Study of Special Algorithms for
solving Sturm-Liouville and
Schr odinger Equations

Studie van speciale algoritmen
voor het oplossen van Sturm-
Liouville- en Schr odinger-
vergelijkingen

Veerle Ledoux

Promotor: prof. dr. M. Van Daele
Copromotor: prof. dr. G. Vanden Berghe

Proefschrift ingediend tot het behalen van de graad van
Doctor in de Wetenschappen: Informatica

Vakgroep Toegepaste Wiskunde en Informatica P -
Voorzitter: prof. dr. G. Vanden Berghe T
Faculteit Wetenschappen UNIVERSITEIT

Academiejaar 2006-2007 GENT






Acknowledgements

| would like to thank my promotor Prof. Marnix Van Daele forlfiwing my research

with interest and for giving me constant support and guidahtave always valued his
ideas, comments and suggestions. | also would like to egpngsthanks to Prof. Guido
Vanden Berghe for his co-promotorship, for his continuausriest and stimulation and
for making perfect conditions for my work as a young research

Next, | would like to take this opportunity to thank Prof. ivGr. Ixaru for his many
suggestions and positive criticism during his stays in Ghieaim also grateful to him and
to Prof. Margarit Rizea for the cooperation, which conttdalia lot to my work.

| thank all my colleagues and ex-colleagues in the depattfoera friendly atmosphere
which makes work pleasant. | also want to express my thanksetadministrative and
technical staff which gave me often precious administesdind logistic help.

| am grateful to my parents for their trust and love. Findlihank Nele, Bart and Stefan
for their support that | could always count on.

This research has been supported by the Fund for ScientifiedReh - Flanders (Bel-
gium) (F.W.O.-Vlaanderen).

Veerle Ledoux






Contents

Acknowledgements i
1 Introduction 1
1.1 Introductory background . . . ... ... ... 1
1.2 The Sturm-Liouville problem . . . . . . ... ... ... ...... 2
1.2.1 Where Sturm-Liouville problems come from . .. .. .. ... 4
1.2.2 The Schidinger problem . . . . . .. ... .. L. 5
1.3 Basic properties of the Sturm-Liouville problem . . . . . ... .. 6
1.3.1 Existence, uniqueness and linearity B ¢
1.3.2 Reality of eigenvalues and orthogonality of e|genfmms Y
1.33 Interlacing . .. .. ... ... .. ... 10
1.4 Outline . . . .. . . e 11
2 Numerical solution of the Sturm-Liouville problem 13
2.1 Computational methods for the Sturm-Liouville problem . . . . . 13
2.2 Discretization methods . . . . .. .. ... ... L. 14
221 Simplematrixmethods . . . . ... ... ... ... .. .. ... 14
2.2.2 \Variationalmethods . . .. ... ... o o oo 16
2.3 Shootingmethods . . . . .. .. ... ... .. .. ... 16
23.1 Basicidea. .. .. .. .. ... 16
2.3.2 Pilfer-based shootingmethods . . . . . ... ... ... ..... 18
2.3.3 Coefficient approximation methods . . . . ... ... .. 25
2.3.4 Piecewise perturbationmethods . . . ... ... ... .. 30
2.3.5 Magnus and Neumann seriesmethods . . . . ... ... ... .. 36
24 Conclusion . . . . .. 41
3 Constant Perturbation Methods 43
3.1 A Constant Perturbation Method for the Sifinger equation . . . . 43
3.1.1 Thereferenceequation . . . .. .. .. ... ... ... ... 44



iv CONTENTS
3.1.2 The construction of the perturbation corrections ...... . . . . 45
3.1.3 Apilotreferenceequation . .. .. ... ... ..........
3.1.4 The CPMV,Q]lmethods . ... ................. 50

3.2 Solving the boundary value problemusingCPM . . . . ... ...... . 53
3.2.1 Ashootingprocedure . . . . . . ... oo
3.2.2 Themismatchfunction . . . .. ... ... ............
3.2.3 Choice of the matchingpoint. . . . . .. .. ... ........
3.2.4 The Riferrepresentation. . . . . . ... ... ... ... ...,
3.2.5 Eigenvalue computation . . . ... ... .. ... ........

3.3 The Sturm-Liouville problem . . . . . ... ... ... ... .. ... 59
3.3.1 Liouville’s transformation . . . . .. ... ... ........ 59
3.3.2 Implementation of Liouville’s transformation . . . .... . ... 61

3.4 Higher Order CPNIP, N} methods . . . ... ... ........... 61
3.4.1 Stepsize selection-themesh . . . ... ... ... ....... 3 6

3.4.2 Someillustrations . .. .. ... .. ... .. ..
3.5 Conclusion . . . . . . .. e

4 Line Perturbation Methods 73
4.1 A Line Perturbation Method for the Séfinger equation . . . . . . . .. 73
4.1.1 Thereferenceequation . . . . ... ... ... ... ... ...,
4.1.2 The construction of the perturbation corrections ...... . . . . 75

4.1.3 Apilotreferenceequation . . ... ... ... ... ...,
4.2 ThelLPM[4,2lmethod ... ... ... ... .. ... ... .......

4.2.1 Perturbationcorrections . .. ... ... ... ... ... ... 8 7
422 Erroranalysis . . . . . ..
4.2.3 Near-cancellationeffects . . . ... ... ... ... ...... 84
4.3 Sometechnicalissues . . . . . . . . . .. .. .. e 5
4.3.1 Computation of the Airy functions . . . . ... ... ...... 58

4.3.2 Asymptoticformulae . . . . .. ... L oL oL

4.3.3 Stepsizeselection . . . . ... .. ... .. oL
4.4 Eigenvalue computation. . . . . . ... .. ... Lo 93
45 Someillustrations . . . . .. ... 39
46 Conclusion . . . ...

5 Solving systems of coupled Scldinger equations 101
5.1 Introduction . . . . . . . . ... 101
5.2 Generalized CPEP, N} methods . . . . ... ... ... ........ 103

5.2.1 Brief description of the procedure . . . . . ... ... .... 103
5.2.2 Construction of the perturbation corrections . . . ...... . . . 105
5.2.3 Stepsizeselection . . . . ... ... o oo 107
5.2.4 Stabilizing transformations . . . . . . ... ... .. ..... 109

5.25 Someexperiments . . ... ... ... 110



CONTENTS v

5.3 Solving the boundary value problem . . . . ... ... ........ . 112
5.3.1 Problemdefinitions . . . ... ... ... ... ... ... 112
5.3.2 Ashootingprocedure . . . . ... ... ... 113
5.3.3 The Atkinson-Rifermethod . . . . . . ... .. ... ...... 116
5.3.4 Computing Marletta’d/ (F) function . . . . . ... .. ... .. 121
5.3.5 Eigenvalue computation . . ... .. ... .. .. ........ 124

54 Conclusion . . . . . ... 127

6 Singular problems 131

6.1 Asingular Sturm-Liouville problem . . . . . . ... ... ... ... 131

6.2 Classification of singularendpoints . . . . . ... ........... 132
6.2.1 Limit-point and limit-circle endpoints . . . . . . ... .... .. 132
6.2.2 Oscillatory and nonoscillatory behaviour . . .. .. .. ... 133
6.2.3 Classifyingthespectrum . . . .. ... ... .......... 313
6.2.4 The automatic classification of Sturm-Liouville peybs . . . . . 135

6.3 Problems defined on an infinite integration interval . ...... . .. .. 135
6.3.1 Truncation of an infinite integration interval . . . . . . . . .. 135
6.3.2 Adapted boundary conditions for Coulomb-like pdtdatat large

distance . . . . . . 141

6.4 Solution near the origin for radial Séfdinger equations . . . . . . . .. 147
6.4.1 Algorithm . . . .. ... ... 148
6.4.2 Fitting ofthe potential . . . . ... ... ... ... ....... aLs

6.5 Other singularities: numerical treatment . . . . . ... ...... . ... 151

6.6 Conclusion . .. . . .. . ... 151

7 The MATSLISE package 153

7.1 TheMATLABIlanguage . .. .. ... ... . . ... ... 153

7.2 The MATSLISEpackage . . . . . . . . . . .. ... 154
7.2.1 Stage 1: Construction of the partition / Liouville'arisformation 155
7.2.2 Stage 2: Eigenvalue computation. . . . ... ... ... ... 157
7.2.3 Stage 3: Eigenfunction computation . . . . . . ... ... .. 160
7.2.4 The Coffey-Evansexample . . . . . . .. . ... ... ... ... 161

7.3 Thegraphicaluserinterface. . . . . ... ... ... ... ... ... 165
7.3.1 The problem specificationwindow . . . . .. ... ... .... 651
7.3.2 Theeigenvalueswindow . . .. ... ............... 165
7.3.3 Computation and visualization of the eigenfunctions . . . . . 165
7.3.4 Half-rangereduction . . . .. .. ... ... ........... 168
7.3.5 Usingparameters . . . . . . .. . . .. ... 171

7.4 Conclusion . . . . . . . . .. e 171



\Y

CONTENTS

8 Conclusions 175
8.1 Summary . ... e e 175
8.2 Contributions . . . . . .. .. 176

9 Nederlandse samenvatting 177

A CPM Coefficients 181
A.l One-dimensional CPMP, N} . . . . . . . . . .. .. 181
A2 Generalized CPMIP, N} . . . . . . . 185

B Maple Code 191

B.1 The generation of the coefficients for the one-dimerdi@PM{P, N} . 191

B.2 The generation of the corrections of the LPM[4,2] method

B.2.1 The analytic expressions for the first and second auleection . 194
B.2.2 The asymptotic forms for the zeroth, first and secomlgiocor-

rection . . . . . . ... 197
B.3 The generation of the coefficients for the generalizeM¢P, N} . . . . 200
C List of test problems 205

C.1 Schédingerproblems . . . . .. .. ... ... ... ... . . ... 205
C.2 Sturm-Liouvilleproblems. . . .. ... ... ... ... ... ..... 209
C.3 Radial Schidinger problems with a distorted Coulomb potential . . . .102
References 213
Index 221



Chapter 1

Introduction

1.1 Introductory background

In[92], Murphy describes differential equatioras a relation involving one or more deriv-
atives and an unknown function. The problem of solving it fearch for that unknown
function. Thesolutionof a differential equation is then any relation, free fromiives,
which satisfies the equation identically.

The most generairdinary differential equatiorffrequently called an ODE) is

F(z,y, v,y ..., y"™) =0, (1.1)
wherez is the independent variablg,is the dependent variable and the notation
vy y™ (1.2)
is used to denote the derivatives

dy d2y d™y

%, @, ceey dmn' (1-3)

The word “ordinary” is used to emphasize that no partialvdgires appear, since there
is just one independent variable yifs a function of more than one independent variable
and partial derivatives with respect to those variablegessent, the equation is called a
partial differential equatior(PDE).

Theorderof a differential equation is the orderof the highest derivative that appears.
Another important concept is that of linearity. An ordinaifferential equation is said to
belinear if it has the form

ao(x)y™ + a1 @)y + -+ a1 (2)y + an(@)y = Q). (1.4)

Thus the equation is linear inand its derivatives.
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Differential equations are studied in both pure and appti@thematics. Pure mathe-
maticians study the different types and properties of tiffiéial equations, such as whether
or not solutions exist, and when they exist, whether theyuargue. Applied mathemati-
cians, physicists and engineers are more interested in dl@erhpute solutions to dif-
ferential equations. However, many of these equations tbane closed form solutions
and must be solved using humerical methods.

This dissertation concerns the design of efficient numenethods for solving nu-
merically one particular class of ordinary differentialuatjons calledSturm-Liouville
equations These linear second order differential equations descaillot of impor-
tant physical phenomena which exhibit a pronounced osmilfacharacter; behaviour of
pendulum-like systems, vibrations, resonances and waagation are all phenomena
of this type in classical mechanics, while the same is trughe typical behaviour of
guantum particles.

Before considering the Sturm-Liouville equation in moreaile we list some nota-
tions which will be used throughout this thesis.

e Intervals. The notationda, b], (a,b), [a,b) (a,b] are used to denote the closed,
open and half open intervals. LRtrepresent the real line, then
(1) (a,b)={xeR: -0 <a<z<b<+oo}
(#1) [a,b) ={r €eR: -0 <a<x<b< +oo}
(791) [a,b) ={reR: -0 <a<z<b< 400}
(i) (a,b)={zeR: -0 <a<z<b<+4oo0}.

e Continuity . A function f is C° on an interval if it is continuous ther¢}! if it has
a continuous first derivative;? if it has a continuous second derivative and so on.
Let I be any interval oR and letn € {0,1,2,...}, then

C™(I)={f:1— C: f is continuous on I for r = 0,1,...,n}.

e Integrability . A real- or complex-valued function of a real variable issigrable
on an interval if the integral of the function over that ivarexists and is finite.
A real- or complex-valued function of a real variable is sgdimtegrable on an
interval if the integral of the square of its absolute valesr that interval, is finite.
Let I be any interval oRR, then

(i) Ll(I):{f:I—>(C:/I\f(x)|dx<+oo}
(i) LQ(I):{f:I—>C:/l|f(x)|2dx<+oo}.

1.2 The Sturm-Liouville problem

A classical Sturm-Liouville equation, named after Jacdtiearles Francgois Sturm (1803-
1855) and Joseph Liouville (1809-1882), is a real secon@rdinear differential equation
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Figure 1.1: The two eponyms of the Sturm-Liouville theoryt eft) Jacques Charles Francois
Sturm (1803 - 1855), French mathematician, of German extradfitght) Joseph Liouville (1809
- 1882), French mathematician.

of the form

d [ (2) dy(x)

1 [ B2 + o) = Butaio) s)

wherep(z), ¢(x) andw(x) are given functions and in the simplest of cases are contsuo
on the finite closed intervadk, b]. Often the Sturm-Liouville equation is defined together
with boundary conditions, specifying the solution in theleaintsa andb. In the regular
Sturm-Liouville theory these boundary conditions haveftirm

aoy(a) + bop(a)y'(a) =0, ary(b) + bip(b)y'(b) =0 (1.6)

whereag, by are not both zero, nor are,b;. The value ofE is not specified in the
equation; finding the values df for which there exists a nontrivial (nonzero) solution
y of (1.5) satisfying the boundary conditions is part of thelppem called theSturm-
Liouville problem Such values of2, when they exist, are called tlégenvalue®f the
boundary value problem defined by (1.5) and the prescribedfsmundary conditions.
The corresponding solutiongx) (for such aF) are theeigenfunction®f this problem.

Example 1.1 Solve the following equation

d2
d—Z—i—Ey:O, 0<zx<m
T
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with boundary conditions

y(0) =0, y(r)=0.
Herep(z) = w(z) = 1,q¢(z) =0,a =0,b =7, a9 = a1 = 1l andby = b; = 0. The
general solution to the differential equation is

y(z) = ¢1 cos(VEx) + ¢y sin(VEx)

with E > 0. If E <0, then the system has only the trivial solutigr= 0. This is not of
interest, since every Sturm-Liouville system has a trig@ltion.
The conditiony(0) = 0 implies thatc; = 0; hence the updated solution becomes

y(z) = ey sin(VEz).

The second conditiog(w) = 0 implies that either; = 0 (which would lead to the
trivial solution) orv/En = km, thatisE = k2, k = 1,2,3,... . The eigenvalues of the
system are thu&y = 1, £y = 4, F», = 9,... . The corresponding eigenfunctions are
yo(x) = sin(x), y1(x) = sin(2x), y2(x) = sin(3z), ..., and in general

yr(z) =sin((k+ 1)x), k=0,1,2,...,
where the arbitrary constants have been set equal to ore, sigenfunctions are unique
only upto a multiplicative constant.

1.2.1 Where Sturm-Liouville problems come from

The one-dimensional Sturm-Liouville problem models adangmber of important phys-
ical processes. The general Sturm-Liouville problem eveseafirst in the context of
the separation of variables method for partial differdregiguations modelling physical
processes in more than one dimension. The separation ablesimethod was applied
on the partial differential equation to obtain a Sturm-hiitle problem for each indepen-
dent variable.

Example 1.2 We use the separation of variables to show how we can get@uduif the
two dimensional Laplace’s equation

Pu  0%u
— + - =0. 1.7
0x? + Oy? 0 (2.7)
We look for solutions of the form

u(z,y) = X(2)Y (y). (1.8)
From Laplace’s equation we get

Y () X"(2) + X ()Y"(y) = 0, (19)
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Separating variables and assumi¥i¢x) # 0, Y (y) # 0 we get

X"(z) _ Y"(y)
= . 1.10
“X@) YW (110
Since the left hand side of this equation depends only and the right hand side depends
only ony we get that

X' V')
X YW -

where\ is a constant. This leads to the Sturm-Liouville differahéiquations

X" =-A\X, Y'=)\Y. (1.12)

It follows that if X is a solution of the first differential equation in (1.12) a¥xdis a
solution of the second equation in (1.12) for the sanvalue, then

u(z,y) = X(x)Y(y) (1.13)
is a solution of Laplace’s partial differential equation.

Many mechanical systems lead to a general form of a Sturmilie problem. In
many applications, the Sturm-Liouville problem descrities oscillation in the physical
system. In [105] e.qg. it is shown how a Sturm-Liouville predol arises in the context of
a vibrating (heavy) string. Also in [118] some examples ofgbal problems leading to
differential equations of Sturm-Liouville type can be falin

1.2.2 The Schbdinger problem

A specific subclass of the Sturm-Liouville equations is
formed by the so-called Sabdinger equations [114]. The
one-dimensionachibdinger equations the fundamental
equation of quantum mechanics. It arises there in its time-
independent form as

=5y (@) + (V(z) - E)y(x) =0, (1.14)

wherem is the mass of the particle aridis Planck’s con-
stant oveRz. To a quantum physicist or chemi$f(z) is a
potential functiondescribing a potential field, an eigenvalue
E'is anenergy levelnd its eigenfunction is the correspond-
ing wave functiorof a particle, the two together describing a
bound state For a regular Sclidinger problem the bound-
ary conditions take the form

Figure 1.2: The Austrian
physicist Erwin Schidinger

(1887 - 1961). apy(a) +boy'(a) = 0, ary(b) +b1y'(b) =0  (1.15)
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whereayg, by are not both zero, and similarly far, b;.
In this thesis the Scbdinger equation is considered in natural units (also dalieu-
ville normal formj:

y'(z) = (V(z) - E)y(x). (1.16)

1.3 Basic properties of the Sturm-Liouville problem

During time an extensive theory was developed for the redadandary value problem
(1.5)-(1.6), the so-calleBturm-Liouville theory In this section we bring together those
facts which seem especially relevant for the subject ofttiésis. For a more elaborated
study of the Sturm-Liouville theory we can refer to [105, 1132].

It may be assumed throughout the following, that) andw(x) are strictly positive
on the open intervala, b) and thatp(x), ¢(x) andw(x) are piecewise continuous on

(a,b).

1.3.1 Existence, uniqueness and linearity

From the basic existence and uniqueness theorem for (Jinedinary differential equa-
tions it follows that ifp(z), ¢(x) andw(z) are (piecewise) continuous on an interval, with
p(z) strictly positive there, then the Sturm-Liouville equatio

d {p(z) dy(x)

~ i [P0+ o) = Buo) (1.17)

has a unique solution satisfying any given initial condiso

yle)=a, (py')(c)=p (1.18)
at a pointc of the interval (see [132]).

Proposition 1.1. Suppose tha{l.17)is a Sturm-Liouville equation with(z), ¢(x) and
w(x) continuous, anc(z) > 0 for all x € [a,b]. Then the set of all functiong(x)
satisfying(1.17)is a vector space of dimension 2. In other words, there existinearly
independent solutions @iL..17) and any other solution of1.17)is a linear combination
of these.

Proof. The differential equation (1.17) is equivalent to the nosaomous linear system

{y'm = ()

p\x

(z)
' (x) = [g(z) = Bw(@)ly(z).

Hence, by the basic existence and uniqueness theorem, dkiste a unique solution
of (1.17) with initial valuesy(a) = 1,p(a)y’(a) = 0. Similarly, there exists a unique
solution of (1.17) with initial valueg/(a) = 0,p(a)y’(a) = 1. Let us denote these

(1.19)



1.3 Basic properties of the Sturm-Liouville problem 7

solutions byu(z) andv(x). Thenu(x) andv(z) are linearly independent (neither function
is a constant multiple of the other). Moreovery(f) is any solution of (1.17), then

y(x) = y(a)u(z) + p(a)y' (a)v(z).

To see this, consider the functigc) = y(z) —y(a)u(z) — p(a)y’ (a)v(z). The function
g(x) is a solution of (1.17) with initial valueg(a) = y(a) —y(a)u(a) —p(a)y’ (a)v(a) =
0 andp(a)y’(a) = p(a)[y' (a) —y(a)u'(a) —p(a)y’(a)v'(a)] = 0. Hence, the uniqueness
theorem implies thaj(z) = 0 for all z € [a, b]. O

One can then say that the Sturm-Liouville equation (1.1@)irsear differential equa-
tion. That is, if we define thdifferential operator

Lw(lx){;;<()di>+q( )} ona<az<b (1.20)

thenL is alinear operator
L(ay + 82) = aL(y) + BL(z2), (1.21)

whereL(w) is the notation used to denote the function that results fipplying L to w.
A consequence of the linearity is that the general solutfofl d7) (for any givenk) is
of the form

y(z) = ary1(z) + a2y (), (1.22)
wherey; (x) andys(x) are any two linearly independent solutions.

1.3.2 Reality of eigenvalues and orthogonality of eigenfugtions

The eigenvalue problem (1.17) can be written as
L(y) = By (1.23)

for the linear differential operatat defined above. A fundamental result regarding the
linear operatol. is Green’s identity:

Proposition 1.2. Green’s identity

b
[ (s = L) ws = o) [y @) — i @] ], @29)

for any well-behaved (real or complex) functiopgz) and y;(z). y; is the complex
conjugate of the functiog.

Proof. The left-hand side of (1.24) can be written as

b b
/ [—(pyd)"v} + quiy;] do — / [—(y}") vi + quiy}] dz
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b
= / [(py;")yi — (pyi)'y} ] do

Using partial integration we obtain the required result

b

!/ b /! b b !/
[py}‘ yi]a —/ pyj yi'de — [pyiyﬂa +/ pyy; de.
O
Let us define thénner-productas
b
o) = [ vajw da, (1.25)
Then Green’s identity (1.24) can also be written as
b
(L) w) = e L)) = [p@) @)y} (@) =i @yi@)] | . (1.26)

providedp, ¢ andw are real-valued functions (therf (y;) = L(y;)).
For a regular Sturm-Liouville problem any two (real) satms$y; andy; satisfy the
regular boundary conditons (1.6), this means that

{aoyi(awbop(a)y;(a) =0 {aoy.i<a)+b0p(“)y§(“) =0 (1.27)

a1yi(b) + bip(b)y;(b) = 0 a1y;(b) + bip(b)y;(b) = 0.
It follows that
(L(yi)s yj) — (yir L(y5))
= [p@) )y’ @) i@y )]
= yi(0)p(b)y;' (b) — p(b)y; (b)y; (b) — yi(a)p(a)y;'(a) + pla)y;(a)y;(a)
= — 5O (0) + Ty (0) + 3 w0y (@) = 3 i)y (a)
=0,
(1.28)

whenby # 0 andb; # 0. If by = 0 (and/orb; = 0), then isy;(a) = y;(a) = 0 (and/or
yi(b) = y;(b) = 0). Thus for a Sturm-Liouville problem with boundary condits (1.6)
and real-valued coefficient functions, tegmmetryor formal self-adjointnesgroperty
holds, namely that

(L(yi),y5) = (i, L(y;)) (1.29)

This symmetry relation implies the following simple result

Proposition 1.3. With the above assumptions on the coefficient functions anddary
conditions,
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(i) The eigenvalues of a Sturm-Liouville problem are real.
(i) The eigenfunctions belonging to distinct eigenvalagsorthogonal (with weight-
ing functionw(x)) with respect to the inner produ¢t.25)

Proof. Suppose we have eigenfunctiopsy, satisfyingL(y;) = E;y;, L(y;) = E;y;
whereE; # E;. Then

E;i (yiry5) = (B yj) = (L(Yi), y;5) = Wi, L(y;)) = (is Ejy5) = £ (Yir y5) -

When we takey; = y; andE; = E; we havel; (y;, ;) = E; (y;, y;) and sincey; is not
identically zero we havéy;,y;) # 0, so thatE; = E; which proves parti). SinceE);
is real the equation above givés (y;, y;) = E; (y:,y;). This means thaty;,y,;) = 0
whenE, # E;, proving part(ii). O

For real-valued functions the complex conjugate is a nesdtemplication and the
inner-product may be written as

b
Vi, y5) :/ yi(x)y; (x)w(z) de. (1.30)

Notice that the scale or normalization of the eigenfundisrarbitrary. We can choose it
such that the functions are not just orthogonalditthonormal

0, i#J

1.31
1, i=3j ( )

b
(Vi yi) :/ yi(z)yj(z)w(z)dr = 6;; = {

with 4,5 € {0,1,2,...}. It follows that the eigenfunctions of a Sturm-Liouvillegimem
can be used to form an orthonormal set of functions.

The symmetry relation also forms the starting point of thedamental theorem on
regular Sturm-Liouville problems:
Theorem 1.4. For a regular Sturm-Liouville problem

() The eigenvaluesr, are simple (i.e. there do not exist two linearly independent
eigenfunctions with the same eigenvalue).

(i) The Ej can be ordered as an increasing sequence tending to infinity,
Eo<Ei<Ey<... (1.32)

and with this labelling the eigenfunctian.(x) corresponding taZ;, has exactly
zeros on the open intervéd, b).

(i) The y, form a complete orthogonal set of functions oyerb) with respect to the
inner product(1.25) That is, any reasonable functioh can be represented on
(a,b) by its Fourier series with respect to thyg,

f@) ~ ) cryn(x) (1.33)
k=0
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where
ck = (fryk) / (Y, Uk) - (1.34)

For a proof of these results see e.g. [30, Chapter 7] or [T®&.integelk in part (i)
is called thandexof the eigenvaludvy.

1.3.3 Interlacing

It is a basic feature of the equation (1.17) that, whér) andQ(z) = Fw(z) — q(z) are
both positive then solutions of the equation are generdlbsoillating shape: according
to Theorem 1.4 the eigenvalues are indexed by the numbercofatisns, i.e. zeros, of
their eigenfunctions. A classical result about the retatiesition of the zeros of different
solutions is thesturm Comparison theorem

Theorem 1.5. Sturm Comparison Theorenlety;(x) be a nontrivial solution orja, b)
of

(pi(x)y") + Qi(x)y =0

andy;(z) be a nontrivial solution orfa, b) of

(pj(x)y") +Qj(x)y =0

where0 < p; < p; and@; > Q; on (a,b). Then (strictly) between any two zerosyof
lies at least one zero gf; except whemy; is a constant multiple of;. The latter implies
Q; = Q; andp; = p; except possibly in intervals wheg, = Q; = 0.

For a proof see [30].

The most common application is to a Sturm-Liouville systeitiifferent eigenval-
uesEy,. Thenp; = p; andQy () = Erw(z)—q(x) and the theorem makes a comparison
of the different eigenfunctions. We assume th&t) > 0 andE; > E;. The zeros of
the eigenfunction of; then lie between the zeros of the eigenfunctiodpf This prop-
erty is calledinterlacing Colloquially we say that the higher eigenfunction is datiihg
‘more rapidly’ than the lower eigenfunction.

Example 1.3 A simple example is shown by the eigenfunctions of

—y"(z) = Ey(z), y(0) =y(r) =0

of which the first four are shown in Figure 1.3. The eigenvalaeE, = (k + 1)2,k =
0,1,... and the eigenfunctions agg = sin((k + 1)z) (see example 1.1). The theorem
then tells us that the zeros gf(z) lie between the zeros gf (z) if j > . If we consider
each eigenfunction in turn, theg only has the two zeros at its endpoints, has one
additional zero which must be situated in between the twoszefy,. Analogously,y,
has a zero between each zerajpfandys has a zero between each zerg/gfand so on.
The eigenfunctions are thus becoming more oscillatory agidenvalue increases.
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Figure 1.3: lllustration of the interlacing property: the first four eigenfunctions-gf’ = Ey.

1.4 Outline

In this first chapter we briefly outlined the subject of instréMe discussed the form and
basic properties of the Sturm-Liouville problem and thecgecase of a Sclidinger
problem. In the remaining chapters of the thesis, some fipéathniques are considered
and implemented for the numerical solution of a Sturm-Liberor Schiddinger problem.
These chapters are organized as follows.

Chapter two discusses into more detail what is meant with the numerialaition of

a Sturm-Liouville problem or a Scbdinger problem. Some basic methods and tech-
nigues to compute the eigenvalues will be introduced sudhea®iifer transformation,
the shooting method and the principle of coefficient appration.

Chapter three introduces the Constant (reference potential) Pertwbadethods (or
CPM in short). These methods were specially devised for tied8inger problem by
Ixaru and co-workers and are based on a piecewise constamba@pation of the poten-
tial function. Using a perturbative approach, methods ghtorder can be constructed.
Our contribution exists in the extension of the CPI®,10 algorithm to higher order.
This CPM{12,10 algorithm was used as the basis for the code SLCPM12 [61]nd i
of order{12, 10; (meaning order 12 at low energies and order 10 at high ergrgie
the new algorithm the ordefd 4, 12, {16, 14 and{18, 16} are introduced. Just as the
CPM{12,10 method, these new higher order algorithms can be used inaisfgro-
cedure to compute the eigenvalues efficiently and accyratbk construction and use of
the higher order CPM algorithms was published in [75].
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Chapter four examines the Line (reference potential) Perturbation btidh(or LPM
in short) and its specific difficulties. For these methods gbeential function of the
Schibdinger equation is approximated by a piecewise line. Wethis@pproach which
was already introduced by Ixaru in [58] to effectively canst a LPM algorithm of order
ten. Hereto we compute expressions for the first order anghslearder corrections. In
addition we propose some asymptotic formulae which shoaldded in order to avoid
loss in accuracy due to near-cancellations of like-terntses€ results were published in
[74].

Chapter five adresses systems of coupled equations. The generalizdtitve CPM

to systems of coupled Sdbtinger equations is introduced. It is shown that thesergene
alized CPM preserve the important properties of the onesdgional CPM discussed in
chapter 3. The construction of the generalized CPM was glubdi in [77]. In [78] and
[79] we discussed the computation of the eigenvalues of $seaated boundary value
problem. Using the generalized CPM in a shooting procesxitienvalues are computed
accurately. Atkinson’s matrix generalization of theifer transformation is used to im-
prove this shooting procedure.

Chapter six deals with somesingular Sturm-Liouville problems. A singular problem
occurs when at least one of the coefficigpits, ¢, w is not integrable up to the endpoint
(i.e. is unbounded in a severe way) or if one or both of the eimdp is infinite. These
singular problems present particular difficulties bothhie tletermination of well-posed
problems and in the numerical calculation of the eigenwaldée discuss an interval trun-
cation procedure for problems defined on an infinite intégmdhterval. We also consider
the important class of radial Sétinger equations for which an improved truncation al-
gorithm is proposed. Also the algorithm which is applied &aldwith the singularity of
the radial Schidinger equations in the origin is explained. This work wabligshed in
[73].

Chapter sevendiscusses the MrsLISE package. We presented an earlier version of
MATSLISEIN [76]. MATSLISE s a MATLAB package implementing the one-dimensional
CPM and LPM algorithms discussed in chapter 3 and 4. Alsorthecation algorithms
presented in chapter 6 are included. On top of thisTBLISE package a graphical user
interface is built, which makes the package more userdtieand easy to use. We briefly
discuss the structure and use oAMLISE and illustrate this with some examples.

Chapter eight concludes this thesis, summarizes contributions and e&ments.



Chapter 2

Numerical solution of the
Sturm-Liouville problem

The determination of the eigenvalues of Sturm-Liouvillelgems is of great interest in
mathematics and its applications. However most eigenvalaklems cannot be solved
(or are difficult to solve) analytically, and computatidgadfficient approximation tech-
nigues are of great applicability. In this chapter we shoat thenumericalsolution of
(regular) Sturm-Liouville problems is not trivial. The dlemges are to do this cheaply,
especially when long runs of higher-order eigenvalueseqeired.

2.1 Computational methods for the Sturm-Liouville prob-
lem

Many numerical methods have been developed for the conipaitaf eigenvalues and
eigenfunctions of Sturm-Liouville boundary value prob&nTwo standard approaches
to the numerical approximation of eigenvalues of a boundatye problem can be dis-
tinguished: discretizationand shooting Discretization methods (such as finite differ-
ences and finite elements) involve substantial arithmeticthe storage of large matrices.
Moreover, the accuracy quickly deteriorates for the higkigenvalues. Shooting meth-
ods require less storage and arithmetic, but usually thegadaletermine the index of
the eigenvalue. For Sturm-Liouville problems, these diffies are avoided by the &fier
method, which is a shooting method based on oscillation.s Phifer-based shooting
method has been implemented by Bailey, Gordon and ShampitteiSLEIGN code
[21] (and its successor SLEIGNZ2 [17]) and by Pryce in the NAsgary code DO2KDF.
The Piifer-based shooting methods have, however, some problétmstiffness when
standard initial value solvers are used. This stiffnesapfiears when the fer transfor-
mation is combined with coefficient approximation. The Baumethods (implemented in
the packages SLEDGE [101] and SLO2F [87, 88]) combine a pisesconstant midpoint
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approximation with a Rifer-based shooting method. Another class of methods using
efficient approximation are the Piecewise Perturbationhdés (PPM). These methods
apply a perturbative approach to successively improvedhgisn of the approximating
problem.

The discretization methods and the different shooting outhwill be discussed in
more detail in the different sections of this chapter.

2.2 Discretization methods

2.2.1 Simple matrix methods
We consider methods based on finite differences [67]. Anlggsi@aced mesh is used
a=29g<x;<--<xp=2"0 (2.2)

wherez; = a + ih with h = (b — a)/n. The finite difference methods typically lead to
matrix eigenvalue problems. For instance, the simple edrdifference approximation

—Yi-1 1 2Ui — Yit+1
~y; ~ - i oy = yla) (2.2)

leads to an algebraic matrix eigenvalue probl&’yi = EY whereA is symmetric tridi-
agonal (see [105]). Another method is derived by applyirgNlnmerov method, leading
to a generalized eigenprobleAY = EBY where A, B are tridiagonal matrices. This
Numerov method

h2
Yie1 — 2Yi + Yit1 = E(fi—l +10f; + fit1), fi= f(zi,vi), (2.3)

is a well-known method and is used to solve differential ¢igna of the formy” =
f(z,y).

An advantage of the finite difference methods is that theyarg simple to set up,
especially when we deal with regular problems defined on &efinierval and a uni-
form mesh. However these simple methods have their limiteeyTreplace an infinite-
dimensional problem by a matrix problem of a dimension egldab the number of mesh-
pointsn. As a consequence, they can only approximate a certain nuohleé@envalues
for a givenn. Moreover, the quality of théth eigenvalue deteriorates rapidly asn-
creases: the error in thieth eigenvalue on a mesh of sizeis typically of the form
O(hPk7) [66].

As an illustration we use the Numerov method to solve a Stuigaville problem in
its Liouville normal form

—y" +q(2)y = By, (2.4)
with boundary conditiong(a) = y(b) = 0. Application of Numerov’'s method leads to
the equations

h2
Yie1 =i tyin = 75 [(0(@im1) = E)yio1 +10(a(2i) = E)yi + (¢(@i41) — E)yira],
(2.5)
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or equivalently

—Yi-1+2Yi — Yit1
72
1
13 [ (

+ (¢(z:) = E)yi =

q(zi-1) — E)yi—1 +2(q(xi) — E)yi — (q(zit1) — E)yir1],  (2.6)

which with the boundary conditiong = y, = 0 leads to a generalized matrix eigen-
problem:

AY = EBY 2.7)
where
1
Y = : (2.8)
Yn—1
and ) )
A=—M+B B=1I-—M 2.
M+ BQ, 3 (2.9)
with
2 -1
1 2 -1 q(z1)
q(z2)
M = . Q=
-1 2 -1 '
_1 2 Q(xh,—l)
(2.10)

The eigenvalue€’; < E» < E3 < ... (in this section we label the eigenvalues from 1
upwards) and eigenfunctions of (2.4) can then be approeithbay the eigenvalues and
eigenvectors of the generalized matrix eigenvalue probleoan be shown that the error
in the kth eigenvalue is of the forn®(kh*) (see [10]). This indicates that the error
in the computed eigenvalue approximations increases lyapith k. Table 2.1 shows
the exact eigenvalueB) and some computed estimates for the problepl = Evy,
y(0) = y(w) = 0 and variouss.

The reason for the decreasing accuracy is that the finiterdifce methods are based
on approximations of the eigenfunctions by (piecewiseypomials. These approxima-
tions impair with increasing eigenvalue indexsince the eigenfunctions oscillate more
rapidly ask increases. Some effort has been done in finding more unijovalld ap-
proximations. For instance, Anderssen, Andrew, de HoogrPatige constructed a simple
correction technique [9, 11, 95, 97]. They showed in [97] tbathe case of the simple
centred difference discretization, higher eigenvaluesbheacomputed more accurately by
adding the errors for the null potential, which are explycknown, to the corresponding
eigenvalues of the discretized problem. The same corretgichnique was also applied
to the Numerov method [12] and finite element methods [13, 8hden Berghe and
De Meyer [121, 125] used another idea to improve the eigaevapproximations. They
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Table 2.1: Eigenvalues obtained with the Numerov methodfar’ = Ey, y(0) = y(7) = 0.

FEy n =10 n =20 n = 40

1 0.99995926  0.99999746 0.99999984
4 3.99736290 3.99983702 3.99998984
9 8.96943979 8.99813471 8.99988417
16  15.8246732 15.9894516 15.9993481
25  24.3170841 24.9594385 24.9975078
36  33.9283646 35.8777592 35.9925389

S UL W N |

approximate the solution (eigenfunctions) no longer bypoinials only but by a mixed

interpolation function containing also trigonometric @ions. In [122] a modified Nu-

merov method is discussed which delivers more accuratenagiees than the classical
one. Also the exponentially-fitted Numerov methods disedss [124] show a less pro-
nounced increase of the error with the eigenvalue index.

2.2.2 Variational methods

Another class of methods which has been applied to solvetimenS_iouville problem

is formed by the variational methods [105] such as the firlikenent methods. These
methods are based on variational principles and are ndy mdantegeous over the fi-
nite difference methods. ThRayleigh-Ritanethod e.g. produces, like the finite difference
methods, an approximating matrix eigenproblem and eachadization can only approx-
imate a limited number of eigenvalues. In addition the aacyiof ;. deteriorates with:

as fast as with finite differences.

2.3 Shooting methods
2.3.1 Basicidea

The shooting method is a method for solving a boundary valaklem by reducing it to
the solution of an initial value problem. The differentigjuation is solved as an initial
value problem over the rande, b] for a succession of trial values &fwhich are adjusted
till the boundary conditions at both ends can be satisfieshe cat which point we have
an eigenvalue. The simplest shooting method ‘shoots’ from endpoint to the other
endpoint, e.g. from to b. This means that one chooses initial conditions which fyatis
the boundary condition (1.6) i

y(a) = —bo, pla)y'(a) = ao (2.11)

The boundary condition dt determines ‘target’ values; if the value gfmatches the
target, we have found an eigenvalue.
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Figure 2.1: The shooting process for the sample problegli’ = Ey with y(0) = y(x) = 0.
(Left) The left-hand solutiory;, and right-hand solutioyr for different E' values. (Right) The
corresponding first derivativeg;, andy’.

Alternatively, one can shoot from two ends to some inten@tching pointz,, €
[a,b]. In this case we define a left-hand solutigp(z, E') and a right-hand solution
yr(z, E). The left-hand solution is the solution of the initial valpeblem starting ir
with initial conditions

yr (a) = _bOa p(a)ylL(a) = ao, (212)
while the right-hand solution satisfies the conditions
yr(b) = —b1, p(b)yRr(b) = a;. (2.13)

Example 2.1 Figure 2.1 illustrates the shooting process for the problesfi = Ey
with the boundary conditiong(0) = y(7) = 0. As seen in example 1.1 this problem
has eigenvalues$, 4,9, 16,.... The matching point,,, is chosen in the middle of the
integration interval. The left figure shows the left-hantuon y, (z, E') and right-hand
solutionyg(x, E) for different E-values: E = 5,4.5,4.25 4. The corresponding first
order derivatives are shown on the right figure. The leftehawiution starts im = 0 and
is propagated up to the matching point, while the right-hsmidtion originates ih = 7
and goes down to the matching point. It is clear that only tHet®ns for £ = 4 match
in the matching point, that ig;,(x,,,4) = yr(zm,4). However it is possible for the
other E-values to rescale e.qg. the right-hand solution suchghét,,,, E) = yg(xm, E).
But in this case, the obtained left- and right-hand first oddgivatives no longer agree in
the matching point. We can conclude that the criterionFaio be an eigenvalue is that
the derivativeg,’ should match, as well as the valugsThis criterion is captured in the
mismatch function discussed below.

At the matching point we defineraismatchfunction ¢(E). This mismatch function
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«E)

Figure 2.2: Mismatch function for the sample problemy”’ = Ey with boundary conditionfLeft)
y(0) = y(m) = 0 and(Right) y(0) + y'(0) = y(x) + y'(7) = 0.

can e.g. be written as the determinant

_ p(mm)y’ (mmvE) p(xm)y/,(wmvE)
o(E) = yL(me’ ) yR(me7E) . (2.14)

This mismatch function is only zero whéhis an eigenvalue. Theyk can be multiplied
by a suitable scalar factor which makes it the continuatiog,ofor x > z.,, producing
an eigenfunction. Thus the procedure for finding the nurakxialue of an eigenvalue,
consists in evaluating the mismatch functig{®), numerically, and then through a finite
series of iterations finding the value &f such thaip(E) = 0 to the required degree of
approximation. The usual iterative methods for finding thets of a function may be
employed here to find the zerosofFE).

Example 2.2 Figure 2.2 shows the shape ofF) for the problem—y” = FEy for the
boundary conditiong(0) = y(7) = 0, which has zeros at, 4,9, 16, ... (see example
1.1), and for the boundary conditiog$0) + 3'(0) = y(7) + ¥'(7) = 0, which has an
additional zero at/ = —1.

2.3.2 Piifer-based shooting methods

There are however some difficulties associated with thecampr discussed above. The
mismatch functions(E) is always an oscillating function which makes the rootfirgdin
process more difficult. Moreover, in order to converge onecHjt eigenvalue, say the
kth, one needs to enhance the algorithm, for instance by icwpithie zeros of the solution
during the integration for each tri&l value.
These difficulties can be avoided by using Bréifer transformation This technique

first appeared in a 1923 paper [103] by Hiifer. There the change of variables was
used to develop oscillation and comparison theorems. TiePransformations reduce
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a Sturm-Liouville problem to an equivalent, nonlinear bdary value problem of first
order. This leads to several useful numerical methods basetdme form of the Rifer
transformation. Rifer based shooting methods can be constructed where thérupof
the zeros ofj(x) needed to compute the specific eigenvalue with a given ikdedbuilt
in.

The main idea in the Bfer method is to introduce polar coordinaigs®) in the
phase plane. For tr@mplePrifer transformation we take

y = psinf, py = pcosf (2.15)

wherep = p(z; E) is called theamplitudeandd = 6(x; E') is known as thephaseor
Prufer angle Differentiating (2.15) gives

y = p'sinf + p0 cos0, (2.16)
and
2= p cost — p@ sinb, (2.17)
wherez = py’. We can write the Sturm-Liouville differential equationtam first-order
equations
, 1
Yy = -z
P (2.18)
2 = (¢ — Bw)y.

and combine (2.16), (2.17) and (2.18) to solve the resusiimyltaneous linear equations
for o/, 6. We find thatp and# satisfy the equations

o = 1 cos” 0 + (Ew — q) sin” 0, (2.19)
p

o 1 .

L = — (EBw —q) ) sinfcos#. (2.20)

p p

The Pilfer equations have the property that the eigenproblendisced! to the solution
of thed equation. Oncé& andd(x; E) are knownp can be determined by quadrature

p(x) = p(a) exp /: [p(lt) — (Pw(t) — q(t))} sin 6(t) cos 0(¢)dt. (2.21)
The regular boundary conditions (1.6)sandb define the conditions
0(a) =a, 6(b) =5, (2.22)

wherea and 3 are values ofan—!(—bgy/ag), tan~!(—b; /a;) respectively. As we will
see further, the precise value®@finds depends on the eigenvalue searched for (theorem
2.1).

ThescaledPrifer transformation is a generalization of the simpléfér method and
is defined by the equations

=8 Y255in0, py' = SY2pcosb 2.23
) 14 , PY 14 y
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whereS is a strictly positive scaling function chosen to give goannerical behaviour,
and which in general depends upon beotand E. In [105] it it shown that the resulting
differential equations fop andé are then of the form

E _ /
0 = Seos?o FUZD g2 5 Gigeose, (2.24)
p S o
, _ !
2 _ (S5 _(Bw—-9q) sin 260 — 5 cos 2. (2.25)
p p S S

The regular boundary conditions (1.6)w@andb define the conditions fat
6(a) = a, 6(b) =5, (2.26)
where S(a)b S(6\b
(a)o’ tanf = — <)1
ao ay
These equations only determineand 5 up to a multiple ofr. The Piifer feature is

that each (appropriate) choice of this multiple specifiescigely one eigenvalue. The
following theorem is proved in [105].

tana = —

(2.27)

Theorem 2.1. Consider the scaled Rfer equations of a regular Sturm-Liouville problem
whose coefficients, g, w are piecewise continuous with> 0, ¢ > 0. Let the boundary
valuesa and 3 satisfy the following normalization:

a€el0,7), Be (0,7 (2.28)
Then thekth eigenvalue is the value &f giving a solution of(2.24)satisfying
6(a,E)=a, 6(bFE)=p0+kn. (2.29)

The main point of this theorem is that the indegf the eigenvalue equals the number
of zeros of the associated eigenfunctigfx) on the open intervala,b). If 6(z) is a
multiple of = at a certain point = z;, thend’(z;) = S(x;)/p(x;) > 0 by (2.24). This
shows that increases through multiples efasx increases, this means titatan never
be decreasing in a point = x; wherex; is a multiple ofr. Sincey = 0 just when
6 is a multiple ofr, by (2.23), the number of zeros gfon (a, b) is just the number of
multiples of  (strictly) betweerf(a) andf(b). The normalization (2.28) ensures that
for any nonnegative integét, there are precisely multiples ofr strictly betweeny and
8+ km.

A shooting method can be defined for thequation. For simplicity we assume the
scaling function ha&-independent values in the matching patpt and ina andb, which
makesx andg in (2.28) also conveniently-independent.

Theorem 2.2. For any E, let 0, (x; E) andfr(z; E) be the solutions of2.24)satisfying

0.(a;E) =a €[0,7), Or(b;E)=p¢ (0,7, (2.30)
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and define the scaled Bfer mismatch function by
(E) = 0L (xm; E) — Or(m; E). (2.31)
Then
1. The eigenvalu&, is the unique value such that
¢(Er) = kr (2.32)
fork=0,1,....
2. The functionp(E) is stricly increasing and differentiable qi-co, o).
For a proof, see [105].

Example 2.3 We look at the form of the Rifer angled for a regular Sctirdinger problem
—y" + V(x)y = Ey defined by Paine in [97] with potential function

1

Ry (2.33)

Viz) =
The problem is defined over the intenjal 7] and the boundary conditions ayé0) =
y(m) = 0. The upper figure of Figure 2.3 shows the unscalédd? (S = 1) for this
problem for E running through the first 10 eigenvalues. As predicted byrdm 2.1
the different eigenvalues correspond with different npldis of r in 6. Note that ask
increases the unscalediffer 6 equation has solutions of gradually increasing ‘staircase
shape with ‘plateaus’ @ = k= and steep slopes aroufidz (k — 1/2)x. The integrator
needs to react to the changes in slope of these steps, fard¢mdrastically reduce the
stepsize. A good choice of the scaling functi$itan smooth out the oscillatory behav-
iour, as shown in the lower figure.

Example 2.4 Figure 2.4 shows an example of the left hand (unscaldafeP#;, and right
hand (unscaled) Bferr appearing in the shooting method (see theorem 2.2). The uppe
figure is for the Paine problem (2.33) with matching paipt = 1.12 and eigenvalué’y.
Another example is shown for the Coffey-Evans equationériatver figure. The Coffey-
Evans equation is one of the test problems which frequepibgars in the literature (see
e.g. [104, 105]). Itis a regular Sdtinger equation with

V(x) = —26 cos(2x) + §%sin?(2x), (2.34)

andy(—n/2) = y(w/2) = 0 as boundary conditions. Here the shooting was done for
8 = 20, z,, = 0andE = Fgs. For both problems it is clear thé}, increases anfg
decreases through multiplesf It can also be seen that each pass through a multiple of
7 corresponds with a zero in the eigenfunctigy). For the Paine problem shown in the
upper figurefy (zm; Fo) = 3.5 andfg(z,m; F9) = —5.57 in the matching point. Thus
the scaled Rifer mismatch functiom(Ey) given by (2.31) is equal tBr, as predicted by
(2.32). For the Coffey-Evans problem shown in the lower fgu( Eg) = 4.57+ 3.57 =

8.



