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Introduction

In the year 1878 William Kingdon Clifford (1845-1879) introduced the al-
gebras named after him which may be regarded as a generalization of the
complex numbers and Hamilton’s quaternions (see [33]). They are a type
of finite-dimensional associative algebra and have important applications
in a variety of fields including geometry and theoretical physics.

Clifford analysis is a successful generalization to higher dimension of
the theory of holomorphic functions in the complex plane. It involves the
study of functions on Euclidean space with values in a Clifford algebra. For
a thorough treatment of this function theory we refer the reader to e.g.
[26, 34, 45, 61, 64, 65].

The main objects of study in Clifford analysis are the so-called mono-
genic functions which may be described as null solutions of the Dirac ope-
rator, the latter being the higher dimensional analogue of the Cauchy-
Riemann operator.

Some of the earlier results on Clifford analysis were obtained by Dixon
[37], Moisil and Théodoresco [83], Fueter [55, 56], Iftimie [71], Hestenes
[69] and Delanghe [39, 40, 41, 42]. The basic theory of Clifford analysis
was developed in the book by Brackx, Delanghe and Sommen [26] in 1982.
This is the first book written on Clifford analysis and it is the basic refe-
rence work on the subject. Nowadays Clifford analysis is a well established
mathematical discipline as well as an active area of scientific research.

The subject of this thesis fits in the framework of Clifford analysis. The
first part deals with some techniques to generate monogenic functions and

ix



x Introduction

the second part is devoted to the study of extension theorems for special
systems arising in Clifford analysis.

In order to make the reader familiar with the concepts used in this thesis,
the first chapter contains a review of the definitions and fundamental results
concerning Clifford algebras, Clifford analysis, the Cauchy type integral and
the singular integral operator.

Despite the fact that Clifford analysis generalizes the most important
features of classical complex analysis, monogenic functions do not enjoy all
properties of holomorphic functions of one complex variable. For instance,
due to the non-commutativity of the Clifford algebras, the product of two
monogenic functions is in general not monogenic. It is therefore natural to
look for specific techniques to construct monogenic functions.

There are several techniques available to generate monogenic functions,
see [26, 43, 45]. Two of those techniques are considered in this thesis:
the Cauchy-Kowalevski extension problem and Fueter’s theorem. We also
introduce a new technique leading to so-called steering monogenic functions.

The first technique mentioned consists in monogenically extending ana-
lytic functions defined on a given subset in Rm+1 of positive codimension.
The second one gives a method to generate monogenic functions starting
from a holomorphic function in the upper half of the complex plane. Finally,
steering monogenic functions can be roughly described as a class of mono-
genic functions generated from families of complex-valued functions which
are closed under conjugation and under the action of the Cauchy-Riemann
operator.

In Chapter 2 we introduce the notion of steering monogenic functions
and we discuss the Cauchy-Kowalevski extension around special surfaces of
codimension two.

In Chapter 3 we provide an alternative proof for Fueter’s theorem.
Using the main idea of this proof, we also establish a new generalization
of Fueter’s theorem. Some examples of applications are also computed in-
cluding a closed formula for the Cauchy-Kowalevski extension of the Gauss-
distribution in Rm.



Introduction xi

Chapter 4 deals with a recent refinement of the theory of monogenic
functions: Hermitean Clifford analysis. It studies so-called Hermitean
monogenic functions which are simultaneous null solutions of two mutually
related Euclidean Dirac operators (see [24, 25, 27, 101, 102]). We derive
two criteria providing necessary and sufficient conditions for the existence
of a Hermitean monogenic extension of a continuous function defined on a
surface in Rm, m = 2n. These characterizations are then used to study the
jump problem in this context.

In the even dimensional case the Dirac equation may be reduced to the
so-called isotonic Dirac system in which different Dirac operators in half
the dimension act from both sides on the unknown function. Solutions
of this system are called isotonic functions and are closely related with
Hermitean monogenic functions. Chapter 5 is devoted to the study of these
functions. First, we obtain an integral representation formula. Next, some
direct applications of this formula are indicated. The remainder of this
chapter is devoted to the study of the isotonic Cauchy type integral and its
singular version.

Finally, in the last chapter, extension theorems for holomorphic and bi-
regular functions are studied. The latter may be considered as monogenic
functions of two higher dimensional variables. As holomorphic and biregu-
lar functions are particular cases of isotonic functions, the results obtained
in Chapter 5 enable us to get simplified and elegant proofs.





Chapter 1

Some basic elements of
Clifford analysis

This chapter contains a summary of the Clifford analysis theory we will use.
For a thorough treatment we refer the reader to [26, 34, 45, 61, 64, 65].

1.1 Clifford algebras

Clifford algebras, also called geometric algebras, extend the real number
system to include vectors and their products. Clifford algebras have im-
portant applications in geometry and theoretical physics. They are named
after the English geometer and philosopher W. K. Clifford (see [33]).

We denote by R0,m (m ∈ N) the real Clifford algebra constructed over
the orthonormal basis (e1, . . . , em) of the Euclidean space Rm. The basic
axiom of this associative but non-commutative algebra is that the product
of a vector with itself equals its squared length up to a minus sign, i.e. for
any vector x =

∑m
j=1 xjej in Rm, we have that

x2 = −|x|2 = −
m∑

j=1

x2
j .

1



2 CK-extensions, Fueter’s theorems and boundary values

It thus follows that the elements of the basis submit to the multiplication
rules

e2j = −1, j = 1, . . . ,m,

ejek + ekej = 0, 1 ≤ j 6= k ≤ m.

A basis for the algebra is then given by the elements

eA = ej1 · · · ejk
,

where A = {j1, . . . , jk} ⊂ {1, . . . ,m} is such that j1 < · · · < jk. For the
empty set ∅, we put e∅ = e0 = 1, the latter being the identity element. It
follows that the dimension of R0,m is 2m.

Any Clifford number a ∈ R0,m may thus be written as

a =
∑
A

aAeA, aA ∈ R.

For each k ∈ {0, 1, . . . ,m}, we call

R(k)
0,m =

a ∈ R0,m : a =
∑
|A|=k

aAeA


the subspace of k-vectors, i.e. the space spanned by the products of k dif-
ferent basis vectors. In particular, the 0-vectors and 1-vectors are simply
called scalars and vectors respectively.

An important subspace of the real Clifford algebra R0,m is the so-called
space of paravectors R⊕R(1)

0,m, being sums of scalars and vectors. Observe

that Rm+1 may be naturally identified with R⊕R(1)
0,m by associating to any

element (x0, x) = (x0, x1, . . . , xm) ∈ Rm+1 the paravector x = x0 + x.

Note that

R0,m =
m⊕

k=0

R(k)
0,m
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and hence for any a ∈ R0,m

a =
m∑

k=0

[a]k,

where [a]k is the projection of a on R(k)
0,m.

The product of two Clifford vectors x =
∑m

j=1 xjej and y =
∑m

j=1 yjej
splits into a scalar part and a 2-vector or so-called bivector part

x y = x • y + x ∧ y, (1.1)

where

x • y = −
〈
x, y
〉

= −
m∑

j=1

xjyj

equals, up to a minus sign, the standard Euclidean inner product between
x and y, while

x ∧ y =
m∑

j=1

m∑
k=j+1

ejek(xjyk − xkyj)

represents the standard outer (or wedge) product between them.

More generally, for a vector x and a k-vector Yk, the inner and outer
product between x and Yk are defined by

x • Yk =
{

[xYk]k−1 for k ≥ 1
0 for k = 0

and x ∧ Yk = [xYk]k+1 .

In a similar way,

Yk • x =
{

[Ykx]k−1 for k ≥ 1
0 for k = 0

and Yk ∧ x = [Ykx]k+1 .

We thus have that

xYk = x • Yk + x ∧ Yk,

Ykx = Yk • x+ Yk ∧ x,
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where also

x • Yk = (−1)k−1Yk • x,
x ∧ Yk = (−1)kYk ∧ x.

Two important examples of real Clifford algebras are the field of complex
numbers C and the skew field of quaternions H. Indeed, note that R0,1 is
a two-dimensional algebra generated by a single vector e1 which squares to
−1, and therefore R0,1 is isomorphic to C. On the other hand, R0,2 is a four-
dimensional algebra spanned by {1, e1, e2, e1e2}. The latter three elements
square to −1 and all anticommute, and so the algebra R0,2 is isomorphic
to the quaternions H.

Three (anti)-involutions are defined on R0,m: the main involution, the
reversion and the conjugation.

The main involution a→ ã is given by

ã =
∑
A

aAẽA,

where ẽA = (−1)keA if |A| = k.

The reversion a→ a∗ is given by

a∗ =
∑
A

aAe
∗
A,

where e∗A = ejk
· · · ej1 = (−1)

(k−1)k
2 eA if eA = ej1 · · · ejk

.

Finally, the conjugation a→ a is a combination of the main involution
and the reversion introduced above. It is defined as

a = (ã)∗ =
∑
A

aA(ẽA)∗.

One easily checks that
ãb = ãb̃,
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(ab)∗ = b∗a∗,

ab = ba,

for any a, b ∈ R0,m.
By means of the conjugation, a norm |a| may be defined for each a ∈

R0,m by putting
|a|2 = [aa]0 =

∑
A

a2
A.

It immediately follows that for any a, b ∈ R0,m

|a+ b| ≤ |a|+ |b| and |ab| ≤ 2
m
2 |a||b|.

In this thesis we also deal with the complex Clifford algebra Cm, which may
be defined as

Cm = C⊗ R0,m = R0,m ⊕ i R0,m.

Any complex Clifford number a ∈ Cm may thus be represented as

a =
∑
A

aAeA, aA ∈ C.

All concepts introduced above in the context of R0,m may be reformulated
in the case of Cm in a very similar way. The major difference lies in the
conjugation, where the additional rule i = −i has to be included.

It is worth pointing out that for m ≥ 3 the real Clifford algebra R0,m

has zero divisors. Indeed, it is easily seen that e123 squares to 1 and hence

(1 + e123)(1− e123) = (1− e123)(1 + e123) = 0.

Thus for m ≥ 3 not every Clifford number in R0,m has a multiplicative
inverse. Fortunately, any non-zero paravector x does have a multiplicative
inverse given by

x−1 =
x

|x|2
.

In the case of Cm we also have that

(1 + iω) (1− iω) = (1− iω) (1 + iω) = 0,

with ω =
x

|x|
.
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1.2 Monogenic functions

Monogenic functions are the central object of study in Clifford analysis. The
concept of monogenicity of a function may be seen as the higher dimensional
counterpart of holomorphy in the complex plane.

The functions under consideration are defined on an open subset of Rm

or Rm+1 and take values in the Clifford algebra R0,m or in its complexifi-
cation Cm. They are of the form

f =
∑
A

fAeA,

where the functions fA are R-valued or C-valued.

Whenever a property such as continuity, differentiability, etc. is ascribed
to f it is clear that in fact all the components fA possess the cited property.

Next, we introduce the Dirac operator

∂x =
m∑

j=1

ej∂xj

and the generalized Cauchy-Riemann operator

∂x = ∂x0 + ∂x.

These operators factorize the Laplace operator in the sense that

∆x =
m∑

j=1

∂2
xj

= −∂2
x (1.2)

and
∆x = ∂2

x0
+ ∆x = ∂x∂x = ∂x∂x. (1.3)

Definition 1.1 A function f(x) (resp. f(x)) defined and continuously dif-
ferentiable in an open set Ω of Rm (resp. Rm+1) and taking values in R0,m
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or Cm, is called a left monogenic function in Ω if and only if it fulfills in
Ω the equation

∂xf ≡
m∑

j=1

∑
A

ejeA∂xjfA = 0 (resp. ∂xf ≡
m∑

j=0

∑
A

ejeA∂xjfA = 0).

Note that in view of the non-commutativity of R0,m and Cm a notion of
right monogenicity may be defined in a similar way by letting act the Dirac
operator or the generalized Cauchy-Riemann operator from the right.

Nevertheless, we will just say “f is monogenic in Ω” instead of “f is left
monogenic in Ω”.

From (1.2) and (1.3) it follows that any monogenic function in Ω is
harmonic in Ω and hence real-analytic in Ω.

To fix the ideas let us examine two special cases of monogenic functions.
First, if m = 1, then a function f : Ω ⊂ R2 → R0,1 is of the form f =
f0 + f1e1 and ∂x = ∂x0 + e1∂x1 , so the monogenicity of f reduces to the
system {

∂x0f0 − ∂x1f1 = 0
∂x1f0 + ∂x0f1 = 0

which is nothing else but the classical Cauchy-Riemann system for holo-
morphic functions of one complex variable. Next, let f be a vector-valued
function in Ω ⊂ Rm, i.e.

f(x) =
m∑

j=1

fj(x)ej .

Then, from (1.1) we obtain

∂xf = ∂x • f + ∂x ∧ f.

Claiming that ∂xf = 0 in Ω is thus equivalent to saying that its components
fj , j = 1, . . . ,m, satisfy the so-called Riesz system

m∑
j=1

∂xjfj = 0,

∂xjfk − ∂xk
fj = 0, 1 ≤ j 6= k ≤ m.
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It is clear that the set of R0,m-valued (resp. Cm-valued) monogenic func-
tions in Ω provided with the classical rules for addition and for multiplica-
tion with Clifford scalars is a right R0,m-module (resp. Cm-module).

We emphasize that the product of two monogenic functions is, in gene-
ral, not monogenic.

For a vector-valued differentiable function f =
∑m

j=1 fjej and a Clifford
algebra-valued differentiable function g, we have the following Leibniz rule
(the general version will be given in the third chapter)

∂x(fg) = (∂xf)g − f(∂xg)− 2
m∑

j=1

fj(∂xjg). (1.4)

Indeed,

∂x(fg) =
m∑

j=1

ej
(
(∂xjf)g + f(∂xjg)

)
= (∂xf)g +

m∑
j=1

ejf(∂xjg),

which results in (1.4) on account of the equality

ejf = −fej − 2fj , j = 1, . . . ,m.

In particular, for f = x we have

∂x(x g) = −mg − x(∂xg)− 2Exg, (1.5)

Ex =
∑m

j=1 xj∂xj being the Euler operator.

Using (1.4) we may also prove the following simple but interesting state-
ment: if f is a monogenic function in some open connected set Ω of Rm such
that ejf is also monogenic in Ω for each j = 1, . . . ,m, then f is a constant
in Ω. Indeed, ejf being monogenic, we have, for each j = 1, . . . ,m

0 = ∂x(ejf(x)) = −2∂xjf(x), x ∈ Ω.

From the above it follows that all first order partial derivatives of f vanish,
and consequently f is a constant function in Ω.
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Let Γx denote the spherical Dirac operator (or Gamma operator) on
the unit sphere Sm−1 in Rm, i.e.

Γx = −x ∧ ∂x = −
m∑

j=1

m∑
k=j+1

ejek(xj∂xk
− xk∂xj ).

From (1.1) we see that

x∂x = −Ex − Γx. (1.6)

Introducing spherical coordinates x = rω (r = |x|, ω ∈ Sm−1) and using
the fact that Ex = r∂r, we obtain the spherical decomposition of the Dirac
operator

∂x = ω

(
∂r +

1
r

Γx

)
. (1.7)

Next, we recall two properties of the spherical Dirac operator Γx that are
frequently used in calculations (see [45]). If f(r) is a function of r, then

Γxf(r) = −
m∑

j=1

m∑
k=j+1

ejek
(
xj∂xk

f(r)− xk∂xjf(r)
)

= −
m∑

j=1

m∑
k=j+1

ejek
(
xj(∂rf(r))(∂xk

r)− xk(∂rf(r))(∂xjr)
)

= −
m∑

j=1

m∑
k=j+1

ejek

(
xj(∂rf(r))

xk

r
− xk(∂rf(r))

xj

r

)
.

So that

Γxf(r) = 0. (1.8)

On account of the above remark and using (1.7), we see that

∂xf(r) = ω∂rf(r).



10 CK-extensions, Fueter’s theorems and boundary values

From (1.6) and applying (1.5) we also get

Γx(ωf(x)) = Γx

(
1
r

)
xf(x) +

1
r

Γx(xf(x))

= −1
r

(
x∂x(xf(x)) + Ex(xf(x))

)
=

1
r

(
mxf(x) + x2(∂xf(x)) + 2xExf(x)

−(Exx)f(x)− xExf(x)
)

= ω
(
(m− 1)f(x) + x(∂xf(x)) + Exf(x)

)
.

This gives
Γx(ωf(x)) = (m− 1)ωf(x)− ω Γxf(x). (1.9)

By the above and using (1.7), we can assert that

∂x ω =
ω

r
Γx ω = (m− 1)

ω2

r
= −(m− 1)

r
.

Let us now consider monogenic functions of the form(
A(x0, r) + ωB(x0, r)

)
Pk(x), (1.10)

where A(x0, r) and B(x0, r) are R-valued continuously differentiable func-
tions, and Pk(x) is a homogeneous monogenic polynomial of degree k in
Rm, i.e.

∂xPk(x) = 0, x ∈ Rm,

Pk(tx) = tkPk(x), t ∈ R.

Functions (1.10) are called axial monogenic functions of degree k (see
[77, 111, 116]) and they generate monogenic functions in axially symmetric
domains.

Note that

∂x

[(
A+ ωB

)
Pk(x)

]
= (∂xA)Pk(x) +A(∂xPk(x))

+ (∂xB)ωPk(x) +B(∂x(ωPk(x)))
= ω(∂rA)Pk(x)− (∂rB)Pk(x) +B(∂x(ωPk(x))),
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where also

∂x(ωPk(x)) = (∂xω)Pk(x)− ω(∂xPk(x))−
2
r

ExPk(x)

= −2k +m− 1
r

Pk(x),

which follows from (1.4) and Euler’s homogeneous function theorem.

We thus get

∂x

[(
A+ ωB

)
Pk(x)

]
=
[
ω ∂rA−

(
∂rB +

2k +m− 1
r

B

)]
Pk(x).

For this reason

∂x

[(
A+ ωB

)
Pk(x)

]
=
[(
∂x0A− ∂rB − 2k +m− 1

r
B

)
+ ω(∂x0B + ∂rA)

]
Pk(x)

and so the assumed monogenicity requires the functions A and B to satisfy
the Vekua-type system{

∂x0A− ∂rB =
2k +m− 1

r
B

∂x0B + ∂rA = 0.
(1.11)

We will also deal with another technique to generate monogenic functions in
Rm+1: the so-called Cauchy-Kowalevski extension (CK-extension) problem.

The CK-extension problem consists in finding a monogenic extension
g∗ of an analytic function g defined on a given subset in Rm+1 of positive
codimension (see e.g. [26, 35, 44, 45, 72, 110, 112, 118]).

For analytic functions g on the plane {(x0, x) ∈ Rm+1 : x0 = 0} the
above problem may be stated as follows: find g∗ such that

∂x0g
∗ = −∂xg

∗, in Rm+1

g∗(0, x) = g(x).
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Formally solving this equation we obtain

g∗(x0, x) = exp(−x0∂x)g(x)

=
∞∑

k=0

(−x0)k

k!
∂k

xg(x).
(1.12)

It may be proved that (1.12) is a monogenic extension of the function g
in Rm+1 (see [26]). Moreover, by the uniqueness theorem for monogenic
functions this extension is also unique.

More in general, the CK-extension for analytic functions on an analytic
m-surface in Rm+1 exists and it is also unique (see [112]). For the case
of surfaces with higher codimension this problem has not yet been solved,
except in the flat case (see [44, 45]).

