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“It is the sheerest of coincidences"

(Isaac Asimov about the fact that the moon and the sun have the same

size seen from earth, occasionally resulting in a total eclipse)
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Abstract

This dissertation consists of two main parts. A first part describes work

on spontaneous speech recognition, wile the second part focuses on the ex-

traction of phonological features and their applicability for speech recog-

nition.

Spontaneous speech

State-of-the art speech recognition systems typically work fine for well

described tasks e.g. read speech presented under clean conditions (no

noise or other distortions). However as soon as the speaking mode starts

to deviate from these well prepared and well articulated conditions, the

performance of the recognition system typically decreases significantly.

Several fundamental reasons contribute to this fact. One of the important

reasons is that unprepared or spontaneous speech is far more difficult

to model. The modeling paradigms embedded in a speech recognition

system seem no longer adequate for spontaneous speech. Spontaneous

speech is characterized by severe reductions of syllables and word forms

and by so-called disfluencies: points at which the sentence structure can

be broken or interrupted

This dissertation will investigate solutions to the problem of disfluen-

cies. It will turn out that many of the disfluencies are filled pauses and

as such a better modeling of filled pauses could be a good step towards

a better modeling of spontaneous speech.

The solution I propose is to implement an external detector of filled

pauses that retrieves its information from features that are not necessarily

available to the recognizer. Such a detector provides segmental probabil-

ities for filled pauses and I have investigated how to use the external filled

pause information in the recognizer. I propose two main strategies for
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doing this. The first strategy is to simply discard the segments which got

a high filled pause probability. The second strategy consists of raising the

language model probability of a ’uh’-hypothesis when it is generated in

a time interval that shows a large overlap with the detected filled pause

segment. Both strategies are compared to internally informed strategies

advocated in the literature. In the latter strategies no external detector is

involved but the language model probability is changed according to the

occurrence of ’uh’-hypotheses in the word lattice produced by the recog-

nizer. I found that my externally informed methods yield higher gains in

word accuracy compared to the internally informed methods. Moreover,

the small gain due to internally informed methods can be added to the

gain of my method by simply combining the two strategies. The max-

imum attainable gain that could be reached with my methods is about

5.5% relative and is estimated to be half as large as the maximum gain

that could have been obtained with an ideal filled pause detector that

detects every possible filled pause with a probability of one.

Phonological features

In the second part of my dissertation the focus is shifted towards the

investigation of using phonological features for speech recognition. One of

the problems for the recognition of foreign names for instance is that they

contain foreign phonemes that are not modeled by the baseline acoustic

model set. The advantage of phonological features over classical acoustic

features in such a cross-lingual situation is that these features can also

model foreign phonemes. The reason for this is that phonological features

are supposed to be language independent.

I first conducted a study of phonological features in general and I

conceived a novel feature set and a hierarchical detector for extracting

it from the speech signal. The detection accuracy was found to be com-

parable with that of related systems reported in the literature. On the

basis of the phonological features I developed a phonetic segmentation

and labeling tool that is intended to provide a segmental description of

the speech, a description which can form a good basis for e.g. the assess-

ment of the pronunciation proficiency of a speaker. By way of validation,

I have used the tool to classify speakers into a native and a non-native

class. From this validation experiment I got the confirmation that my

aligner is as good as a much more complex aligner based on traditional

triphone acoustic models. In the meantime, my aligner has been used

with success for the automatic intelligibility assessment of pathological

speakers (work done by a colleague).

My major goal was to investigate the usefulness of phonological fea-



“thesis” — 2008/6/4 — 16:49 — page v — #7

Abstract v

tures for speech recognition. First I note two important problems related

to the use of these features: (1) the fact that they are locally correlated

and (2) the fact that not all features are relevant for all phonemes. To

find a solution to the first problem, I have fully elaborated a decorre-

lation technique that was initially proposed for speech recognition and

speaker or environment adaptation on classical acoustic features. The

choice for this method is motivated by the fact that the correlations

between phonological features are dependent on the phoneme identity,

and that it is therefore needed to utilize state dependent transformations

to decorrelate the observations in such a state. In order to cope with

the feature irrelevancy problem, I propose a novel scheme in which the

emission distribution of each state is factorized into a relevant and an ir-

relevant part each working on the respective features. The findings were

that the decorrelation technique helps a lot to improve the recognizer

based on phonological features (26% relative improvement), but it also

helps to improve the recognition based on acoustic features (14% relative

improvement). The relevancy technique yields a small additional gain for

the phonological based recognizer (8% relative improvement). However,

I was not able to create a recognizer working with phonological features

that could really compete with the best systems working with traditional

features.

In the final part of my dissertation I have therefore thoroughly inves-

tigated the potential of combining phonological and acoustic features in

the recognizer. Such a combination can be performed at several levels.

I developed a word-level as well as a state-level combination. Word-

level combination is performed on the word hypotheses encoded in two

word graphs generated by the two systems. The technique I developed

is based on the creation of a product graph, and on the rescoring of this

graph. With this method I was unfortunately not able to improve on the

best individual system. The state-level combination boils down to a two-

stream approach in which the phonological features constitute a back-off

stream. This approach did not allow me to improve the recognition of

regular speech either, but it did offer a significant gain for the recognition

of spoken person names and geographical names (22% relative improve-

ment). This is owed to the fact that the morpho-syntax of names is

strongly different from that of regular words. This means that the pho-

netic contexts are different on average and that the acoustic models do

not always yield good estimates. The phonological stream then gets a

good opportunity to take into account the phonological information that

is not so much restricted to the abnormal context, as the information

that is taken into account by a traditional model for this context.
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Samenvatting

Deze verhandeling bestaat uit twee delen. Het eerste deel beschrĳft werk

i.v.m. spontane spraakherkenning, terwĳl het tweede deel handelt over de

extractie van fonologische kenmerken en hun toepassingen voor spraak-

herkenning.

Spontane spraak

Hedendaagse spraakherkenningssystemen werken goed voor welomschreven

taken zoals voorgelezen spraak zonder noemenswaardige achtergrond-

ruis noch andere distorties. Van zodra de spreekstĳl minder voorbereid

en goed gearticuleerd begint te worden, vermindert de nauwkeurigheid

van de herkenner significant. Verschillende oorzaken kunnen hiervoor

aangewezen worden. Eén van de belangrĳke redenen is dat weinig voor-

bereide of spontane spraak veel moeilĳker te modelleren is. De modelle-

ringsparadigma’s die in de spraakherkenner ingebed zĳn, blĳken dikwĳls

voor spontane spraak niet goed meer te werken. Spontane spraak wordt

gekenmerkt door noemenswaardige verkortingen van lettergrepen en wo-

ordvormen en door zogenaamde haperingen: plaatsen waar de zinsstruc-

tuur afgebroken of onderbroken wordt.

Deze verhandeling zoekt naar oplossingen voor het probleem van de

haperingen. Het zal duidelĳk blĳken dat veel van deze haperingen eigen-

lĳk gevulde pauzes zĳn en als zodanig kan een betere modellering van

gevulde pauzes een eerste stap vormen tot een betere modellering van

spontane spraak.

De oplossing die ik voorstel bestaat erin om een uitwendige detector

voor gevulde pauzes in te schakelen die zĳn nodige informatie betrekt

uit kenmerken die niet noodzakelĳk toegankelĳk zĳn voor de spraak-

herkenner. Zo’n detector genereert kansen dat welbepaalde segmenten
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gevulde pauzes zĳn. Ik heb dan onderzocht hoe deze uitwendige gevulde

pauze informatie kan gebruikt worden in de herkenner. Ik stel voor om

daarbĳ gebruik te maken van twee verschillende strategieën. De eerste

strategie laat de gevulde pauze segmenten waaraan een hoge kans werd

toegekend gewoon weg. De tweede strategie zal de taalkundige kans van

de ’uh’-hypothese verhogen indien deze optreedt in een tĳdsinterval dat

een grote overlap vertoont met de gedetecteerde gevulde pauze. Beide

strategieën worden vergeleken met inwendig geïnformeerde strategieën

die ook in de literatuur worden voorgesteld. Hierbĳ wordt geen gebruik

gemaakt van een uitwendige detector, maar de taalkundige kans wordt

nu afhankelĳk gemaakt van het voorkomen van ’uh’-hypotheses in de

woordgraaf gegenereerd door de herkenner. Ik kwam tot de vaststelling

dat de uitwendig geïnformeerde methode tot een hogere verbetering in

woordnauwkeurigheid leidde dan de inwendig geïnformeerde methode.

De eerder kleine winst die bekomen wordt met de inwendige strategie kan

eenvoudig toegevoegd worden aan de winst die bekomen werd met mĳn

methode door beide te combineren. Verder bleek de maximale winst die

gehaald werd met mĳn methodes ongeveer 5.5% relatief te zĳn en gelĳk

te zĳn aan de helft van de winst die zou kunnen gehaald worden met een

ideale gevulde pauze detector die elke mogelĳke gevulde pauze detecteert

met een kans gelĳk aan één.

Fonologische kenmerken

In het tweede gedeelte van mĳn verhandeling wordt de focus verlegd

en onderzoek ik de toepasbaarheid van fonologische kenmerken in een

spraakherkenner. Eén van de problemen bĳ de herkenning van vreemde

namen bv. is dat deze vreemde fonemen bevatten die niet behoren tot de

modellenset van de herkenner. Het voordeel van fonologische kenmerken

t.o.v. klassieke akoestische kenmerken in zo’n cross-linguale situatie is

dat ze gebruikt kunnen worden om deze vreemde fonemen te modelleren.

De reden hiervoor is dat de fonologische kenmerken taalonafhankelĳk

verondersteld worden.

Eerst heb ik fonologische kenmerken algemeen bestudeerd om vervol-

gens zowel een nieuwe kenmerkenset als een hiërarchische detector voor

de extractie ervan, te ontwerpen. De detectienauwkeurigheid bleek ver-

gelĳkbaar te zĳn met die die ik in de literatuur gevonden heb. Gebaseerd

op deze fonologische kenmerken heb ik dan een systeem voor fonetische

segmentatie en labeling gebouwd die bedoeld is om een segmentele be-

schrĳving van de spraak op te leveren die dan een goede basis vormt voor

bv. de beoordeling van de uitspraakkwaliteit van een spreker. Bĳ wĳze

van validatie heb ik deze tool gebruikt om sprekers in een native of een
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non-native klasse te klasseren. Dit validatie-experiment heeft uitgewezen

dat mĳn systeem even goed werkt als een veel complexer systeem dat

gebaseerd is op een set van traditionele trifoon modellen. Ondertussen

wordt mĳn systeem met succes gebruikt voor de automatische beoorde-

ling van de verstaanbaarheid van sprekers met een spraakgebrek (werk

uitgevoerd door een collega).

Mĳn belangrĳkste doelstelling is om het nut van fonologische ken-

merken voor spraakherkenning te onderzoeken. Eerst wĳs ik op twee be-

langrĳke tekortkomingen van de fonologische kenmerken, namelĳk (1) het

feit dat ze lokaal gecorreleerd zĳn en (2) het feit dat niet alle kenmerken

relevant zĳn voor alle fonemen. Aan het eerste probleem kom ik tege-

moet door middel van een decorrelatietechniek die ik overgenomen heb

uit de literatuur waar ze oorspronkelĳk werd voorgesteld voor spraakher-

kenning en spreker- of omgevingsaanpassing op akoestische kenmerken.

De keuze voor deze techniek wordt mee bepaald door het feit dat de

correlaties tussen de fonologische kenmerken sterk afhankelĳk zĳn van

de foneemidentititeit, en dat het dus nuttig is om toestandsafhankelĳke

transformaties te gebruiken om de kenmerkenvectoren in elke toestand te

decorreleren. Het probleem van het niet altĳd relevant zĳn van de ken-

merken kan verholpen worden door de emissiefunctie in een welbepaalde

toestand van de herkenner te factoriseren in een gedeelte dat inwerkt

op de relevante kenmerken en een gedeelte dat enkel met de irrelevante

kenmerken rekening houdt. De bevindingen zĳn dat de decorrelatietech-

niek de nauwkeurigheid van de herkenner gebaseerd op fonologische ken-

merken sterk doet toenemen (26% relatieve verbetering), maar dat de

herkenning gebaseerd op akoestische kenmerken eveneens hierdoor ver-

betert (14% relatieve verbetering). De relevantie techniek leidt tot een

eerder bescheiden extra verbetering voor de fonologische herkenner (8%

relatieve verbetering). Ik ben er niet in geslaagd om een herkenner te

bouwen die met fonologische kenmerken werkt en die het beter deed dan

een systeem dat werkt met traditionele akoestische kenmerken.

Omwille daarvan heb ik in het laatste gedeelte van deze verhandeling

de verschillende mogelĳkheden onderzocht om fonologische en akoestis-

che kenmerken in de herkenner te combineren. Zo’n combinatie kan op

verschillende niveau’s gebeuren. Ik koos ervoor om zowel een woord-

niveau als een toestandsniveau combinatie uit te testen. De woordniveau

combinatie wordt uitgevoerd op de woordhypotheses die geëncodeerd zit-

ten in de woordgrafen gegenereerd door de beide systemen. De techniek

die ik ontwikkelde, maakt gebruik van een zogenaamde productgraaf, en

een herscoring daarvan. Met deze methode kon ik het beste individuele

systeem niet verbeteren. De toestandscombinatie daarentegen is in es-

sentie een tweestromenmodel waarbĳ de tweede informatiestroom aange-
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duid wordt als een fonologische "back-off" stroom. Deze aanpak liet mĳ

evenmin toe om de herkenning van gewone spraak te verbeteren, maar

het leidde wel tot een significante verbetering voor de herkenning van

gesproken persoons- en geografische namen (22% relatieve verbetering).

Dit kan verklaard worden doordat de morfo-syntaxis van namen nogal

sterk verschilt van die van gewone woorden. Dit betekent verder dat de

fonetische contexten gemiddeld genomen afwĳken en dat de akoestische

modellen dus niet altĳd goede schattingen zullen opleveren. Daardoor

wordt de mogelĳkheid gegeven aan de tweede fonologische stroom om de

fonologische informatie te gebruiken die niet zo sterk gebonden is aan de

context, daar waar dit wel het geval is bĳ de informatie die een tradi-

tioneel model zou gebruiken voor deze context.
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1
Introduction

This dissertation is about Automatic Speech Recognition, abbreviated as

ASR. The ultimate goal of an ASR-system is to convert natural speech

into a sequence of words.

1.1 Automatic Speech recognition

Speech recognition has advanced considerably since the first machines

which could convert human speech into symbolic form (i.e. transcribe

it) were conceived in the 1950s. Still, humans are much better than

machines at deciphering speech under changing acoustic conditions, in

unknown domains, and at describing somebody’s speech characteristics

as "sloppy", "nasal" or similar, which allows them to rapidly adjust to a

particular speaking style. This results in a human speech transcription

performance unmatched by machines. The main reasons why machines

are not able to match the human performance are the many sources of

variability inherent to speech. With inter-speaker variability, the differ-

ence between speakers is indicated. Several speakers do not pronounce

the same word in the same way. Factors like age, gender and voice timbre

are contributing to a significant degree of inter-speaker variability. Intra-

speaker variability means that one speaker does not always pronounce the

same word in the same way. Speaking rate and speaking style, psycho-

logical conditions (e.g. stress) and lexical context are important causes

of intra-speaker variation. Probably one of the most important sources

of variability is the environment. The current speech recognition systems

are much more sensitive to noise than human listeners are. Two types of

noise can degrade the quality of the input speech signal. One is environ-

mental noise (background noise), being defined as any sound from sources
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other than the target speaker. Street noise at a public telephone boot

is a typical example. Another type of noise is the distortion caused by

the channel over which the speech was recorded. This can be caused by

the microphone transfer characteristic or by digital encoding or decoding

errors, e.g. with GSMs. Environmental noise is supposed to be additive

whereas channel noise is often convolutional in nature. Moreover, when

environmental noise is clearly present, speakers will tend to raise their

voice so as to be understandable. In such a situation speech has dif-

ferent spectral characteristics when compared to normal conditions (no

background noise). This is called the Lombard effect.

In order to cope with all the mentioned speech variabilities the recog-

nition task has to be constrained. The more constrained a task is, the

easier it is for the recognizer. Constraints can take the form of a re-

stricted vocabulary size, a low grammatical complexity or a restriction

on the speaking style. There are two dimensions in the speaking style

which are directly related to the task. One is the dimension distinguish-

ing between isolated words and continuous speech, the other is the di-

mension distinguishing between read and spontaneous speech (also called

conversational speech).

The ultimate goal of the research in ASR is to build a large vocabulary,

speaker-independent, conversational speech recognition system that can

work properly, even in noisy circumstances. Present day systems can

only reach an acceptable accuracy if one or more of the mentioned con-

straints are imposed. A lot more applications would be possible if one

were successful in deploying speech recognition systems without such

constraints. In this dissertation the emphasis is on speaker-independent

continuous speech recognition (CSR), where the task is to convert a con-

tinuous speech signal into a sequence of words. The first part (chapters 3

and 4) describes work on spontaneous speech, whereas the second part

(chapters 5 till 7) describes work on read speech. In the second part

I will also concentrate on isolated word recognition (IWR), where the

recognizer’s output is restricted to a single word.

1.2 Definitions

Before discussing my work in more detail, I will now introduce some basic

terms which are frequently used in the ASR research field.

Phone This is simply a sound that belongs to a language. Other sounds

like laughter, coughing, etc. are not considered as phones. The

notation for a phone will be between two slashes, like in /p/.
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Phoneme The set of phonemes is the set of symbols that is needed to de-

scribe the pronunciations of all words in a language. Two symbols

are phonemes if there exist two words whose pronunciation only

differs in this symbol. The existence of paard and baard in Dutch,

implies that /p/ and /b/ are two Dutch phonemes. A phoneme is

thus the minimal information bearing distinctive unit. Most lan-

guages need 30-50 phonemes (e.g. English has 40 phonemes, Span-

ish only 24, see Appendix B for more information about language

dependent phonemes). A phoneme will occur between slashes.

Allophone All the acoustic realizations (physical objects) of the same

phoneme (symbolic unit) are called allophones of that phoneme.

They all carry the same phonological meaning, but they may sound

very distinct to the human ear. Especially the phonemic context

(preceding and subsequent phonemes) can have a large impact on

the way an allophone is perceived. Notice that two allophones in a

certain language may be no allophones in another (sounds /l/ and

/r/ are allophones in Chinese but not in English or Dutch).

Some allophones have a complex structure: they can appear as a

sequence of two or three sub-phonemic parts with more homoge-

neous acoustic properties. These atoms of the acoustic realization

of a phoneme are sometimes called sub-phonemic units. I will iden-

tify these units as synonyms of phones.

Grapheme The set of graphemes is the set of symbols that is needed

to describe the spelling of all words in a language.

Orthographic transcription An orthographic transcription is a se-

quence of graphemes associated with a word sequence.

Phonemic transcription A phonemic transcription is a sequence of

phonemes describing the pronunciation of a word sequence.

Phonetic transcription A phonetic transcription is the phone sequence

describing the pronunciation of a word sequence.

Speech production refers to the complex process of articulation that

is responsible for the generation of speech. Every phone is char-

acterized by a typical configuration of the vocal tract, which is the

physiological structure being responsible for the speech production.

More on this in chapter 5.

Native A person who is speaking the language he has learned as a child

(mother tongue) is called a native speaker of that language. In con-
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trast, someone who expresses himself in another language than his

mother tongue will be called a non-native speaker of that language.

Accent Nonnative speakers will almost always exhibit a certain accent.

An accent can be defined as the ensemble of allophonic variations

that are not commonly observed in the speech of native speakers.

The age at which someone starts to learn a second language strongly

influences the gravity of the accent he will have. An accent is

something that is most likely being perceived differently according

to the listener.

Articulators are all organs that can take part in the speech production,

e.g. the lips, the tongue, . . .

Coarticulation is the phenomenon of neighboring phones affecting the

acoustic properties of an examined phone. It is an important source

of allophonic variation, but one that can be explained by the fact

that articulators are changing continuously from one configuration

to another. Preceding configurations affect the current articulatory

configuration because of the inertia of the articulators (regressive

coarticulation). This effect is most obvious at the onset of the

phone. Upcoming articulatory configurations will also have an ef-

fect on the offset of the phone, because of anticipation (progressive

coarticulation). Other sources of allophonic variation cannot be

explained by a theory like this.

Spontaneous speech is an unprepared form of speech ranging from

interviews, over talks to day-to-day conversations. This kind of

speech poses serious problems for state-of-the-art recognition sys-

tems. Some of the main characteristics of spontaneous speech which

are responsible for these problems can be summarized as follows:

1. Sloppy pronunciations

Typically, words will be pronounced more swiftly, resulting in

a shortening of the word. In highly spontaneous speech whole

syllables can be deleted. A typical Dutch example could be the

reduction of the word /natuurlĳk/ to forms such as /’tuurlĳk/,

/’tuurl’k/ and even /’t’rl’k/.

2. Grammatically less strict sentences

The sentence structure is far less evident in spontaneous speech

than in read speech.

3. Disfluencies

Spontaneous speech is also characterized by the occurrence
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of disfluencies such as: repetitions of words or word groups,

restarts, filled or unfilled pauses, repairs (see further).

We are still lacking good ASR methodologies for handling these

problems well. No speech recognizer is able to reach a recognition

level that is even remotely comparable with that of humans.

Cross-lingual A situation in which only one language is involved is

called monolingual. If however a system is trained on one language,

but tested on another then this is called a cross-lingual situation.

Multilingual means that the system was trained on more than one

language.

Word vs. word token In the course of this dissertation I will often

speak of the total number of words or word tokens. The former

means the number of different words, whereas the latter simply

refers to all words that occurred in the text.

1.3 Structure of a CSR system

All modern CSR systems use some kind of pattern recognition paradigm

to retrieve the most likely word sequence, given the acoustic input and

some background knowledge of the recognition task (vocabulary, gram-

mar, speaking style). Figure 1.1 shows the typical architecture of a CSR

system. The input speech waveform s(n) carries a lot of information

waveform
-

s(n)
front end -X test

Decoder -W

-train
Acoustic

Model

Set

6

Lexicon

6

Language

Model

6

Dialog

modeling

6 6 6

Fig. 1.1: General architecture of a CSR system [74]

that is redundant for the recognition process. Therefore, the recognizer

first extracts from that waveform a sequence of acoustic features which
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represent the most important acoustic information carried by the signal.

The feature extraction is performed by the so-called front end. The indi-

vidual feature vectors are denoted as xt with t representing a time index

with each time unit corresponding to a multiple of 10 ms. This 10 ms is

usually called the frame shift or frame rate.

The heart of the recognizer is the pattern matcher, usually called

the decoder. Its objective is to search for the most likely word sequence

W, given the acoustic feature stream and given all available knowledge

sources. The main knowledge sources are the acoustic model set, the

lexicon and the language model (LM) (see section 1.4 for their definitions).

The quality of a CSR system will to a large extent depend on the quality

of its knowledge sources, with the acoustic model set possibly being the

most critical one.

In modern CSR systems, acoustic models and language models are

both based on a statistical analysis of acoustic and text data respectively.

In other words, they are optimized with respect to objective criteria.

The lexicon on the other hand is usually created on the basis of readily

available resources (e.g. phonemic dictionaries).

In Figure 1.1 feedback loops from the recognized word string to all

knowledge sources are depicted. This feedback symbolizes the adaptation

of the knowledge sources to the task. For example when spontaneous

speech has to be recognized, the user of the ASR-system may opt for an

acoustic model set trained on spontaneous speech. Similarly when prior

knowledge about the vocabulary says that it will be restricted to some

words, the user can adapt the lexicon by leaving out all other words.

1.4 The knowledge sources of a CSR sys-

tem

In this section, I provide a bit more information on the content and the

purpose of the different knowledge sources:

Acoustic model set The acoustic models are statistical models captur-

ing the acoustic variation in the acoustic realizations of a phoneme.

More in particular, each model must be be able to determine how

likely it is that a sequence of acoustic feature vectors is an instan-

tiation of an allophone of a particular phoneme. It is possible to

work with one model per phoneme but it is also possible to con-

struct several models for each phoneme, one model for each context

in which a special model is needed. In the former case one talks
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about context-independent (CI) phoneme models or monophones,

in the latter case about context-dependent (CD) phoneme models.

Lexicon The lexicon comprises all the words that can be hypothesized

by the recognizer1. This word set is also called the vocabulary. In

addition, the lexicon describes how the production of each word

can be considered as a sequence of phonemes. Such a phoneme

sequence is called a phonemic transcription or a pronunciation of

the word. If more than one pronunciation is given for a certain

word, these pronunciations are called pronunciation variants.

Language model The language model is intended to assign a priori

probabilities to word sequences that are investigated as potential

solutions by the decoder. By properly integrating the language

model probabilities in the decoding process one can dramatically

reduce the number of hypotheses to explore. This leads to a large

speed-up of the decoding process, as well as to a significant reduc-

tion of the number of recognition errors being made.

In order to attain a CSR system with an acceptable performance, all the

knowledge sources must be properly optimized for the envisaged task.

1.5 The basic equations of CSR

In this section I briefly introduce the basic equation of CSR with the

intention to give the reader a first idea of how the decoder operates and

how the knowledge sources fit into the decoding process.

Assuming static knowledge sources (this means that all sources are

fixed before the recognition starts), the task of the decoding process can

formally be described as a search for the word sequence that maximizes

the a posteriori probability P (W|X) of W given the sequence X of acous-

tic feature vectors and given the knowledge captured in the knowledge

sources. By applying Bayes’ law, it follows that the system is searching

for

Ŵ = argmax
W

P (W|X) = argmax
W

P (X|W)P (W)

P (X)
(1.1)

Since P (X) does not depend on the selected word sequence, the above

equation can be simplified to

Ŵ = argmax
W

P (X|W)P (W) (1.2)

1Words that do not occur in the language model cannot be recognized even if they

are in the lexicon.
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If F represents an arbitrary phonemic sequence, one can finally rewrite

this equation as

Ŵ = argmax
W

∑

F

P (X|F) P (F|W) P (W) (1.3)

The first factor in the right hand side of expression (1.3) is computed

by means of the acoustic model set. The second factor follows from

pronunciation knowledge encoded in the lexicon. The third factor is

computed on the basis of the language model. More details on how to

compute these factors on the basis of the knowledge sources will be given

in chapter 2.

1.6 Acoustic modeling

Much of the popularity of the current ASR approach is due to the ex-

istence of an algorithm for the automatic training of acoustic models,

usually Hidden Markov Models or HMMs. More on HMMs in chap-

ter 2. The training uses an orthographically or phonemically transcribed

speech corpus. An efficient Maximum Likelihood (ML) criterion [77] is

commonly adopted, giving rise to the so-called EM-algorithm to train the

model parameters. EM stands for Expectation Maximization and offers

an elegant solution to the training problem.

1.7 Pronunciation modeling

A lexicon is basically a pronunciation dictionary containing the pronunci-

ations of the words of the vocabulary. In most CSR systems the lexicon

comprises one pronunciation per word, called the typical or canonical

pronunciation of this word. Such a lexicon is called a baseline lexicon.

Usually, the pronunciations presented in the baseline lexicon originate

from phonological knowledge (electronic pronunciation dictionaries like

CELEX [16] and grapheme-to-phoneme modules [4] developed in the con-

text of speech synthesis), but often they have been manually checked

by the lexicon designer. However, there exist pronunciation modeling

methods aiming at improving the recognition accuracy by automatically

discovering and introducing in the lexicon, alternative pronunciations of

the words [125].
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1.8 Language modeling

The language model (LM) must provide the probabilities P (W) in equa-

tion (1.3). These probabilities are independent of the acoustic obser-

vations and describe the lexical constraints which are revealed by con-

straints in word ordering of the language and to a lesser extent of the

task and domain. Since it is impossible to model all probabilities P (W),

because this would require too much parameters to be trained, speech

scientists have proposed to use N-grams. N-grams are sequences of N

words

{wi−N+1, . . . , wi} (1.4)

for which conditional probabilities

P (wi | wi−N+1, . . . , wi−1) = P (wi | wi−1
i−N+1) (1.5)

are estimated on the basis of text data by simply counting the number

of times a word sequence appears in the training data. For (1.5) this

becomes,

P̂ (wi | wi−1
i−N+1) =

Count(wi−N+1, . . . , wi)

Count(wi−N+1, . . . , wi−1)
(1.6)

However, in practice no text corpus is large enough to yield reliable esti-

mates for all possible N-grams. Should one apply (1.6), many estimated

probabilities would be based on few or no examples.

A typical solution to this problem is to smooth the N-gram probability

distributions by discounting a small portion of the total probability mass

for a certain context wi−1
i−N+1 to unseen or rarely seen events. One of the

best known discounting strategies is called back-off [59]. Back-off uses

the most complex LM if it offers a reliable probability estimate for the

requested event, otherwise a lower order model is used instead. A typical

value for N is three, in which case one speaks of a trigram LM.

One often speaks of the perplexity of a language model. This is a

measure of the mean uncertainty about the next word given the N-1

previous words, according to the LM. The perplexity is a function of the

entropy of the LM. Sometimes the perplexity of the test set is given.

This is the same definition but only measured as a mean over the words

occurring in the test set.



“thesis” — 2008/6/4 — 16:49 — page 10 — #34

10 1 Introduction

1.9 Topics covered in this dissertation

The first part of the dissertation is concerned with the recognition of

spontaneous speech and in particular with the development of a method

for coping with the disfluencies occurring in this speech. This research

was also chronologically the first I carried out. I succeeded in building a

disfluency detector that is able to detect filled pause segments in running

spontaneous speech and to integrate the filled pause (FP) hypotheses

successfully in the decoding process: an improvement of the recognition

accuracy is obtained. The integration is accomplished in two ways. The

first strategy boils down to a discarding of the filled pause segments

during the decoding. The second strategy aims to make it easier for

the decoder to hypothesize filled pauses (as semi-words) during detected

pause segments. Classical approaches that are situated at the level of

the language model were tried as well, and were compared to the results

obtained with the FP detector information.

Since my research suggested that it would be difficult to obtain signif-

icant additional improvements by pursuing a special treatment of other

disfluency types, and since the research project in which I performed

my research had terminated, I had to contemplate a reorientation of my

research. At the time of this reorientation the DSSP group (in which

I work) was engaged in a project that aimed at using ASR technology

in medical and educational applications. In these applications one has

to deal with disordered, pathological speakers that cannot properly ar-

ticulate the sounds, as well as children and non-natives that differ in

their articulation from native adult speakers. In particular the speech of

pathological speakers may be difficult to describe in terms of the modal

phonemes of the language.

Therefore, it was decided to investigate whether a better character-

ization would be possible by using a phonologically inspired symbolic

representation as an alternative to the phonemically based representa-

tion adopted by all commercial recognizers.

The full exploitation of this new representation turned out to ne-

cessitate an adaptation of the traditional schemes for the training and

utilization of the new acoustic models.

The phonologically based methodology I developed has proven to be

useful for the objective characterization of the intelligibility of disordered

speech [81] as well as for the automatic recognition of foreign names by

native speakers.

The new representation did not allow me however to improve the ASR

of common speech by native speakers. I have hopes however, that it can
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be helpful for the ASR of speech of non-native speakers, but this is a

subject of future research.

1.10 Main contributions of this dissertation

The main contributions of my work can be summarized as follows.

Disfluency detection I was able to develop a detector for filled pauses.

It uses a discriminative pattern classifier and segmental speech fea-

tures, and it is able to detect filled pauses in spontaneous speech

with a very reasonable accuracy. The development and evaluation

of the detector is described in [100].

Spontaneous speech recognition with disfluency information I sup-

plied the output of the filled pause detector to the decoder of the

recognizer. I have investigated two strategies: one consists of dis-

carding the detector’s output segments during the decoding, the

other consists of favoring the hypotheses of disfluencies in segments

overlapping with the detected filled pause segments. These strate-

gies are reported in [102; 101; 99].

Phonologically inspired speech features I proposed a new speech

feature set with a phonological interpretation. In order to extract

these features I conceived a novel discriminative pattern classifier.

This work is described in [103].

ASR with phonological features I performed recognition tests on rep-

resentative benchmark tasks with acoustic models that make use of

the new features. My contributions here lie in the proposed adapta-

tions to the model training scheme, and in the search for strategies

to combine the new and the traditional features in one acoustic

model set. This led to publication [104]. I also applied the new fea-

tures with success in a spoken name recognition task. In such a task

one is confronted with names comprising foreign phonemes that do

not exist in the native language. These phonemes are thus not cov-

ered by the native phoneme models. It was expected that phono-

logical features could offer benefits for the description of the foreign

phonemes. The results of this work are described in [106; 105].
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1.11 Outline of this dissertation

The rest of this dissertation is structured as follows.

Chapter 2 defines and explains all the basic technical definitions and

tools that I used throughout my research. This chapter also provides an

overview of the speech databases I have used for training and evaluation.

Chapter 3 gives an overview of the kind of disfluencies that can occur

in spontaneous speech and it also introduces a disfluency syntax model.

Chapter 4 provides the details about the filled pause detector I con-

ceived. In particular I motivate the choice for segmental speech features

and I discuss the detection results that were obtained. Then the methods

for applying disfluency information during spontaneous speech recogni-

tion are being described.

Chapter 5 introduces concepts from phonetics and phonology. In this

chapter I first introduce the interesting new speech features which will

turn out to represent phonological events. Then I discuss the choice of the

feature set and the application of neural networks to detect the features

I am interested in.

Chapter 6 outlines an exploratory study that is intended to demon-

strate the capability of the features to separate native and non-native

speakers of American English. In order to do so, a segmentation and la-

beling method is explained and results are compared with the literature.

All algorithms and experiments concerning ASR with phonological

features are described in chapter 7. More in particular, the adaptations

of the training algorithm, the combination of classical and new features in

the search and the use of phonological features to deal with cross-lingual

phenomena as they appear frequently in spoken names.

Finally this dissertation ends with the main conclusions of my work

and with some suggestions for further research directions.
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This chapter explains all the technical tools which are needed in the fol-

lowing chapters. First I explain the standard feature extraction and the

HMM framework that is used by the baseline recognizers. The appropri-

ate notation will also be introduced here. Then follows a description of

an alternative way to store the output hypotheses of a recognizer and an

overview of important concepts about neural networks. Finally I describe

all speech databases that were used for benchmarking. This description

is followed by a discussion on the evaluation metric. Finally the results

of the baseline systems on the benchmarks are presented.

2.1 Acoustic feature extraction

The function of the front end is to convert the speech signal into a para-

metric representation that effectively and efficiently represents the infor-

mation that is needed by the recognizer. Considering the front end as a

black box, its input is the sampled speech waveform and its output is a

stream of parameter vectors, also called acoustic feature vectors, acoustic

observation vectors, or briefly, acoustic features (ACFs) or observations.

The most popular acoustic features, in order of appearance, are the

Mel-frequency cepstral coefficients (MFCCs) [24], the perceptually linear

prediction (PLP) coefficients [52] and the linear prediction coefficients

(LPCs) [5; 73]. The MFCCs are obtained as the Discrete Cosine Trans-

form (DCT) of some kind of log-energy spectrum that is presumed to

emerge from the spectral analysis taking place in the human ear. MFCCs

were first introduced for speech recognition in 1980 by Davis and Mer-

melstein [24] and have since then become by far the most widely used

acoustic features in CSR. Consequently, I also decided to use MFCCs as
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ACFs in all my experiments.

The basic mechanisms involved in the transformation of a speech

waveform into a sequence of MFCC vectors are:

• Framing. Each feature vector is computed on the basis of a speech

fragment of 25 · · · 35 ms long, centered around the time of interest.