22

NUMERICAL SOLUTION OF THE STURM-LIOUVILLE PROBLEM

B(x)

8(x)

10%pi
9*pi
8*pi
7*pi
6*pi
5*pi
4*pi
3*pi

2*pi

10*pi
9*pi
8*pi
7*pi
6*pi
5*pi
4*pi
3*pi
2*pi

pi

0.5 1 15 5 y :
X
L Yz g
0 0.5 1 15 > Y :

Figure 2.3: (Upper) The unscaled Rifer functiond(z; ) for the Paine problem{(z) = 1/(x +
0.1)2), with E running through the first 10 eigenvalug&.ower) The Piifer functiond(x; E) for

the same problem as above, using scale fagter 1 whereFE — V(z) < 1andS =
whereE — V(z) > 1.
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Figure 2.4: (Upper) The (unscaled) Rifer 01, (z; E9) andfr(z; Eo) for the Paine problem,, =
1.12). (Lower) The (unscaled) Rifer 61 (z; Es) and 0r(x; Eg) for the Coffey-Evans problem
(3 =20, zm = 0).



24 NUMERICAL SOLUTION OF THESTURM-LIOUVILLE PROBLEM

Each value of the mismatch functiet( F) involves an integration of (2.24). The
aim of the choice of the scaling functid(z) is to reduce the cost of these integrations
and allowing the code to take as large steps as possible.s@igoan appropriate scaling
functionS(x) is however a non-trivial task. We consider first the cBse— ¢ > 0, which
occurs typically when searching for eigenvalues with larmgtices. Here the stepsize for
a standard library initial value problem solver is limitegthe local accuracy requirement
defined by some tolerancel. If p, ¢ andw are constant andlw — ¢ > 0 all numerical
problems are eliminated by taking

S =+ (Fw - q)p. (2.35)

This reduces th& equation simply to the trivial case

0" =/ Ew=-gq _ constant, (2.36)
p

for which there is no stepsize restriction. In general,42¢an be written as
1 Ew — Ew — !
0 = 3 ijL(qu)Jr <i — (qu)) cos29+%sin29
= A+ Bcos20 + C'sin 20,

(2.37)

then the scaling functior should be chosen so th#& and C' are small and4A =
(Ew—q)/p.

At the other extreme, iFw — ¢ < 0 thed equation (2.24) becomeatiff and standard
library methods need to take small steps to avoid instgb(tiee [72] for more infor-
mation on stiffness). A scalar differential equatiép/dz = f(x,y) is considered stiff
over a range iDf /0y is large and negative in relation to the lenditof the range, i.e.
—Lof/0y > 1. If we write the right hand side of (2.24) &&(«x, #) and the right hand
side of (2.25) a&+(z, 6), then

OF [ S Ew-q]._ s’ _ :
55 = {_p } sin 260 + g cos 20 = —G(z,0). (2.38)

This implies that it is precisely whepeincreases rapidly that we encounter stiffnesg.in
Moreover in this case no choice 6f> 0 can make)F'/0¢ small. The best one can do is
to minimize| — S/p + (Ew — ¢)/S| which in the constant case means taking

S =+/(¢ — Ew)p. (2.39)

ThendF'/00 is bounded above and below B2./(¢ — Fw)/p. However, near singular
endpoints(¢ — Ew)/p varies rapidly and even a stiff-ODE solver may be forced ke ta
small stepsizes.

Several variants of the scalediffer transformation have been developed and used in
implementations of the shooting method for solving Sturiodlille problems (see [82]).
Bailey developed a modified &fer method [15, 16]

y(x) = S7V2p(x)sin O(x) (2.40)
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p(x)y'(x) = S*%p(z) cos O(z). (2.41)

where S is a scaling constant which is chosen by the rflle= kx/U wherek is the
eigenvalue index antl is approximately the length of the interval on whighv — ¢ is
positive. This rule was implemented in the SLEIGN code [19,fEom Sandia Laborato-
ries. Pryce [104] implemented another scale@f@rsubstitution of the form (2.40) where
S is a positive piecewise linear function chosen so that 89th— |¢|/S andS’/S are
kept small. This method is implemented in the NAG library @&2RDF and DO2KEF.
More details about e.g. the choice of the scaling functiothermatching point used by
these methods can also be found in [105].

Both SLEIGN and the NAG codes use an (explicit) Runge-Kutéthaod to integrate
the 6 equation. Such shooting methods based on standard indtiaé \libraries often
suffer from stepsize restriction when solving for largesgigalues, or when the potentials
are particularly large, and are not suited for computingrgdaet of eigenvalues. They
also have some difficulties caused by stiffness ofthquation (2.24) in a ‘barrier’ region
where(Ew—q)/pis large and negative. Because SLEIGN and DO2KEF use Runigfe-K
integrators, stiffness causes very small stepsizes tddea tén the next sections, we will
see the advantages of combining @fer formulation withcoefficient approximatigrin
which the coefficient functions are approximated piecehyibg low degree polynomials
(constants or lines). Then the integrations may be perfdramalytically and stiffness is
no longer a problem.

2.3.3 Coefficient approximation methods

An important class of methods for the numerical solution tfr@-Liouville problems
is based on coefficient approximation. The basic idea hete tisplace the coefficient
functionsp(z), ¢(x), w(x) of the Sturm-Liouville equation piecewisely by low degree
polynomials so that the resulting equation can be solvelyticelly.

The idea dates back at least to Gordon [41] and Canosa andizr®[28] and was
studied also by Ixaru [55], Paine and de Hoog [96] and Smobk&][ But the standard
reference for convergence in the piecewise polynomial isachge to Pruess [99, 100]. He
examined the piecewise constant case and his strategy basrbplemented by Pruess
and Fulton in the code SLEDGE [101]. There is also anotheautibcode by Marletta and
Pryce, called SLO2F [87, 88]. Both codes use a so-calledsBroethod to construct a
shooting method which is able to compute a specific eigeavdlbe Pruess method will
be discussed briefly in this section. In the next section ibegwise perturbation methods
(PPM) will be discussed. These methods use the coefficigmbapnation in combina-
tion with a perturbative procedure which produces coroecterms. This perturbative
approach makes it possible to define methods of higher order.

The Pruess method

We review first briefly some of Pruess’s convergence resaltgdefficient approxima-
tion methods (see also [70]). Consider the approximatioa tdgular Sturm-Liouville
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problem

—(p(2)y'(z))" + q(z)y(z) = Ew(z)y(z), = € (a,b) (2.42)
with

aopy(a) + bop(a)y’(a) =0, ayy(b) + bip(b)y'(b) =0 (2.43)
by another regular problem

—(B(@)§ () + 4(2)§(z) = Ew(z)y(z), z € (a,b) (2.44)

ao(a) +bop(a)y'(a) =0, a1y(b) + bi1p(b)y'(b) = 0. (2.45)

Herep, ¢ andw are approximations tp, ¢ andw, generally taken to be piecewise poly-
nomials over a mesh = zg < z1 < --- < xz,, = b. Both problems, being regular, have
an infinite sequence of eigenvaluds,(and E;, respectivelyk = 0,1,...) and associ-
ated eigenfunctionsyf, and ;). The basic convergence result given by Pruess in [99]
states that ify, ¢ andw are inC™*1|a, b], then using piecewise polynomial interpolants
of degreem will give convergence of the type

|Ex — Er| < Ch™ ! max(1, k?), (2.46)

whereh is the maximum stepsize in the mesh arids a constant independent bf An
enhanced convergence result (also given in [99]), statasfth, ¢ andw interpolate ta,
q andw at the Gauss points (see e.g. [109]) of each subintéryal , ;] then (2.46) may
be replaced by

|Ey — Ey| < Cph?m+2, (2.47)

As pointed out in [96], the analysis of Pruess may be folloiedetail to show that in
(2.47) the constan®}, will grow with k:

C < Ck!nax(3,2m+2). (248)

For piecewise constant approximations at the mesh centriglpdints) (z;—1 + x;)/2
(that is Gaussian interpolation for = 0) this means

|Ei — Ex| < CR?KP. (2.49)

Knowing the asymptotic behaviour of the eigenvallizs~ O(k?) (see [131]), we obtain

for largek (see [88, 105])
|Ek - Ek| 2
/= < . .
(LB = C(hVE) (2.50)

Thus one would expedt; oo to need ten times as many meshpoints to compute to a given
relative tolerance tha’;. However, as mentioned in [88, 105], there are two reasons
why this is not seen in practice. Firstly, (2.46) gives

|Ey — Ei| < Chmax(1,k?), (2.51)
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so the bound given by (2.50) cannot be tight for lakg&econdly, many problems occur
in Liouville normal form (Schiddinger form) where = w = 1 and for these there is an
improved error bound (shown in [55, 96])

|Ey — Ey| < Ch%/max(1, Ey), (2.52)

which implies for large:
| By — Ej|
max(1, |Ey|)
Thus we can actually use largkrfor large k for a given relative error. For this reason,
Paine suggested that all problems be transformed to Lieurdrmal form before the
Pruess approximation is applied. An idea which was howegtmeorporated in library
software packages as SLEDGE or SLO2F.
Accurate eigenvalue approximations are obtained by digigiach mesh interval into
a number of equal parts and using Richardson extrapola@inress [100] shows that the
eigenvalue error is expandable in even powers @fhen the mesh is uniform, and his
analysis extends easily to nonuniform meshes.

< Ch2kL. (2.53)

Numerical solution of the approximating problem

As said before, the aim of using coefficient approximatiotvisbtain an approximating
problem which can be integrated exactly. For the piecewisestant approximation in
particular, thej(z) of the approximating problem (2.44) can be integrated ekpliin
terms of trigonometric and hyperbolic functions.

Let p, ¢, w have the constant valugs, ¢;, w; in theith interval (z;—1,x;), ¢ =

1,...,n. In[z;_1, ;] asolution of (2.44) has the form
whereF;, G; are fundamental solutions efj” = A;§ andA; is a constant
Ew; — g
P (2.55)
Pi
Take

wi = /TR, (2.56)

Convenient definitions are then

Fi(z) = {Cos(wi(x S o (2.57)

cosh(w; (x — x;-1)) 0,
and )
sin(w;(z — ;1)) A S0
Piwi T
Gl(a:) == r —T;—1 A7 = O, (258)
sinh(w;(z — x;—1)) A <0

Diwi
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Note that these functions also dependfan
At meshpoints we have thmatching conditionshaty andpy’ are continuous. The
solution over{z;_1, z;] is then advanced by the relation

s e

where the propagation matrix (also called transfer maffj»¥ given by

_ |BiGi(xi)  piF (i)
L= [ Gi(z;)  Fi(z:) ] (2.60)
When boundary conditions (2.45), equations (2.54) and theiivatives, and the
matching conditions at the meshpointsare used, we obtain a system4of + 2 linear
equations between tt# unknownsc;, d; and the2n + 2 unknownsy(x;), p(x;) g (x;).
The coefficients depend oR and eigenvalues are just the valuesfoffor which this
system is singular.
In [28] theg(x;), p(x;)y (x;) are eliminated to obtain an ordex system for the;, d;
and zeros of the determinant are looked for. In [96] ¢hel; are eliminated producing
an ordern + 2 system consisting of equations (2.59) and the boundaryitonsl Then
the p(z;)7' (z;) are eliminated between adjacent equations (2.59) to yiefitliagonal
system forj(zo), ..., 4(z,). These methods have the disadvantage that it is difficult to
home in on the eigenvaluB, for a specified index. It is then more convenient to treat
the equations as a method for explicitly integrat{ggpy’) over thex range, and to use a
shooting method. This is done in both SLEDGE and SLO2F anchamed with the ideas
based on the Bfer substitution to be able to home in on a particular eigkre;
The SLEDGE algorithm uses the transfer maffjo propagate the solutiaipy’, 7).
The zero count is kept during propagation by noting that;if< 0, g has a (single) zero
in (z;—1,x;) if and only if §;_1g; < 0, while if A; > 0 the number of zeros equals the
number of integers in the intervéd /7, (6 + w;h;)/7) where

willi—1

f = arctan (2.61)

T

is an implicit conversion to the Bfer variable.
SLO2F uses a hit different approach and applies an exptialed Piifer transforma-
tion (2.23) of the form

Py =SY%pcosh, §=S"?psinb, (2.62)

where over each mesh interval,_1, z;) the scale factoS has the (positive) constant
valueS;. Equations (2.24) and (2.25) then take the form

o (BEd — §)

— = §COS2 6 + sin? 6, (2.63)
dx p
B — 6
4 logp = §~ — w sin 26, (2.64)
dx P S
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within each mesh interval.
The mismatch is then as in (2.31) given by

¢(E) = eL(xm) - QR(xm) (265)

whered;, andfr are the solutions satisfying the left and right boundaryditions. The
method used in SLO2F to integrate (2.63) relies on judidiocisoosingS on each subin-
terval, to make the change fheasy to compute and is discussed into more detail in [105]
and [87, 88].

At the meshpoints a rescaling formula is needed to compw&gutimps ind and p
caused by the jumps if. We will discuss the construction of these rescaling foasul
hereafter.

Rescaling at jumps in S
Ata meshpoint wher§ changesy andp need to be adjusted. L&t 6, p be the old values
andsS, 0, p the new ones. From (2.62) we see that

(peost, psinf) = (6= ?pcosh,c'/?psinb), (2.66)

wheres = S/S > 0. In this form, givend this definesd only up to a multiple of
2. But, (cosf,sin ) and (cos 6,sin 0) lie strictly in the same quadrant, so we get an
unambiguous definition of by imposing the conditiorﬁﬂ6 — 6] < w/2. From (2.66), the
following formula can then be derived (see [105]):

0=0+arg(l+ (0 —1)sin0, (0 — 1)sin 6 cos ). (2.67)

Herearg(z, y) denotes the polar angle of the pofamt y), i.e. the argument af +iy in the
range—r < arg < 7. Thearg function in (2.67) can be coded in Fortran or MATLAB as

ATAN2((o — 1)sinfcosf,1 + (o — 1)sin? ). (2.68)
The adjustment formula fgrfollows immediately from (2.66): the square of the formulae
(2.66) gives
5\ 2 cos? 6
(”) - A, (2.69)
P o cos?
and )
~ .92
<p> __osi0 (2.70)
P 1—cos20

Elimination of thecos? 6 term gives us then

g

~ 2 1/2
P (COS i + o sin? 9) . (2.71)
p
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Advantages of the Pruess method

The convergence results already show that the Pruess nsdibed significant advantages
over finite difference and variational methods. Anotheriobs benefit of Pruess methods
(and coefficient approximation methods in general) is they produce an approximating
problem with, like the original, a (potentially) infinite sptrum, unlike matrix methods.
Moreover the accuracy is maintained or even improves a&reases. In addition, for
finite differences a uniform mesh is used, and this is rarglg@d idea e.g. when dealing
with (truncated) singular problems.

In comparison with shooting methods based on a standaialin#lue solver, the fol-
lowing holds.

1. Pruess methods are of low ordé€)(h?) convergence for fixed ash — 0 if the
constant midpoint approximation is used. But repediea@xtrapolation is valid
for p, ¢ andw sufficiently smooth, to givé)(h*), O(h®),... accuracy. Repeated
extrapolation is the basic method of SLEDGE, whereas SLG#&S only one ex-
trapolation forh* extrapolation (for reasons to do with the interface to thet of
the package).

2. The overall shooting process consists of a number of atiems with different
values ofE. Unlike a method based on a standard initial-value solterpractical
with this method to fix the mesh and evaluate the coefficiedipwint values once
for all before the start of the shooting process. This caa gibig speed advantage.

3. Pruess methods are relatively unaffected by the stifiregability which can force
a very small stepsize on an initial-value solver in regiohekeq — Ew > 0.

A drawback of the Pruess methods is the difficulty in obtajrtilgher order methods.
It is usual to implement them using Richardson extrapatatieor the piecewise pertur-
bation methods and integral series methods (both relatétet®ruess methods) higher
order methods can be constructed directly. Both classesetiiods will be discussed
next.

2.3.4 Piecewise perturbation methods

Linear second-order differential equations describe aflatnportant physical phenom-
ena and it is therefore not surprising that physicists doumted with their own special
numerical techniques. The contribution of physicists vea®ake use of some ideas orig-
inating in mathematical physics. Such an idea isgbeurbation approximationUsing
this perturbative approach, methods of higher efficienay lma constructed, called the
Piecewise (reference potential) Perturbation Method®#)PBome PPM are discussed in
[58] for the general case of linear second-order diffeed@ijuations.

As for the Pruess method, the original differential equat®replaced (piecewisely)
by another differential equation (called treference equatioby Ixaru in [58]), which
can be solved exactly. But now the perturbation theory isl useestimate the deviation
between the solution of the reference equation and theigolaf the original equation.
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Some perturbation corrections can then be added to thémohftthe reference equation
to obtain a more accurate approximation to the solution @fitiginal equation.

The motivation of the perturbative approach lies in the faat by taking the approx-
imate solution as e.g. a piecewise zeroth order solutiorefapproximating problem
plus a number of corrections to this zeroth order solutiamywill obtain a more accurate
approximation toy than if we had not included any perturbation correctionsis ill
manifest itself in a smaller number of mesh intervals needelve the problem numer-
ically. Hence, providing the complexity of evaluating therfpirbation corrections is not
too prohibitive, the overall cost of the calculation will leduced.

The PPM are identified by the type of piecewise approximatieor instance if the
coefficients are approximated by piecewise constants thieaués referred to as eon-
stantperturbation method (CPM) while if piecewise lines are ugedmethod is called
aline perturbation method (LPM). CPM as well as LPM have been coatgd for the
Liouville normal (Schédinger) form. We will discuss these methods in detail inrtart
chapters and give here the main ideas of the general piesperturbation approach.

The reference equation

We focus on the initial value problem for the one-dimensioagular Schédinger equa-
tion,

y'=V(z) - By, z¢€lab], (2.72)
with given initial conditions in one of the endpoints, e.g.
y(a) =yo, ¥'(a)=1yp - (2.73)

The potential functiori/(x) is supposed to be a well behaved (i.e. real, bounded and
continuous) function and’, the energy, is a constant.
A partition of the integration intervdk, b] is introduced

a=r9g< 21 <To <<z =>0. (2.74)

This partition is in general non-equidistant. Let us focuastioe current interval, =
[x;—1,x;] Of steplengthh;. Our aim is to construct a piecewise perturbation algorithm
which propagates the solution from one endpoint of thigirtler; _; to the other endpoint
x;. We introduce the variable= = — 2,4, § € [0, h;] and denote genericallyy = x;_,
andh = h;. The local one-step problem is then

Y'(X+6)=(V(X+d)— E)y(X+6), §e]0,h] (2.75)

with some known initial conditiong(X) = «, /(X)) = 5.
We consider two particular solutions of (2.78)) andv(4) which satisfy the initial
conditions
w(0) =1, v/ (0) = 0, (2.76)

and
v(0) =0, v'(0) = 1. (2.77)
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The functionsu andv are linear independent and their wronskian
W (u,v) = uv’ — u'v (2.78)
is equal to 1. It follows that a solution of (2.75) has the form
y(X +98) = cqu(d) + cav(d), (2.79)

wherec; ande, are two constants. From (2.76) and (2.77) we know that y(X) and
co = y'(X). The solution of Eq. (2.75) can thus be written in matrix fasfollows

u(@)  w(d) | [y(X)

o) = e i) o) (280
Taking the inverse of this formula, we obtain
o) = e i) ) @80

The role of the functions anduw is thus to propagate the (exact) solution fréimo X + 6
and vice versa. Thereforeandv are called exagbhropagators
It is clear that the knowledge of the propagaters and their first derivatives’, v’
is sufficient to advance the solutions in both directionsweler, analytic forms of these
uw andwv are known only for a restricted number of expressions forftimetion V (),
let such functions be denoted bY(x). The idea behind the perturbation approach is to
replaceV (z) piecewisely by a/(x). To further improve the accuracy, the corrections

derived from the perturbatioAV = V (z) — V() are added (also piecewisely).
More concrete, we associate to Eq. (2.75) an equation ofaime $orm

Y/(X +0) = [V(X +06) - E]y(X +6), €0, (2.82)

which is called theeference equatiariThe functionl’ (x) (the so-calledeference poten-
tial) is chosen is such a way that this equation has known analytiitions. In particular
we are interested in the two solution$s) and#(4) which are the propagators of Eq.
(2.82). Our purpose is thus to construct the unknown prapagia andv of the original
equation (2.75) in terms of the known reference propagatensdo. Actually, the refer-
ence propagators form the zeroth order approximationsasfdv and some perturbation
corrections derived from thgerturbation

AV(8) = V(X +6) — V(X +6) (2.83)

will successively improve this approximation.

The perturbation corrections

As explained in [58] by Ixaru, the parameter dependent fandt'(d; ), v € [0, 1] can
be introduced as -
F(6;v) =V (9) + vAV (9). (2.84)
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This function reproduces the given potential functié(y) and the reference potential
V' (6) when~ takes its extreme values, i.€(5;1) = V(§) and F'(6;0) = V(§). The
propagators:, v and, v are the particular cases= 1 and~y = 0 of the propagators

u(9, ) andv(d,~) of the differential equation
y'(X +6;7) = [F(d;7) — E]y(X + ;). (2.85)

The propagatora(d; ) andv(J; ) are written as power series in the parameter

u(8;7) =Y ug(d)y7, v(diy) =D vg(d)y". (2.86)
q=0 q=0
We will denote the propagators genericallyfythus Egs. (2.86) can be written as
p(&;7) =D pg(d)7%, (2.87)
q=0

wherep = u if p(0;v) = 1, p’(0;7) = 0 andp = v if p(0;v) =0, p’(0;7) = 1.
To calculatep, we introducep(d; y) into Eq. (2.85),

p"(6;7) = [(V(0) — E) + AV (8)]p(5;7). (2.88)

and organize the terms in powers-of
b6 — (V(6) = E)pol + Y _"[py — (V(6) — E)pg — AV (8)pg—1] =0.  (2.89)
qg=1

Since this has to be satisfied for everye [0, 1], the 5-dependent weights of? must
vanish foranyy =0,1,2,...,i.e.
po = (V(6) — E)po, (2.90)
Py = (V(0) = E)pg+AV(d)pg-1, ¢=1,2,3,.... (2.91)
From Eq. (2.87) we can derive thatd; 0) = po(d). On the other hand, we know that

p(6;0) = (), so we gelpy(d) = p(d). And since the initial values fa(d;v) are the
same as fop(d), the difference®(0;v) — po(0) andp’(0; v) — p;(0) must vanish:

> pg(0y =0, Y py(00y" =0, yelo,1]. (2.92)
q=1 q=1

This means that
Pq(0) = pg(0) =0, (2.93)
foranyq=1,2,3,....
In short, we obtained the following results:
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Theorem 2.3. The solution of Eq(2.75) with the initial conditionsy(X) = « and
y'(X) = ( can be written as Eq(2.80) where the propagators and v are written
as perturbation series

p(6) = po(d) + p1(8) + p2(d) + p3(8) + ... (2.94)

wherep stands foru or v. The zeroth order propagataf,(J) is exactly the reference
propagatorp(d) and thegth correctionp,(6), ¢ = 1,2, 3,. .. is the solution of the prob-
lem

pq = (V(8) = E)pg + AV (6)pg—1, pe(0) = p(0) =0. (2.95)

If the potential function is approximated by piecewise ¢ants, the method is re-
ferred to as &onstant(reference potential) Perturbation Method (CPM in shott)lev
if piecewise straight lines are used the method is calletha Perturbation Method (or
LPM). The CPM will be considered in detail in chapter 3. TheM.Bnd its specific dif-
ficulties will be discussed in chapter 4. The use of polyndsnid a degree higher than
one is problematic in so much that the accurate computafittredwo linear independent
solutionsu andw is difficult.

In the chapters 3 and 4, it will become clear that the advastafithe Pruess methods
remain valid for the discussed PPM versions, that)ghe integrations are performed
analytically, so stiffness is not a probleni)(the mesh has to be computed only once and
can be fixed before the start of the shooting process, mareesry information related
to this mesh can be computed before the shooting and stoiéf).a approximation
to the kth eigenvalue can be found for a user-specifiedther than finding a range of
eigenvalues (as a finite difference method might do).

Software packages

Also for the PPM a completely automatic software code candpstcucted: the user has
to specify only the information which defines the problenush toleranceéol. The user
does not have to set up a mesh or deal with other algorithrm@niveniences. In [61] the
Fortran package SLCPM12 (available under the identifierMADJ_0 in the CPC library
[1]) was presented. This package uses the power of a hight @& to solve regular
Schiddinger and Sturm-Liouville problems. Later we implemensame higher order
CPM versions in a MATLAB package, called MsLISE [76].

Table 2.2 shows a comparison between different (Fortraitywace packages applied
on the regular Sclidinger problem with/ (z) = 1/(z + 0.1)? on [0, «1] (the Paine prob-
lem of example 2.3). In [60] also some comparisons were donether regular prob-
lems, but they lead to the same conclusion, namely that tié &Rtware has the power
to outperform the other well-known Sturm-Liouville solgewhen it comes to regular
problems.

In the experiment shown in Table 2.2, the CPM code SLCPM1anspared with the
SLEDGE package [101] and the SLEIGN package [21] as theyaapp¢he SLDRIVER
code of Pryce [108]. All codes were run on a 2.4GHz PC. We askedmpute the first
21 eigenvalues at a user input toleran6e®. Table 2.2 shows the exact eigenvalugs
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Table 2.2: Comparison of different Sturm-Liouville solvers for the Paine problesh & 1078).
n fev is the number of function evaluations aifithe CPU time in seconds.

|AE|

k Ey SLCPM12 SLEDGE SLEIGN
0 1.5198658210993471 5.8(—14)  8.2(—9)  5.3(—9)
4 26.7828631583287419 2.4(~13)  1.4(-8)  9.2(—9)
8 83.3389623741632420 3.3(—13)  1.2(—7)  2.1(-8)
12 171.6126448515666790 3.1(—13)  2.4(—7)  1.8(—8)
16 291.7629324611350560 5.1(—13)  4.1(~7) 4.3(—8)
20 443.8529598351504081 1.1(—12) 8.7(—7)  9.9(-8)
nfev 1080 34718 86089
T 0.03 0.07 0.5

and the (absolute value of the) errdx4’;. in the obtained eigenvalue approximations. For
shortness, the table contains only details for some seleitenvalues and the notation
z(—q) is used forz10~%. We also give the total number of function evaluationgdv)

of the potential functio/(z) required by each program to compute the whole set of
eigenvalues and the associated CPU tifn@n seconds).

The SLCPM12 code clearly needs much less function evahmtiban the other
codes. The main reason is theindependent partition (mesh): the partition is only con-
structed once and then used in all eigenvalue computatiomsng the shooting process
no extra function evaluations have to be performed. Thigig different to the SLEIGN
code where the computation of each eigenvalue is treatedsegaaate problem. More-
over the number of function evaluations increases draatiwith the eigenvalue. When
asking the SLEIGN code to compute the first eigenvdlige 2657 function evaluations
are performed, while for the computation of the eigenvalijealready 18414 function
evaluations are needed. Another reason is the small numbsshpoints needed by the
CPM code: only 15 steps were needed in the partition. Therlowker method SLEDGE
needs a lot more.

We can conclude that the SLCPM12 code is more efficient thaottiner codes, how-
ever we must add that SLEDGE and SLEIGN cover a wider rangeraifl@ms than
SLCPM12 (thatis SLEDGE and SLEIGN are able to handle alseswon-regular prob-
lems). The higher order CPM implemented in the MATLAB packaddATSLISE are
even more efficient (less meshpoints, less function evialsltand MATSLISE also cov-
ers more problems than SLCPM12. AvsLISE comes with a Graphical User Interface
(GUI) which makes the package more user-friendly than ther&wopackages, for which
the access via a driver routine can be a non-trivial taskat8li1SE can be accessed
and modified comparatively easily, but the language beinmtmpreter language also
has inherent speed disadvantages when compared to thgaihggiled) packages. The
MATSLISE package, its structure and use will be discussed into mdedl dechapter 7.



36 NUMERICAL SOLUTION OF THESTURM-LIOUVILLE PROBLEM

2.3.5 Magnus and Neumann series methods

A relatively new approach in the numerical solution of Stlriouville eigenvalue prob-

lems is based on Magnus or Neumann expansions. These laigsrére related to the
Pruess ideas, but provide high order approximations. Weifit®duce the Magnus and
Neumann expansion and consider afterwards some applisatiiothe Sturm-Liouville

equation.

Neumann and Magnus expansions

There is an emerging family of numerical methods based agiat series representation
of ODE solutions. We consider the linear differential edurat

y' = At)y, y(0)=yo. (2.96)

The simplest integral series is obtained by applying Pidntion [44] to obtain the
fundamental solution of the matrix linear ODE

v{t) =wo[ 1+ /OtA(T)dT+ /O e /0 " Am)dndr
+/Ot A(r) /OTA(Tl)/OTl Alrs)dradridr + ..

This series is known as the Feynman-Dyson path ordered ergiahin quantum me-
chanics, in mathematics it is known as theumanrseries or Peano series.

The Magnus and Cayley expansions are two other examples; arkeobtained by
transforming Eq. (2.96) to the suitable Lie algebra and ypglthe Picard iteration to
the transformed ODE. Details on both approaches can be foufll]. The Cayley
expansion is based on the Cayley transform while the Magxpansion is based on the
exponential map. The approach of Magnus [83] aims at writiegsolution of Eq. (2.96)
as

(2.97)

y(t) = exp(Q(t))yo (2.98)
where()(t) is a suitable matrix. Thilagnus expansiosays that

0 :/OtA(T)dT— ;/Of [/O A(Tl)dTl,A(T)] dr
+i / { / { / A(rs) dTQ,A(n)} i, A(r )] dr (2.99)
[/ A(m)dn, [/ A(r)dra, A )Hdw...

where[-, -] denotes the matrix commutator defined[&y Y] = XY — Y X.
Numerical methods based on this expansion are reviewedebesset al. [51]. They
are of the form
Yn+1 = exp(Qn)yn (2.100)
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to give an approximation t@(¢,+1) att,+1 = t,+h. HereQ),, is a suitable approximation
of Q(h) given by (2.99), withA(t,, + 7) instead ofA(r). This approximation involves
first truncating the expansion, and second approximatiagntegrals.

The Magnus expansion converges in the Euclidean 2-normdadysee [51])

/0 |A(T)|| dr < %0 (2.101)

where
1

27
ro = / (2 + %T(l — cot(%T)))i dr =2.173737. .. (2.102)
0

andr < 2 is the smallest constant such that
[[A1, As]|l < v [|Av]l || A2, (2.103)

for any two elementsi; and A, in the underlying Lie algebra. Taking the crudest case
v =2 we get

t
/ |A(7)|| dr < 1.08686. .. (2.104)
0

Hence, a Magnus-based integrator appears to have an ittiererstep restriction. Es-
pecially whenA(¢) is non-oscillatory with large norm a small step size is fotcé&or
differential equations with a highly oscillatory matri(t) however, Magnus series nu-
merical methods were shown to be very suitable. In such dagespeculated that the
convergence interval of the Magnus series will be much fattggn predicted by (2.104),
since integration of the norm of the matrix ignores the faable effects of high oscil-
lation in its entries. Moreover, Hochbruck and Lubich [46pw#ed that Magnus inte-
grators perform well in situations where the stiffness & flystem originates from the
time-independent part of the coefficient matrix. Furthgrfdctoring out the flow of the
time-independent part of the coefficient matrix, Iserled] [@nd Degani and Schiff [32]
introduced a right correction Magnus series (RCMS) whichdaniform radius of con-
vergence and uniformly bounded global errors as stiffregscreased (see further).

The numerical schemes based on the Magnus expansion eedteof attention due
to their preservation of Lie group symmetries (see [51, 5] eeferences therein). The
Feynmann (Neumann) series does not respect Lie groupwteumit avoids the use of the
matrix exponential. The use of Neumann series integratassbleen proved successfull
for certain large, highly oscillatory systems in [50].

Applying Magnus or Neumann Expansions to eigenvalue problem

Moan discusses in [90] an approach to the numerical solatiturm-Liouville eigen-
value problems based on Magnus expansions. A scheme igwcestin [90] for the
Schibdinger equation

—y" +V(z) = By, (2.105)
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which can be adapted to the general Sturm-Liouville probl&he Schodinger problem
is written as

Y'(x) = (V(m;)_ . (1)> Y () = Az, B)Y (),

B,Y (a) + ByY (b) = 0,

(2.106)

whereB,, B, € R?*? andY (z)T = [y(z),y(z)]. The fundamental matricek, and®,
of the equationt”’(z) = A(x, E)Y (z) are defined as the matrices satisfying the linear
differential equations

! () = Az, B)®,(z), Pu(a) =1, (2.107)

and
Oy () = Az, E)®y(z), Pp(b) =1. (2.108)

The eigenvalues are determined using some iterative tgeéris the solution of
O(E) = det[B,Po(m) + By®p(zm)] (2.109)

with the matching point < x,, < b. Approximations to®, and ®; are obtained
using the Magnus expansion (over each meshinterval). Itti@cMagnus expansion is
truncated after replacing by a interpolating approximatiod (over each meshinterval)
and evaluating the integrals. More details can be foundGh [9

As mentioned in [90], poor approximations can be expectelhfge eigenvalues. The
reason is the finite radius of convergence which impliesatio between the maximum
allowable stepsize and the magnitude of the required eddees. The deterioration in
accuracy is improved by adding correction functions to tiseréte Magnus expansions
(see [90]). These asymptotic corrections are however rathraplex and alternative ap-
proaches may be preferred. It is therefore suggested to differ@nt numerical scheme
especially in the largé’ regime as the modified Magnus method [49] or a right correc-
tion Magnus series integrator (RCMS) [32]. Both methodsthsesame basic approach,
namely application of a Magnus series integrator to thetghrection equation. These
RCMS form a subclass of the more general class of right choremtegral series (RCIS)
integrators.

The coefficient matrix4(z, F) is decomposed into its natural constant and varying
parts

Az, E) = Ag(E) + A1 (x). (2.110)

The part of the coefficient matrix responsible for the fregpyeoscillations, namelyl,
is thus isolated. The eigenvaluesAf are zero or purely imaginary scaling linearly with
E. The RCIS integrators from Degani et al. [32] transform thginal equation

y' = [Ao(E) + Ai(z)]y (2.111)

to the right correction equation and approximate its sotutly an integral series (e.g.
Magnus for the RCMS). With the constant approximatibn = [""** Ay (z)dz of A,
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on [Zn, Znt1], EQ. (2.111) can be written as
Y =[(Ao(E) + A1) + (A1(z) — Ay, @ € [#n, Tnpa]. (2.112)

The right correction v is defined byy = zu wherez is the fundamental solution of
2" = (Ao(E) + A1)z. uis a solution of theight correction equation/ = [z (A4, (z) —
Ay)zJu. The functionu(x), * € [z,,z,.1] is thus defined by the equatigiz) =
exp(z[Ao(E) + A1])u(z) and so

u = [exp (—a?[AO(E) + 14_11]) (A1 (x) — 14_11) exp (m[AO(E) + /_11])] Uu. (2.113)

The new coefficient matrifexp(—z[A¢(F) + A1])(A1(z) — A1) exp(z[Ao(E) + A1])]

is uniformly bounded ir¥, as are the rescaled solutiarand correspondingly the radius
of convergence of its Magnus series. The same conclusiobednawn from the obser-
vation thatz(x) = exp(z[Ag(E) + A4]) is highly oscillatory as a function of (since
the eigenvalues ofl; are pure imaginary eigenvalues which grow in absolute vatue
E — o0). Thus the matrix in (2.113) has entries which are highly ltzoiry. Moreover
the difference(A4;(z) — A;) makes the norm of the matrix small. Therefore, integral
series representations are ideal for the solution of (3.1IBe RCMS methods apply
an integrator based on the Magnus series to the right cameetjuation, whereas Moan
applied a Magnus series integrator directly to (2.106) \pigtewise polynomial/ ().
As said before, the latter is not recommended because oatge horm of the matrix in
(2.106) whenk is large.

PPM as right correction Neumann series

In [32] itis shown that the RCMS integrators, the modified Mag method from [49], the
piecewise perturbation methods (PPM) and the integratonsdar adiabatic propagation
in quantum dynamics discussed in [64] are examples of RGi8mses. The first two use
the Magnus series and the others use the Neumann seriesdmatet the right correction
equation. In all such RCIS integratofg(z) is replaced by polynomial approximations
and the resulting series terms are evaluated analyticCedling a large number of terms
very high order integrators are obtained.

To understand how a PPM can be seen as a right correction Meussies, we
consider the case of a constant reference potelit{&PM) for the Schiddinger problem
which can then be written in the form

foN -0 1 0 0
Y'(z) = [(V B 0) + (AV(;U) 0)} Y(x). (2.114)
The fundamental solutioli on theith interval is constructed as the limit of the series
Y(E,x,xi_l):Po(x)+P1(x)+P2(x)+..., X € [in_l,ﬂfi}, (2115)

where
Py =exp {(m —Ti_1) (V 2 1> é)} (2.116)
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andforg =1,2..., (see (2.95))

Fa= (V E E (1)) Fat (AVO(JJ) 8) Py, Py(wiz1) = 0. (2.117)
With
It . . 1
(1‘) - _(I — l‘i—l) (V _E 0), (2.118)

equation (2.117) can be written as

% lexp(R(2)) Py (x)] = exp(R(x)) ( AVO(a:) 8) P, (2.119)

or equivalently

P = e 8w) [ en®o) (g, o) Pl (2120
or
P,(z) = Po(x) / R (m?(s) 8) P, (s)ds. (2.121)

This means that the ‘correction matricéd can be written as

x

Pl(:L‘) = PQ(JJ)/ Bi(81>d81

: . . (2.122)
Pq(x) :Po(x)/ Bl(sl)/ BZ(SQ)/ Bl(Sq) dSq dSQdSl,

-1

where B; is precisely the right correction equation matrix of coédfits for the right
correction defined as

y(E,x,x,_1) = exp [(37 — 1) (V 2 E (l)ﬂ ui(x), € wi—1,2). (2.123)

The right correction equation is then
u, = B;(z)u;, (2.124)

where

exp [—(fﬁ — Zi-1) (V 2 E é)} <A‘9(x) 8) P [(x ~@i-1) (V 9 E (1))] '

Thus the CPM approach may be viewed as a Neumann seriescafaptiee right correc-
tion equation (2.124).
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2.4 Conclusion

The discretization methods (both variational and finitéetiénce methods) reduce the
Sturm-Liouville problem to a matrix eigenproblem. Thereddeen many advances in
such methods, especially the correction formulae of Paie¢joog, Andrew and Ander-
ssen. However, they inherently produce an approximatioglpm with finite spectrum,
and the accuracy falls off with the increasing index of thgeavalue. Another drawback
of many of these methods is that one cannot proceed directhetcomputation of a par-
ticular eigenvalue, the prior computation of all the prangceigenvalues is necessarily
required.

The Piifer methods are more complicated but give good accuradycan calculate
any specified eigenvalue without consideration of otheemiglues. When the &fer
approach is combined with coefficient approximation lasiepsizes can be taken and the
mesh has to be computed only once and is fixed before the sgqmiicess. In addition
these methods allow a variable mesh which makes them madssldor general-purpose
software with an automatic mesh-selection and error cbntro

The next chapters of this thesis discuss the PiecewiserBation Methods (PPM),
which is a class of methods specially devised for the Stuiountille problem in Schi-
dinger form. These PPM are methods based on coefficient gpgpation which are ap-
plied in a shooting procedure to obtain accurate eigenvedtinates. The coefficient
approximation is improved by a perturbative approach wipicdduces corrections to be
added to the solution of the low order approximating problem

The PPM can be placed in the general framework of right cbmedntegral series
integrators, covering a whole class of powerfull methods.






Chapter 3

Constant Perturbation
Methods

As mentioned in the previous chapter, the Piecewise PatiorbMethods (PPM) are a
class of methods specially devised for the numerical swiutf the (regular) Sclkdinger
equation. In this chapter we will consider the PPM approadhadre detail and construct
the algorithm for the simplest case where the potential p@pmated by a piecewise
constant. This algorithm is then used as propagation mathadshooting procedure to
compute eigenvalues of the boundary value problem. In iaddit is shown how the
algorithm devised for the Sobdinger equation can be extended to numerically solve
regular Sturm-Liouville problems .

3.1 A Constant Perturbation Method for the Schrodinger
equation

Let the potential functioV () be approximated by which is a constant in each subin-
terval[z;_,, ;] of the meshr : a = 29 < ; < --- < x,, = b. We then say that’ is a
piecewise constant approximation over the mesffhe PPM obtained on this basis are
referred to as forming the CPM (Constant Perturbation Mdtfemily. Some early work
in this direction was already described by Ixaru in [53, 58he CPM algorithm in the
form we will discuss here, was already discussed in [58] endbntext of more general
linear second-order differential equations and has latenkapplied on Schdinger and
Sturm-Liouville problems in [60] and [61].

Example 3.1 Let us illustrate the piecewise constant approximatiohrépe with an
example. The Coffey-Evans equation is a regular Saimger equation-y” + V(z)y =
Ey with

V(x) = —2f cos(2z) + (% sin® 2, (3.1)
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V(x)
Vo(x)

Figure 3.1: The potentialV’ (z) and a piecewise constant approximatidgi(z) for the Coffey-
Evans equation witl# = 20.

andy(—m/2) = y(n/2) = 0 as boundary conditions. Fgr = 20 the potentiallV (z)
looks like Figure 3.1. This figure also shows a piecewise t@om@pproximation of this
potential function. This approximation is constructed hg CPM12,104 method —
which will be discussed later— at a user tolerange= 102,

3.1.1 The reference equation

For a constant perturbation method, we use the referenegiequ
y"(0) = (V- E)y(5), d€[0,n], 3-2)
whereV is a real constant. The general solution of the referencatenuis
y(8) = c1exp((V — E)/28) + cg exp(—(V — E)/25), (3.3)

with ¢; and ¢, arbitrary constants. The reference propagatdy and v(d) are two
particular solutions which satisfy the intial condition®)) = 1,4/(0) = 0 ands(0) =
0,7'(0) = 1. Fora this means that; = ¢; = 1/2, while for © one obtains; =
—cy = 1/2(V — E)Y2. Thus, as Ixaru did in [58], we define the functions (note the
correspondence with the functioAsandG; in section 2.3.3.)

€(2) = {cos(|Z|1/2) if Z <0, 3.4)

cosh(Z1/?) if Z >0,

sin(|Z|'/?)/|Z|Y/? if Z <0,
n(Z) =<1 if Z=0, (3.5)
sinh(Z1/2)/Z'/?  if Z > 0.
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Figure 3.2 shows the functio$2) andny(Z). For negativeZ values the functions are
oscillating, while for positiveZ the functions increase exponentially.
We can then write the reference propagators as

u(6) = &(2(9)), v(8) = dno(Z(9)), (3.6)
whereZ(8) = (V — E)d?. Itis easy to show that the corresponding derivatives are
u'(6) = Z(8)mo(Z(9)) /6, v'(8) = £(Z(9)). 3.7

These reference propagataersy, ' andv’ form the zeroth order propagators in our
perturbation method. As described in section 2.3.4, ctomes of different order can be
added in order to approximate the unknown propagat@sdv more accurately. These
correctiong,, ¢ = 1,2,... (p = u,v) obey the equation

= (V — E)pg + AV (8)pg—1, pg(0) = py(0) =0. (3.8)

3.1.2 The construction of the perturbation corrections

First we define some additional functions derived via thifaihg recurrence relations:
m(Z) =[6(Z2) =m(2)]/Z, (3.9)
Dm(Z) = Mm—2(Z) — 2m — 1)nm-1(2)]/Z, m=2,3,.... (3.10)

Note that eachy,, function is a linear combination of the reference propagato= ¢
andv = dng. The functions¢(Z),no(Z),m(Z),. .., were already described in [58]
(and denoted there &s7y,71,...). They satisfy some basic properties which we will
summarize here briefly.

1. Series expansion

gmq
=2" 11
Z (2¢+2m + 1) (3.11)
with
1 ifm=0

mq = ’ 3.12
gma {(Q+1)(Q+2)...(q+m) if m > 0. ( )

In particular

1 7 1
em+1I  2m+1)2m—1)2m-3)...1

nm(0) = (3.13)

2. Differentiation with respect to Z
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Figure 3.2: The basic functions for the constant perturbation methddt), n0(Z), n1(Z) and
n2(%).

3. Differentiation with respect to ¢

9m0(Z(9))
09

= 0" 1(Z(8)), m=0,1,2,.... (3.16)

w — Z(5)m0(2(5)) /5,

8627n+1nm(Z(6))
00

= £(2(9)), (3.15)

The set of functiong(Z), no(Z),m1(Z), ... exhibits a certain hierarchy with respect to
the numerical importance. As illustrated in Figure ¥27) is the largest member in
the set, followed by (Z),n1(Z),n2(Z),.... For negativeZ (i.e. E > V) the func-
tion n,,(Z) is an oscillating function whose amplitude damps out wier> —oco. For
positive Z however, all these functions increase exponentially With

The functions{ andn,,, form a set of basic functions for the CPM and are used in the
construction of the perturbation corrections. That is, dostruct thegth correctionp,,
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we assume that the inhomogeneous term in (3.8) is a lineabioation of the functions
f andéno, 53171, . (SQJW—H?]M, ie.,

AV (8)pg-1(8) = Q(8)E(Z(8)) + Ro(8)dn0(Z(8)) + ... + Rar(6)0>M i (Z(6))

(3.17)
whereQ, Ro, Ry, ... are polynomials i. Now we search fop, of the form
+oo
pg(8) = Y Cul(8)8* ™ 1 (2(5)) , (3.18)
m=0

and show that this sum has a finite number of terms and thab#féaentsC,,, (5), m >
0 are polynomials irv. In fact, we differentiate (3.18) with respectdand use (3.15)-
(3.16) to obtain:

Pq(0) = Co(9)E(Z(0)) + [Co(0) + 6C1(6)]dno(Z(0)) + ...

(O (8) + 6Csr ()]0 (Z(8)) + ... (3.19)

Differentiating this again with respect toand using (3.15)-(3.16), one can construct an
expression fop!/(6) — (V — E)py(9):
Py — (V — E)pg = 2C0&(Z(6)) + [Cf + 26C] + 2C1]0m0(Z(0)) + - - .

(3.20)
+[CF +25C) 1 +2(m + 1)Crrg1 ]2 0 (Z(8)) +

From (3.8) we know that this should be equal¥®”(¢)p,—1. Then, upon identifying the
coefficients ok, ng, 11, ... of the expressions (3.17) and (3.20), one gets

204(5) = Q(9) (3.21)
C(8) 4 210C0, 11 (8) + (m + 1)Crns1(9)] = Ren(8), m=1,2,...,M. (3.22)
CI(8) + 2[6C",+1(8) + (m + 1)Crns1(8)] = 0, m=M+1,.... (3.23)

These equations can be solved iteratively;@grthe following formula is obtained

§
= %/o Q(61)don, (3.24)

while for C (§), C2(d), ... we get

4
Con(6) = %5% /0 5P, 1 (51)d8y, (3.25)

where

(3.26)

P(8) Rp(8) —C"(8) ifm=0,1,2,..,. M
T = (6) ifm=M+1,M+2,..
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Let us denote the degree of a polynomialby d(P). Egs. (3.24) and (3.26) im-
ply that Py(d) is a polynomial with maximal degreé(P,) = max(d(Ry),d(C{)) =
max(d(Rp),d(Q)—1), so thatC; (§) wich results from (3.25) is a polynomial of the same
degree ag’. Also for higherm we can say that the degree®f, (¢) is equal to the degree
of Pp—1(6): d(Pp—1) = max(d(Rm—1),d(C},_1)) = max(d(R—1),d(Cr—1) — 2)
form < M+1, butd(Py,—1) = d(CV,_;) = d(Cp—1)—2form > M+1. It follows that
d(Crry2) = d(Chrrg1) — 2 ,d(Crry3) = d(Car41) — 4 and so on. Thus, upon denoting
the integer part ogd CM+1) by M, it results that’,,, (6) = 0 for anym > M + M +1,

i.e. the last term in the sum (3.18)48, , 5741 (8)narya741(Z(6)).

Upon this point we have shown thatXV (d)p,_1(d) can be written as (3.17) then
pq(9) results in the form (3.18) with a finite number of terms, arsmbahat the coefficients
are polynomials ind which can be calculated by Eqs. (3.24)-(3.26). The only ieimg
question is whether the assumed form for (3.17) is valid. drmsver is positive provided
V(8) is a polynomial ind. In fact, forq = 1, the expression in (3.17) consists of a single
term. This is the first term, witl®(5) = AV(6) (which is a polynomial a3 is) for
p = u, and the second term, witRy(0) = AV (§) for p = v. This guarantees that ()
will be of the form (3.18). In turnAV (4)p; (§) will also be of the form (3.17), and so on.

Finally, we can summarize the previous in the following tiezo.