Before introducing the basic integral formulae of Clifford analysis, we
need a few definitions from geometric measure theory. Geometric mea-
sure theory can be roughly described as differential geometry, generalized
through measure theory to deal with maps and surfaces that are not ne-
cessarily smooth, and applied to the calculus of variations. For a detailed
exposition we refer the reader to [46, 47, 52, 53, 54, 62, 67, 81, 84, 109].

Let A be a subset of Rm and let k ≤ m be a positive integer. With each
δ > 0 we associate the infimum of all numbers of the form

∞∑
j=1

2−kα(k)(diam(Bj))k,

where

A ⊂
∞⋃

j=1

Bj , with diam(Bj) < δ, j = 1, 2, 3, · · · .

Here α(k) denotes the volume of the unit sphere in Rk, and for any non-
empty subset B of Rm, its diameter is defined as

diam(B) = sup{|x− y| : x, y ∈ B}.
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If δ tends to zero, this infimum is non-decreasing; it approaches the limit
Hk(A), which is by definition the k-dimensional Hausdorff measure of A.

In 1918, F. Hausdorff introduced this k-dimensional measure on Rm,
defined for all subsets, and coinciding for “nice” subsets, with the usual
k-dimensional surface area. When k = m, it equals the Lebesgue measure.

The definition of Hausdorff measure extends to any non-negative real
number k, taking

α(k) =
π

k
2

Γ
(

k
2 + 1

) ,
where Γ stands for the usual Gamma function. Observe that H0 equals the
counting measure, i.e. H0(A) is the number of elements of A.

Throughout the thesis we assume Ω+ to be a simply connected bounded
and open set in Rm, Ω− = Rm \Ω+, Σ is the boundary surface of Ω+, and
Hm−1(Σ) <∞.

The open ball of radius δ > 0 centered at a point x in Rm will be
denoted by B(x, δ) and is defined by

B(x, δ) = {y ∈ Rm : |y − x| < δ}.

Definition 1.2 A unit vector w is said to be an exterior normal of Ω+ at
x ∈ Σ (in the sense of Federer) if and only if

δ−mLm({y : 〈y − x,w〉 < 0, y ∈ B(x, δ) \ Ω+}) → 0

and
δ−mLm({y : 〈y − x,w〉 > 0, y ∈ B(x, δ) ∩ Ω+}) → 0

as δ → 0+. Here Lm denotes the m-dimensional Lebesgue measure over
Rm.

Such a unit vector w, if it exists, is uniquely determined by Ω+ and
x, and will be denoted by ν(x). In case no such w exists, ν(x) is the
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null vector. This defines for each x ∈ Σ a vector ν(x) with components
ν1(x), . . . , νm(x), i.e.

ν(x) =
m∑

j=1

νj(x)ej .

We note that if x is a smooth boundary point of Σ, then ν(x) is the usual
exterior normal.

In order to work with sets with very general boundaries the following
version of the Gauss-Green Theorem provided by H. Federer will be needed
(see [48, 49, 50, 51]). For other generalizations we refer the reader to e.g.
[38, 68, 93, 94, 120].

Theorem 1.1 (Gauss-Green Theorem) If the vector-valued function F
is differentiable in Ω+, continuous on Ω+, and such that∫

Ω+

∣∣divF (x)
∣∣ dLm(x) <∞,

then ∫
Ω+

divF (x) dLm(x) =
∫

Σ
〈F (x), ν(x)〉 dHm−1(x).

We are now ready to introduce the basic integral formulae of Clifford analy-
sis. But first we recall that the fundamental solution of the Dirac operator
∂x is the Lloc

1 -function

E(x) = − 1
ωm

x

|x|m
, x ∈ Rm \ {0},

where ωm is the area of the unit sphere Sm−1 in Rm. It is easily seen that
E(x) is monogenic in Rm \ {0} and vanishes at infinity.

Theorem 1.2 (Clifford-Gauss-Green Theorem) Let f and g be con-
tinuously differentiable functions in Ω+, which are continuous on Ω+, and
moreover satisfy∫

Ω+

∣∣(f(x)∂x)g(x) + f(x)(∂xg(x))
∣∣ dLm(x) <∞,
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then∫
Σ
f(x)ν(x)g(x) dHm−1(x) =

∫
Ω+

[(f(x)∂x)g(x) + f(x)(∂xg(x))] dLm(x).

Theorem 1.3 (Borel-Pompeiu Formula) Let f be a continuously dif-
ferentiable function in Ω+, continuous on Ω+, and such that∫

Ω+

∣∣∂xf(x)
∣∣ dLm(x) <∞.

Then∫
Σ
E(y − x)ν(y)f(y) dHm−1(y)−

∫
Ω+

E(y − x)∂yf(y) dLm(y)

=
{
f(x) for x ∈ Ω+,
0 for x ∈ Ω−.

Theorem 1.4 (Cauchy’s Integral Formula) Suppose that f is a conti-
nuous function on Ω+. If f is monogenic in Ω+, then

f(x) =
∫

Σ
E(y − x)ν(y)f(y) dHm−1(y), x ∈ Ω+.

As in classical complex analysis, Cauchy’s Integral Formula is an essen-
tial tool in Clifford analysis. Applications of this result include the Mean
Value Theorem, Liouville’s Theorem, the Maximum Modulus Theorem and
Weierstrass’ Convergence Theorem (see [26]).

In a similar way the integral formulae for the generalized Cauchy-
Riemann operator ∂x may be introduced.

1.3 The Cauchy type integral

One of the most important tools in the theory of boundary value problems
for holomorphic functions is the Cauchy type integral (see e.g. [57, 78, 85]).
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Hence, it is not surprising that this object has also been studied in the
context of Clifford analysis (see e.g. [1, 2, 5, 6, 7, 17, 18, 19, 20, 21, 22, 71,
86, 107, 108, 122, 123]).

Definition 1.3 If f is a continuous function defined on the surface Σ, then
the Cauchy type integral of f is the function given by

CΣf(x) =
∫

Σ
E(y − x)ν(y)f(y) dHm−1(y), x ∈ Rm \ Σ.

It immediately follows that CΣf is a monogenic function in Rm \ Σ and
vanishes at infinity.

In this section, we shall spell out some important properties of the
Cauchy type integral provided in [7] that will be useful in the thesis. But
first we need some definitions.

Put d = diam(Σ). Let θz(ε) = Hm−1(Σ ∩B(z, ε)) for z ∈ Σ and ε > 0.

Definition 1.4 The surface Σ is called Ahlfors-David-regular (AD-regular)
if there exists a constant C > 0 such that

C−1εm−1 ≤ θz(ε) ≤ C εm−1

for all z ∈ Σ and 0 < ε ≤ d.

AD-regular surfaces include smooth, Liapunov and Lipschitz surfaces
but also many other arbitrary subsets of Rm (see [36]).

Let us denote by S(Σ) the set of all continuous functions f on Σ such
that the following integrals∫

Σ∩B(z,ε)
E(y − z)ν(y)(f(y)− f(z)) dHm−1(y)

converge uniformly to zero for z ∈ Σ as ε→ 0.
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For f ∈ S(Σ), we consider the singular version of the Cauchy type
integral: the so-called singular integral operator (or Hilbert transform) SΣf
defined by

SΣf(z) = 2 lim
ε→0

∫
Σ\B(z,ε)

E(y−z)ν(y)(f(y)−f(z)) dHm−1(y)+f(z), z ∈ Σ.

Note that for any f ∈ S(Σ), the singular integral operator SΣf exists for
all z ∈ Σ and it defines a continuous function on Σ.

The modulus of continuity of a continuous function f on Σ will be
denoted by ωf and is defined by

ωf (τ) = τ sup
δ≥τ

δ−1 sup
|z1−z2|≤δ

|f(z1)− f(z2)|, τ ∈ (0, d].

A function ϕ : (0, d] → R+ with ϕ(0+) = 0 is said to be a majorant if ϕ(τ)
is non-decreasing and ϕ(τ)/τ is non-increasing for τ ∈ (0, d].

Let us denote byHϕ(Σ) the set of continuous functions f on Σ satisfying
a generalized Hölder condition, i.e.

|f(z1)− f(z2)| ≤ C ϕ(|z1 − z2|), z1, z2 ∈ Σ,

or equivalently
ωf (τ) ≤ C ϕ(τ), τ ∈ (0, d],

where ϕ is a majorant and C is a positive constant.
It is evident that for ϕ(τ) = τα (0 < α ≤ 1), Hϕ(Σ) is nothing else but

the classical set of Hölder continuous functions C0,α(Σ). If α = 1, then the
function f satisfies a Lipschitz condition.

A norm ‖f‖Hϕ may be defined for each f ∈ Hϕ(Σ) by putting

‖f‖Hϕ = max
z∈Σ

|f(z)|+ sup
z1,z2∈Σ

|f(z1)− f(z2)|
ϕ(|z1 − z2|)

.

If moreover for a majorant ϕ there exists a constant C > 0 such that∫ ε

0

ϕ(τ)
τ

dτ + ε

∫ d

ε

ϕ(τ)
τ2

dτ ≤ C ϕ(ε), ε ∈ (0, d],
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then ϕ is said to be a regular majorant (see [66]). Note that ϕ(τ) = τα

(0 < α < 1) is a regular majorant.
It is worth noting that if Σ is an AD-regular surface and ϕ is a regular

majorant, then Hϕ(Σ) ⊂ S(Σ). In fact, if f ∈ Hϕ(Σ), then∣∣∣∣∣
∫

Σ∩B(z,ε)
E(y − z)ν(y)(f(y)− f(z)) dHm−1(y)

∣∣∣∣∣
≤ 2

m
2

∫
Σ∩B(z,ε)

|f(y)− f(z)|
|y − z|m−1

dHm−1(y)

≤ C

∫
Σ∩B(z,ε)

ϕ(|y − z|)
|y − z|m−1

dHm−1(y)

= C

∫ ε

0

ϕ(τ)
τm−1

dθz(τ) ≤ C

∫ ε

0

ϕ(τ)
τ

dτ

≤ Cϕ(ε)

and from this it follows that f ∈ S(Σ).
The following results are extensions to the case of Clifford analysis of

those obtained in [103, 104] for complex-valued functions (see [7, 22]).

Theorem 1.5 (Plemelj-Sokhotski Formulae) Let Σ be an AD-regular
surface and let f ∈ S(Σ). Then CΣf has continuous limit values on Σ given
by

C±Σf(z) = lim
Ω±3x→z

CΣf(x) =
1
2
(
SΣf(z)± f(z)

)
, z ∈ Σ.

We must remark that if moreover Σ is a rectifiable surface, i.e. Σ is the
Lipschitz image of some bounded subset of Rm−1, then f ∈ S(Σ) is also a
necessary condition for the continuity up to the boundary of the function
CΣf (see [22]).

Theorem 1.6 Let Σ be an AD-regular surface. Then the singular integral
operator SΣ is an involution on S(Σ), i.e.

S2
Σf = f
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for all f ∈ S(Σ).

Theorem 1.7 (Plemelj-Privalov Theorem) Assume that Σ is an AD-
regular surface and let ϕ be a regular majorant. Then SΣ is a bounded
operator mapping Hϕ(Σ) into itself.

It is worth remarking that if Σ is an AD-regular surface and if ϕ is a
regular majorant, then CΣf (f ∈ Hϕ(Σ)) has continuous limit values on Σ,
which by Theorems 1.5 and 1.7 belong to Hϕ(Σ).





Chapter 2

Special monogenic series and
expressions

In this chapter some special power series expansions related to the CK-
extension problem for surfaces of codimension 2 and a new class of mono-
genic functions are introduced (see [89, 90, 92]).

2.1 Steering monogenic functions

The aim of this section is to present a new collection of special monogenic
functions: the so-called steering monogenic functions.

Consider the biaxial splitting Rm+1 = R2 ⊕ Rm−1. In this way, for any
x ∈ Rm+1 we may write

x = z + y,

where

z = x0 + x1e1 and y =
m∑

j=2

xjej .

21
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By the above, we can also split the generalized Cauchy-Riemann operator
∂x as

∂x = ∂z + ∂y,

the operators ∂z and ∂y being given by

∂z = ∂x0 + e1∂x1 , ∂y =
m∑

j=2

ej∂xj .

Our basic assumption is the following: let Φ denote a family of functions
f(z) with values in R0,1 which is closed under conjugation and under the
action of the operator ∂z. That is, for any f ∈ Φ, f ∈ Φ and ∂zf may be
expressed as a linear combination of elements in Φ.

We shall consider monogenic expressions of the form∑
j

fj(z)gj(x), (2.1)

where each fj belongs to Φ and each gj is a R0,m-valued function. As the
elements of Φ “steer” the functions gj in such a way that (2.1) is monogenic,
we will call the expressions (2.1) steering monogenic functions.

In what follows, the exponential, trigonometric and power functions of z
will be regarded as in the complex case by making the identification i→ e1.

This idea leads to the following special monogenic functions.

Exponential steering monogenic functions.

Consider
exp(z)A(x) + exp(z)B(x), (2.2)

with Φ = {exp(z), exp(z)}.
An easy computation shows that

∂x(exp(z)A+ exp(z)B) = exp(z)(∂zA+ ∂yB) + exp(z)(∂yA+ ∂zB + 2B).
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Hence, if A and B satisfy the system{
∂zA+ ∂yB = 0
∂yA+ ∂zB + 2B = 0

then (2.2) is monogenic. In particular, if A and B only depend on the
variable y, then the above system also constitutes a necessary condition for
the monogenicity of (2.2), and it takes the form ∂yB = 0

B = −1
2
∂yA.

Substitution of the second equation of the latter system into the first one
yields

∆yA =
m∑

j=2

∂2
xj
A = 0,

i.e. the function A(y) is harmonic.

Note that we have actually proved that if H is a harmonic function of
y, then

exp(z)H(y)− 1
2

exp(z)(∂yH(y))

is monogenic.

For instance, if H(y) = xj (j = 2, . . . ,m), then we get the monogenic
function

exp(z)xj −
1
2

exp(z) ej .

Taking

H(y) =
1

|y|m−3
, y ∈ Rm−1 \ {0},

we can also assert that

exp(z)
1

|y|m−3
+

(m− 3)
2

exp(z)
y

|y|m−1
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is monogenic.

Trigonometric steering monogenic functions.

Consider

cos z A1(x) + sin z B1(x) + cos z A2(x) + sin z B2(x), (2.3)

with Φ = {cos z, sin z, cos z, sin z}.
A direct computation then yields

∂x(cos z A1 + sin z B1 + cos z A2 + sin z B2)
= cos z(∂zA1 + ∂yA2) + sin z(∂zB1 + ∂yB2)

+ cos z(∂yA1 + ∂zA2 + 2B2) + sin z(∂yB1 + ∂zB2 − 2A2).

Consequently, if 
∂zA1 + ∂yA2 = 0
∂zB1 + ∂yB2 = 0
∂yA1 + ∂zA2 + 2B2 = 0
∂yB1 + ∂zB2 − 2A2 = 0

then (2.3) is a monogenic function.

Similarly to the exponential steering monogenic functions, if Ak and Bk

(k = 1, 2) are functions of y, then (2.3) is monogenic if and only if A1 and
B1 are harmonic functions of y and

A2 =
1
2
∂yB1, B2 = −1

2
∂yA1.

This gives rise to monogenic functions of the form

cos z H1(y) + sin z H2(y) +
1
2

cos z (∂yH2(y))−
1
2

sin z (∂yH1(y)),

where H1 and H2 are harmonic functions of y.

Power steering monogenic functions.
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Consider

A0(x) +
∞∑

k=1

(
zkAk(x) + zkBk(x)

)
, (2.4)

with Φ = {zk, zk : k ∈ N0}.
It is easily seen that, if

∂xA0 + 2B1 = 0

and if for k ≥ 1 {
∂zAk + ∂yBk = 0
∂yAk + ∂zBk + 2(k + 1)Bk+1 = 0

then (2.4) is monogenic.
In particular, if the coefficients in the series (2.4) are functions of y only,

we conclude that Ak (k ≥ 0) are harmonic functions of y and

Bk = − 1
2k

∂yAk−1, k ≥ 1.

This yields monogenic functions of the form

H0(y) +
∞∑

k=1

(
zkHk(y)−

1
2k

zk(∂yHk−1(y))
)
,

the functions Hk (k ≥ 0) being harmonic of the variable y.

Mixed steering monogenic functions.
We can also consider combinations of the previous cases. For example,

∞∑
k=0

(
zk exp(z)Ak(y) + zk exp(z)Bk(y)

)
. (2.5)

It is a simple matter to check that (2.5) is monogenic if and only if for k ≥ 0{
∂yBk = 0
∂yAk + 2(k + 1)Bk+1 + 2Bk = 0.
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From the above it follows that each function Ak is harmonic and the func-
tions Bk satisfy the recurrence relation

Bk+1 = − 1
2(k + 1)

(
∂yAk + 2Bk

)
,

with B0 a given monogenic function of y.

2.2 Monogenic power series of axial and biaxial
type: toroidal expansions

We first start with a series expansion around the sphere Sm−1 of codimen-
sion two in Rm+1 in which axial symmetry plays a central role.

In what follows, a convergent series of the form

S(x) =
∞∑

k=0

∞∑
l=0

ZkZ
l
Ak,l(x), Z = x0 + (r − 1)ω, (2.6)

will be called a toroidal expansion of axial type.

Theorem 2.1 A sufficient condition for S(x) to be monogenic is given by

Ak,l+1(x) = − 1
2(l + 1)

(
∂x0Ak,l(x) + ω

(
∂rAk,l(x) +

1
r

ΓxAl,k(x)
)

+
(m− 1)ω

2r
(
Ak,l(x)−Al,k(x)

))
, k, l ≥ 0. (2.7)

Proof. Let z = x0 + (r − 1)i. Using the zero divisors (1 + iω) and (1− iω)
we obtain

ZkZ
l = ZkZ

l
(

(1− iω)
2

+
(1 + iω)

2

)
= zkz̄l (1− iω)

2
+ z̄kzl (1 + iω)

2
.

(2.8)
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In the same way we can see that

Z
k
Z l = z̄kzl (1− iω)

2
+ zkz̄l (1 + iω)

2
. (2.9)

Applying (1.7), (1.8) and (1.9) we get

∂x

(
ZkZ

l
Ak,l

)
= kzk−1z̄liω

(1− iω)
2

Ak,l − kz̄k−1zliω
(1 + iω)

2
Ak,l

−lzkz̄l−1iω
(1− iω)

2
Ak,l + lz̄kzl−1iω

(1 + iω)
2

Ak,l

+zkz̄l (1− iω)
2

ω ∂rAk,l + z̄kzl (1 + iω)
2

ω ∂rAk,l

+zkz̄l (1 + iω)
2

ω

r
ΓxAk,l + z̄kzl (1− iω)

2
ω

r
ΓxAk,l

+
(m− 1)i

2r
zkz̄lAk,l −

(m− 1)i
2r

z̄kzlAk,l.

This gives

∂x

(
ZkZ

l
Ak,l

)
= −kZk−1Z

l
Ak,l + lZkZ

l−1
Ak,l + ZkZ

l
ω ∂rAk,l

+ Z
k
Z lω

r
ΓxAk,l +

(m− 1)i
2r

(zkz̄l − z̄kzl)Ak,l,

where also
zkz̄l − z̄kzl = −iω

(
ZkZ

l − Z
k
Z l
)
,

the latter following from (2.8) and (2.9).

