clearly points out that 22
and 31 can be positioned into the same (K = 2) band. This band is depicted in the
dashed box of figure 3.9.

In the right panel of figure 3.10, we close the circle by studying the transition
from the axial deformed limit to the vibrational limit. It can be seen from that
figure that this transition is less gradual, compared to the harmonic oscillator to
γ-independent rotor transition. In the latter case, only the U(5) (or SU(1, 1))
symmetry was broken, whereas in the present case, also the O(5) symmetry is
immediately broken by adding the [αα](2) ·α term in the Hamiltonian.

There is something peculiar to be noted about the total of the three panels of fig-
ure 3.10, concerning the identification of the K = 0 bands as γ- or β-vibrational
band. From the comparison of the axial deformed limit with the predictions made
by RVM, we could unambiguously identify the lowest K = 0 (built on the 02 state)
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as the β-vibrational band. This can further be justified if we follow the transition
path towards the harmonic oscillator, as depicted in the right panel of figure 3.10.
We notice that this β-vibrational band (green lines) evolves towards the states
with SU(1, 1) quantum number n = 1. As an example, the 02 state of the axial
deformed rotor develops into the (n = 1, v = 0) state of the vibrational limit.
From the discussion of the harmonic oscillator (chapter 2.2.2), we know that the
quantum number n can be associated to the number ofβ-phonons. Consequently,
the β-vibrational character of the lowest K = 0 band of the axial deformed rotor
is further justified, as it evolves from the significant β-vibrational quantum num-
ber (n = 1) of the harmonic oscillator limit. However, this is not the only path to
reach the harmonic oscillator. One could go the opposite way in figure 3.10, and
follow the transition from axial deformed rotor to harmonic oscillator limit via the
γ-independent rotor limit. Following e.g. the 02 state along each transition (mid-
dle and left panel) , we find that in this case, we end up in the (n = 0, v = 3) state,
which cannot be associated with β-vibrations as the SU(1, 1) quantum number
n is equal to zero. The solution to this paradox lies in the middle panel of figure
3.10. From this panel, it is clear that all states in the γ-independent to axial rotor
limit are subject to considerable mixing and ’no-crossing’ effects, due to the large
admixture of states with different seniority quantum numbers. Moreover, as the
03 of the γ-independent rotor limit clearly evolves from the 02, (n = 1, v = 0)
state of the harmonic oscillator, we can state that the 02 and 03 state must have
switched nature along the transition path from γ-independent to axial deformed
rotor. As a conclusion, caution is necessary when associating K = 0 bands with
β- or γ vibrational structures, as considerable mixing effects can arise along the
transition paths, perturbing the clear picture of vibrational motion along the β-
or γ direction.

Apart from the relative B(E2) values, it is also interesting to calculate the abso-
lute B(E2) values, as they give an indication of the collective deformation of an
atomic nucleus [Eis87]. In figure 3.12, the B(E2; 21 → 01) values are presented
along the different transition paths. One can clearly see that, going from the har-
monic oscillator to the γ-rotational limit, the B(E2; 21 → 01) value rises steadily,
due to the manifestation of a deformed minimum in the potential. This rise per-
sists in the transition from the γ-independent rotor to the rotational limit, as the
onset of the terrm [αα] ·α in the potential breaks the symmetry in the γ-direction,
driving the minimum in the potential towards prolate structures. Finally, along
the rotational to vibrational transition path, the B(E2; 21 → 01) drops back to the
originally value of the spherical harmonic oscillator.
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Figure 3.12: B(E2; 21 → 01) values along the different transition paths, given in units
(3ZR2

0)
2/(4π)2.

Similar conclusions can be drawn from a study of the spectroscopic quadrupole
moment of the first excited 21 state, defined by (if the same linear approximation
of T̂(E2) is used when calculating the B(E2) values [Eis87])

Q =
√

16π
5
〈21 M = 2|T̂(E2)|21 M = 2〉, (3.211)

=
√

16π
5

3ZR2
0

4π

(
2 2 2
−2 0 2

)
〈21||α||21〉. (3.212)

The results for Q are presented in figure 3.13. Contrary to the other figures,
the transition from the harmonic oscillator to the γ-independent rotor is not de-
picted since, within the linear approximation of T̂(E2), the selection rules for
α (∆v = ±1) render the quadrupole moments identically zero along the whole
transition path. Here again, we can see that, as soon as the seniority-breaking
term in the potential is turned on (along both transition paths), the quadrupole
moment sharply rises (in absolute value) to reach a maximum at the rotational
limit. It can be noticed that this rise is more pronounced in the transition from
the γ-independent rotor to rotational limit as compared with the transition from
the spherical to rotational limit. The explanation for this difference stems from
the fact that in the former transition the potential already exhibits a deformed
minimum in the β direction, while in the latter transition the minimum in the
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β direction is steadily developing from the spherical minimum towards a mini-
mum at a distinct deformation β0.
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Figure 3.13: The quadrupole moments of the first excited 21 state, given in units√
16π/5(3ZR2

0)/(4π). The transition from harmonic oscillator to the γ-independent
rotor is not depicted as the quadrupole moments are identically zero.

As a conclusion, we have studied the schematic transitions from spherical over γ-
independent towards axial deformed rotational structures in the collective model.
For this purpose, we made use of the Cartan-Weyl framework, as presented in
this thesis. This schematic study can be considered as a thorough test for the
formalism, as the obtained results can be confronted with the already available
knowledge on this subject. We have now come to a crossroad with multiple open
tracks. Supported by the results of the present study, one can extend the Hamil-
tonian to more complex and realistic structures, such as e.g. triaxiality or shape
coexistence. For this purpose, we need to include higher-order terms in the Taylor
expansion, as it is impossible to describe these structures using the tractable and
schematic collective Hamiltonian (3.202), studied in the present section. From a
theoretical point of view, it will be interesting to see how this enlargement of the
phase space will affect the structure of this Hamiltonian. Later on, these insights
might be exploited, once this collective Hamiltonian is confronted with exper-
imental data, specially in the light of the recent developments in exotic beam
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facilities, (such as e.g. SPIRAL 2).
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It’s tough to make predictions,
especially about the future

Yogi Berra 4
CONCLUSIONS AND OUTLOOK

Section 4.1 The geometrical collective model, ...

The atomic nucleus is a fairly complex system. Although the number of con-
stituent particles is relatively small (up to a couple of hundred), it is a tremen-
dous, if not overwhelming task to perform ab-initio nuclear structure calcula-
tions starting but from the free nucleon-nucleon interaction. In order to grasp an
understanding of the large variety of phenomena observed in nuclear structure
physics through experiments, physicists are obliged to resort to theoretical mod-
els. One major benchmark is the Collective model developed by Aage Bohr and
Ben Mottelson [Boh52, Boh53], which interpretes the atomic nucleus as a macro-
scopic charged liquid drop, disregarding the internal structure of the droplet. The
physical motivation for this assumption is that the constituent particles cooperate
in a collective coherent way to form the excitation modes of the atomic nucleus,
giving rise to deformations of the surface. It soon became clear that this model
could account for vibrational or rotational modes of motion, observed in the low-
energy excitation spectra of atomic nuclei away from closed shells.

Apart from some schematic cases, solving the Schrödinger equation of the Bohr
Hamiltonian can become quite involved. A major milestone was set by the Gen-
eral Collective Model [Gne71], which enabled the numerical construction of a
matrix representation of the Hamiltonian within a SU(1, 1)×O(5) Lie-algebraic
framework. However, as SU(1, 1) is a non-compact group, the Hilbert space is
infinite dimensional, leading towards numerical complexities with respect to the
convergence in the model space. This might be the reason why the GCM was
eclipsed during the previous decades by the Interacting Boson Model [Iac87],
which was conceived as a unifying model to cover both vibrational (U(5)) and
rotational (SU(3)) structures. Based on representations of the compact enveloping
U(6) group, the IBM Hilbert space could be truncated to finite dimensions, de-
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pending on the number of valence particles outside the closed shells. As a result,
numerically tractable calculations could be performed within the IBM, resulting
in realistic descriptions of collective nuclear structure with a firm connection to
microscopic (shell) models by means of mapping procedures.

With the dawn of quantum shape transitions in the Interacting Boson Model, the
collective model reclaimed considerable attention. It was pointed out that tran-
sition points from the vibrational limit to rotational limits of the IBM can quite
adequately be described with an infinite well potential in the collective model,
the so-called E(5) and X(5) solutions [Iac00, Iac01]. This result reopened the
doorway to the collective model, its special solutions, algebraic properties and
potential applications to experimental data.