Theorem 3.1. If the potential functiori/(9) is a polynomial iy, then thegth correction
pq for the propagatop (p = u,v) is of the form

Zc 802+, (Z(6)) , (3.27)

Py(0) = Co(OE(Z(9) + Y [Cr(6) + 8Crm11(8)]8*" 11 (Z(6)) (3:28)

m=0

with a finite number of terms. This means that the prod\ietd)p,—1(9) is of the form

AV (8)py-1(5) = N+ 3 @5 0 (2, (329)

and the coefficientS,(4), C; (6) are then polynomials in which are given by quadrature

/ Q(61)ddy, (3.30)
Cr(0) = L5~ m/ ST MRy 1(61) = C! 1 (61)]ddy, m=1,2,....  (3.31)
2 0
The starting functions i\V () ug(0) are Q(d) = AV (4), Ro(é) ( )=---=0,
while forvg they areQ(d) = 0, Ro(5) = AV (9), R1(d) = Ra(d) =--- = 0.

It is interesting to know that each new correctjgnstarts with a term of higher order
than the previous one. In [58] the following result was alai:
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Proposition 3.2. The first nonvanishing term in the seri@s27)is the term correspond-
ing ton,—; in u, and ton, in v,. In series(3.28)it corresponds tq in u} to 7,2 i uy,
for ¢ > 2, and ton,_, in v;.

Also important to remark is that the magnitude of the coromst typically decreases
in magnitude withy.

3.1.3 Apilot reference equation

Theorem 3.1 assumes tHat¢) is a polynomial ind. Also we can remark that the suc-
cessive quadratures (3.30)—(3.31) are difficult to deah wihenAV (9) starting from is
not of the polynomial form. However, we want a procedure WHE suitable for any
well-behavedV (X + 6). This suggests to add an extra stage, in wHighX + §) is
approximated by * (X + §), a polynomial in§. As in [58], V*(X + ) is called the
pilot reference function. The pilot reference potentid( X + §) can be expressed as an
expansion over a set of orthogonal polynomials. More eyastt assume that (X + 9)
can be written as a series over shifted Legendre polynonia(g/h) in the following
way:

V(X +6) Z V,h"P* (5 /h) . (3.32)

The shifted Legendre polynomial’’(z) are a set of functions defined on the interval
[0, 1] (see [3]). They obey the orthogonality relationship

1
P (z = .
/ z)dz = % 1(5U, (3.33)

whered;; denotes the Kronecker delta. The first few are

Fy(z) =1,

Pf(z) =2z -1,

Pj(z) =622 — 62 +1,

Pj(z) = 202° — 302% + 122 — 1. (3.34)

The originalV (X + §) is then approximated by the truncated series

V(X +06) = V(X +) Z Vo h" P2 (5 /h) . (3.35)
n=0

The option for shifted Legendre polynomials was proposefb@ and is based on the
fact thatV (M) (X + §) represents the best approximationifain L2(X, X + h) by a
polynomial of degree< N. As will be shown further, the value @f can be chosen in
such a way (i.e. high enough) that the pilot perturbaligk + §) — V() (X + §) does
not affect the accuracy of the method.
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The equation
y N = (VX +6) - E)y™) | §€0,h] (3.36)

is then the one whose propagators are actually constru@ecRM. With

N
V=Vy, AV(s)=AVN() =Y V,h"Pi(5/h), (3.37)
n=1
the integrals (3.30-3.31) can be solved analytically. Eaglid) is a polynomial and the
series (3.27) and (3.28) are finite.

The values/,, in (3.35) are determined using a least-squares procedtiis.means
that the quantity

N
1= / ' [V(X e V,,Lh”P,j(d/h)] 4 (3.38)
0

n=0

is minimized. The minimum condition gives

ol

h N
v, _2/0 V(X +06) = Y Vik'Pr (/)| 0" Pi(6/myds =0 (3:39)

=0
and consequently

ZNj Vil / " (5 /h) P (5/h)dS = / V(X o) Pre/mds. (3.40)

=0
By taking into account relation (3.33), the following exgseons forlg, V1, . .. result:

(20 +1)

Vi= Ritl

h
/ V(X +6)Pr(5/h)ds, i=0,1,...,N. (3.41)
0

3.1.4 The CPM|N, Q] methods

The formulae in Theorem 3.1 allow us to obtain the analytiofof the corrections in a
symbolic software package (Mathematica or Maple). Dependin the number of cor-
rections and the degree of the pilot potential, differenM3Rrsions can be formulated.
Ixaru et al. introduced the notation CPM] Q] in [60] for a method withV the degree of
the pilotV (V) (z) andQ the number of perturbation corrections retained in theritiya.

The simplest version, in whicW (z) is approximated by a piecewise constant but no cor-
rection is introduced, is thus identified as CPM[0,0]. In][a&o the notation CPM(0)
was used for this version. The other versions described8htfike N = 2 as a default
value and@ = 1, 2. The CPM(0) method was shown to be a method of order two, while
CPM[N, @] in general is of orde2@ + 2 providedN is sufficiently large.
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V()

0 0.5 1 15 2 25 3

Figure 3.3: The potential function of the Mathieu problem

Example 3.2 Consider the Mathieu problem
y"(x) = [2cos(22) — Ely(x), y(0) = y(x) = 0. (3.42)

The potential functioV (x) = 2 cos(2z) is shown in figure 3.3. Table 3.1 shows some
results for the Mathieu initial value problem with initiabieditions in one endpoint of
the integration intervaly(0) = 0,%’(0) = 1. The solution is propagated towards the
other endpointr for different £ values. Since thesg values are the exact eigenvalues
Ex, k = {0,2,4,6,8,10} the obtained value fog(r) should be zero. The CPM(0),
CPM[2,1] and CPM]2,2] were used to propagate the solutioaroequidistant mesh with
stepsizeh = 7/16. Itis clear that the accuracy increases with the number wéctions
Q. It also seems that the propagation is more accurate forigieheigenvalues.

Error analysis

A CPMI[N, Q] method consists of two stages to be performed at each stbp. fifst
consists in the approximation & (X + ¢) by V(¥ (X + §). This approximation causes
the errors

N = max {[y(z;) — y™ (@), [y (@) — y ™ ()]}, i=1,2,...,n.  (3.43)

7

The second stage consists in solving (3.36) by the perforbtchnique with Q correc-
tions included. The associated errors are

e — max {Jy™ (@) — (@), [y (@) — 7' (@)]}, i=1,2,...,n, (3.44)

%
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Table 3.1: Propagation of the solution for the Mathieu problem: the valug(ef) computed with
different CPM[N, Q] versions

k E CPM(0) CPM[2,1] CPM[2,2]
-0.11024881699209  0.051358056805  0.000286074277  ©000@3111

0

2 9.04773925980938 -0.000214352004  0.000019319866 0QODD00463
4 25.02084082328977 -0.000035972251  0.000004091802 0000DO0O0099
6
8
0

49.01041824942387 -0.000009344032  0.000001155772 00@ODO00025
81.00625032663258 -0.000003599759  0.000000169117 0000DO00010

1 121.00416676126912 -0.000001808249 -0.00000017142000G000000005

whereg(z;) andg’(z;) are the numerical values obtained by propagating the soluti
along the interval by using CPM[, Q]. The error of the whole procedure

N = mma {Jy (i) — gl ' () — 7 @I}, =120, (348)

is bounded by the sum of both errors, i.e.

€

EEN,Q] < EEN,Q] +€7(:N). (3.46)

In [60] it was shown that for each CPMN[, Q] a h exists such that

Theorem 3.3. If CPM[V, Q] is applied to propagate the solution on an equidistant par-
tition (mesh) withh < h, then

o if the energyE is such thatZ(h)| is small in all intervals, a constant'y exists
such that
N oynNt2 =12, .0, (3.47)

providedQ > [2N| + 1, N = 1,2,... andQ = 0 for N = 0. The energy
dependence df'y is stronger and stronger a increases.

e if Eis such thatZ(h) < 0 in all intervals, an energy independent constan
exists such that

N < CenNVE, i=1,2,...,n, (3.48)
provided@ > 1if N =1,2,...,and@Q =0if N = 0.

This theorem suggests that, for one and the same partitiervalue of the energi
determines two different behaviours of the errorElfs close enough t& (z), such that
|(Z(h)| is small in each interval of the partition, then the metholdeves as a method of
orderPy, = 2N + 2. However, whenZ is so high thatZ(h) is large and negative, the
asymptotic orde,;, = N is valid. The theorem also says that there is a damping of the
error whenkE is increased.

The existence of two distinct orders allows an alternatiay wf formulating and
identifying a CPM version. It is possible to retain in theaithm only the terms con-
sistent with some input values fél, and P,s. This leads to a uniqu&’ (i.e. N = P,)
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but to a sum over incomplete perturbations. Such versioasianoted as CP{P, N}
with P = Py. The application of high order schemes involves significaralytic pre-
calculation. This used to be a major obstacle but modern sjimimathematics software
made such calculations feasible. In [60] the version GPRJ10; was introduced and
in [75] the construction of some higher order versions wasuised. These high order
CPM{P, N} schemes will be discussed in more detail in section 3.4.

3.2 Solving the boundary value problem using CPM

We consider now again the boundary value problem. As seehapter 2 a shooting

procedure can be used to locate the eigenvalues of this boundlue problem. As

integration method for the initial value problems appegiimthis shooting procedure we
can use a CPM algorithm.

3.2.1 A shooting procedure

The CPM are very well suited for the repeated solution of tiitéal value problems which
appear in the shooting procedure. These initial value problare solved for a fixed
potential V" but for different values ofs. For a CPM, a mesh can be constructed which
only depends on the potential and not on the enéfgy¥his mesh is then computed only
once and used in all eigenvalue computations (at least épdae problems). Moreover
many data related to this mesh can be computed and storedasratebefore the start of
the shooting process. This means a big speed advantage fOPH since the repeatedly
asked task of integrating the equation at various value® @ completely separated
from the time-consuming process of constructing a mesh antpating the data to be
used later on. The construction of the mesh will be discugsesction 3.4.1 for the
CPM{P, N} schemes.

Algorithm 1 shows the basic shooting procedure in which tR&Propagation algo-
rithm is used to propagate the left-hand and right-handisois.

It is clear that some points need to be examined further. énnidxt sections we
discuss the form of the mismatch function and the choice®hthtching point. Another
refinement that needs to be added to this, concerns the ngusttioscillations of the
solution so as to home in on a particular eigenvalue.

3.2.2 The mismatch function

The criterion for a trial value foF to be an eigenvalue is that the derivativéshould
match in the matching point,,, as well as the values. The matching condition is thus

YL (Im) yR(zm) ’
or equivalently

_ yL(Im) yR(Im) _
H(E) = det (y’L . (l_m)> - 0. (3.50)
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Algorithm 1 The shooting procedure
1: Choose a meshpoint,, (0 < m < n) as the matching point.
2: Set up initial values foy,, y} satisfying the BC at: and initial values foryg, v/
satisfying the BC ab. Choose a trial value faF.
3: repeat
4. fori=1tomdo

s el = o) [
6: end for

7. for i =ndowntom +1do

s s il e
9:  end for

10: Form a mismatch functiong(E) by comparing yr(xm), vy (z,) Wwith
11:  Adjust E to solve the equation(E) = 0.
12: until E sufficiently accurate

The mismatch functiow(F) is thus a function of the energy that is zero when the trial
value of F is an eigenvalue.

If the trial value of E is not found to be an eigenvalue, e.g. whe(F)| is larger than
some treshold value close to zero, the procedure is repeatiechn adjusted value of
E. Itis possible to obtain a new value simply by using one of the standard numerical
procedures for finding a zero of a function. In [60] it was sestgd to use a Newton-
Raphson iteration procedure for the CPM:

P(EL)

By = FE, — . (3.51)
9 (Ey)
where
O(E) = yLyr — YrYL (3.52)
and its derivative with respect to;
¢'(E) = yrLp¥Yr + YLYR, — YRYL — YRYL,- (3.53)

From the analytic theory of regular Sturm-Liouville praflg, it is known that the zeros
of ¢ are simple, hence Newton iterations converge quadratitailstarting values near
enough to a zero. The CPM algorithm allows a direct evalaatiche first derivatives of
the solution with respect to the enerfly On differentiating (2.80) with respect 6 one
gets

FF(XM)]:FEQ vE<6>} {ym%[“@ ”“)HyE(X)]. (3.54)
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since[¢(Z(h)le = ~3m0(Z(h)), [m(Z(W)|E = — 5?1 (Z(R), m = 0,1,...
(see Eq. (3.14)), the expressionswgf, vg, vy andv); can be obtained upon replacing
¢ by —1h2ny andn,, by —3h2n,,41 in the obtained expressions forv, v’ andv’. As
initial conditions for the propagation of;, ., y; . andyg,,, y, One can usg;r,(a) =
Y., (a) = 0andyg, (b) = yp, (b) = 0.

3.2.3 Choice of the matching point

The position of the matching point can considerably inflesthe efficiency of the method.
The literature agrees that the matching point should gépdra in the interior of the
interval, away from singular endpoints, that is in the dlzely allowed region where
E > V(z) and not near one or both endpoints where the solutions shpenextial be-
haviour. Therefore we take as matching point the meshptisest to the bottom of the
potential, that isc,, is the rightmost meshpoint of the meshinterval correspanth the
lowestV value.

3.2.4 The Pifer representation

When we have found a value f& such thatp(E) = 0, we only know that we have
found an eigenvalue. But we have no way of knowing if we hawmibthe first, fifth or
seventeenth eigenvalue. To obtain the index of the eigeewaé must have an idea about
the number of zeros in the corresponding solution. As dsstién the previous chapter,
the Piifer representation can help us count the number of zerasuatered during the
propagation of the solution.

In [61] a procedure is described which allows to calculate Riuifer angled;, and
0r from shooting data. The procedure is very similar to the gdoce used by SLEDGE.
The solution of the Scladinger equation is written in the scaledifar variables andd
in the following way (see section 2.3.2):

y(z) = S"Y2psing, o' (z) = SY%pcosé. (3.55)

Both p andf depend on: and E. We take as a global scaling functiéh

E—
S = _ (3.56)
wm = E -V, if E—

whereV/,,, is the constant approximation &f(x) on the step in the partition whose right-
most end is the matching point,,. The choice of this scaling function is based on the
observations discussed in section 2.3.2, Egs. (2.359)2.3

Our purpose is to follow) (01, or fr) during propagation. We consider the current
interval [z;_1,7;], 7 = 1,2,...,n, in which the constant approximation &f(z) is V;.
Suppose now is known in the endpoint;_; and we want to obtaié(x;). We distinguish
two cases.
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e E > V. Inthis (well) case, we take as local scaling fac$pr= w;, = VE — V;.

The Piifer phasé; over the intervalz;_1, ;] is of the form
0i(x) = wi(x — xi—1) + (), (3.57)

wherey(x) is close to the constant valygz; 1) = arctan(w;y(x;—1)/y’ (x;—1)).
Ifitis assumed thap(x) remains unchanged ovr;_1, «;], then the number of ze-
ros ofy in (x;_1, z;) is the number of integers in the intenfad(z; 1) /7, (w; (z; —
xi—1) + ¢(x;-1))/m), which is the procedure used by SLEDGE. Ixaru suggested
in [61] to not just assume that(x) remains unchanged but to add a correction in
the phase. This means, that we assumeiiaj is of the formy(z;—1) + Ap(z)

and thus writéd; as

0i(x) = wi(x — mi-1) + (xi—1) + Ap(x), (3.58)

with Ap(z;—1) = 0. The value ofAp(z;) is calculated using the available data
y(xi—1),y (zi—1), y(x;) andy’(x;). Specifically, we compute

" = arctan(w;y(z;) /Yy (x;)). (3.59)

If n, is the integer part ofw; (z; —z;—1) + @(xi—1))/m theng = w;(x; —x;-1) +
@(z;—1) — n, lies betweerd andr. Ag(z;) is then given by

et —g+m, it —p<—7/2,
Ap(z)) =g —@—m, ifo*—¢>n/2 (3.60)
p* — @, otherwise.

Once the values of; at the two ends of the current step are known, the values
of 6 corresponding to the original glob&l, are easily obtained by the rescaling
procedure already described in section 2.3.3.

E < V;. Inthis (barrier) case the valuesétorresponding to the original (global)
S can be obtained directly. In fact

O(x;_1) = arctan(Sy(z;_1)/y (x;_1)), (3.61)

while to getd(x;) the value of! = arctan(Sy(z;)/y’(z;)) is computed separately
and, ify(x;—1)y(x;) > 0 then the number of zeros g¢fin (z;_1, z;) is zero and
therefore we take

0! +m, if O(x;—1) > 0and 0! <0,
O(x;) =<0 —7, if O(x;_1) <0and @' >0, (3.62)
AR otherwise,

while if y(x;—1)y(z;) < 0theny has a (single) zero in the interval and thus we
take

(3.63)

1 : _ 1
0(x:) = 0 +m, if 0(%7.1)9 > 0,
01, otherwise.
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In each of the two cases the important quantity is the oneistgpment ofg, A; =
0(x;) — 6(x;—1), since it allows constructing the globaliPer phase in a simple way. In
the shooting procedure, the solution is advanced in twatiines, once forwards, froma
to z,,, and once backwards froindown tox,,,. The values of)(z,,) obtained from the
two directions are given by

OL(Tm) = 0o+ > _Ai, Op(m) =0, — Z A, (3.64)

=1 =i, +1

wheref,, andd, correspond to the values éf andfr in a andb as determined by (2.30),
i.e.0, €[0,7), 0, € (0,7

i >
0, — 0(a), Tf f(a) >0, (3.65)
O(a) +m, if O(a) <O,
and
6, = 0(b), ?f 6(b) >0, (3.66)
0(b) +m, if 0(b) <0,
The quantity

A =01 (2) — Or(zm) (3.67)

allows identifying the eigenvalues (see Eq. (2.32))Al is regarded as a function &f
thenEy, is that E-value for whichA§(FE) = k.

3.2.5 Eigenvalue computation

Algorithm 2 shows the procedure followed to compute the migkies in the user
input rang€ Fynin, Fmax)- It uses the shooting algorithm 1 in combination with thdexda
Prufer variables to prevent any accidental jump over somewggee during the search.

To locate the eigenvalues, the rar@&nin, Fmax] iS scanned for a set of test values
of E. In the shooting procedure, for eaéhthe solution of the Sckidinger equation is
advanced in two directions, forwards framto the matching point and backwards from
b down to the matching point. The numerical method used toramv#he solution is a
CPM which produces not only andy’ at each meshpoint but also their derivatives with
respect taE: yg andy. Theyg andyy, are needed at each side of the matching point
in the Newton iteration procedure (3.51) which is used to firelroots of the mismatch
function¢(E) defined by (3.50). This Newton procedure is convergent drtlye initial
guess forE is sufficiently close to the eigenvalug, which has to be located. Therefore
the eigenvalue computation consists of two stages. In thestiage (line 3 in algorithm
2), an energy intervadF, E,p] is searched for such that eakhin this interval is a good
starting value for the Newton iteration. The second stagegl4-15) is then the Newton
iteration process itself: the eigenvalue estimate isfitesly adjusted until the requested
accuracy is achieved.
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Algorithm 2 Computation of the eigenvalues betwdgn;,, and Ey,.x

1: Compute the lower and upper limits for the indices of the migkues: k., =
|AO(Emin)/m] andkpax = [AO(Emax)/m — 1].
2: for k = ki 10 kpax dO

3:  Find a good initial guess faf;, to start the Newton iteration with.
4: repeat

5 for i = 1tom do

. [y* () (6) ()] [y"(zio1)

* _’L(xz)} [ué(é) vé(é)} L/L(xm)]

. (i) ] _ [uin(6) vig(6) (@io1) |, [wd) vi(8)] [vE(zi-1)
" M m] [u;E@) o, <6>H <zi_1>}+[u;<5> vf(aﬂ [y'%m_l)]
8: end for
9: for i = n down tom + 1 do

. [y (xi-1) vé(é) —v;(9)] [y ()

o /i n} [ (6) u@] L/Rm)]
. [y (1) v, (0)  —vig(0)] [y" (i)
- e, n} [— () uiEw)] [5%»] )
vi(0)  —vi(8)] [yg(x:)
“ L i) )
12: end for

13: Compute the mismatch functief( E) and its derivative)’ (E).
14: Adjust E' using a Newton iterationt — E — ¢(E)/¢'(E).
15:  until E sufficiently accurate, that ig(E)/¢'(E)| < tol.

16: E.=F

17: end for

The second stage was already discussed in 3.2.1, now weylesiefhin the first stage.
Algorithm 3 shows the algorithm which returns a suitabletsig valueE. to be used as
the initial value in the Newton procedure for locatiflg. First we look forEy,, andE,,
such thatE,y, < Ej, < Eyp. TheseE,, andE,, can be found with the aid of the scaled
Prufer representation discussed above: the quadtityfrom (3.67) indicates where a
certain £/ value is situated in the energy spectrum. The algorithm tlsegunction¢
defined as
AO(E)

™

((E) = — k. (3.68)
Then we look for sharper lower and upper limig,,, and £, and an approximate value
E. for E,. E. is calculated by alternative use of linear interpolationl af halving.
When|{(Eiow)| + |C(Eup)| < 0.2, we assume that the intervidlio.,, Eyp] aroundEy,
is sufficiently small andt, is a good initial guess foE,. The Newton iteration process
is thus started withy = FE.. To continue the calculation for the next eigenvalug, ; a
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good starting value foE) .y, is thenEioy, = Eyp.

Algorithm 3 Finding a starting value for the Newton iteration process
1: Find Ejoy, and £, such that (Eiew) < 0 and((E,p) > 0.
2. =0
3: repeat
4: if it eventhen
Elow + Eup
E.=———

5
2
6: else
7 Ec — C(Eup)Elow - C(Elow)Eup
. g(Eup) - C(Elow)
8 endif

9 if ((Elow)((Ec) < Othen
10: B, =E.

11: else
12: Elow = EC
13:  end if

14 it=i4t+1
15: until [((Eiow)| + |¢(Eup)| < 0.2 andEyoy < E. < Eyp
16: Take E. as initial approximation fof, to start the Newton iteration process with

3.3 The Sturm-Liouville problem

The CPM are constructed for equations of the 8dhrger form, not for equations of
the Sturm-Liouville form. For this reason these methods lwampplied to the Sturm-
Liouville problems only if the Sturm-Liouville equationeé®e converted to the Sastinger
form. The conversion is possible and is achieved via thealedl iouville’s transforma-
tion.

3.3.1 Liouville’s transformation

Consider the regular Sturm-Liouville problem to be solved

_7(73(70)%) +q(r)z=FEw(r)z, Tmin <7 < max, (3.69)

wherermin andrma.x are finite, function, ¢ andw are defined ofrmin, rmax] With p
andw strictly positive (it also tacitly assumed thatndw can be differentiated twice on
the interval). The boundary conditions are of the form

aOZ(Tmin) + bop(rmin)zl({rmin) = 07
alz(’rmax) + blp(rmax)zl(rmax) = Oa (370)
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where the constantg, andb, are not both zero and similarly far, andb;.
A transformation ofiependent variables performed of the form

z=o(r)y. (3.71)
This gives
d dy d do
- < dr) ~ o (pydr> + qoy = Ewoy. (3.72)
which we multiply byo to restore the self-adjoint form:
d 5 dy d ( do B 5
dr(p dr>+( dr<dr)a+qo>y—Eway. (3.73)
Then a transformation ahdependent variabléom r to x
r=r(x) (3.74)
converts (3.73) to the transformed equation
d (po’dy d (pdo 9.
- =F 7
dx(r d:c)+< dz(rdx o+ a0 |y wory, (3.75)

wherer = dr/dzx.
When we choose as changes of variable

x = /T Vw(r')/p(r)dr! (3.76)

min

and
a(r) = (p(r)yw(r) =4, 3.77)
we obtain an equation in the Liouville normal form or Satlinger form
=y () + V(2)y(z) = Ey(x) (3.78)
where )
q d 1
V(z)=— + e (0) . (3.79)

The regular boundary conditions (3.70) are transformecktheto
A()y(xmin) + Boy/(xmin) = 07
Aly(mmax) + Blyl(mmax) = 0; (380)
whereBy = by, B1 = b1 and
Ag = a90® (Fmin) + bop(Tmin )0’ (Fmin) 0 (Pmin ),
Al - a102 (Tmax) + blp(rmax)o—/(rmax)a(rmax)' (381)
To summarize, the original regular Sturm-Liouville prablégs. (3.69) and (3.70), is
equivalent to the Sciidinger problem Egs. (3.78) and (3.80) which has the samaneig
value spectrum. To compute the eigenvalues of a Sturm-illeyproblem, the CPM al-

gorithm is thus applied to the Sdidinger problem which appears after Liouville’s trans-
formation.
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3.3.2 Implementation of Liouville’s transformation

To be able to extend the CPM to the solution of Sturm-Lioeviitoblems, we need an
implementation of Liouville’s transformation. This meathsit we need a procedure for
computing the quadrature (3.76), which allows us to obtdior a givenr and vice versa.
In [61] it was suggested to identify a set of poinf§ = 7, < 78 < 1§ < ... <
r% 1 = Tmax, Such that the integral

Tk+1
qk :/ Vw(r)/p(r)dr', k=0,1,..K, (3.82)

evaluated by a Gauss formula with twelve points (denote@gss correct in all digits
available in the double precision arithmetic. More exadtlg intervalr, (', ;] is taken

small enough such thh@fj) + Qf) — Q| < ¢, with € a precision threshold representing
the double precision arithmetic a@l) andQ,(f) the numerical values of the integrals

(7"1<G,+1 +7’1?)/2 ch-:+1
= Ve o', ¢ = /( V() o dr,

k 7’1?+1+T§)/2
(3.83)

evaluated by the same twelve points Gauss method. The vhlti¢ associated with&

isz{ = qo + q1 + ... + gx—1 and we store the® and ther® in some vectors. When
during the computations, the value oftorresponding to some givenis required, then

the mterval[rk ,rkH] which contains the input is first identified and only the integral
fromr$ up tor is evaluated. When anvalue is known and is required, one first looks

for the intervalz{, azﬁrl] and one then applies a Newton iteration procedure to compute

r as the root of .
/ Vw() /p(r)dr' — x4+ z§. (3.84)
r¢

3.4 Higher Order CPM{ P, N } methods

As mentioned before, there exists a family of CPM algorithmiech are identified as
CPM{P,N}. A CPM{P, N} includes just enough terms in the perturbation corrections
to have an algorithm of ordeP when Z(h) = (Vo — E)h?> — 0 and of orderN for
—Z(h) — 4o00. The results of Theorem 3.1 allow us to obtain the expressionthe
perturbation corrections. However it is clear that a lotlgkearaic computations are re-
quired and that one has to make use of a powerful symboliwacdtpackage to construct
CPM{P, N} of high order. In [60] the version CPM 2, 10; was introduced. This algo-
rithm was later implemented in the Fortran program SLCPMa3 jvhich is included in
the CPC (Computer Physics Communications) program ligadryn [75], we introduced
a MaPLE code which computes the expressions for the perturbatioec@ns for an in-
put value of P and N. Using this MAPLE code, versions of higher order CRML, 12},
CPM{16, 14} and CPM 18, 16} were defined (see also [75]).
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The expressions of the propagato(#), hu'(h), v(h)/h andv’(h) ofthe CPM P, N}
algorithms have the following form:

u(h) = S(ZHilCﬁ#)nm(Z)» (3.85)
hi'(h) = Zno(Z)JriC;g’)nm(Z), (3.86)
=0
v(h)/h = UO(Z)JFiQCr(ﬁ)ﬂm(Z% (3.87)
v'(h) = g(z>+iq§§’>nm<2). (3.88)
et

where the coefficienté’,(,i‘x Cf,?l), Cfi{) andC,(Jj/) are expressed in terms of thé vari-
ables, withV; = V;hi+2, i = 1,2,.... In Appendix A.1 (part of) the>"” coefficients
are listed for the CPNIL8, 16; algorithm. The full expressions and tﬁéff/), ci? and
C’ﬁ,f/) can be generated by theA¥iLE code included in Appendix B.1. Note that the sum-
mations in (3.85)—(3.88) are finite, e.g. for CPM, 16} the coefficientsj'f,f) are equal
to zero form > 9, while for CPM{16, 14} aIsoCé“) is zero which means that in the

expression for the CPM6, 14} propagatoru(h), the coefficient ofys(Z) contains no
terms with degree i smaller or equal to 16.

It is also important to remark that the coefficiets”, Cfﬂf/), ) andc) are E-
independent. As a consequence they have to be computed medyom each step and
can be stored at the very beginning of the run. When the saltitioa givenE is then
advanced on successive steps, onlyfihdependeng andr,,, remain to be calculated.

Another important feature of the CPM is that the partitiorem) of a finite integra-
tion interval is formulated from the very beginning of therand never altered again, no
matter how small or how big the energy is. This means that threemical solution of
a Schodinger or Sturm-Liouville problem consists of two sepadastages. In the first
stage, if the problem is of Sturm-Liouville form, it is comted to the Schirdinger equa-
tion. Then the partition ofa, b] is constructed in terms of a tolerance specified by the

user. Also some quantities (i.e. the stepsizé}, and theC,,(,;”) coefficients) associated
to each interval in the partition are generated and storde:s@ quantities depend only
on the potential and will be used repeatedly in the secorgkstim the second stage the
requested eigenvalues are then calculated. To locate dliggmavalues the shooting pro-
cedure is applied. The shooting data is also used to evaluatBiifer variable which
enables a correct estimation of the eigenvalue index.

The construction of thé&-independent partition or mesh will be discussed in the next
subsection.
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3.4.1 Stepsize selection - the mesh

For a high order CPNIP, N} an adaptive stepsize selection algorithm consistent with
a user input toleranc&l can be applied. The choice of the stepsize is based on a uni-
formly distributed local error which requires an estimatior the local error. In [60]
and [75] the principle of embedding was used. For a methodgbfehn order — say the
method CPM P, N} — a second method of lower order CR®', N’} (the embedded
method) was used for the purpose of error estimation. Homeeeare now able to for-
mulate a different procedure. TheA¥LE program allows us to obtain expressions for a
higher order version CP¥P*, N*} and all disregarded contributions which appear in the
CPM{P*, N*} algorithm but not in the CP¥IP, N} formulae can be used to estimate
the error. The chosen higher order versionsate= 14, N* = 12 for CPM{12, 10},

P* =16, N* = 14 for CPM{14,12% andP* = 18, N* = 16 for CPM{16,14.

Let us focus on CPN1L6,14: All terms in the expressions far(h), hu'(h),v(h)/h
andv’(h) of the CPM 18,16} version which are supplementary to the terms to be used in
the CPM 16,14 version can be used to construct an estimation of the erocstart with
we take a trial valué for the size of the step originating &t and use a Gauss quadrature
formulato calculatd’, V;, Vs, . . ., Viy from (3.41). Herd/; is again a short-hand notation
for V;hit2,

Since thej-functions obtain their maximum value k) = 0, we compute, which
is defined as

eo = max(|Au(h)], [Ahu'(h)[, |Av(h)/h], | AV (R)]), (3.89)

at Z(h) = 0. Au(h), Ahu/(h), Av(h)/h and Av’(h) are the terms in the equations in
Appendix A.1 which are additional to the terms of CPM,14}. That is, all terms where
either (i) the V; havel4 < i < 16 or (ii) where the degreé in h satisfiesl6 < d < 18
(whereby the degree &f; in hisi + 2). For Au(h), e.g. we have

Au(h) = —(Vi5/2)m (Z(h)) + (119Vi5/2 — VZ/120)n2(Z(h))
+ (= 6783V15/2 + [2VF + 10V3Vig + 10V Viq + 10V5Vs + 5V3 Va4
+5V1Vis + 5Vs Vo + 10Va Vo + 10V4 Via + 10V V5] /20)n3(Z (R))
+ (237405V15/2 + 23V — 282V5 Vs — 120V3Viy — 170V, Vig
— T8V Vo — 306V, Vo — 450V Vig — 270V Vy — 342V3 V7
—390Va Vi + 42V Vi + 6V Vig + 20V4Vig] /8 + [5005V5 V2
+ 9009V Vz + 15015V Vy + 4095V, V2 + 6435V Vs + 810V
+ 9450V2 Vy Vs + 540013V, Vs + 11340V, VsV + 31501, V2
+ 4500V V] /720720) 4 (Z (h)) — (5460315V15/2 + ... )ns(Z(h))
+ (81904725Vi5/2 + ... Yne(Z(h)) — (737142525V15/2 + ... )n7(Z(h))

+ (3053876175V15/2 + ... )ns(Z(h))
(3.90)
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x10°

-1500 —10‘00 —560 0
Figure 3.4: The coefficient functiom:5(2).

Reordening the terms in this expression, we obtain
Au(h) = 015‘715 + C7,7‘772 + 03,10‘_/3‘710 + ... (391)
where, e.g.,

cis = [ —m(2) +119n2(Z) — 6783n3(Z) + 237405n4(Z)
546031515 (Z) + 8190472505(Z) — T37142525n7(Z)  (3.92)
+ 30538761755 (Z)] /2.

Theser;s, 7.7, . .. expressions reach maximum values at different valué&(hj. In the
case oflcy5],e.9., we have a maximum of approximately 0.0023 at —293 (see Figure
3.4). Using these maxima, the following contribution isabed

et . = 0.0023[Vi5] + 0.000025V7 4 0.000018|V3Vig| + ... (3.93)
In the same way.“ , ¢! . ande}._ are computed and the final error estimate is then
€loc = max(€0, efoe, oes elocs Cloc)- (3.94)
This error estimate is used to construct a new step size:
hnew = h(tol /€16e) /7Y, (3.99)

wheretol is the input tolerance. Wheh,,.,,/h — 1| > 0.1 the procedure is repeated with
h = hyew. Otherwiseh is accepted to be a good choice for the stepsize and the preced
continues with the stepsize selection for the next intemwhich will originate atX + h.

As first trial value for the stepsize of this new interval oaa takeh.
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Figure 3.5: Piecewise constant approximation of the Mathieu potential function obtaiitbd
CPM{12,10} andtol= (a)10~°, (b) 1073, (c) 1077, (d) 10~ *2, (€) 10~ '* and (f) the exact poten-
tial.

As mentioned above, tHé are determined by applying a Gauss quadrature procedure
on

V= (2i+1)h / " V(X + 6P (5/h)do. (3.96)
0

For CPM{12,10 a ten point Gauss quadrature formula is sufficient for théuetimn
of these integrals. The CPM4,12 needs at least twelve points, CRM5,14 fourteen
points and CPMI18,16} sixteen points, respectively.

3.4.2 Some illustrations

Figure 3.5 shows the piecewise constant approximationtaaried by CPM12,10 for
the Mathieu potential functiol (z) = 2cos(2z), « € [0, n] for different values of the
input toleranceol. The number of intervals in the mesh increases with thedols: 3
intervals fortol = 1079, 5 fortol = 1078, 7 fortol = 10~'°, 10 fortol = 10~'2 and 14
for tol = 10—, Also Figure 3.6 shows the piecewise approximation of themal but
now for different CPM versions. It is clear that for higheder methods the stepsizes are
larger: CPM 12,10 needs 14 steps to reach@ ' accuracy, while CPNI16,14} needs
only 9. The reason is that more correction terms are includdte same conclusions
can be drawn from Figure 3.7. This figure shows the numberegssthosen for the
Coffey-Evans equation with' (z) = —23 cos(2x) + 2 sin? 2z with 5 = 20.
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Figure 3.6: Piecewise constant approximation of the potential function for the Matljaat®n
obtained withtol = 10~** and different CPM P, N'} versions: (a) CPNi12,10}, (b) CPM{14,12
and (c) CPM 16,14

70 ‘ :
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number of meshpoints
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Figure 3.7: Coffey-Evans = 20: number of steps for different input tolerances.
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Table 3.2: Propagation of the solution for the Mathieu problem : the valug(af) computed
with different CPM. Three differenE-values are usedll = E1, E19, E2o. N is the number of
equidistant steps.

k N CPM{12,10 CPM{14,12 CPM{16,14

1 1 -0.02318892816899 -0.01456898484001  0.0056439099214
2 -0.00016711628732  0.00001372532522  0.00000239548106
3  -0.00000201724621 -0.00000044655324  0.00000000764493
4 0.00000001824467 -0.00000000398729  0.00000000006233
6  -0.00000000013490 -0.00000000002371  0.00000000000018
8  -0.00000000000272 -0.00000000000041  0.00000000000001

10 1  -0.00000173522196 -0.00000047856561  0.00000008B112
2 0.00000002087816  -0.00000000145525 -0.00000000009680
3  -0.00000000013744 -0.00000000008640  0.00000000000077
4 0.00000000094777  0.00000000002487 -0.00000000000025
6  -0.00000000002253 -0.00000000000012  0.00000000000001
8  -0.00000000000054  0.00000000000000  0.00000000000000

20 1  -0.00000024712704 -0.00000001236933 -0.000000@@&BA7
2 -0.00000000003327 -0.00000000000812  0.00000000000160
3  -0.00000000005096 -0.00000000000613  0.00000000000017
4 0.00000000000618  0.00000000000001  0.00000000000001
6  -0.00000000000039 -0.00000000000001  0.00000000000000
8  -0.00000000000015  0.00000000000000  0.00000000000000

Table 3.2 shows some results for the Mathieu initial valugbfam with initial con-
ditions in one endpoint of the integration interval0) = 0,4’(0) = 1. The solution is
propagated towards the other endpairfor three differentF values. Since these three
E values are the exact eigenvalugs, k£ = {1, 10,20} the value fory(r) is zero. N is
the number of steps in the equidistant partition. It is ctbat when the number of steps
N is increased, the solution obtainedrris more correct. A higher order method needs
a smallerN value to reach a given accuracy than a lower order method.edder the
number of steps used is remarkably small. Note also thatahes ofy(w) go faster to
zero for a large® (or k) value.

The higher order CPNIP, N} are implemented in the MATLAB package called
MATSLISE (see chapter 7). The package exploits the power of the CPMItolate the
eigenvalues and eigenfunctions of a Shinger or Sturm-Liouville problem specified by
the user. It therefore uses the shooting procedure distussection 3.2. We calculate a
set of eigenvalues in MrsLISE for some test problems which appear in the problem set
listed in appendix C.

The first test potential we consider is a Woods-Saxon patit23] of the form
V(z) = =50 (1 — (5t)/[3(1 +1)]) /(1 +1t), witht=e""7/0.6 (3.97)

over the integration intervadd, 20]. For this problem we calculated the first 14 eigenval-
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Table 3.3: Calculation of the first 14 eigenvalues of the Woods-Saxon problem wirelift CPM
codes andol = 107'°. nint is the number of steps in the partitionfev the number of function
evaluations and’ the CPU time in seconds.

Errors CPM
k Fx {12,10} {14,12} {16,14}
0 —49.45778872808258  8.6(—11) 1.4(—12) 1.0(—11)
2 —46.29075395446608  1.3(—10) 1.4(—10) 1.6(—10)
4 —41.23260777218022  1.0(—10) 2.1(—10) 1.6(—11)
6 —34.67231320569966  1.4(—10) 3.7(—10) 2.3(—10)
8 —26.87344891605987 1.2(—10) 3.8(—11) 1.9(—10)
10 —18.09468828212442  6.8(—10) 1.3(—10) 2.4(—10)
12 —8.67608167073655  7.3(—10) 1.7(—11) 3.6(—10)
nint 22 17 16
nfev 600 546 528
T 0.9 0.7 0.6

ues. For the second test run we consider again the CoffeysEaguation withs = 20.

The first 21 eigenvalues are computed. The third test proldéhe Mathieu equation for
which we calculate the first 51 eigenvalues. As last testlprolwe consider a Sturm-
Liouville problem not in Schisdinger form withp(x) = 1, ¢(z) = —722 + 0.52% + 24,
w(z) = 0.5 over[—10, 10]. We calculate the first 15 eigenvalues for this problem. For
each problem the eigenvalues are determined with three Gi*&ions of different order
which are implemented in krsLise: CPM{12, 10}, CPM{14, 12} and CPM16, 14}.

In all cases an accuracy tolerarteé of 1071 is requested.

In Tables 3.3-3.6 we present for each problem a selectiomefconsidered exact
eigenvaluedy;, and the (absolute value of the) error in the eigenvaluesmetlby MaT-
SLISE. The ‘exact’ eigenvalue&’;, were obtained with a Fortran code implementing a
CPM algorithm in quadruple precisiomint is the number of intervals in the partition,
n fev is the number of function evaluations (of the potential timc1”) and7 the CPU
time (in seconds).

The data reported in the tables lead to a number of conclsision

e First of all, one can see that the different CPM versions @ltipce results within
the required accuracy.

e The number of intervals determined by the stepsize sefeeligorithm decreases
with increasing order of the method.

e As aconsequence the number of function evaluations alseases with increasing
order. This will however reach somewhere a limit. A highetesrmethod reduces
the number of steps in the partition, but in order to keep twigcy in all inter-
mediate steps the number of nodes in the used Gauss quadtaes (to compute
(3.96)) has to be increased, resulting in a higher numberraftion evaluations per
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Table 3.4: Calculation of the first 21 eigenvalues of the Coffey-Evans probl@m=( 20) with
different CPM codes antbl = 1071°. nint is the number of steps in the partitionfev the
number of function evaluations afddthe CPU time in seconds.

Errors CPM

k FEy, {12,10 {14,12 {16,14
0 0.00000000000000  5.8(—10) 1.8(—10) 5.5(—11)
1 77.91619567714397  3.8(—10) 1.0(-9) 2.9(-10)
2 151.46277834645663  2.5(—11) 8.3(—10) 2.0(—10)
3 151.46322365765863  2.0(—10) 8.6(—10) 2.8(—10)
4 151.46366898835165  2.5(—11) 8.3(—=10) 2.1(—10)
5 220.15422983525995 5.6(—10) 1.1(—10) 1.1(-9)
10 380.09491555093168  4.7(—10) 6.0(—10) 2.6(—10)
15 477.71051260907674  3.7(—10) 3.1(—=10) 9.8(—11)
20 652.99045708465674  2.5(—10) 1.3(—10) 4.5(—10)
nint 32 24 19
nfev 540 476 464
T 2.3 1.6 1.4

Table 3.5: Calculation of the first 51 eigenvalues of the Mathieu problem with diffetzPi
codes andol = 107'°. nint is the number of steps in the partitianfev the number of function
evaluations and’ the CPU time in seconds.

Errors CPM

k Ey {12,106 {14,12 {16,14
0 —0.11024881699209  2.5(—12) 4.9(—11) 8.4(—12)
10 121.00416676126912  1.0(—10) 8.2(—11) 2.0(—11)
20 441.00113636549330 2.1(—11) 6.7(=12) 2.0(—13)
30 961.00052083351094  2.1(—13) 3.4(—13) 2.1(—13)
40 1681.00029761908068  3.7(—13) 3.7(—13) 1.1(—13)
50 2601.00019230770122  1.4(—12) 5.8(—13) 1.2(-13)
nint 7 5 4
nfev 108 84 96
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Table 3.6: Calculation of the first 15 eigenvalues of the Sturm-Liouville problem withediit
CPM codes andol = 107'°. nint is the number of steps in the partitionfev the number of
function evaluations an@ the CPU time in seconds.

Errors CPM
k Ej, {12,100 {1412  {16,14
0 —24.51759770716  8.0(—10) 2.3(—10) 2.8(—10)
3 —1.29384368195  8.4(—10) 6.4(—11) 1.4(-10)
6 14.73535195708 5.8(—10) 2.8(—10) 7.7(—11)
9 39.87238796401 6.0(—10) 8.6(—10) 3.9(—10)
12 70.05073428985  7.9(—10) 1.2(-9) 2.3(-10)
nint 185 131 109
nfev 6672 5920 5856
T 16.1 12.4 11.9

Table 3.7: Calculation of some higher eigenvalues of the Mathieu problem with diffeC&M
codes andol = 10710,

Errors CPM
k Ej, {12,100 {1412  {16,14
100 10201.00004901960799  1.8(—12) 1.8(—12) 1.8(—12)
500 251001.00000199203187  6.8(—11) 8.1(—12) 8.1(—12)
1000 1002001.00000049900200 3.0(—10) 9.8(—11) 9.8(—11)
1500 2253001.00000022192632 1.7(—10) 1.7(=10) 1.7(-10)
2000 4004001.00000012487512 8.2(—10) 7.5(—11) 7.5(—11)

interval. This higher order Gauss quadrature rules exjtanre-increase of the
number of function evaluations with increasing order fa fhathieu test problem.

e The introduction of higher order terms results in most casasmaller CPU time.
For the Mathieu problem, the higher number of function exddins means that the
CPM{16, 14} spends more time determining the partition (i.e., the rsgttif the
steph, the calculation o; and theOZ.("') coefficients) than for the CPM4, 12}.
However, even when the partitioning process requires nioie the total time can
still be smaller for a higher order method: the computatibthe eigenvalues (the
shooting process), which occurs after the partition has lfiged, is faster for the
higher order method when there are less intervals. The gdime in the shooting
process can be big enough for a large set of eigenvalues tpermate the loss of
time in the partitioning process.

Table 3.7 shows some higher eigenvalues for the Mathieugmolit is clear that also
for these high indices accurate results are obtained.
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3.5 Conclusion

This chapter has covered: the CPM class of methods which earséd to efficiently
integrate a Sclidinger equation; the shooting method which uses a CPM gapation
method to obtain eigenvalue approximations; thig&rform and the choice of a suitable
scaling functionS, which are used to select a good interval of energy values laohw
the Newton iteration process can be applied in order to honoa ia specific eigenvalue;
the extension to Sturm-Liouville problems and the consioacof a class of high order
methods, identified as the CR¥?, N}. These high order CP{P, N} methods were
shown to have the power of producing very accurate resudis or large energies.






Chapter 4

Line Perturbation Methods

In this chapter we consider a class of perturbation methadsdon the linear approx-
imation of the (Schidinger) potential function. Although the solution of theference
equation is closer to the exact solution than if a piecewsestant reference potential
would have been used, such an approach will be shown not tdVamtageous in practice
over the constant approximation technique discussed ipréhgéous chapter.

4.1 ALine Perturbation Method for the Schrodinger equa-
tion

The idea of adding perturbation corrections to improve troeieacy of a CPM is already a
few decennia old [56, 58]. This is not the case for the Lindurbation Methods (LPM).
Gordon, [41]-[42] was the first to suggest a code based orepise line approximation
but no perturbation corrections were included. Also thermapments brought to this
method along time were mainly related to the computatiorhefAiry functions which
appear in the propagators of the reference equation (e [4) but we are unaware
of any attempt of constructing and adding corrections. @Gasaon may be that, though
Gordon’s papers include a way to compute such correctibesgsults produced on this
basis would often suffer of heavy loss in accuracy due to-naacellations of like terms.

In this chapter we will examine the problem of the pertudmattorrections for the
LPM. We will effectively construct first and second-orderreations. To evaluate them
we rely on an approach developed by Ixaru in [58] which isdéht from that in Gordon’s
papers. Its results are less exposed to the near-canoelédfect but an extra treatment is
still needed.
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4.1.1 The reference equation

We again consider the Sditinger equation

Y B V(@) =0 b 4.1

S HE-V@ly=0, zclab. (4.1
The intervalla, b] is divided in a set of subintervals, resulting in a partitwith the mesh-
pointsa = g, z1,x2,...,2, = b. Let us focus on the current intenval; _, ;] which
we denotd X, X + h], whereh is the current stepsize. As for the CPM, we want to obtain
expressions for the propagataraandv and their first derivatives’ andv’, so that the
formulae (withd € [0, h])

] = [ vl (5] 02
d
B N R [t

can be used to propagate the solution from one end of thevatterthe other.

Zeroth order approximations to these propagators areatefiom the reference equa-
tion. For the LPM, the potentidV (z) is first approximated ofX, X + h] by a ‘line’
functionV () such that the equatiof’ = [V () — E]y can be solved analytically. This
means that the reference equation over the intg®&aX + h] is of the form

y'(0) = (V(X +0) ~ E)y(o) ”
= (Fo + F16 — E)y(9)

with Fi andF} two constants. The reference propagatd® andv(d) are two particular
solutions of this reference equation which satisfy theahonditionsu(0) = 1,4'(0) =
0 andv(0) = 0,7'(0) = 1.

The reference propagators can be expressed in terms of dictibns. To see this,
we introduce the following change of variablgy + F16 — F = Cz, whereC will be
chosen conveniently. By simple manipulations Eq. (4.4pbees

/! CS
y'(z) - ﬁzy(z) =0. (4.5)
1
When we take>?® = FZ, the relation betweefiandz is then

Fi Fio—F
z:% (4.6)

{,/FTQ

y"(2) — zy(z) = 0. 4.7)

and Eq. (4.5) reduces to
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Figure 4.1: The Airy functions.(Left) Ai(z) andAi'(2). (Right) Bi(z) and Bi'(2).