Such a speech fragment is called a speech frame or just a frame.

As the speech is usually sampled at a rate of 8 or more kiloHertz

(kHz), a frame counts at least 200 speech samples.

• Sampling. Two subsequent acoustic vectors are usually computed

on two frames which are shifted in time over an amount of 10 ms.

This time shift determines the so-called frame rate. Since it is

shorter than the length of a speech frame, it means that subsequent

frames overlap in time. The overlap between analysis windows is

one of the causes for correlations between subsequent frames.

• Data reduction. Each speech frame is first of all represented by

a set of D features, with D usually being in the range of 12 · · ·16.

Then the computed features are usually augmented with their first

and second order time-derivatives. The dimension of the acoustic

feature vector is then equal to 3D which is still, for the given D-

range, a lot smaller than the number of speech samples in a speech

frame.

In the experiments I conducted, the front end generated 12 MFCCs and

a log-energy feature per frame. This means that D = 13 and that the

dimension of the feature vector is equal to 39.

2.2 Hidden Markov Models

In this section I briefly introduce the HMM technique for acoustic mod-

eling. For a more elaborate discussion of the matter the reader is referred

to [88].

Architecture

An HMM in this dissertation is a finite state machine that models an

acoustic feature vector sequence as being generated by a stochastic Markov

process [54]. Usually the HMM of a phoneme has a 3-state, left-to-right,

no-skip topology as illustrated on Figure 2.1. Each shaded circle repre-

sents a state and each arc represents a possible transition between states.

The HMM can be viewed as an acoustic vector generator: every 10 ms
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- - - -

	 	 	

Fig. 2.1: General topology of an HMM

the active state is allowed to change and an acoustic vector is emitted in

the new active state. The HMM is governed by two stochastic processes:

(i) a transition process represented by transition probabilities aij on the

arcs between states i and j, and (ii) an emission process characterized by

emission probability density functions bj(x) associated with the states j.

Probability computation

On the basis of the two stochastic processes one can compute the proba-

bility that a specified acoustic vector sequence X of length T is generated

along the state sequence S (of the same length). This probability is given

by

P (X, S|λ) = P (S|λ) · P (X|S, λ) (2.1)

with λ representing the HMM (or its free parameters if you wish), with

P (S|λ) = πso

T
∏

t=1

ast−1,st
(2.2)

P (X|S, λ) =

T
∏

t=1

bst
(xt) (2.3)

and with πso
representing the a priori probability of state so being the

active state at time t = 0.

Equation (2.2) implies that only the previous state influences the

probability of being in the current state. This is called the first or-

der Markov hypothesis. Equation (2.3) implies that subsequent vectors

emitted in the same state are presumed independent of each other. It is

acknowledged that this so-called independency assumption is in disagree-

ment with the nature of speech. Nevertheless, HMMs appear to lead to

good recognition results provided they include the first and second order

time derivatives of the individual frame features. In fact, by introducing
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these derivatives one can model some temporal correlation effects.

Due to the fact that the emission distributions of individual states

can overlap in the feature space, the same acoustic vector can be emitted

in different states. This means that the state sequence is not observable,

or put in another way, remains hidden. The probability that an acoustic

vector sequence can be generated by the model is then equal to the sum

of the probabilities P (X, S|λ) over all legal state sequences through the

model

P (X|λ) =
∑

S

P (X|S, λ) · P (S|λ) (2.4)

Given the HMMs of the phonemes, the HMM of a phoneme sequence /P/

corresponding to a complete speech utterance can be obtained by simply

concatenating the HMMs of the phonemes appearing in /P/. This yields

a model with many states, but the computation of probabilities can still

be achieved by means of Equations (2.1)-(2.4).

Best state sequence

In CSR, it seems to be important to have a means of computing the best

state sequence, given the acoustic vectors and the phoneme sequence.

This sequence is defined as

Ŝ = argmax
S

P (X, S|/P/, λ) (2.5)

and it can be computed by means of the Viterbi algorithm [118]. An

important remark is that this algorithm does not require prior informa-

tion about the locations of the phonemes. In fact, the best sequence

computed by the algorithm also reveals the best phonemic segmentation

of the utterance. One often says that HMMs perform a segmentation by

classification.

Model training

Obviously, the HMMs of the different phonemes do not fall out of the sky.

Before they can do a proper job, they need to get proper free parame-

ters: the transition probabilities and the free parameters of the functions

that model the emission probabilities. In most cases, the continuous

probability density function bj(x) is realized as a mixture of multivariate

Gaussian components (GMM = Gaussian Mixture Model) with diagonal
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covariance matrices Σjk = diag(σjk).

bj(x) =

M
∑

k=1

cjk · Njk(x, µjk,Σjk) (2.6)

Njk(x, µjk,Σjk) =

D
∏

d=1

1
√

2πσ2
jkd

e
−

(xd−µjkd)2

2σ2
jkd (2.7)

The parameters of this model are the mixture weights (cjk) which are

positive and adding up to 1, and the means and variances (one per acous-

tic feature) characterizing the Gaussian mixture components. The total

number of mixture components is M .

The major advantage of the HMM technology is that there exists a

maximum likelihood (ML) framework for automatically retrieving good

parameters from a large number of so-called training utterances of which

the phonemic transcriptions are known. These utterances are said to

constitute the training corpus. It can be considered as one long training

utterance represented by a long acoustic feature vector sequence X and

a corresponding long phonetic transcription /P/. The free parameters of

all the models together (represented by λ) are then estimated in such a

way that

λ̂ = argmax
λ

P (X, S | /P/, λ) (2.8)

The training algorithm that automatically determines the free parame-

ters is the iterative Estimate-Maximize (EM) algorithm.

One can prove (see [58] for the derivation) that the obtained re-

estimation formulae for µjk and Σjk take the following form:

µjk =

∑T
t=1 ζt(j, k)xt

∑T
t=1 ζt(j, k)

(2.9)

Σjk =

∑T
t=1 ζt(j, k)(xt − µjk)(xt − µjk)t

∑T
t=1 ζt(j, k)

(2.10)

with ζt(j, k) being defined as p(st = j, kt = k|X, λ), the probability of

being in state j and mixture component k at time t.

Context-independent (CI) and context-dependent (CD)

models

A first important distinction between acoustic models is that of CI ver-

sus CD models. In the case of CI models, every phoneme is modeled

independently of its phonemic context. It is clear however that phoneme
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realizations can be affected by the phonemic context, and consequently

that it may be difficult to model them as monophones because of the

large amount of acoustic variation that will have to be modeled then. By

introducing different models for the same phoneme, e.g., one model per

phonemic context in which the phoneme can occur, one can circumvent

this problem.

Suppose that the phoneme sequence of which one needs to compute

the acoustic probability is /m E n/. In the monophone case, one would

compute that by using the three acoustic models created for /m/, /E/

and /n/ respectively. In the CD model case, one will create a model

for /m/ in the context of a silence (/#/) to the left and an /E/ to the

right and refer to this model by the notation /#-m+E/. In the same

sense one will create models like /m-E+n/ and /E-n+#/ and use these

models to compute the envisaged acoustic probability. Phoneme models

conditioned on one left and one right phonemic symbol are usually called

triphone models or triphones.

Clearly, there are dramatically more triphones than monophones in a

language. This will have consequences for the decoding time and for the

development of these models, as will be explained further on.

Parameter tying

It is clear that after training, an acoustic model is only expected to

have reliable parameters if there were enough examples of the modeled

phoneme in the training corpus. When using triphone models, this can

become a bit of a problem since there can be 30,000 or more different

triphones in a language, and thus, chances are high that not all of these

triphones actually appear in sufficient numbers in the training corpus.

As a consequence, a parameter tying scheme is needed to account for

unseen (and hardly seen) triphones in an appropriate way.

The goal of tying is to learn the emission probability distributions of

frequently occurring states only, and to use these distributions to com-

pute the emission probabilities of less frequently occurring states. A

popular scheme for achieving a good collection of emission distributions

is state tying on the basis of decision tree (DT) clustering. For every state

(1, 2 or 3) of a phoneme, one creates a tree. The root of the tree rep-

resents the emission distribution built on all the phoneme occurrences

(as if the phoneme model were a monophone model), the other nodes

represent emission distributions built on occurrences of the phoneme in

more and more specific contexts.
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2.3 Word lattices

The output of a recognizer can consist of just the most likely hypothesis,

or the N-best list of the most likely N hypotheses, or a word lattice

(graph) representing a whole lot of hypotheses. A lattice (Figure 2.2) is

a directed acyclic graph composed of nodes and arcs.

	 R

initial node
t0

· · ·

-
W1

R
W1 U

W1

· · ·

j

U

-

· · ·

lmlike

aclike
W2

ts

te�
...

R 	final node

· · ·

Fig. 2.2: Topology of a word lattice in HTK format

Node A node is a state in the lattice comparable with a state in the

recognizer. A time stamp will be associated with each node in the

lattice.

Arc An arc is a transition between two nodes. This transition defines

the arc’s start node (time stamp ts) and end node (time stamp te).

This makes the lattice directed. An arc can be labeled and things

like scores which were generated during the decoding process by

the recognizer (see further) can also be attached to an arc. A node

with no incoming arcs, is called an initial node, whereas a node

with no outgoing arcs is called a final node of the lattice. A lattice

can have only one initial node and one final node.
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Best hypothesis For retrieving the best hypothesis from a lattice, I

only need to find the best path connecting the initial node with

the final node. This can be performed by means of a Viterbi algo-

rithm. Note however that the best hypothesis found in the word

lattice does not necessarily correspond with the recognition output

that would have been returned by the recognizer if it was asked to

generate the best hypothesis only. The reason for this is that the

search was constricted by a pruning strategy. This means that not

all possible paths in the word graph were explored by the search

engine. A Viterbi algorithm without pruning will find the optimal

path, which I will call best hypothesis.

When the recognizer is operated in a CSR mode, it will generate lat-

tices with word labels on the arcs. For a recognizer performing phoneme

recognition the labels will be phonemes.

In my work I have been using two distinct recognizers: the HTK

recognizer [127] and the ESAT recognizer [31], each capable of produc-

ing word graphs. Unfortunately, both recognizers use different types of

lattices whose differences will be pointed out here. In HTK the arcs are

carrying the following information: (i) the acoustic likelihood (aclike), (ii)

the LM probability (lmlike), (iii) the pronunciation variant of the word,

(iv) the start node number and the end node number. Nodes are given

time stamps as well. The ESAT lattice format differs from the HTK

format in that the LM information is not compiled in the lattice. So,

the lattice only contains acoustic likelihoods attached to the transitions

which were made in the recognizer during the search.

2.4 Multi Layer Perceptrons

During my research I have been using Multi Layer Perceptrons (MLP)

quite often. They represent a special class of Artificial Neural Networks

(ANN). The structure of a MLP is represented in Figure 2.3.

A MLP is composed of computing nodes which are distributed over

a hidden layer of hidden nodes (nh) and an output layer of output nodes

(no). Each input can be connected to each hidden node by means of an

arc. The output of each hidden node can be connected to each output

node. A weight w is attached to each arc. A MLP in this dissertation is

a pattern classifier which is trained to produce one high output referring

to the class the input vector belongs to. The free parameters of a MLP

are:

1. The number of hidden nodes (#HNodes)
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Fig. 2.3: Topology of a Multi Layer Perceptron (MLP)

2. The interconnection scheme between layers

This means that not all input nodes have to be connected to all

hidden nodes (and the same for the interconnections between the

hidden and the output nodes).

3. The weights on the arcs

The estimation of the weights can be done by means of a training

algorithm, denoted as Error Back-Propagation (EBP,[90]). Training re-

quires training patterns xi and corresponding learning outputs (targets)

ti. The dimension of ti is equal to the number of output nodes. The

target vector has only one non-zero value which is 1 and which points

to the class the input vector belongs to. During training the weights are

updated in such a way that the mean square error

E =
∑

i

∑

k

[yik − tik]2 (2.11)

is minimized (i running over all training patterns and k running over

all output layer components). The EBP algorithm uses gradient descent

to update the weights. The training of the weights proceeds in several

passes which are called epochs. After each epoch the error function can

be evaluated on the training data, or on a separate data set called the

validation set. Training is stopped as soon as the error on the validation

set reaches a plateau. Evaluation on a validation set is preferred since
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it will produce a MLP that is trained until it generalizes best to unseen

test data.

The result of the EBP training is a set of weight estimates. It can be

shown [55] that under favorable conditions (enough training material) the

trained MLP will, during operation, produce outputs yk = P (Ck|x) k =

1 . . . , K. I.e. it computes the posterior probabilities of the classes Ck.

MLPs can be used for all kinds of classification problems, in particular

ASR [69; 112], which can also be considered as a multi-class classification

problem. MLPs have been successfully applied to phoneme recognition

[67], in combination with HMM-based recognition systems [14] and for

the classification of sub-phonemic features on which I will come back in

detail in later chapters.

2.5 Speech Databases

A speech database is a collection of labeled training and test utterances.

The training utterances can be used to train acoustic models, whereas

the test utterances can be used to evaluate these models. By perform-

ing benchmark experiments on internationally available databases, it is

possible to compare the performances of systems across institutions.

2.5.1 TIMIT, a phonetically rich corpus

The DARPA TIMIT speech database [38] was originally designed for the

development of acoustic models for phonetic research and was collected

at Texas Instruments (TI) and MIT. It consists of utterances of 630

speakers that represent the major dialects of American English. Each

speaker reads 10 sentences: 2 SA, 5 SX and 3 SI sentences. The same

SA sentences were read by all speakers, and were meant to expose the

dialectal variations between speakers. The SX sentences are phonetically

compact sentences, designed to provide good coverage of phoneme-pairs

in the language. The SI sentences are phonetically diverse sentences,

designed to add diversity in phonemic contexts.

In my experiments the data was divided in a training set of 462 speak-

ers and a test set of 168 speakers by the designers of the corpus. A small

portion of the test set is known as the core test set and it consists of

24 × 8 = 192 sentences of 24 speakers. For the training 462 × 8 = 3696

training utterances (1124823 frames) are available. The number of words

in the core test set is 1570.

It is important to remark that the TIMIT utterances come with an
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orthographic and a phonetic transcription. The latter is a manually

verified sequence of phones (sub-phonemic units) with their start and

end time.

The TIMIT lexicon comprises all the 6231 different words appear-

ing in the training and test sentences. One canonical pronunciation is

provided per word. Homonyms get a different transcription. The pro-

nunciations are given in terms of the 61 TIMIT phones (including silence

and pause).

If one wants to use TIMIT for ASR assessment, one needs a LM. Such

a model is not provided with the data, but there exists a back-off bigram

LM [126] that was trained from the SX and SI sentences and that was

used for benchmarking purposes already [126; 64]. The perplexity of this

LM is 89.3

2.5.2 Wall Street Journal (WSJ)

The WSJ CSR Corpus [85] described here is DARPA’s first general-

purpose English, large vocabulary, natural language, high perplexity,

corpus containing significant quantities of both speech data (400 hrs)

and text data (47M words). It primarily consists of read excerpts from

Wall Street Journal articles. The corpus also contains some spontaneous

dictation utterances. WSJ is composed of two parts commonly known

as WSJ0 and WSJ1. The WSJ0 utterances are divided into a training

(84 speakers), a development (10 speakers) and an evaluation (8 speak-

ers) sub-corpus, and there is no speaker-overlap between the three sub-

corpora. In WSJ1 there are 200, 70 and 30 speakers in the training,

development and evaluation set. To give you an idea of the size of the

corpus, I mention that the WSJ1 training set represents about 73 hours

of speech.

The texts to be read were selected according to the words they con-

tained. There was a set to fall within either a 5k-word or a 20k-word

subset of the WSJ text corpus. For these texts there were no Out-

Of-Vocabulary words (OOV-words). No pronunciations of the words

were provided. I got these pronunciations from the 129482 words CMU

(Carnegie Mellon University) pronunciation dictionary [20]. The CMU

lexicon contains on average about 1.08 transcriptions per word. The WSJ

corpus is delivered with a number of vocabularies and their corresponding

bigram and trigram back-off language models. I have performed experi-

ments with the so-called 5k closed no verbal punctuation vocabulary and

its corresponding bigram LM. The perplexity of this LM is 35.4

I trained my models on the complete training set of 284 speakers

(37516 utterances, 29324850 frames) extracted from WSJ0 en WSJ1.
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Throughout my work I have used three test sets:

1. The November 1992 ARPA CSR speaker-independent 5k vocab-

ulary read no verbal punctuation benchmark test set taken from

WSJ0. It contains speech of 8 speakers: 330 sentences and 5353

words.

2. The H2 subset containing speech from 10 native speakers: 215 ut-

terances and 4064 words.

3. The S3 subset containing speech of 10 non-native speakers: 416

utterances and 7851 words.

2.5.3 AUTONOMATA Spoken Name Corpus

In chapter 7, I will perform ASR evaluations on a corpus of spoken names.

This corpus was extracted from the AUTONOMATA Spoken name cor-

pus. It is a corpus of proper names, recorded in the Netherlands and

Flanders [116]. Every speaker has read 181 names from a list of 1810

names of Dutch, French and Moroccan origin. The speakers had differ-

ent language backgrounds as well: Dutch, French, Moroccan and English.

For my experiments, I have selected the recordings of 60 speakers with

a Flemish background (mother tongue), and constructed test and devel-

opment sets for the English (1000 and 380 word tokens), French (1000

and 380 word tokens) and Dutch (2000 and 760 word tokens) words ut-

tered by these speakers. The test set comprised 4000 word tokens with

an equal amount of native and foreign names: 2000 tokens were Dutch,

1000 were English and another 1000 were French. The development set

followed the same lines. This set will be used for fine tuning of the free

system parameters. The remaining 4440 Dutch word tokens will be used

for adapting the acoustic models to the recording environment that char-

acterizes the AUTONOMATA data. Since there are only 60 speakers, I

decided to let them occur in all subsets because I wanted to use as many

different speakers as possible for the test. The names however did not

overlap in the different subsets. The division in subsets is summarized in

Table 2.1.

2.5.4 Spoken Dutch Corpus (CGN)

The CGN (Ned: Corpus Gesproken Nederlands, CGN, [46; 75]) was col-

lected between 1998 and 2004 at several Dutch and Flemish universities.

The CGN project aimed at constructing a database of contemporary

standard Dutch as spoken by adults in the Netherlands and Flanders.
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English French Dutch total

adaptation – – 4440 4440

development 380 380 760 1520

test 1000 1000 2000 4000

total 1380 1380 7200 –

Tab. 2.1: Number of word tokens in each subset extracted from
the AUTONOMATA corpus.

The corpus contains about 1000 hrs. of speech, two thirds originat-

ing from the Netherlands and one third from Flanders. The CGN is

composed of 15 components each representing different communication

settings and acoustic background conditions. The components are sum-

marized in Table 2.2.

The components I used were a, b, f, g, i, j, k, l, m and n. I excluded

components c and d because they contained telephone speech. Finally I

did not use data from component o because my goal was to compose a

training and test set of spontaneous speech only.

The files I selected represent about 12 hours of recordings containing

spontaneous speech of 130 Flemish speakers. All together these record-

ings contain nearly 130k word tokens. Orthographic transcripts and man-

ually verified word-level segmentations are available for all this material.

The corpus excerpt is very diverse: it comprises spontaneous interviews,

broadcast field reports, political debates and panel discussions. For rea-

sons that will become clear later the corpus was further divided into a

training corpus (91 files and about 11h of speech and 112k word tokens)

and a test corpus (16 files and about 1h of speech and 7496 tokens). I

have made sure that the 27 speakers appearing in the test corpus do not

appear in the training corpus. The exact composition of the training

corpus and the test corpus is revealed in Appendix A.

The CGN lexicon consists of the 40k most frequent words appearing

in Dutch newspaper material. This lexicon was provided by ESAT. The

LM is trained on newspaper material (33.3M word tokens) extended with

3M word tokens of spontaneous speech transcripts from the CGN. This

was also done by ESAT. All OOV-words were listed in an extension file

and given the same unigram probability. This was done to ensure that

the measured differences were due to the applied techniques and not due

to the OOV-words.
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CGN components

a Spontaneous conversations ("face-to-face")

b Interviews with teachers of Dutch

c Spontaneous telephone dialogues (recorded via a switchboard)

d Spontaneous telephone dialogues (recorded on MD via local interface )

e Simulated business negotiations

f Interviews/discussions/debates (broadcast)

g (political) Discussions/debates/meetings (non-broadcast)

h Lessons recorded in the classroom

i Live (e.g. sports) commentaries (broadcast)

j News reports/surveys (broadcast)

k News (broadcast)

l Commentaries/columns/reviews (broadcast)

m Ceremonious speeches/sermons

n Lectures/seminars

o Read speech

Tab. 2.2: Components distinguished in the Spoken Dutch Corpus.

2.5.5 Switchboard (SWB)

SWB [45] is a large multi-speaker corpus of conversational speech and

text which was intended to support research in speaker authentication

and large vocabulary speech recognition. About 2500 conversations by

500 speakers from around the U.S. were collected automatically over

T1 lines at Texas Instruments. Designed for training and testing of a

variety of speech processing algorithms, especially in speaker verification,

it has more than 1 hour of speech from each of 50 speakers, and several

minutes each of hundreds of others. A time-aligned (at the word level)

orthographic transcription accompanies each recording.

A Good-Turing [42] smoothed trigram language model was built on

the basis of the 3M words in the Switchboard-1 conversation transcripts.

The SWB lexicon consisted of all the 27k words appearing in the Switchboard-

1 training data.

tool database WER (%)

HTK TIMIT 4.59%

[127] WSJ 6.05%

ESAT CGN 36.1%

[25; 31] SWB 29.8%

Tab. 2.3: Baseline systems.

A part of the 2001 HUB5 benchmark set was chosen as the test set,

more particularly the part that corresponds to Switchboard-1. This set
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is composed of recordings of 20 informal telephone conversations (= 40

speakers, 1718 sentences, 20k word tokens) in American English. The

recording time is about 2 hours. Orthographic transcripts of the material

can be found at: ftp://jaguar.ncsl.nist.gov/lvcsr/mar2001.

2.6 Baseline Systems

During my research I experimented with several baseline ASR-systems

that were built for the speech databases described above. Their perfor-

mances serve as references against which I can compare my own results.

The evaluation metric that is used for measuring this performance is the

Word Error Rate (WER). This is defined as the amount of insertions,

deletions and substitutions obtained after an alignment of the recognized

word string with the reference word string, divided by the number of

word tokens

The baseline ASR-systems that I considered are using either the HTK

or the ESAT recognition engine. The accompanying acoustic model set,

lexicon and LM is explained in the previous section. Table 2.3 gives an

overview of the WERs of my baseline systems.
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3
Disfluencies in Spontaneous

Speech

Nowadays read speech recognition is already working pretty well, but the

recognition of spontaneous speech is much more problematic. There are

plenty of reasons for this, and I hypothesize that one of them is the regular

occurrence of disfluencies in spontaneous speech. Disfluencies disrupt the

normal course of the sentence and when for instance word interruptions

are concerned, they also give rise to word-like speech elements which have

no representation in the lexicon of the recognizer.

In this chapter I present some background information concerning the

prevalence of different disfluency types in existing spontaneous speech

corpora and I discuss how these disfluencies can affect the recognition

of spontaneous speech. Further on, I will discuss the novel techniques I

propose to remedy these problems. I make a distinction between disflu-

encies and regular words and I will express the prevalence of a particular

disfluency type by means of its disfluency rate. The latter is defined as

the number of disfluencies of that type divided by the total number of

word tokens.

3.1 Disfluencies in spontaneous speech

In order to gain some insight in the language dependency of disfluency

prevalences, I have performed measurements on two distinct corpora.

1. The statistical analysis presented here was performed on the CGN

training corpus defined in chapter 2. The CGN test corpus (also de-

fined in chapter 2) will be used to assess the effects of my disfluency

handling methods on the speech recognition performance.

2. The second corpus is the 2001 HUB5 benchmark set from the
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Switchboard corpus (see chapter 2). The experiments on this cor-

pus were not carried out by myself, but by Jacques Duchateau, a

colleague at KULeuven.

I have investigated three types of disfluencies, namely Filled Pauses

(FPs), Word Repetitions (WRs) and Sentence Restarts (SRs). Accord-

ing to [94], these three types represent about 85% of all the disfluencies

occurring in the Switchboard corpus. In the following sections I briefly

describe the measurements I made and the results they produced.

3.1.1 Filled Pauses (FPs)

It is commonly acknowledged that FPs are the most frequently occurring

disfluencies in spontaneous speech. A filled pause usually appears as

an interjection, like “uh" or “uhm", but the acoustic properties of the

interjections may be language dependent. Consider two examples which

have been extracted from the CGN and translated to English:

1. oh I read all the uh books of Simenon but I uh.

2. uh particularly uhm Dutch literature uhm.

They illustrate that fillers can occur at many positions in the utterance.

Counting the number of FPs in the two corpora was rather easy be-

cause both the CGN and the Switchboard orthographic transcription

protocols instructed the transcribers to stick to a restricted list of fillers

to encode an FP.

The mean FP rate in the CGN data set was equal to 2.7%. However, a

number of speakers had an FP rate of more than 10%. In the Switchboard

dataset the measured FP rate was equal to 3%. This rate is much larger

than the 1.7% reported by [94] for another subset of the Switchboard

corpus.

Of all 596 FPs observed in Switchboard, 106 were sentence initial, 111

occurred at the end of a sentence, and 46 others were actually isolated

sentences, meaning that they contained no other words. These figures

imply that more than 50% of the FPs (333 in total) were sentence medial

FPs. In the CGN data-set on the other hand, I found that 387 of the

445 FPs were sentence medial. This discrepancy may originate from the

language or from the different types of speech material appearing in the

two corpora.
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3.1.2 Word repetitions (WRs)

One strategy for a speaker to gain some time to think is to repeat a word

once or several times before continuing with the rest of the sentence. If

this happens, the last word of the repeated word sequence is considered

as the regular word whereas the others are designated as disfluencies.

The following two examples were selected from the CGN and translated

to English (the repeated word sequence is put in italic):

1. I I also work with with music. I work I I I mean dance music.

2. well what what are children supposed to do?

Counting word repetitions in a corpus is seemingly very simple: search

for repetitions of the same word and count the number of disfluencies

they represent. In practice, it is much more complicated than that. For

instance, if an interjection occurs between identical words, there is still

a word repetition involved. This complication is easy to accommodate.

A more problematic complication is the presence in most languages, in-

cluding English and Dutch, of grammatically correct word repetitions.

Consider the following two English examples:

1. I think that that man at the station was drunk.

2. I still have to read many many articles on this topic.

None of the highlighted word repetitions should be counted as a disflu-

ency, but I only know this because I understand the meaning of these

sentences. Since it is currently impossible to make a simple and reli-

able semantic parser of spontaneous speech, I have chosen for a semi-

automatic procedure to count the WR type disfluencies. In a first pass,

I create a list of all sentences containing the following events: two iden-

tical words in a row, or two identical words separated by a filled pause.

These events are then marked by a human expert as word repetitions or

grammatically correct word sequences.

The WR-rate in the CGN data set turned out to be about 0.9%.

In the Switchboard set it was about 1.4% and equal to the percentage

that was also reported by [94] for another data set. In the Dutch data,

there were less than 0.07% word repetitions consisting of three or more

words. In the American data, this figure was much larger and close

to 0.4%. Both datasets show only very few FP interjections between

repeated words. This suggests that WRs and FPs are two clearly distinct

speaker strategies for gaining time.

Since for the CGN data I also had manually verified word-level seg-

mentations at my disposal, and since these segmentations also reveal
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inter-word pauses of more than 100 ms long, I was able to determine how

many times repeated words are being separated by a (silent) pause. This

happened in about 40% of the cases, meaning that pauses can possibly

be considered as indicators of WRs in the recognition process. Another
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Fig. 3.1: The 28 most repeated words in the CGN training corpus.

interesting finding was that the top-20 of repeated words in the CGN

are all monosyllabic function words like "en", "een", "dat" . . . . Moreover,

this top-20 can explain 78% of all the WRs encountered in the corpus.

Figure 3.1 shows the word labels of the top-28.

3.1.3 Sentence Restarts (SRs)

A sentence restart (SR) is defined here as a situation in which the speaker

makes the initial part of a started sentence obsolete by the succeeding

words. The following examples represent instances of such SRs that were

found in the CGN and translated to English (the obsolete part, also called

the reparandum, is put in italics):

1. is uh did Agalev abandon you?

2. in a situation with uh in a country with two speed levels.

Obviously, sentence restarts cannot be retrieved automatically from the

orthographic transcripts, unless they are explicitly annotated as such in

these transcripts. Since no such annotations were available neither for

CGN nor for Switchboard, I had to retrieve the SR-rate by means of a

manual inspection of the transcripts. I have only performed this on the

Switchboard data set. For this set I found 112 restarts corresponding

to a SR-rate of about 0.5%. This rate was obtained as the number of
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sentence restarts (one per SR) divided by the total number of words.

I also found that about 30% of the reparanda (33 instances, see next

section for definition of reparandum) ended on a filled pause. Recalling

that there were only 333 sentence medial FPs, this means that about

10% of all these FPs actually initiate a sentence restart.

3.2 Syntactic model

WRs, FPs and SRs can all be considered as special cases of a generic

disfluency syntax model. Such a model discerns three subsequent parts:

1. reparandum

This is the sentence part that has to be repaired, because it was

wrong or because the speaker started a new sentence.

2. interruption point

This is the point at which the speaker resumes the sentence by

correcting the reparandum or by starting a new sentence. The

interruption point may be marked by a filled or unfilled pause.

3. reparans

This is the sentence part following the interruption point that is

actually repairing the reparandum.

FPs can be markers for the interruption point, but they can also occur in

situations where the reparandum (and reparans) is empty and the speaker

is just hesitating. For WRs the reparandum is equal to the reparans. A

SR is characterized by a reparandum that stretches until the beginning

of the sentence.

Note that this scheme can be applied in a nested way, in which the

reparans is itself a new reparandum. Multiple word repetitions are special

cases of such a nested model.

3.3 Main effects on the automatic recog-

nition process

One effect of an FP is that it introduces a new word (denoted as “uh")

that is normally not included in the lexicon of a read speech recognizer.

Obviously this effect can easily be accounted for by adding this word
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to the lexicon. One option is to add it with a pronunciation “uh" rep-

resenting a dedicated whole-word speech unit whose acoustic model is

trained on FP utterances. Another option is to add it with all its likely

pronunciations in terms of regular phonemes of the language.

An effect that is common to all types of disfluencies is that they dis-

rupt the normal word flow. This disruption implies that the spoken word

sequence no longer matches well with a language model (LM) that was re-

trieved from text material not containing any disfluencies. Consequently,

the LM probability of the correct word sequence may comprise a number

of low back-off1 probabilities, and the decoder may therefore be inclined

to select a wrong but more likely sequence by assigning the FP interval

to a short function word (e.g. “a", “the", etc.) that is acoustically similar

to the FP, or to a syllable of a content word, a syllable that acoustically

sounds like a FP (e.g. “agree"). In both cases the decoder will produce

wrong word hypotheses which will on their turn affect the word predic-

tion capability of the LM in the vicinity of the disfluency. Consequently,

it can be anticipated that one disfluency may be responsible for more

than one error in the recognition output. In [3] the authors report a

figure of about 1.5 errors per disfluency for a French spontaneous corpus.

If this figure would generalize to my speech data it would mean that a

disfluency rate of 3 to 5% could be responsible for a WER contribution

of 4.5 to 7.5% absolute. In chapter 4 I will describe an experiment to as-

sess the expected number of errors per filled pause on the Spoken Dutch

corpus material. I will also find a figure of about 1.5 word errors per FP.

1A back-off LM probability is calculated on the basis of lower order N-grams.
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4
Spontaneous speech

recognition

In this chapter I explain all techniques that are elaborated in order to

cope with the problem of disfluencies in spontaneous speech.

4.1 Introduction

The automatic recognition of spontaneous speech is currently a hot topic.

Practical applications of spontaneous speech recognition include voice op-

erated telephone services, automatic closed captioning for TV programs,

automatic transcription of meetings, etc. Yet, the recognition accuracy

of freely spoken language is still quite poor when compared to that of

dictated speech: while the state-of-the-art word error rates (WER) for

large vocabulary speaker-independent dictation and broadcast news tran-

scription are of the order of 5% [107] and 15% [13; 44] respectively, the

WER for the transcription of meetings [128] can be as large as 40%.

One important reason for this deficiency of spontaneous speech rec-

ognizers is the lack of a good language model built on a large amount of

spontaneous speech transcripts. While typical stochastic language mod-

els for read speech recognition rely on vast amounts of training mate-

rial [1], no comparable amounts of written transcripts of casual language

are available.

On top of that, the occurrences of disfluencies in casual speech may

further complicate the estimation of a robust spontaneous language model.

In the literature different approaches to spontaneous language modeling

have already been pursued. In [71], one tries to incorporate knowledge

from discourse theory, and one argues that sentences typically start with

given information and end with new information, and disfluencies mostly

occur in the given information part of the sentence. By applying special-
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ized language models for the two sentence parts, one obtains a marginal

drop of the WER (0.3% absolute) on the recognition of spontaneous tele-

phone conversations from a telephone conversation corpus (see [45] for

more information on this corpus).

In [129] the potential of N-best list re-scoring on the basis of informa-

tion from a chunk parser has been explored. The underlying assumption

is that the chunker bears information that can help to discriminate be-

tween syntactically acceptable and syntactically anomalous hypotheses.

It was demonstrated that this technique yields a marginal drop of the

WER (0.3% absolute) on telephone conversations.

Even if one has a language model comprising context-dependent prob-

abilities for disfluencies, it may be beneficial to remove the disfluency

from the context when predicting regular words (as opposed to disfluen-

cies) occurring right after that disfluency. Stolcke et al [98] have already

investigated this technique, but their experiments on telephone conver-

sations did not show any significant performance gain. I will propose a

more flexible manipulation of the prediction context. In that approach,

regular words will be predicted with and without the disfluencies being

removed from the context. These predictions will then be allowed to

compete with each other.

On the acoustical-lexical front, the literature also describes several

solutions to disfluency handling in recognition systems. For instance

in [91] a data-driven lexical modeling technique was applied to construct

a lexical model with many pronunciation variants for a filled pause (FP).

By substituting the baseline single-pronunciation FP model by this new

more complex model, a 2% absolute (= 7.8% relative) reduction of the

WER on a highly spontaneous medical transcription task was achieved.

A draw-back of the previously proposed techniques for disfluency han-

dling is their assumption that the decoder part of the recognizer is capable

of producing reliable disfluency hypotheses. I argue that in particular for

filled pauses this assumption is often wrong. This means that the decoder

will either hypothesize too few disfluencies due to a bad pronunciation

model or maybe too many because the pronunciation model is too gen-

eral. In fact, I will demonstrate that by introducing a specialized FP

detector operating independently of the decoder, and by supplying the

output of that detector to the decoder, it is possible to achieve a more sig-

nificant improvement of the recognition accuracy with only a very limited

increase of the computational load.
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4.2 Novel methods for disfluency handling

In this chapter I propose a number of so-called internally informed and

externally informed search strategies for coping with disfluencies in spon-

taneous speech recognition.

In an internally informed search strategy, the acoustic models, the

lexicon and the LM are all together responsible for hypothesizing dis-

fluencies, and the search engine must be adapted to undertake special

actions when such hypotheses are generated.