We thus get

∂x

(
ZkZ

l
Ak,l

)
= −kZk−1Z

l
Ak,l + lZkZ

l−1
Ak,l

+ZkZ
l
(
ω ∂rAk,l +

(m− 1)ω
2r

Ak,l

)
+ Z

k
Z l

(
ω

r
ΓxAk,l −

(m− 1)ω
2r

Ak,l

)
.
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As

∂x0

(
ZkZ

l
Ak,l

)
= kZk−1Z

l
Ak,l + lZkZ

l−1
Ak,l + ZkZ

l
∂x0Ak,l,

we have

∂x

(
ZkZ

l
Ak,l

)
= 2lZkZ

l−1
Ak,l

+ ZkZ
l
(
∂x0Ak,l + ω ∂rAk,l +

(m− 1)ω
2r

Ak,l

)
+ Z

k
Z l

(
ω

r
ΓxAk,l −

(m− 1)ω
2r

Ak,l

)
.

(2.10)

So the action of the operator ∂x on S is given by

∂xS =
∞∑

k=0

∞∑
l=0

ZkZ
l
(

2(l + 1)Ak,l+1 + ∂x0Ak,l

+ ω

(
∂rAk,l +

1
r

ΓxAl,k

)
+

(m− 1)ω
2r

(
Ak,l −Al,k

))
.

Hence we may conclude that the recurrence relation (2.7) is sufficient for
S(x) to be monogenic. �

Although the computations are far from trivial, we note that the toroidal
expansion (2.6) generates monogenic functions. All one has to do is to start
from the sequence of functions {Ak,0}k≥0 (initial condition) and calculate
the functions Ak,l via the recurrence formula (2.7).

It is of natural interest to investigate under which conditions on the
initial condition {Ak,0}k≥0 the corresponding series generated by the recur-
rence formula (2.7) is convergent. This question, however, is still open.

An interesting particular case of the toroidal expansion is the case where
the coefficients do not depend on the variable x0 and satisfy the symmetric
relation Ak,l(x) = Al,k(x). With this assumption we can explicitly calculate
the coefficients in (2.6). Indeed, from (2.7) we see that

Ak,l(x) = − 1
2l
∂xAk,l−1(x).
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It follows that

Ak,l(x) =
(−1)k+l

2k+lk! l!
∂k+l

x A0,0(x).

Substituting the above into (2.6) gives

S(x) =
∞∑

k=0

k∑
l=0

Zk−lZ
l
Ak−l,l(x)

=
∞∑

k=0

(−1)k

2kk!

k∑
l=0

k!
(k − l)! l!

Zk−lZ
l
∂k

xA0,0(x)

=
∞∑

k=0

(−1)k

2kk!
(Z + Z)k∂k

xA0,0(x).

Clearly,

S(x) =
∞∑

k=0

(−x0)k

k!
∂k

xA0,0(x),

which is the classical CK-extension (1.12).
We can also solve the recurrence formula (2.7) if the coefficients satisfy

the relation Ak,l(x) = (−1)k+lAl,k(x). In this case, we obtain

Ak,l(x) =


− 1

2l
∂xAk,l−1(x) for k + l odd,

− 1
2l
PxAk,l−1(x) for k + l even,

where the differential operator Px is defined by

Pxg = ∂x0g + ω∂rg +
1
r

Γx(ωg).

Therefore

Ak,l(x) =


(−1)l

2k+lk! l!
∂x(Px∂x)

k+l−1
2 A0,0(x) for k + l odd,

(−1)l

2k+lk! l!
(Px∂x)

k+l
2 A0,0(x) for k + l even.
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We thus get

S(x) =
∞∑

k=0

2k∑
l=0

Z2k−lZ
l
A2k−l,l(x) +

∞∑
k=0

2k+1∑
l=0

Z2k+1−lZ
l
A2k+1−l,l(x)

=
∞∑

k=0

1
22k(2k)!

2k∑
l=0

(−1)l(2k)!
(2k − l)! l!

Z2k−lZ
l(Px∂x)kA0,0(x)

+
∞∑

k=0

1
22k+1(2k + 1)!

2k+1∑
l=0

(−1)l(2k + 1)!
(2k + 1− l)! l!

Z2k+1−lZ
l
∂x(Px∂x)kA0,0(x)

=
∞∑

k=0

1
22k(2k)!

(Z − Z)2k(Px∂x)kA0,0(x)

+
∞∑

k=0

1
22k+1(2k + 1)!

(Z − Z)2k+1∂x(Px∂x)kA0,0(x)

and, as a result:

S(x) =
∞∑

k=0

(−1)k (r − 1)2k

(2k)!
(Px∂x)kA0,0(x)

+
∞∑

k=0

(−1)k (r − 1)2k+1ω

(2k + 1)!
∂x(Px∂x)kA0,0(x). (2.11)

This expansion may be considered as a kind of CK-extension for the cylinder
r = 1 in Rm+1. If moreover the initial function A0,0(x) does not depend on
the variable x0, then (2.11) may be regarded as the CK-extension for the
sphere Sm−1 in Rm.

Let us compute this series for three simple examples.

Example 2.1. Let A0,0(x) = x0. It may be easily proved by induction
that

(Px∂x)kA0,0(x) = Ck
ω

r2k−1
,

∂x(Px∂x)kA0,0(x) =
(2k −m)Ck

r2k
,
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where the constants Ck satisfy the recurrence relation

Ck+1 = −(2k −m)(2k −m+ 1)Ck, k ≥ 1,
C1 = (m− 1).

Let

A
(1)
k (x) = (−1)k (r − 1)2k

(2k)!
(Px∂x)kA0,0(x)

and

A
(2)
k (x) = (−1)k (r − 1)2k+1ω

(2k + 1)!
∂x(Px∂x)kA0,0(x).

We thus get

lim
k→∞

∣∣A(1)
k+1(x)

∣∣∣∣A(1)
k (x)

∣∣ = lim
k→∞

∣∣A(2)
k+1(x)

∣∣∣∣A(2)
k (x)

∣∣ =
(r − 1)2

r2
.

Since (r− 1)2/r2 < 1 for r > 1/2, it follows that the series (2.11) converges
pointwise for r > 1/2 and converges uniformly on every compact subset of
{x ∈ Rm+1 : r > 1/2}.

Example 2.2. Let A0,0(x) = ω. With this choice of initial function, we
obtain

(Px∂x)kA0,0(x) = Ck
ω

r2k
,

∂x(Px∂x)kA0,0(x) =
(2k −m+ 1)Ck

r2k+1
,

where the constants Ck satisfy the recurrence relation

Ck+1 = −(2k −m+ 1)(2k −m+ 2)Ck, k ≥ 1,
C1 = −(m− 1)(m− 2).

Similar arguments to those above show that the series (2.11) converges
pointwise for r > 1/2 and converges uniformly on every compact subset of
{x ∈ Rm : r > 1/2}.
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Example 2.3. Let A0,0(x) = Pl(ω), where Pl(ω) is the restriction of a
homogeneous monogenic polynomial Pl(x) of degree l in Rm to Sm−1. It
follows that

(Px∂x)kA0,0(x) =
Ck

r2k
Pl(ω),

∂x(Px∂x)kA0,0(x) = −(2k + l)Ckω

r2k+1
Pl(ω),

where the constants Ck satisfy the recurrence relation

Ck+1 = −(2k + l)(2k + l + 1)Ck, k ≥ 1,
C1 = −l(l + 1).

For this initial function, we also obtain that the series (2.11) converges
pointwise for r > 1/2 and converges uniformly on every compact subset of
{x ∈ Rm : r > 1/2}.

We now investigate the generalization of the previous theorem to the
biaxially symmetric case. To that end we split up Rm as Rm = Rp1 ⊕ Rp2 ,
p1 + p2 = m, yielding

x = x(1) + x(2), x(1) =
p1∑

j=1

xjej , x(2) =
p2∑

j=1

xp1+jep1+j

and accordingly

∂x = ∂x(1) + ∂x(2) , ∂x(1) =
p1∑

j=1

ej∂xj , ∂x(2) =
p2∑

j=1

ep1+j∂xp1+j .

Introducing spherical coordinates on Rp1 and Rp2 respectively, i.e.

x(k) = rkωk, rk =
∣∣x(k)

∣∣, ωk ∈ Spk−1, k = 1, 2

we thus have that

∂x = ω1

(
∂r1 +

1
r1

Γx(1)

)
+ ω2

(
∂r2 +

1
r2

Γx(2)

)
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where
Γx(k) = −x(k) ∧ ∂x(k) , k = 1, 2.

Similar to (1.9), we have

Γx(k)(ωkf) = (pk − 1)ωkf − ωkΓx(k)f, k = 1, 2.

A convergent series around Sp1−1 × Sp2−1 is called a toroidal expansion of
biaxial type if it has the form

S(x) =
∞∑

k=0

∞∑
l=0

ZkZ
l
Ak,l(x), Z = (r1 − 1) + (r2 − 1)ω1ω2. (2.12)

We thus obtain the following generalization of Theorem 2.1.

Theorem 2.2 A sufficient condition for S(x) to be monogenic is given by

Ak+1,l(x) =
ω1

2(k + 1)

(
ω1

(
∂r1Ak,l(x) +

1
r1

Γx(1)Al,k(x)
)

+ω2

(
∂r2Ak,l(x) +

1
r2

Γx(2)Al,k(x)
)

(2.13)

+
(

(p1 − 1)ω1

2r1
+

(p2 − 1)ω2

2r2

)(
Ak,l(x)−Al,k(x)

))
, k, l ≥ 0.

Proof. The proof is similar to the one of Theorem 2.1. In fact, we have
that

ZkZ
l = zkz̄l (1− iω1ω2)

2
+ z̄kzl (1 + iω1ω2)

2
,

with z = (r1 − 1) + (r2 − 1)i.

Therefore

∂x

(
ZkZ

l
Ak,l

)
= 2kZk−1

Z lω1Ak,l

+Zk
Z l

(
ω1∂r1Ak,l + ω2∂r2Ak,l +

(
(p1 − 1)ω1

2r1
+

(p2 − 1)ω2

2r2

)
Ak,l

)
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+ZkZ
l
(
ω1

r1
Γx(1)Ak,l +

ω2

r2
Γx(2)Ak,l

−
(

(p1 − 1)ω1

2r1
+

(p2 − 1)ω2

2r2

)
Ak,l

)
(2.14)

and the action of the operator ∂x on S is given by

∂xS =
∞∑

k=0

∞∑
l=0

Z
k
Z l

(
2(k + 1)ω1Ak+1,l

+ω1

(
∂r1Ak,l +

1
r1

Γx(1)Al,k

)
+ ω2

(
∂r2Ak,l +

1
r2

Γx(2)Al,k

)

+
(

(p1 − 1)ω1

2r1
+

(p2 − 1)ω2

2r2

)(
Ak,l −Al,k

))
.

We thus have that the recurrence relation (2.13) is sufficient for the function
S(x) to be monogenic. �

Note that for the toroidal expansion of biaxial type (2.12) the sequence
of functions {A0,l(x)}l≥0 is the initial condition.

Let Px(1) and Px(2) be the differential operators defined by

Px(k)g = ωk∂rk
g +

1
rk

Γx(k)(ωkg), k = 1, 2.

In a completely similar way as in the axial case, using (2.13), we obtain
the following Cauchy-Kowalevski like extensions around Sp1−1 and Sp2−1

respectively.

(i) Ak,l(x) = Al,k(x):

S(x) =
∞∑

k=0

(−1)k (r1 − 1)2k

(2k)!

((
Px(1) − ∂x(2)

)
∂x

)k
A0,0(x)

+
∞∑

k=0

(−1)k (r1 − 1)2k+1ω1

(2k + 1)!
∂x

((
Px(1) − ∂x(2)

)
∂x

)k
A0,0(x).
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(ii) Ak,l(x) = (−1)k+lAl,k(x):

S(x) =
∞∑

k=0

(r2 − 1)2k

(2k)!

((
∂x(1) − Px(2)

)
∂x

)k
A0,0(x)

+
∞∑

k=0

(r2 − 1)2k+1ω2

(2k + 1)!
∂x

((
∂x(1) − Px(2)

)
∂x

)k
A0,0(x).

2.3 Generalized CK-extensions of codimension 2

In this section we focus on the CK-extension around special surfaces of
codimension 2, more specifically: around spheres and products of spheres.

Theorem 2.3 (CK-extension theorem for Sm−1) Let Ak,0(ω) (k ≥ 0)
be given functions. Then there exist unique functions Ak,l(ω), k ≥ 0, l > 0,
such that the following toroidal expansion of axial type

S(x) =
∞∑

k=0

∞∑
l=0

ZkZ
l
Ak,l(ω)

is monogenic. Moreover, those functions can be calculated using the recur-
rence relation

Ak,l+1 = − 1
2(l + 1)

k∑
n1=0

l∑
n2=0

cn1+n2,n2

(
ΓxAl−n2,k−n1(ω)

+
(m− 1)

2
(
Ak−n1,l−n2(ω)−Al−n2,k−n1(ω)

))
, k, l ≥ 0,

with cn1,n2 = (−1)n2

(
n1

n2

)
ω
(ω

2

)n1

.
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Proof. Using (2.10) and the series expansion

1
r

=
∞∑

n1=0

(1− r)n1 =
∞∑

n1=0

(ω
2

)n1

(Z − Z)n1

=
∞∑

n1=0

n1∑
n2=0

(−1)n2

(
n1

n2

)(ω
2

)n1

Zn1−n2Z
n2 , (0 < r < 2),

we obtain

∂x

(
ZkZ

l
Ak,l

)
= 2lZkZ

l−1
Ak,l

+
∞∑

n1=0

n1∑
n2=0

(
Zk+n1−n2Z

l+n2 (m− 1)
2

cn1,n2Ak,l

+ Z
k+n2Z l+n1−n2cn1,n2

(
ΓxAk,l −

(m− 1)
2

Ak,l

))
.

It follows that

∂xS =
∞∑

k=0

∞∑
l=0

ZkZ
l
(

2(l + 1)Ak,l+1 +
k∑

n1=0

l∑
n2=0

cn1+n2,n2

×
(

ΓxAl−n2,k−n1 +
(m− 1)

2
(
Ak−n1,l−n2 −Al−n2,k−n1

)))
,

which proves the theorem. �

Theorem 2.4 (CK-extension theorem for Sp1−1 × Sp2−1) Consider a
toroidal expansion of biaxial type of the form

S(x) =
∞∑

k=0

∞∑
l=0

ZkZ
l
Ak,l(ω1, ω2),

where A0,l(ω1, ω2) (l ≥ 0) are given functions. Then there exist unique
functions Ak,l(ω1, ω2), k > 0, l ≥ 0, such that the above sum S(x) is mono-
genic. Moreover, those functions can be calculated using the recurrence
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relation

Ak+1,l(ω1, ω2) =
ω1

2(k + 1)

k∑
n1=0

l∑
n2=0

(
c
(1)
n1+n2,n2

Γx(1)Al−n2,k−n1(ω1, ω2)

+c(2)
n1+n2,n2

Γx(2)Al−n2,k−n1(ω1, ω2)

+
(

(p1 − 1)
2

c
(1)
n1+n2,n2

+
(p2 − 1)

2
c
(2)
n1+n2,n2

)
×
(
Ak−n1,l−n2(ω1, ω2)−Al−n2,k−n1(ω1, ω2)

))
, k, l ≥ 0

with

c(1)
n1,n2

=
(
−1
2

)n1
(
n1

n2

)
ω1

c(2)
n1,n2

= (−1)n1+n2

(
n1

n2

)(ω1ω2

2

)n1

ω2.

Proof. Using (2.14) and the series expansions

1
r1

=
∞∑

n1=0

n1∑
n2=0

(
−1
2

)n1
(
n1

n2

)
Z

n1−n2Zn2 , (0 < r1 < 2)

1
r2

=
∞∑

n1=0

n1∑
n2=0

(−1)n1+n2

(
n1

n2

)(ω1ω2

2

)n1

Z
n1−n2Zn2 , (0 < r2 < 2).

we obtain

∂x

(
ZkZ

l
Ak,l

)
= 2kZk−1

Z lω1Ak,l

+
∞∑

n1=0

n1∑
n2=0

(
Z

k+n1−n2Z l+n2

(
(p1 − 1)

2
c(1)
n1,n2

+
(p2 − 1)

2
c(2)
n1,n2

)
Ak,l

+Zk+n2Z
l+n1−n2

(
c(1)
n1,n2

Γx(1)Ak,l + c(2)
n1,n2

Γx(2)Ak,l
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−
(

(p1 − 1)
2

c(1)
n1,n2

+
(p2 − 1)

2
c(2)
n1,n2

)
Ak,l

))
.

The proof now follows easily. �

Generalized CK-extension theorems may also be obtained for more ge-
neral surfaces. We end this chapter with the example of a general sur-
face of codimension 2 which intersects the coordinate planes parallel to the
(x0, x1)-plane transversally.

Let p1 = 1 and assume that α
(
x(2)

)
and β

(
x(2)

)
are given R-valued

functions.

Theorem 2.5 Consider the convergent series

S(x) =
∞∑

k=0

∞∑
l=0

zkz̄lAk,l

(
x(2)

)
, z =

(
x0 − α

(
x(2)

))
+
(
x1 − β

(
x(2)

))
e1.

Sufficient for S(x) to be monogenic is the recurrence relation

2(l + 1)Ak,l+1 − (l + 1)
(
∂x(2)α− e1∂x(2)β

)
Al+1,k

− (k + 1)
(
∂x(2)α+ e1∂x(2)β

)
Al,k+1 + ∂x(2)Al,k = 0, k, l ≥ 0. (2.15)

Proof. An easy computation shows that

∂x

(
zkz̄lAk,l

)
= 2lzkz̄l−1Ak,l − kz̄k−1zl

(
∂x(2)α− e1∂x(2)β

)
Ak,l

− lz̄kzl−1
(
∂x(2)α+ e1∂x(2)β

)
Ak,l + z̄kzl∂x(2)Ak,l,

from which the theorem follows. �

In particular, if α
(
x(2)

)
= β

(
x(2)

)
= 0 for all x(2), then (2.15) takes

the form

Ak,l+1

(
x(2)

)
= − 1

2(l + 1)
∂x(2)Al,k

(
x(2)

)
, k, l ≥ 0.
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Solving this recurrence relation we get

Ak,l

(
x(2)

)
=


(−1)l (k − l)!

4l k! l!
∆l

x(2)Ak−l,0

(
x(2)

)
for k ≥ l,

(−1)k+1

2
(l − k − 1)!

4k k! l!
∂x(2)∆k

x(2)Al−k−1,0

(
x(2)

)
for k < l,

(2.16)
where ∆x(2) =

∑m
j=2 ∂

2
xj

.

We thus have obtained the following codimension 2 generalization of
the CK-extension theorem.

Corollary 2.1 Let Ak,0

(
x(2)

)
(k ≥ 0) be given functions, and consider the

formal series

f(x) =
∞∑

k=0

∞∑
l=0

(x0 + x1e1)k(x0 − x1e1)lAk,l

(
x(2)

)
.

Then there exist unique functions Ak,l

(
x(2)

)
, k ≥ 0, l > 0, such that the

above sum f is monogenic. Moreover, those functions can be calculated
using (2.16).





Chapter 3

Fueter’s theorems

In this chapter we present an alternative proof for and a generalization of
Fueter’s theorem for monogenic functions (see [87, 88, 91]).

3.1 An alternative proof

Fueter’s theorem is named after the Swiss mathematician R. Fueter who in
his 1935-paper [55] obtained a method to generate monogenic quaternionic
functions starting from a holomorphic function in the upper half of the
complex plane.