The present thesis focuses on several aspects of the collective model. In a first
chapter (chapter 2), analytically solvable potentials in the intrinsic framework
are discussed. In the maiden paper on the collective Hamiltonian, Bohr already
introduced the harmonic oscillator potential in 5D as an analytically solvable po-
tential. More than just an academic curiosity, this potential has proven to be
a significant benchmark of collectivity in vibrational-like atomic nuclei not far
from the closed shells. Subsequently, a variety of potentials have been proposed
with the aim of describing different facets of collective motion. One particularly
interesting facet covers the topic of triaxiality, which is the phenomenon were
spheroidal atomic nuclei exhibit three intrinsic main axes with different lengths.
In section 2.3, a schematic potential of the Wilets & Jean type is studied, where
a Davidson potential is chosen for the β-part, whereas the γ-part is modeled by
means of a harmonic oscillator potential confining the triaxiality to the vicinity
of a free parameter γ0. This potential can be approximately solved, making use
of a SU(1, 1)β × SU(1, 1)γ scheme. It was applied to the chain of Os isotopes,
for which evidence of triaxiality has been previously reported both by experi-
mental as well as theoretical studies. The conclusions from the present study are,
that this type of schematic potential can render a reasonably well description of
soft-triaxial nuclei within the limitations of the approximations. (see section 2.3.3)

One of these approximations causes the violation of γ-periodicity, emerging nat-
urally from the collective model. Therefore, in chapter 2.4, an analytic solvable
Pöschl-Teller potential has been constructed, preserving the periodicity in γ. This
potential has the remarkable property that its minimum occurs at maximal triax-
iality γ = π/6. Although the geometry of the associated ellipsoid is maximally
asymmetric at γ = π/6, the rotational part of the Bohr Hamiltonian can be diag-
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onalised exactly using an O(3) algebra with projection quantum number along
the intrinsic x-axis. However, there is a cost involved: the symmetry is only valid
at the absolute minimum γ = π/6. So to exploit the symmetry, we need to freeze
out the γ-dependence to the average value at the minimum of the potential. To
check the validity of this approximation, the potential has been diagonalize ex-
actly. The general conclusion of this diagonalisation is that the freeze-out ap-
proximation inserts minor deviations from the exact description, which justifies
the approximation a posteriori. The main asset of the Pöschl-Teller potential with
respect to the solvability is also the major drawback concerning applicability: the
restriction to γ = π/6 structures. Nevertheless, some remarkable cases of maxi-
mal triaxiality were previously marked in the Pt isotopes, so they formed the ideal
testcase for the potential. A single-parameter fit (apart from a scaling factor) on
this chain of isotopes demonstrated that the schematic Pöschl-Teller potential is
able to rather adequately describe the energy spectrum of 196Pt as a γ-soft rotor
in the vicinity of maximal triaxiality.

In chapter 3, the field of schematic potentials is abandoned, resorting to more
general polynomial potentials. These potential are considered general within
the assumption that every potential can be developed as a Taylor expansion in
the collective variables, with the constraint that they describe small deviations
from a spherical shape. As a result, with respect to numerical matrix representa-
tions of the collective Hamiltonian, we need the matrix elements of the collective
variables in a suitable basis. It turns out that the natural Cartan-Weyl reduction
scheme of the SU(1, 1) × O(5) algebra provides an eligible framework to con-
struct the matrix elements. Starting from the commutation relations and explicit
expressions of the generators of SU(1, 1) as well as O(5), an intermediate state
method can be exploited to derive closed expressions for the matrix elements of
the collective variables (section 3.2.4) , the canonic conjugate momenta (section
3.2.5) and the associated spin-2 phonon creation and annihilation operators (sec-
tion 3.2.6). It is noteworthy that this technique is utterly algebraic in the sense that
no explicit representation in terms of γ and β nor heighest weight states have to
be constructed. However, working in the Cartan-Weyl basis of SU(1, 1)× O(5)
has the drawback that the O(5) ⊃ O(4) ∼= SU(2)× SU(2) reduction is not com-
patible with the O(3) rotational symmetry, observed in experimental spectra. To
construct basis states with good angular momentum L (and M), the rotation of the
Cartan-Weyl basis to the O(3) basis has to be carried out explicitly, as discussed
in section 3.3. Once the collective variables have been determined, calculating the
necessary matrix elements in the Hamiltonian corresponds to standard angular
momentum recoupling, so the matrix representations of all (even and odd) terms

115



chapter 4 Conclusions and outlook

in the Hamiltonian can be constructed.

From a numerical point of view, the use of the Cartan-Weyl framework provides
an estimable platform with respect to precision and computer time. Concerning
computer time, the bottleneck of the calculation is the rotation of the Cartan-Weyl
basis to the angular momentum basis. However, the dimensions of the matrix
representations of the O(3) Casimir operator L · L stay reasonably small with re-
spect to present desktop computing standards as long as low seniority quantum
numbers are used. In any case, the rotation is independent of the matrix repre-
sentation of the Hamiltonian, and can thus be extracted once and stored for later
use. Since the matrix elements of the collective variables are analytically in the
Cartan-Weyl basis, any precision loss is due to the rotation of the natural to the
physical basis. Sufficiently accurate numerical procedures are available (e.g the
lapack routines) for this purpose.

Currently, a computer code is under development in the nuclear structure theory
group of Ghent to diagonalise general collective Hamiltonians within the Cartan-
Weyl scheme, for which the theoretical framework is presented in the present
thesis.

Section 4.2 ... an ongoing story.

Therefore, the story is not finished with this thesis. Once the computer code,
based on the Cartan-Weyl scheme, is compiled and sufficiently tested, it can be
deployed in the study of collectivity accross the nuclear chart. It will be inter-
esting to investigate e.g. to what extent general Hamiltonians can improve on
the description of triaxiality in the Os and Pt isotopes with respect to the sche-
matic potentials (chapter 2) and how they position to other theoretical studies in
this region, such as PES (potential energy surface) [Ben87] and IBM calculations
[Har97, McC05]. For this purpose, a systematic study of the physical meaning
of the different parameters used in the potential is needed. Along a similar line,
it would be interesting to investigate the effect of a density-dependent nucleon-
nucleon interaction on the parameters of the potential in a semi-classical frame-
work (chapter 3.1) and a profound study of the mass parameter in the kinetic
energy must be undertaken to validate the irrotational hypothesis and how to cor-
rect for it. It is clear that these questions and remarks can and will be addressed
making use of the code, resulting from the theoretical framework described in
this thesis.
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From a more theoretical perspective, we can extend the study on shape phase
transitions. In the present manuscript, the transitions from vibrational over γ-
independent to axial deformed structures have been investigated. This partly as
a complementary view to the widely used Interacting Boson Model based stud-
ies on the topic, and partly as a thorough (and successful) test of the Cartan-Weyl
based formalism. At the present point, it will be very interesting to see how more
involved structures, such as triaxiality or shape coexistence, can arise when the
Hamiltonian is extended to higher-order terms in the Taylor expansion.
Another line of research would be to what extent the current Cartan-Weyl scheme
can be widened to higher-order multipole excitation modes as e.g. considerable
B(E4) hexadecupole strengths have been observed in the Pt isotopes (chapter
2.4.4), admixing with the quadrupole degrees of freedom. The L = 4 hexade-
cupole collective variable has 9 angular momentum projections, which means
that the Cartan-Weyl basis involves the reduction of O(9). As the reduction of
O(5) is already quite knotty and lengthy, it is not clear at present whether the
hexadecupole phonon is still manageable within the framework we have devel-
oped in chapter 3.
Not only from a theoretical point of view, but also with the aim at numerical im-
provements, an extension of the standard Clebsch-Gordan recoupling towards
non-commuting SU(2) coupling might shed light on the problem of the missing
quantum number in the reduction of the O(5) group to the physical O(3) group
with respect to the natural SU(2) × SU(2) subgroup. If the non-commuting
Clebsch-Gordan coefficients would be known, the bottleneck in the calculation
of the quadrupole variable matrix elements could be withdrawn, opening a path-
way to even more sophisticated potentials which require larger Hilbert spaces.

To conclude the conclusions, I feel tempted to address these topics right away,
though, to quote one of the songs of the late Johnny Cash who was vividly alive
in my .mp3 playlist during the months of the thesis writing:

If there’s a light up ahead, well brother I don’t know.
But I got this fever burnin’ in my soul.
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What is the matrix?

Neo – The Matrix A
MATRIX ELEMENTS OF THE TRIAXIAL

DEFORMED DAVIDSON MODEL

ABSTRACT

This appendix contains the matrix elements, needed in the diagonal-
isation of the rigid triaxial Davydov model and the triaxial deformed
Davidson potential (section 2.3). Also the matrix elements for the ex-
act treatment of the Pöschl-Teller potential of the second kind are dis-
cussed (section 2.4).

Section A.1 Angular momentum generators.