Two linear independent solutions of this equation are thg AinctionsAi and Bi (see
[3] or [120]) and a general solution of Eq. (4.7) is a lineamimnation of the functions
Ai andBi:

y(2) = adi(z) + BBi(z), y'(z) = aAi'(2) + BBi'(2). (4.8)

To determine the constantsand 3 corresponding to the reference propagatoedv,
their associated initial conditions are used. By defining: I,/ /F? = V/F1, 20 =
2(0) = (Fy — E)/ ¥/F? and making use of the Wronskian relatidi{ Ai(z), Bi(z)} =
Ai(z)Bi'(z) — Ai'(2)Bi(z) = 1/, we get the expressions for the propagators of the
reference equation (4.4):

A(6) = 7 [Bil(20)Ai(2) — Ai'(20)Bi(2)] (4.9)
@ (8) = wy[Bi'(20)Ai'(2) — Ai'(20) Bi'(2)] (4.10)
5(5) = % [~ Bi(z0)Ai(z) + Ai(z0)Bi(2)] (4.11)
v'(0) = m[—Bi(20)Ai(2) + Ai(20)Bi'(2)] . (4.12)

4.1.2 The construction of the perturbation corrections

As pointed out in section 2.3.4, each of the two propagatrsandv(6), denoted gener-
ically p(0), is written as a perturbation series,

p(0) = po(6) +p1(0) + p2(6) + p3(d) + ... . (4.13)

The zeroth-order termy (§) is the solution of the reference equation (thy&) = 5(9)),
while the correctiorp,, ¢ = 1,2, ... obeys the equation

Py = [V(X +6) — Elpy + AV(X + 8)pg—1, pe(0) = py(0) =0, (4.14)
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whereAV (X +6) = V(X +§) — V(X + ¢) is the perturbation. We can then construct
each correction as a linear combination witldependent coefficients of the reference
propagators and of their first-order derivatives (see [58])

Pq(0) = aq(6)u(6) + bg(0)0(8) + ¢4(6)u'(6) + dq(6)v(9), (4.15)

wherea,, by, ¢, andd, are functions to be determined. First we evalygtandp; (with
F=V(X+$4) - E):
Py = gl + aql’ + b0 4 bgt" 4 cu’ + cqu” + dyv’ + dgv”
= apii+ (ag + c)u' + b0 + (bg + i)V + cqFii + dg F'v (4.16)
= (ay 4 cgF)u + (b}, + dg F)v + (aqg + &)’ + (bg + d,)v’

Py =lag + (2 + ag) F + cqF'Ja + [0 + (2d;, + bg) F + dy F']0

2 / ] —/ d// b/ d =/ (4'17)
+ [eg + 2a + ¢ Fla’ + [dy + 2bj, + dgF'lo
and write the right hand side of Eq. (4.14) as
Fpy+ AVpy_1 = (agF + AVag_1)a + (b, F + AVb,_1)v (4.18)

+ (cgF + AVey_1)d' + (dyF + AVd, 1)V

Combining Egs. (4.17) and (4.18) we obtain the followingegsof differential equations
for the coefficients.,, by, ¢q, dg

ay +26,(V—-E)+¢V' = AVag
by +2dy(V - E)+dV' = AVby
cp+2a, = AVcy
A2, = AV, . (4.19)

Taking into account thai(0) = 1,4’(0) = 0 andv(0) = 0,%'(0) = 1, Eqgs (4.15) and
(4.16) give us the initial conditions

aq(0) 4 dg(0) = 0, a,(0) + (V(0) — E)cq(0) + bg(0) + dj(0) =0 (4.20)

for the system (4.19).

Forq:()wehaveao =1,bg =cop =dy :Oifp:uandbo =l,a9=co=dyp=0
if p = v. Forq > 1, the coefficients of indey — 1 are introduced in the right-hand
side of system (4.19) and then the system is solved with titi@liconditions (4.20) to
getag, by, ¢q, andd,. Note that there are onlyvo initial conditions forfour differential
equations and hence the solution of (4.19)) is not uniqués dllows some flexibility in
the determination od,, b4, ¢, andd,,.
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4.1.3 A pilot reference equation

Since, as for CPM, the perturbation corrections can be ateduanalytically in closed
form only when the perturbatioAV is a polynomial, we make use of the same strategy
as in section 3.1.3. This means that we introduce a piloteate function of the form

V(X +6) Z Vi, h”P* (4.21)
n=0
to finally consider only corrections from the pilot pertutiba. It is thus the equation
y'(X +06)=[VI(X +6) - Ely(X +6), 6d€]0,h] (4.22)

for which propagators are constructed.
To compute the reference potentfa) + F6 we use a least-squares procedure. This
means that

/ ' V(X +06) — (Fy 4 F10))* do (4.23)
0

has to be minimized. To explicitly evaluafg andF; we set to zero the first-order partial
derivatives of (4.23) with respect tig, and F; and obtain the following system of linear

equations
2 h

hFy + %F1 = V(X +9)ds
2 13 0 . (4.24)
M+ = / SV(X + 5)ds
2 3 0
whose solution is given by
4 " 6 ["
Fy= 7/ VX a)ds g5 [ V(X -+ djas
(4.25)
P =— h2/ VX+6d5+—/ OV (X + 6)dé.
Knowing that (see section 3.1.3)
1 h
Vo = E/ V(X +9)ds, (4.26)
0
3 h 6 h
- —ﬁ/ VX +8)ds+ 1 [ V(X +06)dd (4.27)
0 0
we have the following form fo#y and £
=Vo—Vih, F, =2V;. (4.28)

This means that, while for the CPM the reference potentiditha perturbation were

V(X +0)=Vo, AV(X+6)= Zvnh” (4.29)
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(@) (b) (c)

Figure 4.2: Piecewise line approximation of the potential function for the Mathieu equation
structed by the LPM[4,2] method wittvl= (a) 10~°, (b) 10~® and (c)10~*°.

we now take for the LPM

N
V(X 40) =V + Vthl*(%), AV(X +6)= Vnh”P,’f(%). (4.30)
n=2
To identify the different LPM versions, we use the notatidPM[N, Q] where N is
the number of Legendre polynomials a@d> 0 is the number of perturbations. When
@ = 0, then the pilot potential is not involved and the method isaled by LPM(0) (see
[58])).

Example 4.1 Figure 4.2 shows some piecewise line approximations of thehiu po-
tential functionV' (z) = 2cos(2x), « € [0,7]. The piecewise line approximations are
constructed by the LPM[4,2] method for different valuestad thput toleranceéol. The
LPM[4,2] method will be discussed in more detail in the neadtons.

4.2 The LPM[4,2] method

In this section we will efffectively construct the first artietsecond order corrections for
the LPM. We assume a pilot potential of fourth degree (Ne= 4 in Eq. (4.21)); this
value will be justified by the error analysis.

4.2.1 Perturbation corrections

The procedure discussed in section 4.1.2 was implementhd symbolic software pack-
age Maple. The Maple program is listed in B.2.1 and produrnegxpressions of the first
and second order corrections for the LPM[4,1] and LPM[4,2}mod.
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First order corrections

We briefly discuss the procedure followed to construct the firder correctionu ().
This correction is of the form

u1(8) = a1(8)u(d) + b1 (6)v(d) + c1(6)a'(9) + d1(6)2'(9), (4.31)
wherea (8), b1(0), ¢1(6) andd; (0) satisfy the system (4.19). This means

"2 (Fo+ F10— E)+ e Fy = Z 178 h"P* (4.32)
b/1/+2d/1(F0+F1(5—E)+d1F1 :0 (433)
¢l +2ad; =0 (4.34)
d + 20, = 0. (4.35)

with the initial conditions
a1(0) + d1(0) =0, a}(0) + (Fo — E)e1(0) + b1(0) + d(0) = 0. (4.36)
To solve this system, Eq. (4.34) is differentiated and iticeed into Eq. (4.32) to obtain

1
—5cl + 20 (Fo + Fid — B) + e Fy = Z Vi h”P* (4.37)

A particular solution of this differential equation i is

256 V, 64 146V, +9V5 —63V4h] .
o[ e [espom)g
16 21 Vs + 315 V4h2 4 306 Vi — 2106 Vih — 105 Vih 4 70 V362 o
105 3
* [315F (315 Vah — 270 6°V3 — 1890 V4?6 + 1050 Vah? — 126 Vad+
1
630 V3hd — 630 V3h?> — 700 V46° + 1890 6V, h) — % ;/42] 0
1

T 35E (900 53V + 378 62V — 630 8 Vah — 6300 6°Vih — 21008 Vih®+
1

2450 V6% 4+ 315 Vah? + 12606 Vah? — 1890 62Vah + 5670 62V, h2 —
20 980 Vy + 27 V5 — 189 Vyh
63 2

315 Vsh® + 315 V4h') +
(4.38)

with @ = (Fy — F)/F;. We also differentiate Eq. (4.35) and introduce it in Eq383. A
particular solution of the equation

1
—5di’ + 2, (Fo + F1§ — B) +diFy =0 (4.39)
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is thend;(6) = 0. The particular solutions fof; andd; are then introduced in Egs.
(4.34) and (4.35) to get the general solutions paindb;. The particular solutions far;
andb; are determined by the two initial conditions (4.36), to get

32 V48] o, 2 —700V362 + 12608 Vyh — 18068 Vs
a1(0) = - [3 Fl]Q [105 F @
2 5 (189 Vs + 2450 V362 — 945 Vsh + 2835 Vih? + 6758 Vi — 47256 Vih)
315 Py
(4.40)
256 64 16
bi(8) = = =~ VaQ® - { = (~Va+ TVih )] Q* - [5 (Va + 15 V3h? 5V3h)} Q°
+ [—4 Voh — 30 Vih? +8Vsh® + % ]‘f‘] Q%+ [Vah® — Voh? — V4!
1
84Vyh — 12 V- 6 Vo + 15V4h2 — 5 V3h
n 4 3 Q42 2+ 4 3h
P 5 P

(4.41)

By direct differentiation of (4.31), the expressiomf(d) is obtained. An analogous
procedure can be followed to construgfd) andv; (). The calculations were done using
the Maple program. The resulting formulae can be writteméfollowing form:

Z%Qk +Zﬁk@k +Z%Qk u’

k=0

Zéka +Zekcz’“ )+ZﬁkQ’“@’<h>
4 3

ZCka )= e o(h +Z%Qk v’
=0 k=0

5
Zékczk +Z@Q’“ ( )—ZakQ’“@%h)
k=0

=0

This form only shows the non-zero terms, e.g. all term@fi(h), k > 2 for u, (h) are
zero terms (see (4.40)). The coefficients, 8%, vk, dk..., which do not depend on the
energy, are calculated only once and stored before thelgrtyzagation. They are:

ap = —2h(189Vy — 270 V3h + 560 V3h?)/ (315F))
o = —8h(28Vih—9V3)/(21F))
Qo = —32V4h/(3F1)

Bo = (18V4h%+6/5Va —6V3h)/Fy
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B = Vah® —Vih* —Voh? + (—12V3 + 84 V,h)/Fy

By = 8Vzh?—40/3Vih® —4Vah + 896V, /(9F,)

B3 = —16/5Vy — 48V h% 4+ 16 Vsh

By = 64/TVs—64V4h

Bs = —256/9V,

v = (1/5Vah? +1/9Vih* —1/7Vsh®)/Fy + (—260/9 Vih +60/7 Vs) /Fy?
v1 = (12/5Voh +40/9V,h® — 24/7V3h?)/F) — 800V, /(9F,?)

vo = (80/3V4h* —80/7Vsh +16/5Va)/Fy

3 = (448/9Vih —64/TV3)/Fy

v = 256V,/(9Fy)

So = 1/9Vyh® +1/5h3Vy — 1/Th*Vs + (6 Vah — 6/5 Va — 302/9 Vah?) ) Fy
61 = —25/7TVsh3+41/9Vyh* 4+ 13/5Voh? + (12 V3 — 1036/9 V4 h) /F)
by = 280/9Vih® +28/5Vah — 1047 Vah? — 896 V. /(9F})

63 = 688/9Vih% —144/7Vsh 4+ 16/5V,

6y = T04/9Vih —64/7V3

65 = 256/9V;

€0 = (—28/9Vyh®+16/7Vsh? —4/5Vyh)/Fy + 280 V4 /(9F,?)

e = (32/7Vsh—8/5Vy —40/3V,h?)/Fy

€2 = (—64/3Vih+32/7V3) /F

e3s = —128V,/(9FY)

o = (- w# Vah? + Vsh®)/Fy + (60 Vih — 60/7 Vs) / Fy?

G = (8V3h2 —40/3Vyh3 — 4Vah)/Fy + 800V, /(9F,?)

G = (—16/5Vy — 48V h% + 16 V3h)/Fy

(3 = (64/7V3—64V4h) /I

¢ = —256V4/(9Fy)

Second order corrections

Also the second order corrections are computed solvingtamsysf the form (4.19). The
obtained expressions can be written in the form

9 8 7 9
=Y alQ (k) +Y B QR u(h) +D A QR (h) +Y_ 60 Q' (k)
k=0

k=0 k=0 k=0
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8 10 9 8
wy(h) = Yol QR a(h) +3_ B QMu(h) +3 QR )+ 0y QM (h)
k=0 k=0 k=0 k=0
7

9 8 7
va(h) =Y ol Q a(h) +Y_ BV Q N (h) +Y QM (h) +D 6 QM (h)
k=0

0 k=0 k=0
8 7 9
vi(h) = Y ol Qka(h) +> B QR o(h) > QR (h) +_ 68 QM (h)
k=0 k=0 k=0 k=0

The coefficientsyy, 8k, &, 0 are also calculated and stored before the actual propaga-
tion. Their expressions are too long to be listed here. Tlaeybe reproduced by using
the Maple code in B.2.1.

4.2.2 Error analysis
Let us consider the original equation on the intefv&l X + Al:
y'(X +0)=[V(X +6) — Ely(X +6), d€[0,h]. (4.42)

We restrict the error analysis to the case when the stepsgso small that we can rely
on the power series representation of the propagat@rsandv(J), to accept that the
first neglected term in the perturbation expansion is nura#lyi sufficient to measure the
error (see again [58]).

It is convenient to assume that the original potential isrdimite series over shifted
Legendre polynomials. Then Eq. (4.42) reads

y%X+w)=(fimmw¢wﬂn—E>mx+5y (4.43)

n=0

The two independent solutions of Eq. (4.43ndv (with initial valuesu(0) = 1, 4/(0) =
0 andv(0) = 0,v’(0) = 1) then have the following form

p(6) =D psd® (4.44)
s=0
with p eitheru or v. Their derivatives can easily be obtained by differentiatof Eq.
(4.44):
P)=> spdt. (4.45)
s=1

LPM(0)

The zeroth order propagators (or reference propagatgis} @) andvy(= @) are the
solutions of the corresponding reference equation

y'(X +6)=[V(0) — E]y(X +9) (4.46)
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whereV (§) = Zizo V. h"P*(6/h). The zeroth order propagators and their derivatives
can be written as

Z P06, pp(6) =D splPe (4.47)
s=1
The error of the LPM(0) method is then determined by the faummgjties:
Aug(h) = u(h) —ug(h), Avg(h) =v(h) — vo(h),
Aug(h) = u'(h) —ug(h),  Avy(h) = v'(h) — vy(h) (4.48)

which are calculated by subtracting Eq. (4.47) from Eq.4%ahd Eq. (4.45). We have
used Maple to get:

Aug(h) = [VBE — V3V + VaVi] k7 /210 + O(h®)

Avg(h) = —Vah®/30+ O(h")

Auj(h) = [-VoE 4+ VaVo]h®/30 + O(RT)

Avy(h) = [-VBE +V3Vy — VoVl 7 /210 + O(h®). (4.49)

The smallest power df in these errors is five. The LPM(0) is thusoaurth-order method,

as was already shown in [58]. We notice that the determinaifd/, andV; in terms of
shifted Legendre polynomials is essential to obtain thieor Any other determination
will lead to lower orders. For example, ¥, andV; are chosen to represent the tangent
to V(z) at the midpoint(z;_1 + z;)/2, as in [41], the order of the method is two. For a
proof of this see [55].

LPM[4,1]

The first order correctiop; satisfies the equation

Pl = (V(8) — E)py + AV(8)po, p1(0) = p/(0) =0 (4.50)

whereAV (0) = 227:2 Voh™ Pk (6/h) andN = 4. Also this first order correction can be
expressed as a power series:

) =">_pec, pi(6) =) spNet (4.51)
s=0 s=1

The error of the LPM[4,1] method is then determined by
Auy(h) = u(h) = (uo(h) +u1(h)), Avi(h) =v(h) = (vo(h) +vi(h)),

1
Auy(h) = u'(h) = (up(h) + ui(h)), Av’l(h) = v'(h) = (vh(h) + vy (h)).
(4.52)
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Using Maple, we obtain

Auy(h) = —VZh® /420 + O(h%)
Avi(h) = [V4Va/2970 — V1 V5/8316 — Vi /4620 —
(Vo — E)V/415800] h'* + O(h'?)
Auj(h) = —VZh" /210 + O(R°)
Avi(h) = —Vih® /420 + O(h?). (4.53)

We can conclude that the LPM[4,1] method issitth order. As a matter of fact, all
versions LPMV,1] with N > 3 will give the same order, such that for the versions with
@ = ltaking N = 3 in the pilot potential is sufficient.

LPM[4,2]

The error for the LPM[4,2] version is obtained in the same wéth the result:
Aug(h) = [-V5Va/3465 — Vi(Vy — E)?/20790] h't + O(h'?)
Avg(h) = —V1V5/8316 h't + O(h'?)
Aub(h) = [V5V3/1386 + V5Vi(Vy — E)/5940 — V3 /6930] h'! + O(h'?)
Avh(h) = [V5(Vo — E)?/20790 + Vo V5/3465] h'! + O(h'?).

The LPM[4,2] method is thus a method of ordenand the same holds for all versions
LPM[N,2] with N > 4. This is actually the reason why we have adop¥é-= 4 in the
pilot potential. More general, our investigations havevaithat the order of LPMY,Q],
Q=123 ...is4Q +2foranyN > Q + 2.

4.2.3 Near-cancellation effects

Some precaution is necessary when computing the propagdatiarms of the Airy func-
tions. Near-cancellation of like-terms may appear, cauaisevere decrease in accuracy.

Looking at Table 4.1, it is clear that for large arguments ihot a good idea to cal-
culate the values ofii, Bi, A7’ and B¢’ at z and zo separately, and introduce them in
(4.9)-(4.12). For large positive arguments the Airy fuantid: and its derivativeA:’
will eventually underflow, whileB: and Bi’ will overflow. Also for (very) large negative
arguments the evaluation of the Airy functions may be nucadlsi inaccurate. These in-
accuracies in the reference propagators are then propligadahe first and second order
corrections, where they become even worse. Especially wiepotential is nearly flat
(F1 — 0), the powers ofp appearing in the first and second order corrections become
very large and near-cancellation of like terms causes hkesgyof accuracy.

The near-cancellation of like-terms will force us to digtinsh two regimes for com-
putation in terms of(h) = [Fy — E + Fyh]/Y/F? (denoted hereinafter simply) and
zo = z(0), with distinct formulae in each regime. The analytic forarifor the refer-
ence propagators and the corrections discussed in secfidnate used for small values
of z andzy while for big values of: and z, asymptotic formulae are introduced. These
asymptotic expressions will be discussed in section 4.3.2.
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Table 4.1: The Airy functions at large arguments, obtained in Maple.

Z Ai(2) Bi(2) A7(Z) B (2)

0 0.36 0.61 0.26 0.45
10 0.11(-9)  0.46(9)  -0.35(-9)  0.14(10)
25  081(-37) 0.39(36)  -.41(-36)  0.20(37)

50 0.46(-103) 0.49(102) -0.32(-102) 0.35(103)
75  0.84(-189) 0.22(188) -0.73(-188) 0.19(189)
100 0.26(-290) 0.60(289) -0.26(-289)  0.60(290)
150 0.10(-532) 0.13(532) -0.12(-531) 0.16(533)

4.3 Some technical issues

In this section we concentrate on some technical issueseaoing the LPM. In 4.3.1
we consider the computation of the Airy functions appeaiimthe expressions of the
zeroth order propagators. Alternative formulae, basedoresasymptotic representations
are discussed in section 4.3.2. These asymptotic repegserg also form the basis for
asymptotic formulae for the first and second order corrastid@he formulae are obtained
by a Maple code presented in B.2.2. In a last subsection3{4u& propose a procedure
for choosing the stepsize in terms of the preset accuracy.

4.3.1 Computation of the Airy functions

The standard way of expressing the zeroth order propagatim®ugh the Airy functions
of arguments: and zg; see the formulae (4.9)-(4.12). There is a rich literatunethae
computation of these functions. For real arguments we 28§ [48], [93], [98], [133],
while for complex arguments we mention [8], [35], [40]. Mdrdormation about the
calculation of Airy functions can be found in the recent bobkallée and Soares [120].

Only the codes with real arguments are potentially impafiarus and we have com-
pared them on a set of test cases. The accuracies were auilarsbut the NAG sub-
routines [93] proved to be somewhat faster and have beeltyfaddpted for the Fortran
implementation of the LPM[4,2] method. For the MATLAB imphentation we used the
MATLAB build-in Airy functions which are based on the work &mos [7, 8].

4.3.2 Asymptotic formulae

The accuracy in the computation of the Airy functions apjmegin formulae (4.9)-(4.12)
depends on the range of the argumengndz,. In particular severe accuracy losses are
observed when and z, have big (negative or positive) values. The experimentadsn
tigations have then lead us to introduce an asymptotic rautgeh collects the situations
whenz, zp < —2 or z, zg > 2. Asymptotic expansions for the propagators will be used
on this range while the standard representation throughfAirctions is used otherwise.
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V(X)

Figure 4.3: The Woods-Saxon potential in the intery@J 15]

Example 4.2 As a rule big values (in modulus) farandz, appear when the slopgg of
the potential is small anély, — E is big. We illustrate this on the Woods-Saxon potential
defined by

V(z) = vow(z) (1 - 1_“’(“@)) (4.54)

ag

with w(z) = {1 + exp[(z — z0)/ag]} ", vo = =50, 20 = 7, a0 = 0.6,z € [0, z; = 15]
- see Figure 4.3. We used the MATLAB implementation of the 22| method with
a user input toleranca! = 10719 to construct the Figures 4.4. In the upper figure the
variation withz of F; and of iy — E = Vy — Vih — E is shown (in the middle of each
meshinterval) for three test values Bf The choice of these values is rather free but we
have chosen three eigenvaluesy ~ —49.458, F; ~ —30.912 and E13 ~ —3.908.
Since the stepsizds are rather smallf; is in essence the potentitll(x) shifted by E.
We see thaf (x) is small when is in the vicinity of the endpoints and that it has a root
somewhere around.75, i.e. at the maximum of the potential function. If these esrv
are compared with the dependence of(h) = [Fy — E + Fyh]/{/FZ, shown in the
lower figure, we see that smdll and bigFy — F indeed lead te in the asymptotic zone.
Moreover, once is in the asymptotic range the same holdsdpbecause the difference
|z — 20| = |F1|*/3h is small.

Asymptotic expressions for the reference propagators

Since big values foe and z, appear wherf; is small andGy, = Fy, — F is big, it is
appropriate to expand the zeroth order propagators in poefdr; and1/(Gy) in order
to remove the near-cancellation effects. As a matter of feleenZ; — 0 such formulae
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Figure 4.4: Woods-Saxon potential: the parametélgx) and Fy(z) — E for E = Ey, E7, E13
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must tend to the expressions of the zeroth order propadaiottse CPM.
We have used the known asymptotic expansions of the Airytioing (see [3], chapter
10.4). Define

co=1, dy=1 (4.55)
6k —5)(6k — 1 6k + 1
ck = #%-1, dy, = T (4.56)
and
¢ =(2/3)2°2. (4.57)

The asymptotic expansions of the Airy functions fotarge negative are then of the form

o0

Ai(Z) = Y2271 sin C*Z kZ:O 1)k eap 2 — (4.58)
cos(C + ) D (= 1)earsa¢ ]
k=0
Ai(Z) = =722 cos(C + %) 3 (—1)kdar¢ (4.59)
k=0

Bi(Z) =227 cos(¢ + %) i(—l)kc%g—%r (4.60)

Bi'(Z) = 224 [sin(¢ + %) i(—l)kdgk(%— (4.61)

cos(C + ) (= 1) dar ]

k=0

and the asymptotic expansions of the Airy functionsfdarge positive are given by

(~)Fer¢ ™ (4.62)

NE

Ai(Z) = (1)2)r~ Y22V exp(—(C)

o

Mg &

Ai'(Z) = —(1)2)x /2 7214 exp(_g) (=1)Fdpc*F (4.63)

x-

=0

Bi(Z) =n~ Y27z Y exp(C chg k (4.64)
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Bi'(Z) =727 exp(¢) Y dp(" (4.65)
k=0

These asymptotic expressions are introduced in the stamepresentation of the propa-
gators and the result is organized in the mentioned formdimeps of /7 and1/(Gy)).
The Maple code listed in B.2.2 has been used for this purpveagive below the resulting
asymptotic formulae.

With the notations

C(h) = cos (mh) , S(h) = —/~Gosin (\/—Goh) .
when bothzy andz arelarge negativeand

C(h) = cosh (\/Goh) , S(h) = v/Ggsinh (\/G0h>

when bothz, andz arelarge positivewe have

a(h) = C(h)+ [ — GohC/(h) + (Goh? +1) S(h)} F1/(4Go?)
+[ (3h%Go? + 21 h2Gy) C(h) + (—10 h*Go — 21 h) S(h)} F12/(96G,%)
+] (R°GE + 28 1G] + 105 h2Go + 105) S(h) + (= Th°Go® = 0K G
~105 hGO)C(h)] F13/(384G0®) + [(3 h8Go* + 238 h°Go® + 3255 h'Gy?
+12285h*Go)C(h) + (— 36 k"G — 1050 > G§ — 7350 h* Gy
—12285 h)S(h)} F* /(18432 Go©) (4.66)

5(h) = S(h)/Go+ [GthC(h) . hS(h)} F1/(4Go?) + [( —10K3Gy?
—15hGo)C(h) + (3h*G2 + 15h%Gy + 15)5(/1)} F12/(96 GoY)
+[(10Go* + 25 1 Go® + 105 h2Go) C(h) + ( — 60 WG — TH°G
—105 h)S(h)} Fi?/(384Go®) + [( — 367Gy — 966 h°Go® — 6930 h3G?
—10395 hGo)C(h) + (3h*Gy + 226 h°G + 3045 h* GG + 10395 h* Gy
+10395)S(h)} Fi /(18432 Go") (4.67)

@(h) = S(h)+ [GOhQC(h) + hS(h)}Fl/(zL Go) + [(2 Go2h3 + 21 Goh) C(h)

+(+3Go%ht — 9Goh? — 21)5(h)} F12/(96 Go®) + [(G03h6 —7Go2h!
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—105 Goh?)C(h) + ( — Go®h® + 42 Goh® + 105 h)S(h)} F3 /(384 Goh)
+ [( —12Go*h" + 378 Go®h® + 5670 Go*h® + 12285 Goh) C (h)
+(3Go*h® — 14Go*h° — 1995 Go?h* — 9765 Goh? — 12285) S() | Fy*

/(18432 G,%)
(4.68)

V(h) = C()+ [ (Goh® = 1) S(h) + GohC(h)| F1/(4Go?)
+ [ (3Go2h* — 15 Goh?) C(h) + (2Goh® + 15 1) S(h)] F12/(96 Gy®)
+[ (=Go™® + 40 Go®h? + 105 Goh) C(h) + (= 10Goh* — 75 Goh?
+GohS — 105)S(h)}F13/(384 Go®) + [( — 1785 Go?h* — 10395 Goh?
—26 Go®hS + 3 Go"h®)C(h) + (5250 Goh® + 390 Go°h° — 12 Go*h”
+10395 h)S(h)} F4 /(18432 Go®). (4.69)
It is obvious that for a flat potential§{ — 0) these formulae reduce to the CPM zeroth
order propagators (see 3.1.1), as expected (note that thieb@Bic functions(Z(h)) is
the same a€’(h) and thathno(Z) corresponds t&(h)/Gp). Extensive experimental
tests with values of7y andF; which lead toz andz in the asymptotic range have shown

that these truncated series are sufficient to produce tlothzerder propagators with an
accuracy ofi6 digits.

Asymptotic expressions for first and second-order correctins

Asymptotic expressions for the first and second order cbora@re obtained by sub-
stituting the asymptotic formulae for the reference prapacs (4.66)-(4.69) in the ana-
lytic expressions of the first and second order correctisnudised in section 4.2.1. With
Q = (Fy — E)/F, the resulting asymptotic expansions of the first and secoddr
corrections are then of the following form :

[ee] (oo}
u(h) =30 Q7F, wi(h) =Y o Q7
k=0 k=0

() =Y ol Q7R i) =Y o Q7"
k=0 k=0

up(h) =" o Q7% wa(h) = 3 Q7
k=0 k=0
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_ Zpéu ) Q_k, ’Ué(h) _ Zpév ) Q—k
k=0 k=0

where the coefficients and p do not depend o} . In our implementation the series
were truncated at = 4 for the first order corrections and at= 3 for the (smaller)
second order corrections. These truncations ensure vahiek are accurate enough for
double precision calculations.

The expressions of the coefficients are too long to be listddli. We give only the
expressions of the first thred®) coefficients to offer an idea on how they look like. The
othero andp coefficients can be derived using the Maple code in the AppeB@.2.
With Ty = 1/(F, — E) the first three coefficients are:

o = 15/2V5S (h) Ty® + (3h2S (k) — 15/2hC (h)) V5To? — 1/2Vsh® C (h) Ty

o™ = 2205/8V4S (h) To* + [— 15/4VaS (h) — 45/4 V3hsS (h)
+ (=975/8 5 (h) h* +2205/8 hC () Va| To* + [ ( — 39/8h*S (1)
+45/4h*C (h) ) V3 + (—33/8h*S (k) + 30 h*C (h)) V4
(15/4hC(h) ~3/28 (W) h%) Va| Ty + [ (= 1/81°S (h)
h) )Vz

+9/8hiC +1/4h3v20(h)+1/4mh50(h)}T0

oW = [7245/64 VaS (h) + 21735/32 VihS (h)]To4 + [(1995/325( ) h2
—7245/64 hC (h) ) V3 + (4935/16 h*S (k) — 21735/32h*C (h)) V4
+231/32V,hS (h)}TO?’ + { (115/16 1*S (h) — 1575/64 1> C (b)) V3
+ (435/321°S (h) — 2625/32h* C (h)) Vi + (99/32 h*S (h)
—931/32h2C (h) )Vg} To? + [ (=3/2h7C (h) +5/24 %S (h)) V3
+(—43/32h5C (h) +1/16 7S (h)) Va + (11/160 h>S (R)

—11/16 h*C (h ))Vz}To - awﬁcm)

4.3.3 Stepsize selection

As for the CPM, the problem of constructing a rule for the siep adjustment in terms
of the preset error is not easy. This is because, in contriiistrmost of the numerical
methods for the Scidinger equation, these methods usually achieve high acguat
very coarse partitions, with steps too big for the error exibn in terms of its leading
term only. A number of extra terms of higher order must be ddide a reasonable
evaluation.
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LPMI[4,2] is of order ten and then the collection in the loceloe of all the terms
proportional toh!'! up to no less than'? or h'* is sufficient. By applying Maple we have
obtained the following error formulae for the four propagatwhereZ =V, — E:

Au = —1/540540 h'3V52% + [ — 1/20790 h'' V5 + 1/1081080 h'* V5V ] 22
+[ — 1/54054 h*3 V1 Vg + 41/1081080 V5 V5 + 1/180180 MV, Vg
+23 /75675600 h'*V5® + 1/41580 h'?V5 Vi — 1/135135 h'3V5V4] Z
—1/3465 h" VsV + 1/5148 RV Vy + 1/2772 h'2V5 V3 + 1/138600 h'2V5°
+29/1801800 h'* V52V, 4+ 19/1081080 h'3V5 V42 + 1/154440 h* Vs V3
+5/36036 h'3V5Vy — 5/36036 h'3Vs Vs — 1/103950 141, V52
—1/1081080 h*3V,% Vs — 1/5148 h14V5% — 17/540540 h' 4V, Vs 1y

AW = 1/270270 W3V 2% +1/360360 h'3V5V1 Z% + [ — 1/150150 h'2V5°
+1/16380 h"* V2 Vs + 1/5940 h' V5V + 3/20020 b2 V3 V5] Z
—1/6930 hMV5? — 43/270270 K3 Vo Vs Vi + 1/1386 ' V5 V3
423/270270 h*3V, Va2 — 1/13860 h'3 V5 Va2 4 1/2574 R V5V,
—1/2574 h'3V5? + 1/77220 b3V V3 2

Av = —1/270270 h'3Z?Vy — 1/1081080 h*3V1 Vs Z — 1/8316 h'' V1 Vs
+1/1351350 h*3V5* — 1/20020 h*3Va Vi 4 1/6006 h'3V3 Vs

Av' = 1/540540 h'*V52Z3 + [1/20790 R V5 + 1/1081080 h'*V; V5] 22
+[1/54054 h'3*V1 Vg + 1/180180 h'* V5V + 1/135135 '3V, Vs
+41/1081080 14 V3 V5 + 1/41580 h'2V;4 Vs + 23/75675600 h' V2% Z
+1/3465 M Vo Vs — 1/103950 R4V, Va? + 1/138600 h12V5?
+1/2772 h*2V3Vs 4 1/154440 h* V32V + 1/1081080 '3 V3 V3>
+1/5148 hM VsV, + 5/36036 h'3 V3V — 5/36036 h'3V, Vs
—19/1081080 h*3V12V5 — 1/5148 h1* V52 + 29/1801800 h 14V, V3>
—17/540540 RV, Va Vs

To evaluate the size of the step originatingkatve take some triak value and calculate
Aloe = max{|Au(h)], [hAY ()|, |Av(h)/h], |AV'(R)[} (4.70)

at some value of chosen such that the above deviations reach their maximwatoaly,
we observed that a reasonable choice is the following : let

L = maX{H/O - Emin|a |V0 - Emax|} (471)
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whereE,,;, and E,,., are the lower and the upper bound, respectively, of the eajea
spectrum, fixed by input. I#,,, < 72/h? thenZ = Z,,, otherwiseZ = 72 /h2.
The deviationAw’ is multiplied by i and the deviatiom\v is divided by in order to
ensure a uniform dimension of the compared quantities.
We define a nevk as
Pnew = h(tol/Aje)/ 0 (4.72)

and examin€d = |hpew/h — 1|. If H > 0.1 the procedure is repeated wWith= h,ey . If
H < 0.1, h is accepted and the procedure continues to compute thezetefithe next
interval, which originates aX' + h.

4.4 Eigenvalue computation

As for the CPM, a shooting procedure can be formulated to coenihe eigenvalues. As
described in section 2.3.1, this means that the &tihger equation is integrated forwards
and backwards from the two boundary points and the eigeesadwe found from the
matching condition

The roots of this mismatch function can be found using aratikeg procedure as the
bisection method, or more preferably the iterative proceduggested by Blatt in [25].
The LPM[4,2] method was implemented together with the shggirocedure in Fortran.
The program includes not only the analytic expressions@ptrturbation corrections of
section 4.2.1 but also the asymptotic expressions deskribgection 4.3.2. In addition, a
MATLAB version of the LPM[4,2] method was developed, whicdnde used to compute
the eigenvalues of a regular Schrodinger problem. This MRBLlversion also includes
a Piifer procedure, similar as the one used for the CPM in se&@i2, which allows
to compute the index of an eigenvalue. The Fortran code egbpin the Woods-Saxon
problem as well as the MATLAB program are available at [2].

45 Some illustrations

As first test potential we again consider the Woods-Saxoerpiatl defined by

Vi) = o) (1- =2 (4.72)

agp

with w(z) = {1 + exp|[(x — z0)/ao]} " ,vo = =50, 9 = 7,a0 = 0.6,z € [0, rp =
15]. We computed the eigenvalués, . . ., E13, that is we considereff € (—50, 0) with
the boundary conditions

aoy(0) + boy’ (0) =0 (4.75)

ary(zy) + by (xy) =0, (4.76)
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Table 4.2: Woods-Saxon potential: errofsE), at several equidistant steps: versions Gordon (upper
entries) and LPND) (lower entries).

& Ey h=1/4 h=1/8 h=1/16
0 —49.45778872808258  9.91(—4)  2.46(—4)  6.15(—5)
5.08(—6)  3.16(—7)  1.98(—8)

1 —48.14843042000636  2.91(—3)  7.23(—4)  1.81(—4)
1.29(=5)  8.07(=7)  5.04(—8)

2 —46.29075395446608  5.22(—3)  1.30(=3)  3.24(—4)
1.83(—=5)  1.14(—6)  7.13(—8)

3 —43.96831843181423  7.69(—3)  1.92(—3)  4.79(—4)
1.81(—=5)  1.13(—=6)  7.05(—8)

4 —41.23260777218022  1.01(—2)  2.53(-3)  6.31(—4)
1.04(=5)  6.47(=7)  4.04(—8)

5 —38.12278509672792  1.23(—2)  3.08(=3)  7.71(—4)
~5.30(—6) —3.36(—7) —2.11(—8)

6  —34.67231320569966  1.41(—2)  3.54(—3)  8.85(—4)
—2.78(=5) —1.76(—6) —1.10(-7)

7 —30.91224748790885  1.53(—2)  3.85(—3)  9.62(—4)
—5.44(—5) —3.43(—6) —2.15(—7)

8  —26.87344891605987  1.57(—2)  3.95(=3)  9.90(—4)
—8.00(=5) —5.06(—6) —3.17(=7)

9 —22.58860225769321  1.51(—2)  3.81(=3)  9.53(—4)
—9.83(=5) —6.23(—6) —3.91(—7)

10 —18.09468828212442  1.33(—2)  3.35(—3)  8.38(—4)
~1.01(—4) —6.43(—6) —4.03(-7)

11 —13.43686904025008  9.98(—3)  2.51(—3)  6.28(—4)
—7.97(=5) —5.09(—6) —3.20(=7)

12 —8.67608167073655  4.84(—3)  1.21(—3)  3.02(—4)
—2.67(=5) —1.75(—6) —1.11(-7)

13 —3.00823248120623 —2.54(—3) —6.59(—4) —1.66(—4)
5.88(—5)  3.65(—6)  2.28(—7)

whereay = 1,bp = 0,a1 = /V(zy) — E,by = 1. Note that the condition at is
slightly different from the standard Sturm-Liouville foutation since at least one coeffi-
cient is not a constant but energy dependent.

Some numerical results are presented in the Tables 4.2 andaur different methods
were used as propagation methods in a shooting procedumtpute the eigenvalues:
Gordon’s original method (that is LPM(0) with the local lareapproximatiorV (X +§) =
V(X 4+ h/2)+ (6 —h/2)V'(X + h/2),d € [0,h]), LPM(0) (Table 4.2), LPM[4,1] and
LPM[4,2] (Table 4.3). The calculations were done in Forttesing double precision
arithmetic. We give the errors in the eigenvalues for défer(uniform) stepsizesh(=
1/4,1/8,1/16) and different numbers of perturbation corrections. Fahesigenvalue
Ey, the error is defined aA Ej, = Egect — E¢ale(p).

One can see the substantial gain in accuracy produced wheducing more per-
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Table 4.3: Woods-Saxon potential: errorSE), at several equidistant steps: versions L[RM|
and LPM4, 2].

LPM[4,1] LPM[4,2]
k h=1/4 h=1/8 h=1/16 h=1/4 h=1/8
0 | —6.16(=9) —9.38(—11) —1.46(—12) | —2.13(—13) < 1.0(—14)
1 | —3.58(—8) —5.46(—10)  8.46(—12) | —2.21(—12) 2.1(—14)
2 | —1.05(=7)  —1.60(—9) —2.48(—11) | —8.57(—12) < 1.0(—14)
3 | —2.21(=7)  —3.35(—9) —5.20(—11) | —2.23(—11) —2.1(—14)
4 | —=3.76(=7)  —5.67(—9) —8.78(—11) | —4.45(—11) —5.0(—14)
5 | —5.48(=7)  —823(—9) —1.27(—10) | —7.08(—11) —8.0(—14)
6 | —7T.08(-=7) —1.06(—8) —1.63(—10) | —9.34(—11) —1.1(—13)
7 | —8.24(-7)  —1.21(-8) —1.86(—10) | —1.05(=10) —1.2(—13)
8 | —8.72(=7) —1.27(-8) —1.93(-10) | —9.44(-11) —1.1(-13)
9 | —8.52(=7) —1.21(-8) —1.82(—10) | —5.89(—11) —8.5(—14)
10 | =7.99(-=7)  —1.10(—=8) —1.64(—10) | —3.10(=11)  —6.7(—14)
11 | =7.94(=7)  —1.08(—8) —1.59(—10) | 7.76(—12) —3.4(—14)
12 | —9.63(-=7)  —1.34(—8) —1.98(—10) | 1.41(—10) 3.2(—14)
13 | —1.46(—6)  —2.13(—8) —3.20(—10) | 3.15(—10) 1.9(—13)

turbation corrections. The data at different steps alsdirrorthe prediction of the error
analysis that Gordon’s method is of order 2, LPM(0) is of ofland LPM[4,1] of order

6 (see an illustration in Figure 4.5). A full confirmation dfet order is impossible for
LPM[4,2] because with this version we practically gétexact decimal digits already at
h = 1/8 such that the error @ = 1/16 would be beyond the limit accessible in double
precision. This is why the column correspondingite= 1/16 is no more included in
Table 4.3 for LPM[4,2].

The experimental evidence for the order, based on the eat@s andh, is reliable
only whenh is sufficiently small and the data are not altered signifigaloy round-off
errors. For the low-order versions both conditions hold/fer 1/8 or 1/16, but for the
version LPM[4,2] of order 10 the accuracy in the eigenvaigesften inside the round-
off limits for double precision calculations, especiallythe two ends of the spectrum.
For this reason only data from the middle part of the spectnare been presented on
Figure 4.5. Concerning the Gordon method, the low order)(i&ra consequence of the
linear approximation of the potential by a Taylor seriedéas of the best fit polynomial
approximation, i.e. by shifted Legendre polynomials.

We used the Fortran implementation of the LPM[4,2] methabloe three eigenvalue
problems for the Sclidinger equation. Now the automatic stepsize selectiopptied.
The three problems ar¢i) the Woods-Saxon potentiglii) the Paine potentidl’ (z) =
1/(z+0.1)2, z € [0, ], with the boundary conditiong0) = y(r) = 0, (iii) the Mathieu
potentialV (z) = 2cos(2z), = € [0, 7] with the boundary conditiong(0) = y(7) = 0.
For problems4;) and (i) only a selection of eigenvalues was investigated.

To check for the validity of the rule for the stepsize adjustinwe carried out com-
putations at three values of the tolerance viz. = 10~1°, 10~!2 and10~!4. To get an
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Figure 4.5: Woods-Saxon potential: experimental evidence for the method ordeation withk
of log, |AE,(2h)/AE)(h)| ath =1/8.

Table 4.4: Woods-Saxon potential: absolute errdxd;, at different input tolerancesint is the
number of steps.

k tol =107 tol =102  tol =107
0 —3.1(-12) 4.0(—14) 7(—14)
1 —2.4(-11)  —5.3(—13) 2(—14)
2 —8.6(—11)  —1.9(-12) —3(—14)
3 —1.7(=10)  —4.0(-12) —5(—14)
4 —2.1(-10) —4.9(—12) —6(—14)
5 —1.5(-=10)  —3.6(—12) —5(—14)
6 —1.5(=10)  —3.1(=12) —6(—14)
7 —1.8(-10) —4.3(-12) —8(—14)
8 —1.5(=10)  —5.0(—12) —8(—14)
9 6.4(—12) —3.8(—12) —8(—14)
10 5.0(—11)  —2.7(-12) —8(—14)
11 —4.1(-12)  —3.9(-12) —8(—14)
12 —3.7(-12) 3.3(—12) —1(—14)
13 8.6(—11) 2.8(—12) 8(—14)

nint 42 64 96
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V(x)

Figure 4.6: The Woods-Saxon potential: the dots represent the values at the nmgshgfathe
partition consistent with a tolerance ti—*°.

Table 4.5: Paine potential: absolute errafsF. at different input tolerancesint is the number
of steps.

k E, tol =107 tol =102 ol =107
0 1.519865821099347 2.7(—13) 2.3(—13)  —7.8(—14)
10 123.4977068009282  —9.9(—10) —4.6(—12) —7.3(=12)
20  443.8529598351504 5.4(—10) 2.0(—11)  —2.0(-13)
30  963.9644462621100  —1.5(—08) 4.5(—12) 1.0(-12)
40 1684.012014337853 2.1(—08)  —1.1(—10) < 1(-12)
50  2604.036332024594  —1.7(—09) 1.2(—10) < 1(-12)
nint 23 40 67

idea on the distribution of the meshpoints resulting fromgtepsize adjustment, we give
in Figure 4.6 the partition sample correspondingdb = 10~'° for the Woods-Saxon
potential.

The absolute errorA £y, = Egrect — Eeele are collected on Tables 4.4-4.6.

A first remark is that the data from problertig) and(i:) involve sets of eigenvalues
with uncommonly large values but no systematic deterionadif the accuracy is observed
ask is increased. As a rule the results around some mid-l¥ing= 30 for these prob-
lems, are the least accurate but wlieis further increased the accuracy tends to improve
again. This is a general behaviour with the piecewise peation methods. We also see
that, as expected, the maximal error along the spectruni at 10~'° is approximately
by two orders of magnitude bigger than the oneécat'? and the same holds if the data at
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Table 4.6: Mathieu potential: absolute errafsE), at different input tolerancesuint is the number
of steps.

k E; tol =107 tol =107'2  tol =107
0 —0.1102488169920971  —1.4(—11)  —3.0(—14) 5.8(—14)
10 121.0041667612691 —2.5(—=10) —6.0(—13) < 1(-13)
20 441.0011363654933 9.6(—10)  —2.2(—11) < 1(-13)
30 961.0005208335109 —2.3(=08) —1.1(=10) —2(—13)
40 1681.000297619081 3.5(—09) 1.0(—10) <1(-12)
50 2601.000192307701 —3.4(—10) 1.0(—10) —1(-12)
nint 15 28 52

tol = 10~'2 and10~'* are compared but here we must be aware that the latter data are
often within the roundoff limit.
It is perhaps worth noticing that one may expect that therasfienagnitude of the max-
imal error in the eigenvalues must be equatdbbut there is no solid basis for such an
expectation. This is because is used to control the error in the wave function, not in
the eigenenergy. The two are certainly related somehowhiayt hay be very different
in magnitude. Expressed in other words, although for theetiproblems considered here
the order of magnitude of the maximal error in the eigenv@hggppens to agree withl,
this is not a general property. The only behaviour which baset normally expected is
that the ratio of the maximal error at two tolerances is ctogie ratio of the tolerances.
A final set of tests was aimed at comparing the LPM[4,2] withRMC We compared
the LPM Fortran implementation with the Fortran impleméntaof the CPM 12,10
method (the SLCPM12 package [61]). The order of the GERJ1G (twelve) is close to
that of the LPM[4,2] (ten). The number of steps consisteithwimilar accuracies was
slightly in the favour of the CPM version, which is normal base the order is higher.
A major difference was detected for the computational e&ffdfe observed that the CPU
time/ step for the LPM[4,2] is about fifteen times bigger tfarthe CPM12,10:. Again,
this was not a surprise: the zeroth order propagators of Eié &re the Fortran functions
sin, cos or sinh, cosh while for the LPM they are Airy functions, whose computation
requires adequate software. Also the formulae of the CPMdéoturbation corrections
are much shorter and easier to compute than those of the LPM.

4.6 Conclusion

In this chapter, we investigated the old problem of imprgvine accuracy of the LPM
for the Schodinger equation by adding perturbation corrections toalgerithm. We

effectively constructed the first and the second order ctias. We also performed
the error analysis to predict that the introduction of sgsge corrections substantially
enhances the order of the method from four, for the zerotbrordrsion, to six and ten
when the first and the second order corrections are includecbrder to remove the
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effect of the accuracy loss due to near-cancellation oftiékens when evaluating the
perturbation corrections we constructed alternative gggtic formulae using a Maple
code.

Numerical tests confirmed that the LPM versions share thergéproperty of the
piecewise perturbation methods of producing eigenvaluiés wniform accuracy over
large sets for the indek. However, the LPM approach does not seem to be more con-
venient in practice than CPM since the evaluation of the Aimyctions on a computer
is not only more difficult but also much more time consumingrtlthe evaluation of the
trigonometric or hyperbolic functions required by the CPIgagithm. The right way of
using them in practice consists perhaps in activating thelyia the subintervals where
the potential exhibits a strong variation.






Chapter 5

Solving systems of coupled
Schr odinger equations

The successful CPP, N} methods for the one-dimensional time-independent &chr
dinger problem are generalized to the coupled channel cHse.derivation of the for-
mulae is discussed and a Maple program code is presentetl alloevs us to determine
the analytic expressions of the perturbation correcticeslad to construct methods of
different orders. As for the one-dimensional problem, welathe generalized CPM in a
shooting procedure to compute the eigenvalues of the maatixdary value problem. A
generalization of the Bfer method for scalar Sturm-Liouville problems makes tihele
procedure more robust and allows us to specify the requigsthealue by its index.