An externally informed search strategy uses an external disfluency

detector to spot the disfluencies and the decoder is adapted to take these

hypotheses into account. I argue that such a strategy has a lot of potential

in the case of FPs. First of all it is anticipated that FPs have some well-

defined acoustic and prosodic properties [10; 87; 41; 82]. Secondly, the

acoustic models of a speech recognizer are usually blind for prosody, and

as such they may be unable to make a clear distinction between a FP and

a function word like a (English) or de (Dutch), or between a FP and the

initial syllable of a content word like above (English) or getal (Dutch).

In what follows three internally informed search strategies for dealing

with FPs, WRs and SRs are proposed, as well as two novel externally

informed search strategies for coping with FPs.

4.3 Internally informed search strategies

As already stated in the introduction, one of the hypotheses for explaining

the difficulty of modeling spontaneous language by means of N-grams

points explicitly to disfluencies: as N-grams base their word prediction

on a local context of N-1 previous words, intervening disfluencies render

this context less uniform. Or put differently, the prediction of the next

word would be more accurate if it were based on a context from which the

disfluency was removed. Obviously, removing disfluencies (one or more

in a row) also implies that the word context to take into account in the

decoder is extended to the left with regular words appearing in front of

these disfluencies.

Consider for instance the example “this is what uhm I think", and

presume that the LM is a trigram model. I argue that in this case

the word “I" would be better predicted by the context “is what" than

by the context “what uhm". Nevertheless, Stolcke and Shriberg [98]

came to the surprising conclusion that discarding FPs from the trigram
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context actually increases the perplexity1. However, they were looking

at speech stretches that were isolated on the basis of acoustic criteria

(the presence of large silent pauses), meaning that the FPs occurring at

sentence boundaries often appeared in the middle of such a stretch. By

only discarding true sentence internal FPs, the perplexity did decrease

indeed. In the material of [86] the speech stretches all corresponded to

sentences and therefore all FPs were sentence internal. For this material,

the discarding strategy resulted in a 4% decrease of the overall perplexity

and a 30% decrease of the perplexity of the first word after the FP.

In [96] and [95], it is nevertheless shown that in some cases FPs are

good predictors for the following words: they often tend to precede a

less frequently used word. Therefore, simply discarding the FPs from

the context is perhaps not always the best solution. This conclusion also

holds for repeated words which are part of a grammatically correct word

sequence, like in the example “I hope that that work is at least done

properly now".

In order to account for the above observations ESAT, my partner in

the ATRANOS project [7] in which I performed this research, proposed

some novel context manipulation methods. These novel methods provide

multiple options, but leave it to the recognition system to select the most

likely option after having exploited all its knowledge (acoustic, lexical and

linguistic). I briefly describe the three models: one model that must be

applied in case a word repetition is hypothesized, and two models that

must be applied in case a filled pause is hypothesized and I will use it

later for comparison.

4.3.1 The repetition model

The model for handling word repetitions is sketched in Figure 4.1. It

presumes that the LM is a trigram model. The upper path illustrates

the normal LM procedure. If the hypothesized word B appears to be a

repetition of the previous word, then the prediction of the next word C

is based on the context B B. The lower path represents the alternative of

predicting the word C on the basis of A B, the context which is obtained

by simply ignoring the repeated word B.

4.3.2 The hesitation model

The hesitation model is activated in case a filled pause is detected. The

model is depicted in Figure 4.2 with “uh" denoting an FP. The model

1The perplexity is a measure for the unpredictability of a word by means of the

LM
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Fig. 4.1: The model for repetitions.

proposes two alternatives to the search engine: (1) the standard solution

(upper path) in which the filled pause is kept in the context for predicting

the subsequent words, and (2) an alternative solution (lower path) in

which the filled pause is removed from that context.

C

A,B

uh

uh

C

D

D

C,D

B,uh

A,B
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Fig. 4.2: The model for hesitations.

4.3.3 The restart model

Starting from the observation that many filled pauses announce a sen-

tence restart, ESAT has conceived a restart model (Figure 4.3) that is

activated every time a FP is hypothesized by the decoder. The lower

path models the fact that a FP causes a reset of the language model: the

left context is reset to the sentence start symbol <S>. It is clear that a

sentence restart can also occur after a regular word, but a pilot exper-

iment described in [32] demonstrated that activating the restart model

for each word hypothesis causes an over-generation of restart hypotheses,

and has a negative impact on the recognition accuracy.
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Fig. 4.3: The model for sentence restarts.

If successful, the hesitation and the restart model can obviously be

combined into one more complex model to be applied whenever an “uh"

is hypothesized.

4.4 Externally informed strategies for cop-

ing with FPs

Let me now propose two externally informed strategies for coping with

filled pauses. They rely on the outputs of an external FP detector

which works independently of the decoder part of the recognizer (see

section 4.5). The developed FP detector produces variable length FP

segments, and each segment comes with an associated posterior proba-

bility P (FP|X). The symbol X stands for the acoustic observations in

and around the hypothesized FP segment and the posterior probability

is hereafter called the FP score.

4.4.1 Frame dropping

If the FP score of a segment is high, one can expect that all the frames

of that segment are FP frames. The idea of frame dropping is to let the

decoder discard these frames. An advantage of the technique is that it

can easily be integrated in any speech recognition system. All it takes is

not to supply the FP frames to the decoder. Another advantage is that

it can also be applied in combination with a decoder that does not even

incorporate an FP model in its lexicon.

Obviously, frame dropping is a pretty drastic method which is bound

to deteriorate the recognition performance if too many regular speech
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frames would be discarded. For instance, it can happen that the speaker

starts by saying the word “the" and continues by prolonging the word,

more or less gradually shifting to a filled pause. The correct handling of

such a filled pause is problematic, because the FP detector is bound to

indicate all the vocalic frames of the fragment as constituting an FP, and

discarding all these frames may prevent the decoder from hypothesizing

the word “the" as it should. Therefore, I expect that frame dropping

will work best in combination with an FP detector that does not often

produce large FP scores for non-FP (NFP) segments. This means an FP

detector with a high precision.

4.4.2 Language model adaptation

Because of the potential danger of frame dropping I have also conceived

a second strategy which is less categorical in its interpretation of the

FP character of the frames. In this so-called LM adaptation (LMA)

strategy, the normal LM probability of a word hypothesized in a time

interval (t1, t2) which overlaps with an FP segment emerging from the

external FP detector, will be replaced by a new probability that depends

on (1) the identity of the word hypothesis, (2) the distance between t1
and the FP segment start, (3) the fraction of (t1, t2) falling into this FP

segment (the overlap fraction), and (4) the value of the FP score that

was computed for this FP segment.

The LM adaptation procedure is activated every time a word hypoth-

esis is generated. It works as follows (see also Figure 4.4):

1. If the hypothesized word starts at a time t1 which is further than

some threshold D away from the start of an FP segment detected by

the external FP detector, then leave the LM probability unaltered,

else continue with the next step.

2. If the overlap fraction between the hypothesized word and the FP

segment is smaller than 50%, then take no special action either,

else continue with the next step.

3. If the hypothesized word is "uh", then replace the normal LM score

by a predefined value C1.

If the hypothesized word is not "uh", then subtract some predefined

amount C2 from the normal LM score which is log P (word|left

context).

By manipulating C1, C2 and D it is possible to control the impact the

FP detector can have on the recognition output. An alternative for the
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Fig. 4.4: LM adaptation is examined for word hypotheses (bottom)
which exhibit some overlap with FP segments (top) produced by
the FP detector.

probability substitution outlined in point (3) would be to replace log

P (“uh"|context) by the logarithm of the FP score emerging from the FP

detector. I did test this approach, but it did not outperform the simpler

and easier to control strategy outlined in point (3).

It is clear that the LM adaptation strategy uses all the available

knowledge sources to make a distinction between the true and false FP

segments proposed by the FP detector. Therefore LM adaptation could

well be able to deal with false alarms emerging from the external FP

detector. Consequently, I expect the technique to be most effective if it

is applied on almost all the FP segments appearing in the speech. This

means, when it is combined with an FP detector with a high recall.

For practical reasons I could not embed this LM adaptation in the

recognition engine of the ESAT-recognizer. So I had to apply LM adap-

tation to the word graphs emerging from the recognizer. These word

graphs are described in section 2.3.
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4.5 An independent detector of filled pauses

I argue that the externally informed methods for coping with FPs will

have an advantage over the internally informed strategies if they can rely

on an FP detector that can spot the FP segments with a much higher

accuracy than the decoder of the speech recognizer would be able to do.

Therefore, I have conceived an FP detector that will not only base its

decisions on the MFCC vectors which are used by the recognizer, but

also on additional acoustic and prosodic cues that are not available to

the acoustic models of the decoder [100]. The proposed detector first

performs a blind segmentation of the speech into silent and phoneme-

like segments. Then it classifies the non-silent segments as FP or NFP

segments. I conjecture that the segmental framework facilitates the intro-

duction of prosodic cues related to pitch and duration in the classification

process. Such cues are invisible to the acoustic models embedded in the

speech recognizer.

I will now describe the segmentation of the speech, the extraction of

appropriate features to represent the segments and the classification of

these segments into FP and NFP on the basis of these features. The

feature selection and the training and evaluation of the FP detector are

all achieved on the basis of the previously described CGN training and

test corpora. I do believe however that the methods and results reviewed

here are also relevant for the construction of e.g. an American English

FP detector.

4.5.1 Speech segmentation

In order to create a segmental description of the speech, I first construct a

feature change pattern, and I then hypothesize potential segment bound-

aries at the locations of the maxima in this pattern.

Starting from the standard vectors xt extracted by the front-end of

the recognizer (MFCC vectors with M = 12 components in my case), I

derive first a feature change pattern dt from

d2
t =

M
∑

i=1

[

∑Nw

j=1 j [xt+j(i) − xt−j(i)]

2
∑Nw

j=1 j2

]2
(4.1)

Each term between the outer square brackets represents the norm of the

slope of the best linear regression of the evolution of an individual feature

in a window of 2Nw + 1 frames centered around the time of interest t.

The pattern dt is then further smoothed by means of a three point FIR
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filter to

d
′

t =
1

4
dt−1 +

1

2
dt +

1

4
dt+1 (4.2)

and from this pattern the segment boundaries are derived. In order to do

so, a robust left-to-right minimax algorithm [119] tracks the locations of

prominent maxima in d
′

t. A prominent maximum is defined as one which

is considerably higher than the largest of the two minima surrounding

this maximum. A silence detector is also integrated in the segmentation

-
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Fig. 4.5: Adapting the noise floor in the silence detector.

algorithm. It detects intervals of at least three successive frames having

a log-energy that is not more than 3 dB above an adaptive log-energy

noise floor, computed on the basis of minimum statistics.

If a minimum is encountered in the maximum of the log-energy in

three consecutive frames, then the following actions are taken.

1. If this minimum is more than 3dB below the actual noise floor, the

latter is replaced by the former minimum.

2. If this minimum exceeds the actual noise floor, but is lower than the

minimum that caused the last noise-floor update, then the position

and the value of the minimum are stored in a minimum buffer.

If no silence was detected over the last 2 seconds, the noise floor is up-

dated to the value of the lowest minimum in the buffer, the buffer will be
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cleared and the search for new silences will be resumed from the location

of that minimum. Both situations are represented on Figure 4.5. In the

upper panel the situation where the noise floor is replaced, is depicted. In

the lower panel there were no silences detected since t − 2sec. Therefore

the actual noise floor is replaced at time t2, the lowest minimum in the

buffer.

The detected silences will be used to discard silent speech segments

from the classification and as features for the classification.

4.5.2 Feature identification

An appropriate acoustic and prosodic feature description for the created

non-silent segments has to be conceived now. To that end I have per-

formed a statistical analysis of the CGN training corpus which contains

3255 FP intervals, 75% of which are longer than 0.2 sec and 87% longer

than 0.15 sec. In the rest of my research I have considered only the FPs

which are longer than 0.15 sec as genuine FPs.

If more than 50% of the frames of a segment emerging from the previ-

ously described blind segmentation fall into such a genuine FP interval,

the reference label of that segment is FP, otherwise it is NFP. By compar-

ing the cumulative distribution functions (CDFs) of a feature for the FP

and the NFP segments, I can identify features that are good candidates

for contributing to the discrimination between FP and NFP segments. I

will now discuss the features that were investigated and the discrimina-

tive power these features seem to have in the CGN training data.

Segment duration

The first feature I have investigated is segment duration. Our measure-

ments showed that FP segments tend to be longer than NFP segments.

This result confirms the observations also made by e.g. [41]. The FP and

NFP segment durations both seem to exhibit Gamma distributions, but

with clearly different parameters. The mean FP length is about 0.25 sec

(σ = 0.15 sec), the mean NFP length is only 0.11 sec (σ = 0.08 sec).

Spectral stability

If di,j is the Euclidean distance between the MFCC vectors of frames i

and j, the distance Dstab, for segment (t1, t2), defined by

Dstab = min
t∈(t1,t2)

Dt, with Dt =
dt,t−1 + dt,t+1

2
(4.3)
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is a measure of the maximum stability observed inside that segment.

The frame ts where Dt is minimal is called the most stable frame of

the segment. Our measurements reveal that FP segments have a smaller

Dstab than NFP segments. The mean value of Dstab for FP segments is

5.18 (σ = 1.59), whereas it is 9.10 for NFPs (σ = 2.38).

Stable interval durations

Starting from ts, the stable interval of a segment can be defined as the

largest interval around ts for which dt,ts
< Θd for all t in that interval.

By selecting different values of Θd, one can determine different stable

intervals and use the corresponding stable interval durations (SIDs) as

segmental features. If Θd ≤ Dstab the SID is equal to zero. Filled pauses

clearly tend to have a longer SID than other speech segments. In my

experiments I have considered the SIDs for Θd = 8, 10, 12, 14, 16 and 18

as six distinct segmental features. The mean value of the SID for Θd = 12

is 3.19 frames for NFP (σ = 2.45) and 11.59 for FP (σ = 8.01).

Silence before and after the FP

Another prosodic cue that was found to be effective for the detection

of FPs is the presence of a silence (sil) in an adjacent segment (either

before or after the segment under test). A silence is defined as an interval

during which the log-energy is never more than 3 dB above the noise floor.

Table 4.1 reveals that 80% of the FP segments are delimited by at least

one silence, whereas this is only true for 61% of the NFP segments. I

sil before no sil before total

sil after 946 768 1714

no sil after 870 657 1527

total 1816 1425 3241

Tab. 4.1: Number of filled pauses with and without adjacent si-
lences.

found that the adjacent silences are also longer in the case of FP segments

than in the case of NFP segments. It is even so that the post-FP silences

are bound to be longer (mean of 0.19 sec and σ of 0.23 sec) than the

pre-FP silences (mean of 0.13 sec and σ of 0.16 sec). For the pre- and

post-NFP silences I found a mean of 0.11 sec and a σ of 0.20 sec.
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Spectral center of gravity

Another acoustic feature that was examined is the center of gravity of

the mean log mel-power spectra observed in the identified stable interval

of the segment:

gS =

∑M
m=1 mS̃(m)

∑M
m=1 S̃(m)

(4.4)

In this equation, S̃(m) represents the log signal power in the mth sub-

band of an M channel mel-scale filter-bank (M = 24). I found that a

center of gravity of 16 or more is a very good counter-indication for an

FP. The mean center of gravity was 10.47 (σ = 2.65) for FP and 13.04

(σ = 3.98) for NFP respectively.

Simple filled pause model output

Another feature is the logarithm of the output of a 4 mixture GMM that

was trained on all the frames belonging to filled pause intervals. Here

too, the model inputs are the 12 MFCCs. I did not use delta MFCCs,

because the spectral stability was already modeled by the SID features.

The mean log score was -16.9 for FP (σ = 1.4) and -18.8 for NFP (σ =

2.6) respectively. This means that FP segments yield higher likelihoods

in this simple model than NFP-segments.

Features related to the pitch

Goto [48] was successful in detecting the FPs in Japanese spontaneous

utterances on the basis of features which represent frame-level changes

of the fundamental frequency and the spectral envelope. On a set of

100 sentences, each containing at least one FP, the measured recall and

precision rates were 84.9% and 91.5% respectively. I also investigated

the discrimination capabilities of some segmental pitch features for the

detection of FPs in Dutch spontaneous speech. The investigated features

were:

• Pitch Regression Coefficient

I defined this feature as the slope of the best fitting line through

the nonzero pitches of the frames in a certain segment. No clear

distinction was found between FP and NFP.

• Pitch Modulation Variance

This feature is defined as the variance of the differences between

the nonzero pitch values and the corresponding pitches predicted
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by the linear regression model. Again this feature did not offer a

significant discrimination between FP and NFP.

• Relative Pitch Ratio

It is often supposed that filled pauses exhibit a low pitch compared

to the surrounding speech segments. Therefore, the mean of the

nonzero pitch values is computed for each segment and the ratio

between this pitch and the mean pitch of the N preceding and N

succeeding segments is defined as the relative pitch ratio of that

segment. If the pitch of a segment is zero the relative pitch ratio

of that segment is undefined and supposed to be equal to 1. If one

of the contextual segments has a zero pitch it is excluded from the

mean pitch computation of these segments. For N = 7 I observed a

small ability to discriminate between FP and NFP segments. The

mean relative pitch ratio for FP segments was 0.96 while it was

1.00 for the other segments.

Apparently, for a non-tonal language like Dutch, the pitch features are

not that powerful for FP/NFP classification. Moreover, since the inclu-

sion of a pitch extractor adds complexity to the acoustic front-end of the

recognizer, I decided not to consider any of the pitch features for my FP

detector.

4.5.3 Segment classification strategy

Since I aim to build a detector that can estimate the posterior probability

of having an FP, given the acoustic observations, I propose to perform a

classification of segments by means of an MLP (Multi-Layer Perceptron)

with one hidden layer and one output which is, after proper training,

supposed to provide exactly that probability.

A problem with the error back-propagation training of an MLP is that

one often gets poor results when the prior probabilities of the classes

are very different. Since only 1% of my segments have an FP label,

I definitely am in that situation. Therefore, I first try to identify a

large number of NFP segments by means of GMMs in order to discard

them later and I perform the training of the MLP on the remaining

segments. I have trained two GMMs to model the likelihoods p(x|FP)

and p(x|NFP) with x representing the 12 features: (1) segment duration,

(2) spectral stability, (3-8) SIDs for Θd = 8, 10, 12, 14, 16 and 18, (9,10)

silence duration before and after the segment, (11) spectral center of

gravity, (12) simple filled pause model output. The FP model consisted

of 8 and the NFP model of 64 mixtures with diagonal covariance matrices.
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Since there is a good estimate of P (FP), I can easily make an estimation

of the posterior probabilities P (FP|x) and P (NFP|x) respectively.

Segments whose FP-to-NFP posterior probability ratio, denoted as

PPR and defined as

P (FP|x)/P (NFP|x) exceeds some threshold ΘPPR are considered as can-

didate FP segments and are supplied to the MLP classifier. The others

are considered as NFP segments. The number of candidate FP segments

can be controlled by modifying the threshold (see Table 4.2). Given that

ΘPPR # FP segments # NFP segments

10−4 2429 41528

10−5 2659 65169

10−6 2879 91066

Tab. 4.2: Number of segments passing through the GMM filter.

there were 3255 FP and 344945 NFP segments in total, it is clear that

with ΘPPR = 10−6 I can retrieve about 89% of the FPs while eliminating

74% of the NFP segments, and increase the percentage of FP segments

from 1 to 3.2%.

In order to give the MLP some idea about the spectral envelope and

the energy of the segment to classify, the MLP is supplied with 25 fea-

tures: the 12 features that were used by the GMM, and 13 MFCCs

characterizing the most stable frame of the segment ts.

Since the MLP is presumed to estimate the posterior probability

P (FP|x), segments are classified as FP if the MLP output exceeds some

posterior FP probability threshold ΘPP . The latter is used to control the

desired balance between the recall and the precision of the FP detector.

4.5.4 FP detection results

The trained GMM-MLP tandem is evaluated on the previously mentioned

CGN test corpus which contains 445 FPs, 440 of which are longer than

0.15 sec.

I tested the performance using a GMM filter with a threshold ΘPPR =

10−6 and comprising an MLP with 15 sigmoidal hidden units (and thus

15x26+16 = 406 free parameters). The results of my tests are listed in

Table 4.3 as a function of ΘPP .

The data show that a precision of about 73% can be reached with a

recall of 75%. Obviously, one can also operate the FP detector at a high

precision (and a moderate recall) or at a high recall (and a moderate

precision) if requested.
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ΘPP Precision (%) Recall (%) F-rate (%)

0.05 44.4 91.1 29.8

0.15 59.8 83.6 34.8

0.20 65.1 81.6 36.2

0.25 68.5 78.9 36.6

0.30 72.9 74.5 36.8

0.40 77.5 65.7 35.5

0.60 83.5 50.7 31.5

Tab. 4.3: Precision and recall of the FP classification of the GMM-
MLP tandem.

I tried to improve the MLP classifier by means of additional embedded

training iterations on a larger database also including data for which no

manually verified segmentation is available, but these attempts were not

successful. A further increase in the number of hidden units did not result

in any substantial improvement of the classification accuracy either.

4.6 Experimental evaluation

Now I discuss the recognition experiments I conducted with both the

internally and externally informed disfluency handling approaches.

For the internally informed strategies, I report results for American

English (Switchboard) and Dutch (CGN). For the externally informed

strategies however, only results for Dutch are presented2.

The recognition engine that I used was delivered by ESAT. It performs

a single pass time synchronous beam search and it comprises gender

independent acoustic models. A global phonetic decision tree defines

a large number of tied states that are used in cross-word context and

position dependent phoneme models. No speaker adaptation is applied.

Both for Switchboard and CGN, the acoustic models were trained by

ESAT.

The language model (LM) is a trigram back-off [59] language model

which is retrieved from text material and/or orthographic transcripts of

spontaneous speech. Good-Turing [42] is used as the smoothing tech-

nique. The LMs were also trained by ESAT, who chose to consider FPs

as integral elements of the language because Pakhomov [83] obtained

2 Since the research was sponsored by the Flemish Authority, the emphasis had to

be on Dutch. However, the experiments on Switchboard are helpful to demonstrate

that my baseline system exhibits a state-of-the-art recognition performance.
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good results with this technique. He compared it to a baseline technique

discarding all FPs and he found that keeping the FPs caused a reduction

of the WER from 32.2 to 28.5% for spontaneous medical dictation.

For the CGN task the lexicon consists of the 40k most frequent words

appearing in Dutch newspaper material, but supplemented with all the

words that were needed to attain a full lexical coverage of the test set.

This way, the results presented here are not influenced by the presence

of out-of-vocabulary words. The lexicon contains a number of manu-

ally obtained pronunciation variants of the filled pause, such as @, @m,

@@, @@m, @mm, @@@, . . . (SAMPA notation, see Appendix B). No

probabilities were attached to these pronunciation variants, however.

4.6.1 Evaluation methodology

When evaluating the recognition systems, all FPs appearing in the refer-

ence and in the recognized word strings are removed, meaning that the

WERs only measure the number of errors related to regular words. This

approach which I will also adopt in all my further recognition experiments

was also applied in [91].

4.6.2 Baseline system performances

For the Switchboard task, the acoustic models were estimated on 310

hours of Switchboard-1 data. A global phonetic decision tree defined 8k

tied states and each tied state is modeled with a mixture of on average 220

tied gaussian distributions from a total set of 117k different Gaussians.

The software available at http://www.nist.gov/speech/tools is used to

compute the WER and to assess the statistical significance of measured

performance differences. Our baseline system obtains a WER of 29.8%

on the Switchboard test set described in chapter 2.

For the CGN task the acoustic models are learned on 44 hours of

Flemish spontaneous data from CGN. The global phonetic decision tree

defines 3500 tied states. Per state, the Gaussians are selected from a set

of 32k Gaussians.

The CGN test set comprises speech of 27 speakers and it contains 7041

regular words and 445 filled pauses. Hence, the FP rate is 445/7496 or

5.94% and thus significantly larger than the 2.7% which was measured on

the CGN training corpus. The WER obtained with my baseline system

on the test set is equal to 36.1%. The main reason for this may be that

the LM for Switchboard is more adapted to the task than the LM for

CGN. Other reasons could be the larger diversity of the data, the larger
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mismatch between the LM and the spontaneous data, the smaller size of

the acoustic model training database, etc.

4.7 Testing internally informed strategies

In ESAT one has compared the three proposed LM context manipulation

models individually with the baseline system (BS, never modify the con-

text) and with the standard context manipulation (SCM) system (always

modify the context) proposed in [98]. The results of this experiment are

summarized in Table 4.4. They confirm that the standard method does

disfluency model BS SCM internal

repetition repetition 29.8% 29.7% 29.6%

filled pause hesitation 29.8% 29.9% 29.8%

restart 29.8% 29.8% 29.9%

Tab. 4.4: WERs for the baseline system and for systems using
standard context manipulation models (SCM) and newly proposed
context manipulation models, respectively.

not offer any significant improvement. They also show that the word

repetition model yields a small but statistically significant improvement

(highlighted result) whereas the hesitation and the restart model unfor-

tunately are totally ineffective.

A more detailed analysis shows that the proposed repetition model

changes less than 5% of the recognized sentences, but mostly in the right

sense. The low number of changed recognition outputs is not that sur-

prising given the low WR-rate in spontaneous speech (around 1.4% of

the words, as shown in section 3.1.2).

I repeated the same experiments on the CGN corpus. Applying the

standard context manipulation technique on FPs resulted in a WER of

35.9% (see Table 4.5). Using the proposed repetition and the hesitation

model I got very similar WERs of 35.9% and 35.8% respectively. All

three WERs are statistically significantly lower than the baseline WER

of 36.1%, but the differences remain small due to the small WR-rate

(below 1%) observed in the CGN data.

In general I can conclude that none of the tested context manipulation

models can cause substantial gains in recognition accuracy. However, for

both tasks the best performances were obtained with one of the models

proposed by ESAT. For Switchboard the most successful internal model

is the repetition model, whereas for CGN the best performing internal
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system disfluency handling WER (%)

BS none 36.1

BS+SCM internal strategy 35.9

BS+repetition (proposed) 35.9

BS+hesitation (proposed) 35.8

BS+drop external strategy 34.5

BS+LMA 34.6

BS+LMA+drop 34.3

BS+SCM+drop combination 34.3

BS+SCM+LMA 34.6

BS+LMA+drop+hesitation 34.1

Tab. 4.5: WERs for systems using externally informed FP handling
methods. Results in bold differ significantly from the baseline (BS)

model is the hesitation model. The latter seems logical since the CGN

test set contains many FPs. In both cases the relative improvement of

the WER is less than 1%.

I attribute the small gains of the two models which are triggered by

a filled pause to the fact that these models rely on the detection of a

filled pause by the decoder. In the current system it is fairly easy to

hypothesize such a filled pause and thus to trigger a prediction context

modification at too many places where there is no disfluency in the signal.

A better alternative would be to create a separate acoustic model for the

filled pause as a word-level unit, as was done in [91]. ESAT tried this on

the Switchboard task but without any success.

4.8 Testing externally informed strategies

As already discussed before, one can anticipate that frame dropping will

perform best in combination with a detector having a high precision (do

not throw away useful frames) whereas LM adaptation (LMA) will profit

most from a detector with a high recall (make it applicable at all places

where an FP is likely to occur). Therefore, I have investigated the perfor-

mance of the two proposed strategies in combination with the same FP

detector but working at different operating points in the (precision,recall)

plane.

By applying frame dropping in combination with an FP detector with

a high precision (83.5%) it was possible to reduce the WER from 36.1 to
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34.5% (see Table 4.5) which is a statistically significant reduction. If the

precision is lowered to 50%, the WER increases to 35%.

By applying LM adaptation in combination with an FP detector with

a high recall (91.1%) it was possible to reduce the WER from 36.1 to

34.6% (see Table 4.5) which is again a statistically significant reduction.

For LMA, the attained performance gain is about the same (34.6%).

Obviously, it depends on the values of the control parameters C1, C2 and

D discussed in section 4.4.2. The best choices for C1 and C2 are 1 and 0

respectively. The value of D is not critical: as long as D > 0.2 sec, the

performance gain changes by less than 0.2%. An advantage of imposing

a small maximum delay D is of course that it constrains the maximum

time delay introduced by LMA.

4.9 Combining FP handling techniques

Since both externally informed strategies yield an improvement, it was no

more than logical to investigate whether they can complement each other,

and whether they can also be combined effectively with the internally

informed strategies presented in the previous section.

4.9.1 Combining framedropping and LMadap-

tation

Since frame dropping is most effective with a high precision FP detector

and LM adaptation with a high recall FP detector, it seems logical to

apply frame dropping on FP segments, with a high score (> 0.5), and

LM adaptation on FP segments with a moderate score (between 0.05 and

0.5).

With the proposed combination of techniques I was able to further

reduce the WER a little bit, to 34.3% (see Table 4.5). Another advantage

of this combination is that its results are less dependent of the choice of

the control parameters. The effect of D is negligible and C1 = C2 = 0

seems to be a good choice for the other two parameters.

4.9.2 Adding standard context manipulation

Since SCM also seemed to offer a small improvement, I did investigate

whether this improvement is maintained in combination with either one

of the two externally informed methods for handling FPs. The results in

Table 4.5 show the following
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1. The system BS+SCM+drop performs equally well as BS+LMA+drop

2. The system BS+SCM+drop is better than BS+drop: the 0.2% gain

of SCM is fully conserved

Where SCM is helpful in combination with drop, it is not in com-

bination with LMA. Apparently, SCM cannot correct errors that are

not already corrected by LMA. This is also confirmed by the fact that

BS+SCM+LMA does not outperform BS+LMA.

4.9.3 Adding the hesitation and the repeti-

tion model

Since the hesitation model did offer a small improvement of the recogni-

tion accuracy on SWB, I have investigated whether this improvement is

still present when the model is used in combination with frame dropping

and LM adaptation. For CGN the system BS+hesitation was the best

internal system. I tried to combine this system with BS+LMA+drop and

I found that it further reduced the WER to 34.1% (see Table 4.5).

I also performed a test with a system incorporating all the techniques:

frame dropping, LM adaptation, hesitation and word repetition context

manipulation, but with this system, I obtained a WER of 34.2%, meaning

that the repetition model is not effective on top of all the other methods.

4.10 Additional experiments and discus-

sion

Although my externally informed search strategies result in a reduction

of 2% absolute of the WER, this reduction is not as spectacular as I

anticipated when I started my research. Therefore, I conducted a detailed

error analysis in order to find an explanation for this. I also wanted to

find out how much larger the improvement could have been if a perfect

FP detector were available.

4.10.1 Detailed error analysis

In order to perform my error analysis I have selected a small corpus of

118 CGN test sentences (3737 words) containing at least one filled pause

in their reference transcription. In total this small corpus comprised 250

FPs.
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For the evaluation of my disfluency handling methods I first of all

measured the over-all WER and the local WER which I defined as the

WER observed in short windows covering the reference word in front of

the filled pause, the filled pause and the reference word just after that

filled pause. By comparing these two WERs, it should be possible to

check whether or not FPs cause extra problems for the recognizer. In

order to find out whether an FP is likely to trigger a chain reaction, I

have also counted the number of consecutive regular word errors that

were produced in the vicinity of each FP. The following example of an

aligned reference and recognized sentence pair was found in my CGN test

data:

reference: ... elk jaar uh of tot de twee ...

recognized: ... elk jaar u op met de thee ...

Translated to English (with loss of correspondence between speech and

recognized words), this gives

reference: ... every year uh or to the two ...

recognized: ... every year you on with the tea ...

If one first removes the FP from the reference sentence before analyzing

the errors, it becomes clear that in the above example (Dutch sentences)

there are two local errors (the insertion of ’u’ and the substitution of ’of’)

and three consecutive word errors (the insertion of ’u’ and the substitu-

tions of ’of’ and ’tot’).

The local and the global WERs and the number of consecutive word

errors per FP for the baseline system and the BS+LMA+drop (Best)

system are listed in Table 4.6. Apparently the over-all WERs obtained

system global WER (%) local WER (%) consecutive errors/FP

BS 36.5 56.7 1.50

Best 34.3 42.0 1.17

Tab. 4.6: Detailed error analysis: the over-all WER, the local WER
(in the vicinity of an FP) and the number of consecutive word errors
per FP.

for the small sub-corpus are very representative of the WERs obtained for

the full corpus, but this is of course not the most important observation

to retrieve from the Table. The more important observations are the

following:
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1. The local WER of the baseline system is substantially higher than

its over-all WER. I consider this as a clear support of my hypothesis

that FPs cause particular problems for the recognizer.

2. The expected chain reaction is less pronounced than originally an-

ticipated: the average number of errors induced by an FP is only

1.5, meaning that the maximum gain in performance attainable

with FP handling strategies is bound to be smaller than 1.5 times

the FP rate.

3. Our best disfluency handling strategy does have a significant impact

on the local WER (a reduction of 14.7% absolute), meaning that it

does what it is supposed to do, namely deal with problems due to

the presence of an FP.

I will now try to make a realistic estimate of the maximum performance

gain that can be achieved by means of disfluency handling methods. If all

the regular word errors occurring in the vicinity of an FP were effectively

caused by the presence of that FP, the maximum gain would be 1.5 errors

per FP.

However, if I randomly select 250 regular reference words and if I

count the associated number of consecutive word errors in the same way

as I did with the FPs, I find a number of 0.8 errors per word. Conse-

quently, I argue that the number of additional errors that is on average

induced by the presence of an FP is only of the order of 1.5 - 0.8 = 0.7.

Given that the FP rate in our data is 5.94%, this would finally lead

to a maximum attainable gain in over-all WER of about 4.1% for these

data. This gain is about 2 times larger than the gain of 2% I actually

obtain with my best system.

This last result contrasts a bit with the fact that the local WER of my

best system is already pretty close to the over-all WER of the baseline

system. This must mean that my FP handling methods introduce a

number of new errors in areas not corresponding to an FP in the speech.

If I would be able to conceive a better external FP detector, I would

expect less of these errors.

4.10.2 Impact of the external FP detector

In order to confirm the above hypothesis, I have evaluated the two ex-

ternally informed FP handling methods in combination with a ’perfect’

FP detector which I define as the FP detector generating the manually

labeled FP segments (provided with the CGN data) with an FP score

of 1. In Table 4.7 I have collected the recognition performances when
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the FP handling systems are being supplied with the real and the per-

fect FP detector outputs respectively. The improvements with respect to

system perfect FP detector real FP detector

WER (%) #cwrds/FP WER (%) #cwrds/FP

BS+drop 32.0 0.70 34.5 0.27

BS+LMA 34.4 0.30 34.6 0.25

Tab. 4.7: Achievable gains of two externally informed methods
using a real and a perfect FP detector respectively.

the baseline system are expressed in terms of the WER and the average

number of corrected words per FP, denoted as #cwrds/FP.

My results (Table 4.7) do confirm that with a perfect FP detector,

the WER can be reduced by 4.1% (0.7 corrections per FP), the estimated

upper bound of the improvement. They also demonstrate that this gain

can only be achieved by means of frame dropping since LM adaptation

alone never yields more than 0.3 corrected words per FP. I argue that the

latter result demonstrates that the decoder part of the speech recognizer

itself is not able to give a correct interpretation to the FP frames it is

confronted with.

4.10.3 Dependency on the FP rate

I also investigated whether there is a correlation between the attained

performance gain and the FP rate of the speech utterances. Therefore

I have performed a recognition experiment on 27 speakers selected from

the CGN training corpus on the basis of their FP rate. Note that these

speakers were not involved in the training of the acoustic models nor the

language model of the recognizer.

I have divided this set into five subsets by grouping the speakers on the

basis of their FP rate. Table 4.8 gives an overview of the characteristics

of these five databases and the WERs obtained with some of my systems

on these databases. Apparently, the data are significantly more difficult

to recognize than the test data I used before. The average performance

gain due to my disfluency handling methods is also smaller (around 0.9%

absolute) than before, but it is still statistically significant.