In order to diagonalise the Davydov Hamiltonian (2.53) or the rotational part of
the triaxial deformed Davidson potential (2.57), we need a good basis in which
both the intrinsic (L̂′i) and lab-frame angular momenta (L̂i) can be diagonalized.
According to Racah [Rac42], the complex conjugate Wigner-D functions [Ros57]
have a good O(3) tensorial character. Acting with the angular momentum raising
and lowering operators

L̂± = L1 ± iL̂2, (A.1)

on the Wigner-D functions gives (with L̂0 = L̂3)

L̂+Dl∗
mm′ =

√
(l −m)(l + m + 1)Dl∗

m+1,m′ , (A.2)

L̂−Dl∗
mm′ =

√
(l + m)(l −m + 1)Dl∗

m−1,m′ , (A.3)

L̂0Dl∗
mm′ = mDl∗

mm′ , (A.4)
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for the lab frame, and

L̂′+Dl∗
mm′ =

√
(l + m′)(l −m′ + 1)Dl∗

m,m′−1, (A.5)

L̂′−Dl∗
mm′ =

√
(l −m′)(l + m′ + 1)Dl∗

m,m′+1, (A.6)

L̂′0Dl∗
mm′ = m′Dl∗

mm′ , (A.7)

for the intrinsic frame. Therefore,the complex conjugate Wigner-D functions are
suitable to construct a basis. Because of symmetry considerations [Boh52, Eis87]
of the ellipsoid, only a subset of all Wigner-D functions are contained in the ba-
sis. The wavefunctions, symmetric under all transformations leaving an ellipsoid
invariant, are given by

|LMK〉 =

√
2L + 1

16π2(1 + δK0)
(DL∗

MK + (−1)LDL∗
M−K), (A.8)

with K even. Now we have the ingredients to calculate the matrix elements
〈LMK′|L̂′2i |LMK〉, needed for the matrix representation of rotational Hamiltoni-
ans. The special structure of the K = 0 states demands a special treatment. Since

|LM0〉 =
√

2L + 1
8π2 DL∗

M0, (A.9)

we obtain

〈LM0|L̂′21 |LM0〉 = 1
2 L(L + 1), (A.10)

〈LM0|L̂′22 |LM0〉 = 1
2 L(L + 1), (A.11)

〈LM0|L̂′23 |LM0〉 = 0. (A.12)

For the same reason, the matrix elements 〈LM0|L̂′i|LM2〉 also require a special
treatment

〈LM0|L̂′21 |LM2〉 = 1
2
√

2

√
(L− 1)L(L + 1)(L + 2), (A.13)

〈LM0|L̂′22 |LM2〉 = − 1
2
√

2

√
(L− 1)L(L + 1)(L + 2), (A.14)

〈LM0|L̂′23 |LM2〉 = 0. (A.15)
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The general case is given by

〈LMK′|L̂2
1|LMK〉 = 1

2 (L(L + 1)− K2)δK′K

+ 1
4

√
(L− K)(L− K − 1)(L + K + 1)(L + K + 2)δK′K+2

+ 1
4

√
(L + K)(L + K − 1)(L− K + 1)(L− K + 2)δK′K−2,

〈LMK′|L̂2
2|LMK〉 = 1

2 (L(L + 1)− K2)δK′K

− 1
4

√
(L− K)(L− K − 1)(L + K + 1)(L + K + 2)δK′K+2

− 1
4

√
(L + K)(L + K − 1)(L− K + 1)(L− K + 2)δK′K−2,

〈LMK′|L̂2
3|LMK〉 = K2δK′K . (A.16)

Now we are in the position to construct the matrix representation of rotational
Hamiltonians of the form

Ĥ = ∑
i

Ai L̂′2i . (A.17)

A typical example is given by the L = 2 states. Since the only allowed K states
are K = 0 and K = 2, we have a two dimensional matrix

Ĥ(L=2) =
(

3A1 + 3A2
√

3(A1 − A2)√
3(A1 − A2) A1 + A2 + 4A3

)
. (A.18)

The eigenvalues of this matrix are given by

ω± = 2 ∑
i

Ai ± 2
√

∑
i

A2
i − ∑

i< j
Ai A j, (A.19)

with associated eigenstates

|2M〉 = a2
0|2M0〉+ a2

2|2M2〉. (A.20)

The coefficients in the wavefunction are given by

a2
0 = − V√

V2 + (B∓W)2
, a2

2 =
B∓W√

V2 + (B∓W)2
, (A.21)

with

B = A1 + A2 − 2A3, W = 2
√

∑ A2
i −∑ Ai A j, V =

√
3(A1 − A2). (A.22)
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Section A.2 Quadrupole moments

The quadrupole moment of a state with angular momentum L+
i is defined by

[Eis87]

Q =
√

16π
5

(
L 2 L
−L 0 L

)
〈nβnγLi||T̂(E2)||nβnγLi〉. (A.23)

Up to first order inαµ , the quadrupole transition operator T̂(E2) is given by

T̂(E2)µ =
3ZR2

0
4π

α∗µ . (A.24)

Since the wavefunction of the triaxial deformed Davidson Hamiltonian can be
factorised into a β and a γ-rotational part and the collective coordinate can be
written as (equation (2.5))

αµ = β[cosγD2∗
µ0 + 1√

2
sinγ(D2∗

µ2 + D2∗
µ−2)], (A.25)

the calculation of the quadrupole moment falls apart in a β- and a γ-rotational
part. The β-part is relatively simple as the first 2+

1 state is a nβ = 0 excitation.
The wavefunction reads (with ṽ(ṽ + 3) = ω+ BD andω defined by 2.62)

ξ(nβ=0)(β) =
√

2
Γ(ṽ) Aṽ/4

D βṽ−5/2e−
√

AD
2 β2

. (A.26)

The β-part is then

〈nβ = 0|β|nβ = 0〉 =
∫ ∞

0
|ξ(nβ=0)(β)|2β5dβ = Γ(ṽ+1/2)

A1/4
D Γ(ṽ)

. (A.27)

The γ-rotational part is a little more cumbersome, as we need to calculate them
in the same approximative scheme as the energy spectrum calculations. Defining
the following operator

O2
mk =

√
1

2(1+δk0)

(
D2

mk + D2
m−k

)
, (A.28)

we can rewrite the complex conjugate quadrupole coordinateα∗m

α∗m = β
[

O2
m0 cosγ + O2

m2 sinγ
]

. (A.29)
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section A.2 Quadrupole moments

The reduced matrix elements with respect to the lab frame magnetic quantum
number M in the rotational basis (A.8) are then1

〈L′K′||O2
k ||LK〉 =

√
(2L′+1)(2L+1)

(16π2)2(1+δK′0)(1+δK0)

√
2

1+δk0
〈L′||D2||L〉[

(−)L′
(

L′ L 2
K′ −K k

)
+ (−)L′+L

(
L′ L 2
K′ K k

)
(A.30)

+(−)L
(

L′ L 2
−K′ K k

)
+
(

L′ L 2
−K′ −K k

)]
.

The γ-degree of freedom is contained in the goniometric part (cosγ,sinγ) of the
quadrupole coordinate. Within the freeze-out approximation (γ = γ0 + x), we
can rewrite them as

cos(γ0 + x) = cosγ0 cos x− sinγ0 sin x ≈ cosγ0(1− x2

2 )− sinγ0x,

sin(γ0 + x) = sinγ0 cos x + cosγ0 sin x ≈ sinγ0(1− x2

2 ) + cosγ0x.
(A.31)

Let us define the following boson operators

b† = 1√
2
√

C

(√
Cx− ip

)
, b = 1√

2
√

C

(√
Cx + ip

)
, (A.32)

that close under boson commutation relations [b, b†] = 1. If we construct the
following operators

B̂+ = 1
2 b†b†, (A.33)

B̂− = 1
2 bb, (A.34)

B̂0 = 1
2 (b†b + 1

2 ), (A.35)

we can see that they span an SU(1, 1) algebra with representations |λn〉, defined
by [Row98]

ĈSU(1,1)|λn〉 = 1
4λ(λ− 2)|λn〉, (A.36)

B̂0|λn〉 = 1
2 (λ+ 2n)|λn〉, (A.37)

B̂+|λn〉 =
√

(λ+ n)(n + 1)|λ, n + 1〉, (A.38)

B̂−|λn〉 =
√

(λ+ n− 1)n|λ, n− 1〉. (A.39)

1Care has to be taken as the operator O2
mk has O(3) tensorial character 2 with projection −m.
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The Casimir operator of the present 1D realisation of the SU(1, 1) algebra is a
plain constant

ĈSU(1,1) = − 3
16 . (A.40)

Thus, the Casimir quantum numbers λ can take the two values λ = 1/2 or λ =
3/2. We can associate a physical interpretation to the quantum numbers n and λ.
Acting with B̂0 on the lowest-weight state |λ0〉 gives

B̂0|λ0〉 = λ
2 |λ0〉, (A.41)

b†b|λ0〉 = (λ− 1
2 )|λ0〉. (A.42)

Because the operator b†b counts the number of b-bosons in a given state, we can
conclude that the λ = 1/2 lowest-weight state corresponds to the boson vacuum
|θ〉 and the λ = 3/2 lowest-weight state contains precisely one boson. Acting
with B̂+ on the lowest-weight states increases the boson number with an amount
of 2, which means that we can label the even number of boson states with λ = 1/2
and the odd number of bosons with λ = 3/2. Since

|λn〉 =
(B̂+)n√

(λ+ n− 1)(λ+ n− 2)...(λ+ 1)λ
√

n!
|λ0〉, (A.43)

we obtain

| 1
2 n〉 =

(b†)2n
√

2n!
|θ〉, | 3

2 n〉 =
(b†)2n+1√
(2n + 1)!