More precisely, if f(z) = u(x, y)+ iv(x, y) (z = x+ iy) is a holomorphic
function in some open subset Ξ ⊂ C+ = {z = x+ iy ∈ C : y > 0}, then in
the corresponding region, the function

F (q0, q) = ∆
(
u(q0, |q|) +

q

|q|
v(q0, |q|)

)
is both left and right monogenic with respect to the quaternionic Cauchy-
Riemann operator

D = ∂q0 + i∂q1 + j∂q2 + k∂q3 ,

41
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i.e. DF = FD = 0. Here q = q1i + q2j + q3k is a pure quaternion and
∆ = ∂2

q0
+ ∂2

q1
+ ∂2

q2
+ ∂2

q3
denotes the Laplace operator in four dimensional

space.

In [105] Sce extended Fueter’s theorem to R0,m for m odd, i.e. under
the same assumptions on f , he showed that the function

∆
m−1

2
x

(
u(x0, r) + ω v(x0, r)

)
is monogenic in Ω̃ = {x ∈ Rm+1 : (x0, r) ∈ Ξ}. Using Fourier transforma-
tion, Qian proved this result for m being even (see [96] and also [73]).

In [117] Sommen generalized Sce’s result as follows: if m is an odd po-
sitive integer and Pk(x) is a homogeneous monogenic polynomial of degree
k in Rm, then

∆
k+m−1

2
x

[(
u(x0, r) + ω v(x0, r)

)
Pk(x)

]
(3.1)

is also monogenic in Ω̃.

His proof was based on the fact that(
u(x0, r) + ω v(x0, r)

)
Pk(x)

may be written locally as ∂x

(
h(x0, r)Pk(x)

)
for some R-valued harmonic

function h of x0 and r. Thus (3.1) is monogenic if and only if

∆
k+m+1

2
x

(
h(x0, r)Pk(x)

)
= 0,

which is true for any R-valued harmonic function h in the variables x0 and
r.

The aim of this section is to provide an alternative proof of Sommen’s
generalization. It is a constructive proof, whence it has the advantage of
allowing to compute some examples.

Let us outline our proof. First, note that this version of Fueter’s theorem
provides us with the axial monogenic functions of degree k, i.e.

∆
k+m−1

2
x

[(
u(x0, r) + ω v(x0, r)

)
Pk(x)

]
=
(
A(x0, r) + ωB(x0, r)

)
Pk(x)
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for some R-valued and continuously differentiable functions A and B.

Hence the proof consists in showing that A and B satisfy the Vekua-type
system (1.11). It relies on the following two lemmata.

Lemma 3.1 Suppose that f(t1, . . . , td) and g(t1, . . . , td) are R-valued infi-
nitely differentiable functions on Rd and that Dtj and Dtj are differential
operators defined by Dtj (0){f} = Dtj (0){f} = f and for n ≥ 1

Dtj (n){f} =
(

1
tj
∂tj

)n

{f}, j = 1, . . . , d,

Dtj (n){f} = ∂tj

(
Dtj (n− 1){f}

tj

)
, j = 1, . . . , d.

Then one has

(i) ∂2
tjDtj (n){f} = Dtj (n){∂2

tjf} − 2nDtj (n+ 1){f},

(ii) ∂tjDtj (n− 1) {f/tj} = Dtj (n){f},

(iii) Dtj (n){∂tjf} = ∂tjDtj (n){f},

(iv) Dtj (n){∂tjf} − ∂tjD
tj (n){f} = 2n/tj Dtj (n){f},

(v) ∂2
tjD

tj (n){f} = Dtj (n){∂2
tjf} − 2nDtj (n+ 1){f},

(vi) Dtj (n){fg} =
∑n

s=0

(
n
s

)
Dtj (n− s){f}Dtj (s){g},

(vii) Dtj (n){fg} =
∑n

s=0

(
n
s

)
Dtj (n− s){f}Dtj (s){g}.

Proof. We prove (i) by induction. When n = 1, we have

∂2
tjDtj (1){f} =

∂3
tjf

tj
− 2

∂2
tjf

t2j
+ 2

∂tjf

t3j

= Dtj (1)
{
∂2

tjf
}
− 2Dtj (2){f}
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as desired.

Now we proceed to show that when (i) holds for a positive integer n,
then it also holds for n+ 1. Indeed,

∂2
tjDtj (n+ 1){f} = Dtj (1)

{
∂2

tjDtj (n){f}
}
− 2Dtj (2)

{
Dtj (n){f}

}
= Dtj (1)

{
Dtj (n)

{
∂2

tjf
}
− 2nDtj (n+ 1){f}

}
− 2Dtj (n+ 2){f}

= Dtj (n+ 1)
{
∂2

tjf
}
− 2(n+ 1)Dtj (n+ 2){f}.

Statement (ii) easily follows from the definition of Dtj (n){f}. Next, using
(ii), we obtain (iii) as

Dtj (n){∂tjf} = ∂tjDtj (n− 1){∂tjf/tj} = ∂tjDtj (n){f}.

To obtain (iv) we use (i) and (ii):

Dtj (n){∂tjf} − ∂tjD
tj (n){f} = Dtj (n){∂tjf} − ∂2

tjDtj (n− 1){f/tj}

= Dtj (n){∂tjf} −Dtj (n− 1)
{
∂2

tj{f/tj}
}

+ 2(n− 1)Dtj (n){f/tj}

= Dtj (n){∂tjf} −Dtj (n− 1)
{
Dtj (1){∂tjf} − 2Dtj (1){f/tj}

}
+2(n− 1)Dtj (n){f/tj}

= 2nDtj (n){f/tj} =
2n
tj
Dtj (n){f}.

From (i)-(iii) it follows that

∂2
tjD

tj (n){f} = ∂3
tjDtj (n− 1){f/tj}

= ∂tjDtj (n− 1){∂2
tj{f/tj}} − 2(n− 1)∂tjDtj (n){f/tj}

= ∂tjDtj (n){∂tjf} − 2n∂tjDtj (n){f/tj}

= Dtj (n){∂2
tjf} − 2nDtj (n+ 1){f}.

Finally, (vi) and (vii) may be easily proved by induction. �
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Lemma 3.2 Let h(x0, r) be an R-valued harmonic function on R2, i.e.

∂2
x0
h+ ∂2

rh = 0.

Then

∆n
x

(
h(x0, r)Pk(x)

)
=

n∏
j=1

(
2k +m− (2j − 1)

)
Dr(n){h(x0, r)}Pk(x),

∆n
x

(
h(x0, r)ωPk(x)

)
=

n∏
j=1

(
2k +m− (2j − 1)

)
Dr(n){h(x0, r)}ωPk(x),

with n a positive integer.

Proof. We first prove that for any twice continuously differentiable R-valued
function g(x0, r) in the variables x0 and r the following equalities hold

∆x(gPk) =
(
∂2

x0
g + ∂2

rg + (2k +m− 1)Dr(1){g}
)
Pk,

∆x(gωPk) =
(
∂2

x0
g + ∂2

rg + (2k +m− 1)Dr(1){g}
)
ωPk.

In fact, it follows that

∆x ω = −∂2
x ω = (m− 1)∂x

(
1
r

)
= −(m− 1)

r2
ω

and

∆xg = ∂2
x0
g + ∆xg = ∂2

x0
g − ∂x(ω∂rg)

= ∂2
x0
g + ∂2

rg +
m− 1
r

∂rg.

Therefore

∆x(gPk) = (∆xg)Pk + 2
m∑

j=1

(∂xjg)(∂xjPk) + g(∆xPk)
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=
(
∂2

x0
g + ∂2

rg +
m− 1
r

∂rg

)
Pk + 2

∂rg

r
ExPk

=
(
∂2

x0
g + ∂2

rg +
2k +m− 1

r
∂rg

)
Pk

=
(
∂2

x0
g + ∂2

rg + (2k +m− 1)Dr(1){g}
)
Pk

and

∆x(gωPk) = (∆x ω)gPk + 2
m∑

j=1

(∂xjω)(∂xj (gPk)) + ω∆x(gPk)

= −(m− 1)
r2

gωPk + 2
m∑

j=1

(ej
r
− xj

r2
ω
)(xj

r
(∂rg)Pk + g(∂xjPk)

)

+
(
∂2

x0
g + ∂2

rg +
2k +m− 1

r
∂rg

)
ωPk

=
(
∂2

x0
g + ∂2

rg + (2k +m− 1)
(
∂rg

r
− g

r2

))
ωPk

=
(
∂2

x0
g + ∂2

rg + (2k +m− 1)Dr(1){g}
)
ωPk.

The proof now follows by induction using the previous equalities together
with statements (i) and (v) of Lemma 3.1.

It is clear that the lemma is true in the case n = 1. Assume that the
formulae hold for a positive integer n; we will prove them for n+ 1.

We thus get

∆n+1
x

(
hPk

)
=

n∏
j=1

(
2k +m− (2j − 1)

)
∆x

(
Dr(n){h}Pk

)

=
n∏

j=1

(
2k +m− (2j − 1)

)
×
(
∂2

x0
Dr(n){h}+ ∂2

rDr(n){h}+ (2k +m− 1)Dr(n+ 1){h}
)
Pk
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=
n∏

j=1

(
2k +m− (2j − 1)

)
×
(
Dr(n){∂2

x0
h+ ∂2

rh}+ (2k +m− (2n+ 1))Dr(n+ 1){h}
)
Pk

=
n+1∏
j=1

(
2k +m− (2j − 1)

)
Dr(n+ 1){h}Pk,

which establishes the first formula. The other one may be proved similarly.
�

We are now ready to present our alternative proof of Sommen’s gene-
ralization.
Proof. By Lemma 3.2, we get that

∆
k+m−1

2
x

[(
u(x0, r) + ω v(x0, r)

)
Pk(x)

]
= (2k +m− 1)!!

(
A(x0, r) + ωB(x0, r)

)
Pk(x),

with

A = Dr

(
k +

m− 1
2

)
{u},

B = Dr

(
k +

m− 1
2

)
{v}.

The task is now to prove that A and B satisfy the Vekua-type system (1.11).
In order to do that, it will be necessary to use the assumptions on u and v
and statements (iii)-(iv) of Lemma 3.1.

Indeed,

∂x0A− ∂rB = Dr

(
k +

m− 1
2

)
{∂x0u} − ∂rD

r

(
k +

m− 1
2

)
{v}

= Dr

(
k +

m− 1
2

)
{∂rv} − ∂rD

r

(
k +

m− 1
2

)
{v}

=
2k +m− 1

r
Dr

(
k +

m− 1
2

)
{v}

=
2k +m− 1

r
B
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and

∂x0B + ∂rA = Dr

(
k +

m− 1
2

)
{∂x0v}+ ∂rDr

(
k +

m− 1
2

)
{u}

= Dr

(
k +

m− 1
2

)
{∂x0v}+Dr

(
k +

m− 1
2

)
{∂ru}

= Dr

(
k +

m− 1
2

)
{∂x0v + ∂ru}

= 0,

which completes the proof. �

We conclude the section with some examples.

Example 3.1. Let f(z) = iz. It easily follows that

Dr(n){r} = (−1)n+1 (2n− 3)!!
r2n−1

,

Dr(n){x0} = (−1)n (2n− 1)!!
r2n

x0.

We thus get the monogenic function(
1

r2k+m−2
+

(2k +m− 2)x0x

r2k+m

)
Pk(x).

Example 3.2. Consider f(z) = 1/z. It is easy to check that

Dr(n)
{

x0

x2
0 + r2

}
= (−1)n 2nn!x0

(x2
0 + r2)n+1

,

Dr(n)
{

r

x2
0 + r2

}
= (−1)n 2nn!r

(x2
0 + r2)n+1

.

With this choice of initial function, we obtain the well-known monogenic
function (

x

|x|2k+m+1

)
Pk(x).
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Example 3.3 (The Gauss-distribution in Clifford analysis). Choose f(z) =
exp(z2/2). It may be proved that

Dr(n)
{

exp
(
x2

0 − r2

2

)}
= (−1)n exp

(
x2

0 − r2

2

)
,

Dr(n){cos(x0r)} =
n∑

s=1

a(n)
s

xs
0

r2n−s
cos(x0r + sπ/2),

Dr(n){sin(x0r)} =
n∑

s=0

a
(n+1)
s+1

xs
0

r2n−s
sin(x0r + sπ/2),

with

a
(n)
1 = (−1)n+1(2n− 3)!!,

a(n+1)
s = −(2n− s)a(n)

s + a
(n)
s−1, s = 2, . . . , n,

a(n)
n = 1.

By statements (vi) and (vii) of Lemma 3.1, we see that

Dr(n)
{

exp
(
x2

0 − r2

2

)
cos(x0r)

}
= exp

(
x2

0 − r2

2

) n∑
s=0

(
n

s

)
(−1)n−sDr(s){cos(x0r)},

Dr(n)
{

exp
(
x2

0 − r2

2

)
sin(x0r)

}
= exp

(
x2

0 − r2

2

) n∑
s=0

(
n

s

)
(−1)n−sDr(s){sin(x0r)}.
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Hence

exp
(
x2

0 − r2

2

)k+m−1
2∑

s=0

(
k + m−1

2

s

)
(−1)k+m−1

2
−sDr(s){cos(x0r)}

+ω
k+m−1

2∑
s=0

(
k + m−1

2

s

)
(−1)k+m−1

2
−sDr(s){sin(x0r)}

Pk(x) (3.2)

is a monogenic function.

Note that for k = 0 the restriction of the function (3.2) to x0 = 0 is

(−1)
m−1

2 exp(−|x|2/2).

Therefore, for k = 0, (3.2) equals, up to a multiplicative constant, the CK-
extension of exp(−|x|2/2). We thus have obtained a closed formula for the
CK-extension of the Gauss-distribution in Rm.

For the particular case k = 0 and m = 3, the function (3.2) is equal to

exp
(
x2

0 − r2

2

)(
cos(x0r) +

x0

r
sin(x0r)

+ ω

(
sin(x0r) +

sin(x0r)
r2

− x0

r
cos(x0r)

))
.

The CK-extension of exp(−|x|2/2) is also equal to (see [45])

exp(−|x|2/2)
∞∑

n=0

xn
0

n!
Hn(x),

where the functions Hn(x) are polynomials in x of degree n with real coef-
ficients and satisfy the recurrence formula

Hn+1(x) = xHn(x)− ∂xHn(x).

The polynomials Hn(x) are called radial Hermite polynomials (see e.g. [31,
116]).
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3.2 Generalized Fueter’s theorem

Qian and Sommen proposed in [97] a new generalization of Fueter’s theorem
using monogenic vector-valued functions as initial functions instead of the
usual holomorphic functions.

In this section our goal is to show that it is possible, in general starting
from monogenic functions in a certain Clifford algebra, to generate mono-
genic functions in another Clifford algebra of higher dimension. In this way
we present the most general form of Fueter’s theorem obtained thus far.

Consider the decomposition Rm =
⊕d

s=1 Rps , where p1, . . . , pd are posi-
tive integers such that

∑d
s=1 ps = m. For any x ∈ Rm, we may write

x =
d∑

s=1

x(s), x(s) =
ps∑

j=1

x
(s)
j e

(s)
j

and accordingly

∂x =
d∑

s=1

∂x(s) , ∂x(s) =
ps∑

j=1

e
(s)
j ∂

x
(s)
j

where the meaning of the notations x(s)
j and e(s)j is obvious.

We will denote by R0,d the real Clifford algebra generated by the ele-
ments Es, s = 1, . . . , d, with the usual multiplication rules

E2
s = −1, s = 1, . . . , d,

EsEs′ + Es′Es = 0, 1 ≤ s 6= s′ ≤ d.

In what follows, we will consider an arbitrary but fixed function G on Rd+1

with values in R0,d in the variables y0, y1, . . . , yd. Such a function can be
written as

G(y0, y1, . . . , yd) =
∑
B

GB(y0, y1, . . . , yd)EB
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where EB = Eβ1 · · ·Eβl
and B = {β1, . . . , βl} ⊂ {1, . . . , d} is such that

β1 < · · · < βl.

We will also assume that the function G is monogenic with respect to
the generalized Cauchy-Riemann operator

∂y0 + ∂y = ∂y0 +
d∑

s=1

Es∂ys

in some open subset Ξ ⊂
{
(y0, y1, . . . , yd) ∈ Rd+1 : ys > 0, s = 1, . . . , d

}
,

i.e.
(∂y0 + ∂y)G = 0,

or equivalently, for each l = 0, . . . , d

∑
|B|=l−1

d∑
s=1
s/∈B

∂ysGBEsEB +
∑
|B|=l

∂y0GBEB

+
∑

|B|=l+1

l+1∑
s=1

(−1)s∂yβs
GBEB\{βs} = 0. (3.3)

We prove the following generalization of Fueter’s theorem.

Theorem 3.1 Let G be as above. Assume ps (s = 1, 2, . . . , d) to be odd
and let

Pk(x) =
d∏

s=1

Pks

(
x(s)
)

with k =
∑d

s=1 ks and Pks

(
x(s)
)

a homogeneous monogenic polynomial of
degree ks in Rps with values in the real Clifford algebra constructed over
Rps. Then

∆
k+m−d

2
x

[(∑
B

GB(x0, r1, . . . , rd)ωB

)
Pk(x)

]
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is monogenic in Ω̃ = {x ∈ Rm+1 : (x0, r1, . . . , rd) ∈ Ξ}. Here, for any B =
{β1, . . . , βl} ⊂ {1, . . . , d} with β1 < · · · < βl, we have put ωB = ωβ1

· · ·ωβl

and ω∅ = 1, where ωs = x(s)/rs, with rs = |x(s)|, s = 1, . . . , d.

We have divided the proof into a series of lemmata.

Lemma 3.3 (Generalized Leibniz Rule) Let f and g be two Clifford
algebra-valued continuously differentiable functions defined in some open
set of Rm. Then

∂x(fg) = (∂xf)g +
m∑

k=0

(−1)k[f ]k(∂xg) + 2
m∑

k=1

m∑
j=1

[
ej [f ]k

]
k−1

(∂xjg)

= (∂xf)g +
m∑

k=0

(−1)k−1[f ]k(∂xg) + 2
m−1∑
k=0

m∑
j=1

[
ej [f ]k

]
k+1

(∂xjg).

Proof. Let us write f as f =
∑m

k=0[f ]k. We then have that

∂x(fg) =
m∑

j=1

ej
(
(∂xjf)g + f(∂xjg)

)
= (∂xf)g +

m∑
k=0

m∑
j=1

ej [f ]k(∂xjg),

while also

ej [f ]k = (−1)k[f ]kej + 2
[
ej [f ]k

]
k−1

= (−1)k−1[f ]kej + 2
[
ej [f ]k

]
k+1

.

From the above it follows that

∂x(fg) = (∂xf)g +
m∑

k=0

(−1)k[f ]k(∂xg) + 2
m∑

k=1

m∑
j=1

[
ej [f ]k

]
k−1

(∂xjg)

= (∂xf)g +
m∑

k=0

(−1)k−1[f ]k(∂xg) + 2
m−1∑
k=0

m∑
j=1

[
ej [f ]k

]
k+1

(∂xjg),

which establishes the formulae. �



54 CK-extensions, Fueter’s theorems and boundary values

Lemma 3.4 Let AB(x0, r1, . . . , rd) be R-valued continuously differentiable
functions in the variables x0, r1, . . . , rd. Then the function(∑

B

AB(x0, r1, . . . , rd)ωB

)
Pk(x)

is monogenic if for each l = 0, . . . , d ∑
|B|=l−1

d∑
j=1, j /∈B

∂rjAB ωjωB +
∑
|B|=l

∂x0ABωB

+
∑

|B|=l+1

l+1∑
j=1

(−1)j

(
∂rβj

AB +
2kβj

+ pβj
− 1

rβj

AB

)
ωB\{βj}

Pk(x) = 0.