The bottom row of Table 4.8 shows that the improvement of the best

system over the baseline system is roughly correlated with the FP rate.

The figures also show that frame dropping starts to harm the performance

if the FP rate gets too high: the best system for databases 4 and 5 is the
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db 1 db 2 db 3 db 4 db 5

FP rate (%) 1.97 4.16 5.57 7.57 8.85

#words 5269 5711 5188 7089 4373

#speakers 6 6 5 5 5

#FPs 106 248 306 581 425

WER(BS) 35.50 47.66 44.79 36.12 44.31

WER(BS+LMA) 35.29 47.30 43.75 34.78 43.45

WER(BS+LMA+hesitation) 35.25 47.28 43.77 34.60 43.33

WER(BS+LMA+drop+hesitation) 34.83 47.22 43.38 35.13 43.78

WER(BS)-WER(best) 0.7 0.4 0.4 1.5 1.0

Tab. 4.8: Influence of the FP-rate on the several discussed meth-
ods.

one without frame dropping whereas for databases 1 to 3 it is the one

incorporating both frame dropping and LM adaptation.

4.10.4 Dependency on the baseline WER

In the course of my research I have tested FP handling methods in com-

bination with baseline systems having a lower recognition accuracy (be-

cause they did not yet incorporate a spontaneous speech language model

or because their acoustic models were trained on read speech only). From

these tests it follows that the improvement induced by my methods does

not decrease when better baseline systems become available. On the

contrary, while the baseline WER could be reduced from 45.6 to 36.1%,

the improvement induced by my methods actually increased from 1.7 to

2%. This is a hopeful result in view of the expectation that acoustic and

linguistic models of spontaneous speech will further improve now that

more and more spontaneous speech corpora are becoming available to

the speech community.

4.11 Conclusion

In this chapter I have proposed different strategies for coping with dis-

fluencies in the search engine of a spontaneous speech recognizer. I made

a distinction between internally informed approaches that totally rely on

the standard knowledge sources (acoustic models, pronunciation models

and language model) and externally informed approaches that also take

into account evidences for disfluencies as they emerge from an external

acoustic preprocessor.
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The external acoustic preprocessor operates independently of the search

and searches for FPs on the basis of acoustic and prosodic features that

are not accessible to a standard recognizer. After having selected the

appropriate features I could build an FP detector that is capable of

detecting a large fraction of the filled pauses with a high precision. I

proposed two strategies for incorporating the detector outputs into the

search engine, namely frame dropping and language model adaptation.

Experiments on Flemish spontaneous speech showed that the exter-

nally informed approaches for handling FPs yielded a moderate but sta-

tistically significant gain in recognition performance: the error rate could

be reduced from 36.1 to 34.3%. This improvement corresponds to the cor-

rection, on average, of about 0.3 regular word errors per FP occurring in

the speech. This is still quite below the maximum of 0.7 word corrections

per FP I have been able to demonstrate by using an oracle FP detector.

By also including the ESAT hesitation model in the decoder, I could

finally reduce the WER to 34.1%. A detailed analysis of my results has

demonstrated (1) that the size of the improvement is correlated with the

disfluency rate of the speech, (2) that the attained improvement does not

decrease when the WER of the baseline system decreases, and last but

not least, (3) that the largest improvement obtained thus far is about

43% of the improvement that could have been achieved with an oracle

(manual) FP detector. The latter conclusion allows me to assess the

additional improvement that would be possible to attain if a significantly

better FP detector could be conceived.

Since a continuation of the work on FP-handling methods was not

bound to yield much more than an extra 1 or 2% drop in WER, and

since this work could not be carried out in the context of any research

project that was running at ELIS-DSSP at that time, my research was

therefore re-oriented towards the use of phonological features (PHFs) for

the processing of non-typical speech. Examples of such speech are dis-

ordered speech, speech from non-native speakers, and speech containing

words of a foreign origin.
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Features

In the three chapters of part II of my dissertation I discuss (1) the phono-

logical feature detector I developed, (2) the way in which it was validated

in an alignment assessment tool and (3) the ways in which it can be inte-

grated in a speech recognizer, either alone or in combination with tradi-

tional models working with acoustic features. However, before I can start

these discussions I have to provide some information about the physiol-

ogy of the vocal tract. Sections 5.1 and 5.2 can be skipped by readers

who are familiar with this material.

5.1 The physiology of the vocal tract

The physiology of the human speech production system is depicted in

Figure 5.1. The names mentioned on the Figure are the so-called scientific

names which are of a Latin origin. Some of these names sound unfamiliar

and need some further explanation.

• velum :

The back-ward part of the palate.

• pharynx :

The space between the tongue root and the wall of the upper throat.

• larynx :

The structure on which the vocal chords are attached.

• epiglottis :

The tissue fold beneath the tongue root that makes sure the larynx

is covered during swallowing, making the food going into the gullet

and not to the lungs.
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Fig. 5.1: The anatomy of the human speech production system.
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Dutch name English name scientific name adjective

lippen lips labial

tanden teeth dental

tandkas alveolar ridge alveolus alveolar

hard gehemelte hard palate palatal

zacht gehemelte soft palate velum velar

huig uvula uvular

keel throat pharynx

strottenhoofd voicebox larynx laryngeal

tongpunt tongue tip apex

tongblad tongue blade lamina

tonglichaam tongue body dorsum dorsal

tongwortel tongue root

stembanden vocal chords

Tab. 5.1: Parts of the vocal tract and their Dutch, English and
scientific names.

Table 5.1 contains the different names that are in use (in Dutch and

English) for the different parts of the vocal tract. Of course the vocal

tract is not able to produce the speech sounds without an air pressure.

That air pressure mostly originates in the lungs.

5.2 Articulatory versus Phonological Fea-

tures

Articulatory features are defined as descriptors of the positions of the

articulators, such as the position of the tongue tip, tongue body, the

palate, . . . There exist methods based on X-Ray microbeam (XRMB)

cinematography [124; 84] and electromagnetic articulography (EMA) [36]

to measure these positions in a fairly reliable way. There also exist a

number of small corpora with a limited number of speakers that come

with articulatory features. An Example is the MOCHA-database for

English [123].

Most of the speech data however come without articulatory features.

Consequently, if I want to create a speech characterization in terms of

these features, I will have to conceive speech analyzers that retrieve these

features from the speech waveform, or from a standard parametric rep-

resentation of this waveform like e.g. the MFCC parameters. Features
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like the MFCCs are called Acoustic Features (ACFs).

If one wants to derive articulatory features from the ACFs one has to

solve the so-called inversion problem, which aims at finding the hidden

cause of the observed result. Unfortunately, several articulatory config-

urations can produce identical (or very similar) acoustic features. The

inversion is thus a one-to-many mapping problem. This inversion prob-

lem has been studied by speech scientists for some time [6; 92]. Having at

my disposal the ACFs, I can adopt two major techniques for extracting

articulatory information.

1. Analysis by synthesis

This method [53; 89] uses a speech production model with free

parameters. In order to obtain the free parameters (articulatory

features), the error between the real (observed) ACFs from the

training data and the ACFs obtained from the speech production

model, is measured. On the basis of this error new and better

estimates are made for the articulatory features.

2. Nonlinear mapping

This method uses a nonlinear mapper to perform the mapping from

the ACF space into the articulatory space.

In order to learn a mapping one needs knowledge about the relation be-

tween the acoustic features and their articulatory causes. These relations

are studied in phonology. That is also why articulatory feature estimates

derived by nonlinear mapping are called phonological features (PHFs),

as opposed to the genuine articulatory features (ARFs) emerging from

direct measurements of the articulatory configuration. In phonology one

tries to classify sounds according to several distinctive features. Such a

distinctive feature is what distinguishes one sound from another. The

distinctive features aim to refer to three main aspects of articulation:

• Phonation : What is the role of the vocal chords in the speech

production.

• Manner of articulation : What kind of phenomena (see later)

are responsible for the acoustic properties of the sounds.

• Place of articulation : Where in the vocal tract do the critical ar-

ticulation processes take place that determine the acoustic features

of the sound.

The phonological correlates of these three aspects of articulation will

be called feature dimensions and are explained in more detail now.
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5.2.1 Voiced versus unvoiced

Phonation is treated as a separate process because there exist many

sounds that only differ in this dimension but that are otherwise artic-

ulated in virtually the same way. The difference between /s/ and /z/

for instance resides in the fact that during the production of the /z/ the

vocal chords vibrate while they do not during the production of the /s/.

When the vocal chords vibrate, the speech is said to be voiced (=phono-

logical feature), otherwise it is unvoiced or voiceless.

5.2.2 Manner of articulation

5.2.2.1 Plosive

Plosives or stops are sounds which are caused by a process of creating an

obstruction for building up the air pressure at some place in the vocal

tract, and suddenly removing the obstruction so that the pressure is

released. Consequently one can discern two phases or sub-phonemic units

in the realization of a plosive: a closure interval (pressure build up) and

a release interval. Obviously, a plosive cannot be sustained: once the air

has escaped, the sound is finished. Examples of plosives are the initial

sounds of ’pot’, ’bat’, ’tail’, ’dog’, ’cat’ and ’gate’.

5.2.2.2 Fricative

A fricative is a hissing sound caused by air flowing through a small gap.

Examples of fricatives are the initial sounds of ’four’, ’think’, ’shame’,

’van’, ’sick’, ’hear’, ’there’, ’zinc’.

5.2.2.3 Nasal

A sound is is called nasal if the air is (partly) escaping via the nose

because the soft palate is lowered. Examples of nasal sounds are the

initial sounds of ’mean’, ’nine’ and the final sound of ’wing’.

5.2.2.4 Lateral

A sound is called lateral if the air is blocked in the central part of the

vocal tract, but is escaping at both sides (left/right) of the tongue. A

typical example of such a sound is the initial sound of ’left’.
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5.2.2.5 Consonant/vowel/approximant

A sound is called a consonant if the air flow is restricted by a mech-

anism as described above. If the air flow is unrestricted the sound is

called a vowel. However there are some sounds like the initial sound

in ’rat’, ’young’ and ’what’, that match the definition of vowel, but are

still not considered as true vowels. These sounds will from now on be

called approximants, because the obstruction of the air flow necessary for

producing a consonant is approximated.

5.2.2.6 Affricates

Sounds composed of a plosive followed immediately by a fricative on the

same articulation place are given a special name: affricates. The final

sounds in ’catch’ and ’edge’ are two examples.

5.2.3 Place of articulation

For consonants the place of articulation is determined by the place where

the cross-section of the vocal tract is minimal. This can be at the upper

lips (labial), the upper teeth (dental), the alveolar ridge (alveolar), the

soft palate (velar), the epiglottis (glottal).

5.2.3.1 Lips

If both lips are used to articulate the sound, I denote the sound as labial

or bilabial. English examples are the initial sounds in ’pot’, ’bad’ and

’mum’. Two English sounds make use of the lower lip together with the

upper teeth and hence are called labio-dental: the initial sounds in ’fan’

and ’van’.

5.2.3.2 Teeth

The two well-known ’th’-sounds in English (initial sounds in ’the’ and

’think’) are produced by forcing the air between the tongue tip and the

teeth.

5.2.3.3 Alveolar ridge

An alveolar sound is formed when the tongue tip hits the bony bulge

behind the upper teeth, also called alveolar ridge. A lot of English con-

sonants are alveolar for example the initial sounds in ’dark’, ’size’ and

’now’. As can be observed, alveolar consonants can have several manners
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of articulation. Four sounds get the label palato-alveolar or post-alveolar.

This is because the tongue hits both the alveolar ridge and the front

of the hard palate. The sounds were are talking about are the ending

sounds of the so-called affricates.

5.2.3.4 Soft palate

The soft palate is situated at the rear of the mouth. Velar sounds are

produced by pushing the tongue back to the soft palate. They are the

initial sounds in ’cat’, ’goat’ and the final sound in ’wing’. The initial

sound in ’what’ is often considered as labio-velar because there are two

points of constriction: the lips are closed and the tongue is pushed back

towards the velum.

5.2.3.5 Glottis

Glottal sounds are produced by closing the glottis. An example is the

initial sound in ’hat’.

5.2.3.6 Retroflex

Retroflex sounds are produced with the tip of the tongue curled up, but

more generally it means that it is post-alveolar without being palatalized

(touching the hard palate with the tongue)

5.2.4 The International Phonetic Alphabet

The International Phonetic Association (IPA,[56]) has fixed an alphabet,

called the International Phonetic Alphabet, for describing phonemes in

all possible languages that fall in a certain category with respect to the

manner and place dimension of articulation. All possible consonant sym-

bols representing the IPA consonant chart can be found in Figure 5.2.

There are two manners of articulation in the IPA consonant chart that

I did not explain yet. The first one is trill which is typical for the initial

sound in the Dutch words ’rat’ and ’rot’. A trill sound is a vibration of

the tongue or uvula against the place of articulation.

The second manner of articulation is flap or tap. The term flap is of-

ten a synonym for the term tap. A flap involves a rapid movement of the

tongue tip from a retraced vertical position to a more or less horizontal

position, during which the tongue tip brushes the alveolar ridge. Intervo-

calic flapping is a phonological process found in many dialects of English,
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Fig. 5.2: The International Phonetic Alphabet: the consonants.

especially North American English. In the word ’butter’ for example the

/t/ can be replaced by a flap.

The phonetic symbols for English and Dutch consonants that will be

used from now on are represented in Table 5.2. If a symbol is used only

for Dutch (D) or English (E), it is marked by a word of that language

between brackets.

lab. lab-dent. dental alv. post-alv. retro. velar glot.

plos. p b t d g k

nas. m n N
trill r (’rat’)

fric. f v T (’thin’) s z Z (’vision’) hD (’this’) S
appr. j õ(’roll’)

lat. l

Tab. 5.2: English and Dutch consonants in the IPA chart.

5.2.5 Vowel Features

Vowels differ from consonants in that the air can flow without obstruc-

tion through the vocal tract. The articulators affecting the properties of

vowels are the position of the lips and the tongue body. Nevertheless,
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the discrimination between vowels can be very subtle and sometimes un-

detectable even by humans. The vowel chart of IPA in Figure 5.3 is an

Fig. 5.3: The English vowels mapped on the IPA vowel-chart.
Round/unround is not a dimension in this chart, but more like a
binary variable. Many phones in the chart can be either round or
unround.

attempt to represent all vowels in one single diagram. The X-axis of this

diagram shows the horizontal place of articulation i.e. the place of the

tongue body (front, central or back). The Y-axis is equivalent with the

vowel height and represents the vertical position of the tongue body, also

referred to as the open/close dimension, where close is identical to high

and open to low. Vowels appearing on the same spot in the vowel chart

can however differ from each other because of the lips. Some vowels can

be either round or unround. Some vowels can be pronounced long or

short. If they are pronounced long, a semi-colon (:) is placed behind the

symbol. Vowel duration is however not a distinctive feature in languages

like English or Dutch, but more a practical issue.

5.2.6 Diphthongs

A diphthong is a sound that gradually shifts from one vowel to another.

Basically diphthongs are no longer located in a certain area of the vowel

chart, but they can be represented in the chart by a trajectory. In English

there are 5 diphthongs:

• /eI/ : day, wait, vein,. . .

• /aI/ : buy, fine, sight,. . .

• /OI/ : boy, join, voice,. . .
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• /�U/ : boat, slow, go, coat, . . .

• /aU/ : now, fowl, cow, . . .

Diphthongs always end in one of the upper corners of the vowel chart

i.e. in /I/ or /U/. This is a language independent fact. There are

however three more diphthongs like in ’sheer’, ’share’ and ’sure’ (central

diphthongs) that closely resemble the vowels /I/, /e/ en /U/. In many

phonetic transcriptions these diphthongs are not used however.

5.3 An appropriate description for ACF-

to-PHF mapping

I will first discuss some recent work on PHF extraction methods by means

of the mapping paradigm before I will propose my feature set and detec-

tion strategy.

5.3.1 Previously proposed feature sets

Over the past decades, a multitude of feature sets have been proposed. In

almost any case the phonological features are grouped in so-called dimen-

sions, and each dimension is represented by a collection of binary features

that can be on or off. Even dimensions such as "place of articulation" are

not modeled by a single continuous variable but by a number of binary

features corresponding to a number of "typical" places, usually associated

with one of the parts of the vocal tract. One of the main advantages of

this binary encoding of the phonological properties of a sound is that it

achieves that all features can be treated in a unified way, that pattern

classifiers can be trained to produce the posterior probabilities of these

features and that they can be evaluated as classifiers.

In this section I recall some of the most popular feature sets that

were proposed, and I also provide some information concerning their

detectability. Table 5.3 is intended to provide a brief summary of what I

found in the literature.

In [50] the features are grouped in 5 dimensions: (1) phonation, (2)

manner of articulation, (3) place of articulation, (4) front-back and (5)

roundness. Each dimension has a number of associated feature values:

phonation has 2 values (voiced, unvoiced), manner of articulation 5 (ap-

proximant, fricative, nasal, stop, vowel), place of articulation 9 (labial,

labio-dental, dental, alveolar, velar, glottal, high, mid, low), front-back
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reference #features #dimensions frame accuracies (%) method

[50] 20 5 72-85 RNN

[17] 26 7 11-96 MLP

[70] 25 8 – DBN

[40] 22 6 82 DBN

[120] 21 6 84 DBN

[61] 13 4 88-98 RNN

[61] 27 8 69-92 RNN

Tab. 5.3: Some PHF proposals (nr. of features and dimensions)
and (reported) frame-level classification accuracies (corresponds to
the range of accuracies across features).

2 (front, back) and rounding also 2 (round, unround). Recurrent neural

networks (RNNs) were used for the detection of the features and the ac-

curacy was measured both on frame level and on segmental level. For

the manner features e.g., the error at the frame level was 15.5% and at

the segment level 35.7%. For place of articulation the measured frame

level error was 28.4% and the segmental error was 57.1%.

In [17] a system is proposed for the classification of PHFs that makes

use of an array of 7 feed-forward MLPs, each treating one of the fol-

lowing dimensions: (1) place of articulation (9 values: labial, alveolar,

velar, dental, glottal, rhotic, front, central and back), (2) manner of ar-

ticulation (6 values: vocalic, nasal, stop, fricative, flap and silence), (3)

phonation (2 values: voiced, unvoiced), (4) static/dynamic spectrum (2

values), (5) roundness (2 values: round, unround), (6) vowel height (3

values: high, mid, low) and (7) intrinsic vowel length (2 values: tense,

lax). A ’nil’ category is used to designate non-relevant features within a

dimension. The total number of features is thus equal to 26. One could

make two small remarks about the choice of the features. First ’rhotic’

was used as a place feature. A rhotic speaker pronounces the /r/ after a

vowel, like in /world/, whereas a nonrhotic speaker will not pronounce it

or replace the /r/ by a schwa. Secondly, the rather strange assignment

of ’velar’ for segments like /sh/ and /zh/ was probably because the au-

thors wanted to avoid an extra category ’post-alveolar’. Classification

performance for the place of articulation features ranges between 11%

correct for the ’dental’ feature to 79% correct for the ’alveolar’ feature.

For manner of articulation the performance ranges from 45% for ’flap’

to 96% for ’vocalic’. The main strategy in this work is to train sepa-

rate place classifiers for each manner category. This is only meaningful if
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the manner detection can be done accurate enough. Therefore, only the

frames with a high confidence can be considered for further classification.

In order to show the potential of this method, a test was performed based

on an ideal manner classification emerging from the reference labels. The

conclusions were: (1) a considerable gain is obtained for the place classi-

fication when manner-specific networks are used (2) for the other feature

dimensions the gain is less significant. In [121] the same approach is

adopted for Dutch. Here, cross-lingual tests were implemented because

the networks were trained on English and tested on Dutch. This gave a

worse performance for the place classification.

In [70] eight feature dimensions were used: (1) phonation (voiced,

unvoiced), (2) velum (closed, open), (3) manner of articulation (closure,

sonorant, fricative, burst), (4) place of articulation (labial, labio-dental,

dental, alveolar, post-alveolar), (5) retroflex (off, on), (6) tongueBody-

LowHigh (low, mid-low, mid-high, high, nil), (7) tongueBodyBackFront

(back, mid, front, nil), (8) roundness (off, on). A ’nil’ category was

used for non-relevant features. In this work the traditional HMM-based

approach to automatic speech recognition is abandoned and a Bayesian

approach is implemented. Experiments on Aurora 2.0 (small vocabulary

and noisy speech) yielded an 8% relative reduction (from 1.3% to 1.2%).

In [40] PHFs are detected by means of a (Dynamic Bayesian Network)

DBN, and a comparison is made with MLPs. The dependencies between

the features are studied. The choice of the features is almost identical

to the set used in [50]. There are six feature dimensions: (1) manner of

articulation (approximant, fricative, nasal, stop, vowel, silence), (2) place

of articulation (labial, labio-dental, dental, alveolar, velar, glottal, high,

mid, low, silence), (3) phonation (voiced, unvoiced, silence), (4) rounding

(round, unround, nil, silence), (5) front-back (front, back, nil, silence)

and (6) static/dynamic spectrum (static, dynamic, silence). A separate

model for each feature dimension was implemented. The baseline system

consisted of a DBN in which all features were modeled independently.

Next, two ways of modeling the dependencies between the features were

implemented. The main conclusion was that a DBN does not perform

any better than a neural network on the feature recognition task. A

possible reason - according to the authors - is the necessity of having to

use simple observation functions in a DBN.

King et al [61] investigated three phonological feature sets: (1) the

Sound Pattern of English (SPE) system, (2) a multivalued feature system

and (3) a feature system based on Government Phonology [51] which uses

a set of structured primes. All feature extractors were based on RNNs

and the tests were carried out on TIMIT. As King et al. argue, it is worth

discussing the nature and design of the feature set. The three sets they
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tested are representative of three generations of research in phonologi-

cal features, with the multivalued set being the most popular, the SPE

set representing the original generative tradition and the Government

Phonology set representing the more current phonological theory. There

are however many more feature sets and phonological theories that could

yield equally valid feature candidates as I have tried to demonstrate by

this short overview of the literature. While some of these candidate fea-

ture sets have features in common with the three sets described here,

many are completely different. Further on, King et al. question whether

it makes sense to base a speech recognizer on a particular phonologi-

cal theory given that there is so much disagreement in the linguistics

literature over what the best phonological theory is. Although there is

variation in the feature systems, these differences are not arbitrary. Pho-

nologists agree as to what the desiderata of an ideal feature system are.

In short, the perfect feature system will be compact, consist of indepen-

dent features, and combine naturally with pronunciation mechanisms. In

my opinion a sensible PHF set should also satisfy the following criteria.

1. Distinctiveness

All the speech sounds (phonemic or sub-phonemic) must be located

at another position in the PHF space.

2. Detectability

It should be possible to extract the PHFs in a reliable way by means

of an automatically trained feature mapper. Of course this crite-

rion can only be verified a posteriori by evaluating the measured

accuracies.

3. Unambiguity

It should be possible to assign phonological feature values to all the

speech sounds one wants to model in an unambiguous way.

I will now discuss one particular feature set i.e. the SPE system and verify

whether it meets the three criteria. I will then discuss some disadvantages

of this feature set and make some remarks about what should be taken

into account when opting for another set.

In The sound Pattern of English [19] the authors Noam Chomsky and

Morris Halle develop a phonological theory based on the use of binary

distinctive features. The goal of their feature theory is to discover the

most basic set of fundamental underlying units (the features) from which

surface forms (e.g. phones) can be derived. The features can be grouped

according to four categories. I use the notation [+feature] or [-feature]

for the binary features.
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1. Major class features

This category comprises vocalic and consonantal. Vocalic sounds

have a constriction which is less than the one found in /i/ and

/u/. On top of that phonation must be on. Non-vocalic sounds do

not match one or both of these criteria. [+consonantal] sounds are

produced with a clear obstruction in the vocal tract.

2. Mouth Cavity features

These include coronal, anterior, high, low, back, round and nasal.

[+coronal] sounds are produced with the tongue blade shifted from

the neutral position. In [+anterior] sounds the obstruction of the

air flow is situated in front of the palato-alveolar region. Labial,

dental and alveolar consonants are [+anterior], whereas palato-

alveolar, velar or uvular consonants are [-anterior]. Vowels are

always [-anterior]. The features [high,low,back,round] are identi-

cal to the ones discussed in section 5.2.5. [Nasal] was explained in

section 5.2.2.

3. Manner features

Continuant makes the distinction between plosives and non-plosives.

Tense as opposed to lax refers to the intensity of producing the

sound. This feature is most obvious with vowels where a tense

vowel matches a long vowel

4. Source features

Voiced was already explained. Strident means that the air flow is

turbulent like in fricatives.

The total number of features is equal to 13. Let us now consider all the

American English phones and sub-phonemic units. At this point I also

introduce some new phonemic symbol sets that were not in Table 5.2

nor in Figure 5.3. All symbols are summarized in Appendix B, where

both the ARPABET symbol, the IPA symbol and the SAMPA symbol is

provided. I tried to assign a canonical value (+/-) to every binary feature

for all 58 sub-phonemic units (according to the feature definitions in [19]).

The result is represented in Table 5.4 (V = vocalic, C = consonantal, H

= high, B = back, L = low, A = anterior, Cor = coronal, R = round, T

= tense, Vo = voiced, Co = continuant, N = nasal and S = strident).

I am well aware that my interpretation of the SPE-feature set is only

one possible interpretation. To illustrate the disagreement among authors

concerning what are good SPE-feature values for the phones, I have com-

pared the SPE-feature decomposition in [61] and [34]. I observed several

differences, for instance /ow/ was given [-low] in [61], whereas it received

[+low] in [34]. A second example: /ae/ received [+tense] in the former
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IPA V C H B L A Cor R T Vo Co N S

aa 6 + - - + + - - - ( - ) + + - -

ae æ + - - - + - - - ( - ) + + - -

ah 2 + - - + - - - - - + + - -

ao O: + - - + ( - ) - - + ( - ) + + - -

aw aU + - - + + - - + + + + - -

ax � + - - + - - - - - + + - -

ax-h �h + - - + - - - - - + + - -

ax-r Ä + - - - - - - - - + + - -

ay aI ( + ) - - + + - - - + + + - -

b b - + - - - + - - - + - - -

bcl - + - - - + - - - - - - -

ch Ù - + ( + ) ( - ) - - + - - - - - +

d d - + ( - ) - - + + - - + - - -

dcl - + - - - + + - - - - - -

dh D - + - - - + + - - + + - -

dx + + - - - + + - - + - - -

eh e ( + ) - - - - - - - - + + - -

el �l ( + ) + - - - + + - - + + - -

em �m - + - - - + - - - + - + -

en �n - + - - - + + - - + - + -

eng �N - + ( + ) + - - - - - + - + -

er 3: + - - ( + ) - - - - ( + ) + + - -

ey eI ( + ) - - - - - - - + + + - -

f f - + - - - + - - - - + - +

g g - + ( + ) + - - - - - + ( - ) - -

gcl - + ( + ) + - - - - - - - - -

hh h - ( - ) - - + - - - - - + - -

hv H ( - ) ( - ) - - + - - - - + + - -

ih I + - ( + ) - - - - - - + + - -
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ix + - + - - - - - - + + - -

iy i: ( + ) - + - - - - - + + + - -

jh � - + + - - - + - - + - - +

k k - + + + - - - - - - - - -

kcl - + + + - - - - - - - - -

l l ( + ) + ( - ) - - + + - - + + - -

m m - + - - - + - - - + - + -

n n - + - - - + ( + ) - - + - + -

ng N - + ( + ) + - - - - - + - + -

nx + + ( - ) - - + + - - + - + -

ow �U + - - + - - - + + + + - -

oy OI ( + ) - - + + - - - + + + - -

p p - + ( - ) - - + - - - - - - -

pcl - + - - - + - - - - - - -

q P - + - + + - - - - - - - -

r r + + - - - - + - - + + - -

s s - + - - - + + - - - + - +

sh S - + + - - - + - - - + - +

t t - + - - - + + - - - - - -

tcl - + - - - + + - - - - - -

th T - + - - - + + - - ( - ) + - -

uh U + - + + - - - ( + ) - + + - -

uw u: + - + + - - - + + + + - -

ux + - + + - - - + + + + - -

v v - + - - - + - - - + + - +

w w - ( - ) + ( + ) - - - + - + + - -

y j - ( - ) + - - - - - - + + - -

z z - + - - - + + - - + + - +

zh Z - + + - - - + - - + + - +

Tab. 5.4: SPE-Feature decomposition of the 58 American English
phones (ARPABET notation) and sub-phonemic units. Whenever
my feature value was different from the one in [61], I have put it
between brackets.
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work and [-tense] in the latter. As a last example the /n/ gets [-coronal]

in [61] and [+coronal] in [34]. I favour the latter since I think /n/ is

pronounced with the tongue blade shifted from the neutral position. I

just give these three examples to show that there is no consensus on some

of the SPE-features as to what their value should be.

At this stage I can thus remark that this feature set, though theoret-

ically well motivated, does not meet my third criterion of unambiguity

of the feature values, and consequently that there are reasons for using

another feature set for my research,.

5.3.2 Language dependency

In [109] the authors test the hypothesis that PHFs are language inde-

pendent. I will make use of this hypothesis for the experiments carried

out in section 7.7, where I will do experiments on the recognition of for-

eign names comprising foreign phonemes with other phonological feature

combinations than those that can be seen in the native language. Five

languages were selected in [109]: Mandarin Chinese, German, Japanese,

English and Spanish. A global feature set composed of 21 features was

proposed. For the detection of the features, GMMs were trained in the

same way acoustic models are trained for a speech recognizer. Each fea-

ture had two models: one for feature present and one for feature absent

which means that the binary encoding paradigm was preferred here too.

Training was done on the middle frames of a phonetic segment because

the authors had to rely on automatic segmentations. The conclusions

of this work were: (1) feature detection is possible even if the language

on which the detector is trained differs from the language on which it is

tested (cross-lingual). However the performance never is as good as in the

monolingual case in which one feature extractor is trained on the same

language as the one on which it is tested. (2) When selecting the feature

extractor that yielded the highest score in any of a set of language depen-

dent feature extractors, the performance turns out to be higher than in

the monolingual case. This suggests that it is possible to detect features

on an unknown language given a set of language-dependent extractors.

(3) The performance of a multilingual detector, trained on data from

several languages is worse than that of a monolingual detector.
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5.4 Design of own feature set

In this section I briefly discuss the feature set I have chosen for my

research, and the architecture of the feature extractor I have designed

for it.

5.4.1 Selection of the feature set

When comparing the multivalued feature sets that were described in the

previous section, I noticed that every time a feature value was not rele-

vant, it was given the value ’nil’. This ’nil’ category must be used when

consonantal place features and place features only relevant for vowels

are grouped in one feature dimension (like in [17]). For a consonantal

segment for instance the vowel place features have no meaning and are

given the ’nil’ value. I want to avoid such feature values and therefore I

propose to combine features which are simultaneously relevant and irrel-

evant into separate feature dimensions. I decided to discern four feature

dimensions:

• vocal source: This dimension describes the presence/absence of

vocal energy and phonation and it can take the values voiced, un-

voiced or no-activation. In this definition the vocal source is pre-

sumed to describe the frame-level presence/absence of speech exci-

tation and the nature (voiced/unvoiced) of that excitation.

• manner: This dimension corresponds to the manner of articula-

tion. It can take the values closure (first part of a plosive), vowel,

fricative, burst (second part of the plosive), nasal, approximant, lat-

eral and silence. A silence is defined as a reasonably long (> 100ms)

non-speech time interval in the signal.

• place-consonant: Here, the place of articulation features are en-

coded for consonants. Possible values are labial, labio-dental, den-

tal, alveolar, post-alveolar, velar and glottal.

• vowel-features: Finally the place and rounding features for vow-

els are encoded as low, mid-low, mid-high, high, back, mid, front,

retroflex and round.

This PHF definition thus consists of 27 features encoding four feature

dimensions. Table 5.5 provides the feature decompositions for the Amer-

ican English phones.
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phone source manner place-C feat-V

aa voiced vow. N (low,back,off,off)

ae voiced vow. N (mid-low,front,off,off)

ah voiced vow. N (mid-low,back,off,off)

ao voiced vow. N (mid-low,back,off,round)

aw —

ax voiced vow. N (mid-high,mid,off,off)

ax-h —

ax-r —

ay —

b voiced burst labial N

bcl n.a. clos. 0 N

ch —

d voiced burst alveol. N

dcl n.a. clos. 0 N

dh voiced fric. dental N

dx voiced burst alveol. N

eh voiced vow. N (mid-high,front,off,off)

el —

em —

en —

eng —

er voiced vow. N (mid-low,mid,retro,off)

ey —

f unvoiced fric. lab-dent. N

g voiced burst velar N

gcl n.a. clos. 0 N

hh unvoiced fric. glottal N

hv voiced fric. glottal N

ih voiced vow. N (mid-high,front,off,off)



“thesis” — 2008/6/4 — 16:49 — page 80 — #104

ix voiced vow. N (mid-high,front,off,off)

iy voiced vow. N (high,front,off,off)

jh —

k unvoiced burst velar N

kcl n.a. clos. 0 N

l voiced lateral alveol. N

m voiced nasal labial N

n voiced nasal alveol. N

ng voiced nasal velar N

nx voiced nasal alveol. N

ow —

oy —

p unvoiced burst labial N

pcl n.a. clos. 0 N

q unvoiced burst glottal N

r (õ) on approx. N (N,N,retro,off)

s unvoiced fric. alveol. N

sh unvoiced fric. post-alveol. N

t unvoiced burst alveol. N

tcl n.a. clos. 0 N

th unvoiced fric. dental N

uh voiced vow. N (mid-high,back,off,off)

uw voiced vow. N (high,back,off,round)

ux voiced vow. N (high,back,off,round)

v voiced fric. labio-dental N

w voiced approx. labial (N,N,off,off,round)

y voiced approx. N (high,N,N,off,off)

z voiced fric. alveol. N

zh voiced fric. post-alveol. N

Tab. 5.5: Feature decomposition of American English phones
according to the four feature dimensions (n.a.= no activation, off
= no retroflex or round, N = not relevant).
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It is obvious that the place-consonant features will only be relevant for

consonantal segments and not for vowels. Likewise vowel-features carry

only relevant information for vowel segments and not for consonants.

Liquids like /l/ and /r/ and glides or semi-vowels like /w/ and /j/ can

have relevant place-consonant as well as vowel features. Whenever a

feature is to be considered as not relevant it is given the value ’N’ in the

canonical feature decomposition.

A second remark on Table 5.5 is that I did not assign features to

phones like /aw/, /ax-h/, etc. because the PHFs of such phones are

supposed to be unstable.

I think this feature set better meets the third criterion of unambi-

guity of canonical feature values than the SPE feature set, because the

consensus among different authors [50; 17; 61; 70] on elements of this

feature set is larger.

5.4.2 Architecture of the feature extractor

In the literature one finds different architectures and different pattern

classifiers as building blocks of these architectures. The building blocks

can be HMMs, MLPs, SVMs, RNNs and DBNs. Especially DBNs seem

to have become popular over the past five years [70; 40; 120], but after

having read a number of papers on DBN-based PHF extraction, I came

to the conclusion that there is no proof yet of their superiority over

the more traditional systems. According to some authors [120], myself

included, the DBN may indeed offer an improved modeling capacity,

but this capacity cannot be exploited unless one makes use of simple

factorized observation functions which can be reliably estimated on the

amount of data one can hope to dispose of.