|θ〉 (A.44)

The connection of n with the γ-vibration quantum number nγ of equation (2.62)
is clear from the explicit (x) realisation of B̂0,

4
√

CB̂0 = − ∂2

∂x2 + Cx2. (A.45)

As a result, we obtain the relation 2nγ + 1 = 4n + 2λ. For the lowest 2+
1 state

holds nγ = 0, which corresponds to the SU(1, 1) representation |1/2, 0〉. To ob-
tain the (approximative) matrix elements of cosγ and sinγ for this state, we need
the matrix elements of the linear and quadratic term in x (A.31). The linear term
x = 1/

√
2
√

C can only mix even (λ = 1/2) with odd (λ = 3/2) states and is
therefore irrelevant for the calculation of quadrupole moments. The quadratic
term can be rewritten in terms of the SU(1, 1) generators

x2 = 1√
C
(2B̂0 − B̂+ − B̂−). (A.46)
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section A.3 Matrix elements in the Legendre basis

As a result, we obtain the matrix elements

〈nγ = 0| cosγ|nγ = 0〉 ≈ cosγ0(1− 1
4
√

C
),

〈nγ = 0| sinγ|nγ = 0〉 ≈ sinγ0(1− 1
4
√

C
). (A.47)

Recalling that the rotational eigenstate can be written as (A.20),

|2M〉 = a2
0|2M0〉+ a2

2|2M2〉, (A.48)

we can combine all results (A.27, A.30 and A.47) to obtain the expression of the
quadrupole moment of the first 2+

1 state

Q2+
1

=
√

16π
5

(
2 2 2
2 0 −2

)
3ZR2

0
4π

〈2+
1 ||α

∗
2 ||2+

1 〉 (A.49)

=
√

1
5π

6
7 ZR2

0
Γ(ṽ+1/2)
A1/4

D Γ(ṽ)
(1− 1

4
√

C
)[cosγ0(a2

2 − a2
0) + 2a2a0 sinγ0]. (A.50)

Section A.3 Matrix elements in the Legendre basis

In this appendix, we summarise the techniques to calculate the necessary matrix
elements for section 2.4 in the basis of the associated Legendre functions using
recursion relations, which largely reduces the computational effort.
The orthonormal form of the Associated Legendre functions, with weight func-
tion sin(3γ) over the interval γ ∈ [0, π/3], is

Pm
q (cos(3γ)) =

√
3
2
(2q + 1)

(q−m)!
(q + m)!

Pm
q (cos(3γ)), (A.51)

where we distinguish the normalised functions Pm
q (cos(3γ)) from the unnor-

malised Pm
q (cos(3γ)), defined in [Arf01]. The aim is to calculate matrix elements

of a given function f (γ)

Fm
qp :=

∫ π/3

0
Pm

q (cos(3γ)) f (γ)Pm
p (cos(3γ)) sin(3γ)dγ. (A.52)

Note that q, p = m, m + 1, ... for a specific basis and that Fm
qp is symmetric under

exchange of q and p.
Making use of recursion relations for the Associated Legendre functions [Arf01],
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appendix A Matrix elements of the triaxial deformed Davidson model

we can deduce two recursion relations for the matrix elements√
(q−m)(q+m)
(2q+1)(2q−1) Fm

qp =
√

(p−m)(p+m)
(2p+1)(2p−1) Fm

q−1,p−1 +
√

(p+1−m)(p+m+1)
(2p+1)(2p+3) Fm

q−1,p+1

−
√

(q+m−1)(q−m−1)
(2q−1)(2q−3) Fm

q−2,p, (A.53)

√
(p+m)(p+m−1)
(2p+1)(2p−1) Fm

qp =
√

(q+m)(q+m+1)
(2q+1)(2q−1) Fm−1

q−1,p−1 −
√

(q−m+1)(q−m+2)
(2q+1)(2q+3) Fm−1

q+1,p−1

+
√

(p−m)(p+m−1)
(2p−1)(2p−3) Fm

q,p−2. (A.54)

Rule (A.54) connects matrix elements from different basis functions that differ in
∆m = ±1. We choose m = 1 because of the relevance for the present study. Now,
rule (A.53) reduces a great amount of the computational work. Matrix elements
with fixed q can easily be obtained as long as the matrixelements with q− 1 and
q − 2 are known (see figure A.1). This rule is still valid when q = m + 1, but
fails for q = m. Thus, this still leaves the matrix elements Fm

mp to be calculated, or
taking our choice into account, F1

1p.

A.3.1 cosγ and sinγ transition matrix elements

In order to calculate E2-transition rates, the matrix elements of cosγ and sinγ
need to be evaluated. We denote them by

s Mm
qp =

∫ π/3

0
Pm

q (cos(3γ)) sinγPm
p (cos(3γ)) sin(3γ)dγ, (A.55)

c Mm
qp =

∫ π/3

0
Pm

q (cos(3γ)) cosγPm
p (cos(3γ)) sin(3γ)dγ. (A.56)

Using rule (A.53), leaves us to calculate

s M1
1p =

∫ π/3

0
P1

1(cos(3γ)) sinγP1
p(cos(3γ)) sin(3γ)dγ, (A.57)

c M1
1p =

∫ π/3

0
P1

1(cos(3γ)) cosγP1
p(cos(3γ)) sin(3γ)dγ. (A.58)

Inserting the specific forms of the Associated Legendre functions

P1
1 (cos(3γ)) = sin(3γ), P1

p (cos(3γ)) = −1
3

∂

∂γ
Pp(cos(3γ)), (A.59)
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qm

p

2

1

Figure A.1: Visual representation of rule (A.53). An unknown matrix element can be
expressed in terms of the known elements inside the boomerang (1). Boomerang (2)
points out that Fm

mp cannot be obtained by rule (A.53) and are still to be calculated.
(Taken from [DB06])

and performing a partial integration, we obtain the result

s M1
1p = 1

2

√
3
2

2p+1
p(p+1)

∫ π/3

0

∂

∂γ

[
sinγ sin2(3γ)

]
Pp(cos(3γ))dγ, (A.60)

c M1
1p = 1

2

√
3
2

2p+1
p(p+1)

∫ π/3

0

∂

∂γ

[
cosγ sin2(3γ)

]
Pp(cos(3γ))dγ. (A.61)

The derivatives can be worked out
∂

∂γ

[
sinγ sin2(3γ)

]
= 1

2 sin(3γ) [7 sin(4γ)− 5 sin(2γ)] , (A.62)

∂

∂γ

[
cosγ sin2(3γ)

]
= 1

2 sin(3γ) [7 cos(4γ) + 5 cos(2γ)] . (A.63)

So, the calculation of the matrix elements (A.60) and (A.61), essentially reduces
to calculating integrals of the general form

sUm
p =

∫ π/3

0
sin(mγ)Pp(cos(3γ)) sin(3γ)dγ,

cUm
p =

∫ π/3

0
cos(mγ)Pp(cos(3γ)) sin(3γ)dγ. (A.64)
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After two partial integrations and, applying recursion relations for Legendre poly-
nomials along the way, we obtain for the integrals

sUm
p = 3

[m2−(3(p+1))2 ]

([
sin(mγ)Pp(cos(3γ)) cos(3γ)

]π/3
0 + 3sVm

p−1

)
,

= 3
[m2−(3(p+1))2 ]

(
(−1)p+1 sin( mπ

3 ) + 3sVm
p−1

)
, (A.65)

cUm
p = 3

[m2−(3(p+1))2 ]

([
cos(mγ)Pp(cos(3γ)) cos(3γ)

]π/3
0 + 3cVm

p−1

)
,

= 3
[m2−(3(p+1))2 ]

(
(−1)p+1 cos( mπ

3 )− 1 + 3sVm
p−1

)
, (A.66)

with

sVm
p =

∫ π/3

0
sin(mγ)

∂Pp(cos(3γ))
∂ cos(3γ)

sin(3γ)dγ,

= sVm
p−2 + (2q− 1)sUm

p−1, (A.67)

cVm
p =

∫ π/3

0
cos(mγ)

∂Pp(cos(3γ))
∂ cos(3γ)

sin(3γ)dγ,

= cVm
p−2 + (2p− 1)cUm

p−1, (A.68)

where the relationship

d
dx

Pp(x) =
d

dx
Pp−2(x) + (2p− 1)Pp−1(x), (A.69)

has been used in the last step.
Finally, we have obtained a coupled recursion relations between the U and V
integrals. The only integrations that need to be carried out are sVm

0 , cVm
0 and

sVm
1 , cVm

1 . The former are identically zero (P0 = 1) while the latter can be calcu-
lated exactly

sVm
1 =

3 sin
(mπ

3
)

9−m2 , (A.70)

cVm
1 =

3
(
1 + cos

(mπ
3
))

9−m2 . (A.71)

A.3.2 Moments of inertia

To diagonalise the Hamiltonian with the 1/ sin2 3γ potential (2.4.3), we have to
calculate the matrix elements of the soft moments of inertia Ji, appearing in the
denominator.