Proof. We first observe that

∂
x(βj)ωB = (−1)j−1

(
∂

x(βj)ωβj

)
ωB\{βj}

= (−1)j (pβj
− 1)

rβj

ωB\{βj},

whence

∂xωB =
l∑

j=1

(−1)j (pβj
− 1)

rβj

ωB\{βj}.

Applying the Leibniz rule of Lemma 3.3 yields

∂x

(
ABωBPk(x)

)
=

 d∑
j=1

∂rjABωjωB +AB

l∑
j=1

(−1)j (pβj
− 1)

rβj

ωB\{βj}

Pk(x)

+(−1)lABωB

(
∂xPk(x)

)
+ 2AB

 l∑
j=1

(−1)j kβj

rβj

ωB\{βj}

Pk(x)
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=

 d∑
j=1, j /∈B

∂rjABωjωB

+
l∑

j=1

(−1)j

(
∂rβj

AB +
2kβj

+ pβj
− 1

rβj

AB

)
ωB\{βj}

Pk(x).

Hence

∂x

[(∑
B

AB ωB

)
Pk(x)

]

=

∑
B

 d∑
j=1, j /∈B

∂rjAB ωjωB + ∂x0ABωB

+
l∑

j=1

(−1)j

(
∂rβj

AB +
2kβj

+ pβj
− 1

rβj

AB

)
ωB\{βj}

Pk(x)

=
d∑

l=0

 ∑
|B|=l−1

d∑
j=1, j /∈B

∂rjAB ωjωB +
∑
|B|=l

∂x0ABωB

+
∑

|B|=l+1

l+1∑
j=1

(−1)j

(
∂rβj

AB +
2kβj

+ pβj
− 1

rβj

AB

)
ωB\{βj}

Pk(x),

which proves the lemma. �

Lemma 3.5 If h(x0, r1, . . . , rd) is an R-valued harmonic function in the
variables x0, r1, . . . , rd, then

∂2
x0

d∏
s=1
s/∈B

Drs(ns)
l∏

c=1

Drβc (nβc){h}+
d∑

j=1

∂2
rj

d∏
s=1
s/∈B

Drs(ns)
l∏

c=1

Drβc (nβc){h}
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= −2
d∑

j=1
j /∈B

nj

d∏
s=1

s/∈B∪{j}

Drs(ns)
l∏

c=1

Drβc (nβc)Drj (nj + 1){h}

−2
l∑

j=1

nβj

d∏
s=1
s/∈B

Drs(ns)
l∏

c=1
c 6=j

Drβc (nβc)D
rβj (nβj

+ 1){h}.

Proof. From the statements (i) and (v) of Lemma 3.1, it follows that

∂2
x0

d∏
s=1
s/∈B

Drs(ns)
l∏

c=1

Drβc (nβc){h}+
d∑

j=1

∂2
rj

d∏
s=1
s/∈B

Drs(ns)
l∏

c=1

Drβc (nβc){h}

=
d∏

s=1
s/∈B

Drs(ns)
l∏

c=1

Drβc (nβc){∂2
x0
h}

+
d∑

j=1
j /∈B

d∏
s=1

s/∈B∪{j}

Drs(ns)
l∏

c=1

Drβc (nβc)∂
2
rj
Drj (nj){h}

+
l∑

j=1

d∏
s=1
s/∈B

Drs(ns)
l∏

c=1
c 6=j

Drβc (nβc)∂
2
rβj
D

rβj (nβj
){h}

=
d∏

s=1
s/∈B

Drs(ns)
l∏

c=1

Drβc (nβc){∂2
x0
h}

+
d∑

j=1
j /∈B

d∏
s=1

s/∈B∪{j}

Drs(ns)
l∏

c=1

Drβc (nβc)
{
Drj (nj){∂2

rj
h} − 2njDrj (nj + 1){h}

}

+
l∑

j=1

d∏
s=1
s/∈B

Drs(ns)
l∏

c=1
c 6=j

Drβc (nβc)
{
D

rβj (nβj
){∂2

rβj
h}−2nβj

D
rβj (nβj

+1){h}
}
.
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Therefore

∂2
x0

d∏
s=1
s/∈B

Drs(ns)
l∏

c=1

Drβc (nβc){h}+
d∑

j=1

∂2
rj

d∏
s=1
s/∈B

Drs(ns)
l∏

c=1

Drβc (nβc){h}

=
d∏

s=1
s/∈B

Drs(ns)
l∏

c=1

Drβc (nβc)
{
∂2

x0
h+

d∑
j=1

∂2
rj
h
}

−2
d∑

j=1
j /∈B

nj

d∏
s=1

s/∈B∪{j}

Drs(ns)
l∏

c=1

Drβc (nβc)Drj (nj + 1){h}

−2
l∑

j=1

nβj

d∏
s=1
s/∈B

Drs(ns)
l∏

c=1
c 6=j

Drβc (nβc)D
rβj (nβj

+ 1){h}

= −2
d∑

j=1
j /∈B

nj

d∏
s=1

s/∈B∪{j}

Drs(ns)
l∏

c=1

Drβc (nβc)Drj (nj + 1){h}

−2
l∑

j=1

nβj

d∏
s=1
s/∈B

Drs(ns)
l∏

c=1
c 6=j

Drβc (nβc)D
rβj (nβj

+ 1){h},

which proves the statement. �

Lemma 3.6 Assume that h(x0, r1, . . . , rd) is an R-valued harmonic func-
tion in the variables x0, r1, . . . , rd. Then

∆n
x

(
hωBPk(x)

)
=

(∑ n!
n1! · · ·nd!

d∏
s=1

dks,ps(ns)
d∏

s=1
s/∈B

Drs(ns)

×
l∏

c=1

Drβc (nβc){h}

)
ωBPk(x)
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where the summation runs over all possible n1, . . . , nd ∈ N0 such that

d∑
s=1

ns = n,

and

dks,ps(ns) = (2ks + ps − 1)(2ks + ps − 3) · · · (2ks + ps − (2ns − 1))
dks,ps(0) = 1.

Proof. Suppose that g(x0, r1, . . . , rd) is a twice continuously differentiable
R-valued function in the variables x0, r1, . . . , rd and let

∆x(s) =
ps∑

j=1

∂2

x
(s)
j

, s = 1, . . . , d.

It follows that

∆x(s)

(
g ωBPk

)
=
(
∂2

rs
g + (2ks + ps − 1)Drs(1){g}

)
ωBPk, s /∈ B,

∆x(βs)

(
g ωBPk

)
=
(
∂2

rβs
g+ (2kβs + pβs − 1)Drβs (1){g}

)
ωBPk, s = 1, . . . , l.

We thus get

∆x

(
g ωBPk

)
=

(
∂2

x0
g +

d∑
s=1

∂2
rs
g +

d∑
s=1
s/∈B

(2ks + ps − 1)Drs(1){g}

+
l∑

s=1

(2kβs + pβs − 1)Drβs (1){g}

)
ωBPk.

The proof now follows by induction using the above equality and Lemma
3.5. �

We can now prove Theorem 3.1.
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Proof. Our proof starts with the observation that m−d is even if p1, . . . , pd

are odd. Indeed, observe that m− d =
∑d

s=1(ps − 1). Since each ps − 1 is
even, so is m− d.

Next, by Lemma 3.6, we have

∆
k+m−d

2
x

[(∑
B

GB(x0, r1, . . . , rd)ωB

)
Pk(x)

]

= (2k +m− d)!!

(∑
B

AB(x0, r1, . . . , rd)ωB

)
Pk(x),

with

AB =
d∏

s=1
s/∈B

Drs

(
ks +

ps − 1
2

) l∏
c=1

Drβc

(
kβc +

pβc − 1
2

)
{GB}.

Statements (iii) and (iv) of Lemma 3.1 imply that for each l = 0, . . . , d

∑
|B|=l−1

d∑
j=1
j /∈B

∂rjAB ωjωB =
∑

|B|=l−1

d∑
j=1
j /∈B

d∏
s=1

s/∈B∪{j}

Drs

(
ks +

ps − 1
2

)

×
l−1∏
c=1

Drβc

(
kβc +

pβc − 1
2

)
∂rjDrj

(
kj +

pj − 1
2

)
{GB}ωjωB

=
∑

|B|=l−1

d∑
j=1
j /∈B

d∏
s=1

s/∈B∪{j}

Drs

(
ks +

ps − 1
2

)

×
l−1∏
c=1

Drβc

(
kβc +

pβc − 1
2

)
Drj

(
kj +

pj − 1
2

){
∂rjGB

}
ωjωB

and
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∑
|B|=l+1

l+1∑
j=1

(−1)j

(
∂rβj

AB +
2kβj

+ pβj
− 1

rβj

AB

)
ωB\{βj}

=
∑

|B|=l+1

l+1∑
j=1

(−1)j

(
d∏

s=1, s/∈B

Drs

(
ks +

ps − 1
2

)

×
l+1∏
c=1
c 6=j

Drβc

(
kβc +

pβc − 1
2

){
∂rβj

D
rβj

(
kβj

+
pβj

− 1
2

)
{GB}

+
(2kβj

+ pβj
− 1)

rβj

D
rβj

(
kβj

+
pβj

− 1
2

)
{GB}

})
ωB\{βj}

=
∑

|B|=l+1

l+1∑
j=1

(−1)j
d∏

s=1
s/∈B\{βj}

Drs

(
ks +

ps − 1
2

)

×
l+1∏
c=1
c 6=j

Drβc

(
kβc +

pβc − 1
2

)
{∂rβj

GB}ωB\{βj}.

From the above it follows that for each l = 0, . . . , d ∑
|B|=l−1

d∑
j=1, j /∈B

∂rjAB ωjωB +
∑
|B|=l

∂x0AB ωB

+
∑

|B|=l+1

l+1∑
j=1

(−1)j

(
∂rβj

AB +
2kβj

+ pβj
− 1

rβj

AB

)
ωB\{βj}

Pk(x)

=
1

(2k +m− d)!!
∆

k+m−d
2

x

[( ∑
|B|=l−1

d∑
j=1
j /∈B

∂rjGB ωjωB +
∑
|B|=l

∂x0GB ωB
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+
∑

|B|=l+1

l+1∑
j=1

(−1)j∂rβj
GB ωB\{βj}

)
Pk(x)

]
= 0,

where the last equality is a consequence of (3.3). The theorem immediately
follows from Lemma 3.4. �

It is worth pointing out that the conclusion of Theorem 3.1 does not
hold in general if some of the integers ps are even. For instance, for d =
p1 = p2 = 2, k = 0 and G(y0, y1, y2) = y1 + y2 − y0E1 − y0E2, we have

∂x∆x(r1 + r2 − x0ω1 − x0ω2) = x0

(
1
r31

+
1
r32

)
6= 0.

For this generalized version of Fueter’s theorem, we also compute some
examples.

Example 3.4. Let

G(y0, y1, . . . , yd) =
d∏

s=1

ys − y0

d∑
j=1

d∏
s=1
s 6=j

ysEj .

It is easy to check that

d∏
s=1

Drs

(
ks +

ps − 1
2

){ d∏
s=1

rs

}
= (−1)k+m+d

2

d∏
s=1

(2ks + ps − 4)!!

r2ks+ps−2
s

,

d∏
s=1
s 6=j

Drs

(
ks +

ps − 1
2

)
Drj

(
kj +

pj − 1
2

)
d∏

s=1
s 6=j

rs


= (−1)k+m+d

2
−1 (2kj + pj − 2)!!

r
2kj+pj−1
j

d∏
s=1
s 6=j

(2ks + ps − 4)!!

r2ks+ps−2
s

.
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Therefore

1
C

∆
k+m−d

2
x


 d∏

s=1

rs − x0

d∑
j=1

d∏
s=1
s 6=j

rsωj

Pk(x)



=

 d∏
s=1

1

r2ks+ps−2
s

+ x0

d∑
j=1

(2kj + pj − 2)
d∏

s=1
s 6=j

1

r2ks+ps−2
s

x(j)

r
2kj+pj

j

Pk(x),

where

C = (−1)k+m+d
2 (2k +m− d)!!

d∏
s=1

(2ks + ps − 4)!!

is a monogenic function.

Example 3.5. Consider the fundamental solution

G(y0, y1, . . . , yd) =
y0 −

∑d
j=1 yjEj

(y2
0 +

∑d
j=1 y

2
j )

d+1
2

of ∂y0 + ∂y.

As
d∏

s=1

Drs

(
ks +

ps − 1
2

){
1

(x2
0 +

∑d
j=1 r

2
j )

d+1
2

}

= (−1)k+m−d
2

(2k +m− 1)!!
(d− 1)!!

1

(x2
0 +

∑d
j=1 r

2
j )

k+m+1
2

,

d∏
s=1
s 6=j

Drs

(
ks +

ps − 1
2

)
Drj

(
kj +

pj − 1
2

){
rj

(x2
0 +

∑d
j=1 r

2
j )

d+1
2

}

= (−1)k+m−d
2

(2k +m− 1)!!
(d− 1)!!

rj

(x2
0 +

∑d
j=1 r

2
j )

k+m+1
2

,
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we obtain the monogenic function

1
C

∆
k+m−d

2
x

[(
x

|x|d+1

)
Pk(x)

]
=
(

x

|x|2k+m+1

)
Pk(x),

where

C = (−1)k+m−d
2 (2k +m− d)!!

(2k +m− 1)!!
(d− 1)!!

.

Example 3.6. Consider the steering monogenic function

G(y0, y1, . . . , yd) =
E1(∑d

j=2 y
2
j

) d−3
2

− (d− 3)
2

(y1 + y0E1)

∑d
j=2 yjEj(∑d
j=2 y

2
j

) d−1
2

.

A direct computation shows that

d∏
s=2

Drs

(
ks +

ps − 1
2

)
Dr1

(
k1 +

p1 − 1
2

){
1

(
∑d

j=2 r
2
j )

d−3
2

}

= (−1)k+m−d
2

(2k1 + p1 − 2)!!

r2k1+p1−1
1

×
(
2(k − k1) +m− p1 − 4

)
!!

(d− 5)!!
1

(
∑d

j=2 r
2
j )

k−k1+
m−p1−2

2

,

d∏
s=1
s 6=j

Drs

(
ks +

ps − 1
2

)
Drj

(
kj +

pj − 1
2

){
r1rj

(
∑d

j=2 r
2
j )

d−1
2

}

= (−1)k+m−d
2

+1 (2k1 + p1 − 4)!!

r2k1+p1−2
1

×
(
2(k − k1) +m− p1 − 2

)
!!

(d− 3)!!
rj

(
∑d

j=2 r
2
j )

k−k1+
m−p1

2

,
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and
d∏

s=1
s 6=1,j

Drs

(
ks +

ps − 1
2

)
Dr1

(
k1 +

p1 − 1
2

)

×Drj

(
kj +

pj − 1
2

){
rj

(
∑d

j=2 r
2
j )

d−1
2

}

= (−1)k+m−d
2

(2k1 + p1 − 2)!!

r2k1+p1−1
1

×
(
2(k − k1) +m− p1 − 2

)
!!

(d− 3)!!
rj

(
∑d

j=2 r
2
j )

k−k1+
m−p1

2

.

We thus get the monogenic function

1
C

∆
k+m−d

2
x

[(
ω1

(|x|2 − |x(1)|2)
d−3
2

−(d− 3)
2

(r1 + x0ω1)
x− x(1)

(|x|2 − |x(1)|2)
d−1
2

)
Pk(x)

]

=

(
(2k1 + p1 − 2)x(1)

r2k1+p1
1

1

(|x|2 − |x(1)|2)k−k1+
m−p1−2

2

+

(
2(k − k1) +m− p1 − 2

)
2

(
1

r2k1+p1−2
1

− (2k1 + p1 − 2)x0x
(1)

r2k1+p1
1

)

× (x− x(1))

(|x|2 − |x(1)|2)k−k1+
m−p1

2

)
Pk(x),

where

C = (−1)k+m−d
2 (2k +m− d)!!(2k1 + p1 − 4)!!

(
2(k − k1) +m− p1 − 4

)
!!

(d− 5)!!
.



Chapter 4

The jump problem for
Hermitean monogenic
functions

In this chapter we study the problem of finding a Hermitean monogenic
function with a given jump on a given surface in Rm, m = 2n. Necessary
and sufficient conditions for the solvability of this boundary value problem
are obtained (see [10]).

4.1 Introduction

Hermitean Clifford analysis deals with the simultaneous null solutions of the
orthogonal Dirac operator ∂x and its twisted counterpart ∂x|, introduced
below. For a thorough treatment of this higher dimensional function theory
we refer the reader to e.g. [24, 25, 27, 101, 102].

Let m = 2n. The Clifford vector x in Rm and the Dirac operator ∂x

65
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may thus be written respectively as

x =
n∑

j=1

(xjej + xn+jen+j)

and

∂x =
n∑

j=1

(ej∂xj + en+j∂xn+j ).

We also introduce for each Clifford vector x its twisted counterpart

x| =
n∑

j=1

(xn+jej − xjen+j).

Note that x|2 = −|x||2 = −|x|2. Also observe that the Clifford vectors x
and x| are orthogonal with respect to the standard Euclidean inner product,
which implies that x and x| anticommute.

Consider the Fischer dual of the vector x| given by

∂x| =
n∑

j=1

(ej∂xn+j − en+j∂xj ).

We notice that this twisted Dirac operator also factorizes the Laplace ope-
rator, i.e. ∆x = −∂2

x| and that ∂x∂x| = −∂x|∂x. Its fundamental solution is
the function

E|(x) = − 1
ω2n

x|
|x|2n

, x ∈ R2n \ {0}.

Definition 4.1 A continuously differentiable function f in an open set Ω
of R2n with values in C2n is called a (left) Hermitean monogenic (or h-
monogenic) function in Ω if and only if it satisfies in Ω the system

∂xf = ∂x|f = 0.
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The aim of this chapter is to study the following jump problem for h-
monogenic functions: under which conditions can we decompose a given
f ∈ C(Σ) as

f = f+ − f−, (4.1)

where f± ∈ C(Σ) are extendable to h-monogenic functions F± in Ω± with
F−(∞) = 0?

We recall that throughout the thesis we assume Ω+ to be a simply
connected bounded and open set in R2n, Ω− = R2n \Ω+, Σ is the boundary
surface of Ω+, and H2n−1(Σ) <∞.

It should be noticed that if this jump problem has a solution then it
is unique. This may easily be proved using the Painlevé and Liouville
theorems in the Clifford analysis setting (see [8, 26]).

This work is motivated by the results obtained in [3, 4] where a similar
problem was studied for two-sided monogenic functions. For the case of
harmonic vector fields we refer the reader to [14].

In order to solve the problem (4.1) we propose two different approaches.
The first one uses an integral criterion for h-monogenicity; the second one
is based on a new conservation law for h-monogenic functions.

4.2 Integral criterion for h-monogenicity

In this section we require Σ to be an AD-regular surface. We also assume
that f belongs to a generalized Hölder space Hϕ(Σ), where ϕ is a regular
majorant.

Let us consider the twisted version CΣ|f of the Cauchy type integral
and its singular version SΣ|f , defined as:

CΣ|f(x) =
∫

Σ
E|(y − x)ν|(y)f(y) dH2n−1(y),

SΣ|f(z) = 2 lim
ε→0+

∫
Σ\B(z,ε)

E|(y − z)ν|(y)(f(y)− f(z)) dH2n−1(y) + f(z),
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for x ∈ R2n \ Σ and z ∈ Σ.