5.1 Introduction

A coupled channel Schdinger equation is a system of linear ordinary differdregua-
tions of the second order obtained after separating thealbedcscattering (or radial)
coordinate from the rest of variables in the multidimenaloBchbdinger equation de-
scribing the motion of an atomic or molecular system (sed [&uch a time-independent
Schiddinger equation may be written as

HU =¥ (5.1)
with the Hamiltonian
& Q 5.2

wheree is the energy of the system,is the appropriate reduced massjs the ‘radial’
coordinate describing the separation of two partideis the set of ‘angular’ coordinates
which describe the ‘internal motion’ of a system, an@R, ) is the interaction potential.
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Problems of this type frequently arise from the interactiofipairs of molecules, but also
occur in electronic structure theory and nuclear physics.

There are some different approaches to find the eigenvahe®igenfunctions of
Hamiltonians as (5.2). In the so-calledupled channedpproach, the total wave function
U(R,Q) for the kth state is expanded over the complete orthonormal set obdlses
angular functiong ®;(€2) }32,:

Ue(R, Q) =Y in(R)D;(9). (5.3)

The wavefunction in eacbhannelj is described by a radiahannel function);; (R).
The expansion (5.3) is substituted into the total $dimger equation, and the result is
projected onto a basis functioh; (2). Taking advantage of the orthonormality of the
®; (), we obtain a differential equation for the channel functigp(R),

iy,
dR?

=Y [Qij(R) — Edijlui(R), (5.4)

J

whered;; is the Kronecker deltaZ is the energy scaled &y:/h? (thatisE = (2u/h?)e),
and

=73 ;

Here,* denotes the complex conjugate. A similar equation arisesdoh channel, and
the different equations are coupled by the off-diagonahs;; (R) with i # ;.

Having chosenV/ angular basis functions as an adequate approximate repatea
of ¥ we can truncate the infinite sum in Eqg. (5.3). This approxiomais known as the
close-couplingapproximation: the name indicates that only channels tfeatcdose’ to
one another in some sense are retained. Thed8oiger equation (5.1) then reduces to a
system ofM coupled differential equations which can be written in rixefsrm as

d?y B ,
S = [Q(R) — B u(R), (56)

Qu(R) = 25 [ @1@V(RQ,@)d0. (5.5)

wherey(R) is a column vector of ordeM with elementsy;,(R), I is the M x M
unit matrix, andQ is the symmetricM x M potential matrix with element§);;(R).
The particular choice of the basis functiohg(€2) and the resulting form of the coupling
matricesQ);; (R) depend on the physical problem being considered.

There are various approaches to the solution of the coupjedtions (5.6) (see a.o.
[5,6,47,81, 113)]). Inthe more early work approximate sceemere used which attempt
to reduce the coupled equations to a set of one-dimensioablgms (e.g. in [81]). A
more modern approach is to propagate the solutions nuriigrieéhout reducing them
to a one-dimensional form. A large number of numerical méshisave been suggested
for carrying out the propagation. However when bound staientary conditions are
applied, acceptable solutions of the coupled equatiorst erly whenE' is an eigenvalue



5.2 Generalized CPKP, N} methods 103

of the Hamiltonian and additional techniques are neededdaté¢ the eigenvalues. Early
methods for doing this were developed by Gordon [41] and Som{i65].

It was already decribed in [58] by Ixaru that a piecewiseyrbidtion method can be
constructed for a system of differential equations. In [@@GPM-based method was for-
mulated for systems of coupled Sodinger equations and implemented by the Fortran
program LILIX (available under the identifier ADQ¥L_0 in the CPC library [1]). How-
ever using the CPM formulation implemented by LILIX it is yedifficult to construct
high order correction terms and only a limited number of ection terms was calcu-
lated and included in the LILIX program. Using the symbolidte/are package Maple
we are now able to determine the analytic expressions ofiaddl perturbation correc-
tions and to formulate the natural extension of the GPMV } methods to the coupled
channel case. These extensions preserve the importantdeadf the one-dimensional
CPM{P, N} method such as the uniform accuracy with respect to the grigrand the
big step widths. The generalized CRPM N} as discussed in this chapter, include some
additional improvements over the LILIX method. One suchiriowement is that more
information associated to the partition is calculated amiry beginning of the procedure
and stored (i.e. th€-matrices, see further). When the CPM method is used in aisigoot
method for the generation of the eigenvalues, this impraremwill certainly speed up
the eigenvalue search.

5.2 Generalized CPM P, N } methods

5.2.1 Brief description of the procedure

Consider the initial value problem for the coupled chanrair&dinger equation witt
channels:

y'=(V(z) - El)y, z € [a,b) (5.7)

wherel is then x n unity matrix. When the domain endsandb are complex numbers,
x € [a,b] means that: is placed along the line segment joiningandb in the complex
plane. Therxn matrix V(z) is assumed symmetric, i.&;;(z) = Vji(z),4,j = 1,2,..n
and it is also assumed that each component of this matrix isllbehaved function of
the argument:. y is a set ofnsol column vectors withh, components andsol < n
represents the number of different (generally linear iraeient) solutions needed.

A partition of [a, b] is introduced, with the mesh points = a, z1, 22, ..., Tnstep =
Let I = [X, X + h| be the current one step interval of this partition. A transfiatrix
is constructed, which allows a blockwise propagation ofgbkitiony and of its first

derivativey’ :
(X+h)| (X)
B’(X T h)} =T B’(X)] | &8

To constructl’ we use two particular solutions of the equation

p’ = (V(X +6)— EI)p, §€[0,h]. (5.9)
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Specifically, ifu(d) andv(d) are then x n solutions corresponding to the initial conditions
p(0) =1, p’(0) = 0 andp(0) = 0, p’(0) = I, respectively @ is then by n zero matrix)

thenT has the form %) )
u(d) v(é
T = {u'(é) v’(é)} . (5.10)
To determinen andv the potential matrix is approximated by a truncated senes the
shifted Legendre polynomialB*(§/k). The used parametrization is

N
V(X +8) =Y Vnh™P;,(5/h) (5.11)

m=0

where the matrix weights are calculated by quadratMig & V,,h" 2, m = 1,2,..),

Vo = /VX+6)5

Vi = (@m+1) /VX+5P;;(5/h)d5, m=1,23,.... (512

The symmetric matriXV is then diagonalized and I& be the diagonalization matrix.
In the D representation Eq. (5.9) becomes

N
p?’ = (Z VD R™ P (5/h) — EI) pP, §€0,h] (5.13)
m=0
and this is solved fou® andvP; the initial conditions are the same as in the original
representation. The perturbation procedure is used, intwthie diagonal matri®? is
the reference potential and
N
AV =Y " VPR Py (6/h) (5.14)
m=1

is the perturbation wittV? symmetric matrices. The perturbation corrections can be
determined analytically up to any order (see 5.2.2). Oneevétues at of theu®, vP
matrices and of their derivatives have been evaluated,areeyeconverted to the original
representation to obtain the desifEd

It is also possible to write the algorithm to advance thewdries with respect t@

of y andy’. These derivatives are propagated by the partial derevatith respect ta&

of (5.8), that is
yE(X +h)| _ |yE(X) y ()
o] =T Ed) v [V (619
For the evaluation of the elementsBf;, the analytic expressions of the partial derivatives
of uP,uP’,vP,vP’ with respect toF are computed and reconverted to the original
representation. As in the one-dimensional case, the kmigelef the first derivative with
respect tak allows implementing a Newton-Raphson procedure for thalipation of the
eigenvalues of the boundary value problem associated wil@ded channel Scbdinger
equation.
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5.2.2 Construction of the perturbation corrections

We now describe the procedure used to construct the cametetims. First, the matrices
of functionsuP andvP are written as the perturbation series:

uP (6) = up() + () + uz(8) + uz(d) + ... (5.16)
vP(8) = vo(8) + v1(8) + va(d) + vs(d) + ... (5.17)

whereuy () andvg () are the solutions of
po = (V2 —E)po (5.18)

with po(0) = I,p,(0) = 0 for ug andpg(0) = 0,p;(0) = I for vo. Then x n
‘correction’ matrices of functiona, andv, (¢ = 1,2, ...) are the solutions of the systems

u) = (VP — Elu, + AV(§)ug_ (5.19)
vl = (VP — EI)vg + AV(6)ve_y (5.20)

with vanishing initial conditions;
u,(0) = v, (0) =u',(0) = v/,(0) = 0. (5.21)

As for the one-dimensional CPM we will express the corrextim terms of the func-
tions&(Z2),no(Z),m(Z), .... Note that when working with complex numbers, the com-
plex extension [59, 63] of these functions can be used:

£(Z) = cos(iZ/?) (5.22)
and

(5.23)

—isin(iZY?)/zY?* it Z 40,
no(Z) = .
1 ifZ=0.

With Z;(6) = (Vi? — E)é?, the zeroth order propagatong(é) andv,(4) are diagonal
matrices, defined as follows:

ug = v, = &(Z) (5.24)
oy = Z(8)m(Z) (5.25)
Vo = 0n,(Z) (5.26)
where
Z(5) = (VP — ET)8? (5.27)
and¢(Z), n,,(Z) two n x n diagonal matrices of functions
&(Z) ... 0
&(Z2) = : : , (5.28)

0 ... &2y
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I (Z1) ... 0
N (Z) = : : . (5.29)
0 coe m(Zy)
The following iteration procedure exists to construct tberections.

Correctionp,—; (p = u,v) is assumed to be known and of such a form that the
productAV (§)p,—1 reads

AV(0)pg-1(6) = Q(0)§(Z) + +Zj)<52m+1Rm(6)%(2)- (5.30)
Thenp, () andp’, () are of the form
py(6) = +ZOO 5L G (6)1,,(2), (5.31)
m=0
p,(0) = Co(0)&(Z)+ f §rm+t (dcc’l”(s((s) + §Cm+1(5)> Nm(Z). (5.32)

m=0

All C,,, matrices are given by quadrature. To show this, we firstidifféate each element
of p,(d) twice with respect té@ and formP = p// () — (VP — ET)p,. One gets

dCyp d?C, dC; D
P = 2—¢(Z)+56 26—~ 4 2C Co, V Z)+ ...
og(z)+5 (20 25T +201 + (G VBT my(2) +
d*C dC
2m+1 m m+1 D
+0 < ds2 +20 ds + 2(m + 1)Cm+1 + [CWL?VO ]) nm.(z)
+... (5.33)

where[C,,, VD] is the commutator of the matric&s,, and V2. Upon identifying the
coefficients in (5.30) and (5.33) we get

dCy

2—— = .34
0= Q) (5.34)
and ,
d Cm dc'rn-{-l D
2 2 1 = .
or
dzcm—l m—1 d(smcm Diem—1 m—1
0T 2T 4 [C, VRIS = Ry 67 (5.36)

Cy is then given by
1 6
Cold) =5 [ Qi (5:37)
0
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andC,,,m =1,2,3,... results as

2
%;;(5” —[Cr1(61), VDT ) dby.
1
(5.38)

To calculate successive corrections forthe starting functions i\ V (6)p(§) are
Q(4) = AV andRg(d) = R4(4) = ... = 0. Forv the starting functions a®(J) = 0,
Ro(6) = AV (6),R1(6) =Rz(d) = ... = 0.

In Appendix A.2 we give the expressionsa® (h), uP’(k), v (h) andvP’(h) ob-
tained by Maple with a sufficient number of terms to genera¢éeGPM 10,8} algorithm
of maximum order ten at low energies and order eight at thenpitic regime. This
means that the terms in (A.5)-(A.8) are collected on theddhsit only contributions pro-
portional toh?, p < 10 are retained. For those also interested in the full exprasspf
uP (h), uP’(h), vP (k) andvP’(h) for other CPM P, N'} algorithms we give in appen-
dix B.3 the source of the Maple program by which these exmessan be generated.
The E-independent coefficient matric€s®), C«), C®) andC®") in (A.5)-(A.8) are
computed only once on each step and are stored. When theosofatia givenE is
advanced on successive steps, only Ehdependeng andn,, remain to be calculated.
This is an important difference with the LILIX method [59] ete the correction terms
are constructed during propagation, i.e. in the LILIX pagkanly theV-matrices are
calculated and stored prior to the propagation.

The expressions of the coefficient matrices in (A.5)-(A@)tain many commutators
of two matrices. Note that in the one-dimensional case akehcommutators are zero
and the same expressions are obtained as for the{@PM} methods described for the
one-dimensional problem.

1 6
Cn(6) = 5<5—m/0 st <Rm1(51) —

5.2.3 Stepsize selection

We want to construct a partition with nonequal steps whoskhsiare consistent with
a preset tolerancenl. A procedure is used which is very analogously to the stepsiz
selection for the one-dimensional case discussed in [60, Tde evaluation of the step
lengths in terms of only the leading term of the one-steprasraisually unsatisfactory.
Several terms must be used instead. The terms generatee bahle code in Appendix
A.2 do not allow expressing the error for the considered @PMV } but they allow it for
weaker versions CPIP’, N'}. Let us focus on the CP.0,8} method: all terms in the
expressions fou® (), huP’ (), vP (k) /h andvP’(h) which are supplementary to the
terms to be used in the weaker CP8M}-version are used to construct an estimation of
the error. To start with, we take a trial vallidor the size of the step originating &t and
use a Gauss quadrature formula to calculate the maf¥ige¥ 1, ..., Vg, directly by

h
Vi = (2i + l)h/ V(X +8)PF(5/h)ds, i=0,1,...8. (5.39)
0

It is sufficient to take eight points in the quadrature formuhfter diagonalization of
the V, matrix, we obtain the matrices in ti@ representationVP, VP,...VP. Since
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then(Z(h))-functions obtain their maximum value #(h) = 0, we compute which is
defined as
e = max (| Au(h)], [Au/ ()R, | Av(h) /b, | A0’ (R)]),

at Z(h) = 0. HereinAu(h), Av'(h), Av(h) and Av'(h) are determined by the terms
in the equations in appendix B (or generated by the Maple)cadaich are additional
to the terms of CPNI8, 4}. That is, all terms where either (i) téP’s have N’ = 4 <

i+ < N = 8 or (ii) where the degreé in h satisfiesP’ = 8 < d < P = 10 (whereby
the degree oV, in hisi +2). For Au(h) e.g. we have (where the upper lafi2lis
suppressed)

Au(h) =
max = (Vs +V7)/2 + [V, V5]/280) mi (Z(h))
+ max ((14\75 +27V7)/2 — V256 + [V5, Va] /280 + [3V5 — 3V, V/24
— [[V2, V1], V1] /1680 — [[V2, Vo], V2] /3360 + [[V1, V3], Vo] /480
— [[V1, %], V3] /1680 + [[V3, V], V4] /1120) 12(Z(h))
+ max ((—63\75 —297V7)/2+ V3/14 + {V1,+2V, + V51 /8 + {V4, V3}/4
+4[V5, V3]/35 + (13[V1, Vo] Vi + V[V, V3]) /3360
+[-15V5 + 18V, Vo] /8 — [[+5V3 — 5V, V], Vi /160
—(6V2[V1, Vo] + 3[Va, Vo]V + 3V [V, Vo] — 4[V1, V(] V2) /480
(4V2[Va, Vo] + 3[Va, Vo] Vy) /560 + [[[3V1 — V2, Vo], Vo], V] /1920
—(41[V1, V] V3 + 29V3[ V1, Vo] + 9 [V1, [V, Vo]] ) /3360

+ [[[V1, Vo), Vo] , V1] /1920 + [V, V] /1152) 15(Z(h))

+

1287V;/2 — 15V2/56 + V3 /48 — {V1,21V, + 9V;5}/8

+{V3,—15V5 + 3V} /8 + V1 {V1,V,}/80 + 3[Vy, V5] /56 + [V1, V4] /8
—(5V1[V1, Vo] + 2[V1, Vo] V1) /560 + [72V5 — 99V, V] /8

(2V1 Vs, Vo] + 6]V, Vo] V3 + V5[V, Vo] + 5[V3,V0}V1)/112
+[[Vs — 2V, Vo], Vo] /8 + [[[2V1 — 3V3, V], V], Vo] /480
-l
(

—+ max

/N

V2V, Vo], Vo /10 — (4[V1, Vo] Va + 6V1[Vy, V] = 3[Vy, \_/‘0}\71)/80
+(9[Vs, Vo Vs + 12V2[V2,V0])/140 + [[V1, Vo), Vo] V4 /480
+[V1, Vo[2/240) ma(Z(R)

wheremax (M) is the absolute value of the matrix elemenddfwith the largest absolute
value and the notatior[\, B] and{A, B} are used to denote the commutator and anti-
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commutator of the matriceA andB. The error estimate at Z(h) = 0 is then used to
construct a new stepsize:

Pnew = h(tol/e)*/°. (5.40)

When |hnew/h — 1| > 0.1 the procedure is repeated with= h,.,,. Otherwiseh is
accepted to be a good choice for the stepsize and the precsthnts computing the
stepsize of the next interval which will originate &t+ h.

A very important property of the CPM is that their errors aoeided vs. the energy
E. This is proved in [60] for the single Sdbdinger equation but, since the set of reasons
invoked in that proof remains the same for systems, the medi property continues to
apply in this case. The implication is that, once the panithas been fixed, the error
will be more or less the same (i.e. irrespective of the valué&pand for this reason
the partition should be generated only once and never mddifiain during the session.
Also important is that there is no theoretical upper boundtlie stepsize, which is a
useful feature when treating long range potentials.

5.2.4 Stabilizing transformations

In many applications, the computationofinear independent vector solutions is required
(e.g. to compute the eigenvalues of the associated bounedharg problem, see further).
The procedure described above requires that the wavefinetatrix and its first order
derivative be propagated explicitly. However there is oed tnown difficulty in the the-
ory of close-coupled equations. The propagation of the fuaation into the so-called
classically forbidden regiowhereV (xz) > E) is numerically unstable. It is due to the
fact that the exponentially growing compongnof the wavefunction in the most strongly
closed {;;(z) > E) channel soon dominates the entire wavefunction matridastroys
the required linear independence of the solutions. One wayaid the difficulty is to
use a so-callethvariant imbeddingnethod, in which the propagated quantity is not the
wave function matrixY (x) but rather its logarithmic derivativ&’(z)Y () ! (see e.g.
[47, 65]). Another approach to overcome the difficulty is faply certain stabilizing
transformations during propagation. Gordon e.g. (seé [@ijimized the undesired ex-
ponentially increasing functions by a “triangularizationethod. In [59] Ixaru describes
a stabilizing procedure based on the LU decomposition ®ptiopagation by CPM. Af-
ter some propagation steps this regularization procedamée applied to re-establish the
linear independence of the columns in the wavefunctionimatr
Consider e.g. the LU decomposition of the 2 by 2 matrix witigéaelements
w601 2

Y =10 {0'03 0.5] . (5.41)
This means that we compulg U andP such thatY = PLU, whereL is a lower
triangular matrix with a unit diagonal and is an upper triangular matrixP is the
permutation matrix such th&fU = P~1Y. The LU decomposition for matri¥ defined
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above results in the following matrices

1 0 g0l 2 1o
L_[0.3 1}’ U=10 [0 —0.1}’ P_[o 1]' (5.42)

Thus the exponential behaviour is collected inthenatrix, whileL, andP contain small
elements. This observation was used by Ixaru to develop @duwe to avoid exponen-
tially increasing values in the wavefunction matrix. To ke Ixaru’s procedure, we
consider the forward propagation of the solution betweentéto meshpointsY, and
X and select the pointX, X5, ..., X;, among the meshpoints ¢, X ], where the
regularization should be performed. Thevector solutions aX; form an x n matrix
Y (X1). The LU decomposition of this matrix is performed, i¥(X;) = P;L,;U;.We
then use the new, renormalizedx n matricesY™*V(X;) = PiLy, Y™V (X;) =
Y'(X))UY, YE™Y(X)) = Ye(X)Ut and Y™V (X1) = Yi(X,)U;' as the
initial conditions for the propagation frof; up to X». The resultany (X5), Y’'(X>),
YE(Xs) andYj(X,) are replaced by "™ (X5) = PoLa, Y™V (X5) = Y/(X2) U5 Y,
Ye"V(X2) = Ye(X2)Uy ' and Y " (Xs) = Yi(X2)Uy ! for the further propaga-
tion and so on.

Clearly, the solution obtained in this way, is no longer éstemt with the initial con-
ditions imposed a¥,. The original solution at any mesh point betwe€nand X, is
recovered if each of the four matrices representing therrealized solution is postmulti-
plied by then by n matrixU,U,_;...U,U;. Note however that in a shooting process (see
further) the renormalized solution obtained in the matghgnint can be used to construct
the mismatch function.

5.2.5 Some experiments

The test system reads

yy 3—2x—F —x 1+ Y1
yy | = -z -1-2x—F 1—z Y2 (5.43)
yy 1+z 1—=z 1-2z—FE| |ys

and is solved or € [0, 10] for E = 0 with the initial conditions
y1(0) = 2(0) = y5(0) = 1, %1(0) =2, y3(0) = y2(0) = 0. (5.44)
The exact solution is
yi(z) = A +a)e”, o) =(1-2)", ys(z)=ze" (5.45)

The experiment exists in the forward propagation of thetgmiuromz = 0 to z = 10.
Table 5.1 shows the relative errors

Agi(10) = (5.46)

:(10) — Z/i(lo)‘
vi(10)
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Table 5.1: Relative errors iny(10) computed with three different CPM-versions: (a) the LILIX
method, (b) CPM8,6} and (c) CPM 10,8}

tol nstep T Ag1(10) Ag2(10) Ag3(10)
1078 (@ 77 143 5.33(-8) 5.32(—8)  5.33(—8)
(b) 90 151 1.77(-10) 1.75(—11) 1.05(—10)
(€9 59  1.23 3.86(—11) 8.18(—12) 2.49(—11)
1071 (@ 165 2.67 5.70(—10) 5.74(—10) 2.50(—11)
(b) 174 2.81 9.20(—13) 3.05(—13) 6.44(—13)
(€ 97 196 2.55(—13) 4.29(—14) 1.60(—13)
1072 (@ 355 526 5.88(—12) 5.92(—12) 5.90(—12)
(b) 357 543 1.61(—14) 1.76(—14) 1.45(—14)
() 162 293 3.72(—15) 2.50(—15) 5.50(—15)

in the computed solutioy(10) obtained with the MATLAB implementation of three
different methods: (a) the LILIX method [59], (b) the CR®I6} method and (c) the
CPM{10,8 method. The experiment was repeated for different valugbeoficcuracy
toleranceol. nstep represents the number of intervals in the partition coegtidiby the
method andl" is the CPU time (in seconds) needed to obtain the results ARLMB).
The data reported in the table enable some conclusions:

e The two CPM P, N} methods produce more accurate results than the LILIX method
LILIX should have a higher number of intervals in its paditito reach the same
accuracy as the other two methods.

e As for the one-dimensional formulation of the CPRM N} methods, the number
of intervals decreases with increasing order.

e As a consequence of the lower number of intervals, ¢B0/8} is the fastest
method. The CPNB,6} method is somewhat slower than LILIX, but, as already
mentioned, the results of this CR8,6} method are more precise.

So the CPM 10,8 method seems to be the best choice, even though the{C®,B}
method needs a higher number of matrix multiplications lfia talculation of theC,,
matrices in (A.5)-(A.8)per intervalthan the CPM8,6} method and the LILIX method
to construct its correction terms. Note however that the memof matrix multiplica-
tions actually performed can be reduced substantially loyprding each matrix product,
which occurs in the computation of tig,, matrices, only once. In addition, we can re-
mark that a commutatdV;, V] or an anticommutatofV;, V;} needs only one matrix
multiplication sinceV,; V; = (V,;V;)T for V; andV; symmetric matrices. Moreover in
MATLAB, matrix multiplications are performed relativel\apidly and as a consequence
the matrix multiplications take only a small part of the tdtae. Also important is that
the matrix multiplications appearing in the CRF N} algorithm must be performed
only once (before the actual propagation), while for thelXlimethod the matrix multi-
plications occur during propagation. This is particulamportant for the solution of the
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boundary value problem where the solution is advanced f@raktrial values off in a
shooting procedure (see further). This means that even thleeime needed to construct
the partition and to calculate the data associated to ifgisen for a certain CPNIP, N'}
method than for the LILIX method, the CPNP, N} method can be expected to be faster
when it is used to calculate a sufficiently large batch of migéues.

A minor drawback of the higher order CRM?, N} methods is that they require more
memory resources. The reason is that more information isdtarior to propagation, in
other words, in order to gain some speed in the propagatioceps some memory had
to be sacrificed. However we believe that the higher memasg forms no problem for
modern computer capacities, at least not forth@lues which occur in practice.

5.3 Solving the boundary value problem

5.3.1 Problem definitions

We consider the numerical solution of tlegular boundary value problem of the form
y'(z) =[V(z) - Elly(z), x € [a,b]. (5.47)

If there aren channelsy (x) is a column vector of order, I is then x n unity matrix and
V() is a symmetria: x n matrix. For a regular problem the endpoints of the integrati
interval « andb are finite and the functions in th€(x) matrix lie in L'[a,b]. In the
endpointse andb regular boundary conditions are applied. Acceptable swlatof the
coupled equations exist only whénhis aneigenvaluef the system. The regular boundary
conditions are of the following form (witB the zero vector):

Aoy(a) + Boy'(a)

-0
A1y(b) + Byy'(b) =0

(5.48)

where Ag, Bg, A1, B; are realn by n matrices satisfying the so-callembnjointness
conditions (see [43] or [85])

AIBy -BfA=0
ATB; —BTA; =0, (5.49)

and the rank conditions
rankAg|Bo) = n, rankA;|B;)=n. (5.50)

Here(Ao|Bo) denotes the: x 2n matrix whose first: columns are the columns &,
and whosén + 1)t to 2n'" columns are the columns &f,.

For the regular problem there are infinitely many eigenwaluEhe eigenvalues are
real, there are countable many of them and they can be ortiesadisfy

—o< By <FEy<FE;y<..., with B, — oc0ask — oo.
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Only for the scalar case = 1, it is guaranteed that all the eigenvalues are simple and
distinct. Forn > 1 however, any of the eigenvalues may havautiplicity as great as
(see [34)).

The objective of this section is to show how these eigengabam be found using a
CPM{P, N} method. A CPMP, N} method is expected to be well suited to use as the
propagation method in a shooting procedure: since thetiparts £-independent, many
information associated to this partition has to be compotdg once and can be stored
before the actual propagation. First we describe the smpatiethod more elaborately.
Next it is shown how the shooting procedure can be improvedydke theory of Atkinson
[14] which extends the Rfer theory to the vector case.

5.3.2 A shooting procedure

For a system ofi coupled equations, a shooting procedure can be used whiatyedy
inspired from the method outlined in section 3.2 for the dimaensional problem. One
way to locate the eigenvalues is to look fBrsuch that the determinant

YL Yg

o) =yr vy (5.51)

is zero in the interior matching point,, € (a,b) (see [41, 47]).Y andY r represent
the left- and right-hand matrix solutions. ratrix solutionY of (5.47) is a matrix each
of whose columns is a solution such that

Y'(z) =[V(z) — EI] Y (z). (5.52)

The leftn xn fundamental solutiofY 1, (x) with columns satisfying the left hand boundary
conditions, is found by taking the initial valuds;, (a) = Bo, Y} (a) = —Ay. Then any
solution satisfying these boundary conditions is of thefdf ., (x)c wherec is a constant
vector. Similarly we can find a fundamental solut®i (x) with Yz (b) = B, Y,(b) =
—A;. So the basis for our numerical method is to integrate thedorental solutions
from the ends to some matching poin},, evaluatep(E) and take this as theismatch
(also called miss-distance in [105] and [85]).

Example 5.1 As a first test problem we use

V(a) = [3112/215 3x/§/—2E} y(x), = €0,1] (5.53)

with boundary condition matrices

1 0 0 0
AO:BO:[O 1}7A1:B1:{0 0}. (5.54)

Table 5.2 lists the first 16 exact eigenvalues (rounded toeknthls) as they are men-
tioned in [22]. Figure 5.1 shows the mismatch functig(i) for this test problem. It is
clear that the function(E) is zero forE equal to an eigenvalue.
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Table 5.2: First 16 exact eigenvalues of test problem (5.53)
k  Ex k Ey,

10.368507161836 8 247.24018932857
10.865215710533 9 247.74042723263
39.978744789883 | 10 355.805814598764
40.479726088439 | 11 356.305983077456
89.326634542478 12 484.110657395956
89.827219332229 | 13 484.610782623713
158.41378981431 14 632.154713876864
158.91414800462 15 632.654810465433

No o~ WNPEO

«E)

1‘0 26 3‘0 4‘0 50 éO 7‘0 éO E;O ’ 918 1‘0 16.2 16.4 1(;6 10‘8 1‘1 11‘2 11‘..4 1i.6
E
Figure 5.1: Mismatch functionp(E) for test problem (5.53).

Example 5.2 The second test problem is of the form
y"(z) = [V(z) - EX]y(z), = €[0.1,1], y(0.1)=y(1) =0, (5.55)

whereV (x) is the4 x 4 matrix:

cos(z) + 5” (5.56)

1J I

-~ max(i, j)
This problem was discussed by Marletta as a test exampladdsit 12F-code [86]. This
Fortran code solves eigenvalue problems for linear Hamidio systems and is available
in the Netlib repository. The mismatch function for testlgem 2 is shown in Figure 5.2.
The first few eigenvalues of the problem drel.94180054, 17.04349658, 21.38042053,
26.92073133, 51.82570724, 55.80351609,. . . }.

There are some problems associated with the approachexlilimove. One problem
is that the functiony(E) does not change sign @ passes through an eigenvallig of
even multiplicity.
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Figure 5.2: Mismatch functionp(E) for test problem (5.55)-(5.56).

«E)

0.2f

10.6 1(;.8 11 11‘,2 11‘,4 1i.6 11‘.8 1‘2 12.2 10.‘94 10‘.96 10‘.98 1‘1 11.‘02 11.‘04 11.‘06 11‘.08
E E
Figure 5.3: Mismatch functiony(E) for problem (5.57) around, = 11.

Example 5.3 Consider the Sckidinger system where
2
V(z) = F 02} (5.57)

over the interval0, 10]. Each of the eigenvalues, = 3,7, 11, ... has then multiplicity
equal ton = 2. Figure 5.3 shows the(FE) function around the eigenvalug, = 11.
The ¢(F) function is zero aFF = 11 but does not change sign, making it very difficult to
locateFE), = 11.

Another problem is that the functiop(E) does not give any way of determining
the index of the eigenvalue once it has been found. Thus we haway of knowing
which eigenvalue we found whet( E) = 0. For the scalar case.(= 1), this problem
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was avoided by the Bfer method (see sections 2.3.2 and 3.2.4). Using thiéePform
we were able to index the eigenvalues and to approximatéttheigenvalue without
consideration of other eigenvalues. We would like to useralogous procedure for a
matrix Schbdinger eigenvalue problem.

Atkinson [14] developed a Bfer-like method for the matrix Sturm-Liouville prob-
lem. Marletta [85] used Atkinson’s theory to construct ateger-valued functiod/ (F)
with jumps at each eigenvalue. A is an eigenvalue with multiplicityn, thenM (E+) —
M(E-) = m, with M(E+) and M (E—) the right and left limit of M/ (E'). This M (E)
function allows us to define the spectral function

N(E) = The number of eigenvalues of (5.47) that are less fhian

If we can calculate this function from shooting data, we dke @0 determine whether
a trial value of £ is “near” the eigenvaluds;, we are looking for, and whether it is too
high or too low. IfE’ < E” are two values such th&f(E’) < kandN(E") > k + 1,
then thekth eigenvalueFy, lies in the intervalE” < Ej, < E”. Once an intervalE’, E”]
has been found which contains just one eigenvalue and iciauntly small” (see further
in 5.3.5), a Newton iteration process can be applied on thematich functiony(E),
(with £/ < E < E") to obtainFE}.

5.3.3 The Atkinson-Piufer method

Before considering the general problem and its complexitiee will reconsider briefly
the classical Rifer method and describe how this classical method can ltoseon-
struct the functionV(E) for the simplest case: a scalar equation.

The classical Piifer method
Consider the one-dimensional equation
y"(x) = [V(z) — Ely(z), x € (a,b), (5.58)
with boundary conditions
aopy(a) + boy'(a) = 0, (5.59)
ary(a) + bry'(a) = 0. (5.60)
We introduce coordinates in the phase plane:
u=y, w=vy. (5.61)

In a shooting process, the equation (5.58) is integrated fedt to right, with initial values
u(a) = bg,w(a) = —ag, to obtain a left solution:y,, wy,; and integrated from right to
left, with initial valuesu(b) = by, w(b) = —ay, to obtain a right solutiomr, wg.
The main idea of the Rfer method is to introduce polar coordinatgsé) in the
phase plane:
u=psinh, w= pcosh. (5.62)
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The phase angl¢is defined (moduler) by the equation
tan = —. (5.63)
w

Using (5.58) and (5.61)-(5.62) it can be shown that 6(x) satisfies a differential
equation of first order (see section 2.3.2):

0 =cos’ — [V(z) — E]sin?6, a<x<b. (5.64)

Equation (5.64) has a left-solution (), with 81, (a) = 6y(a); and a right-solutiof (),
with 8 (b) = 0y(b), where the initial condition8,(a) andf,(b) are defined by

tanfy(a) = <—ZZ> , 0<6u(a)<m, (5.65)
tan 0y (b) = (—2) , 0<8o(b) <m. (5.66)

From equation (5.64) we see thatéfz;) = mn (wherem is an integer), then
0'(x;) = 1 > 0. This shows thaf, () increases through multiples afasz increases,
this means thafl;, can never be decreasing in a paint= z; whenx; is a multiple of
7. Similarly 0z (x) decreases through multiplesofsx decreases (see e.g. Figure 2.4).
Sinceu = 0 just whend is a multiple ofr, the number of zeros af (or y) on (a, x.,)
is then the number of multiples af (strictly) betweerd;,(a) andéy,(z,,). Analogously
the number of zeros af on (z,,,b) is the number of multiples of through whichfy
decreases going fromto z,,. Knowing that the index of an eigenvalue equals the
number of zeros of the associated eigenfunctign) on the open intervala, b), we can
use these results to formulate the functigfr).

The functiond);,, 0z depend orfs. So we can write explicitly, (x, E) andfg(z, E).
To define a formula folV (E), let

0 (xm, E) — Or(xm, E) = n(xm, E)T + w(tm, E) (5.67)
wheren(z,,, E) is an integer and
0 <w(zm, E) <.
N(FE) can then be defined as follows:
N(E)=n(zm,E)+1

or
N(E) = % 01 (s E) — (@, B) — w(am, E)] + 1. (5.68)

The functionN(E) is a piecewise constant with jumps at the eigenvalUgsE+) —
N(E-)=1.
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The Atkinson-Prifer Method for matrix problems

We again consider the vector Sodinger equation (5.47). As for the scalar case, we
introduce:
U=Y, W=Y"

We integrate the equation (5.47) from the left and right emas towards a chosen
pointz,, € [a,b]. Let Uy, Wy, be the matrix solution of (5.47) with initial conditions
U(a) = By, W(a) = —A,, andUg, Wg the solution with initial valuedJ(b) =
B1,W(b) = —A;. Although it is possible to define an inverse-tangent fuarcfor ma-
trix variables, the result is not really useful. The diffitguils that the corresponding sine
and cosine functions do not have the desirable derivatiopgsties of their scalar coun-
terparts, introducing difficulties in the formulation of asfi order differential equation.
Therefore Atkinson used another mapping from complex @imtp map the real line
onto some bounded curve in the complex plane.
The matrix function® is defined:

O(z, E) = [W(z) + iU(z)] [W(z) — iU(z)] . (5.69)

This matrix® and its phase angles were introduced into oscillation thbgrAtkinson
[14] and Reid [110]. The conjointness property (5.49) amkreonditions (5.50) ensure
that® exists and is unitary.

Also here the differential equation (5.47) may be reforrredan terms of a nonlinear
first-order differential equation fa®:

@ =iON, a<z<b, (5.70)
where(? is the Hermitian matrix given by
20=(O+D)T(O+1) - (@ -1)" (V- EI)(© 1), (5.71)

with T as the conjugate transpose (or hermitian conjugate) symbol

Let now®;, and®x be the unitary matrices obtained frdd,, W, andUgr, Wgr
by formula (5.69). Because the@ matrices are unitary, their eigenvalues all lie on the
unit circle. The eigenvalues @; and®  are denoted b\]exp(iqbf(x)) |j=1,...,n}
and{exp(¢(z))| j =1,...,n} respectively. The so-callgghase angleg (), ¢7(x)
are uniquely determined continuous functions when thefatig conditions are imposed

ol (z) < ok (x) < -+ < oL (x) < ¥ (2) + 2,
Plt(x) < B (x) < --- < ¢l (x) < ¢ (2) + 27,
0<¢f(a) <2m, 0<¢f(b) <2m. (5.72)

From [14] and [85] we know that the phase—angdésof the matrix®/, increase (and
never decrease) through multiples2f with increasingz. Similarly the¢f decrease
through multiples o asz decreases. Notice the correspondence betweghand the
scalarg appearing in the classicalifer method.
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At the chosen point,, € [a,b] let the eigenvalues @ (z,,)O 1, (z,,) be {exp(iw;)
| j=1,...,n}, where thev; are normalized by the condition

0 <w; < 2m. (5.73)

We can now give the formula for the functial (E') which was defined by Marletta in
[84] and [85]:

- % {Z (bJL(xm) - Z ¢§%(xm) - ij(xm)} . (5_74)
j=1 j=1 j=1

This formula can be used to define the functiéF) (see [43]), which is the number of
eigenvalues of (5.47) that are less than

N(E) = M(E) + n. (5.75)

In [85] the following notations were used to represent thedhuantities appearing in
Eq. (5.74):

argdet®r (v, F qu Tm), (5.76)
argdet®g(xm,, E Z¢R T ), (5.77)
argdet®pg(z,, ij T )- (5.78)

The overbar oargdet ® 1 r(z,,, F) indicates that the angles are normalized to lie in the
interval[0, 27).

Example 5.4 Figure 5.4 shows the phase angjﬁé&{x),j =1,...,4forthefirst 6 eigen-
values of the second test problem given by (5.55)-(5.5&) Esemple 5.2). We just took

z, = b = 1, that is we propagated the left-hand solution framip tob. It is clear

that the¢§(m) increase through multiples @fr. For the first eigenvalu&y, there is one
phase angle reachirdy, for the second eigenvalug, there are two phase angles passing
through2, for the third eigenvalue&; one can see three phase angles passing through
2m and so on.

Example 5.5 Figure 5.5 illustrates the construction of Marlettadkfunction for the first
test problem (5.53) given in Example 5.1. Since the problesymmetric the two phase
angles coincide, thatis- () = ¢ () andgf*(x) = ¢ (x). In the matching point,,, =
0.24, we haveargdet®y, (z,,) ~ 4.47, argdet®g(x,,) ~ —14.1r andargdet®p ~
2.57. With the formula (5.74) we comput® (350) = [4.47 + 14.17 — 2.571]/(27) = 8,
and thus the number of eigenvalues less than 350 is then giv@&f(350) = 10. Table
5.2 indeed shows thdt = 350 is larger thanFy but smaller tharE.
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Figure 5.4: The phase anglasf (z),5 = 1,...,4 for the first 6 eigenvalues of the second test
problem (5.55)-(5.56). In all cases, = b = 1.
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Figure 5.5: The Atkinson-Piifer functions for the first test problem (5.53) wifi = 350,
znm = 0.24. The two phase angles coincide, thatd$(z) = ¢5(z) and ¢f'(z) =
o5 (x). argdet®p(z) = > ¢F(2), argdet®g(z) = > ¢ (z) and argdet®rr =
21w (Tm).

5.3.4 Computing Marletta’'s M (E) function

In order to computé/ (E) for a certainE-value, we need to be able to compute the quan-
titiesargdet®y, (z,, F), argdet® g(x,,, E) = Z;;l (bf(xm) andargdet® g (xy,, E) =

> i—1wj(zm). Note that we need only to kno®y,(z,,, ) and © g(z, E) to cal-

culate argdet® g (x.,, E), since the angles); are normalized to lie in the interval
[0,27). Op(zm, E) (or Og(z,,, E)) is easily obtained by substituting the matrix so-
lution Uy (z,), Wi (zm) (0r Ug(z,,), Wgr(z)) in (5.69).

The calculation ofargdet®y, (z,,, E) or argdet®g(z,,, E) is more difficult. We
have to integrat®; (actually we integrate the original differential system4(® and
form the ® matrices from the appropriate matrix solutions of (5.4™)m = = a to
T = T, and@®pg fromzx = btox = z,,. During the integration we have to follow
argde® ;, and argde® r continuously and count the number of multiple€efin each. In
[85], Marletta describes a method based on constant caeftiapproximation to compute
argde®;, and argde® i for the general Sturm-Liouville problem. The algorithm wil w
describe here is based on this method of Marletta, but addptthe use of a CPM as
propagation method for the solution of the original diffeiial equation (5.47).

A CPM is used to propagate the solutibh W over the mesh

a=2x9<x < < Tnstep = b.
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argde®, (a) and argde® r(b) are unambiguously known from (5.72). Consider now
the propagation across an interyal_1, z;]. Suppose argdé (argde® ;, or argde® )

is known in one endpoint of the interval,..;» and we want to obtain argd8tin the
other endpoint, called..q. This means that for the left propagatiopegin = z:—1 and
Zend = ¢, While for the right propagatiofyegin = ¢ @aNdzena = ¢—1.

In order to compute argdé correctly, and not just modul®m, we must count the
number of times that some phase-angjej = 1, ...,n of ® passes through a multiple
of 2 asz moves fromzyegin 10 Tenq. We try to do this by decoupling the system into
n scalar ones to which the simpleifer method can be applied. This means that we try
to obtain a problem in diagonal form. Again, we consider thegdnalization process
discussed in section 5.2.1. Since

D 'eD = (WP +UP)(WP —juP)"! = eP (5.79)

we know that the eigenvalues & are precisely the same as those®?. So we may
forget abou® and think only in terms 0®P.

As seen in section 5.2.2, the zeroth order propagation ofrigigicesUP and WP
can be written as

UP(z)
WP(z)

E(Z)UP (2begin) + 0no(Z)WP (2begin),
(Z/8)10(Z)UP (wbegin) + E(ZYWP (hegin), (5.80)

with Z = (VD — EI)§? andé = = — Thegin- NOte that here is positive for the forward
propagation and negative for the backward propagation.

In order to compute argde® (z) from argde@D(mbegm) we consider the auxiliary
matrix ®(x) given by

%

%

B (x) = (& —i0ng) " (€ +6n4) O (Thegin)- (5.81)

This is a product of unitary matrices and is therefore ugpithet now the eigenvalues of
©P beexp(ig;) and those ofb beexp(i;), and suppose that

¢j:27mj+ﬁj, Q/JjZQWWLj-l-CMj,
wheren; andm; are integers and; andg; lie in [0, 27). Then we can write
argdet®® = argdet® + Y "(8; — o) + 27 > _(n; —m;). (5.82)
j=1 j=1

The a; and 3; are easily computed directly frod and ®P, because the number of
multiples of2 in the o; and 8; is unambiguous®P is calculated fronlUP and WP
using (5.79) andp is obtained using (5.81).

The quantity argdd can be calculated using the following identity

argdet® = argdet@®® (rpeqin) + argdet(§ — idmy) L (€ + idn). (5.83)
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The termargdet (& —idn,) ~1 (& +idn,) is computed by applying a Bfer transformation
to each diagonal term in turn: for eaghet y; be the solution of the initial value problem

—yi +djy; =0, Yj(Toegin) = 0, ¥j(Tegin) = 1,
where thel; are the elements of the diagonal mavi§ — E1. The Piifer transformation
y; = pjsinb;, y; = pjcosb;.
is applied. Therd; satisfies the initial value problem
0; = cos®0; — d;sin?0;, 0;(Tpegin) = 0.
This may be solved exactly in terms of elementary functianfolows

0;(x) = atan2dno(Z;(9)),£(Z;(9)))

with atan2 the four-quadrant inverse tangent. Then we mepote

argdet(€ — idmy) "' (& +idny) =2 _ 0. (5.84)

j=1

Returning to (5.82), the only unknown quantity is

n n
E TLj — E mj.
j=1 j=1

In [85], it was shown that when only zeroth order propagatmesused, this quantity is
zero, provided the interval is taken small enough such tte{zeroth order) propagation
is exact. Here larger intervals are used, on which the pragby the CPM is exact.
As a consequence it is no longer guaranteedE?\;1 n; — Z?zl m; is zero. However
when we want the CPM propagation to be exact, the chosewatsaare small enough to
reach already a reasonable approximation of the solutidghdyeroth order propagation.
The differences between the phases calculated by the zemdé¢n propagation and the
ones obtained with the CPM will then generally be much smé#flen27 and in almost
all casesZ;.‘:1 n; — Z;‘:l m; is zero. Only some special care is necessary when one
of the phases is close to a multiple2f. In this case we compute argéebver the two
halves of the current interv@it,egin, Zena). The accumulation of the results over the two
subintervals should lead to the same change in multipleés afs over the whole interval.
In the assumption that the intervals are small enough to haye, n; —>°7_, m; =
0, we use the formula

argdet®P () = argdet®P (wpeqin) + argdet (€ — idng) ~ (€ + idn,) + Z(ﬁj — ;)
j=1

to propagatergdet®P. And sinceargdet® = argdet®P, this result allows us to keep
track of the number of multiples @r in argde® as we integrate across an interval.
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Figure 5.6: The functionN (E) for the first test problem (5.53).

Figure 5.7: The functionN (E) for the second test problem (5.55)-(5.56).

Example 5.6 Figures 5.6 and 5.7 show thé(E) function (computed by the algorithm
described above) for the test problems given in Example$2.1 As we increase the
FE value, we see a “jump” in the index value Aspasses through an eigenvalue of the
Schiddinger problem. The size of the jump indicates the muttipliof the eigenvalue.

5.3.5 Eigenvalue computation
Algorithm

Our objective is now to describe how we can S€F) to compute the eigenvalug,.
Of course, first a mesh must be constructed for our CPM. Wenageate a mesh
which has stepsizes consistent with a user specified taleras already mentioned, this
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mesh has to be generated only once (since it is independéntaifthe very beginning of
the run and can then be used for all eigenvalue calculatiorsthis reason our algorithm
is particularly suited for calculating large sets of eiganes.

Over the generated mesh, for different trial valuesdod left solution will be com-
puted on[a, z,,] and a right solution orjz,,, b] to obtain the values o¥,Y’ at each
side of the matching point,,. This matching point was fixed at the very beginning of
the computation and is the meshpoint which is the closedtdaleepest bottom of the
potential functionsV;; (1 <i < n, 1 < j < ). The data obtained at each sidexpf
are combined to calculate the mismatch functigit) using Eq. (5.51). Since the CPM
algorithm allows a direct evaluation of the first derivataeY andY’ with respect to
E, the derivative ofp( E) with respect ta&' can be computed. This means that a Newton
iteration procedure can be used to locate the rootg fY):

¢(E)
¢'(E)

The Newton iteration procedure is convergent only if théahguess forF is sufficiently
close to the eigenvalug), which has to be located. Therefore, the procedure condists o
two stages. In the first stage, a good initial guess for thetbievteration is searched for.
The second stage consists in effectively iterating unéilrdguested accuracy is achieved.

In the first stage we look for an intervak,,, E.,| containing just one eigenvalue
(Ex), using the functionV(E). Both E,ew(Elow) (from (5.85)) andE,ew (Eyp) Must
be inside[E\.w, Eyup). Once acceptable values fék,,, and E,, are found, the Newton
iteration (stage 2) is started witi = (Ej,w + Eyp)/2 as initial guess. To continue the
calculation for the next eigenvalug, 1, a good starting value Biow = Eyp.

The error in the eigenvalue approximations can be estintatezhlculating for each
eigenvalue an associated ‘reference’ eigenvalue. Theatstin of the error in a certain
calculated eigenvalue (the so-called basic eigenvaluiieis the difference between the
basic eigenvalue and the more accurate reference eigenv@ine way to obtain a ref-
erence eigenvalue is to use an additional mesh with finesigeesa We constructed the
additional ‘reference’ mesh by halving each interval of dhiginal ‘basic’ mesh.

The search for the basic eigenvalues is first done (on the bessh) and only in this
case the first stage of the search is activated. The seartchefaeference eigenvalues
involves only the Newton iteration (stage 2) which startthvihe basic eigenvalue as
initial guess. Since the difference of the two eigenvalgessiually very small, only a
small number of extra iterations is necessary to calculagdemence eigenvalue.