1
Ji

=
1

sin2(γ − 2π i
3 )

. (A.72)
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We use the notation

i Am
qp :=

∫ π/3

0

Pm
q (cos(3γ))Pm

p (cos(3γ))

sin2(γ − 2π i
3 )

sin(3γ)dγ. (A.73)

Again, using rule (A.53), combined with the specific form of the Associated Leg-
endre functions (A.59), the computational effort is largely reduced, and we obtain

i A1
1p = −1

2

√
3
2

2p + 1
p(p + 1)

∫ π/3

0

∂

∂γ
Pp(cos(3γ))

sin2(γ − 2π i
3 )

sin2(3γ)dγ. (A.74)

We multiply nominator and denominator with the factor ∏k 6=i sin2(γ− 2πk
3 ), and

take the property sin(γ − 2π
3 ) sin(γ − 4π

3 ) sin(γ − 6π
3 ) = − 1

4 sin(3γ) into ac-
count. Then we obtain

i A1
1p = −8

√
3
2

2p + 1
p(p + 1)

∫ π/3

0
∏
k 6=i

sin2(γ − 2πk
3 )

∂

∂γ
Pp(cos(3γ))dγ. (A.75)

Performing a partial integration gives

i A1
1p = 8

√
3
2

2p + 1
p(p + 1)

[∫ π/3

0

∂

∂γ

(
∏
k 6=i

sin2(γ − 2πk
3 )

)
Pp(cos(3γ))dγ

+
9

16
(δi3 − (−1)qδi2)

]
. (A.76)

Substituting

∂

∂γ

(
∏
k 6=i

sin2(γ − 2πk
3 )

)
= − sin(3γ) cos(γ − 2π i

3 ), (A.77)

in equation (A.76), we obtain as a final result

i A1
1p = 8

√
3
2

2p + 1
p(p + 1)

[
9

16
(δi3 − (−1)pδi2)− iBp

]
, (A.78)

with

iBp =
∫ π/3

0
cos(γ − 2π i

3 )Pp(cos(3γ)) sin(3γ)dγ. (A.79)
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Making use of the property cos(γ − 2π i
3 ) = cosγ cos( 2π i

3 ) + sinγ sin( 2π i
3 ), the

integral iBp can be rewritten in terms of the cU1
p and sU1

p integrals (A.64), thus
reducing the original problem of evaluating the necessary matrix elements of the
rotational part of the Hamiltonian, to the integrals involved in the study of E2
transition probabilities (appendix A.3.1)

iBp = cos( 2π i
3 )cU1

p + sin( 2π i
3 )sU1

p . (A.80)
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I’m the operator,
with my pocket calculator

Kraftwerk B
OPERATORS AND MATRIX ELEMENTS

IN THE CARTAN-WEYL BASIS

Section B.1 Operators

The generators LM and OM can explicitly be expressed in terms of the collective
variables and their canonic conjugate momenta according to the definition (3.13)

LM = − i
√

10
h̄ [απ∗]1M = − i

√
10

h̄ ∑
µµ′
〈2µ2µ′|1M〉αµπ∗µ′ , (B.1)

OM = − i
√

10
h̄ [απ∗]3M = − i

√
10

h̄ ∑
µµ′
〈2µ2µ′|3M〉αµπ∗µ′ , (B.2)

where 〈 j1m1 j2m2| j3m3〉 are the commonly known Clebsch-Gordan coefficients.
Taking the rotation to the Cartan representation into account (3.17), explicit and
relatively simple expressions for the generators can be obtained

X+ = i
h̄ (α2π

∗
−1 −α−1π

∗
2 ), Y+ = i

h̄ (α2π
∗
1 −α1π

∗
2 ), (B.3)

X− = −i
h̄ (α1π

∗
−2 −α−2π

∗
1 ), Y− = −i

h̄ (α−1π
∗
−2 −α−2π

∗
−1), (B.4)

X0 = −i
2h̄ (α2π

∗
−2 +α1π

∗
−1 −α−1π

∗
1 −α−2π

∗
2 ), (B.5)

Y0 = −i
2h̄ (α2π

∗
−2 −α1π

∗
−1 +α−1π

∗
1 −α−2π

∗
2 ), (B.6)

T1
2

1
2

= −i
h̄
√

2
(α2π

∗
0 −α0π

∗
2 ), T− 1

2
1
2

= −i
h̄
√

2
(α1π

∗
0 −α0π

∗
1 ), (B.7)

T1
2−

1
2

= −i
h̄
√

2
(α−1π

∗
0 −α0π

∗
−1), T− 1

2−
1
2

= −i
h̄
√

2
(α−2π

∗
0 −α0π

∗
−2). (B.8)
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Section B.2 Matrix elements

The matrix elements of α, [αα](2) and [αα](2) ·α can be factorised in a part con-
taining the quantum numbers n and λ = v + 5

2 of SU(1, 1) and a part containing
the residual quantum numbers of O(5) (see chapter 3.4)

〈n′v′L′(ν′)||α||nvL(ν)〉 = 〈λ′n′|F1|λn〉〈v′L′(ν′)||G1||vL(ν)〉, (B.9)

〈n′v′L′(ν′)||[αα](2)||nvL(ν)〉 = 〈λ′n′|F2|λn〉〈v′L′(ν′)||G2||vL(ν)〉, (B.10)

〈n′v′L(ν′)||[αα](2) ·α||nvL(ν)〉 = 〈λ′n′|F3|λn〉〈v′L(ν′)||G3||vL(ν)〉. (B.11)

Due to selection rules, only a limited number of these matrix elements differ from
zero. The functions Gi are determined by means of standard angular momentum
recoupling relations (see chapter 3.4), which govern the selection rules for the
angular momentum quantum numbers L → L′ in Gi. The functions Fi are built
from the matrix elements 〈λ′n′|β|λn〉, which means that the selection rules for
the quantum numbers n and λ are built from the selection rules for the matrix
elements of β. The non-vanishing functions Fi are depicted in figure B.1 and are
given as following.

F2
F3

F1

v

n

Figure B.1: Graphical representation of the non-vanishing functions 〈n′λ′|Fi|λn〉 for
i = 1, 2, 3.
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1. The functions F1 are chosen identical to the matrix elements 〈n′λ′|β|λn〉, so
they can only relate seniority quantum numbers that differ one unit v′ =
v± 1

◦ v′ = v + 1

〈λ+ 1, n|F1|λn〉 = 1√
k

√
λ+ n,

〈λ+ 1, n− 1|F1|λn〉 = 1√
k

√
n, (B.12)

◦ v′ = v− 1

〈λ− 1, n + 1|F1|λn〉 = 1√
k

√
n + 1,

〈λ− 1, n|F1|λn〉 = 1√
k

√
λ+ n− 1. (B.13)

2. The functions F2 are built from the product from two F1 functions, therefore
they connect seniority quantum number differing 2, 0 or −2 in units.

◦ v′ = v + 2

〈λ+ 2, n|F2|λn〉 = 1
k

√
(λ+ n)(λ+ n + 1),

〈λ+ 2, n− 1|F2|λn〉 = 2
k

√
n(λ+ n),

〈λ+ 2, n− 2|F2|λn〉 = 1
k

√
n(n− 1), (B.14)

◦ v′ = v

〈λ, n + 1|F2|λn〉 = 1
k

√
(n + 1)(λ+ n),

〈λ, n|F2|λn〉 = 1
k (λ+ 2n),

〈λ, n− 1|F2|λn〉 = 1
k

√
n(λ+ n− 1), (B.15)

◦ v′ = v− 2

〈λ− 2, n + 1|F2|λn〉 = 1
k

√
(n + 1)(λ+ n),

〈λ− 2, n|F2|λn〉 = 1
k (λ+ 2n),

〈λ− 2, n− 1|F2|λn〉 = 1
k

√
n(λ+ n− 1). (B.16)

3. The functions F3 are constructed from the product of 3 β matrix elements,
so the seniority selection rules are v′ = v± 1, v± 3.
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appendix B Operators and matrix elements in the Cartan-Weyl basis

◦ v′ = v + 3

〈λ+ 3, n|F3|λn〉 = 1
k3/2

√
(λ+ n)(λ+ n + 1)(λ+ n + 2),

〈λ+ 3, n− 1|F3|λn〉 = 3
k3/2

√
n(λ+ n)(λ+ n + 1),

〈λ+ 3, n− 2|F3|λn〉 = 3
k3/2

√
n(n− 1)(λ+ n),

〈λ+ 3, n− 3|F3|λn〉 = 1
k3/2

√
n(n− 1)(n− 2), (B.17)