My aim was therefore to base my feature detector on either MLPs

or RNNs. To that end I have compared the performances of RNNs and

MLPs for the extraction of the SPE features. Since King et al. [61] have

published performances of a RNN on the TIMIT corpus, all I had to do

was to test a MLP on the same data.

The nonlinear feature mapper consists of a single MLP. For the defi-

nitions and technical aspects related to MLPs, I refer to section 2.4. The

task of the feature extractor is to give for each frame good estimates

of the canonical feature values. During the training of the network(s)

I presented successive pairs of acoustic features and the corresponding

canonical feature values. For the derivation of these canonical values

I used the manual phonetic labels distributed with the TIMIT corpus.

Whenever a feature is ’on’, I assign 1 to its target value and call this a

positive feature. If a feature is ’off’, I assign 0 and call this a negative
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feature.

The network is provided not only with the current speech frame, but

also with context frames at both sides of the current frame. The context

is always taken symmetric. I performed tests with different context sizes:

1, 3 and 5 frames at both sides. The number of inputs is equal to 39

times the total number of frames (3, 7 or 11). The number of hidden

nodes is chosen between 150 and 350 and the number of outputs is equal

to the number of SPE features i.e. 13.

I used the fully manually segmented and labeled TIMIT corpus for

training and testing of the network. Only the SI and SX sentences were

retained. The training data consisted of 3695 utterances and the test

data of 1344 utterances. I selected at random 100 utterances for valida-

tion, leaving 3596 utterances as effective training data. The number of

frames in the training set, the validation set and the test set was 1095041,

29151 and 410711 respectively. Discarding the frames for which there was

no unique characterization (affricates, diphthongs) further reduced these

numbers by about 14%. All networks had 1 hidden layer and were fully

interconnected. During training of the networks the performance on the

validation set is monitored and the training stops when this performance

reaches a plateau.

The results I obtained are represented in Table 5.6. Evaluation took

place on all frames of the test set.

#Cfrs 1 3 5 a priori P Perf.

#HNodes 150 250 150 250 250 350 (%) King et al.

#pars 8114 13514 15914 26250 39514 55314

CF val 0.273 0.279 0.267 0.253 0.258 0.246

Voc 85.4 83.8 84.9 87.0 86.1 87.8 70.9 88

Cons 86.0 85.5 87.8 88.6 89.0 89.6 52.0 90

H 85.1 84.2 85.4 87.0 86.3 87.8 79.1 86

B 85.1 84.7 85.5 86.8 86.6 87.8 76.7 88

L 91.5 90.7 91.4 92.5 92.0 93.1 86.1 93

A 86.5 86.4 87.8 88.8 88.8 89.8 66.5 90

Cor 87.0 86.9 87.6 88.5 88.4 89.1 74.1 90

R 93.3 93.0 93.2 93.6 93.1 93.8 92.2 94

T 88.1 87.0 88.2 89.5 88.9 90.3 78.6 91

Voic 91.7 91.7 92.2 92.5 92.6 92.9 60.1 93

Cont 90.9 90.7 91.8 92.4 92.6 93.0 62.3 93

N 97.1 97.0 97.3 97.5 97.4 97.6 93.7 97

S 96.0 95.9 96.4 96.6 96.6 96.8 85.5 97

Sil 95.6 95.4 96.8 97.0 97.4 97.6 86.1 98

Tab. 5.6: Frame accuracy (%) for the SPE-feature detection.
Different numbers of hidden nodes (HNodes), context frames (Cfrs)
and parameters (#pars) were tried out. The value of the cost
function measured on the validation set (CF val) is given too.
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The evaluation is performed by counting the percentage of frames

with the right output: > 0.5 if the feature is supposed to be 1 and ≤ 0.5

if it is supposed to be 0. Together with this I have also listed the prior

chance level (a priori P) in Table 5.6. This is defined as max(A, 100−A) if

A stands for the amount of frames (in %) for which the feature is positive.

Note that in the case of context 1 increasing the number of hidden nodes

does not help. For the longer contexts it does. The Table also shows that

my results agree very well with the accuracies obtained by King et al. on

the basis of a RNN. Therefore I conclude that the advantage of using a

RNN over a MLP is negligible. Note that the accuracies do not improve

that much anymore when the context is increased from 3 to 5. Only for

the silence feature, the error rate drops from 3.0% to 2.4% which is a

reduction by 20%. The Table shows that the frame accuracies are clearly

above prior chance level which means that the MLP is able to extract

information about the PHFs from the ACFs. Figure 5.4 represents the

outputs of the MLP for the first 6 SPE-features. The grey line represents

the target feature values that were used during training. The black line

is the calculated output of the neural network. From these experiments

I concluded to use MLPs instead of RNNs because they are easier to

train. Once this choice was made, I conceived a novel architecture for

the extraction of my features.

There is evidence [17; 121] that a hierarchical feature extractor can

outperform a flat extractor, because features higher in the hierarchy can

help to make distinctions between sounds at a lower level. I therefore have

conceived a three-layer architecture (see Figure 5.5) that first extracts

the phonation features, then the manner features and then the place-

consonant or vowel features.

Each block in the Figure represents a feed-forward neural network.

The four neural network detectors are fed with the ACFs of the incoming

speech and the outputs of the detectors higher in the hierarchy. The

vocal source is retrieved directly from the ACFs, the manner features get

the vocal source output as a supplementary input and the consonant and

vowel feature extraction can benefit from the manner features as well.

The vocal source network is provided with an input of three context

frames at each side. The goal of this detector is to give an indication

of the phonation or the absence of activity in the current speech frame.

If there is no activity, the frame is a non-speech frame. The manner

network is provided with a more extended context which is obtained by

extending it to the range (t − 5, t + 5) but by encoding the three upper

left and upper right frames by their mean (see Figure 5.6). This context

extension might be helpful for the discrimination between closure and

silence. Some properties of the networks are summarized in Table 5.7.
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Fig. 5.4: The detected SPE-feature values compared with the
canonic feature values (from top to bottom: Voc, Cons, H, B, L
en A) for a feed-forward neural network with 150 hidden nodes,
receiving a context of three frames. The fragment taken from
TIMIT was dr2/FJAS0/SX50 (catastrophic economic cutbacks

neglect the poor).
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Fig. 5.5: The multivalued phonological feature extractor.

The number of inputs to network F1 is 7×13 = 91. Similarly the num-

ber of inputs to network F2 equals 7×3+3 = 94, because of the additional

vocal source network outputs. The vocal-source and manner features are

all relevant for all sub-phonemic units. The place-consonant detector

and the vowel-feature detector only attach relevant features to conso-

nant frames and vowel-frames respectively. Both receive the extended

context. For the training I only consider the frames in sub-phonemic

segments of which I know for sure what the features are. This means

that diphthongs and affricates will not contribute frames to the training.

Each network has one output per feature value e.g. the manner network

will have eight outputs, and multiple features can be ’on’ at a particular

time.

During detection it is observed that the feature values can vary con-

tinuously between 0 and 1. Moreover, they also vary asynchronously

at segment boundaries. During training the non-relevant features are

netw #inputs #HNodes #outputs #pars

F1 91 100 3 9503

F2 94 250 8 25008

F3 101 250 7 27258

F4 101 250 9 27760

Tab. 5.7: Properties of the neural networks (#HNodes = number
of hidden nodes, #pars = number of weights) used to extract the
multivalued features.
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Fig. 5.6: Calculation of the extended context.

treated in a special way. By considering the output of the network as the

target for such a feature, there will be no gradient and no update of the

weights then.

5.5 Detection Results

In order to train and evaluate the hierarchical feature detector the TIMIT

database was used again.

ref calculated feature

feat. clos. vow. fric. burst nas. app. lat. sil

clos 80.1 2.8 3.1 3.7 2.8 0.2 0.2 7.0

vow. 0.5 94.3 1.0 0.9 1.0 1.2 1.0 0.1

fric. 2.7 4.1 85.9 4.3 1.0 0.1 0.2 1.6

burst. 6.0 10.3 6.8 72.4 1.0 0.7 0.7 1.9

nas. 3.1 10.2 2.1 1.2 80.1 0.43 0.8 2.0

app. 0.7 46.0 2.1 2.1 2.3 41.5 4.7 0.6

lat. 0.3 33.3 2.4 2.0 2.6 1.7 57.0 0.6

sil 3.4 0.6 1.9 2.4 0.7 0.1 0.1 90.7

Tab. 5.8: Frame-wise classification results for the manner-network
(confusion matrix) evaluated on 357256 frames.

Evaluation took place on the frames to which relevant features would have

been assigned during training. The evaluation of networks F1, F2 and F3

is given by means of confusion matrices. To that end I looked at the
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MLP output with the highest value, I considered this as the calculated

class and I compared it to the target class. The amount of reference

frames from class i that were classified as class j occur on the (i, j)’th

position in the confusion matrix. Rows sum up to 100%. The amount

(in %) of reference frames which are correctly classified should appear on

the diagonal of this matrix. Table 5.8 represents the confusion matrix

for the manner network.

ref calculated feature

feat. lab. ld. dent. alv. pa. vel. glot.

lab. 74.9 2.2 1.6 17.2 0.1 2.1 1.8

ld. 3.4 80.7 4.5 8.6 0.7 0.8 1.2

dent. 3.5 11.9 55.3 25.7 0.1 1.2 2.3

alv. 3.3 1.0 0.9 91.5 0.7 1.4 1.1

pa. 0.2 0.7 0.1 16.8 81.3 0.5 0.4

vel. 5.1 0.8 0.7 16.8 0.3 73.4 2.8

glot. 5.5 1.8 1.2 15.8 0.3 3.4 71.8

Tab. 5.9: Frame-wise classification results for the place-
consonant-network (confusion-matrix) evaluated on frames belong-
ing to consonant segments but no silences (135676 frames).

Five manner features (closure, vowel, fricative, nasal, silence) could

be detected with an accuracy of more than 80 %. However the accuracy

for burst was only 70%. The features approximant and lateral were found

to be even more difficult to detect. Their high confusion with the vowel

manner feature is due to their inherent semi-vowel character. One could

argue that approximants like /w/, /j/ or /r/ have a dual nature: they

are partly vowels and partly approximants.

The confusion matrix for the place-consonant-network is given in Ta-

ble 5.9. Again, I have labio-dental, alveolar and post-alveolar reaching

80% or more. Then there is labial, velar and glottal having a frame ac-

curacy rate of about 70-75%. Obviously the dental frames are highly

confusable with alveolar frames, leading to the rather poor accuracy of

ca. 55%. A closer look reveals that the English dentals are often con-

fused with the alveolar /t/ or /d/, which is understandable. The (small)

confusion matrix for the vocal source network is given in Table 5.10.

Classification of voiced, unvoiced and no-activation frames is clearly

something that can be done with an accuracy of more than 83%. Fig-

ure 5.7 represents the outputs of the manner network for a short fragment

from the TIMIT test data. Note that the phone /en/ did not receive tar-

get feature values because this phone was treated as a diphthong.
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Fig. 5.7: Output of the manner-network (From top to bottom:
closure, vowel, fricative, burst, nasal, approximant and lateral)
for a feed-forward neural network with 250 hidden nodes, receiv-
ing the extended context. The fragment taken from TIMIT was
dr2/MWEW0/SI1361 (but in this one section we welcomed

auditors).
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ref calculated feature

feat. on off n.a.

on 92.7 5.0 2.3

off 10.5 83.3 6.2

n.a. 4.9 3.1 92.0

Tab. 5.10: Frame-wise classification results for the vocal source
network (confusion-matrix, n.a. = no activation).

The frame-level accuracies obtained with this system were compara-

ble with the ones from the literature. In [61] the obtained classification

performance for manner of articulation (6 feature values) ranges from

68.6% (my system yields 41.5%) for ’approximant’ to 91.5% (my system

yields 94.3%) for ’vowel’. Measured over all classes the manner classifi-

cation performance was 87% (my system yielded 83.9%) and the place

of articulation (10 feature values) was 72% (my system yielded 83.2%).

The differences can be explained due to the different numbers of classes

involved.

5.6 Conclusion

In this chapter I proposed a hierarchical phonological feature detector.

The detector was designed so as to group together features that were si-

multaneously relevant and irrelevant. Although I based my choice of the

feature detector on examples from the literature, this idea of grouping rel-

evant features is a new one proposed by me. The detection performance

of my system was found to be comparable with the literature. Moreover,

it was shown that MLPs perform almost as well as RNNs for this task.

The obtained outputs of the system are easily interpretable as posterior

probabilities, something that can be used for further applications.
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6
Validation of the

Phonological Features

In this chapter I will try to validate the extracted PHFs by conceiving a

speech-to-orthography aligner and by showing that the outputs of that

aligner are at least as reliable as those obtained with a more traditional

aligner which uses triphone HMMs as acoustic models. By way of ex-

ploration, I have also demonstrated that the outputs of my aligner can

provide a parametric characterization of a speaker that is for instance

rich enough to distinguish native from non-native speakers.

6.1 Introduction

There is evidence that PHFs are a good representation for speech seg-

mentation. In [113] the correlations between the manual phone segment

boundaries and several distance metrics on the PHF vectors were mea-

sured. The cosine-based distance between consecutive pairs of PHF vec-

tors was compared with the manual segment boundaries. A clear rela-

tion between the locations of the maxima in the cosine-distance and the

boundaries in the manually segmentation was observed. The results sug-

gest that phonetic segment boundaries are associated with local speed

along the PHF trajectory.

PHFs should give us more information about the hidden process of

speech production than the standard acoustic features do. The study

in [60] about the correlation between human and automatic scores for

pronunciation proficiency revealed that the ACF likelihood scores were

actually only weakly correlated with the human scores. These confidence

measures are computed for every phone in the same way, without taking

into consideration the specific acoustic-phonetic features of each phone.

A study that already makes use of acoustic-phonetic features for the
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detection of pronunciation errors is described in [114].

6.2 Segmentation and labeling of speech

With the PHF extractor described in the previous chapter and the knowl-

edge of the orthography or the phonemic transcription of the utterance,

an acoustic-phonetic labeling and segmentation of the speech frames can

be performed. By performing a label-by-label analysis of the phonologi-

cal features it is then possible to score the pronunciations of non-native

speakers.

6.2.1 System architecture

In order to label and segment (align) the speech utterance, I must first

define what the target label set is. I propose to use the phones or sub-

phonemic units as the basic labels (see Appendix B). The two inputs to

a segmentation and labeling system are (1) a sequence of ACF vectors

and (2) a linguistic model of the utterance derived from the orthography

and phonetic knowledge.

Two options are considered for the linguistic input: LING1 is the

sequence of sub-phonemic units as it can be derived from the orthog-

raphy by means of a pronunciation lexicon and knowledge about (1)

coarticulations between words and (2) the sub-phonemic structure of the

phonemes. LING2 is the sequence of manually annotated phones. The

linguistic model is represented in Figure 6.1.

WORDS: December and January

LING1: d ih s eh m | b axr ae n d jh ae | n y uw eh r iy

bcl b axr - ae n dcl - jh ae

LING2: d iy s eh m | b er en jh ae | n y ux ah r ih

bcl b er en dcl jh ae

Fig. 6.1: The two linguistic models. LING1 uses the orthography
and a pronunciation lexicon to construct the phonemic transcrip-
tion. LING2 uses the manual phonetic transcription and converts
this to the phonemic labels.
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Assume that the lexicon that was used for LING1 contained the fol-

lowing two entries

December d ih s eh m b axr

January jh ae n y uw eh r iy

Then the example given in the Figure demonstrates the knowledge based

decomposition of plosives into the sub-phonemic closure and burst units

(see /b/ e.g.). Also the affricate /jh/ was preceded by a closure unit /dcl/.

The linguistic model LING1 automatically inserts silent pauses between

each two words whereas the LING2 model only copies annotated pauses.

- - -
	 	 	 	?

6

Fig. 6.2: Possible skip transitions implemented in the automaton,
illustrated for first state only.

Based on this linguistic input I construct a linguistic model with one

state per sub-phonemic unit. In this automaton (Figure 6.2) I also include

skip transitions in order to cope with possible deletions of sub-phonemic

units. In the case of LING2, it is a linear stochastic automaton. In the

case of LING1, there can be words having different pronunciations. All

these pronunciations are put in parallel in the stochastic automaton so

that each of them can contribute to the best path.

The over-all system architecture of the aligner I constructed is de-

picted in Figure 6.3. The output of the system is a sequence of (boundary,label)-

pairs: Each label (pk) has a corresponding starting time (tk). The block

"PHF detect" corresponds to the hierarchical PHF extractor described in

the previous chapter.

A Viterbi algorithm aligns the yt’s with the linguistic model, but in

such a way that the joint probability P (X, S) is maximized. To this end

a model is needed that fixes the relation between the xt, the yt and the

states st of the linguistic model. I have investigated two such models. In a
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Fig. 6.3: System architecture of the PHF-based automatic aligner

first variant a neural network converts the PHFs to posterior probabilities

P (st|yt). This is denoted by the upper "phone network" block in the

Figure. In a second the Viterbi decoder works directly on the PHFs via

a simple model for converting PHFs to posterior probs P (st|xt). This

simple model is represented by the lower block in Figure 6.3.

6.2.2 Modeling P (X, S)

If X = {x1, . . . ,xT } is the ACF sequence the aligner is receiving at its

input and if S = {s1, . . . , sT } is a legal path through the linguistic model,

then the Viterbi decoder searches for the state sequence S maximizing

the joint probability P (X, S). Relying on the Markov hypothesis, the

latter can be factorized as

P (X, S) =
∏

t

P (st,xt|st−1)

=
∏

t

P (xt|st)P (st|st−1)

=
∏

t

P (st|xt)P (xt)

P (st)
P (st|st−1)

=
∏

t

P (st|xt)P (st|st−1)

P (st)

∏

t

P (xt) (6.1)

Finally the prior observation probability in the right hand side is the

same for all states, hence it suffices to maximize.

Q(X, S) =
∏

t

P (st|xt)
P (st|st−1)

P (st)
(6.2)
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The probability P (st|st−1) represents a transition probability and can

be regarded as a parameter of the system. The probabilities P (st) and

P (st|xt) are the prior and posterior probabilities of being in state st at

time t respectively. The calculation of the latter in terms of the extracted

PHFs yt will depend on the system variant.

Variant 1 (phone network) In this variant it is assumed that P (st|xt) =

P (st|yt(xt)). Therefore the function to be maximized is then

Q(X, S) =
∏

t

P (st|yt(xt))
P (st|st−1)

P (st)
(6.3)

In this variant, a phone network (an MLP) is trained to estimate the

P (st|yt). The properties of this phone network are summarized in

Table 6.1. The desired P (st|yt) are then substituted by the phone

network outputs. A similar architecture was proposed in [18] for

#inputs 175

#HNodes 400

#outputs 61

#pars 94861

#Cfrs 3

#epochs 62

Tab. 6.1: Properties of the phone network (epochs = num-
ber of training epochs).

the automatic transcription of spontaneous American English.

Variant 2 (simple model) In the second approach, P (st|xt) is derived

by means of a predefined model that specifies how the yt have to

be invoked, given the phonological characterization of state st.

This predefined model relies on the PHF characterizations of the

states. Given the phonological description of state q, the feature set can

be divided into three subsets: Pq = the set of positive features that are

supposed to be on, Nq = the set of negative features that are supposed

to be off and Iq the set of features that are irrelevant for this state. The

i-th component of yt will be denoted as yti and the canonical features of

state q as fqi. Next, Nqp is the number of positive features, Nqn is the

number of negative features and Nqi the number of irrelevant features

for state q. Since state q is characterized by the sets of positive, negative
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and irrelevant features (Pq, Nq, Iq), I can write

P (q|x) = P (Pq , Nq, Iq|x)

= P (Iq |x) P (Nq|Iq,x) P (Pq|Nq, Iq,x) (6.4)

Assuming independent phonological features then leads to the following

expression for P (q|x)

P (q|x) = P (Pq|x) P (Nq|x) P (Iq|x)

= P (
⋃

fqi∈Pq

fqi|x) P (
⋃

fqi∈Nq

fqi|x) P (
⋃

fqi∈Iq

fqi|x)

=
∏

fqi∈Pq

P (fqi|x)
∏

fqi∈Nq

[1 − P (fqi|x)]
∏

fqi∈Iq

P (fqi|x) (6.5)

The last product in this expression is over all irrelevant features. Now

it happens that the irrelevant features are defined as features that do

not carry any information about state q. The definition of the mutual

information between the ACFs x and the irrelevant features Iq of state q

in terms of the difference between the entropy and the conditional entropy

is

I(Iq,x) = H(Iq) − H(Iq|x) (6.6)

I assume that this mutual information should be zero for irrelevant fea-

tures. This gives the condition

H(Iq|x)

H(Iq)
= 1 (6.7)

Now the definitions of H(Iq) and H(Iq|x) are given by

H(Iq) = −E[log P (Iq)] (6.8)

H(Iq|x) = −E[log P (Iq|x)] (6.9)

Assume that
P (Iq |x)

P (Iq)
= C(Iq ,x) (6.10)

then E[log C(Iq ,x)] must be zero in order to fulfill condition (6.7). From (6.2)

it follows that the cost function used during the Viterbi algorithm is

log Q(X, S) =
∑

t

log
P (st|xt)

P (st)
+

∑

t

log P (st|st−1) (6.11)

The contribution of the irrelevant features to the cost according to (6.5)
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will then be given by

T
∑

t=1

log
P (Ist

|xt)

P (Ist
)

≈ T E[log
P (Iq|x)

P (Iq)
] = 0 (6.12)

if I consider the summation as an approximation of the mean value.

Hence, I can discard this contribution and only consider the contributions

of the relevant (=positive and negative) features to the cost by omitting

the third factor in expression (6.5).

For sub-phonemic units or phones like diphthongs and affricates that

are actually representing a transition from one phone (with state qhead)

to another (with state qtail), I did not assign positive features during

training the PHF extractor. For states belonging to such phones I chose

to evaluate the expression P (q|xt) as,

P (q|xt) = max(P (qhead|xt), P (qtail|xt)) (6.13)

An alternative would have been to use two consecutive states qhead and

qtail for such phones and to assign the respective feature decompositions

to these states. All phones for which the (qhead, qtail) model is used, are

summarized in Table 6.2.

q qhead qtail q qhead qtail

aw aa uh en ax n

ax-h ax hh eng ax ng

axr ax r ey eh ih

ay aa ih jh d zh

ch t sh ow ax uh

el ax l oy ao ih

em ax m

Tab. 6.2: Decomposition of the composed phones.

For the calculation of the prior probability P (q) I must proceed in

the same way: remove xt from P (q|xt) to get,

P (q) =
∏

fqi∈Pq

P (fqi)
∏

fqi∈Nq

[1 − P (fqi)] (6.14)

with P (fqi) the prior probability of feature fqi over the entire corpus.

This was measured as the percentage of frames having feature fqi di-

vided by the total number of frames in the corpus. Finally the transition
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probabilities are defined as,

P (q + j|q) =











0.38 j = 0 or 1

0.2 j = 2

0.04 j = 3

(It is acceptable that the transition probabilities do not exactly add up

to 1)

6.3 Experiments

In this section I will evaluate the accuracy of the PHF-based segmenter

and labeler. In order to do so I will first have to define the evaluation

metric.

6.3.1 Evaluationmetric and experimental setup

The segmentation and labeling experiments were carried out on the

TIMIT core test set (see section 2.5.1). The set consists of 192 sen-

tences (24 speakers times 8 sentences). The lexicon (for building model

LING1) was the baseline TIMIT lexicon with one canonical pronuncia-

tion per word. The pronunciations are described in terms of 48 out of

the 58 TIMIT phone unit symbols. This means that, apart from the sub-

phonemic units like the six closure units, some allophones like /ax-h/,

/eng/, /hv/, /nx/ (flap n), /ux/ (fronted /uw/) and /dx/ (flap d) were

merged with other units. Also the glottal stop /q/ is ignored. For an

appropriate evaluation, all labels were mapped to one of the 48 symbols.

The same symbol set was also adopted in [66] for evaluating automatic

segmentation and labeling results.

During evaluation the automatic segmentation and labeling is aligned

with the manual one using the Dynamic Time Warping (DTW) proce-

dure described in [76]. Due to the applied cost function, "gross" errors

(defined as automatic segments having no overlap with their correspond-

ing manual segments) are very unlikely to emerge from this alignment.

Therefore, I distinguish three kinds of segmentation errors: deletions

("del", a manual segment boundary was omitted), insertions ("ins", an

automatic boundary was inserted between two manual boundaries) and

boundary deviations ("far", the placement of the automatic and the cor-

responding manual boundary differs by more than 20 ms). The same

boundary deviation error criterion is also used by others (e.g. [22]). The
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labeling errors ("sub") indicate the number of times that an automati-

cally labeled phone differs from the manual one to which it was assigned

by the DTW-process. The total error is the sum of the segmentation and

labeling errors. All errors are specified in percent, relative to the number

of phones occurring in the manual labelings.

6.3.2 Segmentation and labeling results

The error rates for the two system variants and the two types of linguistic

input are listed in Table 6.3. Apparently, the alignment is much more

system linguistic err del ins far sub

variant input (%) (%) (%) (%) (%)

simple LING1 39.6 10.3 8.3 5.8 15.1

model LING2 24.2 7.5 6.8 6.3 3.5

phone LING1 40.0 10.8 7.7 7.3 14.2

network LING2 22.2 7.1 4.9 6.9 3.3

Tab. 6.3: Evaluation of segmentation and labeling for two systems
and two types of linguistic input (core test set, 48 phonetic units)

reliable when a manual phonetic transcription is available (LING2). The

number of substitutions is much lower in this case because the manual

transcription already contains the right phone sequence. The extra phone

network does not significantly outperform the simple model (there is only

a small improvement when starting from a manual phonetic transcrip-

tion). The associated cost of using the phone network for this segmenta-

tion task clearly outweighs the benefits.

I first compared my alignment results with the ones formerly obtained

on the same data by Vorstermans et al. using an aligner based on stochas-

tic segment models [119]. These results are marked as V in Table 6.4.

The linguistic model was derived from LING1.

system err del ins far sub

(%) (%) (%) (%) (%)

V 38.5 6.4 3.8 12.1 16.2

B 56.6 2.7 11.3 28.7 13.9

Tab. 6.4: Evaluation of segmentation and labeling for two systems
described in the literature (core test set, 48 phonetic units)

Another system I compared with is that of Brugnara et al. [15] (system
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B in Table 6.4). The latter is a more traditional aligner based on HMMs.

A comparison with the more recent work of Aversano et al. [8] is not

that straightforward since it considers phoneme segmentation only. In

order to make an attempt I introduce two new performance measures.

Let St be the total number of "true" segmentation points in the test

data and Sd the total number of segmentation points detected by my

algorithm, then D = Sd − St is a useful measure of over-segmentation.

In the ideal situation Sd should be equal to St. An alternative measure

of over-segmentation is D′ = 100 (Sd/St − 1). A second quality measure

is

Pc =
#correctly detected segmentation points

#"true" segmentation points
(6.15)

In this work a phoneme boundary is defined as "correctly detected" if its

distance from the true segmentation point is within 20 ms. When D is

forced to be 0 (achieved by tuning the control parameters of the aligner),

then the system of [8] yields a Pc of 73.58%. This result should be

compared with the sum of "far" errors and deletions made by my system,

but in the situation in which the number of deletions and insertions are

equal to each other. From Table 6.3 it can be seen that there are about

2% more deletions than insertions which means that my D is equal to

minus 2%. From the results in [8] it appears that for a certain degree

of undersegmentation, Pc is even lower than 73.58%, whereas my Pc is

about 83%.

For comparison I have also constructed a state-of-the-art HMM aligner

with the context-dependent triphone models provided by ESAT. Such a

system performs a segmentation into phonemes and therefore the evalu-

ation has to be performed at the phoneme level as well (42 phonemes).

In order to derive phoneme segments from my system (which uses sub-

phonemic units), I concatenate the sub-phonemic units who constitute a

single phoneme (e.g. closure + burst = plosive). The TIMIT phone ref-

erences were processed in the same way. Table 6.5 shows that my system

provides state-of-the-art segmentation and labeling performances, and

system linguistic err del ins far sub

variant input (%) (%) (%) (%) (%)

simple LING1 42.1 11.9 9.2 7.3 13.7

model LING2 28.1 8.6 7.9 8.0 3.6

HMM LING1 48.2 8.8 12.3 12.7 14.4

system LING2 32.9 8.0 8.8 12.8 3.3

Tab. 6.5: Comparison of my aligners with an HMM-based system
(core test set, 42 phonemes).
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thus that it constitutes a good starting position for the assessment of

articulation/pronunciation proficiency scores. The reason why my sys-

tem yields better segmentation and labeling than the HMM system is

probably due to the fact that the PHF extractor was trained with the

manually segmented TIMIT data, whereas the ESAT system was trained

in an embedded mode on other corpora. Since I artificially concatenated

sub-phonemic units into phonemes, the phoneme boundaries may be ar-

gued as well. Especially for plosives it is arguable whether the plosive

starts at the onset of the closure interval, since this interval does not con-

tain any signal. The HMM aligner will probably segment plosives more

according to the burst.

6.4 Scoring the pronunciation of non-native

speakers

An alternative way of validating the outputs of an aligner is by investi-

gating whether these outputs can be used as a basis for the construction

of an interesting characterization of the speech of a particular speaker.

Such a characterization is for instance important for the intelligibility as-

sessment of pathological speakers and for the pronunciation proficiency

assessment of non-native speakers learning the target language as a sec-

ond language.

In this section I describe an exploratory experiment I conducted in

order to investigate how well a certain set of speaker features derived

from my aligner (ELIS) and from the HMM aligner (ESAT) can predict

whether a certain speaker is a native or a non-native speaker of the

language. If the two aligners would offer segmentations of a comparable

quality, the native/non-native classification on the basis of the speaker

features derived thereof should be comparable as well.

6.4.1 Definition of speaker features

Since the aligner is supposed to know what the speaker has said, the dif-

ferences between native and non-native speakers have to originate mainly

from differences in their so-called pronunciation proficiency. Therefore,

the speaker features I am going to define are in a way aimed to tell

something about the goodness of pronunciation of certain sounds. Con-

sequently, these features are called GOP-features.

Once the segmentation and labeling is performed, each frame xt of

the utterance is associated to an acoustic model state st, and through
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this state, to a phone (ELIS system) or a phoneme (ESAT system) p.

Furthermore, each state st has an associated set of canonical phonological

features fi(st) which can be 1 or 0. It is thus possible to define at least

three candidate GOP feature sets:

1. Phoneme proficiencies

The phoneme proficiency GOP(p) of phone/phoneme p is calculated

as the mean of log P (st|xt) over all frames that were assigned to a

state that belongs to an acoustic model of p.

GOP(p) = Et,st∈p[log P (st|xt)] (6.16)

The computation of P (st|xt) does of course depend on the aligner

that was used. For my aligner, this information can be found in

Section 6.2.2, for the ESAT aligner, the posterior probabilities are

derived from the likelihoods p(xt|st):

P (st|xt) ∼
p(xt|st)P (st)

∑

q p(xt|q)P (q)
(6.17)

with the sum taken over all possible acoustic model states q.

2. Feature proficiencies

The phonological feature proficiency GOP(i) of feature i is calcu-

lated as the mean of log P (fi|xt) over all states:

GOP(i) = Et[log P (fi|xt)] (6.18)

with

P (fi|xt) =

{

yti if fi(st) = 1

1 − yti if fi(st) = 0

These features can only be computed in the context of my own

aligner.

3. Phonological class proficiencies

Instead of taking an average over the states belonging to a model

of some phone/phoneme p, one can also take an average over the

states which have an associated feature fc(st) = 1 (c=1,..,25).

GOP(c) = Et,st|fc(st)=1[log P (st|xt)] (6.19)

The selected states implicitly define a phonological class of phones/-

phonemes, and that is why the features derived in this way are

called phonological class proficiencies.
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In the next section I describe how exactly these features were applied for

the native/non-native classification of speakers.

6.4.2 Native/non-native classification

The native/non-native classification of a speaker is based on an analysis

of all the utterances that are available of that speaker. The classifier

is actually a regression model, and this model is given access to one of

the feature sets defined in the previous section. Since my experiment

considers only 50 speakers, namely 40 native speakers from diverse test

and development sets of the WSJ corpus and 10 non-native speakers from

the Spoke-3 evaluation set of that same corpus, the regression model had

to be a very simple model with not much more than 5 degrees of freedom.

I therefore opted for linear regression models in combination with feature

subset selection. The latter means that the linear model only takes a few

of the available input features into account. If N features are selected,

the model can be expressed in terms of N + 1 free parameters (the N

features and a bias term).

In the meantime, it has been demonstrated [81] that such simple mod-

els can accurately predict the intelligibility of dysarthric speakers, but I

did not know this at the time I conducted my validation experiments.

6.4.3 Experiments

I have evaluated five feature sets. Three feature sets GOP(p), GOP(i)

and GOP(c) were derived from the alignments made by my own aligner,

and two feature sets GOPE(p) and GOPE(c) were derived from the align-

ments made by the ESAT aligner. The speakers are divided into a native

subset Snat and non-native subset Snon. The non-native speakers are

grouped according to their L1 (mother tongue) classes in Table 6.6.

The quality of a regression model is expressed in terms of two quality

measures:

1. The Root Means Square Error (RMSE) between the regression

model outputs (yk) and the target outputs (1 = non-native, 0 =

native).

2. The relative classifier margin (RCM) defined as the margin between

(1) the minimum yk that was produced for any of the non-native

speakers and (2) the maximum yk that was produced for any of the

native speakers, but divided by the standard deviation of the yk

values found for all the speakers.
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group speaker L1 native country

4nd Spanish Argentina

S 4nh Spanish Israel

4nm Spanish Nicaragua

F 4ne French France

4nf French France

D 4ni Danish Denmark

4nl German Germany

4nj Hebrew Israel

4nk Japanese Japan

4nn British English Britain

Tab. 6.6: Non-native speakers and their mother tongue (L1) from
the S3 subset of the WSJ corpus.

The classification is perfect as soon as the RCM is positive. However, the

larger the RCM is the more chance there is that unseen speakers would

also be classified in the right class.

Table 6.7 shows the RMSE and the RCM for five models (supplied

with different feature sets) as a function of their complexity (1 to 5 se-

lected features). The best performing features according to the RMSE

criterion were selected. The target outputs and the calculated outputs

emerging from the three of the five models that each selected four input

features are depicted in Figure 6.4. The main results of the experiment

can be summarized as follows:

1. The phoneme features derived from the two aligners both permit

to achieve a perfect classification with a very comparable margin.

2. The phonological features are not as powerful as the other features

for making a native/non-native classification.

3. The phonological class features derived from the two aligners both

permit to achieve a perfect classification with a very comparable

margin, and this margin is even larger than that observed for the

phoneme features.

The first conclusion is that the experiment seems to indicate that the

alignments produced by the two aligners are of a very comparable quality.

This is a nice result in the sense that my aligner is a much simpler system

than the ESAT aligner: it just uses 48 phone models whereas the ESAT

system uses a set of a few thousand triphone models.
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selected RMSE

features GOP(i) GOP(p) GOPE(p) GOP(c) GOPE(c)

1 0.296 0.116 0.080 0.116 0.080

2 0.267 0.094 0.051 0.082 0.048

3 0.239 0.078 0.038 0.071 0.035

4 0.216 0.063 0.033 0.055 0.029

5 0.204 0.053 0.026 0.048 0.027

selected RCM

features GOP(i) GOP(p) GOPE(p) GOP(c) GOPE(c)

1 -2.197 1.624 1.616 1.624 1.616

2 -0.941 1.816 1.888 1.799 1.955

3 -0.519 1.743 2.141 1.929 2.135

4 -0.202 2.045 2.114 2.121 2.245

5 0.394 1.971 2.183 2.133 2.229

Tab. 6.7: RMSE and RCM for different models (characterized by
a different feature set) and model complexities (characterized by
the number of selected features).