Epew = E — (5.85)

MATLAB code

The algorithm described in the previous sections is implgettin a MATLAB package.
The package was developed in MATLAB version 7.1 and can benttaded from [2].
The package includes some examples showing how the differetmods can be called in
order to compute some eigenvalues. Here, we briefly disbesMATLAB code needed
to solve the first test problem. The following commands detieesystem of Sclidinger
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equations and initialize the CPM:

a=0; % Integration interval

b=1;

n=2; % Dimension of the problem
V={'3 *x/2''-x/2','3 *X/2'}; % Potential matrix
s=scs(V,a,b,n); % constructs the system
cp=cpm10_8(s,1e-10); % constructs the partitions

First the problem is specified by its endpointandb and the potential matrix func-
tion V (z). This potential matrix is symmetric and only the elementhlower triangle
have to be specified. The constructor of the ckss is called, which constructs an ob-
ject respresenting the system of coupled 8dhrger equations. This object is then passed
to another method which implements the CPM. Here we wugedl0_8 which imple-
ments the CPNI10,8} algorithm, but alsepm8_6 is included. The second argument of
cpm10_8 is a positive constant representing the accuracy requéasthe results. An
object is returned containing information on the partition

The methodyet_eigenvalues can be used to calculate a batch of eigenvalues
E = get _eigenvalues(cp,pmin,pmax,indices)

wherecp is an instance of the classesm10_8 or cpm8_6. If indices s true, the
eigenvalueds;, with index k betweenpmin andpmax are calculated. Ifndices s
false the eigenvalues in the energy-raffgmin,pmax] are computed. The method re-
turns a structur&, in which all information related to the calculated eigdnes is stored.
E.eigenvalues  contains the eigenvalues in ascending order, while thecagsd in-
dices are collected ik.indices  andE.errors  holds the estimated errors. The field
E.success is false when the CPM was not able to obtain any d&atatus is a
vector of status-flags. Wheh.status(k) > 0, there were some difficulties detected
during the calculation of théth eigenvalue or its index. Wheg status(k) is equal
to one, the input toleranca®! was too large to ensure a correct evaluation of 3He)
function (see section 5.3.4). A status flag larger than zeggests that the input tolerance
should be decreased.

When we want to calculate the eigenvalues with indices frorm QQ, we use the
following command:

E = get _eigenvalues(cp,0,10,true)
while
E = get_eigenvalues(cp,50,100,false)

returns the eigenvalues between 50 and 100.
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Table 5.3: Some eigenvalues of the first test problem calculated with the {18} in a shooting
procedurek is the eigenvalue index andnt is the number of intervals in the basic partition.

k tol = 107° tol = 1078 tol = 10710
0 10.3685071614415  10.3685071618259  10.3685071618362
1  10.8652157041883  10.8652157103674  10.8652157105314
2 39.9787447902932  39.9787447898867  39.9787447898833
3 40.4797260951163  40.4797260884903  40.4797260884383
4 89.3266345425364  89.3266345424888  89.3266345424788
5  89.8272193331295  89.8272193323913  89.8272193322298
10 355.8058145966053 355.8058145987640 355.80581489876
15 632.6548104654120 632.6548104654298 632.65481086543
nint 2 3 4

Some results

We take again the first test problem (5.53). Table 5.3 showses@sults we obtained
with the CPM10,8} algorithm for different values of the input tolerance. Thstlline of
the table contains the number of intervais:t in the basic partition. Table 5.4 shows the
ratio of the true error to the estimated error for the two CRAM{8,6} and CPM10,8}.
This ‘goodness’ ratio has always values smaller or veryecto®ne, which illustrates the
adequacy of our error estimation.

We also included some results for the second test problesb)5Table 5.5 contains
the first eigenvalues of the problem calculated to a highraogu These eigenvalues cor-
respond to the roots of the mismatch function shown in Fi§u2e Table 5.6 shows some
results for a higher eigenvalue index. The second columwstlioe ‘exact’ eigenvalues
which were obtained using the algorithm with an input tabeeal 0~ 2. The eigenvalue
approximations calculated with an input tolerariée® are listed in the third column.
The fourth column contains the estimated ere® for these eigenvalues, i.e. the differ-
ences between the reference eigenvalues and the basieadigen Again one can see the
accuracy of the error estimates.

All calculations were done using the CRID,8 method, however the same accuracy
can be reached using the CP816} method. In most cases, the CRP816} method needs
some more time than the CR0,8} algorithm. The reason is that the CP8)6} method
needs more meshpoints in its partition than the GB8/8 method.

5.4 Conclusion

In this chapter we discussed the extension of the CPM tomsgstd coupled Sclidinger
equations. As for the one-dimensional problem, a Maplegarogvas developed to com-
pute the expressions of the perturbation corrections fockiss of CPM P, N} methods.
A CPM{10,8} algorithm was presented.
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Table 5.4: Ratio l2ctu2lerrorl for the first test problemtol = 10~%). k is the eigenvalue index

|error estimate|

andnint is the number of intervals in the basic partition.

k  CPM{8,6; CPM{10,8}
0 1.000 1.001
1 0.993 1.001
2 1.000 0.998
3 0.998 0.997
4 1.002 1.002
5 1.001 1.000
10 0.997 0.887
15 0.999 0.995
nint 6 3

Table 5.5: The first 6 eigenvalues of the second test problem (5.55)-(5.96)lated with the
CPM{10,8} in a shooting procedure\ E is the error estimate; is the eigenvalue index andnt
is the number of intervals in the basic partition.

tol = 10712 AE

14.94180054416473 3.6(—15

17.04349658304373 3.8(—15

21.38042052885422 1.8(—14
(~15
(—14
(_

1
1

26.92073133400956 6.0(—1
51.82570724029870 4.3(—1
55.80351609486795 2.8(—14

nint 81

abdhwWNRFRO|F

)
)
)
)
)
)

Table 5.6: Some higher eigenvalues of the second test problem (5.55)-(5he6gxact eigenvalues,
the calculated eigenvalues fesl = 10~° and the corresponding error estima®®&. & is the
eigenvalue index andint is the number of intervals in the basic partition.

k true eigenvalue tol =106 AE

201 31702.815244147 31702.8152435166-6.3(—7)
202 31747.557394158 31747.557394158M4.0(—10)
203 32069.904602246 32069.9046041610 1.9(—6)
204 32950.776323037 32950.7763247290 1.7(—6)

nint 81 15
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We also discussed the computation of the eigenvalue profdesystems of regular
equations. Using a CPM in a shooting procedure, eigenvalteesalculated accurately.
However such a shooting method does not determine the irfdie® eigenvalue. To solve

this problem, the algorithm has been supplemented by Agkissnatrix generalization
of the Piifer transformation.






Chapter 6

Singular problems

Until now the main focus was on regular Sturm-Liouville arch®dinger problems de-
fined on a finite integration interval for which the CPM wer@wh to be very efficient.
However many problems are defined on an infinite integratimarval, i.e.a = —oo
and/orb = +oo. Other Sturm-Liouville problems have singular endpoittiaf is at least
one ofp~!, ¢, w is not integrable in any neighbourhood of the endpaimtr 5. Both
problems defined on an infinite integration interval and f@ois with singular endpoints
require a special numerical treatment.

6.1 A singular Sturm-Liouville problem
A singular problem is, of course, one that is not regular. More pregiszclassical

singular Sturm-Liouville problem is one that is defined by 8turm-Liouville differential
equation

d dy(x) _
1 [0 2] + st = Butaiio) 6.1)
on a finite or infinite intervala, b) wherep, w andq are piecewise continuous withand
w strictly positive and one or both af b is a singular endpoint. The endpoint (say)- b

is singular if one or more of
dx, /\q|dm, /\w|dx (6.2)

/5

diverges atr = b, and regular if they all converge. The above allows the emipo=
—oo or the endpoinb = +oo to be regular, but from the computational viewpoint some
special treatment will be needed to deal with the infinitegnation interval.

The theory of singular Sturm-Liouville problems is more gizated than for regu-
lar Sturm-Liouville problems and gives rise to a whole ran§difficult numerical tasks,
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such agi) the classification of the endpoinisb as limit-circle or limit-point and oscil-
latory or nonoscillatory(ii) automatically finding appropriate (approximating) bouyda
conditions in the endpointgjii) determining how many eigenvalues there are, if this is
finite; (iv) finding resonances (quasi eigenvalues) within the contiagpectrum (see
e.g. [106] and [38]).

Since the theory for singular problems can be very intricat only attempt to de-
scribe briefly some of the main points. More concrete we wikfly discuss in section
6.2 the different types of singular endpoints and the fornthef associated eigenvalue
spectra. For the full theory, we can refer to the classicaks/of Weyl [129], Kodaira
[69], Titchmarsh [119], or Dunford and Schwartz [33] and fonumerical viewpoint to
[105].

For singular problems and problems defined on an infiniteynateon interval ann-
terval truncationprocedure must be adopted. For instance assume thdtis a singular
or infinite endpoint, and: = «a is regular and finite (the case of two singular or infinite
points is a simple extension of this case). We then choose 8bra b and solve a trun-
cated problem offu, b*] to obtain our results. The choice &f will generaly depend on
the indexk of the eigenvalue sought, and it will also be necessary tmgagome sort of
artificial boundary condition at = b*. We will discuss a truncation procedure for prob-
lems with infinite endpoints in section 6.3, while in secti®da we consider the treatment
of a specific class of singularities.

6.2 Classification of singular endpoints

The most important properties of a singular endpoint aretegl-Kodairalimit-point,
limit-circle classification, which is independent &f;, and whether it isoscillatory or
nonoscillatory which may depend o’. To avoid making all statements twice (once at
each end), we will often use the letteas a generic endpoint, i.e. either= a ore = b.

6.2.1 Limit-point and limit-circle endpoints

The primary classification of a singular endpoint is the silzed one of Weyl [129], Ko-
daira [69] and Titchmarsh [119] as follows.

The endpoint is limit-circle (LC) if e is singular and all solutiong(x) of the Sturm-
Liouville differential equation arequare-integrablé¢Z?) ate with respect to the weight-
functionw, i.e., for someE any solutiony(., £) of the differential equation (6.1) satisfies

/€+6 ly(z, E)*w(z)dzr < +oo. (6.3)

Otherwise the equation is calldichit-point (LP) atz = e, that is for someZ there exists
only one nonzero solutio(., E) (up to a scalar factor) of the differential equation which
is square-integrable at the endpainiThis LC/LP classification is independent Bf(see
[126]). In the LP case no boundary condition is required at e to get a well-posed
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Sturm-Liouville problem: the condition (6.3) is sufficietgtee [88]). For the LC case
however, a boundary condition is needed.

As mentioned in [88], for both LP and LC, if the problem comest has &th eigen-
value, then imposing the boundary conditigfz*) = 0 at the truncation point* yields
a regular problem whoskth eigenvalue converges to th¢h eigenvalue of the original
problem ag* — e.

6.2.2 Oscillatory and nonoscillatory behaviour

A second classification is intnonoscillatorybehaviour, for which some solution and
hence every solution has only finitely many zeros in somehieigrhood of the endpoint
e; and oscillatory, for which every solution has infinitely many zeros nearFor LC
endpoints this classification is independentpfor LP endpoints it may b&-dependent.

For each singular endpoimt= e of Eq. (6.1) one and only one of the following cases
occurs:

e O: Eq. (6.1) is oscillatory at = ¢ for all real E.
e N: Eg. (6.1) is nonoscillatory at = ¢ for all real E.

e N/O: There exists a real numbarsuch that (6.1) is nonoscillatory at= ¢ for all
E € (—o0,A) and oscillatory at: = e for E € (A, +00). The cutoff valueA may
be oscillatory or nonoscillatory.

Independently of square-integrability, if for a given rdalsolutions of the Sturm-
Liouville differential equation are nonoscillatory at then there is a unique (up to a
constant multiple) ‘small’ solutiom, (x), calledprincipal or subdominant such that ifz
is any solution linearly independent gf, we have

yp(x)/2(x) = 0asz — e. (6.4)

For this and other related results on principal solutiores[d4&]. For both LPN (limit-
point nonoscillatory) and LCN (limit-circle nonoscillatg, the ‘small’ principal solution
is the most numerically stable. In the LCN case there is oreiapboundary condition,
theFriedrichs boundary conditianwhich selects the principal solution for afy This is
the boundary condition that is relevant in almost all phgkigplications. For a discussion
of the Friedrichs boundary condition, see [94].

6.2.3 Classifying the spectrum

Whereas the spectrum of a regular Sturm-Liouville problemags consists of a sequence
of isolated, simple eigenvalues tending monotonely-te, that of a singular problem is
a closed infinite subset of the real line which can show a watéety of ‘shapes’. The
most common cases are:

(a) The eigenvalues form an infinite sequence bounded beitwiveo the only accu-
mulation point, as for a regular Sturm-Liouville problem;
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(b) As case (a), but a sequence unbounded in both directientgnding to both-oco
and+-oo;

(c) Aninfinite sequence of eigenvalues, bounded below, with finite accumulation
point F. such that allZ > E, are in the continuous spectrury;

(d) Afinite, possibly empty, sequence all less thliansuch that allE > F. are ino..

Example 6.1 An example of a singular problem having both discrete spatifeigen-
values) and continuous spectrum)is the hydrogen atom equation

y' = (=1/x+2/2* = E)y, a=0,b=+oc. (6.5)

This problem has a discrete spectrum with exact eigenvalites formE, = —1/(2k+ 4)2,
k=0,1,... and a continuous spectrum = (0, +00).

The limit-circle/limit-point (LC/LP) and nonoscillatofgscillatory (N/O) classifica-
tion of endpoints tells us a lot about the spectrum. Therdiaegrossible combinations
at an endpoint:

LCN: LC and nonoscillatory for all reak.

LCO: LC and oscillatory for all reak.

LPN: LP and nonoscillatory for all redl.

LPN/O: LP and nonoscillatory foF less than some critical, oscillatory forE >
A. The changeover point is the infimum of thecontinuous spectrum

e LPO: LP and oscillatory for all reak.

This includes cases of regular endpoints since we may regeaagular endpoint as an ex-
ample of an LCN endpoint. There are close connections betttesoscillatory/ nonoscil-
latory behaviour of solutions, the LP/LC endpoint clasatiiens, and the qualitative prop-
erties of the spectrum, particularly, the location of diterand continuous spectra, and
boundedness below of the spectrum.

A problem with no LCO or LPO endpoint has a spectrum bounddodnheand the
eigenvalues can be counted from the lowest digeupward to form an increasing se-
quence(E},) (possiblily finite or empty), the integéd, the eigenvalue index, being the
number of zeros of the associated eigenfunctiofuirb). This case is thus the closest to
aregular problem.

By contrast a problem having one LCO endpoint and one LCN guleg endpoint
will have a discrete spectrum with an infinite decreasingieage extending te-co, as
well as an increasing sequence tending-te. Then all the eigenfunctions have infinitely
many zeros clustering at the LCO endpoint, so the eigensalae no longer be labeled
by the number of zeros ifu, b) as in the nonoscillatory case.

When one of the endpoints is LPN/O there is a finite or infinitefsassibly empty, of
eigenvaluedyy < F; < --- < E}, bounded above by a continuous spectrum.

For a LPO endpoint, for all redl the solutions oscillate infinitely often and are not
square-integrable. The spectrum is then the whole reabligethere are no eigenvalues.

There are also some other possibilities, such as bands tihaons spectrum, sepa-
rated by gaps. Such situations can occur when the coeffitinotions are oscillating on
an infinite interval.
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Our MATSLISE package (see chapter 7) only solves problems with no osgifla
(LCO or LPO) endpoints, that is problems with a spectrum legrbelow (and possibly
bounded above by a continuous spectrum) wherestheeigenfunction has precisely
zeros in the intervala, b). The numerical problems in the oscillatory case are partic-
ularly difficult. In this case every eigenfunction has annité number of zeros in any
neighbourhood of the endpoint and specialized technigueseguired (see [18]).

6.2.4 The automatic classification of Sturm-Liouville problens

As already mentioned, Sturm-Liouville problems can besifasl as regular or singular,
limit point or limit circle, oscillatory or nonoscillatoryFrom the classical Sturm-Liouville
solvers only SLEDGE [101] has an automatic endpoint clasgitin algorithm build-in.
The algorithm (by S. Pruess, C.T. Fulton and Y. Xie) is based aumber of evaluations
of the coefficient functions near the endpoints and the metdiclassification information
can be used to improve the determination of eigenvaluesigedfeinctions.

6.3 Problems defined on an infinite integration interval

In the previous chapters we devised the CPM and LPM algostfon a Schodinger
problem defined on a finite integration interval. In this sttve now discuss the devel-
opment of a truncation algorithm for S@uinger problems defined on an infinite integra-
tion interval. We adopt the technique developed in [57] fanamonic oscillators, based
on a WKB-approximation (named after Wentzel[128] - Kramét$} Brillouin[27]) and
apply it on a larger class of potentials.

We also show that a separate technique, with better resahshe introduced for the
potentials with a Coulomb-like tail. The explicit use of #gymptotic form of a Coulomb
equation leads us to a smaller cutoff value (truncationtp@ind more precise boundary
conditions.

We will use the truncation algorithms in combination with BINZ, but the procedures
discussed in this section can equally well be applied folLfPk!.

6.3.1 Truncation of an infinite integration interval
Introduction

Let us first illustrate things by considering an example. fige the problem consists in
computing the first eigenvalues of the hydrogen problem

I(+1) 1
y'(z) = ( ( p ) _ —- E) y(z), z € (0,+00), (6.6)
giving exact eigenvalueg), = —1/(2k + 4)%, k = 0,1,... whenl = 1. We simply
impose the regular boundary conditiopg) = 0 = y(b*) wheree is a small and* is
a largez-value, and solve the resulting problem ferb*]. Table 6.1 shows the obtained
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Table 6.1: The eigenvalues of the truncated hydrogen problem0ai0f)1, 1000], computed with
CPM{16,14 andtol = 10~ 2.

k By, |Ex — Ex| | k Ey |Ex — Ex
0 —0.062500000000 4.41(—15) | 11 -0.001479288720 1.22(—9)
1 —0.027777777778 1.14(—15) | 12 -0.001275339874 1.70(—7)
2 —0.015625000000 1.30(—16) | 13 -0.001106144110 4.97(—6)
3 —0.010000000000 3.94(—16) | 14 -0.000939152963 3.74(—5)
4 —0.006944444444 8.02(—16) | 15 -0.000744066802 1.21(—4)
5 —0.005102040816 1.29(—15) | 16 -0.000515946529 2.56(—4)
6  —0.003906250000 1.50(—15) | 17 -0.000257573592 4.35(—4)
7 —0.003086419753 1.52(—15) | 18 0.000028739013 6.54(—4)
8  —0.002500000000 1.45(—15) | 19  0.000341439723 9.08(—4)
9  —0.002066115702 9.13(—16) | 20  0.000679441392 1.20(—3)
10  —0.001736111109 1.75(—12) | 21  0.001041942107 1.51(—3)

eigenvalue approximatiorfs;, for the truncated problem with= 0.0001 andb* = 1000.
The CPM 16,14 method is used with a user input toleranteé = 10~'2. The first
eigenvalues from the truncated intervg} obviously agree with those from the infinite
interval £,. However, wherk is further increased the agreement gradually deteriarates
In particular, all eigenvalues with > 18 are even positive. An increase withof the
value ofb* is then needed to preserve a certain level of accuracy.

The need to increase the valuebdfwith the indexk is also illustrated in Figure 6.1,
where the first eigenfunctions of the hydrogen equationlaoe/s. The horizontal dotted
lines represent the energy levels of the (exact) eigensand the associated wavefunc-
tions (eigenfunctions) are shown on the same level. Thefwagton is oscillating in the
region where the eigenvalug is larger than the potential function (i.€. > V (z)) but
it decreases exponentially in the so-called classicalljiflen region £ < V(x)). The
value of the truncation poirit* for a certain value oF should thus be taken far enough
into the classically forbidden region to be able to impgdé&) = 0 as boundary condition
without loss of accuracy in the eigenvalue calculations.

Selection of the cutoff value

The need for finding a rule for an accurate updating of theftutdue b* in terms of
E is not restricted to the case of Coulomb-like potentialsinathe hydrogen example.
The problem was already considered in [57] by Ixaru for ¢esttits. He proposed an
algorithm based on the WKB-approximation. We will show nowttthis algorithm is
also applicable to other potential forms. We will describe procedure for the case
whereb is infinite. An infinite endpoint: can then be treated in the same way.

Let us fix the value of and letx; be the corresponding outer turning point, that is
the rightmost point wher& = V(x). We also assume th&i(x) > FE for all z > x;.
As we are interested in the physically acceptable waveinmete normally impose the
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Figure 6.1: The first eigenvalues, eigenfunctions and potential of the hydrogestieq

asymptotic conditionim, ., y(z) = 0. The Schddinger equation has two linearly in-
dependent solutions and for> z; these are well described by the WKB approximation,
which means in essence that

y+ () ~ exp[tw(xy, )] (6.7)

where 2

w(z1, 73) = / A()dt with 2(z) = [V(z) — B]M2. 6.8)
As a matter of fact, the genuine WKB formulae contain also ®fdt’ (z)—E] '/ but its
consideration would only complicate the derivation withaltering the main conclusion.
The form (6.7)-(6.8) allows using simple relations like

y+(r) = 1/ys() (6.9)

and
Yy (z) = £2(2)y+(2) (6.10)

in deriving the formulae below.

The problem is to determin& as the leftmost point such that the cut does not affect
the accuracy. In applications initial conditions which rigrthe physical condition will
be imposed at this point (these af@*) = 0 andy’(b*) = A) and the numerical solution
will be propagated backwards. The value of the constagt 0 is arbitrary because the
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equation is homogenous. The general solution is a lineabowtion of the two linearly
independent solutions,

y(@) = aqyi(z) + a-y-(z), (6.11)
and similarly for its first derivative,
y'(x) = ary (2) + oy (2). (6.12)

On imposing the stated initial conditions and applying thkations (6.9) and (6.10) we
get

o, = A=) Ay ()
T2t T 22(b%)
and then .
y(z) = W(s<x,b*) ~1), (6.13)
y(z) = Az(x)gz((::))y‘ @) (x5 + 1), (6.14)
where
S(z, b*) = [y4(@)y—(b*)]* = exp[—2w(z, b*)]. (6.15)

We see that(z, b*) depends on the distance betweeandb*, to decrease fastly when
2 moves to the left, for fixed*, or whenb* moves to the right, for fixed. The influence
of the position ob* on the value of the logarithmic derivative at somehat is

S(x,b*)+1
S(z,b*)—1"

= z(x)

depends on how(x, b*), which measures the influence of the propagation fbono =,
compares with the other term (1 or -1) to which it has to be ddé&®r double precision
arithmetic, S(z, b*) is no longer ‘seen’ if it is smaller than0—16. It follows that no
gain has to be expectediif is chosen bigger than the value which ensures simply that
w(z, b*) ~ 18 (equivalent taS(x, b*) = exp[—2w(z, b*)] ~ 10716). Taking forz the
turning point, the condition for the determination of thé&able b* is

.
szm:/[wm—mezw (6.16)

and this will be used in all runs.

What this condition (6.16) actually says is that the areacmsel by the energy level
and the potential function should be sufficiently large. sTisiillustrated by Figure 6.2:
when the potential functiol («) increases rapidly the cutoff poiht can be close to the
turning pointz,; when the potential increases less rapidly the cutoff poiast be chosen
further away from the turning point.
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Figure 6.2: The selection of the cutoff value using the WKB-condition (6.16).

Eigenvalue computation

Suppose that we want to compute the energy spectrum betitiggrand E,,,,... First a
suitable cutoffb* is computed fot? = F,,,, i.e. we look for the leftmost poirit* such
thatj,f: [V (2) — Emax)'/?d2z > 18. The integral is approximated by repeated application
of the trapezoidal rule which is accurate enough for suchstimation. As for a regular
problem, we then generate a partition over the intefwdl*| and calculate the quantities
associated to this partition. One of these quantities istheeyl” which contains for each
step the constant reference potential used by the CPM tigurFor each trial valug of
Ein [Ewin, Fmax] appearing in the shooting procedure, a truncation goifa, b*] can
then be found. The integral used to deduce a valué &@m now easily be approximated
usingV in the quadrature formula (so no new function evaluatiorig @f) are necessary):

b ig
/ V(z) — E)'?de ~ Y hi[Vi — E]'/? (6.17)

=1y

wherei, is the index of the interval containing the outer turningntoh,; andV; are the
stepsize and constant reference potential oftthstep. The solution is then propagated in
the shooting procedure fromup to the matching point,,, and fromb (where the solution
is assumed to be zero, i.e. the right boundary conditiorkisrtasy (b) = 0) down tox,,

to generate the mismatch. A new trial valligs calculated in terms of this mismatch and
the procedure is repeated as many times as necessary to thigta@igenvalue within the
tolerance specified by the user.
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Table 6.2: The first eigenvalues of the harmonic oscillator calculated with €FL4} andtol =
107"

k b Es

0 5.7306 0.999999999998

1 6.1815 2.999999999999

2  6.6459  4.999999999999

3  6.6459  6.999999999998

4  7.0940 8.999999999997

5 7.5422 10.999999999996
6 7.9903 12.999999999995
7 7.9903 14.999999999994
8 8.4360 16.999999999999
9 8.4360 18.999999999995
10 8.4360 20.999999999995

Table 6.3: Some higher eigenvalues of the harmonic oscillator calculated with {dBN4} and
tol = 1072,

k b Ey
100 17.4590 201.000000000003
500 35.0838 1000.999999999998
1000 50.1788 2001.000000000012

Numerical illustrations

Consider the harmonic oscillator defined over an infinitegnation interval:
y' = (2* —E)y, z€ (—00,+00) (6.18)

with exact eigenvalues given by, = 2k + 1, K = 0,1,.... We solved this problem
with the CPM 16,14 method included imATSLISE (with input toleranceol = 10~12).
Table 6.2 shows the first eigenvalues obtained imTBLISE. When asking for the cal-
culation of the first 11 eigenvalues, the value obtainedfais 8.4360 (anda* = —b*
due to the symmetry of the problem). The partition is thenstmcted over the trun-
cated integration intervdk*, b*]. However during the shooting process, the solution i
only propagated on differert, b] intervals witha and b two meshpoints in the parti-
tion andb < b*, @ = —b. The second column shows the valuebasbtained for each
eigenvalue. Figure 6.3 shows the eleven lowest-energytigetions of the harmonic
oscillator problem. Again the horizontal dotted lines esg@nt the energy levels of the
(exact) eigenvalues and the associated wavefunctionsriieigctions) are shown on the
same level. It is clear that the chosewalues are all situated in the classically forbidden
region and that an eigenfunction can be assumed to be zedarresponding value.
Table 6.3 shows that also for higher eigenvalues good cuatifiesh are obtained.

]
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Figure 6.3: The first eleven eigenfunctions of the harmonic oscillator.

Table 6.4: Some eigenvalues of the hydrogen problem calculated with {aBM4 andtol =
10712

k b Ej,

0 1.05E2 —0.0625000000000
10 1.27E3 —-0.0017361111111
100 5.32E4 —0.0000240292195
1000 4.25E6 —0.0000000249003

Let us also reconsider the hydrogen problem. Table 6.4thst®igenvalue approxi-
mations and truncation points for some differéntalues. All digits shown in the eigen-
value approximations are exact. The valué afcreases rapidly witlk.

6.3.2 Adapted boundary conditions for Coulomb-like potenials at
large distance

As shown in the previous section, a WKB-approach can be usauatéin good choices for
the cutoff values of the integration interval. These cupafints are chosen large enough
such that the solution in these points may be assumed to beldewever the algorithm
can be improved for problems with a potential which behagea @oulomb potential in
the asymptotic range, that is for largevalues. Using an approximation of the asymptotic
Coulomb function more precise boundary conditions can Imstcocted which allows us
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to take smaller cutoff values.

The Coulomb equation in the asymptotic region

We consider the Coulomb equation of the form

Z 1
y”+<E+—l(H; )>y:O, x> 0. (6.19)
X X

where Z is a constant. This Coulomb equation is an example of a r&tiakbdinger
equation, as we will see in section 6.4.

With the change of variable
r

= —, 6.20
WA, (6.20)
and dividing by—4F Eqg. (6.19) becomes:
d*w 1 Z (1+1)
el + <4 + Wy ) w=0, w(r)=uy(z(r)). (6.21)
When we take
=0+ 1 K= _Z_ (6.22)
a 2’ W —E '
we obtain the Whittaker differential equation [3]
d*w I
d7‘2+(_4+7‘+r2)w_0. (623)

The solution of this equation can be expressed in terms ade¢bend confluent hyperge-
ometric function (see Eq. (13.1.33) in [3])

r 1
Wi u(r) = eifr“Jr%U(i +u—r,142u,7), (6.24)

where, according to Eq. (13.5.2) in [3](a, b, r) can be written for large as

(@)n(l+a—10),
n!

Ula,b,r) = T*QZ

n

(=r)™" (6.25)

with

(a)o =1,
(@), =ala+1)...(a+n—1).

This means that for large we can write Eq. (6.24) as

Wi u(r) = e 2t Z cpr " (6.26)
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where the coefficients, are defined by
Co = 1,
nm+Depr1=—(1+1=-r+n)(-l—r+n)c,. (6.27)
The first derivative (with respect to the original Coulomdriablez) is then

dW,i”u de,,u

=2vV—-F 6.28
dx dr ( )
with (for larger)
dWm,p, _ 1 K — 5K —n—1
e 2WK,7,L(7‘) + . Wy u(r) —e 2r gn ne,r . (6.29)

We have the additional result that the derivativéiaf ,, andW,g’ u with respect taF can
be expressed as

AW x AW u(r)
e = — . 6.30
dE v—-F dr ( )
and
d dWey,  m d dW,u(r)
dE dx ~ —Edr dx
d*W,. ,.(r)
= _Qp— T HVJ 6.31
T (6:31)

1 K %*/LQ
:21} (_4+T+ B} WK,M(T)'

r

These derivatives with respect to the energy are needed iNdtvton iteration procedure
to obtain the eigenvalue approximations as the roots oftibetsrg mismatch function.
This means that we need the derivatives with respect to teeyerio evaluate)’(E;) in
the Newton formula

Ev1 = By — ¢(Ey) /¢ (Er) (6.32)

whereé(E) = yryyr — yry;, is the mismatch function (see section 3.2.2).

Adapted boundary conditions for problems with a Coulomb-like potential in the
asymptotic region

The formulae derived above can be used to improve the triamcalgorithm for problems
which behave as a Coulomb problem in the asymptotic regiastedd of assuming that
the solution is zero in the truncation potntve can use Eq. (6.26) and Egs. (6.28),(6.29)
to obtain more precise values fgfb) andy’ (b).

We also want to mention that as the eigenvalue inklércreases the eigenvalues
of a Coulomb problem come close to zero. As a resulincreases very rapidly with
increasing: and the factor” in Eq. (6.26) and Eq. (6.29) can give rise to some overflow



144 SINGULAR PROBLEMS

problems. However in the shooting procedure the valueseofett-hand and right-hand
solutions can be normalized arbitrarily. This means thabwlg need to know the ratio
WY ./Wi . inb. So we construct the expressions for the scaled wavefursdtiy , such

thatW,, , = 1,i.e..

W) = 1. (6.33)
Wes (1) = 2v=F ), (6.34)
d‘;Vgu (r) = — \/% Q(r), (6.35)

with
Q) = L4 Znnear " (6.37)

2 r DopCnr

These last expressions are used to compute the boundargiaosidh the cutoff poinb
for problems which behave like a Coulomb problem arotin@his allows us to cut off
the interval even at points where the solution is not yet ferclose to zero).

Levin’s summation algorithm

The accurate summation of the asymptotic se¥iesc,r ™ and) ", nc,,r~" ! in (6.37)
gives rise to some problems. The evaluation of such serierbgt summation is very
difficult in so much that the required number of terms can bezwery large and uncon-
trolled numerical instabilities may occur. Some specigdrapch should be used instead
and we have taken advantage of the convergence accelematidummation procedures.
Generally, given a sequengg, which can be the sequence of the partials sums of a series,
these procedures consist in introducing a transformatidheosequence which enables
us to obtain either a more rapidly convergent sequenceg if#élguence has a limit, or an
approximation of its sum (anti-limit), if the sequence isaigent but deduced from an
asymptotic series. There are a large number of such metBedse(g. [26]). We have
used the Levin algorithm [80], the best suited for summiregethymptotic series. We will
describe in short the main ideas of this Levin procedure.

If we want to construct a transformation which is able to &rege the convergence
of an infinite series

i anz™ ", (6.38)
n=0

we are confronted with the practical problem that the infation contained in a finite
string of partial sumsy, s1, . .., s, has to be extracted and utilized in a way which is
more efficient than the conventional approach of adding wpterm after the other. We
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assume that for ab € N a sequence elemenf can be partitioned into the limit and
the remainder,
Sp =S+ Tn. (6.39)

This essentially means that we have to find a way of elimigatie remainder,, and
determining the limits at least approximately by exploiting the information stbire the
finite sequencay, s1, .. ., s, Of the partial sums.

The idea of Levin's transformation is to find a sequeagewhich gives the leading
behaviour of the remainder,, so that

Sp — S Tn

=— —¢ n— 0. (6.40)
Wn W
One chooses
Sp — S C1 Co Ct
~ e — 6.41
o 0w T T Gy (6.4

whereg is some nonzero constant. This is a Poigegpe expansion which is equivalent
to

C1 C2 Ct
S”Ns+w"<60+(n+ﬁ)+(n+ﬁ)2+ +(n+ﬁ)t>' (6.42)
By inserting values of,, andw,, into (6.42) we obtain a system of equations which can
be solved fors giving an approximate value for it. For this method a reagrsicheme
also exists (see [127]).
Levin suggested some simple remainder estimateshich can be computed from at
most two terms,, of the series (6.38) to be transformed. With the help of thes®inder
estimates the following variants of Levin’s sequence ti@msation result:

- wyp, = (8 + n)ay, (u transformation)

- wp, = ay, (t transformation)

- wp, = an+1 (d transformation)

- wp = (apans1)/(an — any1) (v transformation).

We used thel transformation, the most appropriate for our series.

Numerical illustrations

Again we reconsider the hydrogen problem. Table 6.5 shoeséime experiment as
in Table 6.4, only now we used adapted boundary conditions iTheseb must be
sufficiently large so that the asymptotic expansion of thel@ub equation is valid. Here

we selected the values 6fusing the conditionf;’t [V(z) — E)Y2da ~ Y52, hilVi —
E)V? > 2 (instead of 18 as before). Compared to the results shownbfe &4, this
means that thé can be taken smaller now to reach the same accuracy in thevelge
approximations. The condition fétis now related only to the Coulomb behaviour and not

to the decrease of the solution according to the WKB appratxima For the hydrogen
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Table 6.5: Some eigenvalues of the hydrogen problem calculated with {OBM4 andtol =
10~ *2. Now the adapted boundary conditioniiis used.
k b Ey,
0 6.63E1 —0.0625000000000
10 8.32E2 —-0.0017361111111
100 4.60E4 —0.0000240292195
1000 4.11E6 -—0.0000000249003

Table 6.6: The first eigenvalues of problem (6.43) calculated with GRB|14}, tol = 10~'% and
adapted boundary conditionsép.
k b ba Ey

110.80 18.35 —0.061681846633

137.13 42.56 —0.027498099943

203.53 88.74 —0.015501561691

243.83 110.80 —0.009935496851

340.03 168.07 —0.006906701382

A WOWNEFO

problem, the value of 2 for the above integral was found to ufécgent to ensure an
accurate evaluation of the asymptotic series with a reddemamber of terms.

Table 6.6 shows some results for another test potentialavitboulomb-type decay at
Tr =00 .

2

X

(+1 —1+45e2®
y,,(x):(< ), oL

— E> y(z), z € (0,400), (6.43)

where we takd = 1 (see [123]). The eigenvalues were calculated using thetedap
boundary conditions in,. For this problem the Coulomb-type decay is reached already
for (approximately): > 18, that is the ternse —2* can be neglected far > 18. Therefore
we can use a, value which is very close to the turning point. To obtain thsuits in
Table 6.6, we used the right endpoint of the interval coimaithe turning point as cutoff
valueb,. Theb values are the cutoff values which would have been used uitapted
boundary conditions, thus the cutoff values selected by\¥kd3-condition. All figures
shown in the eigenvalue approximations are exact.

The procedure can also be used to obtain boundary condiiiores Woods-Saxon
problem

() = (l”“) 50[1— 56/(3(1+ 0)] /(L4 1) — E) y(2), = € (0, +00),

35‘2
(6.44)
with ¢ = e(@=7)/0-6 since for larger values the tern$0 [1 — 5t/(3(1 +1))] /(1 + t)
disappears and only the centrifugal telfh+ 1)/x? remains. When = 2, there are 13
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Table 6.7: The eigenvalues of the Woods-Saxon problém=(2) calculated with CPM|16,14},
tol = 10~'? and adapted boundary conditionshig= 15.

k Ey

0 —48.34948105212

2 —44.12153737732

4 —38.25342653968

6  —31.02682092177

8  —22.68904151018

10 —13.52230335295

12 —3.97249143284

eigenvalues in the discrete spectrum (see [123]). Tablet®Ws the approximations ob-
tained for these eigenvalues using the adapted boundadjtioms inb = 15. Again all
displayed figures are exact. For this problem the region thithCoulomb-like behaviour
starts relatively far from the different turning pointschese the central term (with expo-
nentials) is negligible only at rather large distaneex 30). But since the area delimited
by the potential and the energy increases quickly after tiberdurning point, the solution
decays rapidly (according to the WKB approximation) and weted&e the cutoff at more
reduced distance, where the central part is only a few omfemsagnitude smaller than
the other terms.

The hydrogen problem, as well as problems (6.43) and (6 #Aaalial Schibdinger
equations with a potential which exhibits singularitiegtud formz—2 andz~! near the
origin. In the next section, we discuss the procedure whiab applied to deal with such
singularities.

6.4 Solution near the origin for radial Schrodinger equa-
tions

An important class of Schdinger equations is formed by thadial Schdinger equa-
tions. The radial Scliddinger equation can be written as

y" = (l(l; D) +V(z) — E) y, x>0, (6.45)

wherex represents the distance from a spherically symmetric naclend! is a con-
stant arising out of the method of separation of variablgdieg to the three-dimensional
Schibdinger equation. Physicallyjs called an orbital rotational quantum number and the
termi(l+1)/2? is thecentrifugalcomponent of theffective potential(l+1) /z2 +V ().
Theunderlying potential/ (z) tends to a limit, thelissociation energyat infinity.

For the radial Sclidinger problem a specific problem occurs: the potentialris s
gular at the origin and therefore on a short interval arodn&ddrigin a specially tuned
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implementation is used, with{l + 1) /22 as reference potential and the rest of the poten-
tial seen as a perturbation. This technique was alreadyridedcin [58] and [112] for
the more general case of a system of coupled channeb8idiger equations. In [112],
Rizea described thedRsysFortran code which is included in the CPC library. A dif-
ferent technique, based dfl + 1)/z2+constant as reference potential and valid for a
single equation, is proposed in [62]. Here we apply the dlgorfrom [112] to the one-
dimensional Sclirdinger problem. This algorithm allows us to obtain the eatd the
solution ine # 0, wheree is small enough such that the centrifugal term is numesicall
dominating with respect to the other terms of the potenffde solution and its deriv-
atives in thise then form the starting values for the integration (using @#M) on the
interval [e, b].

6.4.1 Algorithm

A wide variety of physical problems has a potential which barput in the form

W+l 5@, R(z), (6.46)

2 T

V(z) =

whereR(z) is the non-singular part. We assume that the functi®pg andR(x) can be
approximated by a second degree polynomial over the iftérva:

S(.I) =So+ Six + 52372, R(JZ) = Ro+ Rz + RQCL‘Q, (647)
whereSy, S1, Sa, Ry, R1, R are constants. This means that the potential is approximate

by
(l+1) v

7 — +—+VW+Viz + Vou? (6.48)
X A
where
V_1=250, Vo =51+ Ry, V1 =852+ R1, Vo = Ro. (6.49)
2
With the operatot, = % — UL t D) andAV (z) = Vo + Vo 4+ Viz + Vaz? — E, we
X x X
can write the radial Scbdinger equation as
Ly(z) = AV(x)y(z) (6.50)

where the dominant term in~2 is retained in the left-hand side while the other terms are
collected in the right-hand side. This suggests a pertibapproach. This means that
we introduce a parametarand consider the equation

Ly(z) = MAV (2)5(x). (6.51)
The solutiony depends on the parameterUpon expandingi(z; A) in powers of),

(s A) = yo(x) + Mya () + Nya(z) + ..., (6.52)
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the coefficients, (z) are found to satisfy the recurrence relations
Lyo(z) =0, Lyg4i1(z) = AV(z)y.(x), ¢=0,1,.... (6.53)
For A = 1, the expansion (6.52) gives the solution of Eq. (6.50):
y(z) = yo(x) + y1(z) + y2(z) + ... (6.54)
For the zeroth order solution one takes
yo(z) = 2+ (6.55)

sincez!*1 is the regular solution of the equatidny,(x) = 0. The first perturbation, (z)
is then obtained using the recurrence relation in (6.53),

Lyr(z) = AV (z)yo(x) = AV (z)a' T (6.56)

which can also be written as

4
Ly, (z) = Z APyl (6.57)

p=1
whereAl = V_,, A2 =V, =V — E, A3 = V; and A} = V5. The first perturbation
y1(z) is then of the formy; (z) = 22:1 zp(x) wherez, () is the solution of the equation
Lzy(x) = ALz TP~L, (6.58)

In generalz,(z) = so(z)+s,(z) wheresy(z) is the regular solution of the homogeneous
equation and, (x) is a particular solution of the non-homogeneous equatigfx:) is al-
ready included in the final solution (it i (x)). It only remains to compute the particular
solution. Suppose, is of the following form

zp(x) = BYa", (6.59)
then Eg. (6.58) gives
[k(k —1) —1(1 4 1)|BYz*=2 = APz HP—1, (6.60)
By identification, it results that = [ + p + 1 and
AP
P __ 1
B = o p o) (6.61)

The first order solutiony; is then introduced in the right-hand side of (6.53) to com-
putey, and so on. Each'” perturbation is then obtained from an equation of the form

4q

Lyg(x) =) Abattr=! (6.62)

p=q
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with
Al =V_ 1Bq 1s
o -1
At =V Bl | +VyBI~,
A2 =V Bjj*} +VoBI_, + Vqu’l
AT =V BIY 4 VB + VB + VoBYZ|
Adi=3 =y B4(‘1 Y4 VoBl 1 + ViBi o + Vo BT
A4q 2 VB(q 1>+VB4q 5—|—VB4q 6
A=t =B Y L vpBle
1
Al =V, BllY,
(6.63)
We can write the perturbation gg(z) = ;fq:q zp(x) where each,(x) is of the form
zp(x) = Bl Pt (6.64)
with
M 6.65)
Bl) = . .
T p(l+p+20) (
As shown in [112] the calculation of the perturbatiansys-, ... leads to values which

typically decrease in magnitude. In our implementation,asdd (iteratively) as many
perturbation correctiong, as necessary to reach a certain preset accuracy.

6.4.2 Fitting of the potential

The algorithm requires an initial approximation of the puiel functionsS(z) andR(x)

of Eq. (6.46) by second degree polynomials. An approxinmatipshifted Legendre poly-
nomials is used, known to give the best fit in the least squemees We approximate the
function S(z) (the same can be done f&(x)) by

2
r)~ Y P (x) (6.66)
i=0

where theP’” are the shifted Legendre polynomials (see [3]):
Pi(t)=1, Pf(t)=2t—1, Pj(t)=6t>—6t+1. (6.67)

Using a least squares procedure, it can be shown that thiécte®sc; should be chosen
as follows: il [
=21 / S(r)P*(r/¢)dr. (6.68)

€ 0
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A four point Gauss quadrature rule was used to evaluate theggals. The approximant
of S(x) can then be expressed as a polynomiat:in

S(x) ~ Sy + Syx + Spr? (6.69)

with So = ¢ —c1 + 2, S1 = 2¢1 /e —6cz /e and Sy = 6¢2 /€2, The quality of the solution
of the original equation depends of course on how good is pipeoximation of theS
and R functions by polynomials of second degree. A valuedfehould be chosen which
is small enough such that the fitting by a parabola is suffilyieatcurate and there is a
strong domination of the reference potential (proportidoa —2).

It is also important to mention that the coefficiests S, S2 and Ry, Ry, Rs do not
depend on the energy and have thus to be computed only once at the beginning of the
whole procedure.

6.5 Other singularities: numerical treatment

The algorithm considered in section 6.4 only deals with aifigetype of singularities.
For other types of singularities it is possible to develapikir procedures which com-
pute the solution in a truncation point close to the singalatpoint. The user can also
apply the interval truncation manually, the user choosesjaence of regular endpoints
converging to the singular one and applies the CPM to eadheofegular problems. Of
course, this process can also be done automatically. Anitdgpocan be constructed
which selects an initial point* < b (in the assumption thdtis the singular endpoint).
The partitiona = 29 < 1 < --- < zy = b* is then first constructed on the interval
[a,b*] and the eigenvalue approximation is computed over thistipert An additional
meshpointz 1 € (b*,0) can then be added to the partition and a new eigenvalue ap-
proximation is computed. This process can be repeated aimiimber of successive
eigenvalue approximations seem to agree within the regdestcuracy. In each itera-
tion, the shooting algorithm for the next eigenvalue appnation is started using the
previous approximation, so that the process gets fastdreaguncated endpoint comes
closer tob.

6.6 Conclusion

In this chapter we considered the treatment of some singutddlems. In particular, we
discussed an interval truncation algorithm for problenfinge on an infinite integration
interval. This truncation procedure is based on the WKB-axipration of the wave-
function and selects a cutoff point which is large enougthghat the solution may be
assumed to be zero there. For a Sclimger problem with a potential which behaves as a
Coulomb potential at large distance, we described a mongraiecprocedure to compute
the value of the solution in the cutoff point.

For the important class of radial Séldinger equations, we discussed an algorithm
which can be used in a small region around the origin. Thisrélgn deals with the
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singularity of the problem in the origin and computes theigadf the solution in a small
valuee. This value of the solution im then forms the boundary condition infor the
truncated problem defined oviet b*] which can be solved by one of the CPM.



Chapter 7

The MATSLISE package

MATSLISE is a MATLAB package collecting the CPM and LPM codes for (ali@en-
sional) Sturm-Liouville and Scbhdinger equations. In this chapter we discuss the struc-
ture and use of this package. Given the interest of researahgarious fields (quantum
chemistry, quantum physics, ...) in this type of softwaresar-friendly graphical user
interface has been built on top of the package. This graphiex interface allows one

to enter the input in a straightforward manner, to controlaie parameters interactively
and to present the results graphically.

7.1 The MATLAB language

MATLAB is a software tool and programming environment thastbecome common
place among scientists and engineers. Working in MATLAB ihasever advantages and
drawbacks. With the purpose of a tool for research and emugahe advantages are
briefly

e MATLAB is a wide-spread, standardized programming enwinent with a big
number of built-in functionalities. Many useful mathencatifunctions and graph-
ical features are integrated with the language.

e Programming in MATLAB is easy.

e The multitude of MATLAB toolboxes allows programmers to olse from a large
number of prewritten functions to accomplish tedious odhasks.

¢ MATLAB runs on many platforms and operating systems.

e A MATLAB package like MATSLISE requires no installation or compilation (when
MATLAB is installed).

Whereas the drawback are mainly two points:
e MATLAB is commercial and costly.



154 THE MATSLISE PACKAGE

e Although operations on matrices are very fast, the ovepaed of MATLAB can
be poor. Since MATLAB is an interpreted (i.e. not pre-corag)l language, it can
be slow compared to other compiled languages (Fortran, C++)

7.2 TheMATSLISE package

MATSLISE contains an implementation of the CPM algorithms GRRI 10, CPM{14,12,
CPM{16,14 and CPM 18,16} discussed in section 3.4 and of the LPM code LPM[4,2]
(see section 4.2). These PPM algorithms are used as pragagatthods in a shooting
procedure in order to compute eigenvalue approximatiosgiéscribed in sections 3.2
and 4.4). A Pifer representation is applied which makes the search oéitfenvalues
more efficient. Also the truncation algorithms discussechiapter 6 for problems defined
on an infinite integration interval are included inAvsLISE as well as the procedure dis-
cussed in section 6.4 which deals with the singularity inatigin of a radial Schizdinger
problem.

As mentioned in chapter 6, it is not possible to solve prollevith oscillatory end-
points using M\TSLISE. This means that MrsLISE only solves problems which have
a spectrum bounded below where ttth eigenfunction has preciselyzeros in the in-
terval (a,b). The spectrum can be bounded above by a continuous spethisrmeans
that one of the endpoints may be LPN/OA®sLISE includes (part of) the SLEDGE au-
tomatic classification algorithm [101] to determine thenficof the eigenvalue spectrum,
i.e. to know the number of eigenvalues in the discrete specor to detect if there is a
continuous spectrum and where it starts. This informatedarned by the classification
algorithm is used by MTSLISEto return an error message e.g. when the user asks to solve
a problem with an oscillatory endpoint or when the users svemcompute eigenvalues
in an energy-range situated in the continuous spectrum.

The MATSLISE package is available for download at [2]. The file MATSLISB8ip
contains the latest version of the MATSLISE package. Urinipphe file creates a di-
rectoryMATSLISE with three subdirectories:

e GUI : collects all *.fig files and *.m files which produce the gragdliuser interface
(GUI). The GUI can be considered as the top layer of the pack#ge methods
from the GUI call the (public) methods from teeurce -directory. A subdirectory
of the GUI directory ispredefined_problems . This subdirectory contains
several problems (saved as *.mat files) which are predefimétsei GUI. Many of
these problems are included in SLTSTPAK [108] or the Pruragdton test set [102]
(see also Appendix C).

e examples : holds some example MATLAB M-files, demonstrating the usthef
different MATSLISE (command line) functions.

e source : contains the actual source-code. This directory collsotae classes:
a number of classes representing the different types ofigmadh schrod |, slp
distorted_coulomb ; some classes implementing the actual PPM algorithms:
cpm12_10, cpml14_12, cpml16_14, cpm18_16, Ipm10 and some auxiliary
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classes such as etgansformed_slp used by Liouville’s transformation.