◦ v′ = v + 1

〈λ+ 1, n + 1|F3|λn〉 = 1
k3/2

√
(n + 1)(λ+ n)(λ+ n + 1),

〈λ+ 1, n|F3|λn〉 = 1
k3/2

√
λ+ n(λ+ 3n + 1),

〈λ+ 1, n− 1|F3|λn〉 = 1
k3/2

√
n(2λ+ 3n− 1),

〈λ+ 1, n− 2|F3|λn〉 = 1
k3/2

√
n(n− 1)(λ+ n− 1), (B.18)

◦ v′ = v− 1

〈λ− 1, n + 2|F3|λn〉 = 1
k3/2

√
(n + 1)(n + 2)(λ+ n),

〈λ− 1, n + 1|F3|λn〉 = 1
k3/2

√
n + 1(2λ+ 3n),

〈λ− 1, n|F3|λn〉 = 1
k3/2

√
λ+ n− 1(λ+ 3n),

〈λ− 1, n− 1|F3|λn〉 = 1
k3/2

√
n(λ+ n− 1)(λ+ n− 2), (B.19)

◦ v′ = v− 3

〈λ− 3, n + 3|F3|λn〉 = 1
k3/2

√
(n + 1)(n + 2)(n + 3), (B.20)

〈λ− 3, n + 2|F3|λn〉 = 3
k3/2

√
(n + 1)(n + 2)(λ+ n− 1),

〈λ− 3, n + 1|F3|λn〉 = 3
k3/2

√
(n + 1)(λ+ n− 1)(λ+ n− 2),

〈λ− 3, n|F3|λn〉 = 1
k3/2

√
(λ+ n− 1)(λ+ n− 2)(λ+ n− 3).
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Het collectief model

De thesis opent met een metafoor: ’De atoomkern is zoals een enorme voetbal-
ploeg, alhoewel het spel bepaald wordt door individuele acties, het is de ploeg
die de wedstrijd wint’. Met deze metafoor wordt bedoeld dat de atoomkern be-
staat uit een aantal individuele nucleonen (protonen en neutronen), maar het is
de samenwerking van alle mogelijke interacties tussen deze nucleonen die de uit-
eindelijke kernstructuur zullen bepalen. Helaas, we mogen deze metafoor niet
over de volledige lijn trekken. Zo zijn de ’spelregels’ op het atomaire terrein
ver weg van gekend, gezien de protonen en neutronen geen elementaire deeltjes
zijn, maar op hun beurt nog eens opgebouwd zijn uit quarks. In principe zou
het mogelijk moeten zijn om testinteracties te gebruiken in kernstructuur bere-
keningen, en die testinteracties dan a posteriori zuiver te stemmen door middel
van de confrontatie van de berekeningen met de experimentele data. Realiteit is
echter een stuk minder eenvoudig. Vermits de atoomkern een type voorbeeld is
van een veeldeeltjes systeem, kunnen ab initio berekeningen, startend van de vrije
nucleon-nucleon interactie, vrij ingewikkeld om niet te zeggen onmogelijk wor-
den met toenemend deeltjesaantal1[Car98]. Men zou een statistische methode
kunnen overwegen om dit probleem te omzeilen, maar deze technieken eisen
enorme deeltjes aantallen omwille van statistische relevantie, en hiervoor heeft
de atoomkern dan weer veel te weinig deeltjes. We kunnen dus enkel maar be-
sluiten dat een beschrijving van kernstructuur noodgedwongen zal moeten ge-
beuren aan de hand van modellen. Ruwweg is het ruime spectrum aan modellen
opdeelbaar in twee grote groepen, de microscopische- en macroscopische modellen.

Een schoolvoorbeeld van microscopische modellen is het kernschillen model [Hey94].
Dit model werd ontwikkeld als antwoord op de vraag waarom sommige kernen

1Huidige ab initio berekeningen kunnen atoomkernen aan met massagetal A ∼ 10.
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met zogenaamde magische deeltjes aantallen (8, 20, 50,etc) opmerkelijk sterker ge-
bonden zijn dan voorspeld aan de hand van eerdere macroscopische modellen.
Naar analogie met de electronen schillen van het atoom, werd verondersteld dat
de protonen en neutronen op orbitalen bewegen, waardoor de extra bindings
energie te danken is aan het sluiten van een bezette schil. In tegenstelling tot het
atoom, is er echter geen extern centraal kracht veld aanwezig die een dergelijke
schillen structuur kan verklaren. De fysische verantwoording voor een effectieve
centrale kracht wordt gehaald uit gemiddeld veld of Hartree-Fock berekeningen, die
aantonen dat een enkel nucleon benaderend onafhankelijk kan bewegen in een
gemiddeld veld, opgewekt door de andere nucleonen in de atoomkern [Fet71].
Dit gemiddeld veld wordt gegenereerd op een iteratieve diagrammatische ma-
nier. Vaak worden echter fenomenologische en oplosbare potentialen gebruikt
in plaats van Hartree-Fock gebaseerde gemiddelde velden, waarop gecorrigeerd
wordt met residuele interacties die niet in de potentiaal vervat zijn.

Vanuit historisch oogpunt was het eerste kernmodel macroscopisch van aard, het
zogenaamde vloeistofdruppel model [Wei35, Bet36]. Het wordt gecatalogeerd onder
macroscopische modellen vermits het de atoomkern als een macroscopisch object
behandelt met een welgedefinieerd oppervlak. De vergelijking met water drup-
pels is afkomstig vanuit de inwendige structuur. Beide types objecten zijn samen-
gesteld uit enkelvoudige deeltjes die, ten gevolge van de aantrekkende wissel-
werking, zullen wedijveren naar een minimalisatie van het volume en de opper-
vlakte van het totale object. Dit idee werd toegepast door Bethe en Weizsäcker
om de toenmalig gemeten bindings energieën met succes te verklaren. Fijne-
re metingen brachten echter systematische afwijkingen van de Bethe-Weizsäcker
formule aan het licht rond de magische getallen, zodat de macroscopische inter-
pretatie van atoomkernen overschaduwd werd door het schillenmodel. Maar dit
model was evenmin almachtig, gezien het de experimenteel geobserveerde gro-
te kwadrupool momenten niet kon verklaren. Rainwater suggereerde dat dit te
wijten kon zijn aan het onafhankelijk karakter van de nucleonen in de toenma-
lige schillenmodel berekeningen en dat collectieve bewegingsmodes, waarin alle
deeltjes coherent deelnemen aan de vervorming van de kern, onuitdenkbaar zijn
[Rai50]. Dit bracht Bohr en Mottelson ertoe om het vloeistof druppel model te
heroverwegen, maar ditmaal in een kwantum mechanisch kader [Boh52, Boh53].
Dit formalisme leidde tot een dynamische beschrijving van het oppervlak waar-
aan enkelvoudige deeltjes konden gekoppeld worden, verantwoordelijk voor de
polarisatie van de kern.

Eén van de basis ingrediënten voor dit dynamisch collectief model is de potenti-
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aal in de Hamiltoniaan. Deze potentiaal kan geconstrueerd worden op grond van
microscopische nucleon-nucleon interacties, maar men kan ook toevlucht zoeken
tot meer schematische potentialen, vertrekkende vanuit fenomenologische over-
wegingen. Zich baserend op het klassieke argument van oppervlaktespanning,
voorzag Aage Bohr reeds in het allereerste artikel de analytisch oplosbare 5D
harmonische oscillator als potentiaal voor kwadrupoolvormige (of ellipsoidale)
vibrationele kernen. Andere collectieve structuren, zoals bijvoorbeeld rotaties
konden later verklaard worden in het rotatie-vibratie model waarbij een axiaal
vervormde potentiaal aanleiding gaf tot rotatiebanden die benaderend analy-
tisch konden worden bepaald. Vanuit experimenteel oogpunt is het weinig waar-
schijnlijk dat de structuur van collectieve atoomkernen accuraat kan beschreven
worden met deze archetypes van potentialen. Daarom was er nood voor een
omvattende methode waarin algemenere potentialen kunnen opgelost worden.
Deze werd aangereikt door het algemeen collectief model (ACM), ontwikkeld door
de Frankfurt groep [Gne71]. Het ACM is gebaseerd op de veronderstelling dat
de collectieve variabelen kleine afwijkingen beschrijven ten opzichte van de sfe-
rische vorm, zodat iedere potentiaal kan ontwikkeld worden als een baanimpuls-
moment invariante Taylor ontwikkeling in de variabelen. Deze Taylor ontwikke-
ling is niet langer analytisch oplosbaar zodat men moet overgaan op een matrix
representatie van de Hamiltoniaan als input voor numerieke diagonalisatie pro-
cedures. Gebruik makend van een Lie algebraisch SU(1, 1)×O(5) structuur, kan
men expliciete basis representaties opbouwen en aanwenden voor de berekening
van de matrix elementen. Echter, vermits SU(1, 1) een niet-compacte Lie groep
is, is de Hilbert ruimte oneindig dimensionaal, hetgeen voor numerieke kwesties
kan zorgen inzake de convergentie in de model ruimte. Dit kan een reden zijn
waarom het ACM de voorbije decennia vrijwel overschaduwd geweest is door
the interagerend boson model (IBM).