It is easily seen that CΣ|f is monogenic in R2n \ Σ with respect to ∂x|
and that CΣ|f(∞) = 0.

We now mention two important properties of these integral operators
which can be derived similarly to those holding for the Cauchy type integral
and its singular version given in [7]:

(a) SΣ|f ∈ Hϕ(Σ);

(b) for z ∈ Σ,

CΣ|±f(z) = lim
Ω±3x→z

CΣ|f(x) =
1
2
(
SΣ|f(z)± f(z)

)
.

Theorem 4.1 (integral criterion) The function f has an h-monogenic
extension F± to Ω±, F−(∞) = 0, if and only if SΣf = ±f = SΣ|f .

Proof. Suppose that f has an h-monogenic extension F+ to Ω+. By
Cauchy’s integral formula, we have

CΣf(x) = F+(x) = CΣ|f(x), x ∈ Ω+.

Theorem 1.5 and property (b) now imply that

SΣf = f = SΣ|f. (4.2)

Conversely, assume that SΣf = f = SΣ|f . Then, from (4.2) and using once
more Theorem 1.5 and property (b) we obtain

C+
Σf = f = CΣ|+f

Note that CΣf − CΣ|f is harmonic in Ω+ and that C+
Σf − CΣ|+f = 0. The

maximum principle for harmonic functions now yields CΣf = CΣ|f in Ω+,
whence CΣf is h-monogenic in Ω+. Therefore by putting

F+(x) =
{

CΣf(x), x ∈ Ω+

f(x), x ∈ Σ
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we obtain an h-monogenic extension of f to Ω+. The statement for Ω− is
proved similarly. �

We are now in the position to give a first solution to (4.1). We first
claim that if f can be decomposed as in (4.1) with f± ∈ Hϕ(Σ), then
SΣf = SΣ|f . Indeed, Theorem 4.1 now leads to

SΣf = SΣf
+ − SΣf

− = SΣ|f+ − SΣ|f− = SΣ|f.

On the other hand, if SΣf = SΣ|f , then an analysis similar to the one in
the proof of Theorem 4.1 shows that CΣf = CΣ|f , which implies that CΣf
is h-monogenic in R2n\Σ. Finally, on account of Theorems 1.5 and 1.7, and
properties (a) and (b), we conclude that f± = C±Σf = CΣ|±f is a solution
of the jump problem (4.1).

The above observations are summarized in the theorem below.

Theorem 4.2 Let Σ be an AD-regular surface and let f ∈ Hϕ(Σ), where
ϕ is a regular majorant. The following statements are equivalent:

(i) f can be decomposed as in (4.1) with f± ∈ Hϕ(Σ);

(ii) SΣf = SΣ|f ;

(iii) CΣf = CΣ|f ;

(iv) CΣf is h-monogenic in R2n \ Σ.

Moreover, if the jump problem (4.1) is solvable then its unique solution is
given by f± = C±Σf = CΣ|±f .

4.3 Conservation law for h-monogenic functions

In the remainder of this chapter we assume Σ to be a C1-smooth surface
and f ∈ C1(Σ). Then for x sufficiently close to Σ we may assume that the
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orthogonal projection of x onto Σ is unique and it is denoted by x⊥. Let
us denote by ν the unit normal vector on Σ at the point x⊥.

In a neighbourhood of Σ we have the decomposition of ∂x in its normal
and its tangential parts (see [115]):

∂x = −ν(ν ∂x) = ν ∂ν + ∂‖x, (4.3)

where
∂ν = 〈ν, ∂x〉 and ∂‖x = −ν(ν ∧ ∂x).

Similarly,
∂x| = −ν|(ν| ∂x|) = ν| ∂ν + ∂‖x|, (4.4)

with
∂‖x| = −ν|(ν| ∧ ∂x|).

The restrictions of the operators ∂‖x and ∂‖x| to Σ will be denoted by ∂ω

and ∂ω| respectively.

Let us suppose that F ∈ C1(Ω+) is a monogenic function in Ω+ with
respect to ∂x and put g = F |Σ. If moreover F is h-monogenic in Ω+, then
from (4.3) and (4.4) we obtain that in a neighbourhood of Σ intersected
with Ω+

∂νF − ν ∂‖xF = 0,

∂νF − ν| ∂‖x|F = 0.

In this way ν ∂‖xF = ν| ∂‖x|F in a neighbourhood of Σ intersected with Ω+.
By continuity, we get the relation

ν|ν ∂ωg + ∂ω|g = 0 (4.5)

on Σ. On the other hand, if g satisfies (4.5), then for G = ∂x|F we have

G = ν|∂νF + ∂‖x|F,

0 = ν∂νF + ∂‖xF.
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Therefore in a neighbourhood of Σ intersected with Ω+, we obtain

G = ν|ν ∂‖xF + ∂‖x|F.

It immediately follows that G|Σ = ν|ν ∂ωg+∂ω|g = 0. As G is h-monogenic
in Ω+ and hence harmonic, we conclude that ∂x|F = G = 0 in Ω+.

Note that this analysis may also be applied to monogenic functions in
Ω− with respect to ∂x, which vanish at infinity.

We thus have proved the following.

Theorem 4.3 (conservation law) Let F± ∈ C1(Ω±) be a monogenic
function in Ω± with respect to ∂x, F−(∞) = 0. Then F± is an h-monogenic
function in Ω± if and only if g = F±|Σ satisfies (4.5).

Let us return to the jump problem (4.1). If f ∈ C1(Σ) can be decom-
posed as in (4.1) with f± ∈ C1(Σ), then Theorem 4.3 now gives

ν|ν ∂ωf + ∂ω|f = (ν|ν ∂ωf
+ + ∂ω|f

+)− (ν|ν ∂ωf
− + ∂ω|f

−) = 0.

Conversely, suppose that ν|ν ∂ωf + ∂ω|f = 0. Define f± = C±Σf . We will
prove that f± is a solution of (4.1). To this end, take G = ∂x|CΣf . It
follows that

G = ν|ν ∂‖xCΣf + ∂‖x|CΣf.

Consequently, the limit values G± of G taken from Ω± are given by

G± = ν|ν ∂ωC±Σf + ∂ω|C
±
Σf.

From Theorem 1.5 we see that G+ − G− = ν|ν ∂ωf + ∂ω|f = 0. As the
function G is h-monogenic in R2n \ Σ and vanishes at infinity we have
G ≡ 0 in R2n \Σ, the last equality being a consequence of the Painlevé and
Liouville theorems.

We thus arrive at another characterization for the solvability of the
jump problem (4.1).

Theorem 4.4 Let Σ be a C1-smooth surface and let f ∈ C1(Σ). The jump
problem (4.1) with f± ∈ C1(Σ) is solvable if and only if

ν|ν ∂ωf + ∂ω|f = 0.





Chapter 5

Isotonic Clifford analysis

In the first section we introduce so-called isotonic functions and we de-
rive an integral representation formula for them (see [119]). This formula
reduces on the one hand to the classical Bochner-Martinelli formula for
complex-valued solutions, and on the other hand to the Bochner-Martinelli
formula for biregular functions in case of real Clifford algebra-valued so-
lutions. Section 2 is devoted to the study of the boundary values of the
isotonic Cauchy type integral (see [9, 23]). In the last section we let this
integral operator act on continuous k-vector valued functions which gives
rise to certain Bochner-Martinelli type integrals.

5.1 Isotonic functions

For simplicity, but without loss of generality, we will assume that the di-
mension of Rm is even.

Let m = 2n and denote by Cn the complex Clifford algebra generated
by (e1, . . . , en). Next, we introduce the primitive idempotent

I =
n∏

j=1

Ij ,

73
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with
Ij =

1
2
(1 + iejen+j), j = 1, . . . , n.

The following conversion relations hold

en+jI = iejI, j = 1, . . . , n, (5.1)

and for a ∈ Cn we also have that

aI = 0 ⇔ a = 0. (5.2)

Below, we will need the following Clifford vectors and their corresponding
Dirac operators:

x1 =
n∑

j=1

xjej , ∂x1
=

n∑
j=1

ej∂xj

x2 =
n∑

j=1

xn+jej , ∂x2
=

n∑
j=1

ej∂xn+j .

Now consider two Clifford vectors x, y ∈ R0,2n, which may be written as

x =
n∑

j=1

(xjej + xn+jen+j), y =
n∑

j=1

(yjej + yn+jen+j).

For a ∈ Cn it follows that

xaI = x1aI +
n∑

j=1

xn+jen+jaI = x1aI + ã

n∑
j=1

xn+jen+jI,

whence application of (5.1) yields

xaI = (x1a+ iãx2)I. (5.3)

From the above equality, we deduce that

xyaI =
(
x1(y1

a+ iãy
2
) + (ay

2
− iy

1
ã)x2

)
I. (5.4)
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If we now take a continuously differentiable function f : Ω ⊂ R2n → Cn,
then we learn from (5.3) that

∂x(fI) =
(
∂x1

f + if̃∂x2

)
I,

whence it follows from (5.2) that the spinor-valued function fI is monogenic
if and only if (see [27, 101, 119])

∂x1
f + if̃∂x2

= 0.

Definition 5.1 A function f defined and continuously differentiable in an
open set Ω of R2n with values in Cn, which satisfies in Ω the above equation,
is said to be isotonic in Ω.

Note that an isotonic function is also harmonic. This may be easily
proved using (5.2) as well as the equalities

0 = ∆x(fI) = (∆xf)I.

The isotonic functions are closely related with the h-monogenic functions.
Indeed, fI is h-monogenic if and only if [f ]k is isotonic for k = 0, . . . , n (see
[27]).

It is worth noting that if in particular f takes values in the space of
scalars C, then f is isotonic if and only if(

∂xj + i∂xn+j

)
f = 0, j = 1, . . . , n,

which means that f is a holomorphic function in the complex variables
zj = xj + ixn+j , j = 1, . . . , n. On the other hand, if f takes values in the
real Clifford algebra R0,n, then f is isotonic if and only if

∂x1
f = f̃∂x2

= 0

or, equivalently, by the action of the main involution on the last equality:

∂x1
f = f∂x2

= 0.
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Definition 5.2 A continuously differentiable function f in an open set Ω
of R2n with values in R0,n is called biregular in Ω if and only if it satisfies
in Ω the system

∂x1
f = f∂x2

= 0.

The biregular functions were introduced by Brackx and Pincket as an ex-
tension to two Clifford variables of the monogenic functions in one Clifford
variable. For a detailed study we refer the reader to [28, 29, 30, 95, 113, 114].

We will now derive the basic integral formulae for the isotonic functions.
For that purpose, we put

ν1(y) =
n∑

j=1

νj(y)ej and ν2(y) =
n∑

j=1

νn+j(y)ej , y ∈ Σ.

Assume that f is a Cn-valued continuously differentiable function in Ω+.
By Borel-Pompeiu’s formula, we see that∫

Σ
E(y − x)ν(y)f(y)IdH2n−1(y)−

∫
Ω+

E(y − x)∂y(f(y)I)dL2n(y)

=
{
f(x)I for x ∈ Ω+,
0 for x ∈ Ω−.

The equality (5.4) now implies∫
Σ
E(y−x)ν(y)f(y)IdH2n−1(y) =

∫
Σ

(
E1(y−x)

(
ν1(y)f(y)+if̃(y)ν2(y)

)
+
(
f(y)ν2(y)− iν1(y)f̃(y)

)
E2(y − x)

)
IdH2n−1(y),

∫
Ω+

E(y − x)∂y(f(y)I)dL2n(y) =
∫

Ω+

(
E1(y − x)

(
∂y

1
f(y) + if̃(y)∂y

2

)
+
(
f(y)∂y

2
− i∂y

1
f̃(y)

)
E2(y − x)

)
IdL2n(y),
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where

E1(x) = − 1
ω2n

x1

|x|2n
and E2(x) = − 1

ω2n

x2

|x|2n
, x ∈ R2n \ {0}.

Now applying (5.2), we get the following results.

Theorem 5.1 If f is a Cn-valued continuously differentiable function in
Ω+, then∫

Σ

(
E1(y − x)

(
ν1(y)f(y) + if̃(y)ν2(y)

)
+
(
f(y)ν2(y)− iν1(y)f̃(y)

)
E2(y − x)

)
dH2n−1(y)

−
∫

Ω+

(
E1(y − x)

(
∂y

1
f(y) + if̃(y)∂y

2

)
+
(
f(y)∂y

2
− i∂y

1
f̃(y)

)
E2(y − x)

)
dL2n(y) =

{
f(x) for x ∈ Ω+,
0 for x ∈ Ω−.

Theorem 5.2 Let f be a Cn-valued continuous function on Ω+ which
moreover is isotonic in Ω+. Then

f(x) =
∫

Σ

(
E1(y − x)

(
ν1(y)f(y) + if̃(y)ν2(y)

)
+
(
f(y)ν2(y)− iν1(y)f̃(y)

)
E2(y − x)

)
dH2n−1(y), x ∈ Ω+.

Let us now mention two important consequences of the previous theorem.

Corollary 5.1 Suppose that f is a continuous function on Ω+ which more-
over is holomorphic in Ω+. Then for x ∈ Ω+ we have that

(i) f(x) = −
∫

Σ

〈
E1(y − x)− iE2(y − x), ν1(y) + iν2(y)

〉
f(y) dH2n−1(y),

(ii)
∫

Σ

(
E1(y − x) + iE2(y − x)

)
∧
(
ν1(y) + iν2(y)

)
f(y) dH2n−1(y) = 0.
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Proof. As we may assume f to be C-valued, we obtain (i) and (ii) respec-
tively as the scalar and the bivector part of the formula in Theorem 5.2.
�

Corollary 5.2 If f is an R0,n-valued continuous function on Ω+ which
moreover is biregular in Ω+, then for x ∈ Ω+ we have that

(i) f(x) =
∫

Σ
E1(y − x)ν1(y)f(y) + f(y)ν2(y)E2(y − x) dH2n−1(y),

(ii)
∫

Σ
E1(y − x)f(y)ν2(y)− ν1(y)f(y)E2(y − x) dH2n−1(y) = 0.

Proof. The proof easily follows by taking the real and the imaginary part
of the formula in Theorem 5.2. �

Note that the first statement of Corollary 5.1 corresponds to the classical
Bochner-Martinelli formula (see [80]) while the first statement of Corollary
5.2 is the Bochner-Martinelli formula for biregular functions (see [28]).

5.2 The isotonic Cauchy type integral

We begin by introducing the main objects of the section.

Definition 5.3 Let f be a Cn-valued continuous function on Σ. The iso-
tonic Cauchy type integral of f will be denoted by Cisot

Σ f and defined by

Cisot
Σ f(x) =

∫
Σ

(
E1(y − x)

(
ν1(y)f(y) + if̃(y)ν2(y)

)
+
(
f(y)ν2(y)− iν1(y)f̃(y)

)
E2(y − x)

)
dH2n−1(y), x ∈ R2n \ Σ.

Since
CΣ

(
fI
)

=
(
Cisot

Σ f
)
I, (5.5)
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it follows that Cisot
Σ f is isotonic in R2n \ Σ and vanishes at infinity.

Let us introduce the space Sisot(Σ) consisting of all Cn-valued conti-
nuous functions f on Σ for which the integrals∫

Σ∩B(z,ε)

(
E1(y − z)

(
ν1(y)

(
f(y)− f(z)

)
+ i
(
f̃(y)− f̃(z)

)
ν2(y)

)
+
((
f(y)− f(z)

)
ν2(y)− iν1(y)

(
f̃(y)− f̃(z)

))
E2(y − z)

)
dH2n−1(y)

converge uniformly to zero for z ∈ Σ as ε→ 0. At this point it is important
to notice that f ∈ Sisot(Σ) if and only if fI ∈ S(Σ).

Definition 5.4 For f ∈ Sisot(Σ) and z ∈ Σ, we define the isotonic singular
integral operator of f as

Sisot
Σ f(z) = 2 lim

ε→0+
Sisot

Σ,ε f(z) + f(z),

where Sisot
Σ,ε f denotes the truncated integral defined by

Sisot
Σ,ε f(z) =

∫
Σ\B(z,ε)

(
E1(y−z)

(
ν1(y)

(
f(y)−f(z)

)
+i
(
f̃(y)− f̃(z)

)
ν2(y)

)
+
((
f(y)− f(z)

)
ν2(y)− iν1(y)

(
f̃(y)− f̃(z)

))
E2(y − z)

)
dH2n−1(y).

Note that for any f ∈ Sisot(Σ), the isotonic singular integral operator Sisot
Σ f

exists for all z ∈ Σ and it defines a continuous function on Σ.

It easily follows that

SΣ

(
fI
)

=
(
Sisot

Σ f
)
I. (5.6)

Lemma 5.1 Let f be a Cn-valued continuous function on Σ, z ∈ Σ and
ε > 0.
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(i) If x ∈ Ω+ is such that |x− z| = ε/2, then we have that

∣∣Cisot
Σ f(x)− Sisot

Σ,ε f(z)− f(z)
∣∣

≤ C

(
θz(ε)

(dist(x,Σ))2n−1
ωf (ε) + ε

∫ d

ε

ωf (τ)
τ2n

dθz(τ)
)
.

(ii) If x ∈ Ω− is such that |x− z| = ε/2, then we have that

∣∣Cisot
Σ f(x)− Sisot

Σ,ε f(z)
∣∣

≤ C

(
θz(ε)

(dist(x,Σ))2n−1
ωf (ε) + ε

∫ d

ε

ωf (τ)
τ2n

dθz(τ)
)
.

Proof. Let x ∈ Ω+ with |x− z| = ε/2. Then

Cisot
Σ f(x)− Sisot

Σ,ε f(z)− f(z)

=
∫

Σ∩B(z,ε)

(
E1(y − x)

(
ν1(y)

(
f(y)− f(z)

)
+ i
(
f̃(y)− f̃(z)

)
ν2(y)

)
+
((
f(y)− f(z)

)
ν2(y)− iν1(y)

(
f̃(y)− f̃(z)

))
E2(y − x)

)
dH2n−1(y)

+
∫

Σ\B(z,ε)

((
E1(y−x)−E1(y−z)

)(
ν1(y)

(
f(y)−f(z)

)
+i
(
f̃(y)−f̃(z)

)
ν2(y)

)
+
((
f(y)− f(z)

)
ν2(y)− iν1(y)

(
f̃(y)− f̃(z)

))
×
(
E2(y − x)− E2(y − z)

))
dH2n−1(y).

Let us denote by I1 and I2 the integrals on the right-hand side of the
previous equality.
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For I1 we obtain

|I1| ≤ C

∫
Σ∩B(z,ε)

|f(y)− f(z)|
|y − x|2n−1

dH2n−1(y)

≤ C

∫
Σ∩B(z,ε)

ωf (|y − z|)
|y − x|2n−1

dH2n−1(y)

≤ C
ωf (ε)

(dist(x,Σ))2n−1

∫
Σ∩B(z,ε)

dH2n−1(y)

= C
θz(ε)

(dist(x,Σ))2n−1
ωf (ε).

To estimate I2, we note that

|Ek(y − x)− Ek(y − z)| ≤ C|x− z|
2n−1∑
j=0

1
|y − x|2n−j |y − z|j

, k = 1, 2.

Now for y ∈ Σ \B(z, ε) we have that

ε ≤ |y − z| ≤ |y − x|+ |x− z| = |y − x|+ ε/2,

and therefore |y − z| ≤ 2|y − x|. It follows that

|Ek(y − x)− Ek(y − z)| ≤ C
|x− z|
|y − z|2n

, y ∈ Σ \B(z, ε), k = 1, 2.