These three directories need to be added to the MATLAB segat in order to run
MATSLISE. The MATLAB addpath command can be used for this purpose, e.g. the
commands

addpath([cd '/source/]);
addpath([cd '/GUI/);
addpath([cd 'lexamples/]);

add the three directories to the search path when the cudiremtory is the M\TSLISE
directory.

The current version of MTSLISE requires the symbolic toolbox of MATLAB. This
symbolic toolbox allows us e.g. to calculate the derivatiobthe coefficient functions of
a Sturm-Liouville equation in the implementation of Liollets transformation.

The numerical solution of a Sturm-Liouville or Séldinger problem by MTSLISE
is subdivided in three stages. In the first stage the partii@onstructed, this partition is
passed into the second stage where the eigenvalues artatedcun the third stage it is
possible to calculate the eigenfunctions of some of thensgjaes. Each of these stages
has its own methods (or functions) and information is pa$sed one stage to the other
by the input arguments of these methods.

7.2.1 Stage 1: Construction of the partition / Liouville’s transforma-
tion
Specification of the problem

First we have to define the problem to be solved. The followitigeme gives an overview
of the classes used in the representation of the equations:
@schrod @slp
|

{ |
@distortedcoulomb @transformedlp

A Schiddinger problem is represented by an object of the dakgsod . The PPM al-
gorithms are applied on objects of this type. To be able tdyajye PPM algorithm to

a Sturm-Liouville problem (i.e. an object of the typlp ) Liouville’s transformation is
used to transform th&lp object to aransformed_slp object. Theransformed

slp classis achild class sthrod : atransformed_slp object contains achrod
object, namely the Sctidinger problem obtained after Liouville’s transformatidut
also some additional fields (such as e.g.tfiendr© vectors, see section 3.3.2). Another
child class ofschrod is distorted_coulomb . The problems of thdistorted_
coulomb type are radial Scldinger problems for which the improved truncation al-
gorithm discussed in section 6.3.2 is applied when the prohis defined on an infinite
integration interval. Also the treatment of the singulaiit the origin seen in section 6.4
is applied for thesedistorted_coulomb problems.
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Using the constructor of the classhrod

sch
sch

schrod(V,a,b,a0,b0,al,bl)
schrod(V,a,b,a0,b0,al,bl,var)

a Schbdinger object is created. The first argum¥ftis a string representing the poten-
tial function V. The double precision constards b, a0, b0, al andbl specify the
integration interval and the boundary conditions. It i®akd to enterinf orinf for
the two input parameters andb. Good truncated endpoints are then determined auto-
matically for every eigenvalue, using the truncation aitipon discussed in chapter 6. If
there are less than eight input arguments, then the independriable is supposed to
be x, otherwise the independent variable is the character imgsim var andV is then
V(var ).

In a very analogous manner a Sturm-Liouville equation icigige:

sl
sl

slp(p,q,w,a,b,a0,b0,a1,b1)
slp(p,q,w,a,b,a0,b0,a1,b1,var)

wherep, g andware strings representing the coefficient functipfs), ¢(x) andw(z) (or
p(var ), g(var ) andw(var )) and the double precision numbexs, a0, b0, al, bl are
the endpoints of the integration interval and the coeffisieri the boundary conditions.
Againinf -values are allowed faa andb.

An object representing an equation witkliatorted Coulomb potential

(l+1 S(z
x T
is produced by

d
d

distorted_coulomb(l,S,R,xmax)
distorted_coulomb(l,S,R,xmax,var)

whereS andR are two strings (representing(x) and R(z)) and the orbital quantum
numberl is a double. xmax is the endpoint of the integration intervgd, xmax), in
many examplegmax=inf .

Initialization of the CPM or LPM

In addition to the classes for the equations themselvespeuof classes which imple-
ment the actual PPM algorithms, were developed :

@ppm
x

| !
@cpm @lpm
| |

[ ] ] |
@cpm1210 @cpml4l2 @cpml6l4d @cpml1816 @Ilpm10
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These classes collect the methods which construct theiparéind calculate the eigen-
values and eigenfunctions. The different PPM methods atarmces of the parent class
ppm This class collects the information and methods which edusy both the CPM
algorithms and the LPM algorithm. The clagsm contains all methods and properties
which are shared among the various CPM algorithms. The daféssescpm12_10,
cpml4_12, cpml6_14 andcpml18_16 only contain the information which is specific
for a certain order. In this way a new method of a given orderlimadded easily. Sim-
ilarly we have alpm10 class, which implements the LPM[4,2] algorithm of order 10.
Thislpm10 class is a child class &fm .

The user calls a constructor of a child class e.g.:

cp = cpml6_14(slp/schrod/distorted_coulomb,tol)

with tol a positive constant representing the accuracy requesttteinesults. This
constructor of the child class then calls the constructocpsfl. The cpm constructor
is never called by the user directly. The constructors stertcalculation of the par-
tition but when the first input argument isslp object some additional work is done
first. The Sturm-Liouville equation is converted to the Selinger form: that is the
slp object is transformed into ransformed_slp -object. As already mentioned,
atransformed_slp -object is aschrod -object but contains some more information
which is necessary e.g. to obtain the eigenfunctions of tiggnal Sturm-Liouville equa-
tion.

The partition of{a, b] (0r (¢, xmax| for distorted Coulomb problems whesés set by
an empirical formula) is constructed in terms of the tolemstol and some potential
dependent expressions (ng‘ff), C’,(#/), C,(,i’), C,(fj/) from Egs. (3.85)-(3.88) ant, from
Eq. (3.37) for the CPM), which will be used repeatedly in thead and third stage, are
calculated in each step of the partition and stored. Aduliily the execution of this stage
furnishes the value of the matching poiry, .

Itis important to point out that the partition is dictatedyoby the behaviour oV (x);
the value ofE is not involved. So the construction of the partition (stdgehappens
completely in advance of and separate from the calculafitieoeigenvalues and eigen-
functions (stages 2 and 3). At least this is true for a probléth a finite integration
interval. For an infinite integration interval however, freetition is not constructed in the
first stage, but in the second stage (see further). Afiedependence of the partition is
thus lost for an infinite problem: as seen in chapter 6 a higlgenvalue needs a larger
(truncated) integration interval than a lower eigenvallibis means that in the calcula-
tion of the eigenvalues (stage 2) a lengthening of the partinterval may be necessary,
which makes the eigenvalue-search for an infinite problemesehat slower.

7.2.2 Stage 2: Eigenvalue computation

In this stage the eigenvalues, in a range fixed by the usecadealated. The user starts
the calculation by calling a method from thpmclass:

E = get_eigenvalues(pp_child,pmin,pmax)
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E = get_eigenvalues(pp_child,pmin,pmax,indices)

wherepp_child is an instance of one of the child classes of tipen class orlpm
class. Ifindices s true , the eigenvalue€, (k = 0,1,...) with indicesk be-
tweenpmin and pmax are calculated; iindices is false or omitted the eigen-
values in the rangepjnin ,pmax] are calculated. The method returns a structbye

in which all information related to the calculated eigemedk) is stored. The fields
E.eigenvalues ,E.indices andE.errors are three vectorE.eigenvalues
contains the calculated eigenvalues in ascending ordeg. aShociated indices are col-
lected inE.indices  andE.errors  holds an estimation of the error for each eigen-
value. The fieldE.success is false when the PPM was not able to obtain the data due
to an error, e.g. when there is no eigenvalue in the inteprairh ,pmax]. In some cases

a warning is generated in the methget_eigenvalues  : e.g. when two eigenvalues
are so close that double precision accuracy is not suffitdedifferentiate between them
adequately.

The estimation of the error i&.errors s the difference between the calculated
eigenvalue (the so-called basic eigenvalue) and a refereigenvalue computed on the
same partition but with a higher order method. To make thihegr, let us assume that the
CPM{16,14 is used. Firstthe CPIL6,14 algorithm is applied to construct the partition
and to calculate the basic eigenvalue, and then the refertgenvalue is computed using
the higher order CPN1L8,16; (but on the CPM 16,14 partition). The difference between
the basic eigenvalue and the (more accurate) referencaveige forms the estimation of
the error in the basic eigenvalue. The Newton iteration ggedn the shooting procedure
for the reference eigenvalue starts with the basic eigaava&ince the difference between
the two eigenvalues is usually small, only a small number efvtdn iterations is neces-
sary and thus the calculation of the reference eigenvalygines an extra effort which is
almost negligible. Analogously, the error in a CPA\2,10 (or CPM{14,12}) eigenvalue
is estimated using the CPM4,12 (or CPM{16,14} resp.). Table 7.1 shows the ratio of
the true error to the estimated error (using the GR®14—-CPM 18,16} combination)
for the harmonic oscillator

y' = (:L'2 —E)y, z€ (—00,00), (7.1)

for which the correct eigenvalues are knowl;, = 2k + 1, £ = 0,1,..., and for the
hydrogen atom equation

1 2
y”<+2E)y, x>0 (7.2)
x T

with known eigenvaluess, = —1/(2k + 4)%, k = 0,1,.... This ‘goodness’ ratio al-
ways has values smaller or very close to one, which illussrétte adequacy of our error
estimation. When the first eigenvalues of the hydrogen atamatean are calculated with
tolerance< 10~'2 , the obtained eigenvalues are (nearly) as accurate as ttigmaagre-
cision (10~16). This means that the ‘actual error’ will be very close tox@r even zero)
which explains the smaller values in the last column of Table
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Table 7.1: Ratio —l2ctualerrorl —for the harmonic oscillator and hydrogen equation using

|error estimate|

CPM{16,14 at different input tolerances.

Harmonic Oscillator Hydrogen

k| 107 1071 107'2 107% 107 107'2

0| 1.016 1.006 1.034 0.987 0.994 0.931
1| 0971 0.929 0.692 0.978 0.707 0.021
210990 0.981 0.945 0.981 1.048 0.036
3] 0980 0.984 0.871 0.974 0.834 0.206
40991 0990 1.054 0.975 1.100 0.442
5| 1.000 0.996 0.909 0.974 1.016 0.959
6 | 1.020 0.999 0.995 0.975 0.987 0.901
71 0.989 0.993 0.995 0.961 0.992 0.975
8 | 0.988 0.995 0.884 0.968 0.991 1.012
9| 1.006 0.998 1.054 0.998 0.989 0.971
10 | 1.001 0.997 0.995 0.977 0.989 0.994

Since we have no higher order LPM available, we use a sligiffgrent procedure to
compute error estimates for the LPM[4,2] algorithm (sormgttanalogously is applied
for CPM{18,16}). This procedure was also used by Ixaru to compute erranasgs in
the SLCPM12 Fortran package [61]. A second partition is tooted (called the refer-
ence partition by Ixaru) by halving each interval of the foapartition. The reference
eigenvalue is then computed on the reference partition hecdetror estimate is again
formed by the difference between the basic and referenenedue.

For a problem with a infinite integration interval, an extidput argument can be
returned:

[E,pp_child] get_eigenvalues(pp_child,pmin,pmax)
[E,pp_child] = get_eigenvalues(pp_child,pmin,pmax,ind ices)

The returned objeqtp_child  then contains information on the constructed partition.
This partition was constructed on a truncated integratierval which is large enough
for the largest requested eigenvalue (see section 6.3ll¢igenvalue calculations were
done on (parts of) this partition.

Table 7.2 displays the times needed by CR#®|,14} (on a 2.4GHz PC) to calculate
some eigenvalues of the Mathieu equation

y" = (2cos(2x) — E)y, 0 <z <, (7.3)

and of the hydrogen atom equation (7.2). The Mathieu proliegregular problem with
a finite integration interval. This means that the shootiragedure for each eigenvalue is
performed on one and the same partition which was alreadstizanied in the first stage.
This explains why the time increases only very slowly witk #igenvalue index. For
the hydrogen atom equation however, the (truncated) iategr interval grows with the
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Table 7.2: Time (s) to compute some eigenvalues with CM,14} at different input tolerances.

Mathieu Hydrogen
k 10°% 107 107*? 107% 107 107'2
0 0.06 0.09 0.11 0.57 0.60 0.63

10 0.09 0.09 0.13 0.86 0.89 0.92
100 0.09 0.11 0.13 1.37 151 1.75
1000 | 0.11 0.13 0.14 3.44 3.94 4.78

10000 | 0.13 0.16 0.17 13.8 16.7 21.3

eigenvalue index and as a consequence the calculation gharhgigenvalue requires a
larger amount of time. The truncation algorithm is also lpatte reason why the com-
putation of Fy for the hydrogen atom equation needs more time than for thenisla
equation. Another reason is the larger amount of intervaedad in the partition con-
structed for the hydrogen atom equation.

7.2.3 Stage 3: Eigenfunction computation

Another method in thepm class which is visible to the user, is the method which allows
the calculation of the eigenfunction associated with aaterigenvalue:

get_eigenfunction(pp_child,e)
get_eigenfunction(pp_child,e,n)
get_eigenfunction(pp_child,e,ap,bp,n)

\%
\%
\%

where agairpp_child is an instance of one of the child classespi or Ipm. This
pp_child s the returned object from one of tkem or Ipm constructors or from the
get_eigenvalues method when the problem is infinite. To obtain a good appraxim
tion for the eigenfunction the eigenvalaenust be sufficiently accurate (e.g. by choosing
a small value fortol in stage 1). Ifn is omitted, then the eigenfunction is evaluated
only in the meshpoints of the partition. In most cases thebmmof meshpoints in the
partition is too small to have a good idea of the shape of therdunction. Therefore
the eigenfunction can be evaluated in more points by chgasisufficiently high value
for n: the interval pp,bp] is then taken and partitioned mintervals of equal size. On
these intervals the additional potential-dependent esgpvas are calculated and the prop-
agation matrix algorithm (2.80) is applied to produce thgeafunction. Only the part of
the eigenfunction corresponding with the-1 points in fap,bp] is returned. When the
input-argumentsp andbp are omitted, then the whole interval, b] is considered. The
structureV has three fields: the three vectdrsx , V.y andV.yprime of which the
meaning is clear.
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7.2.4 The Coffey-Evans example

As an illustration we compute the eigenvalues of an examuole f105], the Coffey-
Evans equation
—y"" + (=28 cos 2z + 2 sin® 2z)y = By (7.4)

with
y(—m/2) = y(r/2) = 0. (7.5)

For our first test run, we assume that the parameterequal to 20. The commands
used to solve this problem can also be founéxample8.m in theexamples direc-
tory. The example can be runned by enterex@mple8 in the MATLAB command
window. Here we discuss each of these commands. First wéfgpec Coffey-Evans
problem:

r=schrod(’-2 *20%c0s(2 *x)+2072 *sin(2 *x)2',...
-pi/2,pi/2,1,0,1,0);

Theschrod constructor is used, the first argument is a string repraggtite potential
function, the second and third argument are the two endpointhe integration interval
and the last arguments specify the boundary conditions.

We want to solve the problem with the CRIb,14 method. We initialize this
method by the following command

cp=cpm16_14(r,1e-10);

We have chosen the input tolerance tdlbe'°. The objectp now contains information
on the partition. Using the command

plot_patrtition(cp);

a plot of this partition and the meshpoints is made (Figutg. 7.
We ask for the first 11 eigenvalues

E=get_eigenvalues(cp,0,10,true);

The computed eigenvalues and the error estimates can thetessed through the fields
E.eigenvalues andE.errors . The lines

disp(sprintfCk \t E_k \t\t\t\t estimated error’))
for i=1:length(E.eigenvalues)
disp([num2str(E.indices(i),'%4.0f\t") * ' ...
numa2str(E.eigenvalues(i),’%16.12f\t") ' ...
num2str(E.errors(i),'%+5.2e")])
end

produce the following output
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Figure 7.1: Plot of the partition generated by AMsLISE for the Coffey-Evans potential with =
20.

E k estimated error
-0.000000002121 -2.05e-009
77.916195679902 +2.78e-009
151.462778348882  +2.40e-009
151.463223659596  +1.98e-009
151.463668990776  +2.40e-009
220.154229836780  +1.44e-009
283.094814694590  -8.70e-010
283.250743741632  -1.55e-009
283.408735402515  -9.90e-010
339.370665648747  -3.76e-009
0 380.094915551000  -1.04e-009

POoO0O~NOOOUOA,WNEOX

The eigenfunction associated to the fifth eigenvalue i,ér)), evaluated in 100 points
is given by

V=get_eigenfunction(cp,E.eigenvalues(5),100);
A simple plot command

plot(V.x,V.y);
xlabel(’x’)
ylabel(’y’)

produces Figure 7.2.
We can then compute some other eigenvalues, e.g. the eigesiztween 1000 and
1500:
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Figure 7.2: Eigenfunctiony, for the Coffey-Evans potential fg# = 30.

E=get_eigenvalues(cp,1000,1500,false);
which gives as result

k E_k estimated error
28  1047.204086283367  -2.83e-010
29  1105.794050195401  +1.28e-010
30 1166.423692498202  -6.14e-010
31  1229.087995655108  +2.09e-009
32  1293.782722437993  +4.12e-010
33  1360.504272201038  +1.78e-009
34  1429.249567674530  -6.13e-010

Note that these last eigenvalue computations still useahee artition, i.e. still the same
cp-object is passed to thget_eigenvalues method.

Even though the theory guarantees that for the separataadibouconditions (7.5),
there can be no multiple eigenvalues, the triple well of tledf&y-Evans potential pro-
duces triples of eigenvalues which can be made arbitraldlsecby deepening the well.
The potential looks like Figure 7.3. The parameietypically in the range 0 to 50, con-
trols the depth of the well. When we thus take= 50, the eigenvalues in the triplets will
be even closer than fgi = 20. The clustering of the eigenvalues causes difficulty for all
library codes (see [105]) and computation is often expensiie MATSLISE commands
are

r=schrod(’-2 *50*cos(2 *x)+50°2 =*sin(2 *x)"2',-pi/2,pi/2,1,0,1,0);
cp=cpml6_14(r,1e-14);
E=get_eigenvalues(cp,0,10,true);
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Figure 7.3: Coffey-Evans potential for different values 6f

k Estimate ofE/ Time(s)
0 -0.000000000002 0.5
1 197.968726516499 0.3
2 391.808191489040 1.0
3 391.808191489045 1.6
4 391.808191489061 2.0
5 581.377109231564 0.5
6  766.516827285497 1.5
7 766.516827285506 1.1
8 766.516827285516 1.6
9  947.047491585820 0.3
10 1122.762920067867 0.7

Table 7.3: Eigenvalues of the Coffey-Evans Equatigh= 50), computed in M\TSLISE.

When the tight tolerance of0—1* is requested, the CPM6,14} code in MATSLISE

delivers the output in Table 7.3 for the first 11 eigenvalusthile the code had to work
harder on some of the triplets, it was able to return what apgebe reasonable answers.

Numerically, clustering of the eigenvalues causes thendigetions to be very ill-
conditioned (the so-called ‘flea on the elephant’ effece g®5]). This makes it very
difficult for a Sturm-Liouville code to compute eigenfurats of the Coffey-Evans equa-
tion with a largers value. This difficulty can be (partly) avoided by using hadfige
reduction (see further).
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7.3 The graphical user interface

The methods mentioned in the previous section, can all Hedcdlom the MATLAB
command line. But in order to increase the ease of use andiéthe technical issues
from the user, a graphical user interface (GUI) has been bniltop of the classes in
MATSLISE. It slows the computations down somewhat; but on the othed higfacilitates
giving input, it gives the user more control and graphicatdees are built in.

The GUI-version of MTsSLISE uses the CPNIL6,14F method to calculate the (ba-
sic) eigenvalue and the higher order CPI3,16} is used on the same CRI¥6,14} par-
tition to obtain a reference eigenvalue. As seen in secti@rR/this reference eigen-
value enables an accurate error estimation. The (slowdy){@R,10;, CPM{14,12 and
LPMI[4,2] are not used in the GUI but they can still be invokeahf the command line
using the constructorgpm12_10, cpm14_12 andlpm10 .

The root directory of MTSLISE contains two filesmatslise.m  andmatslise_
help.m . By enteringmatslise  atthe command line, the GUI is openedatslise_
help opens the corresponding Help-files.

7.3.1 The problem specification window

In Figure 7.4 the input window is shown for the Coffey-Evagsation. Similar windows
can be opened for Sturm-Liouville equations or for problemith a distorted Coulomb
potential. The Coffey-Evans problem is one of the predefpretllems which is included
within MATSLISE in the directorypredefined_problems . To see a list of the other
problems included in this directory, typhowPredefinedProblems at the com-
mand line. The list of predefined problems is also shown ineklix C. For more details
on the different inputfields and buttons of the problem djgeation windows we refer to
the MATSLISE help files.

After the input has been entered, the “Construct’-buttartsthe calculations of stage
1. That is the constructors of the classehrod andcpm16_14 are called. A second
window is opened where the user is able to obtain the eigeesaif the problem he/she
specified: the eigenvalues window.

7.3.2 The eigenvalues window

Figure 7.5 shows the eigenvalues window for the Coffey-Bvast problem. In this win-

dow the user specifies which eigenvalues he/she wants tolatc Several batches of
eigenvalues can be calculated one after the other withwigitiag the problem specifica-

tion window.

7.3.3 Computation and visualization of the eigenfunctions

The eigenfunctions associated to the selected eigenvateesalculated by pressing the
“Eigenfunction”-button in the eigenvalues window, whicpems a new window. When
only one eigenvalue is selected the eigenfunction windoapisned; when more than
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Figure 7.4: Example of the Sclidinger problem specification window of theaAvisLISE GUI
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Figure 7.5: Example of the eigenvalues window of theaWsLISE GUI.

one eigenvalue is selected another window is opened: teafeigctions window. Figure
7.6 shows an example of the eigenfunction window, while Fégu7 shows the eigen-
functions window. For more information on the differentiops and features avaible
in these windows we again refer to theaWsLISE help files. With the “Show with
potential”-button in the eigenfunctions window e.g. it pitde to plot the eigenfunctions
together with the potential function and generate plots kigures 6.1 and 6.3 discussed
in chapter 6. Another interesting button is the “Test orthromality”-button, which al-
lows to test the correctness of the eigenfunctions via drogadnality-check. This check
applies the trapezoidal rule on each interval between twotpavhere the eigenfunc-
tion was evaluated, in order to compute a crude approximaifof vy, (z)y;(z)dz (or

[ yr(x)yi(z)w(x)dz for a Sturm-Liouville problem). When two eigenfunctions iset®
be not orthogonal, the eigenfunctions cannot be correds iadequacy can be caused
by two reasons:

e The eigenvalue is not accurate enough to compute the assdb@a@enfunction
correctly. Decreasing the input tolerance might help is tiase.

e \ery close eigenvalues occur and as mentioned in [105]exingt causes the eigen-
functions to be very ill-conditioned. Therefore the usell i warned and asked
to be cautious when close eigenvalues are detected. For eyimrdouble well
problems, half-range reduction (see further) may make tblelem more tractable:
check the option “Half-range reduction” in the Options meifithe problem spec-
ification window.
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Figure 7.6: Example of the eigenfunction window of theAvisLISE GUI.

7.3.4 Half-range reduction

A Schibdinger problem (or Sturm-Liouville problem) is symmetwben the problem is
defined on the intervatb to b, whereb may be+oo, the potential function is even and
the boundary conditions are symmetric, this means in thelaegase that, = a; and
bp = —b;. For a symmetric problem the eigenfunctions belonging gemialuel},
(k =0,1,...) are even or odd functions according/ais even or odd. The eigenvalues
can be obtained by solving the given equation, but on thevalé0, b], with the given
boundary condition &t and with(¢) y’(0) = 0 to get the even eigenvalug$;) y(0) =0

to get the odd eigenvalues. The eigenvallgsEs, Fy, . .. of the full-range problem are
then the eigenvalues of the half-range problem with bouyndandition (i) in x = 0,
while F1, E3, E5, ... are the eigenvalues of the half-range problem with the baynd
condition(iz). The normalized eigenfunctions of the full-range problesraconstructed
from those of the half-range problem by extending in the appate way and dividing
by v/2. For symmetric double well problems, this reduction may entile difference
between a highly ill-conditioned problem and a perfectipigthtforward one.

An example of a symmetric double well problem with close eigdues is the Coffey-
Evans equation with a large value. Another example is the close-eigenvalues problem
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Figure 7.7: Example of the eigenfunctions window of theavsLISE GUI.

which is also included in the test set of SLTSTPAK ([108]).
V(z) =2t — 252%, 2 € (—00,00), y(—00) = y(c0) =0 (7.6)

The lowest eigenvalues of this problem occur in very closespahe clustering of eigen-
values causes difficulty in the computation of the eigentions for all Sturm-Liouville
codes. Figure 7.8(a) shows the first four eigenfunctionb@ttose eigenvalues problem,
calculated in the GUI-version of MrsLISE with input toleranceol = 10~'2 but without
half-range reduction. In this caseAVISLISE returns a message which warns the user that
the eigenfunctions are very ill-conditioned. And indedds ieasy to see that the eigen-
functions are not correct: the number of roots of the eigectfion should correspond
with the eigenvalue index. Also the ortogonality-checKued in MATSLISE (started
by clicking the “Test orthonormality”-button) indicatdsat the computed eigenfunctions
are not correct. Figure 7.8(b) shows the same eigenfursctioih now calculated with
half-range reduction. It is clear that these last eigertfans are the correct ones.
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7.3.5 Using parameters

It is possible to use a parameter (or parameters) in thefggizin of the problem. These
parameters can occur in the definition of the coefficientsl/anthe range, and/or the
boundary conditions. The parameter-name(s) and -valae¢sjiefined by checking the
‘Parameter’-box and filling in the two corresponding fieldsthe problem specification

window (Figure 7.4). The parameter can then be used in thex otputfields. This is used

to facilitate the input process or to replace rather lengthlyexpressions in the potential
function by a parameter, but also to study the behaviour@kigenvalue(s) or solution
when the parameter changes. The direcfmgdefined_problems contains some

examples of the use of parameters in the problem specificafoe such an example is
the problem irparameter_example3.mat . Itis the Coffey-Evans equation

V(z) = —2F cos(2x) + % sin(2z)?, y(—7/2) = y(7/2) = 0, (7.7)

with the parametes running through0:2.5:30 , thatis the valuesifi0,12.5,. .., 30].
The potentialV’ (z) changes with the parameter values as in Figure 7.9. Notelhat
problem is symmetric and half-range reduction can (shdutdpplied.

We taketol = 10712 and solve the problem using the GUI AvsLISE automatically
generates apm16_14-object for each parameter value and all thgg®16_14-objects
are used when the eigenvalues are calculated. The eigesvafiihe different problems
are easily compared by plotting them: Figure 7.10 contdiasptot of the first 21 eigen-
values of Eq. (7.7). The lower eigenvalues are clusteredongs of three with an isolated
eigenvalue between clusters. Increasthgiakes more clusters appear and makes each
one tighter. After calculating the eigenvalues, the eigeafion corresponding to a cer-
tain eigenvalue index can be computed for each parametez Mzl Figure 7.11 the result
is shown for eigenfunctiop, of Eq. (7.7).

7.4 Conclusion

In this chapter we discussed theaWsLISE package. MTSLISE is a graphical MATLAB
software package for the interactive numerical study ofdingensional (regular) Sturm-
Liouville problems and Sclkdinger equations and radial Sédimger equations with a
distorted Coulomb potential. It allows the accurate coraponh of the eigenvalues and
the visualization of the corresponding eigenfunctionsisThrealized by making use of
the power of the high order PPM algorithms discussed in @n&xnd 4. We looked at the
different MATSLISE functions and demonstrated the use of the graphical usenface,
which was built on top of the package in order to increase ticessibility.
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) parameter_example3: Eigenvalues plot
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Figure 7.10: Example of a plot generated byAvISLISE: the eigenvalues of a problem defined with
parameters.
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Chapter 8

Conclusions

In this chapter, the conclusions from this dissertatiorsaramarized, and an overview of
the main contributions is given.

8.1 Summary

In this thesis, we mainly concentrated on a specific classathaus specially devised
for the numerical solution of a Sturm-Liouville problem oBahibdinger problem. This
class of methods is formed by the family of Piecewise Pedtimh Methods (PPM). The
main idea behind these methods is the perturbation appatikim This means that the
orginal differential equation is replaced piecewisely bpther differential equation (the
so-called reference differential equation) which can Heesbexactly. The perturbation
theory is used to construct some correction terms whichddedto the (known) solution
of the reference differential equation in order to appradienthe (unknown) solution of
the orginal equation. The accuracy in the solution increasth the number of correction
terms included.

In this thesis we considered two subclasses of the PPM: timst&at Perturbation
Methods (CPM) and the Line Perturbation Methods (LPM). B6#M and LPM are
constructed for a Sturm-Liouville problem in Sékinger form. By applying Liou-
ville’s transformation any (regular) Sturm-Liouville egfion can be transformed to such
a Schidinger form. A CPM approximates the potential functionhaf Schodinger prob-
lem by a piecewise constant, while for the LPM piecewisesliaee used.

Both CPM and LPM are well suited to be used as the integratiethad in a shoot-
ing procedure to solve the boundary value problem. We agp@liprocedure based on
the Piifer transformation to estimate the index associated tdgenealue. This allows
us to compute a specific eigenvalue without considerationtledr eigenvalues. For the
LPM, we constructed some alternative asymptotic formutaetfe perturbation correc-
tions which are less affected by the accuracy loss due to ¢hecancellation of like-
terms.
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Also for systems of coupled Sddinger equations a CPM algorithm can be formu-
lated. As for the one-dimensional problem, the general2Bd/ is used in a shooting
procedure to compute the eigenvalues of the associatedlbnumalue problem. The
shooting algorithm has been supplemented by Atkinson’sixngéeneralization of the
Prifer transformation.

We also devoted a chapter to the solution of some singuldsigmts. We mainly
concentrated on a truncation algorithm to cut off the iraéign interval of problems with
infinite endpoints. Also an algorithm was described whichlsglevith the singularity in
the origin of some radial Schdinger equations.

The different PPM algorithms were implemented in the MATLABvironment. The
one-dimensional algorithms e.g. are collected in therBLISE software package. Wr-
sLIse allows the computation and visualization of the eigenvalared eigenfunctions of
a Sturm-Liouville or Schidinger problem.

8.2 Contributions

The main novelties and contributions presented in thigdgtere the following. In chapter
3, we presented a Maple program which automates the cotistruaf the perturbation
corrections for the so-called CRNP, N} methods. This made it possible for us to for-
mulate the higher order CPM4,12;, CPM{16,14} and CPM18,16}. In chapter 4 we
collected some new results, in particular the obtained e for the first and second
order correction of a LPM algorithm of order 10 are new. Alsmg asymptotic formu-
lae for these corrections are presented. The use of thesgtsic expressions avoids
loss in accuracy due to near-cancellations of like-ternrmnduwcomputation. In chapter
5 we discussed our extension of the CPM algorithm to systdmeupled Schidinger
equations. We developed a shooting procedure which usegeheralized CPM to com-
pute the eigenvalues of the boundary value problem. We inagkthe calculation of the
eigenvalues by adapting an algorithm by Marletta to the CBMecln chapter 6, our con-
tribution exists in the development of the truncation altdpons for problems defined on an
infinite integration interval. We implemented the differ&@PM and LPM algorithms in
MATLAB. The MATSLISE package, discussed in chapter 7, collects the one-dimmaisio
algorithms and allows the computation of the eigenvaludssggrenfunctions of a problem
specified by the user.



Chapter 9

Nederlandse samenvatting

Een groot aantal belangrijke fysische processen, zowelaiklassieke fysica als uit de
kwantumfysica, worden beschreven aan de hand van een &iauwile vergelijking.
Een dergelijke Sturm-Liouville vergelijking is een lineaitweede orde differentiaalver-
gelijking met als algemene vorm

& [p@)d@;f)}ﬂ(x)y(x)Ew@)y(x), met & in fa, . (91)

Wanneer randvoorwaarden worden opgelegd in de eindpunégrb van het integratie-
interval [a, b], bestaat een niet-triviale oplossipr) enkel voor bepaalde waarden van
de parameteE. DezeFE-waarden en de bijhorende oplossinggmr) worden deeigen-
waarden respectievelijleigenfunctiesan het Sturm-Liouville probleem genoemd.

Een specifieke klasse van Sturm-Liouville problemen woedbgmd door de Schir
dinger problemen. De Sabdinger vergelijking is de fundamentele vergelijking in de
kwantummechanica en kan in de volgende vorm geschrevereword

y"(z) = [V(z) — Ely(z) met z in [a, b]. 9.2)

Het oplossen van een Sturm-Liouville of Sétimger probleem bestaat erin de koppels
(Ex,yi) te bepalen, waarbif;, de k-de eigenwaarde is ef), de eigenfunctie die erbij
hoort. Het natuurlijk getak (k = 0,1,2,...) wordt deindexvan de eigenwaardg&’,
genoemd. Een Sturm-Liouville probleem is over het algenréenanalytisch oplosbaar
en computationeel effiégnte benaderingsmethoden zijn dan ook van groot belang.

In de literatuur werden reeds verschillende numerieke aaeth beschreven voor de
berekening van de eigenwaarden en eigenfuncties van Stioumille randwaardepro-
blemen. Deze technieken omvatten onder andere de eindfgeediiemethoden (waar
de optredende afgeleiden worden gediscretiseerd), iaréd¢ methoden en ‘shooting’
methoden. Maar de nauwkeurigheid van zowel de variatioalsleeindige differentie-
methoden neemt sterk af bij stijgende index van de eigerdeaddit is een gevolg van
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het toenemende oscillatorisch gedrag van de eigenfunigge stijgende eigenwaarde-
index. Hetzelfde geldt ook voor veel van de shooting methadlenneer ze rechtstreeks
op het Sturm-Liouville probleem worden toegepast. Een amiiepunt van veel metho-
den is dat eerst alle voorafgaande eigenwaarden moetekeberevorden vooraleer met
de berekening van een specifieke eigenwadrdkan gestart worden.

Voor het Sturm-Liouville probleem kunnen de moeilijkhedgrgelost worden door
gebruik te maken van de Ber transformatie. Deze &fier transformatie laat toe om een
shooting methode op te stellen waar een specifieke eigederaaet een bepaalde index
wordt berekend zonder dat er kennis nodig is van de vooraffgaédagere) eigenwaar-
den. Ook maakt de Bfer gebaseerde shooting methode het mogelijk om een jiedeli
nauwkeurigheid te bekomen voor eigenwaarden met een hogkne

Wanneer de Rifer gebaseerde shooting methoden echter gebruik makestaan
daard codes voor beginwaardeproblemen (bvb. een Runde-sade), kunnen proble-
men met stijfheid ontstaan, waardoor zeer kleine staptge@enomen worden. Deze
problemen verdwijnen wanneer de shooting procedure weictigbineerd met éfficient-
approximatie. Hierbij worden de éfficientfunctiesp(x), ¢(z) enw(x) stuksgewijs ver-
vangen door polynomen van een lage graad zodat de resuléevergelijking analytisch
kan opgelost worden. Pruess en Fulton gebruikten een swisgconstante benade-
ring van de céfficiéntfuncties in hun gekende SLEDGE code. Ixaru beschreeésis-b
principes voor een andere klasse van methoden gebaseeodftipiéntapproximatie, de
zogenaamde PPM (Eng.: Piecewise Perturbation Methods)déze PPM wordt een per-
turbatietechniek toegevoegd om de oplossing van het begradieprobleem bijkomend te
corrigeren. Hoe hoger het aantal perturbaties, hoe naugezude bekomen oplossing.
Dit laat toe om methoden met hogere ordes te difami.

Het is vooral de klasse van PPM die het onderwerp van dezis thasnt. In hoofd-
stuk 3 concentreren we ons op een belangrijke subklasseevBPM, namelijk de CPM
(Constant Perturbation Methods) die speciaal werd onterokwor de Sclidinger ver-
gelijking. Deze CPM steunen op de benadering van de optdedeotentiaalfuncti® (x)
door een stuksgewinstanteeferentiefunctie om een oplossing van orde nul te vormen.
Deze CPM hebben het belangrijke voordeel dat de toenameeréoutibij stijgende in-
dex k verdwijnt, dit in contrast met de traditionele methoden mda fout stijgt met
de energiel’. Als een direct gevolg, kan een energie-onafhankelijkelelerg van het
integratie-interval geconstrueerd worden met ongewootegstapgroottes waarover de
berekeningen snel kunnen gebeuren. Het construeren vateegelijk CPM-algoritme
werd echter in het verleden erg moeilijk bevonden doordatgreot aantal analytische
berekeningen nodig zijn voor het opstellen van de corregtisen. Door het symbolisch
softwarepakket Maple te gebruiken, slaagden we erin om Hemére grotendeels te
overbruggen. Verschillende hogere orde CPM-versies wesdawikkeld en toegepast op
het Sturm-Liouville en Sclidinger probleem. Meer concreet behandelen we de extensie
van de zogenaamde CRNR,10F methode, gimtroduceerd door Ixaru et. al. en gebruikt
in de Fortran SLCPM12 code, naar de hogere orde methodeq CRM, CPM{16,14}
en CPM18,16}. Een aantal numerieke tests toont aan dat de hogere ordedrathog
efficiénter zijn dan het CP§12,10 algoritme: het aantal subintervallen in de partitie kan
sterk gereduceerd worden waardoor de CPU-tijd, die nodimisen aantal eigenwaarden
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binnen een vooraf opgelegde nauwkeurigheid te bepaleingklis.

De CPM representeren slecl@n mogelijke manier om een PPM te implementeren.
Een andere mogelijkheid bestaat erin om methoden te censtrulie gebaseerd zijn op
een stuksgewijfineaire coéfficiéntapproximatie in plaats van een stuksgewijs constante
coefficiéntapproximatie. Deze methoden duiden we aan als de LPM Rarturbation
Methods). We verfijnden het LPM algoritme en bespreken irfdeiak 4 de constructie
van de eerste en tweede orde correctieterm. Deze corritgaons toe om een methode
van orde 10 te defigdren. Numerieke testen bevestigen dat ook deze LPM-veskieet
aan de belangrijke eigenschap van de PPM-methoden: denggethen kunnen benaderd
worden met een uniforme nauwkeurigheid oéen en dezelfde partitie van het integratie-
interval. Het spreekt vanzelf dat ljnsegmenten beterksgfewijze benaderingen geven
van een functie dan constantes. Toch tonen we aan dat in kijlpdee LPM-versie vaak
minder geschikt is dan een CPM van dezelfde orde. De redeat dedoropagatie van de
oplossing over een subinterval meer tijd vraagt voor de LBMkomt doordat de exacte
oplossing van het benaderende referentieprobleem wdgitdrukt in Airy functies. De
evaluatie van deze Airy functies is complexer dan de evi@luatn de goniometrische
en hyperbolische functies die optreden in het algoritme darCPM. Het is dan ook
aangewezen een LPM enkel te gebruiken wanneer de potestiaklvarieert. In alle
andere gevallen hoort een CPM de voorkeur te krijgen.

In hoofdstuk 5 bestuderen we de ontwikkeling van CPM vodssets van meerdere
Schiddinger vergelijkingen. De behoefte aan goede numerielteades voor het oplossen
van stelsels van gekoppelde Sattinger vergelijkingen duikt op in vele kwantummecha-
nische berekeningen, zowel uit de nucleaire als moleeufgsica. We construeerden
een aantal CPM-gebaseerde methodes van hoge orde doorezeamatbge procedure
te gebruiken als bij hegén-dimensionale geval. Opnieuw werden de berekeningen voo
het opstellen van de correctietermen uitgevoerd in het sjisth softwarepakket Maple.
De geconstrueerde algoritmes zijn erg stabiel en vertonenzpals de CPM voor een
één-dimensionaal probleem) een uniforme nauwkeurighegidpzichte van de energie.
Er wordt aangetoond dat de meer-dimensionale CPM in feiteveealgemening is van
de één-dimensionale versie: de bekomen formules reduceredetdormules van de
één-dimensionale CPM wanneer het aantal vergelijkingeijkgel aanéén. De meer-
dimensionale CPM kan dan gebruikt worden in een shootinggatare om de eigenwaar-
den te bepalen van een stelsel van gekoppelde vergelijkinge

Hoofdstuk 6 handelt over singuliere Sturm-Liouville preten. Een singulier pro-
bleem ontstaat wanneer minsteéés van de céfficiéntenp—!, ¢, w niet integreerbaar is
tot aan een eindpunt van het integratie-interval oats(of beide) eindpunt(en) oneindig
is. Deze singuliere problemen brengen een aantal specifigalijkheden met zich
mee. We bespreken een interval-truncatieprocedure vaingmen gedefinieerd over
een oneindig integratie-interval. Daarnaast beschouweroek de belangrijke klasse
van radiale Sclidinger vergelijkingen waarvoor een verbeterd truncalimritme wordt
voorgesteld. Ook bespreken we een algoritme dat rekenindtimoet het singulier karak-
ter van een radiaal Sabalinger probleem in de oorsprong= 0. Dit algoritme dient dan
toegepast te worden in een klein interval rond de oorsprong.

In hoofdstuk 7 tenslotte, wordt wat meer uitleg gegeven oeestructuur en het ge-
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bruik van het softwarepakket MsLISE. MATSLISE is een MATLAB-pakket dat alle
CPM en LPM algoritmes voor héEn-dimensionale Sturm-Liouville en Séalinger pro-
bleem implementeert. Ook de truncatie-algoritmes vooblgronen gedefinieerd over een
oneindig integratie-interval, zijn gecludeerd in M\TSLISE, net als de procedure die de
singulariteit in de oorsprong van een radiaal Sclimger probleem afhandelt. Om de
gebruiksvriendelijkheid van het pakket te verhogen weml grafische gebruikersinter-
face toegevoegd. Aan de hand van een voorbeeld illustreeedenmogelijkheden van
deze gebruikersinterface.

De onderzoeksresultaten besproken in deze doctoraasstirexglen gepubliceerd in
gespecialiseerde wetenschappelijke tijdschriften, Z3e-79].



Appendix A
CPM Coefficients

A.1 One-dimensional CPM P, N}

The four elements of the propagation matriXat h are (see section 3.4)

u(h) = )+ ZC(“) (A.1)

Wi(h) = Zno(Z)+ icﬁf”nm(Z), (A.2)
o

oW)/h = no<z>+ic,<:>nm<z>, (a3

V() = &2)+ ) Clnn(2), (A4)

where theC' coefficients only depend upon the perturbation while thegndependence
is absorbed entirely in th& = (V — E) h?-dependent functionsand,,,. Below we give

a list of theC' coefficients for the CPN18,16; method. For brevity reasons, the ellipsis
symbol was used in some coefficients. The full expressiondeareproduced by using
the Maple code given in section B.1. Thigi = 1,2,...,16 are defined by expression
(3.41) andV; = V;h 2 i =1,2,...,16.

C§u> = —Vi4+Va4+Vs+ VodTVo+ Vi +Vis+Vis]/2+ O(hlg),

CS" = [5Vs+14Vs + 27 Vs + 44 Ve + 65 Vay + 90 Vi + 119 Vi5]/2
—[15015 Vi 4 9009 V5* + 6435 Vi + 5005 V¥ 4 4095 Vi© + 3465 Vs
+3003 V71/360360 + O(R'?),

CS = [—63 Vs — 297 Vr — 858 Vy — 1950 Vi1 — 3825 Vag — 6783 V15]/2
+[—9009 V5* + 8580 Vi — 5005 V¥ + 10920 Vi© — 3465 Vi + 12012 V7
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+60060 V1 Va + 30030 V1 V3 + 60060 Vi Vi + 30030 Vi Vs + 60060 V1 Vs
430030 V1 V7 4 60060 V3 Vs 4 30030 V1 Vo + 60060 V1 Vig + 30030 V1 Vis
+60060 V4 Vi 4 30030 V3 Viz + 60060 Va Vs + 60060 Va Vs + 60060 VaVz
+60060 Va Vo + 60060 Va V11 4 60060 V3V, + 30030 V3 Vs + 60060 Vs Ve
+30030 V3V + 60060 V3 Vs + 30030 V3o + 60060 V3110 + 30030 V5 V44
+60060 V4 Vs + 60060 V4 V7 4+ 60060 V4 Vo + 60060 Vs Vs + 30030 VsV
+60060 Vs Vs + 30030 Vs Vo + 60060 Vs V4]/120120 + O(h'?),

C") = [1287 Vi + 8580 Vo + 33150 Vi1 + 96900 Vs + 237405 V5] /2
+[—126126 V1 Vi — 54054 V4 Vs — 324324 V1 Vs — 132132 V4 V7
—594594 V1 Vs — 234234 V3 Vg — 936936 V1 Vio — 360360 Vi Vis
—1351350 Vi V12 — 510510 V1 Viz — 90090 Va Vs + 18018 Vo
—9252252 Vo Vs + 18018 Va Vs — 486486 VoV + 18018 Va Vs — 792792 Va Vs
+18018 VoV — 1171170 Va Vi1 + 18018 VaVig — 6435 V2 — 216216 VsV
—54054 V3 Vs — 414414 Va Vs — 132132 VsV — 684684 V3V — 234234 VsV
—1027026 V3 V1o — 360360 VaViq + 25025 Vi — 378378 ViV
+60060 ViV — 612612 VaVz + 60060 VaVs — 918918 ViV + 60060 Vi Vig
—31122 V& — 576576 Vs Vs — 132132 Vs Vy — 846846 Vs Vs — 234234 Vs Vy
+59598 V& — 810810 Vi Vz + 126126 Vs Vs — 69069 V7] /24024
+[15015 Vi 4 18018 V2V + 15015 V2 Vs + 15015 V2 Vs + 15015 V2 Vs
415015 Vi Vo + 9009 Vi Vi + 23166 Vi VaVa + 6435 V1 V5
+17160 Vi Va Vi + 5005 V1 Vi 4 13650 V1 VaVs 4 4095 Vi Vi
+11340 V3 Vs Vs 4 2574 Vs 4+ 9009 Vi Vs + 7722 Vi? Vi + 9009 Vi Vs
49009 V5" Vo + 5148 Vo Vi + 11700 Va Vs Vs + 3900 VoV
+9450 Vo ViV + 3150 Va V2 + 6435 V5® + 3510 V2 Vs + 6435 V2 Vs
44500 Vi Vs + 5005 VaVi© + 5400 Va3 Vi Vs 4 810 V']/720720 4+ O(R'?),

" = [=36465 Vy — 314925 Vi; — 1526175 Vig — 5460315 Vi5]/2
+...+0O("),

S = 1322685 Vi1 + 14040810 Vig 4+ 81904725 Vis]/2 + ... + O(h'?),

C" = —[58503375 Vis 4 737142525 Vi5]/2 4 ... + O(h'?),

c{ = 3053876175 Vi5/2 + ... + O(h'?),

C = 04+ O0K'"™) with t(m)>19, ¥m > 9.

C(()u/): [‘_/2+‘_/4+‘_/6+‘_/8+‘_/10+‘_/12+‘714+‘716]/2+O(h20),

C) = _[3Vh + 10V + 21V + 36Va + 55Vi0 + 7871z + 105Vi4 + 136V16]/2
—[15015V,> + 9009Vy 4 6435V5 + 5005V + 4095V 4 3465V
+3003V7] /360360 + O(h*°),
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O = = [35V4 + 189V + 594V + 1430Vi0 + 292571 + 5355Vi4 + 4522Vi6] /2
—[105105V7* + 180180V; V3 + 180180V; Vs + 180180V1 Vz 4 180180V Vs
+180180V4 V11 + 180180V1 Vis + 96525V + 180180Vs Vs + 180180Vs Vs
+180180V3 Vo + 180180V3 Vi1 4 94185V5 + 180180Vs Vi + 18018015 Ve
4+93093V7 + 54054V5 + 90090V> Vi + 90090V Vs 4+ 90090V Vs
+90090V2Vig + 90090V Via + 50050V 4 90090V4 Vs + 90090V, Vs
+90090V3 Vi + 48510V + 90090Vs Vs] /360360 + O(h*°),

C{") = [—693Vs — 5148Vk — 2145010 — 66300Vi2 — 169575Vh4 — 379848Vi6]/2
+[4144140V5 V7 + 480480V4 V3 + 3963960V Vs + 2849847V
+1291290V1 Vs + 1482390V + 5675670V Vo + 700700V, + 2072070V Vs
42972970V, Vs + 3483480Va Vi + 2342340V Vs + 1441440V, Vs
+780780V2 Vs + 813813011 Vi3 + 5885880V1 Vi1 + 3993990V Vo
+2462460V1 V7 + 6486480V3 V11 + 4594590V Vs + 3063060V V7
+1891890V3 Vs + 4864860V Vi + 4114110V, Vo + 171171V5 + 53410575
+1528065V7] /120120 + [3003V7 Ve — 15015V Vs — 15015V; Vs
—15015V7 Vs — 15015V Vi + 231664 Va Vs + 17160V1 V3 Vs
+13650V1 Va Vs + 11340V1 Vs Vs — 643575 — 1287V Vi — 9009Vs Vs
—9009Vy Vs — 1287Va Vi + 11700Va Vs Vs — 1105V V2 4 9450V2 V4 Vs
—945Vo Vi — 2925V5 Vi — 1935V5 Vs + 5400V3Va Vs — 4195V] /720720

+O(h™),

) = [19305Vk + 182325Vi0 + 944775V1s + 3561075Via + 10920630V /2
+...+ O*),

Cé“') = [~692835Vio — 7936110Vi2 — 49142835114 — 218412600V36]/2
+...+0(h*),

C{) = [30421755Vha + 40952362514 + 2048570100V16]/2 + . . . + O(h%),

Ci") = [~1579591125Vh4 — 24431009400V16]/2 + . . . + O(h%),

C{*) = 94670161425Vi6/2 + . .. + O(h%),

C) = 04+ OR'™) with t(m) > 20, ¥m > 9.