Het IBM is voortgesproten uit de wens naar een unificatie van vibrationele U(5)
en rotationele SU(3) structuren [Iac87]. Steunend op de representaties van de
omvattende compacte U(6) groep, is het mogelijk om een eindig dimensionale
Hilbert ruimte te construeren waarbij de dimensie fysisch vastgelegd wordt aan
de hand van het aantal valentie deeltjes buiten de afgesloten schillen. Dit zorgde
ervoor dat collectiviteit in atoomkernen kon bestudeerd worden met computer-
vriendelijke codes, met de surplus dat de connectie met microscopische modellen
gegarandeerd was via afbeelding of mapping procedures.

De rijke algebraische structuur van het IBM zorgde ervoor dat het ideaal terrein
werd voor de studie van kwantum (vorm)fasetransities. In dit vakgebied worden
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overgangen bestudeerd tussen systemen met een verschillende onderliggende fy-
sische structuur, zoals bijvoorbeeld de overgang van vibrationele kernen naar ro-
tationele kernen. Opmerkelijk genoeg bleek dat de transitiepunten van de vibrati-
onele limit naar rotationele limieten in het IBM vrij adequaat beschreven worden
door middel van oneindige put potentialen in het geometrisch model, de zoge-
heten E(5) en X(5) kritische punt oplossingen [Iac00, Iac01]. Het is dankzij deze
oplossingen, dat het geometrisch model de laatste jaren opnieuw in de schijnwer-
pers kwam te staan. Naast de beschrijving van kritische punten, werd eveneens
onderzoek verricht naar andere oplosbare potentialen, de onderliggende algeb-
raische structuur, en de potentiële toepasbaarheid van het geometrisch model in
het kader van moderne theoretische en computer technische middelen.

Ook deze thesis tracht een steentje bij te dragen aan de kennis over het geome-
trisch model. In een eerste deel werd onderzocht in welke mate schematische en
analytisch oplosbare potentialen een bijdrage kunnen leveren aan het begrijpen
van triaxialiteit. Een tweede gedeelte behandelt een algemeen theoretisch kader
voor het oplossen van algemenere potentialen zoals voorgesteld in het ACM.

Triaxialiteit

Het begrip triaxialiteit wordt gekaderd in de geometrie van ellipsoiden. De fami-
lie van ellipsoidale objecten kan opgedeeld worden in drie verschillende klassen
naar gelang de symmetrie. De hoogst symmetrische ellips is de bol, vermits hij
invariant blijft onder willekeurige rotaties in de volledige 3D ruimte. De volle-
dige O(3) symmetrie kan gebroken worden door één van de 3 hoofdassen van
de bol te verkorten of verlengen. Op die manier wordt de symmetrie verlaagd
van O(3) naar O(2), hetgeen willekeurige rotaties in het 2D vlak beschrijft, lood-
recht ten opzichte van de symmetrie brekende hoofdas. We spreken in dit geval
van respectievelijk oblate (of discusvormige) en prolate (of sigaarvormige) ellipsoi-
den. Uiteindelijk kan de rotationele symmetry volledig gebroken worden door
de lengtes van de 3 hoofdassen verschillend van mekaar te kiezen. Ellipsoiden
waarvan de lengtes van de hoofdassen allen verschillend zijn, worden non-axiale
of triaxiale objecten genoemd. Het is vermeldenswaardig dat de symmetrie niet
volledig gebroken is in het geval van triaxialiteit. Het is immers mogelijk aan de
hand van projecties en rotaties over 90◦, de ellipsoide in zichzelf om te zetten,
hetgeen er voor zorgt dat er een discrete symmetrie overleeft die zodoende aan-
leiding geeft tot periodieke randvoorwaarden voor de collectieve variabele γ in
het intrinsiek assenstelsel.

In hoofdstuk 2.3 wordt een schematische potentiaal geı̈ntroduceerd die in staat
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is om triaxiaal gedeformeerde atoomkernen te beschrijven. De potentiaal is een
voorbeeld van de klasse van Wilets & Jeanβ−γ ontkoppelbare potentialen. Voor
het β-gedeelte werd een analytische oplosbare Davidson potentiaal geopteerd,
terwijl een harmonische oscillator potentiaal gekozen werd voor het gedeelte in
γ. Deze harmonische oscillator wordt geconstrueerd opdat hij minimaal is in het
punt γ = γ0 waarbij γ0 als vrije parameter gekozen wordt. Gecombineerd met de
Davidson potentiaal in β, zorgt dit ervoor dat de totale potentiaal één enkel dui-
delijk gedeformeerd triaxiaal minimum vertoont. Deze potentiaal kan analytisch
worden opgelost door gebruik te maken van een SU(1, 1)β × SU(1, 1)γ schema,
indien enkele fysisch verantwoorde benaderingen worden doorgevoerd.
Gezien de Os isotopen reeds als triaxiale rotors geı̈dentificeerd waren in tal van
voorafgaande theoretische studies, is het interessant te onderzoeken in welke ma-
te deze reeks van isotopen kan beschreven worden met de huidige schematische
potentiaal in het geometrisch model, met een algemeen vrij positief antwoord als
resultaat (hoofdstuk 2.3.3).

Het dient opgemerkt te worden dat de harmonische oscillator potentiaal in γ niet
voldoet aan de periodieke randvoorwaarden in γ, zoals die opgelegd zijn door
het geometrisch model. Daarom werd er in onze onderzoeksgroep een zoektocht
gestart naar schematische en analytisch oplosbare potentialen die deze symme-
trie wel respecteert. Een goede kandidaat werd gevonden onder de vorm van
de Pöschl-Teller potentiaal van de 2e soort. Deze potentiaal heeft de opmerkelij-
ke eigenschap dat het een minimum vertoont bij maximale triaxialiteit γ = π/6.
Alhoewel de rotationele symmetrie van het geometrisch object maximaal verbro-
ken is, is het toch mogelijk om deze potentiaal op te lossen aan de hand van een
O(3) algebra als gevolg van een toevallige symmetrie in de traagheidsmomen-
ten. Vermits deze symmetrie enkel geldig is voor exact maximale triaxialiteit,
moeten we de γ-afhankelijkheid van de traagheids momenten vastvriezen in het
minimum van de potentiaal, willen we de oplosbaarheid van de potentiaal ga-
randeren. Dit zorgt ervoor dat de gekoppelde γ-rotationele differentiaal vergelij-
king approximatief kan ontkoppeld worden in een afzonderlijk γ- en rotationeel
gedeelte. Gebruik makend van de theorie over speciale functies en elementaire
baanimpulsmoment theorie, kan men analytische oplossingen bekomen van de-
ze Pöschl-Teller potentiaal. Om de geldigheid van de aangewende benadering
a posteriori te verifiëren, werd een volledige diagonalisatie doorgevoerd in een
complete basis. De algemene conclusie van deze diagonalisatie is dat het vast-
vriezen van de traagheidsmomenten slechts kleine afwijkingen veroorzaakt ten
opzichte van de exacte oplossing.
De localisatie van het minimum van de Pöschl-Teller potentiaal rond γ = π/6,
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begunstigt enerzijds de oplosbaarheid van de potentiaal, maar anderzijds be-
moeilijkt dit aanzienlijk de toepasbaarheid ervan, gezien het heel onwaarschijn-
lijk is om atoomkernen op te sporen die kunnen beschreven worden als maxi-
maal triaxiale rotors. Desalniettemin heeft men aan de hand van starre rotor
studies reeds enkele gevallen kunnen indentificeren in de Pt isotopen. Met dit
opzicht was het interessant om de toepasbaarheid van de Pöschl-Teller te testen
in deze reeks isotopen. In hoofdstuk 2.4.4 wordt aangetoond met behulp van
een fit procedure met één enkele parameter (met uitzondering van een algemene
schaalfactor) dat het energy spectrum van 196Pt vrij goed kan beschreven worden
aan de hand van deze potentiaal, zodat deze atoomkern effectief kan beschouwd
worden als een γ-rotor rond maximale triaxialiteit.