We thus get

|I2| ≤ C|x− z|
∫

Σ\B(z,ε)

ωf (|y − z|)
|y − z|2n

dH2n−1(y) ≤ Cε

∫ d

ε

ωf (τ)
τ2n

dθz(τ),

which completes the proof of (i). In a similar way we can prove (ii). �

We will now derive the Plemelj-Sokhotski formulae for the isotonic
Cauchy type integral. These formulae can be deduced from Lemma 5.1,
but we will give a simpler proof using (5.5), (5.6) and Theorem 1.5. Never-
theless, Lemma 5.1 will prove extremely useful in the last chapter.
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Theorem 5.3 Suppose that Σ is a rectifiable and AD-regular surface and
let f be a Cn-valued continuous function on Σ. Then Cisot

Σ f has continuous
limit values on Σ if and only if f ∈ Sisot(Σ). Moreover, the Plemelj-
Sokhotski formulae for Cisot

Σ f hold:

lim
Ω±3x→z

Cisot
Σ f(x) =

1
2
(
Sisot

Σ f(z)± f(z)
)
, z ∈ Σ. (5.7)

Proof. If Cisot
Σ f has continuous limit values on Σ, so does CΣ(fI), which

follows from (5.5). The remark following Theorem 1.5 shows that fI ∈ S(Σ)
and hence f ∈ Sisot(Σ).

Now let us suppose that f ∈ Sisot(Σ), then fI ∈ S(Σ). Then, Theorem
1.5 implies that CΣ(fI) has continuous limit values on Σ. From (5.5) we
deduce that Cisot

Σ f also has continuous limit values on Σ.

Finally, for z ∈ Σ we get

lim
Ω±3x→z

(
Cisot

Σ f(x)
)
I = lim

Ω±3x→z
CΣ

(
f(x)I

)
=

1
2
(
SΣ

(
f(z)I

)
± f(z)I

)
=

1
2
(
Sisot

Σ f(z)± f(z)
)
I,

where we have used Theorem 1.5 and (5.6).

Using (5.2) we obtain

lim
Ω±3x→z

Cisot
Σ f(x) =

1
2
(
Sisot

Σ f(z)± f(z)
)
,

which completes the proof. �

Before continuing a few remarks need to be made. First, note that the
rectifiability of Σ is only used to prove the necessity. Second, if f ∈ Hϕ(Σ),
then clearly fI ∈ Hϕ(Σ). Therefore, if Σ is an AD-regular surface and ϕ
is a regular majorant, then Hϕ(Σ) ⊂ Sisot(Σ). Finally, also for surfaces
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of finite (2n− 1)-dimensional Hausdorff measure it is possible to prove the
validity of the Plemelj-Sokhotski formulae (5.7). The following result may
be proved in much the same way as Theorem 5.3 using Davydov’s theorem
for the Cauchy type integral provided in [5].

Theorem 5.4 Suppose that f is a Cn-valued continuous function on Σ and
that the principal value integral

lim
ε→0+

∫
Σ\B(z,ε)

|f(y)− f(z)|
|y − z|2n−1

dH2n−1(y)

exists uniformly with respect to z on Σ. Then Cisot
Σ f has continuous limit

values on Σ given by (5.7).

The question under which conditions a continuous function f on the
boundary Σ has an isotonic extension to Ω+, is easily answered in the
following theorem.

Theorem 5.5 Let Σ be an AD-regular surface and let f ∈ Sisot(Σ). Then
f has an isotonic extension to Ω+ if and only if Sisot

Σ f = f on Σ.

Proof. Let F be an isotonic extension of f to Ω+. By Theorem 5.2, we
have that

F (x) = Cisot
Σ f(x), x ∈ Ω+.

By Theorem 5.3, it then follows that

f(z) =
1
2
(
Sisot

Σ f(z) + f(z)
)
, z ∈ Σ,

and hence Sisot
Σ f = f on Σ. Conversely, if Sisot

Σ f = f on Σ, then it follows
from (5.7) that

F (x) =
{

Cisot
Σ f(x) for x ∈ Ω+,
f(x) for x ∈ Σ,

is an isotonic extension of f to Ω+. �

We end this section with two results concerning the isotonic singular
integral operator.
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Theorem 5.6 Let Σ be an AD-regular surface. Then the isotonic singular
integral operator Sisot

Σ is an involution on Sisot(Σ), i.e.
(
Sisot

Σ

)2
f = f for

all f ∈ Sisot(Σ).

Proof. Using Theorem 1.6 and (5.6), we have

fI = S2
Σ

(
fI
)

=
((

Sisot
Σ

)2
f
)
I.

From (5.2) we obtain
(
Sisot

Σ

)2
f = f , which is the desired conclusion. �

Theorem 5.7 Assume that Σ is an AD-regular surface and let ϕ be a
regular majorant. Then Sisot

Σ is a bounded operator mapping Hϕ(Σ) into
itself.

Proof. The proof easily follows using Theorem 1.7 and (5.6). �

5.3 Bochner-Martinelli type integrals

Let Σ be an AD-regular surface and let ϕ be a regular majorant. If Fk ∈
Hϕ(Σ) is a C(k)

n -valued function, then the isotonic Cauchy type integral of
Fk splits into

Cisot
Σ Fk(x) =

[
Cisot

Σ Fk(x)
]
k−2

+
[
Cisot

Σ Fk(x)
]
k
+
[
Cisot

Σ Fk(x)
]
k+2

, x ∈ R2n\Σ,

where
[
Cisot

Σ Fk

]
k−2

,
[
Cisot

Σ Fk

]
k

and
[
Cisot

Σ Fk

]
k+2

are Bochner-Martinelli type
integrals given by

[
Cisot

Σ Fk(x)
]
k−2

=
∫

Σ

(
E1(y − x) •

((
ν1(y)− iν2(y)

)
• Fk(y)

)
+
(
Fk(y) •

(
ν2(y) + iν1(y)

))
• E2(y − x)

)
dH2n−1(y),

[
Cisot

Σ Fk(x)
]
k

=
∫

Σ

(
E1(y − x) ∧

((
ν1(y)− iν2(y)

)
• Fk(y)

)
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+E1(y − x) •
((
ν1(y) + iν2(y)

)
∧ Fk(y)

)
+
(
Fk(y) •

(
ν2(y) + iν1(y)

))
∧ E2(y − x)

+
(
Fk(y) ∧

(
ν2(y)− iν1(y)

))
• E2(y − x)

)
dH2n−1(y),[

Cisot
Σ Fk(x)

]
k+2

=
∫

Σ

(
E1(y − x) ∧

((
ν1(y) + iν2(y)

)
∧ Fk(y)

)
+
(
Fk(y) ∧

(
ν2(y)− iν1(y)

))
∧ E2(y − x)

)
dH2n−1(y).

In particular, if k = 0 (i.e. for C-valued functions), then
[
Cisot

Σ Fk

]
k

is the
classical Bochner-Martinelli integral which is an important object in the
theory of functions of several complex variables (see [75]).

In a similar way we see that for z ∈ Σ,

Sisot
Σ Fk(z) =

[
Sisot

Σ Fk(z)
]
k−2

+
[
Sisot

Σ Fk(z)
]
k

+
[
Sisot

Σ Fk(z)
]
k+2

,

where[
Sisot

Σ Fk(z)
]
k−2

= 2
∫

Σ

(
E1(y − z) •

((
ν1(y)− iν2(y)

)
•
(
Fk(y)− Fk(z)

))
+
((
Fk(y)− Fk(z)

)
•
(
ν2(y) + iν1(y)

))
• E2(y − z)

)
dH2n−1(y),[

Sisot
Σ Fk(z)

]
k

= 2
∫

Σ

(
E1(y − z) ∧

((
ν1(y)− iν2(y)

)
•
(
Fk(y)− Fk(z)

))
+E1(y − z) •

((
ν1(y) + iν2(y)

)
∧
(
Fk(y)− Fk(z)

))
+
((
Fk(y)− Fk(z)

)
•
(
ν2(y) + iν1(y)

))
∧ E2(y − z)

+
((
Fk(y)− Fk(z)

)
∧
(
ν2(y)− iν1(y)

))
• E2(y − z)

)
dH2n−1(y)

+Fk(z),[
Sisot

Σ Fk(z)
]
k+2

= 2
∫

Σ

(
E1(y − z) ∧

((
ν1(y) + iν2(y)

)
∧
(
Fk(y)− Fk(z)

))
+
((
Fk(y)− Fk(z)

)
∧
(
ν2(y)− iν1(y)

))
∧ E2(y − z)

)
dH2n−1(y).

In view of the above decompositions, we thus obtain from Theorem 5.3:
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Theorem 5.8 Let Σ be an AD-regular surface and let ϕ be a regular majo-
rant. If Fk ∈ Hϕ(Σ) is a C(k)

n -valued function, then
[
Cisot

Σ Fk

]
k−2

,
[
Cisot

Σ Fk

]
k

and
[
Cisot

Σ Fk

]
k+2

have continuous limit values on Σ given by

(i) lim
Ω±3x→z

[
Cisot

Σ Fk(x)
]
k−2

=
1
2
[
Sisot

Σ Fk(z)
]
k−2

,

(ii) lim
Ω±3x→z

[
Cisot

Σ Fk(x)
]
k

=
1
2
([

Sisot
Σ Fk(z)

]
k
± Fk(z)

)
,

(iii) lim
Ω±3x→z

[
Cisot

Σ Fk(x)
]
k+2

=
1
2
[
Sisot

Σ Fk(z)
]
k+2

.



Chapter 6

Holomorphic and biregular
extension theorems

The results of the previous chapter enable us to study the question under
which conditions a C-valued (resp. R0,n-valued) function defined on the
boundary Σ has a holomorphic (resp. biregular) extension to Ω+ (see [11,
12, 13]).

6.1 Holomorphic functions

Let m = 2n. We shall here identify R2n with Cn by associating to any
element (x1, . . . , x2n) ∈ R2n the complex vector (z1, . . . , zn)∈Cn with zj =
xj + ixn+j , j = 1, . . . , n.

The theory of several complex variables is a natural extension of classical
complex analysis to the multivariable setting. For a detailed treatment we
refer the reader to e.g. [63, 70, 74, 98].

Definition 6.1 A continuous function f : Ω → C on an open set Ω in
R2n is said to be holomorphic in Ω if f is holomorphic in each variable

87
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zj (j = 1, . . . , n) separately, i.e. if it satisfies in Ω the Cauchy-Riemann
equations (

∂xj + i∂xn+j

)
f = 0, j = 1, . . . , n.

Many basic results of classical one variable complex analysis generalize
in a natural way to several variables. However, also new and surprising
phenomena emerge, an example of which is given in the following lemma
(see [99]).

Lemma 6.1 Suppose that K is a compact subset of R2n, n ≥ 2, such that
R2n \K is connected. If f is holomorphic and bounded in R2n \K, then f
is a constant.

Proof. By Hartogs’ theorem, we have that f may be uniquely extended to
a holomorphic function in R2n. Clearly, this extension is bounded in R2n

and therefore is a constant by Liouville’s theorem. �

6.2 Holomorphic extension for Hölder continuous
functions

Let f be a C-valued continuous function on Σ. The Bochner-Martinelli
integral (see [75] and the references given there) is defined by

M1f(x) = −
∫

Σ

〈
E1(y − x)− iE2(y − x), ν1(y) + iν2(y)

〉
f(y) dH2n−1(y),

x ∈ R2n \ Σ.

Aronov and Kytmanov provided in [16] (see also [75, 76]) the following
characterizations:

If Σ is a smooth surface and f is a continuously differentiable function
in Σ, then a necessary and sufficient condition for f to have a holomorphic
extension to Ω+ is that M1f(x) = 0 for x ∈ Ω−.
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If Σ is a piecewise smooth surface and F is a continuously differentiable
function in Ω+, then F is holomorphic in Ω+ if and only if F (x) = M1F (x)
for x ∈ Ω+.

In this section we give alternative characterizations using the results of
the previous chapter. We will also re-establish the results of Aronov and
Kytmanov for the particular case n = 2 using our techniques.

We have already seen that

Cisot
Σ f(x) = M1f(x) +M2f(x), x ∈ R2n \ Σ, (6.1)

where M2 is a bivector-valued integral operator given by

M2f(x) =
∫

Σ

(
E1(y − x) + iE2(y − x)

)
∧
(
ν1(y) + iν2(y)

)
f(y) dH2n−1(y).

From (6.1) it may be concluded that M1 and M2 are harmonic in R2n \ Σ
and that M1f(∞) = M2f(∞) = 0.

We now assume that Σ is an AD-regular surface and that f is a C-valued
function which belongs to Hϕ(Σ), where ϕ is a regular majorant. We thus
have

Sisot
Σ f(z) = N1f(z) +N2f(z), z ∈ Σ, (6.2)

where N1 and N2 are the singular versions of M1 and M2 respectively, given
by

N1f(z) = 2 lim
ε→0+

N1,εf(z) + f(z),

with

N1,εf(z) =

−
∫

Σ\B(z,ε)

〈
E1(y−z)−iE2(y−z), ν1(y)+iν2(y)

〉(
f(y)−f(z)

)
dH2n−1(y)

and
N2f(z) = 2 lim

ε→0+
N2,εf(z),
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with

N2,εf(z) =
∫

Σ\B(z,ε)

(
E1(y − z) + iE2(y − z)

)
∧
(
ν1(y) + iν2(y)

)
×
(
f(y)− f(z)

)
dH2n−1(y).

It is natural to ask whether the Bochner-Martinelli singular integral ope-
rator N1f is an involution. The following theorem provides an answer to
this question (see also [100, 121]).

Theorem 6.1 Assume that Σ is an AD-regular surface and let ϕ be a
regular majorant. Then N1 and N2 are bounded operators mapping Hϕ(Σ)
into itself. Moreover, the formulae

N2
1 f + [N2

2 f ]0 = f,

N1N2f +N2N1f + [N2
2 f ]2 = 0,

[N2
2 f ]4 = 0,

hold for all f ∈ Hϕ(Σ).

Proof. The proof easily follows using (6.2) as well as Theorems 5.6 and 5.7.
�

It is worth noting that the formulae above were obtained in [15] (see
also [106]) for the case n = 2.

As an application of Theorem 5.8 we obtain that M1 and M2 have
continuous limit values on Σ given by the formulae

M±
1 f(z) = lim

Ω±3x→z
M1f(x) =

1
2
(
N1f(z)± f(z)

)
, z ∈ Σ, (6.3)

M±
2 f(z) = lim

Ω±3x→z
M2f(x) =

1
2
N2f(z), z ∈ Σ. (6.4)

Note that (6.3) are the Plemelj-Sokhotski formulae for the Bochner-Marti-
nelli integral (see e.g. [15, 32, 59, 60, 75, 79, 82]).
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It is not difficult to show that a necessary and sufficient condition for f
to have a holomorphic extension to Ω+ is that

N1f = f on Σ, (6.5)
M2f = 0 in Ω+. (6.6)

Indeed, let us suppose that F is a holomorphic extension of f to Ω+. Corol-
lary 5.1 now yields (6.6) and

F (x) = M1f(x), x ∈ Ω+.

From (6.3) it follows that

f(z) =
1
2
(
N1f(z) + f(z)

)
, z ∈ Σ,

and hence N1f = f on Σ. Conversely, if (6.5) and (6.6) hold, then from
(6.5) we can deduce that M1f is a harmonic extension of f to Ω+, while
(6.6) implies that M1f is isotonic in Ω+ and hence holomorphic in Ω+.

What is more, in the next theorem we will show that condition (6.5) is
redundant.

Theorem 6.2 Let Σ be an AD-regular surface and let ϕ be a regular majo-
rant. Suppose that f is a C-valued function which belongs to Hϕ(Σ). Then
the following statements are equivalent:

(i) f has a holomorphic extension to Ω+;

(ii) M2f = 0 in Ω+;

(iii) N2f = 0 on Σ;

(iv) M2f = 0 in Ω−.

Proof. (i) ⇒ (ii): This easily follows from statement (ii) of Corollary 5.1.



92 CK-extensions, Fueter’s theorems and boundary values

(ii) ⇔ (iii) ⇔ (iv): If M2f(x) = 0 for all x ∈ Ω+, then from (6.4) we obtain
N2f = 0 on Σ, and hence M−

2 f = 0 on Σ. Since M2f is harmonic in Ω−

and vanishes at infinity, it follows that M2f(x) = 0 for all x ∈ Ω−. In the
same way we can show that (iv) ⇒ (ii).

(iv) ⇒ (i): Now assume that M2f(x) = 0 for all x ∈ Ω−. From (6.1) we see
that M1f is isotonic in Ω− and hence holomorphic in Ω−. Lemma 6.1 now
shows that M1f = 0 in Ω−. This gives N1f = f on Σ, which follows from
(6.3), and consequently M+

1 f = f on Σ. It only remains to show that M1f
is holomorphic in Ω+. This follows using (6.1) and the fact that (iv) ⇒ (ii).
�

We have already proved that M2f = 0 in Ω− implies M1f = 0 in
Ω−. Using our techniques, we will prove how the inverse assertion may
be deduced for the case n = 2. Indeed, if M1f = 0 in Ω−, then we have
that M2f is isotonic in Ω−. Since n = 2, it follows that M2f = ge1e2
for some C-valued function g. It is easy to check that a function of this
form is isotonic if and only if the function g is antiholomorphic, i.e. g is
holomorphic. Therefore M2f = 0 in Ω− by Lemma 6.1. We have thus
obtained an alternative proof of the first result of Aronov and Kytmanov
for n = 2.

An easy consequence of Theorem 6.2 is the following corollary.

Corollary 6.1 Let Σ be an AD-regular surface and let ϕ be a regular ma-
jorant. Suppose that F is a C-valued continuous function on Ω+ such that
f = F |Σ ∈ Hϕ(Σ). A necessary and sufficient condition for F to be holo-
morphic in Ω+ is that F is harmonic in Ω+ and that M2f(x) = 0 for all
x ∈ Ω+.

Proof. If F is holomorphic in Ω+, then obviously F is harmonic in Ω+ and
M2f(x) = 0 in Ω+ by Corollary 5.1. Now, if M2f(x) = 0 for all x ∈ Ω+,
then by Theorem 6.2 the function

G(x) =
{
M1f(x) for x ∈ Ω+,
f(x) for x ∈ Σ,
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is a holomorphic extension of f to Ω+. As F − G is harmonic in Ω+ and
(F −G)|Σ = 0 we have F (x) = M1f(x) for all x ∈ Ω+, which follows from
the maximum principle for harmonic functions. �

Note that if F = M1f in Ω+, then clearly F is harmonic in Ω+. Using
(6.3) we also obtain N1f = f on Σ, and hence M−

1 f = 0 on Σ. The
maximum principle for harmonic functions now yields M1f = 0 in Ω−.
This completes the proof of the second result of Aronov and Kytmanov for
n = 2.

It is also worth remarking that our assumptions on f and Σ are less
restrictive than Aronov-Kytmanov’s assumptions.

6.3 Holomorphic extension for continuous func-
tions

In Theorem 6.2 we have assumed that f belongs to some space of generalized
Hölder continuous functions Hϕ(Σ), with ϕ a regular majorant. An obvious
question to ask is whether the assertion of Theorem 6.2 continues to hold
for merely continuous functions on Σ.

It is the final aim of this section to answer that question, but first we
will prove that the Plemelj-Sokhotski formulae (6.3) and (6.4) are still valid
for a subclass of continuous functions wider than Hϕ(Σ).