The second conclusion is that the phonological features are not very

powerful for native/non-native discrimination. This is in line with my

expectation that non-natives are bound to have more problems with get-

ting all the features of one particular phoneme right than with getting

one phonological feature right in all the phonemes. I do expect however

(and in the meantime this is confirmed by evidence [81]) that the prob-

lems of pathological speakers on the other hand are more related to the

phonological dimensions, and that the phonological features play their

part in the assessment of such speakers.

6.5 Conclusions

I proposed a novel segmentation and labeling system that makes use of

PHFs. This system was tested with two kinds of linguistic inputs: (1) a

phonemic transcription derived from the orthography and a pronuncia-

tion lexicon an (2) a phonemic transcription derived from the sequence

of manually annotated phonemes.

The system was implemented in two variants: (1) one that makes use

of a phone MLP to convert the phonological features to phone posterior
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probabilities and (2) one that uses a simple knowledge based model to

make that conversion. I found that adding the extra phone network did

not improve the segmentation and labeling results very much, and thus,

that the simple model is sufficient for the segmentation and labeling task.

I then compared my results with an HMM-based segmentation and

labeling system and with some systems from the literature and found

that my system performs equally well or better than these other sys-

tems. In order to make a fair comparison between my system and the

HMM-based system, I also investigated the capacity of the two systems

to create a segmental context from which one can derive interesting fea-

tures for describing the pronunciation proficiency of a speaker. I found

that both segmental contexts were equally suitable for providing features

that permit a good native/non-native classification of a speaker.

All-together, the results provided thus far demonstrate that a state-

of-the-art segmentation and labeling performance can be obtained by

means of a system using PHFs as an intermediate representation of the

speech sounds. The great advantage of my system resides in its simplicity

compared to a HMM-based alignment system.
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Fig. 6.4: Target (0 = native, 1 = non-native) values and calcu-
lated outputs of the models GOP(i), GOP(p) and GOPE(p) for all
the 50 speakers
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7
ASR with PHFs

Now that the PHF-detector has been validated, it is time to explore

its potential in the context of ASR. Some authors [62] have argued

that phonological or articulatory features can be beneficial for automatic

speech recognition e.g. because they provide a more convenient interface

to the higher-level components of the ASR-system. Former research has

not yet demonstrated that a purely PHF-based system can outperform

a traditional system working with MFCCs as acoustic features (ACFs).

However, there is proof already that a combination of the two feature

types can lead to improved ASR. In this chapter I will propose a novel

method for performing ASR on the basis of PHFs. I will first propose to

take account of (1) the correlations between the PHFs and (2) the fact

that not all PHFs are relevant for the description of a certain phonetic

unit. Then I will investigate to what extent an ACF and a PHF driven

ASR-system make different errors. Based on my findings, I will test two

methods for combining PHFs and ACFs in one recognizer. One of these

combination methods will be applied to a spoken name recognition task

which involves a lot of words of a foreign origin.

7.1 Overview of the literature

The use of phonological features (PHFs) for ASR has been studied for

more than a decade now. The main reasons for using such features are:

• They constitute an intermediate level between the raw acoustic

observations (e.g. MFCCs) and the phonemes. Perhaps they rep-

resent the highest information level that can still be extracted re-

liably from the speech signal. The same feature values typically
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occur in more than one phone and more than one language. The

available training material can thus be shared across phones and

languages and may form a solid basis for multilingual and cross-

lingual ASR. When using ACFs, all observations originate from

the same phone and there is no easy method for extrapolating to

non-native phones or foreign phones. When using PHFs, however,

different phones contribute to the observations of one PHF, which

possibly leads to more robustness. Moreover, PHFs offer means of

flexible extrapolation to non-native phones or foreign phones.

• PHFs offer a sound basis for the lexical representation of words

in a lexicon, and for the description of likely pronunciation vari-

ations [65]. Pronunciation variation can be described in terms of

feature overlap or feature assimilation rather than in terms of phone

substitutions, deletions or insertions.

• PHFs carry information with respect to highly context-dependent

aspects of speech sounds. They therefore constitute an interest-

ing framework for describing coarticulation phenomena in speech.

In fact this aspect is already implemented in standard recognizers

because the questions that control the state-tying during acoustic

model training are phonologically inspired.

Obviously, the need for separate stochastic models to extract the PHFs

adds complexity to the over-all recognition system, and the question is

of course whether this additional effort is justified. Most of the work

on PHF-based ASR has focused on phoneme recognition [35; 21; 27] or

on small vocabulary word recognition [33]. Nevertheless, some important

research on large vocabulary continuous speech recognition (LVCSR) has

been conducted [108; 80; 79; 62] and has shown that combining PHFs and

ACFs can improve the ASR performance. In Metze et al. [80] adding 6

to 10 well chosen PHFs to supplement the standard ACF stream resulted

in a 15% relative reduction of the WER for a read BN task, and a 7.5%

reduction on a spontaneous scheduling task. In her PhD, Kirchhoff [62]

investigated several state-level and word-level combination techniques.

For the state-level combination technique she found a 5.6% relative re-

duction (form 29.03% to 27.41%) of the WER when tested on the German

Verbmobil corpus. For the word-level combination experiments the best

combined system reached a WER of 27.97%. The purely PHF-driven

system was always found to perform worse than the acoustic baseline.

In [110] a system for the integration of linguistic features in an iso-

lated word recognizer is proposed. The linguistic features are actually the

PHF dimensions ’place’ and ’manner’ of articulation. The nine manner
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values that were used were: schwa, vowel, diphthong, semi-vowel, plo-

sive, closure, fricative, affricate and nasal. The eight place values were:

alveolar, dental, open, labial, lateral, palatal, retroflex and velar. Each

phone can be considered as a bundle of these two feature dimensions and

acoustic models can be trained according to the two dimensions. For

the IWR-tests the segment-based SUMMIT-system was used. This sys-

tem considers two types of landmarks: the transitional landmarks which

match transitions between segments and the segment-internal landmarks

denoting events within a segment. For the integration of the features,

three strategies were proposed. (1) Early integration: during the search

each hypothesized landmark is scored along both the manner and place

dimensions. (2) Intermediate integration: segment-internal landmarks

are scored along the manner dimension while segment-transition land-

marks are modeled along the place dimension. (3) Late integration: Two

recognizers are built, one along the manner and one along the place di-

mension. The N-best lists for the two recognizers were then combined by

fusing the hypotheses. Experiments on a small vocabulary (Phonebook)

showed that the third way of integration yielded the best results.

In a second IWR experiment the same team proposes a two-stage

system. In the first stage a recognition is done with PHF based acoustic

models. The result of this recognition is stored under the form of a N-

Best list or cohort. In the second stage a detailed phoneme based system

searches for the best hypothesis. The feature based models are thus

used to limit the size of the search space. This two-stage system gave

a 10% relative improvement on Phonebook (large vocabulary) compared

to the best result reported in the literature. The logical extension of this

method to CSR is described in [111].

In [68] fusing ACF and PHF information was obtained by means of a

two-stream model and applied to phoneme recognition on TIMIT. Syn-

chronous and asynchronous fusion was considered. State asynchrony was

only allowed within a phoneme. Figure 7.1 represents the allowed transi-

tions in the two-stream HMM model with 3×3 states. The ACF and the

PHF model both start in their initial state and end with the same final

state. The combined models outperformed the two single feature mod-

els. Asynchronous combination gave a relative error reduction of 9.3%

while synchronous combination only gave a small reduction compared to

the PHF model baseline. However, when fusion was performed during

recognition and training, the less time consuming synchronous combi-

nation, performed almost as good as the more complex asynchronous

combination.

From this literature overview I conclude that it is definitely worth

investigating PHFs as a feature representation for ASR. Since a lot of
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Fig. 7.1: Topology used in [68] for asynchronous combination of
PHF model and ACF model.

authors tried to combine ACFs and PHFs in some way, this is something

I will try out as well. Since I believe that not all possibilities of a syn-

chronous combination have tried out yet, I will restrict to this and I will

not consider asynchronous ways of combination (like in [68]). Instead I

will discuss two other important problems which I consider responsible

for the not so good performances of ASR systems based on PHFs alone.

7.2 Specific problems

I argue that part of the reason for the bad performance of purely PHF

driven ASR resides in the suboptimal use of the PHFs in the standard

HMM framework, a framework that is mainly optimized for MFCCs as

the input features. I will first investigate methods of adapting this frame-

work to the case of PHFs and to increase the accuracy of a purely PHF-

based ASR-system. With this higher performance, it then makes more

sense to reconsider the PHF system in combination with an ACF-based

system. In the following sections I discuss two important differences be-

tween the MFCCs and PHFs that must be taken into account by the

HMM framework.
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7.2.1 Feature Correlations

One of the interesting properties of MFCCs is that their components are

largely uncorrelated. This means that state-level emission distributions

can successfully be modeled by a small number of Gaussian mixtures with

diagonal covariance matrices. The binary PHFs on the other hand are

expected to exhibit much larger correlations. The place of articulation

of a consonant for instance is represented by 7 binary features, so it

is clear that there will be correlations between those features. Due to

these correlations the required emission distributions may no longer be

represented efficiently by diagonal covariance GMMs. Of course, a GMM

is able to model some degree of correlation between the features. But

it should in the first place model the non-gaussian nature of the feature

distribution and not so much the correlations. One approach would be to

replace them by full covariance GMMs, but this would severely increase

the number of model parameters per added Gaussian. I argue that it

may be more efficient to adopt one of the following techniques:

• Feature selection with the aim to remove features carrying informa-

tion already covered by other features. Mostly an information the-

oretic selection criterion is applied to control this process [62; 33].

• Global decorrelation such as PCA to transform the feature space in

its whole to a lower-dimensional space of decorrelated features [29].

• State-dependent decorrelation that relies on state-dependent fea-

ture transformation matrices, like semi-tied covariance matrices [43].

The amount of correlation between two PHFs depends strongly on the

state of the recognizer. For a particular consonant for example, the cor-

relations between two or three place features will be important to model

whereas they are maybe irrelevant for another phoneme. Therefore a

global decorrelation or a global feature selection would not be meaning-

ful. I will therefore explore the third technique.

Obviously, transforming the features in a given state and modeling

the transformed features with diagonal covariance GMMs is equivalent to

modeling the non-transformed features with full covariance GMMs. But

if there exists an underlying model to obtain these transformations the

total number of free parameters to be estimated is bound to be smaller

and the use of the transformations is bound to be beneficial. Now it

happens that Gales [43] has developed a ML training methodology to

simultaneously train feature transformation matrices (MLLT-matrices)

and HMM model parameters. I will adopt Gales’ method and extend it
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in a way that it can also deal with another problem that is typical for

PHFs and that is discussed in the next subsection.

7.2.2 Feature relevancy

From the description of the PHFs and their training (see also chapter 5)

it became clear that not all features are relevant for all phones. Conse-

quently, the emission distributions on a particular state should only be

modeled in the subspace of the relevant features for that state. However,

since working with different subspaces on different states causes problems

of equivalence of likelihoods, the observation likelihoods may need to be

factorized as the product of a relevant observation likelihood and an ir-

relevant observation likelihood. The latter can then be computed on the

basis of global models and integrated in the system by adopting princi-

ples of missing data theory [57], more in particular likelihood imputation.

In section 7.4 I will show that this likelihood imputation together with

the state-dependent feature transformation concept can be embedded in

a consistent probabilistic framework.

7.3 State-dependent feature transforma-

tions

An intermediate solution to the correlation problem of the PHFs would

be to work with a limited number of full covariance matrices and to share

them across states of which I think the correlations should be more or

less the same. Typically these states will belong to models with the same

central phoneme. Now it happens that first transforming the feature vec-

tor minus the mean vector (xt − µ) by means of a linear transformation

(represented by a square, non-singular matrix A) and modeling the trans-

formed feature vector with a diagonal covariance Gaussian is equivalent

to modeling the feature vector with a full covariance Gaussian with a co-

variance matrix A−1ΣAt,−1 (Σ is the diagonal original covariance matrix

of the Gaussian in the untransformed space). A set of full covariance

matrices can thus be obtained by defining a number of transformation

matrices that are shared by different states. The question that remains

is how these additional matrices should be trained and how the training

of the matrices affects the standard training of the means and variances

of the Gaussians. Fortunately Gales [43] has developed an elegant train-

ing method using the ML-criterion for estimation of all free parameters

of the system. Since the mathematical derivation is given in [43], I will



“thesis” — 2008/6/4 — 16:49 — page 115 — #139

7.3 State-dependent feature transformations 115

restrict to the main principles of this method and I will just provide the

necessary intermediate results that are needed to understand how the

final result was obtained.

7.3.1 ML-estimation of transformation matri-

ces

Equation (2.6) describes the probability density function (PDF) bj(x)

as a mixture of M multivariate Gaussian PDFs Njk(x, µjk,Σjk) with a

diagonal covariance matrix Σjk = diag(σ2
jk1, . . . , σ

2
jkD). Let us consider

a full covariance matrix for bjk(x) = Njk(x) instead of a diagonal one,

but let this full covariance matrix be of a special nature i.e.

Σ
′

jk = A−1Σjk(At)−1 (7.1)

with A being a full square matrix of dimension D and

Σjk = diag(σ2
jk1, . . . , σ

2
jkD) the diagonal covariance matrix. This means

that the determinant in the denominator of expression (2.7) must be

replaced by

|Σ
′

jk| =
|Σjk|

|A||At|
(7.2)

=
|Σjk|

|A|2
(7.3)

If S is the set of acoustic states, S can be divided into mutually ex-

clusive subsets Sp (p = 1, . . . , P ), such that

S =

P
⋃

p=1

Sp (7.4)

and if a matrix Ap is assigned to Sp, then the emission function bj(x) of

a state j ∈ Sp is composed of mixtures of the form

bjk(x) = N (x, µjk , Σ
′

jk) (7.5)

=
|Ap|

(2π)D/2|Σjk|1/2
exp[−

1

2
(x − µjk)tAt

pΣ
−1
jk Ap(x − µjk)] (7.6)

=
|Ap|

(2π)D/2|Σjk|1/2
exp[−

1

2
[Ap(x − µjk)]tΣ−1

jk Ap(x − µjk)](7.7)

and which can best be evaluated in the Ap(x−µjk)-space. The first ques-

tion to answer is how to subdivide the acoustic model state set. A logical



“thesis” — 2008/6/4 — 16:49 — page 116 — #140

116 7 ASR with PHFs

response seems to be to make this division according to the identity of

the phoneme that is modeled by this state (in certain contexts).

The second question is how to find re-estimation formulae that allow

me to optimize the transformation matrices together with the traditional

GMM parameters.

In order to find such re-estimation formulae I need to explain some

basic concepts about the standard EM-algorithm that is used for pa-

rameter estimation. This algorithm uses an auxiliary function Q(λ, λ)

that depends on the model parameters (λ) and the old parameters (λ).

There are two important properties of this Q-function that I need at the

moment.

1. The EM-algorithm will search for the λ that maximizes Q(λ, λ).

Whenever the Q-function raises, the log-likelihood will raise as well.

2. The Q-function can be written as a sum of terms with each term

only depending on one parameter group. The parameter groups

are: the transition probabilities aij (term Qai
), the Gaussian pa-

rameters (µjk, Σjk) (term Qbj
) and the mixture weights cjk (term

Qcj
). There is also a term that is function of the initial values π,

but this is not important for the discussion here.

Since the mixture PDF bjk now has an extra dependency on Ap, the

term Qbj
will also depend on the matrix Ap. It can be shown that the

expression for the Q-function now boils down to

Q(λ, λ) = Qπ(λ, π) +
∑

i

Qai
(λ, aij) +

P
∑

p=1

∑

j,k∈Sp

Qbj
(λ, Ap, µjk, Σjk) +

∑

j

Qcj
(λ, cjk) (7.8)

Here I explicitly wrote the dependency of bjk on Ap, but I will from now

on stick to the notation Q(λ, bjk). Now

Qbj
(λ, bjk) =

T
∑

t=1

ζt(j, k) log bjk(xt) (7.9)

The introduced ζt(j, k) is actually the probability that xt was emitted on

state j by mixture component k given the previous estimates of the model

parameters λ (including Ap) and given the observed vector sequence X.

The re-estimation formulae for each parameter group are easily found

by taking the derivatives of the associated term of the Q-function and
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by setting this to zero. So in order to find the re-estimation formulae for

Ap, I will have to calculate the derivative of the third term in (7.8) with

respect to Ap. From (7.7) it can be seen that this derivative will be a

linear combination of the derivatives of bjk with respect to Ap. One such

a derivative can be written as,

dbjk(xt)

dAp

= N (xt, µjk,Σ
′

jk)[A
−1

p − (xt − µjk)(xt − µjk)tA
t

pΣ
−1

jk ] (7.10)

This result makes use of the following two mathematical rules for ma-

trix differentiation, (X and C represent a D × D-matrix and a is a D

dimensional column vector).

d|X |

dX
= |X |X−1 (7.11)

d(atXtCXa)

dX
= 2aatXtC (7.12)

It is a simple exercise to verify result (7.10) by substituting X by Ap, C

by Σ−1
jk and a by (x − µjk).

The next step is to set the derivative to zero and to solve the equa-

tion for Ap. Unfortunately, there is no elegant way to solve this matrix

equation, meaning that no simple re-estimation formula can be found.

The way that was proposed by Gales to circumvent this problem is

to consider the rows of matrix Ap and to try to find some re-estimation

formula for the m-th row, am (I will leave the index p of the matrix from

now on). It is possible to rewrite expression (7.7) in function of am by

introducing another row-vector (of dimension D): pm, defined as the row

vector containing the cofactors associated with the elements of am. The

inner product pmat
m is nothing else than the determinant of Ap. Since

Σjk is diagonal, I can rewrite bjk as

bjk(xt) =
pmat

m

(2π)D/2|Σjk|1/2
exp[−

1

2

D
∑

m=1

1

(σ2
jkm)

(xt−µjk)tat
mam(xt−µjk)]

(7.13)

Now the derivative of this expression to am can be written as,

dbjk(xt)

dam
= N (xt, µjk, Σ

′

jk)[
pm

pmat
p

−
1

(σ2
jkm)

am(xt − µjk)(xt − µjk)t]

(7.14)

This result is due to the following differentiation rules, with a, bt and x
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being D dimensional row vectors.

d(axt)

dx
= a (7.15)

d(btxtxb)

dx
= 2x(bbt) (7.16)

It is again an easy exercise to obtain expression (7.14) by replacing a

with pm and b with (xt − µjk). Another way to obtain this result is to

consider the m-th column in expression (7.10). The inverse matrix A
−1

can be written as a so-called adjunct matrix divided by the determinant.

It happens that the m-th column of the adjunct matrix is exactly pm.

Putting everything together, I have to solve the following equation to

find a re-estimation formula for am,

β
pm

pmat
m

− amG(m) = 0 (7.17)

After combination of (7.14),(7.9) and the third term of (7.8) I get for β

and G(m),

β =
∑

j,k∈Sp

T
∑

t=1

ζt(j, k) (7.18)

G(m) =
∑

j,k∈Sp

1

(σ2
jkm)

T
∑

t=1

ζt(j, k)(xt − µjk)(xt − µjk)t (7.19)

At this point it is important to remark that the re-estimated am emerging

from equation (7.17) makes use of the still unknown re-estimated values

for µjk and Σjk. That is why the algorithm that will solve (7.17) for

am will assume G(m) to be known or fixed for each step in the iterative

solution for all parameters (see 7.3.2).

The problem has now been reduced to solving (7.17). Gales proved

that each equation of the form,

β
pi

piw
t
i

= wiG
(i) − k(i) (7.20)

has a solution for wi that can be written as,

wi = (αpi + k(i))(Gi)−1 ∀i ∈ [1, D] (7.21)

α is hereby a solution of the quadratic equation,

α2pi(G
i)−1pt

i + αpi(G
i)−1k(i)t − β = 0 (7.22)



“thesis” — 2008/6/4 — 16:49 — page 119 — #143

7.3 State-dependent feature transformations 119

Equation (7.17) is a special case of (7.20) with k(i) = 0 and α can

easily be found from (7.22) (with k(i) = 0). The rows am can thus be

updated using,

am =

√

β

pm(Gm)−1pt
m

pm(Gm)−1 ∀m ∈ [1, D] (7.23)

After am has been re-estimated on the basis of the current pm, the co-

factor row pm+1 will be needed in order to re-estimate ap,m+1. It is

necessary to recalculate this pm+1 on the basis of the new estimated am.

Hence, for every row update pm must be recalculated. Several iterations

can be performed until the obtained solutions for all rows am are stable.

This iterative solution will be called the row-by-row re-estimation of the

matrices Ap and it requires the calculation of D inverse matrices (Gm)−1.

The matrices Ap that are obtained in this way are called MLLT-

matrices (Maximum Likelihood Linear Transformation matrices). Re-

cently more elaborated algorithms have been proposed to train the ma-

trices in a discriminative way (Discriminative Likelihood Linear Trans-

formation matrices or DLLT-matrices [115]).

7.3.2 Training algorithm

Suppose that I have clustered my states and I want to perform a single

re-estimation of the model parameters together with the MLLT-matrices.

Then I initialize all MLLT-matrices to the unit matrix. The entire al-

gorithm (that will be called MLLT-algorithm) to estimate all model pa-

rameters, can then be summarized as follows:

1. Estimate the mean of all Gaussians using the standard re-estimation

formula Equation (2.9).

2. Use the current estimates of the MLLT-matrices Ap ∀p ∈ {1, . . . , P}

to estimate the component specific diagonal variances using (see [43]

for proof),

Σjk = diag(ApWjkAt
p) ∀(j, k) ∈ Sp (7.24)

with Wjk being defined as the right-hand side of equation (2.10).

3. Estimate the MLLT-matrices Ap using the current set of component

specific diagonal variances. This is the row by row scheme explained

in 7.3.1.

4. Got to (2) until convergence, or until some appropriate criterion is

satisfied
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In order to further reduce the number of parameters that must be esti-

mated, the MLLT-matrices can be given a block-diagonal structure. In

the case of MFCCs for instance the static parameters can be grouped in

one block, the delta’s in another and the delta-delta’s in a third block.

Until now I have assumed that the number of mixture components

M was fixed. Mostly training will start with M = 1 and end with the

desired number of mixtures. Theoretically there are two ways to train the

MLLT-matrices associated with a state with a certain mixture number.

1. First mix up to the desired mixture number without MLLT-matrices

and then start the training of the matrices by means of the MLLT-

algorithm applied to the current models.

2. For each intermediate mixture number, associated MLLT-matrices

can be estimated and then transferred to the higher mixture num-

ber as initial values for further estimation.

The former method has the advantage of a limited training overhead

because the MLLT estimation must only be done in the final mixture

stage. The latter method requires more computations but it may lead

to a better solution. The method that performs best depends on the

experimental conditions. I chose to adopt the first method because it is

computationally less expensive.

The last question that must be answered in order to have a full

overview of the training algorithm is: How many re-estimations are

needed for each fixed M? Normally 4 or 5 iterations are sufficient. Be-

cause of the extra MLLT-algorithm, there are now six iterations.

1. First two standard iterations of Baum-Welch re-estimations are car-

ried out on the incoming models and matrices. For the first training

method all matrices are initialized to the unit matrix.

2. Secondly the MLLT-algorithm is run to estimate the new MLLT-

matrices.

3. Finally three more Baum-Welch re-estimation cycles were run to

better estimate the model parameters for the new matrices.

The experimental results for this technique will be presented in sec-

tion 7.5.

7.4 Feature relevancy training scheme

The second important problem associated with the use of PHFs for ASR

is the fact that not all features are relevant for all phones. This can be
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formulated differently by stating that not all features are relevant for all

states of the recognizer. In this section I propose a new technique that

tries to model this aspect of PHFs. The technique can be combined with

the decorrelation technique proposed in the previous section.

7.4.1 Adaptation of the re-estimation formu-

lae

Suppose that the feature vector xt has dimension D, that R(j) is the set

of relevant features for state j and that I(j) is the complementary set

of irrelevant features for that particular state. I can then define vector

x
R(j)
k as the acoustic vector that is associated with mixture k of state j,

x
R(j)
k (m) =

{

x(m) if m ∈ R(j)

µjk(m) else

The issue of which features are relevant for state j and which are not will

be discussed in section 7.5. I propose to model the relevant features by

standard state-dependent models (GMMs) and the irrelevant features by

a single global model. That global model will be called an imputation

model from now on. I propose to use an imputation GMM with G mixture

components

bG(x) =

G
∑

l=1

dl gl(x) (7.25)

with gl(x) = N (x, µl, Σl), a multivariate Gaussian PDF with mean vector

µl and diagonal covariance matrix Σl. A second feature vector x
I(j)
l is

now introduced as

x
I(j)
l (m) =

{

x(m) if m ∈ I(j)

µl(m) else

This feature vector is associated with the irrelevant features of state j

and is defined for each mixture component l of the imputation model.

I propose to write the PDF bj(x) of the emission function in state j as,

bj(x) =

M
∑

k=1

cjk

[

bjk(x
R(j)
k )

G
∑

l=1

dl gl(x
I(j)
l )

]

(7.26)

= {
G

∑

l=1

dl gl(x
I(j)
l )} {

M
∑

k=1

cjk bjk(x
R(j)
k )} (7.27)
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This means that the Gaussian PDF for each mixture component is now

evaluated in x
R(j)
k . Obviously the contributions of the vector components

corresponding to irrelevant features are
∏DI

d=1 1/
√

2πσ2
d,i, with DI the

number of irrelevant features and σ2
d,i the corresponding variances. I have

to multiply with this factor in order to normalize bj(x). The likelihood

factor which carries the discriminative information is multiplied with an

imputation likelihood given by

limput =

G
∑

l=1

dl gl(x
I(j)
l ) (7.28)

This imputation likelihood is obtained by evaluating each Gaussian com-

ponent l of the imputation model in x
I(j)
l . Again the contribution of the

vector components corresponding to the relevant features are
∏DR

d=1 1/
√

2πσ2
d,r,

with DR the number of relevant features and σ2
d,r the corresponding vari-

ances. Again I have to multiply with this factor in order to normalize

bj(x). The imputation likelihood factor serves as a normalization. This

normalization is necessary in order to make the likelihoods emerging from

different states with different numbers of relevant features, compatible to

each other.

As was explained in section 7.3.1, I have to maximize the Q-function in

order to find the re-estimation formulae for the model parameters. Since

there are now extra parameters (dl, µl, Σl) to estimate, the expression

of the Q-function (7.8) is no longer valid here. I therefore have to start

from a more general expression of the Q-function that is given here as a

starting point without proof,

Q(λ, λ) =
∑

S

∑

K

p(X, S, K|λ)

p(X|λ)
log p(X, S, K|λ) (7.29)

I now try to find an expression for p(X, S, K|λ) in order to substitute it

into (7.29) later on. I start from

p(X|λ) =
∑

S

p(X, S|λ) (7.30)

=
∑

S

T
∏

t=1

ast−1st
bst

(xt) (7.31)

in which I substitute bst
(xt) by,

bst
(xt) =

G
∑

l=1

dlt glt(x
I(st)
t,l )

M
∑

k=1

cstkt
bstkt

(x
R(st)
t,k ) (7.32)
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After some calculation I get,

p(X, S|λ) =
∑

k∈ΩT

∑

l∈ΩT

T
∏

t=1

ast−1st
bstkt

(x
R(st)
t ) cstkt

dltglt(x
I(st)
t )(7.33)

=
∑

k∈ΩT

∑

l∈ΩT

p(X, S, K, L|λ) (7.34)

with ΩT the T-th product set of Ω = {1, 2 . . . , M}. Using p(X, S, K, L|λ)

I can rewrite the Q-function as,

Q(λ, λ) =
∑

S

∑

K

∑

L

p(X, S, K, L|λ)

p(X|λ)
log p(X, S, K, L|λ) (7.35)

by introducing an extra summation over the mixture components of the

imputation model. Substituting the log p(X, S, K, L|λ) into (7.35) I can

rewrite this as,

Q(λ, λ) = Qπ(λ, π) +
∑

i

Qai
(λ, aij) (7.36)

+
∑

j

M
∑

k=1

Qbj
(λ, bjk) +

∑

j

Qcj
(λ, cjk) (7.37)

+
∑

l

Qg(λ, gl) + Qd(λ, dl) (7.38)

The main observation that can be made here is that there are two extra

terms Qg(λ, gl) and Qd(λ, dl) in this expression compared to the standard

expansion of the Q-function. The four functions that are affected by my

modification are defined as,























Qbj
(λ, bjk) =

∑G
l=1

∑T
t=1 ζt(j, k, l) log bjk(x

R(j)
t,l )

Qcj
(λ, cjk) =

∑M
k=1

∑G
l=1

∑T
t=1 ζt(j, k, l) log cjk

Qg(λ, gl) =
∑

j

∑M
k=1

∑T
t=1 ζt(j, k, l) log gl(x

I(j)
t,k )

Qd(λ, dl) =
∑

j

∑M
k=1

∑G
l=1

∑T
t=1 ζt(j, k, l) log dl

in which the new ζt(j, k, l) = p(st = j, kt = k, lt = l |X, λ) defines the

probability of being in state j at time t with the relevant features being

in mixture component k and the irrelevant features being in mixture

component l of the imputation model, given the observation X. These

counts will have to be determined on the basis of an adapted forward-

backward algorithm.

Let me now continue with the derivation of the re-estimation formulae

for all model parameters. I start with the weights cjk of the Gaussians. To
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this end the function Qcj
(λ, cjk) must be maximized under the condition,

M
∑

k=1

cjk = 1 (7.39)

The result is,

cjk =

∑G
l=1

∑T
t=1 ζt(j, k, l)

∑M
k=1

∑G
l=1

∑T
t=1 ζt(j, k, l)

(7.40)

For the global weights dl the function Qd(λ, gl) must be maximized under

the condition,
G

∑

l=1

dl = 1 (7.41)

The result now is,

dl =

∑

j

∑M
k=1

∑T
t=1 ζt(j, k, l)

∑

j

∑G
l=1

∑M
k=1

∑T
t=1 ζt(j, k, l)

(7.42)

Equations (7.40) and (7.42) are the re-estimation formulae for the state

specific weights and the global weights of the imputation model respec-

tively.

To find the formulae for µjk and Σjk I consider Qbj
(λ, bjk). After

maximization, the resulting formulae are,











µjk =
PG

l=1

PT
t=1 ζt(j,k,l)x

R(j)
t,l

P

G
l=1

P

T
t=1 ζt(j,k,l)

Σjk =
PG

l=1

PT
t=1 ζt(j,k,l)(x

R(j)
t,l

−µjk)(x
R(j)
t,l

−µjk)t

P

G
l=1

P

T
t=1 ζt(j,k,l)

whereas for the parameters of the imputation model I finally get,











µl =
P

j

PM
k=1

PT
t=1 ζt(j,k,l)x

I(j)
t,k

P

j

P

M
k=1

P

T
t=1 ζt(j,k,l)

Σl =
P

j

PM
k=1

PT
t=1 ζt(j,k,l)(x

I(j)
t.k

−µg)(x
I(j)
t,k

−µg)t

P

j

P

M
k=1

P

T
t=1 ζt(j,k,l)

In order to obtain the counts ζt(j, k, l), I have to record the forward-

backward probabilities αt(i) and βt(i) at any grid point (t, i),

αt(i) =





∑

j

αt−1(j)aji



 bi(xt) (7.43)

βt(i) =
∑

j

aijbj(xt+1)βt+1(j) (7.44)



“thesis” — 2008/6/4 — 16:49 — page 125 — #149

7.5 Validating the proposed techniques 125

I then substitute bj(xt) by expression (7.32) to calculate ζt(j, k, l) as

ζt(j, k, l) =
1

p(X|λ)

∑

i

αt−1(i) [aij cjk bjk(x
R(j)
t ) dl gl(x

I(j)
t )] βt(j)

(7.45)

which is a minor modification of the standard expression.

7.4.2 Training algorithm

My goal is to combine the state-dependent feature transformation ma-

trices with the relevancy handling technique. This can be accomplished

easily by considering only the relevant rows of the matrices Ap in expres-

sion (7.23). It is important to remark that the sets Sp must consist of

states with the same set of relevant features R(j) (and the same I(j)).

Otherwise I cannot assign relevant rows and irrelevant rows to the matrix

Ap associated with this Sp. This is the motivation why I use a cluster-

ing on the basis of the central phoneme of the triphone model the state

belongs to. The irrelevant rows of Ap are just ignored and filled up with

zero’s. The training is then analogous to the MLLT-training except for

two minor changes.

• There are now two extra re-estimation steps involved in the re-es-

timation of µl and Σl. They are performed in the first step of the

MLLT-algorithm (section 7.3.2).

• It is not necessary to calculate the irrelevant variances nor the ir-

relevant rows for the MLLT-matrices during the second and third

step of the MLLT-algorithm.

7.5 Validating the proposed techniques

I implemented my techniques in the HTK-toolkit and I applied it to

construct a PHF-based and an ACF-based recognizer with this toolkit

for TIMIT and WSJ. However due to memory limitations I was not able

to perform the feature relevancy technique on WSJ. This drawback will

be explained later. The PHFs consisted of 25 static PHFs with their first

order derivatives yielding a 50 dimensional feature vector. No second

order derivatives were included.

For TIMIT, the acoustic models are cross-word triphone HMMs with

tied distributions (GMMs). State tying was performed using DT-based
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clustering yielding 1271 states and 6074 physical models for the ACF

case and 1843 states and 9821 physical models for the PHF case.

For WSJ, training was done on the combined WSJ0+1 training set

and testing on the November 92 5k closed vocabulary test set (330 sen-

tences or 5353 words). The acoustic models were cross-word triphone

HMMs. State tying was done using DT-based clustering yielding 9499

states and 27475 physical models for the ACF case and 12011 states and

30561 physical models for the PHF case. The lexicon contained 4988

entries and the language model was the bigram LM delivered with the

corpus.

The baseline training involved 4 Baum-Welch re-estimation steps for

each number of mixtures, and the number of mixtures M was changed

from 1 to 2,3,4 and 6 for TIMIT and from 1 to 2,4,6,8 and 10 for WSJ.

When applying the MLLT-method or the relevancy method the train-

ing proceeded as described in section 7.3.2 and 7.4.2. I performed 10

iterations of the MLLT-algorithm and I allowed 100 iterations in step

3 of that algorithm. I used 41 state sets Sp each grouping the states

associated with models of the same phoneme (central symbol).

7.5.1 Results for the decorrelation handling

The recognition results for the systems with the MLLT technique in-

cluded, for both ASR-systems working with ACF and PHF features for

TIMIT are summarized in Table 7.1.

ACF PHF

system M # pars. WER D S I # pars. WER D S I

baseline 2 198276 6.05 21 66 8 368600 9.43 16 105 27

MLLT 2 +20787 5.29 25 50 8 +51250 6.31 20 68 11

baseline 3 297414 5.99 22 64 8 552900 9.17 14 103 27

MLLT 3 +20787 4.46 18 44 8 +51250 5.73 15 66 9

baseline 4 396552 5.16 20 56 5 737200 8.34 15 90 26

MLLT 4 +20787 4.20 16 43 7 +51250 5.99 15 64 15

baseline 6 594828 4.59 18 50 4 1105800 8.85 20 88 31

MLLT 6 +20787 3.69 17 36 5 +51250 6.11 18 63 15

Tab. 7.1: WER (%) for the baseline ACF (D = 39) and PHF sys-
tem (D = 50) and the ACF and PHF system with MLLT-matrices
for different numbers of Gaussian components tested on TIMIT.
M is the number of mixtures.