Een Cartan-Weyl perspectief

In een tweede deel wordt het domein van schematische en analytisch oplosbare
potentialen verlaten voor meer algemenere vormen van potentialen. Vermits de
collectieve variabelen klein verondersteld worden, is het mogelijk om elke po-
tentiaal te schrijven als een Taylor ontwikkeling in deze variabelen. Dit heeft als
gevolg dat we enkel de matrix elementen nodig hebben van de collectieve va-
riabelen (en canonisch toegevoegde momenta) in een vooropgestelde basis om
de volledige matrix representatie van de Hamiltoniaan op te bouwen. Het blijkt
dat de Cartan-Weyl groep reductie van de overkoepelende SU(1, 1)× O(5) een
zeer geschikte basis aanreikt voor deze opdracht. Startend van de commutatie
relaties en de expliciete uitdrukkingen voor de SU(1, 1) and O(5) generatoren,
mits gebruik makend van een intermediaire toestand methode, is het mogelijk
om expliciete uitdrukkingen te bekomen voor de matrix elementen van zowel de
collectieve variabele als de canonisch toegevoegde momenta (en als gevolg even-
eens de spin-2 fonon creatie- en annihilatie operatoren). Deze methode is volle-
dig algebraisch in de zin dat alle matrix elementen bekomen zijn zonder gebruik
te maken van expliciete basisrepresentaties, noch hoogste gewicht toestanden.
Het enige minpunt van deze techniek is dat de natuurlijke Cartan-Weyl reductie
van O(5) ⊃ O(4) ∼= SU(2)× SU(2) niet verenigbaar is met de O(3) rotationele
symmetrie die waargenomen is in experimentele spectra. Indien men toch basis
toestanden wil met goed O(3) kwantum getal L (en M), moet de rotatie van de
natuurlijke naar de fysische basis expliciet doorgevoerd worden. Eens dit gedaan
is, heeft men de matrix elementen van de collectieve variabelen ter beschikking
in de fysische basis. Hogere orde impulsmoment invariante veeltermen kunnen
nu eenvoudig bepaald worden aan de hand van standaard Clebsch-Gordan her-
koppeling schema’s, zodat de volledige Hamiltoniaan kan opgebouwd worden.
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De Cartan-Weyl reductie levert niet enkel een elegant theoretisch kader, ook van-
uit numeriek perspectief is het een rechtlijnige en handelbare techniek. Met be-
trekking tot computertijd, kunnen alle matrix elementen binnen redelijke tijd be-
rekend worden, zolang de dimensies van de representaties van O(5) betrekke-
lijk klein blijven2. De rotatie van de natuurlijke naar de fysische basis fungeert
daarbij als de voornamelijke tijdsopslorper, gezien dit intrinsiek inhoudt dat een
diagonalisatie van de Casimir operator L · L van O(3) moet worden doorgevoerd.
Gezien de matrix representatie van de Hamiltoniaan enkel afhankelijk is van de
matrix elementen van de variabelen in de fysische basis, dient de rotatie slechts
eenmaal uitgevoerd te worden waarna men de bekomen matrix elementen kan
opslaan in een extern bestand voor later gebruik. Voor wat betreft de numerieke
precisie van de methode, is het zo dat de matrix elementen analytisch zijn in de
Cartan-Weyl basis zodat enige verlies van precisie eveneens te wijten is aan de
rotatie. Er zijn echter voldoende accurate algoritmes op de markt (zoals bijvoor-
beeld de Lapack routines) om dit naar tevredenheid te behandelen.

Rest ons nog te vermelden dat een numeriek algoritme algemene potentialen bin-
nen het kader van de natuurlijke Cartan-Weyl reductie op het eigenste moment
in volle ontwikkeling is in de kernstructuur groep te Gent, met het oog op ver-
der onderzoek in het geometrisch model. Verschillende onderzoekslijnen zullen
daarbij aan bod komen. Zo is er bijvoorbeeld de vraag over de toepasbaarheid
van het ACM doorheen de nuclidekaart, zowel voor de reeds gekende- als de toe-
komstig ontdekte atoomkernen in het licht van de huidige exotische bundel faci-
liteiten. Hierbij zal een degelijke studie inzake de fysische betekenis en relevantie
van de gebruikte parameters zeker inzicht brengen in de structuur van de aan-
gewende potentialen en de bekomen oplossingen. Langs een gelijklopend pad,
bevindt zich de vraag of het niet mogelijk is deze potentialen op te bouwen vanuit
een semi-klassiek formalisme, vertrekkende van een microscopische dichtheids-
afhankelijke interactie (zie hoofdstuk 3.1) en tot welke hoogte de veronderstelling
van irrotationele beweging stand houdt in de bepaling van de massa parameter.
Het is duidelijk dat al deze vragen kunnen en zullen beantwoord worden aan de
hand van deze code, gebaseerd op het theoretisch formalisme beschreven in deze
thesis.

Vanuit een eerder theoretisch perspectief, openen zich andere onderzoekspaden.
De kwantum vormfasetransities kunnen perfect behandeld worden, waarbij de
mogelijkheid bestaat om complexere structuren te incorporeren, zoals triaxialiteit

2senioriteiten v tot aan 100 kunnen makkelijk verwerkt worden binnen enkele minuten op een
huidige commerciëel verkrijgbare desktop computer
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en vorm coexistentie. Een ander pad beklimt de weg naar hogere multipolaritei-
ten in het geometrisch model. Het is interessant om te onderzoeken of dit Cartan-
Weyl schema kan toegepast worden op bijvoorbeeld de hexadecupool vrijheids-
graden, vermits aanzienlijke B(E4) waarden zijn waargenomen in de Pt isotopen,
die het zuivere kwadrupool beeld grondig verstoren in de L = 4 toestanden.
Aangezien de L = 4 hexadecupool variabele 9 intrinsieke impulsmoment projec-
ties bevat, dient de overkoepelende groepsstructuur de O(9) groep te bevatten.
Het is niet duidelijk tot op welke hoogte een Cartan-Weyl reductie van deze 36
parameter Lie groep nog handelbaar is met een intermediaire toestand method
hoofdstuk 3.
Niet enkel vanuit theoretisch, maar ook vanuit numeriek oogpunt is een studie
van een mogelijke extensie van de standaard Clebsch-Gordan herkoppeling sche-
ma’s naar niet-commuterende SU(2) groepen interessant te noemen. Indien de
niet-commuterende Clebsch-Gordan coefficiënten gekend zouden zijn, houdt dit
een aanzienlijke vereenvoudiging in voor de rotatie van de natuurlijke naar fysi-
sche basis, met een gevoelige tijdswinst als gevolg. Hierdoor zouden hogere se-
nioriteit representatie kunnen geconstrueerd worden, waardoor nog complexere
potentialen kunnen worden behandeld.

Het verhaal is dus duidelijk nog niet ten einde...
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H. The spherical to asymmetric shape transition in the mass region with 50 <
(n, z) < 82. Z. Phys. A 267 p. 149 (1974).

[Ham64] Hamermesh M. Group theory and its applications to physical problems
(Addison-Wesley, Reading, Massachusetts, 1964).

[Har97] Harder M K, Tang K T & Van Isacker P. An IBM description of coexistence
in the platinum isotopes. Phys. Lett. B 405 p. 25 (1997).

149



Bibliography

[Hec65] Hecht K T. Some simple R5 Wigner coefficients and their applications. Nucl.
Phys. 63 p. 177 (1965).

[Hei06] Heinze S, Cejnar P, Jolie J & Macek M. Evolution of spectral properties along
the O(6)−U(5) transition in the interacting boson model. I. Level dynamics.
Phys. Rev. C 73 p. 014306 (2006).

[Hey94] Heyde K. The nuclear shell model (Springer-Verlag, Berlin, 1994).

[Hey99] Heyde K. Basic ideas and concepts in nuclear physics (Institute of Physics
Publishing, Bristol, 1999).

[Iac87] Iachello F & Arima A. The interacting boson model (Cambridge University
Press, Cambridge, 1987).

[Iac93] Iachello F. Dynamic symmetries and supersymmetries in nuclear physics.
Rev. Mod. Phys. 65 p. 569 (1993).

[Iac99] Iachello F. Dynamic symmetries in nuclei. J. Phys. G 25 p. 655 (1999).

[Iac00] Iachello F. Dynamic symmetries at the critical point. Phys. Rev. Lett. 85 p.
3580 (2000).

[Iac01] Iachello F. Analytic description of critical point nuclei in a spherical-axially
deformed shape phase transition. Phys. Rev. Lett. 87 p. 052502 (2001).

[Iac06] Iachello F. Lie algebras and applications, Lecture notes in physics (Springer-
Verlag, Berlin, 2006).

[Inf51] Infeld L & Hull T E. The factorization method. Rev. Mod. Phys. 23 p. 21
(1951).

[Jön96] Jönsson L. Instabilities in folded Yukawa-plus-exponential liquid drop models.
Nucl. Phys. A 608 p. 1 (1996).

[Kra79] Krapp H J, Nix J R & Sierck A J. Unified nuclear potential for heavy-ion
elastic scattering, fusion, fission and ground-state masses and deformations.
Phys. Rev. C 20 p. 992 (1979).

[Kum68] Kumar K & Barranger M. Nuclear deformation in the pairing+quadrupole
model (V). energy levels and electromagnetic moments of the W, Os and Pt
nuclei.. Nucl. Phys. A 122 p. 273 (1968).

[Kum74] Kumar K. Collective hamiltonian derived from the pairing-plus-quadrupole
model: Modification and application to the transitional nuclei 150,152Sm. Nucl.
Phys. A 231 p. 189 (1974).

150
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