Theorem 6.3 Let Σ be an AD-regular surface and let f be a C-valued
continuous function on Σ. If the integrals∫

Σ∩B(z,ε)

〈
E1(y − z)− iE2(y − z), ν1(y) + iν2(y)

〉(
f(y)− f(z)

)
dH2n−1(y)

converge uniformly to zero for z ∈ Σ as ε→ 0, then the Bochner-Martinelli
integral M1f has continuous limit values on Σ given by (6.3).

Proof. We restrict ourselves to the proof of the statement for M+
1 f , the

proof of the one for M−
1 f being similar.
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Let z be a fixed point of Σ and let x ∈ Ω+. If zx ∈ {y ∈ Σ : |y − x| =
dist(x,Σ)}, we have that∣∣∣∣M1f(x)− 1

2
(
N1f(z) + f(z)

)∣∣∣∣ ≤ ∣∣M1f(x)−N1,εf(zx)− f(zx)
∣∣

+

∣∣∣∣∣
∫

Σ∩B(zx,ε)

〈
E1(y − zx)− iE2(y − zx), ν1(y) + iν2(y)

〉
×
(
f(y)− f(zx)

)
dH2n−1(y)

∣∣∣∣∣
+
∣∣N1f(zx)−N1f(z)

∣∣+ ∣∣f(zx)− f(z)
∣∣ , (6.7)

with ε = dist(x,Σ).

By Lemma 5.1 and using the fact that Σ is an AD-regular surface we
can deduce that∣∣Cisot

Σ f(x)− Sisot
Σ,ε f(zx)− f(zx)

∣∣ ≤ C

(
ωf (ε) + ε

∫ d

ε

ωf (τ)
τ2

dτ

)
.

From the above it follows that∣∣M1f(x)−N1,εf(zx)− f(zx)
∣∣ ≤ C

(
ωf (ε) + ε

∫ d

ε

ωf (τ)
τ2

dτ

)
.

By the assumptions on f and using the last inequality, it is easily seen that
the right-hand side of (6.7) tends to zero as x→ z. �

We note that Theorem 6.3 was obtained by Gaziev for sufficiently
smooth surfaces in [59, 60].

In a similar way we can prove the following.

Theorem 6.4 Let Σ be an AD-regular surface and let f be a C-valued
continuous function on Σ. If the integrals∫

Σ∩B(z,ε)

(
E1(y − z) + iE2(y − z)

)
∧
(
ν1(y)+iν2(y)

)(
f(y)−f(z)

)
dH2n−1(y)
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converge uniformly to zero for z ∈ Σ as ε → 0, then M2f has continuous
limit values on Σ given by (6.4).

The following results may be easily deduced from Lemma 5.1.

Lemma 6.2 Let f be a C-valued continuous function on Σ, z ∈ Σ and
ε > 0.

(i) If x ∈ Ω+ is such that |x− z| = ε/2, then we have that

|M1f(x)−N1,εf(z)− f(z)|

≤ C

(
θz(ε)

(dist(x,Σ))2n−1
ωf (ε) + ε

∫ d

ε

ωf (τ)
τ2n

dθz(τ)
)
.

(ii) If x ∈ Ω− is such that |x− z| = ε/2, then we have that

|M1f(x)−N1,εf(z)|

≤ C

(
θz(ε)

(dist(x,Σ))2n−1
ωf (ε) + ε

∫ d

ε

ωf (τ)
τ2n

dθz(τ)
)
.

Lemma 6.3 Let f be a C-valued continuous function on Σ, z ∈ Σ and
ε > 0. Then we have that

|M2f(x)−N2,εf(z)| ≤ C

(
θz(ε)

(dist(x,Σ))2n−1
ωf (ε) + ε

∫ d

ε

ωf (τ)
τ2n

dθz(τ)
)
,

where x ∈ Ω± is such that |x− z| = ε/2.

We remark that Lemma 6.2 have been previously proved by Gaziev for
sufficiently smooth surfaces in [58].

In what follows, we will assume that Ω+ is a Lipschitz domain, i.e. its
boundary Σ is locally the graph of a Lipschitz continuous function (see e.g.
[61]).
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It is well-known that bounded Lipschitz domains satisfy the so-called
uniform interior and exterior cone condition. That is, there exists constants
λ > 0, δ > 0 such that for every z ∈ Σ, one of the two components of
V (z) ∩ {ζ : |ζ − z| < δ} is completely contained in Ω+ and the other is
completely contained in Ω−, where

V (z) = {x : |x− z| ≤ (1 + λ) dist(x,Σ)}.

Theorem 6.5 Let Ω+ be a Lipschitz domain. Suppose that f is a C-valued
continuous function on Σ. Then f has a holomorphic extension to Ω+ if
and only if M2f = 0 in Ω+.

Proof. The necessity is obvious. Thus, we show the sufficiency. Suppose
that M2f = 0 in Ω+. It follows that M1f is holomorphic in Ω+. Now if
z ∈ Σ and ε > 0, then by Lemma 6.3 we get that

|N2,εf(z)| ≤ C

(
θz(ε)

(dist(x,Σ))2n−1
ωf (ε) + ε

∫ d

ε

ωf (τ)
τ2n

dθz(τ)
)
,

where x ∈ Ω+ is such that |x − z| = ε/2. When x approaches z non-
tangentially inside the cone V (z), the uniform interior and exterior cone
condition implies that

ε

2
= |x− z| ≤ (1 + λ) dist(x,Σ).

Combining the above inequality with the AD-regularity of Σ, we obtain

|N2,εf(z)| ≤ C

(
ωf (ε) + ε

∫ d

ε

ωf (τ)
τ2

dτ

)
.

Therefore N2,εf(z) converges uniformly on Σ as ε → 0. Theorem 6.4 now
shows that M2f has continuous limit values on Σ given by (6.4). This
clearly forces M2f = 0 in Ω− and hence M1f = 0 in Ω−.

By Lemma 6.2 we thus get that

|N1,εf(z)| ≤ C

(
θz(ε)

(dist(x,Σ))2n−1
ωf (ε) + ε

∫ d

ε

ωf (τ)
τ2n

dθz(τ)
)
,
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where x ∈ Ω− is such that |x − z| = ε/2. In the same way we can see
that N1,εf(z) converges uniformly on Σ as ε → 0. Then, Theorem 6.3
implies that M1f has continuous limit values on Σ given by (6.3). This
gives N1f = f on Σ, which completes the proof. �

We get the following corollary from this theorem just as we did from
Theorem 6.2.

Corollary 6.2 Let Ω+ be a Lipschitz domain. Suppose that F is a C-valued
continuous function on Ω+. A necessary and sufficient condition for F to
be holomorphic in Ω+ is that F is harmonic in Ω+ and that M2F (x) = 0
for all x ∈ Ω+.

6.4 Biregular extension for Hölder continuous
functions

The aim of this section is to generalize the results of Aronov and Kytmanov
to the case of biregular functions.

First we recall the definition of a biregular function. Let m = 2n and
consider the real Clifford algebra R0,n generated by (e1, . . . , en). A conti-
nuously differentiable function f in an open set Ω of R2n with values in
R0,n is called biregular in Ω if and only if it satisfies in Ω the system

∂x1
f = f∂x2

= 0.

The theory of biregular functions may be viewed as a natural generalization
to higher dimension of the theory of holomorphic functions in C2 (see [28,
29, 30, 95]).

The Liouville and Hartogs theorems for these functions (see [29]) enable
us to state the analogue of Lemma 6.1.

Lemma 6.4 Suppose that K is a compact subset of R2n such that R2n \K
is connected. If f is biregular and bounded in R2n \K, then f is a constant.
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Proof. The proof runs along similar lines as the proof of Lemma 6.1. �

Let Σ be an AD-regular surface and let ϕ be a regular majorant. Assume
that f is an R0,n-valued function which belongs to Hϕ(Σ). It follows that

Cisot
Σ f(x) = M1f(x) + iM2f(x), x ∈ R2n \ Σ, (6.8)

where

M1f(x) =
∫

Σ
E1(y − x)ν1(y)f(y) + f(y)ν2(y)E2(y − x) dH2n−1(y)

and

M2f(x) =
∫

Σ
E1(y − x)f̃(y)ν2(y)− ν1(y)f̃(y)E2(y − x) dH2n−1(y).

It follows that M1 and M2 are harmonic in R2n \ Σ and that M1f(∞) =
M2f(∞) = 0. Note that the integral operator M1 plays the role of the
Bochner-Martinelli integral in the theory of biregular functions.

We also have that

Sisot
Σ f(z) = N1f(z) + iN2f(z), z ∈ Σ, (6.9)

where N1 and N2 are the singular versions of M1 and M2 respectively, given
by

N1f(z) = 2 lim
ε→0+

N1,εf(z) + f(z),

with

N1,εf(z) =
∫

Σ\B(z,ε)

(
E1(y − z)ν1(y)

(
f(y)− f(z)

)
+
(
f(y)− f(z)

)
ν2(y)E2(y − z)

)
dH2n−1(y)

and
N2f(z) = 2 lim

ε→0+
N2,εf(z),
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with

N2,εf(z) =
∫

Σ\B(z,ε)

(
E1(y − z)

(
f̃(y)− f̃(z)

)
ν2(y)

− ν1(y)
(
f̃(y)− f̃(z)

)
E2(y − z)

)
dH2n−1(y).

On account of Theorem 5.3, we obtain:

Theorem 6.6 Let Σ be an AD-regular surface and let ϕ be a regular ma-
jorant. If f ∈ Hϕ(Σ) is an R0,n-valued function, then M1f and M2f have
continuous limit values on Σ given by

M±
1 f(z) = lim

Ω±3x→z
M1f(x) =

1
2
(
N1f(z)± f(z)

)
, z ∈ Σ, (6.10)

M±
2 f(z) = lim

Ω±3x→z
M2f(x) =

1
2

N2f(z), z ∈ Σ. (6.11)

The following result can be considered as an analogue of Theorem 6.1.

Theorem 6.7 Assume that Σ is an AD-regular surface and let ϕ be a
regular majorant. Then N1 and N2 are bounded operators mapping Hϕ(Σ)
into itself. Moreover, the formulae

N2
1f − N2

2f = f,

N1N2f + N2N1f = 0,

hold for all f ∈ Hϕ(Σ).

Proof. The proof easily follows using (6.9) as well as Theorems 5.6 and 5.7.
�

We now come to the main result of the section.

Theorem 6.8 Let Σ be an AD-regular surface and let ϕ be a regular ma-
jorant. Suppose that f ∈ Hϕ(Σ) is an R0,n-valued function. The following
statements are equivalent:
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(i) f has a biregular extension to Ω+;

(ii) N1f = f on Σ;

(iii) M1f = 0 in Ω−;

(iv) M2f = 0 in Ω−;

(v) N2f = 0 on Σ;

(vi) M2f = 0 in Ω+.

Proof. (i) ⇒ (ii): Let F be a biregular extension of f to Ω+. By Corollary
5.2, we have that

F (x) = M1f(x), x ∈ Ω+.

From (6.10) it then follows that

f(z) =
1
2
(
N1f(z) + f(z)

)
, z ∈ Σ,

and hence N1f = f on Σ.

(ii) ⇔ (iii): If N1f = f on Σ, then from (6.10) we obtain M−
1 f = 0 on Σ.

Since M1f is harmonic in Ω− and vanishes at infinity, it thus follows that
M1f = 0 in Ω−. Using (6.10) we can easily deduce that (iii) ⇒ (ii).

(iii) ⇔ (iv): If M1f = 0 in Ω−, then from (6.8) we see that M2f is isotonic
in Ω− and hence biregular in Ω−. Therefore M2f = 0 in Ω− by Lemma 6.4.
In the same way we can prove (iv) ⇒ (iii).

(iv) ⇔ (v) ⇔ (vi): This follows from the maximum principle for harmonic
functions and (6.11).

(vi) ⇒ (i): If M2f = 0 in Ω+, then it follows from (6.8) that M1f is
biregular in Ω+. Since (vi) ⇒ (ii), we can conclude that

F (x) =
{

M1f(x) for x ∈ Ω+,
f(x) for x ∈ Σ,

is a biregular extension of f to Ω+. �
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Corollary 6.3 Let Σ be an AD-regular surface and let ϕ be a regular ma-
jorant. Suppose that F is an R0,n-valued continuous function on Ω+ such
that f = F |Σ ∈ Hϕ(Σ). A necessary and sufficient condition for F to be
biregular in Ω+ is that F = M1f in Ω+.

Proof. The necessity follows from Corollary 5.2. We now proceed to prove
the sufficiency. Suppose that F = M1f in Ω+, then from (6.10) we obtain
N1f = f on Σ, whence M2f = 0 in Ω+ on account of Theorem 6.8. Hence
M1f is biregular in Ω+. �

6.5 Biregular extension for continuous functions

In this final section, we will concern the case of R0,n-valued continuous
functions on Σ.

The proofs of the following results are very similar to those given in
Section 6.3 and will be omitted.

Theorem 6.9 Let Σ be an AD-regular surface and let f be an R0,n-valued
continuous function on Σ. If the integrals∫

Σ∩B(z,ε)

(
E1(y − z)ν1(y)

(
f(y)− f(z)

)
+
(
f(y)− f(z)

)
ν2(y)E2(y − z)

)
dH2n−1(y)

converge uniformly to zero for z ∈ Σ as ε → 0, then M1f has continuous
limit values on Σ given by (6.10).

Theorem 6.10 Let Σ be an AD-regular surface and let f be an R0,n-valued
continuous function on Σ. If the integrals∫

Σ∩B(z,ε)

(
E1(y − z)

(
f(y)− f(z)

)
ν2(y)

− ν1(y)
(
f(y)− f(z)

)
E2(y − z)

)
dH2n−1(y).
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converge uniformly to zero for z ∈ Σ as ε → 0, then M2f has continuous
limit values on Σ given by (6.11).

Lemma 6.5 Let f be an R0,n-valued continuous function on Σ, z ∈ Σ and
ε > 0.

(i) If x ∈ Ω+ is such that |x− z| = ε/2, then we have that

|M1f(x)− N1,εf(z)− f(z)|

≤ C

(
θz(ε)

(dist(x,Σ))2n−1
ωf (ε) + ε

∫ d

ε

ωf (τ)
τ2n

dθz(τ)
)
.

(ii) If x ∈ Ω− is such that |x− z| = ε/2, then we have that

|M1f(x)− N1,εf(z)|

≤ C

(
θz(ε)

(dist(x,Σ))2n−1
ωf (ε) + ε

∫ d

ε

ωf (τ)
τ2n

dθz(τ)
)
.

Lemma 6.6 Let f be an R0,n-valued continuous function on Σ, z ∈ Σ and
ε > 0. Then we have that

|M2f(x)− N2,εf(z)| ≤ C

(
θz(ε)

(dist(x,Σ))2n−1
ωf (ε) + ε

∫ d

ε

ωf (τ)
τ2n

dθz(τ)
)
,

where x ∈ Ω± is such that |x− z| = ε/2.

We can now state the main results of this section which may be consi-
dered as generalizations of the results obtained by Kytmanov and Aı̆zenberg
(see [76]) to the case of biregular functions.

Theorem 6.11 Let Ω+ be a Lipschitz domain. Suppose that f is an R0,n-
valued continuous function on Σ. Then f has a biregular extension to Ω+

if and only if M1f = 0 in Ω−.
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Proof. The necessity is obvious, so we prove the sufficiency. Suppose that
M1f = 0 in Ω−. It follows that M2f is biregular in Ω−, whence M2f = 0
in Ω− on account of Lemma 6.4.

Now if z ∈ Σ and ε > 0, then by Lemmas 6.5 and 6.6 we get that

|N1,εf(z)| ≤ C

(
θz(ε)

(dist(x,Σ))2n−1
ωf (ε) + ε

∫ d

ε

ωf (τ)
τ2n

dθz(τ)
)
,

|N2,εf(z)| ≤ C

(
θz(ε)

(dist(x,Σ))2n−1
ωf (ε) + ε

∫ d

ε

ωf (τ)
τ2n

dθz(τ)
)
,

where x ∈ Ω− is such that |x − z| = ε/2. When x approaches z non-
tangentially inside the cone V (z), the uniform interior and exterior cone
condition implies that

ε

2
= |x− z| ≤ (1 + λ) dist(x,Σ).

Combining the above inequality with the AD-regularity of Σ, we obtain

|N1,εf(z)| ≤ C

(
ωf (ε) + ε

∫ d

ε

ωf (τ)
τ2

dτ

)
,

|N2,εf(z)| ≤ C

(
ωf (ε) + ε

∫ d

ε

ωf (τ)
τ2

dτ

)
.

Therefore N1,εf(z) and N2,εf(z) converge uniformly on Σ as ε→ 0. Theo-
rems 6.9 and 6.10 now imply that M1f and M2f have continuous limit
values on Σ given by (6.10) and (6.11) respectively. It then follows that
M1f is biregular in Ω+ and N1f = f on Σ. �

In the same spirit we can also prove:

Theorem 6.12 Let Ω+ be a Lipschitz domain. Suppose that F is an R0,n-
valued continuous function on Ω+. A necessary and sufficient condition for
F to be biregular in Ω+ is that F = M1F in Ω+.





Conclusion

This thesis contains the following contributions to the further development
of Euclidean and Hermitean Clifford analysis:

• A new class of monogenic functions called steering monogenic func-
tions.

• CK-extensions around special surfaces of codimension 2.

• An alternative proof for and a new generalization of Fueter’s theorem
for monogenic functions.

• A closed formula for the CK-extension of the Gauss-distribution in
Rm.

• A differential and integral criterion for the existence of a Hermitean
monogenic extension of a continuous function on a surface in Rm,
m = 2n.

• Formulae for the square of the Bochner-Martinelli singular integral
operator and for its higher dimensional version in the theory of bire-
gular functions.

• The Plemelj-Sokhotski formulae for the Bochner-Martinelli integral
and for its higher dimensional version in the theory of biregular func-
tions.
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• An alternative holomorphic extension theorem for continuos functions
on non-smooth surfaces.

• The generalization of Aronov-Kytmanov-Aı̆zenberg type theorems to
the case of biregular functions.
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Azerbăıdzhan, SSR Dokl. 39 (1983), no. 12, 7–11.

[105] M. Sce, Osservazioni sulle serie di potenze nei moduli quadratici, Atti
Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 23 (1957), 220–
225.

[106] B. Schneider, On the Bochner-Martinelli operator, Appl. Comput.
Math. 4 (2005), no. 2, 200–209.

[107] M. V. Shapiro and N. L. Vasilevski, Quaternionic ψ-hyperholomorphic
functions, singular integral operators and boundary value problems.
I. ψ-hyperholomorphic function theory, Complex Variables Theory
Appl. 27 (1995), no. 1, 17–46.

[108] M. V. Shapiro and N. L. Vasilevski, Quaternionic ψ-hyperholomorphic
functions, singular integral operators and boundary value problems. II.
Algebras of singular integral operators and Riemann type boundary
value problems, Complex Variables Theory Appl. 27 (1995), no. 1,
67–96.

[109] L. Simon, Lectures on geometric measure theory, Proceedings of the
Centre for Mathematical Analysis, Australian National University, 3,
1983.



118 Bibliography

[110] F. Sommen, Hypercomplex Fourier and Laplace transforms II, Com-
plex Variables Theory Appl. 1 (1982/83), no. 2-3, 209–238.

[111] F. Sommen, Plane elliptic systems and monogenic functions in sym-
metric domains, Rend. Circ. Mat. Palermo (2) 1984, no. 6, 259–269.

[112] F. Sommen, Monogenic functions on surfaces, J. Reine Angew. Math.
361 (1985), 145–161.

[113] F. Sommen, Plane waves, biregular functions and hypercomplex
Fourier analysis, Proceedings of the 13th winter school on abstract
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