From this Table I can conclude that the baseline PHF system cannot

compete with the baseline ACF system. The MLLT-technique is very

helpful: it yields a 20% relative improvement for the ACF system and a
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31% relative improvement for the PHF system. This is in line with my

expectation that the PHFs are more correlated than the ACFs. How-

ever I did not expect the ACF system to improve so much because of

the common assumption that MFCCs are highly uncorrelated. Appar-

ently the MFCCs are still correlated to some extent. Observe that the

PHF system may be slightly overtrained, since the performance starts to

decrease when 4 mixtures or more are used. This is due to the larger

dimension of the feature vector. Here it would make sense to omit the

delta PHFs from the feature vector. But since I will train the models on

a larger database like WSJ0+1, this "overfitting" problem will disappear.

Table 7.2 represents the results on WSJ. Here 14% relative improvement

ACF PHF

sys. M #pars. WER D S I #pars. WER D S I

bas. 4 2963688 7.53 59 287 57 4804400 12.78 100 475 109

MLLT 4 +20787 6.61 58 257 39 +51250 8.80 61 345 65

bas. 6 4445532 7.02 54 267 55 7206600 11.33 72 440 85

MLLT 6 +20787 6.11 56 234 37 +51250 8.23 51 326 60

bas. 8 5927376 7.36 52 273 69 9608800 11.20 72 426 85

MLLT 8 +20787 6.05 52 236 36 +51250 8.14 56 312 68

bas. 10 7409220 7.70 23 266 123 12011000 10.85 72 420 84

MLLT 10 +20787 6.22 51 240 42 +51250 7.98 51 317 59

Tab. 7.2: WER (%) for the baseline ACF (D = 39) and PHF sys-
tem (D = 50) and the ACF and PHF system with MLLT-matrices
for different numbers of Gaussian components tested on WSJ. M

is the number of mixtures.

was obtained on the ACF baseline and 26% on the PHF system. Again

the improvement is larger on the PHF system, but the improvements

are not as large as on TIMIT. I also looked at the total log likelihood

per frame measured during training. In order to illustrate the advantage

of the MLLT method I adopted the second way to train the matrices

i.e. for each intermediate mixture number. Figure 7.2 represents the log-

likelihood during the ACF model training. The log-likelihood was plotted

for the last four iterations of the MLLT training algorithm and standard

Baum-Welch algorithm. The mixture number was thereby increased from

2 to 10 in steps of 2. The Figure reveals that for the MLLT-method this

log likelihood is always significantly higher than for the baseline method.
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Fig. 7.2: The total log likelihood per frame for each iteration
during training the ACF models on WSJ. The MLLT-method yields
higher likelihoods.

7.5.2 Results for relevancy handling

Let us now look at the results for the feature relevancy handling tech-

nique. This technique could only be tested on TIMIT because of the

extensive use of memory during the training of the models. In order to

keep track of all sufficient statistics I need

M × Ns × G × D/2(D/2− 1) × sizeof{float} (7.46)

memory: for WSJ, the number of states Ns = 12011 and the dimension

of the PHF vector D = 50. I will now fill in some default values for M ,

the number of state specific mixtures and G, the number of mixtures in

the imputation model. For M = 6 and G = 16 and for floating point

numbers of 4 bytes, the requested memory is 2.7 Gbyte. Therefore I only

tested the relevancy method on the smaller TIMIT system.

The results are represented in Tables 7.3. The number of state-

dependent mixtures (M) was 3 (the best result in Table 7.1 for the

TIMIT PHF system) and the number of mixtures for the imputation

model G was raised from 8 to 32. This yielded 5.29% WER, a 7.7% rela-

tive improvement compared to the best MLLT-system trained on PHFs.

Since I only obtained a marginal improvement with this technique on

TIMIT, I did not invest effort in optimizing the memory usage in order

to be able to do experiments on WSJ.
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M G WER (%) D S I

3 8 5.54 16 56 15

3 16 5.29 15 55 13

3 32 5.48 17 57 12

Tab. 7.3: WER (%) for the MLLT system with GMM relevancy
handling trained on the PHFs. M is the number of state-specific
mixtures, whereas G is the number of mixtures of the imputation
model.

7.5.3 Results with CMS

Until now the best performance I could reach on WSJ was 6.05%. Since

it is well known that Cepstral Mean Subtraction (CMS) is an efficient

method to further reduce the WER, I also added CMS to my best WSJ

system. CMS consists of subtracting the mean cepstral vector, calculated

over the utterance, from every incoming cepstral vector prior to train-

ing/decoding. The results of CMS added to the baseline and the MLLT-

systems are represented in Table 7.4. From this Table I can conclude

system M WER D S I

baseline+CMS 4 7.42 58 279 60

MLLT+CMS 4 6.54 68 237 45

baseline+CMS 6 6.78 51 257 55

MLLT+CMS 6 6.18 61 229 41

baseline+CMS 8 6.52 49 246 54

MLLT+CMS 8 5.85 51 225 37

baseline+CMS 10 6.46 48 247 51

MLLT+CMS 10 5.64 47 222 33

Tab. 7.4: WER (%) for the CMS technique applied on the baseline
and MLLT ACF system tested on WSJ.

that CMS is helpful not only for the baseline system where it reduces

the WER from 7.70% to 6.46% (16% relative) but also for MLLT system

which is now improved by 9% relative: from 6.22% to 5.64%. Remark

that the WER now decreases monotonically as the mixture number M

increases.
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7.5.4 Comparison to MIDA

To conclude this study, I also performed some tests with the

ESAT-recognizer [25; 31]. The latter can work with two kinds of features:

(1) classical MFCCs and (2) MIDA-features, with MIDA being a decor-

relation technique that has been proposed in [30] and which stands for

Mutual Information Discriminative Analysis. A comparison with MIDA

will allow me to assess whether it is better than MLLT or not. I did the

following four tests:

1. Use the PHFs and apply MIDA to the PHF-vector.

2. Use the PHFs without applying MIDA

3. Apply MIDA on the Mel spectral coefficients+mean subtraction

(MS).

4. Use the standard MFCCs+mean subtraction (MS).

In the third and fourth test, the mean of the logarithm of the spectral co-

efficients are subtracted. The results of my experiments are listed in Ta-

ble 7.5. They reveal that PHF+MIDA and PHF+MLLT achieve a similar

test features WER D S I

1 PHF+MIDA 7.83 56 329 34

2 PHF 8.57 54 353 52

3 MELSPEC+MIDA+MS 5.19 43 213 22

4 MFCC+MS 6.31 64 249 25

Tab. 7.5: WER (%) for the ESAT-recognizer tested on WSJ with
different features and different settings for the MIDA preprocessor.

WER (7.83% versus 7.98%). Comparing tests 3 and 4, reveals that MIDA

yields a significant improvement when compared to MFCC. Finally, com-

paring test 3 with my ACF system using MLLT+CMS (Table 7.4) shows

that MIDA and MLLT perform comparably (from 6.31% to 5.19% versus

from 6.46% to 5.64%). Another conclusion is that the ESAT-recognizer

without MIDA performs significantly better on the PHFs than does my

system (8.57% versus 10.85%). It is also obvious that MIDA does not

help that much for PHFs (from 8.57% to 7.83%).
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7.6 Combination of two feature sets

If I can show that the ACF and PHF-driven systems behave differently,

then I have an argument for investigating whether a combination of the

systems would lead to a further improvement of the ASR performance. In

order to show this, I have compared the errors made by the two TIMIT-

systems (best configuration for each) and I found (see Table 7.6) that

for 5.3% of the words, the ACF and the PHF-based ASR generate a

different result. If I would be able to correct all the errors of the ACF

system that correspond to a correct solution in the PHF system, and if

I would be able to avoid the introduction of new errors at other places,

the WER could be reduced from 3.7% to 2.6% (relative improvement =

30%). Obviously I will not be able to conceive such a good combination

strategy. On the other hand, the maximum attainable improvement may

be larger if not only the top-1 hypotheses but the top-N hypotheses of

the individual ASR-systems were taken into account.

error type word count (%)

both correct 1470 93.6

ACF wrong and PHF correct 18 1.15

ACF correct and PHF wrong 47 3.00

both wrong, different errors 18 1.15

both wrong, same errors 17 1.10

total 1570 100

Tab. 7.6: Number of word errors in the outputs of MFCC and
PHF recognizers.

Since the potential seemed to be large enough I have investigated 2

means of combining the two feature sets. This study is described now.

7.6.1 Word-level combination

One way of combining the two systems consists of trying to merge the

word hypotheses generated by two independently working systems, a

PHF and a ACF-driven system. This word-level combination can be

based on three outputs of each system.

1. Single-best recognition result

2. N-Best list
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3. Word graph (lattice)

For the combination of the one-best hypotheses of two different recog-

nizers one can for instance apply the ROVER (Recognizer Output Voting

Error Reduction) technique [37]. ROVER constructs a new word tran-

sition network from the two best word sequences and then rescores the

new transition network by means of a voting module. The voting mod-

ule parses the word network from left to right and, at each node, chooses

the best-scoring outgoing arc. This rescoring procedure is based on the

confidence values (ranging between 0 and 1) assigned to the arc labels by

the respective recognizers. Several scoring schemes can be tested. One of

the main drawbacks of ROVER is that it uses a dynamic programming

alignment procedure which does not take into account the absolute time

alignment of the individual word sequence hypotheses. It just finds the

minimal cost match between two strings based on insertion, deletion and

substitution penalties. In [62] an extension which can take the timing

information into account is proposed.

Nevertheless I argue that a method combining word graphs instead of

single-best hypotheses should perform better. The advantage of combin-

ing word graphs over single-best hypotheses is that the best hypothesis

in the product graph may be based on partial paths from the second-best

or third-best hypothesis from both individual word graphs. That is why

I developed such a combination method.

7.6.2 Generation of the Product Lattice

Since each of both recognizers is able to produce a recognition result

in the form of a word graph (I will use the HTK graphs mentioned in

section 2.3), I investigated the possibility of combining the word graphs

into one new graph which I will call the product graph. Let the output

graphs of recognizers 1 and 2 be G1 and G2 respectively, and the product

graph Gp. I will now explain the algorithm to construct the product

lattice. Let Nk represent the set of nodes of Gk (k = 1, 2). Each node ni

is characterized by a time tni
and by a word label W associated with all

arcs arriving at this node. The algorithm is composed of the following

steps.

Consider the product set N = N1 ×N2

for all (ni, nj) ∈ N do

if |tni
− tnj

| < ǫ and the word label associated with the arcs
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arriving at node ni

is equal to the word label associated with the arcs arriving at

node nj then

create a new node n = (ni, nj) and add it to Np

else

continue

end for

for all n = (ni, nj) ∈ Np do

for all m = (nk, nl) 6= n with tni
< tnk

− ǫ and tnj
< tnl

− ǫ

do

for G1 consider all original paths connecting

ni with nk

if a path consist of maximum N arcs then

create those paths also between n and m

for G2 consider all original paths connecting

nj with nl

if a path consist of maximum N arcs then

create those paths also between n and m

end for

end for

This algorithm has two free parameters: a parameter ǫ specifying the

temporal margin (in seconds) between corresponding nodes in the two

graphs, and a parameter N which is the maximum number of intermedi-

ate arcs between two product nodes that will be considered in the product

graph. Figure 7.3 is a graphical representation of this algorithm.
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Fig. 7.3: Graphical representation of the word-level combination
algorithm.

The product graph consists thus of arcs that originate either from G1

or G2. Each arc of Gi (i ∈ [1, 2]) has a total log-likelihood LL attached

to it which is defined as

LL = LLac + sLMLLlm + pW (7.47)

LLac is the acoustic likelihood, sLM is the language model scale factor,

LLlm is the language model probability and pW is the word insertion

probability. Then some kind of score has to be attached to each arc

of Gp. In this respect it has to be noticed that the two systems are

using different (acoustic) models trained on different feature spaces and

therefore that the acoustic likelihoods of the word arcs of G1 and G2 are

not necessarily directly compatible. I have investigated two strategies to

deal with this problem.

1. Normalization of acoustic log-likelihoods

The first way to account for this is to transform the acoustic like-

lihoods emerging from G1 and G2 in such a way that the mean

acoustic likelihoods in G1 and G2 are equal and that they have the
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same variance.

{E,Var}[a LLac,1 + b] = {E,Var}LLac,2 (7.48)

These acoustic log-likelihood will be used in the product graph. The

a and b parameters are re-estimated per utterance. The language

model scale factors used by the two systems were the same, so I

can use the same value in the product graph. However since the

word insertion probabilities differed, I used the mean word insertion

probability in the product graph. Finally, the total log-likelihoods

LL of arcs originating from system 1 will be scaled with a confidence

factor α. This can account for the fact that one system is more

reliable than the other. In my case the ACF system is the system

with the lowest WER and thus the more reliable one.

2. Combination of acoustic likelihoods

The second and more elegant way to solve the problem of incom-

patible likelihoods is to combine acoustic log-likelihoods emerging

from system 1 and 2 in some way and to attach a combined acous-

tic log-likelihood to the arcs in Gp. Suppose that I would want

to combine the acoustic likelihood LLac,1 of a certain arc a of G1

with the acoustic likelihood that would emerge from system 2 when

it was hypothesized in the same time interval. Let the latter log-

likelihood be represented by LLac,1|2. Then a combined acoustic

log-likelihood of the form

LLac,p = αLLac,1 + (1 − α)LLac,1|2 (7.49)

can be attached to the arcs in Gp. This method requires that all

arcs of G1 must be rescored by system 2 and vice versa. The pa-

rameter α can be considered as a weight that takes into account

the differences in accuracy of the two systems and hence their re-

spective confidence.

One would expect that the acoustic likelihoods LLac,p attached to

arcs in Gp should be normalized for the duration tnk
− tni

(or tnl
− tnj

),

because the Viterbi algorithm that seeks the best path in Gp may base

its decision for the best partial path on the unequal number of consumed

frames in two partial paths. However I chose to add to the total log

likelihood of paths that were created between the same n and m, a mean

log likelihood per frame multiplied by the time difference between the

paths. However, if ǫ is chosen smaller than (or equal to) the frame rate,

then all paths between n and m will have consumed a same number of

frames, so I never have to add such a mean log likelihood.
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Since there are lots of arcs in both graphs and since I want the algo-

rithm to work in reasonable time, I propose to prune the incoming graphs

in some way. As a first pruning strategy, I chose to retain only arcs with

’correct’ word labels. A correct word label is defined as a word belonging

to either one of the two single-best hypotheses emerging from the two

recognizers. This drastically reduces the number of arcs that have to be

investigated.

The single-best hypothesis found by the Viterbi algorithm in Gp is

considered as the new recognition result. The optimal value for α (for

both likelihood strategies) is determined by a grid search.

7.6.3 Word-level combination experiments

I have performed word-level combination experiments on TIMIT-ACF

(system 1) and TIMIT-PHF (system 2). I used both the baseline ACF

system with a WER of 4.59% and the best ACF system using MLLT and

a WER of 3.69% as system 1. The PHF system was always the one with

a WER of 5.29%. It is anticipated that the word-level combination tech-

nique works best when the WERs of both systems are not too different.

The WER of the PHF system differs by 15% from that of the baseline

ACF system, whereas it differs 43% from that of the best ACF system.

This is why I first combined the baseline ACF system with the best PHF

system.

I took ǫ = 0.02 and N = 6. The results for the two likelihood strate-

gies are represented in Table 7.7.

baseline ACF and PHF best ACF and PHF

strategy α WER (%) D S I α WER (%) D S I

1 4.46 18 43 9 0.97 3.95 14 40 8

0.99 4.27 16 45 6 0.96 3.76 13 38 8

1 0.98 4.33 15 48 5 0.95 3.69 15 36 7

0.97 4.46 16 48 6 0.94 3.89 18 36 7

0.51 4.90 23 48 6 0.51 4.78 22 46 7

0.50 4.46 22 44 4 0.50 4.08 21 36 7

2 0.49 4.27 19 45 3 0.49 4.46 23 39 8

0.48 4.71 22 47 5 0.48 4.46 23 39 8

Tab. 7.7: WER (%) for the word-level combination technique.

The Table indicates that when combining the ACF baseline with the

best PHF system, the WER of the combined system can be brought to

a level which is slightly below the ACF baseline. However the obtained

improvement of 7% relative is only marginal and not statistically sig-



“thesis” — 2008/6/4 — 16:49 — page 137 — #161

7.6 Combination of two feature sets 137

nificant for this database. Kirchhoff reached a relative improvement of

only 3.7% with her word-level combination technique on the Verbmodil

corpus (baseline of 29.03%). Combining the best ACF system with the

best PHF system did not lead to any improvements at all. It can also

be seen that both likelihood strategies reach the same combined WER

when the baseline ACF and best PHF system are combined. However,

when the best ACF and PHF systems are combined the first likelihood

strategy performs better. Since word-level combination does not seem to

offer any gain, I did not test it on other databases (like e.g. WSJ). In-

stead I developed a state-level combination technique which is described

in the next section.

7.6.4 State-level combination

Suppose that q represents a state of a baseline triphone acoustic model,

and that log pA(x|q) is the log-likelihood of acoustic vector x in this

state. Then I propose to replace the baseline acoustic model score by a

two-stream log-likelihood score

LL(x|q) = g1q log pA(x|q) + g2q [α log pB(x|q) − β] (7.50)

with log pB(x|q) representing the log-likelihood computed by means of a

phonologically inspired context-independent model. I consider this model

as a kind of back-off model because it is anticipated to be less discrimina-

tive than the acoustic model. The phonological scores are being used to

’correct’ the ACF-scores in cases where the ACF-scores are not reliable.

g1q and g2q are the state dependent stream weights, and (α, β) are

normalization coefficients whose role will be explained in a moment.

7.6.4.1 Phonological feature models

In section 5.4, I introduced a phonological feature set of 25 binary phono-

logical features (PHFs) to characterize acoustic-phonetic units. These

features are denoted as fi (i = 1, .., 25) and are grouped in four fea-

ture subsets: (1) vocal source (voiced, unvoiced, inactive), (2) manner

(closure, vowel, fricative, burst, nasal, approximant, lateral, silence), (3)

place-consonant (labial, labio-dental, dental, alveolar, post-alveolar,

velar, glottal) and (4) vowel-features (low, mid-low, mid-high, high,

back, mid, front, retroflex, rounded). Posterior probabilities P (fi|x) are

estimated by a configuration of four neural networks (see section 5.4 for

more details).
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7.6.4.2 Computing phonological scores

In order to determine pB(x|q) I need to characterize each state q of

a baseline HMM by its phonological features. For most phonemes, all

states of the phoneme inherit the phonological features of this phoneme.

However, some phonemes like plosives for instance, are modeled in terms

of two acoustic-phonetic units with different phonological feature sets.

The state q of such a phoneme then takes the phonological feature set

of the acoustic-phonetic unit that best explains the acoustic observations

assigned to this state during an alignment of the training utterances with

their orthographic transcriptions.

Since the phonological feature models compute posterior probabilities,

log-likelihoods will be obtained as

log pB(x|q) = log
PB(q|x)

PB(q)
+ log p(x) (7.51)

where the subscript B indicates that these are probabilities according to

the phonological model. Substituting this in Equation (7.50) leads to

LL(x|q) = g1q log pA(x|q) + α g2q log p(x)

+ g2q [α log
PB(q|x)

PB(q)
− β]

I now assume that the second term is much less dependent on q than the

other terms (just g2q can depend on q), and I use

LL(x|q) = g1q log pA(x|q) + g2q[α log
PB(q|x)

PB(q)
− β] (7.52)

as the two-stream score. Now it is time to explain what the role of (α, β)

is. I first aligned the training data with the baseline models so that each

frame was assigned to a state q. Then α and β is chosen such that

{E,Var}[α log
PB(q|x)

PB(q)
− β] = {E,Var}[log pA(x|q)] (7.53)

taken over all frames. This makes the two stream scores more equivalent,

and the interpretation of (g1q, g2q) as stream importances more plausible.

The search for the optimal stream weights can then be restricted to g1q +

g2q = 1.

Given the phonological description of q, the feature set can be di-

vided in two subsets: Pq = the set of positive features that are supposed

to be on (cardPq = Nqp), and Nq = the set of negative features that

are supposed to be off for that state (cardNq = Nqn). Since I showed in
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section 6.2.2 that the irrelevant features do not contribute to the cost, I

discard them from the computations. Assuming independent phonologi-

cal features then leads to the following expression:

log
PB(q|x)

PB(q)
=

∑

fi∈Pq

log
P (fi|x)

P (fi)
+

∑

fi∈Nq

log
1 − P (fi|x)

1 − P (fi)
(7.54)

Because a statistical analysis of real data has shown that the two com-

ponents in the right hand side of expression (7.54) are correlated (corre-

lation coefficient of 0.75), it makes sense to consider only one component

as estimator. However when I use the positive and negative features only,

there is a danger that the contributions of the phonological scores to the

two-stream score on different states are not compatible. This incompat-

ibility can be avoided by considering the mean phonological score per

feature. I have investigated in particular what happens if only positive

or negative features are retained and I found that using the sum of the

mean of the two as the ultimate estimator

log
PB(q|x)

PB(q)
=

1

Nqp

∑

fi∈Pq

log
P (fi|x)

P (fi)
+

1

Nqn

∑

fi∈Nq

log
1 − P (fi|x)

1 − P (fi)

(7.55)

yielded the best results. It is with this setting that I tried this combi-

database system g1 g2 WER (%) D S I

TIMIT MLLT 1.0 0.0 3.69 17 36 5

+ SLC 0.9 0.1 3.45 18 33 3

WSJ MLLT + CMS 1.0 0.0 5.64 47 222 33

+ SLC 0.9 0.1 5.74 58 219 30

Tab. 7.8: WER (%) for the state-level combination (SLC) tech-
nique tested on TIMIT and WSJ

nation approach on TIMIT and WSJ with a state independent g1q = g1

and g2q = g2 = 1 − g1. The weight g1 was varied from 1 to 0.5 and the

best performing weight on some training utterances was used during the

final test. The recognition results are represented in Table 7.8. It can be

seen that I only obtain a marginal improvement for TIMIT but none for

WSJ. An explanation for this negative result will be provided in the next

section. Nevertheless, the result for TIMIT seems to indicate that there

is a small form of complementarity between the two models. Kirchhoff

reached a more substantial relative improvement of 5.6% with a similar

technique on the Verbmobil corpus (baseline of 29.03%).
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7.7 Combination applied to Spoken Name

Recognition

The state-level combination technique proposed in the previous section

turned out not to be very successful for CSR, but I argue that for special

tasks where the baseline models are not applied in their normal oper-

ating point, the phonological back-off model should be able to give a

larger benefit. This situation occurs when the utterance can contain for-

eign phonemes that were not present in the training utterances that were

used during the acoustic model training. In that case, a back-off model

operating with presumably language-independent features (PHFs) can

offer interesting information. Another situation in which the ’phonolog-

ical’ stream could be helpful is when there are a lot of native phonemes

appearing in contexts that are uncommon in modal speech. In view of

these arguments I have tested the state-level combination technique for

the automatic recognition of spoken names.

7.7.1 Problem statement

It is a challenge to develop an automatic speech recognizer (ASR) that

can accurately recognize proper names (e.g. person names, city names,

street names, etc.) because in most applications (e.g. navigation, direc-

tory assistance) there is a huge number of names involved, and it would

be extremely expensive to elicit from human experts typical phonetic

transcriptions for all these names. Hence, one must rely on an automatic

grapheme-to-phoneme (G2P) converter instead. Unfortunately commer-

cially available G2P converters were designed to transcribe the regular

words of a language. When confronted with foreign names, they often

do not produce an acceptable output. Recent experiments on the tran-

scription of person and geographical names occurring in the Netherlands

showed that the state-of-the art Dutch G2P converter of Nuance was

unable to produce an acceptable phoneme sequence (one of the man-

ual transcriptions present in a lexical database) for about 30% of these

names. When also considering wrong lexical stress assignments as errors,

the error rate further increased to 50% [117].

Even if the G2P converter could be improved, there would still be

a problem because there is clear evidence (e.g. [39]) that, depending

on their familiarity with the language of origin, native speakers may

use different pronunciations of a foreign name. These pronunciations

can range from totally nativized pronunciations (using native phonemes
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and native G2P rules) to totally foreignized pronunciations (using foreign

phonemes and foreign G2P rules). I therefore argue that the ASR should

incorporate lexical and acoustic models that can cope with this type of

pronunciation variability.

In [72] one proposes to use multiple G2Ps to produce multiple pro-

nunciations of a name: one G2P for the native language and one for each

likely language of origin of the name. Obviously, the outputs of the non-

native G2Ps must be converted to native phoneme sequences that are

compatible with the acoustic models of the ASR which was trained on

native speech only. Adding the obtained pronunciations to the baseline

dictionary usually causes a significant reduction of the word error rate

(WER) (see below).

In [12], one also creates pronunciation variants, but this time in a

data-driven way. This is achieved by using native acoustic models to

align each name utterance with a graph of available initial pronunci-

ations of that name (6 per name) as identified on the basis of expert

knowledge. By seeking alternative phonemes for modeling the regions

where the acoustics badly match the graph, new pronunciations were

created. Including these pronunciations in the lexicon resulted in an

improvement of the name recognition error rate by 20 to 40% relative.

However, these figures may be optimistic because the tests were run on

the same names that were also used to learn the new pronunciations.

A number of authors [9] argue that in order to perform well, some

non-native phonemes should be kept in the phonetic transcriptions and

separate acoustic models should be created for these phonemes. In [97]

for instance, models of English phonemes that have no good German

equivalent were trained on English speech spoken by German speakers

and added to the inventory of acoustic models. By doing so the WER

on a corpus of German sentences containing at least one English name

dropped from 60 to 44%.

In [47], non-native pronunciation variants for names of an English

origin are generated in a totally data-driven way. An English phoneme

recognizer generates English pronunciations, and by aligning these pro-

nunciations with the canonical pronunciations emerging from a German

G2P converter, one obtains training examples for the automatic learning

of decision trees that can be used for the generation of English-accented

pronunciation variants. This method however only yields a small drop

(5.2% relative) of the WER .

In cases where names from several languages have to be recognized, an

approach that needs foreign phoneme models spoken by native speakers

for each of these languages may turn out to be impractical. In that

case one can try to create acoustic models for all the sounds in the IPA
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(International Phonetic Alphabet) and use these models for the mapping

of foreign phonemes to symbols that have an associated acoustic model

(e.g. [63]).

Here I propose a novel method that is a bit related to the just men-

tioned IPA approach, in the sense that it uses a phonologically motivated

back-off score in combination with the traditional acoustic likelihoods. I

hereby rely on an earlier finding [122] that phonological feature models

learned on native speech are also capable of characterizing foreign sounds.

I will first elaborate and motivate my model and I will then assess it

on a substantial trilingual spoken name corpus. I will also demonstrate

the capabilities of my method in combination with phonological models

that were trained on multilingual instead of native speech data, because it

was shown in [109] that such models are more reliable than monolingually

trained models.

7.7.2 Methodology

The methodology starts with implementing the state-level combination

technique, explained in section 7.6.4. However, I will extend the tech-

nique by introducing the concept of foreignizable phonemes.

7.7.2.1 Determination of the stream weights

In order to determine optimal stream weights for each state q, I could con-

ceive an automatic weight optimization scheme. However, before start-

ing to develop such a scheme, I will investigate what can be achieved

with state-independent stream weights (g1, g2) which are optimized by

tracking the WER, measured on a development set, as a function of

g2 = 1 − g1, and by selecting the value yielding the minimal WER. The

optimal stream weights will be used for the experiments in section 7.7.3.

7.7.2.2 Foreignizable phonemes

The standard transcription of a foreign name is normally obtained from

its foreign transcription by mapping all foreign phonemes to their best

equivalent in the native phoneme inventory. However, if this equivalent

does not have the same phonological feature representation as the orig-

inal phoneme, I consider the chosen equivalent as foreignizable to that

original, meaning that it can be pronounced as a foreign phoneme. This

is indicated in the lexicon by adding the foreign phoneme as an exten-

sion to the chosen native equivalent. Let me illustrate that for the case of

Dutch as the native and English as the foreign language. When /r_rr/
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English Dutch #occs in French Dutch #occs in

phoneme equivalent lexicon phoneme equivalent lexicon

Q A 46 E Ei 79

V @ 27 9 Y 2

3‘ Y r 30 e∼ E N 70

aI A j 48 9∼ Y N 4

@U O w 78 o∼ O N 74

rr r 225 a∼ A N 92

R r 261

Tab. 7.9: English and French phonemes (SAMPA notation, see
http://www.phon.ucl.ac.uk/home/sampa) but with /rr/ and /r/
as symbols for the English and Dutch /r/) for which the Dutch
equivalent has a different phonological representation. The 6 En-
glish foreignizable phonemes account for 454 occurrences in the
Autonomata lexicon, the 7 French phonemes occur 582 times.

appears in an English name that is part of a Dutch lexicon, it means

that the Dutch phoneme /r/ (from the Dutch word oor) was obtained

as an approximation of the English /rr/ (from the English word or) and

that the acoustic score must be obtained by combining the model score

emerging from a triphone model with /r/ as the central phoneme and

a back-off score computed on the basis of the PHFs of /rr/. Note that

it can happen (see Table 7.9) that two subsequent phonemes (e.g. the

Dutch /Y/ (from bus) + /r/) originate from just one foreign phoneme

(e.g. the English /3:/ from bird) and vice versa.

The number of foreignizable phonemes depends on the (native, for-

eign) language combination: for (Dutch, English) I found 6 foreignizable

phonemes, for (Dutch, French) I found 7.

name transcription

Burr Tupper baseline b Y r _ t Y p @ r

alternative b Y_3: r_3: _ t Y p @ r

Alan Presser baseline E l @ n _ p r E s @ r

alternative 1 E l @ n _ p r_rr E s @ r

alternative 2 E l @ n _ p r E s @ r_rr

alternative 3 E l @ n _ p r_rr E s @ r_rr

Tab. 7.10: Two English names with their baseline and alternative
native transcriptions.
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7.7.2.3 Introduction of pronunciation variants

Foreignizable phonemes can also form a basis for the generation of pro-

nunciation variants in the lexicon. A simple way to accomplish this is to

produce alternative pronunciations by replacing one or more foreignizable

phonemes by their pure native equivalents. Table 7.10 shows two names

and the variants that were created for them in this way. The underlying

motivation is that the user may adopt a nativized pronunciation for all

or just for some of the foreignizable phonemes. In that case it may be

advantageous to let the recognizer decide where to select nativized and

where to select foreignized pronunciations.

7.7.3 Experiments

The experiments in [106] were restricted to the recognition of English

names by a Dutch speech recognizer, and the number of different English

names was quite limited. In this section I describe tests which were run

on a much larger corpus of spoken names, and I report results for English,

French and Dutch names, uttered by Dutch speakers.

The spoken name corpus was recorded in the AUTONOMATA project

that was funded by the Dutch-Flemish STEVIN program [28]. The

database will soon be made publicly available by the Dutch-Flemish Lan-

guage & Speech Technology Center (www.tst.inl.nl). In the present study

I selected the 60 Dutch speakers from Flanders (one of the two regions

in Europe were Dutch is spoken). Each speaker uttered one of 10 lists of

120 Dutch, 23 English, 23 French and 15 Moroccan names and there was

no overlap between these 10 name lists. One third of the speakers was

between 12 and 18 years old, the remaining speakers were adults. The

names were either person names (first name + family name), city names

or street names.

In the present study the Moroccan names were omitted and the re-

maining data was divided in an adaptation set, a development set and a

test set (see chapter 2).

In all experiments the ASR had a vocabulary of 1660 names: 1200

Dutch, 230 English and 230 French names and there was no overlap be-

tween the names in the development set and the test set. The ASR is as-

sumed to have no prior knowledge of the language of origin of the names

it has to recognize. The acoustic models are triphone models: either

speaker-independent models (SIMs) that were trained using HTK [127]

on a multi-speaker read speech corpus recorded in the Flanders [26] (Co-

GeN), or adapted models (AMs) obtained from these SIMs by MLLR

adaptation to an adaptation set extracted from the spoken name corpus.
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During adaptation I trained a set of model transformation matrices ac-

cording to the procedure explained in the HTK-book. In this tutorial the

number of leaf nodes of the regression tree was chosen to be 32, which I

copied. In combination with the AMs, I used a PHF detector that was

also adapted to the adaptation set. This was obtained by performing 10

extra training epochs of the MLPs on the adaptation data. Since there

were no manual phoneme labels available for the adaptation data, I first

had to segment and label the adaptation data using my segmenter and

the unadapted networks.

Although the adaptation set contains the same speakers as the test

set, it was verified in a separate experiment with a smaller test set and

no speaker overlap between the adaptation set and the test set, that the

WERs on the test set were very similar in that case. This means that the

models are not so much adapting to the test speakers, but mainly to the

acoustic circumstances appearing in the spoken name corpus recordings.

I will now describe the baseline experiments that have been run, and

after that, the experiments that were conducted to assess the capabilities

of my method.

7.7.3.1 Setting up a baseline system

In the baseline system, no back-off models nor pronunciation variants

were created, but the effect of using different types of transcriptions in

the lexicon was investigated. To that end I had available the Dutch,

English and French versions of the Nuance G2P-converter, and a typical

transcription of each name. The latter is a transcription that is delivered

with the corpus and that, according to a human expert, is a likely and

acceptable transcription of the name. It is hereafter called a manual

transcription. Using these resources I composed the following lexicons:

DuAlone all names transcribed by Dutch G2P

All all names transcribed by three G2Ps

ManAlone manual transcriptions of all names

DuMan merge of DuAlone and ManAlone

AllMan merge of All and ManAlone

The corresponding word (name) error rates obtained with the two acous-

tic model sets on the different parts of the test set are listed in Tables 7.11

(SIMs) and 7.12 (AMs).

The most important finding is that foreign G2Ps produce much better

transcriptions of foreign names than the native G2P, even with the foreign

phonemes being mapped to native phonemes. This can only mean that a
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lexicon English French Dutch All

DuAlone 61.7 43.3 19.3 35.9

All 50.8 32.5 21.3 31.5

ManAlone 45.1 47.5 17.5 31.9

DuMan 42.7 37.4 17.7 28.9

AllMan 47.0 33.5 19.8 30.0

Tab. 7.11: Baseline performances (WER in %) obtained with
the speaker independent acoustic models in combination with the
different lexicons.

lot of native speakers adopt foreign name pronunciations that are closer

to foreignized than to nativized pronunciations.

A second finding is that for French the manual transcriptions (Man-

Alone) perform a lot worse than the transcriptions generated by the

foreign G2Ps.

A third finding is that the Dutch transcriptions are indispensable to

get a good result: DuMan significantly outperforms ManAlone.

A last finding is that the foreign G2Ps do not attribute much any-

more if the Dutch and manual transcriptions are already in the lexicon.

For the Dutch names they are useless and only augmenting the lexical

confusion, whereas for foreign names there is a balance between that ef-

fect and the positive effect of bringing in a better transcription than the

manual one for some of these names. There is a small improvement for

French names. Together with finding 2 this may indicate that the manual

transcriptions of the French names are maybe not as good as the other

manual transcriptions.

7.7.3.2 Testing the proposed methodology

Since one usually has no access to manual transcriptions I take All as

the baseline lexicon and I assess my methodology when applied in com-

bination with this lexicon. Figures in bold in the Tables refer to results

that are significantly better than the baseline according to a Wilcoxon

signed-rank test [23] with p = 0.05.

7.7.3.3 Back-off model with native phoneme represen-

tations

In a first experiment (called NATIVE), I just took the lexicon All as used

in the baseline system. The phonological representations that served

as a basis for the computation of the back-off scores (see section 7.6.4)
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lexicon English French Dutch All

DuAlone 33.7 23.4 4.2 16.4

All 20.7 12.8 4.4 10.6

ManAlone 15.7 30.7 3.7 13.4

DuMan 13.3 17.8 3.7 9.6

AllMan 15.1 14.8 3.9 9.4

Tab. 7.12: Baseline performances (WER in %) obtained with the
adapted acoustic models in combination with the different lexicons.

were those of the native phonemes that gave rise to the model states.

I determined the optimal stream weight by performing recognition tests

on the development set for several values of g2. I tracked the WER as

a function of g2, smoothed the curve and located the minimum of the

smoothed curve. The corresponding stream weights were then imputed

in the ASR-system. The optimal stream weights were (g1, g2) = (0.2,0.8).

The corresponding WERs plus the absolute and relative improvements

(AI and RI) over the baseline are summarized in Table 7.13. The first

triphones measure E F D All

SIMs WER 47.3 30.8 21.0 30.0

AI 3.5 1.7 0.2 1.5

RI 6.9 5.2 1.0 5.5

AMs WER 18.3 10.2 3.1 8.7

AI 2.4 2.6 1.3 1.9

RI 11.6 20.3 29.5 17.9

Tab. 7.13: Performances (all in %) of an ASR with a two-
stream acoustic model and native phonological representations of
the model states (experiment NATIVE, AI = Absolute Improve-
ment, RI = Relative Improvement).

remarkable fact is that the improvement is modest in the SIM case but

substantial in the AM case. Possibly, my method is not effective as long

as the baseline acoustic models are insufficiently accurate.

A second remarkable fact is that in the AM case, the improvement

is not only substantial for English and French names, but even more

substantial for Dutch names. Apparently, the back-off model provides

information that is not captured by the triphone model. I will come back

to this issue later.
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7.7.3.4 Back-off model with foreign phoneme repre-

sentations

In a second experiment (called FOREIGN-UNIQUE), I replaced the for-

mer All lexicon by a lexicon with foreignizable phonemes in the foreign

G2P outputs. Then I used the phonological characterization of the for-

eign phonemes to control the back-off score computation. The results of

this experiment are summarized in Table 7.14. Apparently, the introduc-

triphones measure E F D All

SIMs WER 46.7 30.1 21.2 29.8

AI 4.1 2.4 0.1 1.8

RI 8.0 7.4 0.7 5.5

AMs WER 18.1 10.1 3.1 8.6

AI 2.6 2.7 1.3 2.0

RI 12.6 21.1 29.5 18.9

Tab. 7.14: Performances (all in %) of an ASR with a two-stream
acoustic model and foreignizable phonological representations of
the model states (experiment FOREIGN-UNIQUE).

tion of foreign phonological representations causes only a small gain, but

it is a consistent one that is achievable at no extra cost.

One of the possible explanations for the low gain is that the speakers

not always use a foreign pronunciation, and thus that a back-off model

on the basis of a foreign representation is not always offering the best

solution. In order to test that hypothesis I have conducted an additional

experiment.

7.7.3.5 Including pronunciation variants

In a third experiment (called FOREIGN-VARS) I have introduced pro-

nunciation variants in the lexicon using the method proposed in sec-

tion 7.7.2. The recognition results obtained with this lexicon are sum-

marized in Table 7.15.

The Table reveals that the results have further improved, and that

the improvement is now starting to be statistically significant for the

speaker-independent case as well. Note too, that the improvement due

to the pronunciation variants is confined to the English and French name

subsets, as expected. However, the gain is moderate and adding variants

is increasing the computational load. I therefore recommend to use the

system with foreignizable representations but without variants.
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triphones measure E F D All

SIMs WER 45.9 29.4 21.4 29.5

AI 4.9 3.1 -0.1 2.0

RI 9.6 9.5 -0.0 6.3

AMs WER 17.6 10.0 3.1 8.5

AI 3.1 2.8 1.3 2.1

RI 14.9 21.9 29.5 19.8

Tab. 7.15: Performances (all in %) of an ASR with a two-stream
acoustic model, foreignizable phonological representations of the
model states and pronunciation variants (experiment FOREIGN-
VARS).

7.7.3.6 Discussion of results

In order to better understand why the two-stream model is working, I

analyzed the results in more detail. Let me first try to explain why

the system with native phoneme representations yields an improvement.

The improvement obtained for the English and French names may be

intuitively attributed to the occurrence of foreignizable phonemes. But

why does the system improve for the Dutch words when using my AMs?

To answer this question I compiled a list of the N most frequent

triphones occurring in the training data. Then I counted for each name

n under test the number of triphones in that name which - according to

the chosen transcription - did not occur in the list. Let’s call this number

#Utriphs,n and the total number of triphones in the name #Ttriphs,n. I

define the ratio

Rn =
#Utriphs,n

#Ttriphs,n
(7.56)

as the percentage of unlikely triphones in the word. After averaging over

all names n, I get

R =
1

#names

∑

n

Rn (7.57)

This indicator should tell something about the dissimilarity of phono-

taxis between training and test data. I now calculated R in the following

three situations:

1. for all names to be recognized

2. for all wrongly recognized names by the baseline system
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3. for names that were corrected by system NATIVE

For the Dutch words, the baseline system made 88 errors, the NATIVE

system made 62 errors. Six new errors were introduced, while 32 were

corrected. Hence 56 errors remained unaltered. I varied N from 5000 to

10000 in steps of 1000 and listed the value of R in Table 7.16 in the above

three situations. The chosen transcriptions are those emerging from the

Dutch G2P. The Table clearly reveals that there is a significant difference

N

situation 5000 6000 7000 8000 9000 10000

(1) 22.2 19.4 17.5 15.2 13.1 11.4

(2) 26.7 23.5 22.1 18.6 17.6 15.6

(3) 26.8 24.8 21.4 18.5 17.8 15.6

(2) vs. (1) +19% +21% +26% +22% +34% +37%

Tab. 7.16: R-indicator (in %) for different values of N (the N

most frequent triphones seen in the training data). Words were
extracted from the Dutch names in the Autonomata tests.

in R between situation (1) on the one hand and situations (2) and (3)

on the other hand. More in particular, I also notice that the relative

difference in R between (1) and (2) grows as N increases. This means that

some Dutch names may be wrongly recognized due to the fact that they

comprise triphones that were seen less frequently during training. The

back-off model however models PHFs and not phonemes. Suppose /a-

b+c/ is a rare triphone and suppose further that PHF "A" of /b/ is shared

with phoneme /d/. Phoneme /d/ may occur in exactly the same context,

namely /a-d+c/ in the training. As a result I have seen two instances of

/a-A+c/, thus the training of PHF "A" in that particular context could

be done more reliably than the training of the triphone /a-b+c/. In such

case the back-off model gives a more reliable estimate. Since the errors

are characterized by a higher amount of unreliable triphones, the back-

off model may correct some of them. I hypothesize that it is this effect

that is responsible for the improvement of the NATIVE system on the

Dutch names. I then did the same analysis, but replaced the triphones

by monophones or simply by 44 phonemes. N was varied from 10 to

35 in steps of 5 and R was measured again. The results can be seen in

Table 7.17

For N = 35, I found a relative difference of 48% between situation (1)

and (2), which indicates that the errors not only occur in names with rare

triphones, but even more in names with less frequently seen phonemes.
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N

situation 10 15 20 25 30 35

(1) 43.8 32.5 16.4 8.4 3.2 0.9

(2) 42.0 30.5 18.0 9.2 4.6 1.3

(3) 43.8 28.1 15.0 7.8 4.1 2.1

(2) vs. (1) -4% -6% +9% +8% +47% +48%

Tab. 7.17: R-indicator (in %) for different values of N (the N

most frequent phonemes seen in the training data). Words were
extracted from the Dutch names in the Autonomata tests.

In a similar way as for the triphones I can argue that the back-off model

is able to yield a better estimate of the likelihood of rare phonemes than

the triphone acoustic models can. I subsequently compared R in the

following three situations.

1. a list of 70492 Dutch words extracted from the Mediargus cor-

pus [78]. The list is composed of 22957 names and 47535 regular

words.

2. the list of 47535 regular words

3. the list of 22957 names

Again I varied N and took the Dutch G2P transcriber to generate the

transcriptions. The result can be seen in Table 7.18.

N

situation 5000 6000 7000 8000 9000 10000

(1) 21.5 17.9 15.8 13.5 11.9 10.7

(2) 17.2 13.8 11.9 9.9 8.6 7.7

(3) 30.5 26.6 23.9 21.1 18.6 17.1

(3) vs.(2) +78% +92% +100% +112% +115% +121%

Tab. 7.18: R-indicator (in %) for different values of N (the N

most frequent triphones seen in the training data) and for the three
situations. Words were extracted from the Mediargus corpus.

When comparing situation (3) with (2), the tendency becomes clear:

the names contain more rarely seen triphones than the regular words.

The reason why names comprise triphones that were rarely seen during

training is twofold:
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1. They follow another morpho-syntax. Morphemes are concatenated

in a different way in regular words and in names. Take a name like

’Alblas’ for example. The triphone /l-b+l/ can only be seen in a

cross-word context like ’Heb je al bladeren zien vallen?’. Cross-

word triphones are less frequent than word internal triphones.

2. They contain rare phonemes. Many so-called ’Dutch’ names (e.g

Torricellistraat) also partly originate from another language like

French, German,. . . with foreign phonemes or with other phoneme

frequencies (like /S/ in Torricelli). So I couldn’t really call them

Dutch.

The picture for the English names is quite the same. Apart from the

occurrence of foreignizable phonemes, the significantly higher amount of

rarely seen triphones measured over the erroneous words, is responsible

for the improvement made by the NATIVE system. In fact the mech-

anism is the same as it is for Dutch words. I measured a 33% higher

R-value (N = 10000) for triphones for the erroneous words when com-

pared to all words and a 40% higher R for phonemes (N = 35). For

the French words the figures were less distinctive. Here the relative dif-

ference only was 8% (N = 10000) for triphones but 38% for phonemes

(N = 35). This means that I expect the English words to improve more

than the French words under the NATIVE system. This is confirmed by

the SIM-results in Table 7.13. For both English and French words, the

number of foreignizable phonemes for the erroneous words is higher than

for the regular words. The percentage of French names containing at

least one foreignizable phoneme is 90.4%, whereas this is 83.0% for the

English names. From this, I expect the French words to improve more

under the FOREIGN system - when compared to the NATIVE system -

than the English words. However Table 7.15 shows larger improvements

for English names than for French.

I also repeated my analysis on ’normal’ speech corpora. The global

R for triphones was consistently lower for TIMIT and WSJ as compared

to the Autonomata task. This indicates that the acoustic coverage was

larger for TIMIT and WSJ than for Autonomata. I found the R for

triphones to be lower for the erroneous words than for the other words.

In fact, for TIMIT the erroneous words were often found to have an R

equal to zero. This clearly points to other error mechanisms besides the

reliability of the acoustic models. That is the reason why my method

was not able to improve on these corpora.
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7.7.3.7 Using multilingually trained feature extractors

There is strong evidence [109; 93] that phonological feature models learned

on multilingual data are more reliable than monolingually trained mod-

els. Therefore I performed an additional experiment in which the back-off

model now uses multilingually trained networks instead of networks that

were trained on native (i.e. Dutch) speech only. I composed a trilingual

dataset comprising Dutch, English and French data.

For the Dutch data I used CoGeN [26], a predecessor of the CGN.

The English data was TIMIT and the French was BDSons [11]. The

composition of this trilingual dataset in terms of number of sentences or

paragraphs and number of training patterns is shown in Table 7.19.

subset #sentences #paragraphs #training patterns

CoGeN – 817 2158944 (53%)

TIMIT 3696 – 954422 (23%)

BDSons – 201 955612 (23%)

Tab. 7.19: Composition of the trilingual training set.

After having retrained the MLPs for the feature extractors, I reran the

three experiments (NATIVE, FOREIGN-UNIQUE, FOREIGN-VARS).

The results of these experiments are represented in Table 7.20.

For the SIMs it is clear that the gains are now a bit higher in the

case of English and French names for the experiments with foreignizable

phonemes, but that the result for the Dutch names now turns out to be

worse. For all names together the gain is negligible. For the AMs I took

the multilingually trained networks and adapted them in the same way as

the monolingually trained networks before. The results were slightly bet-

ter compared to the monolingual case. In cross-lingual situations (native

Dutch speakers speaking English and French words), the multilingually

trained feature extractors seem to be a bit more reliable after adaptation,

leading to better results. However, the monolingually trained networks

already reached a performance that was very close to the one obtained

with the multilingually trained networks.

7.8 Conclusions

In this chapter I have made an attempt to build a speech recognizer based

on PHFs. Two shortcomings of PHFs have been pointed out: the strong
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models experiment measure E F D All

NATIVE WER 17.9 9.9 3.0 8.4

AI 2.8 2.9 1.4 2.2

RI 13.5 22.6 31.8 20.7

FOREIGN-UNIQUE WER 17.8 9.7 3.0 8.4

AMs AI 2.9 3.1 1.4 2.2

RI 14.0 24.2 31.8 20.7

FOREIGN-VARS WER 17.7 9.5 3.1 8.3

AI 3.0 3.3 1.3 2.3

RI 14.4 25.8 29.5 21.7

NATIVE WER 47.3 30.8 24.0 31.5

AI 3.5 1.7 -2.7 0.0

RI 6.9 5.2 -12.7 0.0

FOREIGN-UNIQUE WER 45.1 29.1 24.3 30.7

SIMs AI 5.7 3.4 -3.0 0.8

RI 11.2 10.5 -14.1 2.5

FOREIGN-VARS WER 46.2 30.4 24.1 31.2

AI 4.6 2.1 -2.8 0.3

RI 9.0 6.5 -13.1 0.9

Tab. 7.20: Performances (all in %) of an ASR with a two-stream
acoustic model for all three experimental conditions mentioned be-
fore, but with a back-off model using multilingually trained net-
works. The acoustic models were AMs and SIMs.

correlations and the abundance in the feature vector due to irrelevant fea-

tures. I proposed a solution to each problem consisting of a decorrelation

technique and a relevancy handling technique. The decorrelation tech-

nique was also tested on classical MFCCs and was found to yield better

results in this case too. I found that significant improvements could be

obtained with the decorrelation technique: 20% (14%) for the ACFs and

30% (26%) for the PHFs on TIMIT (WSJ). As expected, the gain for the

PHFs was substantially higher. An extra 7.7% relative improvement was

obtained with the relevancy technique (tested on TIMIT). But despite

of this large improvement of the PHF recognizer, it is still performing

worse than the ACF-recognizer. I was less successful in obtaining im-

provements when trying to combine ACF and PHF information for CSR.

The measured gains on TIMIT and WSJ were not significant, but never-

theless the proposed method seems to work for the recognition of foreign

names spoken by native speakers. In this context the method is further
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extended by the introduction of foreignizable phonemes. Important is

that the presented method does not require any foreign phoneme mod-

els, nor a speech corpus containing foreign phonemes from which to train

foreign pronunciations.

For the recognition of English and French names spoken by Dutch

speakers, the method yielded significant reductions of the WER of 15%

and 22% relative compared to a baseline system that already made use

of name transcriptions produced by G2Ps for Dutch, English and French.

Surprisingly, the recognition also improved for the Dutch names. A more

detailed analysis of the errors revealed that the atypical distributions of

triphones and phonemes in spoken names is responsible for the latter

improvements. All the gains are achieved with only a small additional

cost, originating from the computation of phonological scores and the

inclusion of extra variants in the lexicon.
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8
Conclusions and

Perspectives

Since my dissertation clearly consists of two separate parts, the conclu-

sions and perspectives are also separated in two sections.

8.1 Spontaneous Speech Recognition

In the first part of this dissertation I have focused on the complex prob-

lem of disfluencies in spontaneous speech and I have treated the case of

filled pauses (FPs) more in particular. I proposed a disfluency handling

technique that was informed by an external disfluency detector. I found

that it was possible to detect FP intervals from running speech with a

good precision and recall. Though, the question whether other disflu-

encies like word repetitions (WRs) can also be detected reliably is still

unanswered. But based on the outcome of preliminary experiments that

are not included in this dissertation, I tend to believe that the answer will

be negative. Some disfluencies like sentence restarts (SRs) do not have

strong acoustic correlates at all, so their detection can only be based on

a linguistic analysis of the speech recognizer’s output.

With the aid of the detected FPs I was able to improve the recognition

of spontaneous Dutch by 2% absolute. This improvement corresponds to

0.3 regular words per FP occurring in the speech. Given the fact that

each FP is responsible for ca. 0.7 regular word errors, this means that I

can solve about half of the errors that can be owed to the occurrence of

FP disfluencies. A double gain can be expected if an ideal FP detector

could be conceived.

Research in the field of spontaneous speech recognition is currently

a ’hot’ topic, and several workshops on the subject of disfluencies and

spontaneous speech processing and recognition have been organized. But
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it also turns out to be a difficult topic for as far as the recognition is con-

cerned. The main problem regarding disfluencies is their unpredictability.

They behave like random events whose relation to the context is rather

complicated. One could hypothesize that disfluencies tend to occur when

the local perplexity reaches a high level, but this hypothesis too could be

subject of further research.

My personal opinion is that it will take much more than a proper

handling of disfluency to raise the accuracy of spontaneous speech recog-

nition. In fact I argue that the recognition of spontaneous speech is

problematic due to the occurrence of what I would call superfluencies

and which I would define as strongly reduced pronunciations of chuncks

of syllables.

Let me consider a Dutch example of a superfluency with its (manu-

ally) annotated phonetic transcription.

chunk: ... dat is hetgéen we gedáan hebben ...

superfluent phonetic trans.: ... /t s t G e w @ x d a n h E b n/ ...

Clearly, the sequence of words “dat is hetgeen" is reduced to /t s t G

e/, the word “we" remained unchanged, “gedaan" becomes /x d a n/ and

“hebben" is contracted to /h E b n/. Now several questions can be asked

about the processes governing the creation of superfluencies.

It is observed that the stress pattern of the sentence chunk (stresses

are marked with an accent) plays an important role in the generation of

the superfluent parts. Unstressed words or syllables can be reduced to

superfluent forms, whereas the stressed words or syllables are far more

resistant to reduction. Since pitch seems to be one mechanism governing

the syllable reduction, it may turn out that one and the same chunk is

reduced differently according to the pitch pattern it has. Suppose now

that the stress pattern is different, like in

chunk: ... dát is hetgeen we gedaan hébben ...

superfluent phonetic trans.: ... /d A s t G e w @ G d a n h E b @ n/ ...

The superfluent form of this sentence chunk is clearly different from be-

fore. The word sequence “dat is hetgeen" is now pronounced as /d A s t G

e/ because the word “dat" is stressed, making it more resistant to reduc-

tion. The same holds for the word “hebben", which is now pronounced

as /h E b @ n/, a canonical pronunciation. Another important observa-

tion is that superfluencies are cross-word phenomena. So this means that

the superfluency phenomenon must be studied for word sequences. This

means that a second important factor that governs the probability of a
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syllable being reduced, is the frequency of the word N-gram the syllable

makes part of. N-grams with a high frequency have typically a higher

probability of being reduced than N-grams with a low frequency. It would

be interesting to use the N-gram counts and N-gram stress patterns to

predict the deletion probability of a phoneme in a syllable.

However I anticipate that stress patterns and frequency of N-grams

are not the only mechanisms that tell us when a word sequence is likely to

be reduced. The possible confusion that would arise with other words or

word sequences plays an important role too. A word sequence that after

reduction closely resembles another word sequence will not be reduced.

Another important factor that guides the reduction of syllables is the

set of phonological features attributed to the syllable’s onset, nucleus

or coda. A statistical analysis of the stability of phonetic segments was

carried out in [49; 2]. In this study phonological features were found to

play an important role in the deletion mechanism of syllable parts. As

a summary, the four most important elements that guide the shorten-

ing/reduction of syllables (or word sequences) according to me, are:

1. The stress level (high, intermediate or no stress) put on the syllable.

2. The phonological features of the onset, nucleus or coda of the syl-

lable.

3. The loss in distinctive information or the increase in entropy when

one or more phonemes are deleted from the syllable.

4. The frequency of the N-gram to which the syllable belongs.

Assume that we can measure all of the four mentioned quantities, then the

next question is how to use this information to estimate the probability

that a phoneme can be deleted. The only reliable way to accomplish

this is by means of a data-driven method that takes as input the four

features classes. Each class can have multiple multivalued features. For

instance, stress level may be described as high, intermediate or none

and the stress levels of neighboring syllables may be supplied as extra

features. The number of phonological features is of course of the order

of 20 or more etc. All these features should be supplied to a statistical

model (e.g. a MLP) that can reliably estimate the deletion probability of

a phoneme or a phoneme sequence. Once this probability is available, it

could be used in some way to alter the pronunciation of the active word.

In my opinion this can be done by using skip arcs in the recognizer and

by increasing the transition probability of the skip arcs on the basis of

the estimated deletion probability of the phoneme.
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Modeling superfluent pronunciations is a kind of pronunciation varia-

tion. The extra pronunciations can be derived from the so-called canon-

ical pronunciation by deleting and/or substituting phonemes. I now

argue that substitution and deletion are two different mechanisms for

pronunciation variation. Substitutions can be a real variation that can

be understood in terms of region or dialectal background (compare the

pronunciation of ’normaal’, /nOrmal/ in Flanders with /n@rmal/ in the

Netherlands) or it can be seen as a degree of fluency (non-stressed vowels

can be substituted by schwa, voiced plosives by their unvoiced counter-

parts, etc.). Deletions on the other hand are always meant to speed up

the speaking rate. This second variation in pronunciation is independent

of region or dialect, but inherent to pronunciation. When people are

involved in a spontaneous conversation they tend to speak as sloppy as

possible so as to be just understandable. As such this pronunciation vari-

ation mechanism should not be modeled on the lexical level of a speech

recognizer, but in the automaton itself. Since deletions constitute the

largest part of the superfluent pronunciation variations, they could be

modeled by skip arcs. Such a system is thus externally informed.

However, accounting for superfluencies and disfluencies may yet not

be good enough to model spontaneous speech. Spontaneous speech recog-

nition requires a much more profound handling of all available knowledge

sources than is currently the case with traditional HMM-based speech

recognizers. We all know that in order to represent speech we need mul-

tiple tiers. Which tiers are contributing most to speech recognition is an

open research question, but there is growing evidence that at least a lin-

guistic tier, a syllable tier and an articulatory tier is needed. Surprisingly

many of these tiers are not considered by a standard HMM-based speech

recognizer, where only a word and a phoneme level tier are considered.

It may be questioned whether words and phonemes still constitute sta-

ble segments in spontaneous speech. Recent investigations [49] favor the

syllable as the more stable segment. It is not necessary to combine infor-

mation from all tiers at all times. Time instances at which the evidence

from all tiers is high are interesting landmarks and could be considered

as pivot elements during the recognition process. At such points a lexical

access can be made.

Presumably, speech recognition is not a strict left-to-right process.

Psychological tests with reading behaviour show that readers return to

pivot elements in the text more than once. Although reading and rec-

ognizing speech are different neurological processes, the high similarity

between them is obviously there.
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8.2 Phonological Features

In the second part of this dissertation the focus was shifted to the appli-

cation of PHFs for speech processing: segmentation and labeling, speaker

characterization, pronunciation scoring, and ASR.

Concerning the use of PHFs for speech recognition, I have been suc-

cessful in the specialized domain of spoken name recognition where sub-

stantial gains were achieved with a system incorporating a phonologically

inspired back-off model to supplement the traditional phoneme models.

Not only foreign names spoken by native Dutch speakers, but also na-

tive names could be better recognized. A statistical analysis revealed that

even for these names the acoustic models are not working in their normal

operating point. By using a back-off model that is based on PHFs which

are shared across different phonemes and even across different languages

it is possible to obtain more reliable acoustic scores for the scarcely ob-

served phonemes. However for common CSR tasks like TIMIT and WSJ,

I was not able to find any substantial gain with the methods I conceived

for the combination of acoustic and phonological features in one ASR.

In these tasks the acoustic models are applied in their normal operating

point and do not benefit from the extra information emerging from the

phonological back-off model.

A promising new research line in this field would be the exploitation

of asynchrony during the training of PHF models as well as during the

search for the best hypothesis. The feature asynchrony is inherent to

phonological features as already discussed in chapter 5. Interesting work

in this area has already been done by Leung et al. and reported in [68].
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A
CGN subsets

This Appendix describes the composition and construction of the CGN

training and test corpus used for the experiments in chapters 3 and 4.

For the training files we used the entire file. The 16 test files, which

were used for the recognition experiments, were not used entirely because

of the following two main reasons:

1. Some chunks are overlapping. Especially files with multiple speak-

ers and/or background chunks may contain such overlapping chunks.

2. Some chunks just contain noises or background sounds.

Therefore we selected only non-overlapping chunks with relevant informa-

tion from the files. The CGN-files that were used for training and testing

are shown in Table A.1. We did not use files from the components c,d

(spontaneous telephone dialogues), e (simulated business negotiations), h

(lessons recorded in the classroom) and o (read speech). The chunks that

were used from the 16 test files are represented in Tables A.2 and A.3.
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component training files test files

a fv400073, fv400089, fv400083, fv400086, fv400195

fv400198, fv400216, fv400219, fv400269, fv400305

fv400306, fv400363, fv400364, fv400370, fv400436

fv400439, fv400441

b fv400109, fv400112, fv400165, fv400117, fv400145

fv400155, fv400169, fv400118

f fv600029, fv600049, fv600083, fv600134, fv600145 fv600159

fv600217, fv600223, fv600227, fv600243, fv600272 fv600600

fv600373, fv600430, fv600471, fv600604, fv600614 fv600839

fv600622, fv600798, fv600840, fv600882, fv600990 fv601318

fv601128 fv600997, fv600079

g fv600005, fv600012, fv600014, fv600625 fv600594, fv600591

fv600677, fv600686, fv600713, fv600718 fv600595, fv600593

i fv600388, fv600764, fv600739, fv600749, fv601112 fv600127

fv600757, fv600759, fv600768, fv600770, fv600773 fv600361

fv600787, fv600793, fv600795, fv601088, fv601115 fv600341

j fv600091, fv600551 fv601194, fv601357

k fv600053, fv600121, fv600268

l fv600253, fv600035, fv600281, fv600386, fv600458 fv600854

fv600529, fv600855, fv600863, fv600870, fv600877

fv600998, fv600999, fv601074

m fv400007

n fv400011, fv400016, fv400019

total 91 16

Tab. A.1: Composition of the training and test corpus extracted
from the Spoken Dutch Corpus (CGN).
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file start time (sec) end time (sec) file start time (sec) end time (sec)

0.00 11.98 0.00 7.03

11.98 19.13 7.03 17.13

19.13 31.15 17.13 25.38

31.15 43.31 25.38 36.14

43.31 50.07 fv600361 36.14 51.14

50.07 58.45 51.14 65.69

58.45 67.85 65.69 75.53

fv600127 67.85 75.25 75.53 83.50

75.25 81.63 83.50 93.66

81.63 96.11 93.66 106.88

96.11 103.76 0.00 14.00

103.76 113.55 14.00 28.18

113.55 121.09 28.18 39.05

121.09 133.02 39.05 47.95

133.02 146.78 fv600594 47.95 54.47

0.00 14.13 55.80 57.90

14.13 22.68 60.69 71.12

22.68 29.93 71.12 82.53

29.93 37.31 82.53 91.22

38.27 48.83 91.22 102.45

48.83 54.91 0.00 8.97

54.91 67.57 9.59 25.53

67.57 73.61 26.23 28.66

fv600159 73.61 80.04 29.33 32.39

80.04 84.10 33.01 45.93

84.10 100.91 46.57 56.91

100.91 110.85 56.91 71.87

110.85 123.82 71.87 81.57

123.82 135.73 82.44 88.06

135.73 142.98 fv600595 88.44 89.57

142.98 153.91 92.30 105.61

153.91 165.23 106.23 121.72

0.00 14.56 121.72 139.80

14.56 21.70 139.80 153.88

22.30 34.71 153.88 165.95

34.71 42.73 165.95 170.87

42.73 55.09 170.87 188.12

fv601194 55.09 69.29 188.62 199.84

70.12 78.95 201.99 203.17

79.40 90.49 203.93 220.50

90.49 105.71

105.71 118.28

118.28 121.25

Tab. A.2: The selected chunks used in the CGN test corpus (1).
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file start time (sec) end time (sec) file start time (sec) end time (sec)

0.00 6.25 0.00 21.74

7.83 16.75 22.41 41.66

7.83 29.71 41.66 52.84

32.73 48.49 52.84 64.27

48.89 50.85 64.27 69.73

56.34 71.26 71.26 72.40

71.69 82.64 80.16 93.62

82.64 89.39 93.62 104.53

fv600839 89.39 101.86 104.53 117.31

105.04 106.57 fv600591 118.04 122.92

110.26 123.94 123.59 128.08

123.94 133.71 128.86 134.62

135.19 138.40 135.72 155.70

139.68 150.11 156.43 177.56

150.11 159.70 178.13 190.10

159.70 175.41 190.10 203.46

175.41 186.72 203.46 212.44

186.72 198.30 214.57 216.14

0.00 3.43 217.19 228.51

7.01 19.97 228.51 242.38

19.97 30.61 2.91 17.24

30.61 43.64 18.02 21.06

43.64 49.61 23.52 39.17

53.99 63.03 39.17 48.18

63.03 70.96 48.18 59.49

70.96 81.95 59.49 67.13

81.95 86.43 88.66 89.98

87.28 96.51 fv601318 90.07 101.73

99.53 109.17 101.73 112.55

109.17 119.85 112.55 131.34

119.85 129.85 131.34 148.53

fv600997 129.85 139.07 152.16 158.31

139.07 151.38 158.31 171.92

156.65 159.99 178.83 190.39

163.63 174.71 195.21 200.20

174.71 178.94 204.44 208.93

178.94 186.97 0.00 5.67

186.97 197.41 6.34 29.79

197.41 212.57 49.54 60.35

215.18 217.68 fv600600 60.44 73.28

218.55 223.68 73.36 89.04

223.68 241.09 89.15 108.95

241.09 246.58 109.18 110.58

246.58 253.44

257.70 266.40

266.40 274.82

Tab. A.3: The selected chunks used in the CGN test corpus (2).
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file start time (sec) end time (sec) file start time (sec) end time (sec)

0.00 3.18 0.00 13.79

3.25 4.18 13.79 20.60

4.31 5.32 20.60 31.32

5.78 7.20 31.32 36.36

7.36 9.49 36.36 47.90

9.57 12.97 47.90 58.83

25.26 38.54 58.83 66.55

fv600079 44.79 51.08 66.55 73.88

71.59 73.49 73.88 82.92

76.14 84.78 fv600341 82.92 89.73

84.92 86.68 90.40 99.13

100.99 103.34 99.13 107.04

103.52 106.22 107.04 118.14

126.34 129.15 118.14 123.94

148.84 149.59 123.94 139.02

0.00 14.66 139.02 146.98

14.66 21.91 146.98 154.96

21.91 34.83 154.96 165.95

38.12 49.47 165.95 167.96

49.47 59.60 167.96 181.17

59.60 69.09 0.00 11.31

69.09 83.17 11.94 29.38

83.17 93.13 29.38 34.95

93.13 102.46 34.95 43.78

102.46 111.65 43.78 50.33

fv600593 111.65 121.59 50.33 59.37

121.59 128.05 59.37 74.71

128.05 136.62 74.71 83.69

136.62 143.62 83.69 99.79

144.37 156.23 99.79 105.59

156.23 168.91 fv601357 106.17 115.33

168.91 184.03 115.33 122.99

184.03 191.64 122.99 134.91

191.64 205.23 134.99 142.79

205.23 213.61 143.45 153.25

0.00 16.47 153.25 158.37

17.02 23.66 158.37 167.38

42.57 53.39 167.38 170.74

53.39 61.69 170.74 178.58

61.69 73.77 179.27 190.49

fv600854 73.77 87.72 190.49 197.27

89.14 99.80 197.27 201.92

99.80 112.27 206.33 214.30

115.07 126.33 214.30 218.72

126.33 132.21

132.21 146.04

Tab. A.4: The selected chunks used in the CGN test corpus (3).
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B
Phonemic symbols

This Appendix summarizes all phonemic symbols that are used in my

dissertation. I first give two Tables with the IPA (International Pho-

netic Alphabet) notation for the phonemes of the four most important

European languages (English, French, German and Spanish) and Dutch.

Table B.1 represents the vowels and Table B.2 the consonants. The de-

gree of sharing by the five languages is represented in the first column.

shared by Dutch English French German Spanish

5 i,u (2)

4 — a,e,o (3)

4 E,O,�(3) —

3 I (1) — —

3 — y,ø(2) —

3 A (1) — —

2 EI(eI) (1) — — —

2 — — aI,U,aU(3) —

2 — œ(1) —

1 — æ,6,2,3:,OI,�U (6) —

1 ×,×y,Au (3) —

1 — E∼,œ∼,O∼,A∼ (4) —

1 — 7,O7(2) —

total 16 17 16 17 5

Tab. B.1: Vowel sharing between five European languages.

From the Tables the total number of phonemes in each of these lan-

guages can be derived. English and German have 41 phonemes, Dutch

38, French 35 and Spanish only 24.

I now give a Table with the ARPABET notation, the IPA notation

and the SAMPA notation of the English, Dutch and French phonemes

because these languages were used in this dissertation.
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shared by Dutch English French German Spanish

5 p,b,t,d,k,g,f,s,S,m,n,l,j (13)

4 v,z (2) —

4 w (1) —

3 h, N (2) — —

3 — x (1)

3 — — tS (1)

3 Z (1) —

2 — — dZ (1) —

2 — T (1) —

2 — K (1) —

2 r (1) —

2 — ñ(1) —

1 — õ,D (2) —

1 — pf,ts (2) —

1 G(1) —

Tot. 22 24 19 24 19

Tab. B.2: Consonant sharing between five European languages.
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English Dutch French

ARPABET IPA SAMPA IPA SAMPA IPA SAMPAa a a a (a∼)

aa 6,A Q,A A A A A

ae æ {

ah 2 V

ao O: O O O O OAu Au

aw aU aU

ax � @ � @ � @

ax-h �h

ax-r Ä
ay aI aI

b b b b b b b

bcl

ch Ù tS

d d d d d d d

dcl

dh D D

dx e e e e (e∼)

ø 2 ø 2

eh e E E E E E

el �l
em �m
en �n
eng �N
er 3: 3‘ EI Ei

ey eI eI

f f f f f f f

g g g g g g gG G

gcl

hh h h h h

hv H
ih I I I I

Tab. B.3: All phonemic symbols used throughout my work.
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English Dutch French

ARPABET IPA SAMPA IPA SAMPA IPA SAMPA

ix

iy i i i i i i

jh � dZ

k k k k k k k

kcl

l l l l l l l

m m m m m m m

n n n n n n n

ng N N N N

nx o o o o (o∼)

ow �U @U

oy OI OI

p p p p p p p

pcl

q P
r õ r r r K R

s s s s s s s

sh S S S S S S

t t t t t t t

tcl

th T T ×y 9y

uh U U

uw u u u u u u

ux

v v v v v v v

w w w w w w wx x× Y

œ 9 (9∼)

y j j j j j jy y y yñ J

z z z z z z z

zh Z Z Z Z Z Z

Tab. B.4: All phonemic symbols used throughout my work (con-
tinued).
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