Cév) = —[Vo+Va+Vs+Vs+ Vig+ Viz+Via]/2 + O(h18)7

C$" = [TVi + 18V + 33Vk + 52Vig + 75Via + 102V14] /2
—[15015V;> + 9009Vy + 6435V5 + 5005V + 4095V5 + 3465V ] /360360
+O(h'),

CS = —[99V + 429k + 1170Vio + 2550Vi2 + 4845V14]/2

+[60060V; V5 + 60060V; Vs + 60060V; V7 + 60060V; Vg + 6006011 Vi
+27027V5 + 90090V, Vi + 90090V Ve 4 90090V2 Vs + 90090VaVio
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+17160V5 4+ 60060V3 Vs + 600603 V7 + 600603 Vo + 35035V,
+90090V4 Vs + 90090V3 Vs + 21840V5 + 60060VsVz + 38115V;]/120120
+O(h'),

[2145V5 + 13260V10 4 48450V15 + 135660V14]/2 4 ... + O(R'®),
—[62985V10 + 508725V, 4 2340135V14]/2 + ... + O(h'®),

[2340135Via + 23401350V14]/2 + ... + O(h'®),

~105306075V14/2 + ... + O(h'®),

04 O(h'™) with t(m)>18, Vm >9.

(Vi + Vs + Vs + Vg + Vo + Vs + Vi + Vhs]/2 + O(R'),

—[6Va + 14Vs + 27V7 4+ 44V + 65V11 + 90Vi3 + 119Vi5]/2

—[15015V7> + 9009Vy 4 6435V5 + 5005V + 4095V5 4 3465V

+3003V7] /360360 + O(h'?),

[63Vs + 297V + 858Va + 1950V + 3825V13 + 6783V45]/2

+[—9009V5 4 8580V5 — 5005V + 10920V — 3465V + 12012V
+30030V4 V3 + 30030V Vs + 30030V Vz + 30030V1 Ve + 30030V; Viy
+30030V; Vi3 — 60060V; Va2 — 60060V; V4 — 60060V; Vs — 6006014 Vs
—60060V; V1o — 60060V4 V12 4 30030V3 Vs + 3003013V~ + 30030V3 Ve
+30030V3 Vi1 — 60060V3Va — 60060V3V — 60060V3 Vs V3 Vs — 60060V Vig
+30030V5 V7 + 30030V Vo — 60060V V2 — 60060V5 Vs — 60060V5 Vs
—6006075 Vs — 6006077 Va — 600605 V4 — 60060V Vs — 60060Vs Va
—60060Vo Vi — 6006031 V5] /120120 + O(h'?),

—[1287V7 4 8580V% + 33150V11 + 96900Vis + 237405V45]/2
+[—54054V; Vs — 132132V; V7 — 234234V, Vy — 360360V, Viy
—510510V1 Vis + 126126V, Vi + 324324V, Vs + 594594V, Vs + 936936V Vio
+1351350V1 Via — 6435V5 — 5405413 Vs — 132132V3 V7 — 234234V3 Vs
—360360V53V11 + 90090V Va + 216216VaV, + 414414V3 Vs + 684684V3Vz
+1027026VaVip — 31122V — 132132Vs V5 — 234234V Ve + 252252V5 Vs
+378378Vs Vi + 576576Vs Vo + 846846Vs Vs — 69069V5 + 486486V; Va
+612612V4V, + 810810V5 Vs + 792792V Va + 918918V Vi + 1171170V11 Va
+18018V,Va + 18018V Vs + 18018Va Vs + 18018VaVig 4+ 18018VaVia
+25025V, 4 60060V, Vs + 60060V, Vs + 60060V4 V1o + 59598V
+126126V5 Vs /24024 + [5400V3 V4 Vs + 13650V Va Vs + 11340V1 V5 Vs
+17160V1 V3 Vi + 3150V V5 + 9450V Vi Vs + 23166V; VaVs + 1170012 V3 V5
—15015V2 Vs + 18018V Vs + 4500V Vs + 7722V Vi — 9009V1 Vs
—6435V1 V5 — 15015V Vr 4 3900Va V2 + 5148Va Vs + 3510V Vy + 2574V
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+810V; — 15015V2Vs — 15015V;2Vy — 5005V4 V2 — 4095V; V2 — 9009V, Vs
—9009V; Vs — 9009V Vr — 6435V Vs — 5005Vs V2 — 15015V,
—6435V5'] /720720 + O(h'?),

O = [36465Vs + 314925V + 1526175Vis + 5460315V15]/2 + . .. + O(R'"),
C{) = —[1322685V41 + 1404081015 + 81904725V15] /2 + ... + O(h'?),

") = [58503375Vhs + T37142525Vi5]/2 + ... + O(h'?),

C") = —3053876175Vis/2 + ... + O(h'),

C) = 0+ OMh™) with t(m)>19, Vm >09.

A.2 Generalized CPM{P, N}

The propagators dt= h have the following form :

uP(h) = &(Z)+ ic&:ﬁnm(zx (A.5)
m=1
haP'(h) = Zmy(2)+ iCSZ')nm(Z), (A.6)
m=0
vP(h)/h = n0<Z>+izcﬁs>nm<zx (A.7)
vP'(h) = €(2Z)+ ic;:”nm(zx (A8)
m=1

where£(Z) andrn,, (Z) are then x n diagonal matrices as defined in section 5.2.2.

The C,,, coefficient matrices only depend upon the perturbation hadthannel sep-
aration while the energy dependence is absorbed entirelyei. = (VP — ET) h2-
dependent matrices of functioi§Z) andn,,(Z). Below we give a list of theC,,, coeffi-
cients for the CPM10,8 method as obtained by theA#LE code listed in section B.3.
For notational brevity the upper laBl is suppressed aid; = V,;A'*2,i =0,1,...,8.
The coefficients are expressed in commutators and anticeatons of two matrices with
[A,B] = AB — BA the commutator andlA, B} = AB + BA the anticommutator of
the matrice\ andB.

Cﬁ“) —~(V1+ V3 +V5+V7)/24 [V, V]/24
+[—7V1 4+ 3V3, V3]/840 + O(R'),
C = (5Vs+14V5+27V;)/2 - V?/24 — V3 /40 — V2/56

+[4V1 —3V2 +3V3 — 3V +3V;5 — 3V, Vi]/24
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+[=7V1 +3V3, V3] /840 + [[V1, V2], 2V + TV] /3360

— [[V1, Vo], 7V1 + 2V3] /3360 — [[V2, Vo], V2] /3360

+ [[‘73,\70],\71} /1120 — [[5‘71 — \72, Vo},Vo] /480 + O(hu),
C = (—63V5—297V7)/2—3V3/40 4+ V3/14 + {V4, V3}/4

+{V1, 2\72 + V3 =4 2\74 +4 V5}/8 — [7V1 + 32‘737 VQ]/280

+[—6V3 + 7TVy — 15V5 + 18V, Vo] /8 — [[V1, Vo], V1] /160

—[[BV1 = 6V2 +5Vs —5Vy, Vo], Vo] /160

+( 24V, — 21V1)[Va, Vo] + [Va, Vo] (18V2 — 21\71)) /3360

+(13[V1, V2 V1 + Vl[Vl, V2])/3360 — ([V1,V0}(41V3 — 28‘72)

H(29V5 + 42V5)[V1, Vo] + 9 [V, [Vs, Vo]] )/3360
+ [[[3V1 = V2, Vo], Vo], Vo] /1920 + [[[V1, Vo], Vo] , V1] /1920
+[V1,Vo)?/1152 + O(h'),

c = 1287V;/2—15V2/56 + V3/48 — {V1,21V4 + 9V5}/8
+{ V3, —=15V3 +3V4}/8 + V1{V1,V>}/80 + 3[V2, V3] /56
+[V1,V4]/8 — (5V1 [V, Vo] + 2[Vy, V2] V1) /560
+[72V5 — 99V, Vol /8 + (10V:1[Va, Vo] + 25V, Vo] V1
[V, Vo](30Vs — 28V5) + 5V5[Vy, vo]) /560
+ [[Vs = 2V4, Vo], Vo] /8 4 [[[2V1 — 3V2, V], Vo], Vo] /480
— [V V1, Vo), Vo] /10 + [[V1, Vo], Vo] V1480
+([V2, Vol (36V2 + 2171) + (482 — 42V1)[V2, Vo] ) /560
+[V1,Vo]?/240 + O(h')

cl = 0+ 0K with t(m) > 11, Vm > 5.
C(()U/) = (V2 +V4 +V6 +Vg)/2+ [\71,\70]/24—1— [—7\71 + 3\737\72]/840
-|—[\_747 V3]/504 + O(hm),
C*) = (3V, + 10V, + 21V + 36Vs)/2 — V2 /24 — V2/40 — V2 /56

+[V1—=Va+ Vs = Vi 4+ V5 — Vg + V7, V(]/8
4[5V + Va, Vol, Vo] /480 + [V — Va, [V, Vo] /480
+ [TV + Va, [V2, V] /3360 + [[V1, V3], V1] /1680
—(3[V1,[Vs, Vo] —2[Vs,[V1,Vo]]) /3360 + [[V2, V3], Vo] /1120
+O(h'?),
Cl) = (35V, + 180V + 594V5) /2 — TV? /24 — 3V3 /20 — 15V /56
—{V1, V3 + Vs}/4+ ([V5, Vi] = {V2,V4})/8
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+[V1, Vo + Viy+ Ve|/8 4+ 11[V3, V1]/3360 + [V, V3] /672
+[3V2 — 5V3 + 10V, — 14V5 + 21V — 27V 7, Vo)
+(77V1[V1, Vo] = 7[V1, Vo] V1 + 20[ V2, Vo] Vs
+22V3[V2, Vi) /3360 4+ (—3{V1,[V2, Vol} + 4{V2,[V1, V]}) /480
+3 [[V1, V2], V1] /1120 + { V4, [V1, Vo]}/96
—[[15V1 — 16V + 15V3 — 15V4 + 15V5, Vo], V| /480
+ [[[21V1 = TV2 + V3, V], Vo], Vo] /13440
—|—( —11 [[\71, \_70}, [\_72,\_70]] -3 [\_/1, [[\72,\70],\_]01]
+5 [V, [V1, Vo], Vo]] ) /13440 — V1 [V1, V] V1 /4480
—({ V3, [V2, Vo]} +2{ V2, [V3, Vo]}) /560
+ (=3[V1,[[V1, Vo], Vo]] + 5[V, Vo]?) /5760 + [V§, Vo] /13440
+ (=3 [V1,[Vs, Vo]] +37[V3s,[V1, Vi]]) /3360 + O(h'?),
—693/2V6 — 2574V + 57/40V3 + 249/56V5 4+ {V1,16V3 + 43V5}/8
+13/4{V2,V4} +3/8[V2, V3 + V5] + 7/8[V4, Vi + V3] + 9/4[Ve, V1]
+[-35V4 4 63V5 — 189V 4 297V, Vo]/8 + 5[V3, V3] /336
+([V1, Vo](154V1 — 231V + 309V3 — 455V )
+(336V1 — 21Vy + 111V3 — 245V ) [V1, Vo] + (=378V1 + 45V1)[Va, V]
+[Va, Vo] (—168V1 +207V3) — 105[V4, Vo] V1 — 315V 1[V4, V]
+114[Vs, Vo] V1 4 306V1[Vs, Vo)) /3360
+ [[~9V2 + 25V5 — 45V 4 + 70V, Vo], Vo] /160
— (76{V3,[V2, Vol} + 47{ V2, [V3, V(]}) /1120

+ ([[V1, Vo], Vo] V1 + [V1, Vo]? — 3V1[[V1, Vo], Vo) /640

+( = 18V [[V1, V], Vo] + 31[V2, Vo] [V1, Vo] + 46[[V2, Vo], Vo] V1
—47[V1, Vo][Va, Vo] 4 33V1[[V2, Vo], Vo] — 29[[V1, Vo], Vo] V2) /13440
—[ll[V1, Vo], Vo], Vo], Vo] /5760 + [[[63V1 — T7TV5 + T3V, V], Vo], Vo]
+7V1{V1,V2}/3360 — (20V[V1, V2] — 13[V1, V2] V1)/3360
+11/1120[V3, V1] — 11/8064V1[V1, Vo] V1 — [V, V0] /8064 + O(h'?),
19305Vs/2 — 1065/56 V3 — (261{V1, V5} + 165{V2, V4}) /8
+[693Ve — 1287V7, Vo] /8 + [[20V4 — 63 V55, Vo], V] /32
+ (99[V1, V] + 27[Vs5, Vo] + 15[V, V4]) /8
+ [[[TV2 — 25V3, Vo], Vo], Vo] /1120 — 1/1920 [[[[V1, Vo], Vo], Vo), Vo]
+(16V2[[V1, Vo], Vo] + 59[V2, Vo][V1, Vo] 4 25[[V2, Vo], Vo] V1
+66V1[[Va, Vo], Vo] + 74[V1, Vo] [V2, Vo] + 26[[V1, Vo], Vo] Vo) /2240
—(5[[V1, Vo], Vo] V1 + 18V [[V1, Vo], Vo] + 16[V1, V]?) /960
+ ((—492V3 + 705V3)[V2, Vo] — 306[V2, Vo] (V2 + 495V3)) /1120
+([V1, Vo] (=72V3 + 154Vy) + (—152V3 + 56 V4)[V1, Vo]
+2171V [V, Vo] + 119[V4, Vo V1 + [V5, V] (—88V 1 + 114V3)



188 Appendix A

+(=136V1 + 72V2)[V3, Vo) /224 + 9/112[V3, V4]
+259V1{V1,V2}/1120 — (101V[V1, V2] + 158[ V1, V2] V1) /1120
—9[V?,V3]/224 — 1/560V1[V1, Vo] V1 — 31/6720[V3, Vo] + O(h'?),

Cc) = 0+ OR"™) with t(m) > 12, ¥m > 5.
C" = —(Vo+Vi+Ve)/2)+ [V1,Vo]/24 + [TV + 3V3, V5]/840 + O(R'?),
Cl = 7V4/249Ve — V3/24 — V3/40 + [V, 7V, — 3V3]/280

—[V3 = V3 =V, +V5,Vo]/8 + [*5\71 + \72,\70]7\70] /480
+ [[V1, V2], Vo] /480 + [V, [V1, Vi]] /480 + O(h'?),
C" = —99V4/2+9V2/40 + {V1,2Vs + V4}/8 + 3[Vs, V2] /56
+[=TV4+9V5,Vo]/8 + [[-3V2 +5V3, Vo], Vo] /160
+ [[V1, Vo], Vo], Vo] /640 — ([V1, Vo] (—4V1 + 3V2)
+(=6V1 +9V3)[V1, Vo] + 6[V2, Vo] V1) /480 + O(h'7),

c = 0+ 0(h'™) with t(m) > 10, Vm > 5.
Cl) = (V4 Vs + Vs + V1)/2+ [V1, Vo] /24 + [-TV1 + 3V, V2] /840 + O(h'),
Cl) = —(5Vs + 14V +27V5)/2 — V2 /24 — V2/40 — V3 /56

+[V2,7V1 — 3V3]/840 + [-2V1 + 3V2 — 3V3 + 3V — 3V5 + 3V, Vo] /24
+ [[-5V1 + V2, V], Vo] /480 + [V1 — V2, [V1, V]| /480

+ [7V1+ V2, [V2, Vi]] /3360 — [V1, [V3, V]| /1120 4 [Vs, [V1, Vo]] /1680
—[V1,[V1, V2]] /1680 + O(h'7),

C) = 4 (63Vs+29TV7) /2 4+ {V1, Vs — 2V4 + V5}/8 — {Vs, Vi + V3}/4
—3V3/40 + V3/14 + [4V3 — TV, +13V5 — 18V, V]/8
+[V2,7V1 +32V3]/280 + [5V1 — 12V3 + 15V3 — 15V, Vo], Vo] /480
+ (=3V1[[V1, Vo, Vo] + 5[V1, Vo] + 13[[V1, Vo], Vo] V1) /5760

+ ([V1, Vo](TV1 — 4V2) + (13V1 4 2V3) [V, Vy]) /480

([V2, Vo](=35Vy + 18V3) + (—TV1 + 24V;)[V2, Vo)) /3360

(9 [[Vs, Vo], V1] +41V35[V1, Vo] 4+ 29[V1, Vo] V3) /3360

[[[BV1 — V2, V], Vo], Vo] /1920
+([V2, V1]V1 — 13V [V, V2]) /3360 + O(R'7),

c") = —1287V./2 - 15V3/56 — V3 /48 4+ {V3,105V3 + 21V ,} /56
+63{V1,147V4 — 63V5}/56 + [V1, V4]/8 — 3[V2, V3]/56
+V1{V1,V2}/80 + (—5V1[V1 V2] + 2[V1 V2] V1) /560 — 27[Vs, Vo) /4
+ ((42V1 — 15V3)[V2, Vo] + [V, V] (21V1 — 27V3)) /560
+ ((35V2 + 65V3)[V1, Vo] + [V1, Vo] (21V2 + 40V3)) /560

+
+
Jr
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— (12V1[V3, Vo] +9[Vs, Vo] V1) /112 + [[- V3 + 3V4, Vo], Vo] /16
+ [[[3V2 — V1, Vo], Vo], Vo] /960 — [[V1, Vo], Vo] V1/480
—[V1[V1, Vo], Vo] /160 + O(h'?),

c®) = 04+ 0K with t(m) > 11, Vm > 5.

Note that the number of matrix multiplications actually fpemed can be reduced
substantially by computing the commutators and matrix petel which occur several
times (as e.g.[V1, Vo, [V2, Vo], [V1, V3], V2, ...) only once. In addition, we can
remark that a commutatéV;, V ;] or an anticommutatofV,;, V; } needs only one matrix

multiplication sinceV,; V,; = (V,;V;)T for V; andV; symmetric matrices.






Appendix B
Maple Code

The Maple codes listed in this appendix are available forrdoad at [2] .

B.1 The generation of the coefficients for the one-dimensional
CPM{P, N}

Maple code which generates the expressions of the comadibo the CPM P, N} meth-
ods of chapter 3.

restart;

# include package for the generation of orthogonal polynomi als:
with(orthopoly):

# shifted Legendre polynomials:

Ps:=(n,x)->simplify(P(n,2 * X-1)):

# a pruning procedure:
REDUCE:= proc(a,P)
local operand, tmp, reduced, i:
reduced:=0;
tmp:=simplify(rem(rem(convert(a,’polynom’),delta”(P ),delta),
h*(P),h)):
for i from 1 to nops(tmp) do
operand:=op(i,tmp);
if degree(operand,{delta,h}) < (P) then
reduced:=simplify(reduced+operand);
end if;
od:
RETURN(reduced);
end proc:

# Construct elements of the propagation matrix for CPM{18,1 6}
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# Here the CPM{18,16} method is constructed:

# (by changing Hmax and N other CPM{P,N} methods can be
# constructed)

Hmax:=18:

N:=16:

Numlt:=floor(2 *N/3) + 1:

# DV(delta) = V'N(X+delta) - Vc[0] = perturbation
DV:=x->sum(Vc[n]  *h"n *Ps(n,x/h),n=1..N):

# construct ul(delta) :

C[1,0]:=delta->integrate(DV(x),x=0..delta)/2:

# m from 1 to Hmax/2+1 suffices because C[im] and C’[im] are

# multiplied by delta”(2m+1) and terms with degree(delta) > Hmax
# are ignored later.

for m from 1 to Hmax/2+1 do

C[1,m]:=unapply(simplify( -1/2/delta”m *int(deltal”(m-1) *
diff(C[1,m-1](deltal),deltal$2),deltal=0..delta)),
delta):
od:
u:=unapply(xi(delta)+sum(C[1,k](delta) xdelta”(2 +k+1) *etalk],
k=0..(Hmax/2+1)),delta):
up:=unapply(Z =*eta[0]+C[1,0](delta) * Xi+
sum((simplify(diff(C[1,k](delta),delta$1)+delta *
C[1,k+1](delta))) xdelta”(2 *k+1) * etalk],k=0..(Hmax/2)),delta):

# calculate remaining corrections u_i(delta) :
for i from 2 to Numit do
# --> REDUCE-method avoids calculating terms which will be
# ignored later.
for m from 0 to Hmax/2 do
R[i,m]:=unapply(REDUCE(expand(DV(delta) * C[i-1,m](delta)),
Hmax-2+* m+3),delta):
od:
Cl[i,0]:=delta->0:
for m from 1 to Hmax/2+1 do
Cli,m]:=unapply(simplify(1/2/deltam *int(deltal™(m-1) *
(R[i,m-1](deltal)-diff(expand(C[i,m-1](deltal)),
deltal$2)),deltal=0..delta)),delta):

od:
u:=unapply(u(delta)+sum(CJi,k](delta) xdelta”(2 +k+1) *etalk],
k=0..(Hmax/2+1)),delta):
up:=unapply(up(delta)+sum((diff(C[i,k](delta),delta )+
delta *CJi,k+1](delta)) xdelta’(2 *k+1) *etalk],k=0..(Hmax/2)),
delta):

end:
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# construct vl(delta) :
R[1,0]:=unapply(DV(delta),delta):
for m from 1 to Hmax/2 do
R[1,m]:=delta->0:
od:
C[1,0]:=delta->0:
for m from 1 to Hmax/2+1 do
C[1,m]:=unapply(simplify(1/2/deltam *int(deltal”(m-1) *
(R[1,m-1](deltal)-diff(expand(C[1,m-1](deltal)),
deltal$2)),deltal=0..delta)),delta):

od:

v:=unapply(delta * eta[0]+sum(C[1,k](delta) xdelta”(2 +k+1) *
eta[k],k=0..(Hmax/2+1)),delta):

vp:=unapply(delta * Xi+C[1,0](delta) * Xi+

sum((simplify(diff(C[1,k](delta),delta)+delta * C[1,k+1]
(delta))) xdelta”(2 +k+1) *etalk], k=0..(Hmax/2)),delta):

# calculate remaining corrections v_i(delta) :
for i from 2 to Numit do
for m from 0 to Hmax/2 do
R[i,m]:=unapply(REDUCE(expand(DV(delta) * C[i-1,m](delta)),
Hmax-2* m+3),delta):
od:
C[i,0]:=delta->0:
for m from 1 to Hmax/2+1 do
C[i,m]:=unapply(simplify(1/2/delta™m *int(deltal”(m-1) *
(R[i,m-1](deltal)-diff(expand(Cl[i,m-1](deltal)),
deltal$2)),deltal=0..delta)),delta):

od:
v:=unapply(v(delta)+sum(CJi,k](delta) xdelta’(2 +k+1) *etalk],
k=0..(Hmax/2+1)),delta):
vp:=unapply(vp(delta)+sum((diff(C[i,k](delta),delta $1)+
delta *CJi,k+1](delta)) xdelta’(2 +k+1) *etalk],
k=0..(Hmax/2)),delta):
end:
# delta = h

# throw away terms with degree(h) > Hmax
u_ser:=convert(series(u(h),h,Hmax+1),polynom):
up_ser:=convert(series(up(h),h,Hmax+1),polynom):
v_ser:=convert(series(v(h),h,Hmax+1),polynom):
vp_ser:=convert(series(vp(h),h,Hmax+1),polynom):

# Vb[m] = {\bar V}_m
for m from 0 to N do
Ve[m]:=Vb[m]/h"(m+2)
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od:

ord:=[seq(Vbl[i],i=1..N)]:

for n from O to Numit do
Cu[n]:=sort(simplify(coeff(u_ser,eta[n],1)),ord);
Cup[n]:=sort(simplify(coeff(up_ser,eta[n],1)),ord);
Cv[n]:=sort(simplify(coeff(v_ser,eta[n],1)),ord);
Cvp[n]:=sort(simplify(coeff(vp_ser,eta[n],1)),ord);

od;

B.2 The generation of the corrections of the LPM[4,2]
method

B.2.1 The analytic expressions for the first and second order cec-
tion

Maple code which generates the expressions of the first and sed®raorrection for the LPM[4,1]
and LPM[4,2] method (see 4.2.1).

restart;

with(orthopoly): # includes the orthopoly package
Ps:=(n,x)->simplify(P(n,2 *X-1)): # shifted Legendre polynomials
N:=4: # N=4 (up to V_4)

DV:=unapply(sum(V[n] *h"n * Ps(n,x/h),n=2..N),x): # perturbation
Calculation of the first order correction:

# Using the procedure described in sections 3.3 and 3.5 from
# L. Gr. Ixaru, Numerical Methods for Differential Equation S
# and Applications, Reidel (1984).

# We assume that ul(delta) is of the form :

ul:=unapply(al(delta) * uQ(delta)+b1(delta) *v0(delta)+cl(delta) *
uOp(delta)+d1(delta) *v0Op(delta),delta):

# (Note = Q=F[OJ/F[1])

# where al, bl, cl and dl satisfy the system :

eql:=diff(al(delta),delta$2)+2 + diff(c1(delta),delta) *
(Q*F[1]+F[1] =*delta)+cl(delta) * F[1]=DV(delta):
eg2:=diff(b1(delta),delta$2)+2 + diff(d1(delta),delta) *
(Q*F[1]+F[1] =+ delta)+d1(delta) * F[1]=0:
eq3:=diff(c1(delta),delta$2)+2 * diff(al(delta),delta)=0:
eq4:=diff(d1(delta),delta$2)+2 + diff(b1(delta),delta)=0:

# with initial conditions :

inil:=a1(0)+d1(0)=0:

ini2:=D(a1)(0)+c1(0) * Qx F[1]+b1(0)+D(d1)(0)=0:

# solution of the system :

c1:=unapply(rhs(simplify(dsolve(subs(diff(al(delta) ,'$'(delta,2))=
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-diff(c1(delta),'$'(delta,3))/2,eql),c1(delta)),{_C 1=0,_C2=0,
_C3=0,_C4=0})),delta):

d1:=unapply(rhs(simplify(dsolve(subs(diff(b1(delta) ,'$'(delta,2))=
-diff(d1(delta),'$'(delta,3))/2,eq2),d1(delta)),{_C 1=0,_C2=0,
_C3=0,_C4=0})),delta):

al:=unapply(rhs(dsolve({eq3,inil},al(delta))),delta ):

bl:=unapply(rhs(dsolve({eq4,ini2},b1(delta))),delta ):

# the expression of the first derivative of ul(delta) w.r.t. delta:

ulp:=unapply(((diff(al(delta),delta)+cl(delta)
*(Q*F[1]+F[1] =+delta)) =uO(delta)+(diff(b1(delta),delta)
+d1(delta) = (Q+F[1]+F[1] =delta)) =*vO(delta)+(al(delta)
+diff(c1(delta),delta)) * uOp(delta)+(b1(delta)+diff(d1(delta),
delta)) *vOp(delta)),delta):

# We assume that vl(delta) is of the form :
v1:=unapply(el(delta) * uO(delta)+f1(delta) *v0(delta)+gl(delta) *
uOp(delta)+h1(delta) *v0Op(delta),delta):
# where el, f1, gl and hl satisfy the system :
eql:=diff(el(delta),delta$2)+2 * diff(g1(delta),delta) *
(Q*F[1]+F[1] =*delta)+gl(delta) * F[1]=0:
eq2:=diff(f1(delta),delta$2)+2 + diff(h1(delta),delta) *
(Q*F[1]+F[1] +delta)+h1(delta) * F[1]=DV(delta):
eq3:=diff(g1(delta),delta$2)+2 * diff(el(delta),delta)=0:
eq4:=diff(h1(delta),delta$2)+2 + diff(f1(delta),delta)=0:
# with initial conditions :
ini1:=e1(0)+h1(0)=0:
ini2:=D(e1)(0)+g1(0) * Qr F[1]+f1(0)+D(h1)(0)=0:
# solution of the system :
gl:=unapply(rhs(simplify(dsolve(subs(diff(e1(delta) ,'$'(delta,2))=
-diff(g1(delta),'$'(delta,3))/2,eql),gl(delta)),{_C 1=0,_C2=0,
_C3=0,_C4=0})),delta):
h1:=unapply(rhs(simplify(dsolve(subs(diff(f1(delta) ,'$'(delta,2))=
-diff(h1(delta),'$'(delta,3))/2,eq2),h1(delta)),{ C 1=0,_C2=0,
_C3=0,_C4=0})),delta):
el:=unapply(rhs(dsolve({eq3,inil},el(delta))),delta ):
f1:=unapply(rhs(dsolve({eg4,ini2},f1(delta))),delta ):
# expression of the first derivative of vi(delta)
v1p:=unapply(((diff(el(delta),delta)+gl(delta)
*(F[1] *Q+F[1] *delta)) = uO(delta)+(diff(f1(delta),
delta)+h1(delta) *(F[1] *Q+F[1] *delta)) =*vO(delta)
+(el(delta)+diff(gl(delta),delta)) * uOp(delta)
+(f1(delta)+diff(h1(delta),delta)) +v0Op(delta)),delta):

# These commands print out the expressions of the first

# order correction:

# first order correction for u (with Q=F[0]/F[1]) :
collect(simplify(u1(h)),[u0(h),v0(h),u0p(h),vOp(h), QD;
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# first order correction for v:

collect(simplify(v1(h)),[u0(h),v0(h),u0p(h),vOp(h), QD;
# first order correction for u’:
collect(simplify(ulp(h)),[u0(h),vO(h),u0p(h),v0p(h) ,Q);
# first order correction for v':
collect(simplify(vlp(h)),[u0(h),v0(h),u0p(h),vOp(h) ,Q);

Calculation of the second order correction:

# The same procedure as for the first order correction is used

u2:=unapply(a2(delta) * uO(delta)+b2(delta) * v0O(delta)+c2(delta) *
uOp(delta)+d2(delta) *v0Op(delta),delta):
eql:=diff(a2(delta),delta$2)+2 * diff(c2(delta),delta) *
(Q*F[1]+F[1] =*delta)+c2(delta) * F[1]=DV(delta) *al(delta):
eq2:=diff(b2(delta),delta$2)+2 + diff(d2(delta),delta) *
(Q*F[1]+F[1] =*delta)+d2(delta) * F[1]=DV(delta) * bl(delta):
eq3:=diff(c2(delta),delta$2)+2 * diff(a2(delta),delta)=
DV(delta) =*cl(delta):
eq4:=diff(d2(delta),delta$2)+2 * diff(b2(delta),delta)=

DV(delta) +dl(delta):
ini1:=a2(0)+d2(0)=0:

ini2:=D(a2)(0)+c2(0) * Qx F[1]+b2(0)+D(d2)(0)=0:
eg3s:=(diff(eq3,delta)-(diff(c2(delta),'$'(delta,3) )=
diff(c2(delta),'$'(delta,3))))/2:
c2:=unapply(rhs(subs({_C1=0,_C2=0,_C3=0,_C4=0},dsol ve(subs(eg3s,
eql),c2(delta)))),delta):
eq4s:=(diff(eq4,delta)-(diff(d2(delta),'$‘(delta,3) )=
diff(d2(delta),'$'(delta,3))))/2:
d2:=unapply(rhs(subs({_C1=0, C2=0, C3=0,_C4=0},dsol ve(subs(eq4s,
eq2),d2(delta)):)),delta):
a2:=unapply(rhs(value(dsolve({eg3,inil},a2(delta))) ),delta):
b2:=unapply(rhs(value(dsolve({eqg4,ini2},b2(delta))) ),delta):
u2p:=unapply((diffi(a2(delta),delta)+c2(delta) *(QxF[1]+F[1] =delta))
* uO(delta)+(diff(b2(delta),delta)+d2(delta) * (Q=*F[1]
+F[1] *delta)) *vO(delta)+(a2(delta)+diff(c2(delta),delta))
* UOp(delta)+(b2(delta)+diff(d2(delta),delta)) *vOp(delta),
delta):
v2:=unapply(e2(delta) * uO(delta)+f2(delta) *v0(delta)+g2(delta) *
uOp(delta)+h2(delta) *v0Op(delta),delta):
eqgl:=diff(e2(delta),delta$2)+2 + diff(g2(delta),delta) *
(Q*F[1]+F[1] =+ delta)+g2(delta) * F[1]=DV(delta) * el(delta):
eq2:=diff(f2(delta),delta$2)+2 * diff(h2(delta),delta) *
(Q*F[1]+F[1] = delta)+h2(delta) *F[1]=DV(delta)  *fl(delta):
eq3:=diff(g2(delta),delta$2)+2 * diff(e2(delta),delta)=
DV(delta) =*gl(delta):
eq4:=diff(h2(delta),delta$2)+2 + diff(f2(delta),delta)=

DV(delta) =*hl(delta):
ini1:=e2(0)+h2(0)=0:
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ini2:=D(e2)(0)+g2(0) * Qr F[1]+f2(0)+D(h2)(0)=0:
eq3s:=(diff(eq3,delta)-(diff(g2(delta),'$‘(delta,3)
diff(g2(delta), '$'(delta,3))))/2:
g2:=unapply(rhs(subs({_C1=0,_C2=0,_C3=0,_C4=0},dsol
eql),g2(delta)))),delta):
eg4s:=(diff(eq4,delta)-(diff(h2(delta), '$'(delta,3)
diff(h2(delta),'$‘(delta,3))))/2:
h2:=unapply(rhs(subs({_C1=0,_C2=0,_C3=0,_C4=0},dsol
eg2),h2(delta)))),delta):
e2:=unapply(rhs(value(dsolve({eqg3,inil},e2(delta)))
f2:=unapply(rhs(value(dsolve({eq4,ini2},f2(delta)))
v2p:=unapply((diff(e2(delta),delta)+g2(delta)
* UO(delta)+(diff(f2(delta),delta)+h2(delta)

xdelta)) *vO(delta)+(e2(delta)+diff(g2(delta),delta))

* uOp(delta)+(f2(delta)+diff(h2(delta),delta))
delta):

# These commands print out the expressions of the second

# order correction:

# second order correction for u:
collect(expand(u2(h)),[u0(h),v0(h),u0p(h),vOp(h),Q]
# second order correction for u’:
collect(expand(u2p(h)),[u0(h),v0(h),u0p(h),vOp(h),Q
# second order correction for v:
collect(expand(v2(h)),[u0(h),vO(h),u0p(h),vOp(h),Q]
# second order correction for v
collect(expand(v2p(h)),[u0(h),v0(h),u0p(h),vOp(h),Q

)=
ve(subs(eg3s,
)=
ve(subs(eg4s,

),delta):
),delta):

*(Q*F[1+F[1]  *delta))
* (Q* F[1]+F[1]

*vOp(delta),

B.2.2 The asymptotic forms for the zeroth, first and second orde

correction

Maple code which should be appended to the previous Maple code intorgenerate the asymp-

totic forms of the zeroth, first and second order correction.

# asymptotic expansions of the Airy functions

# (see Egs. 10.4.58-10.4.67 in M. Abramowitz and |. Stegun,

# Handbook of Mathematical Functions.):
c[0]:=1:
d[0]:=1:
M:=7:
for k from 1 to 2 +«M+1 do

c[k]:=(6 *k-5) *(6*k-1) *c[k-1]/(72  *Kk):
dk]:=(-(6 *k+1)/(6 *k-1)) =*c[k]:
od:
zeta:=(2/3)  *»Zm"(3/2):

# asymptotic expansions of the Airy functions for Z large neg
nAi:=unapply(Pi*(-1/2) *Zm"(-1/4) = (sin(zeta+Pi/4)
xzeta'(-2  *i),i=0..M)-cos(zeta+Pi/4) *sum((-1)7i

ative :

*sum((-1)7i  *c[2 *i]

*C[2 xi+1] *zeta
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(-2 *i-1),i=0..M)),Zm):

nAip:=unapply(-Pi*(-1/2) *Zm"(1/4) *(cos(zeta+Pi/4) *sum((-1)7i  *d[2 *i]
xzeta'(-2  *i),i=0..M)+sin(zeta+Pi/4) *sum((-1)7i  *d[2 *i+1] *zeta
“(-2 *i-1),i=0..M)),Zm):
nBi:=unapply(Pi"(-1/2) *Zm"(-1/4) = (cos(zeta+Pi/4) *sum((-1)7i  *c[2 *i]
xzeta (-2  *i),i=0..M)+sin(zeta+Pi/4) *sum((-1)7i  *c[2 *i+1l] *zeta
“(-2 *i-1),i=0..M)),Zm):
nBip:=unapply(Pi"(-1/2) *Zm"(1/4) *(sin(zeta+Pi/4) *sum((-1)7i  *d[2 *i]
xzeta'(-2  *i),i=0..M)-cos(zeta+Pi/4) *sum((-1)7i  *d[2 *i+1] *zeta
“(-2 *i-1),i=0..M)),Zm):
# asymptotic expansions of the Airy functions for Z large pos itive:
pAi:=unapply((1/2) *Pi"(-1/2)  *Zm"(-1/4) =+exp(-zeta) *sum((-1)%i  =*c[i]
* zeta (-i),i=0..2 *M),Zm):
pAip:=unapply(-(1/2) *Pi"(-1/2)  *Zm"(1/4) =+exp(-zeta) *sum((-1)7  *d]i]
* zeta'(-i),i=0..2 * M),Zm):
pBi:=unapply(Pi*(-1/2) *Zm"(-1/4) xexp(zeta) =*sum(c[i] *zeta (-,
i=0..2 *M),Zm):
pBip:=unapply(Pi"(-1/2) *Zm~(1/4) =exp(zeta) *sum(d[i] =zeta (i),
i=0..2  *M),Zm):

Calculation of the asymptotic expansion of the zeroth order correction :

Z:=F[1]"(1/3) * h+F[0)/(F[1])"(2/3): # Z(h) = alfa * (h+beta)
Z0:=F[0)/(F[1])"(2/3): # Z0 = alfa * beta

# zeroth order propagators must be calculated up to F1°14 to

# obtain the first correction up to F1"4 and the second order

# correction up to F1°3:

K:= 15:
# for Z and Z0 both large negative:
nu0:=convert(simplify(series(simplify(combine(Pi *(NAI(-Z)  *nBip(-Z0)
-nBi(-Z)  *nAip(-20)),trig)),F[1],K)),polynom):
nv0:=convert(simplify(series(simplify(combine(Pi *(nBi(-Z)  *nAi(-Z0)
-nAi(-Z)  *nBi(-Z0))/F[1]"(1/3),trig)),F[1],K)),polynom):
nuOp:=convert(simplify(series(simplify(combine(F[1] “(a/3) *Pix
(nAip(-Z2)  *nBip(-Z0)-nBip(-2) * NAiIp(-Z20)),trig)),F[1],K)),
polynom):
nvOp:=convert(simplify(series(simplify(combine(Pi *(nBip(-2) =

nAi(-Z0)-nAip(-2) * nNBi(-Z0)),trig)),F[1],K)),polynom):
# for Z and Z0 both large positive:

puO:=convert(simplify(convert(series(combine(Pi * (pAi(Z) *pBip(Z0)-
pBi(Z) *pAip(Z0))),F[1],K),trig)),polynom):
pvO:=convert(simplify(convert(series(combine(Pi *(pBi(Z) *pAi(Z0)-
pAi(Z) *pBi(Z0))/F[1]"(1/3)),F[1],K),trig)),polynom):
puOp:=convert(simplify(convert(series(combine(F[1]" (1/3) *Pix*
(PAIP(Z)  *pBIp(Z0)-pBip(2)  *pAip(20))),F[1].K),trig)),polynom):
pvOp:=convert(simplify(convert(series(combine(Pi *(pBip(Z) *pAi(Z0)

-pAip(Z) *pBi(Z0))),F[1],K),trig)),polynom):

Calculation of the asymptotic expansion of the first order correction :
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# Conversion of the first order correction (in the analytica |
# form) into asymptotic form.

# First order correction in asymptotic form for Z and Z0 both

# large negative:

K:=5: # up to F14

nul:=collect(factor(convert(series(simplify(subs({u 0(h)=nu0,
vO(h)=nv0,u0p(h)=nu0p,vOp(h)=nv0p},subs({Q=F[0]/F[1 1
ul(h)))),F[1],K),polynom)),F[1]);
nvl:=collect(factor(convert(series(simplify(subs({u 0(h)=nu0,
vO(h)=nv0,u0p(h)=nu0p,v0p(h)=nv0p},subs({Q=F[0]/F[1 1}
v1(h)))).F[1].K),polynom)),F[1]);
nulp:=collect(factor(convert(series(simplify(subs({ u0(h)=nuo0,
vO(h)=nv0,u0p(h)=nu0p,vOp(h)=nv0p},subs({Q=F[0]/F[1 1}
ulp(h)))).F[1],K),polynom)),F[1]);
nvlp:=collect(factor(convert(series(simplify(subs({ u0(h)=nuo0,
vO(h)=nv0,u0p(h)=nu0p,vOp(h)=nv0p},subs({Q=F[0]/F[1 1}

v1p(h)))),F[1],K),polynom)),F[1]);
# First order correction in asymptotic form for Z and Z0 both
# large positive:

pul:=collect(factor(convert(series(simplify(subs({u 0(h)=puo,
vO(h)=pv0,u0p(h)=pu0p,vOp(h)=pv0p},subs({Q=F[0]/F[1 1}
ul(h)))),F[1].K),polynom)),F[1]);
pvl:=collect(factor(convert(series(simplify(subs({u 0(h)=pu0,
vO(h)=pv0,u0p(h)=puOp,vOp(h)=pv0p},subs({Q=F[0]/F[1 I3
v1(h)))),F[1].K),polynom)),F[1]);
pulp:=collect(factor(convert(series(simplify(subs({ u0(h)=pu0,
vO(h)=pv0,u0p(h)=pu0p,vOp(h)=pv0p},subs({Q=F[0]/F[1 1}
ulp(h)))).F[1].K),polynom)),F[1]);
pvilp:=collect(factor(convert(series(simplify(subs({ u0(h)=pu0,
vO(h)=pv0,u0p(h)=pu0p,vOp(h)=pv0p},subs({Q=F[0]/F[1 1}

v1p(h)))),F[1],K),polynom)),F[1]);

Calculation of the asymptotic expansion of the second order correction :

# Conversion of the second order correction (in the analytic al
# form) into asymptotic form.

# Second order correction in asymptotic form for Z and Z0 both

# large negative:

K:=4: #up to F1°3

nu2:=collect(factor(convert(series(simplify(subs({u 0(h)=nuO,
vO(h)=nv0,u0p(h)=nu0p,vOp(h)=nv0p},subs({Q=F[0]/F[1 1
u2(h)))),F[1],K),polynom)),F[1]);

nv2:=collect(factor(convert(series(simplify(subs({u 0(h)=nuO,
vO(h)=nv0,u0p(h)=nu0p,vOp(h)=nv0p},subs({Q=F[0]/F[1 1
v2(h)))),F[1],K),polynom)),F[1]);

nu2p:=collect(factor(convert(series(simplify(subs({ u0(h)=nu0,

vO(h)=nv0,u0p(h)=nu0p,vOp(h)=nv0p},subs({Q=F[0]/F[1 1}

uzp(h)))),F[1],K),polynom)),F[1]);



200 Appendix B

nv2p:=collect(factor(convert(series(simplify(subs({ u0(h)=nu0,
vO(h)=nv0,u0p(h)=nu0p,vOp(h)=nv0p},subs({Q=F[0]/F[1 1}
v2p(h)))),F[1],K),polynom)),F[1]);

# Second order correction in asymptotic form for Z and Z0 both

# large positive:

pu2:=collect(factor(convert(series(simplify(subs({u 0(h)=pu0,
vO(h)=pv0,u0p(h)=puOp,vOp(h)=pv0p},subs({Q=F[0]/F[1 1}
u2(h)))),F[1],K),polynom)),[F[1],F[O]]);
pv2:=collect(factor(convert(series(simplify(subs({u 0(h)=puo0,
vO(h)=pv0,u0p(h)=puOp,vOp(h)=pv0p},subs({Q=F[0]/F[1 1}
v2(h)))).F[1].K),polynom)),[F[1],F[O]]);
pu2p:=collect(factor(convert(series(simplify(subs({ u0(h)=puoO,
vO(h)=pv0,u0p(h)=puOp,vOp(h)=pv0p},subs({Q=F[0]/F[1 1}
u2p(h)))),F[1],K),polynom)),[F[1],F[0]]);
pv2p:=collect(factor(convert(series(simplify(subs({ u0(h)=puo0,
vO(h)=pv0,u0p(h)=puOp,vOp(h)=pv0p},subs({Q=F[0]/F[1 1}

v2p(h)))),F[1],K),polynom)),[F[1],F[O]]);

B.3 The generation of the coefficients for the generalized
CPM{P, N}

1. Construction of the elements of theC{*) and C(%") matrices

restart;

# built-in package for the generation of orthogonal polynom ials:
with(orthopoly):

# shifted Legendre polynomials (n = degree):

Ps:=(n,x)->simplify(P(n,2 *x-1)):

# By changing the parameters Mmax and Hmax, coefficients for other
# CPM{P,N} methods can be calculated :

Mmax:=8: #V.O0OV_1..,V 38

Hmax:=10: # CPM{10,8}=CPM{Hmax,Mmax}

NumberCorr:=5; # 5 corrections is sufficient for CPM{10,8}

# The parameter N should be changed to obtain the coefficient S
# for other NxN problems:
N:=2: # 2x2 matrix

#a pruning procedure:

REDUCE:= proc(a,P)

local c, tmp,red:

red:=0;

tmp:=simplify(rem(rem(convert(a,’polynom’),delta”(P ),delta),
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h"(P),h)):
for i from 1 to nops(tmp) do
c:=op(i,tmp);

if degree(c,{delta,h}) < (P) then
red:=simplify(red+c);

end if;

od:

RETURN(red);

end proc:

#The perturbation :

#Note: VD’s are symmetric

DV:=unapply(‘if'(i<j,sum(VDIi,j,z] *h"z * Ps(z,x/h),z=1..Mmax),
sum(VDl[j,i,z] *h"z * Ps(z,x/h),z=1..Mmax)),i,j,x);

#First correction :

i:=1:

for Il from 1 to N do
for JJ from 1 to N do

C[I1,33,0,i]:=unapply(integrate(DV(Il,JJ,x),x=0..de lta)/2,
delta):
for m from 1 to (Hmax/2+1) do
C[l1,33,m,i]:=unapply(simplify(-1/2/delta”m *int(deltal”(m-1)
+ diff(C[11,JJ,m-1,i](deltal),deltal$2)+CJlI,JJ,m-1,i ](deltal)
*VD[J3J,3J,0]-VD[Il,11,0] * C[l1,JJ,m-1,i](deltal)),deltal=0..
delta)),delta);
od;
ul[ll,dJ]:=unapply(sum(CJ[ll,JJ,w,i](delta) xdelta”(2 *w+l)*
eta[w,JJ],w=0..(Hmax/2+1)),delta):
upl[ll,JJ]:=unapply(C[II,JJ,0,i](delta) * etal-1,JJ]+
sum((simplify(diff(C[l1,dJ,k,i](delta),delta$1)+del ta
C[l1,3J,k+1,i](delta))) xdelta”(2 rk+1) *etalk,JJ],k=0..(Hmax/2)),
delta):
od;

od;

#Remaining corrections :
for i from 2 to NumberCorr do
for Il from 1 to N do
for JJ from 1 to N do
for m from 0 to Hmax/2 do
R[I1,JJ,m,i]:=unapply(REDUCE(expand(sum(DV(ll,k,del ta) *
C[k,JdJ,m,i-1](delta),k=1..N)),Hmax-2 *m+1),delta):
od:
C[I1,33,0,i]:=unapply(0,delta):
for m from 1 to (Hmax/2+1) do
C[I1,33,m,i]:=unapply(simplify(1/2/delta™m *int(deltal”(m-1) *
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(R[I1,33,m-1,i](deltal)-diff(C[II,JJ,m-1,i](deltal) ,deltal$2)
-C[I1,33,m-1,i](deltal) *VD[JJ,JJ,0]+VDI[I1,11,0] *C[11,33,m-1,i]
(deltal)),deltal=0..delta)),delta);
od:
ulfll,3J3]:=unapply(ulfll,dJ](delta)+sum(C[lI,IJI,w,i ](delta) =+
delta®(2 *w+1) * eta]w,JJ],w=0..(Hmax/2+1)),delta):
upl[il,JJ]:=unapply(upl[ll,JJ](delta)+C[II,J,0,i]( delta) =
eta[-1,JJ]+sum((simplify(diff(C[ll,JJ,k,i](delta),d elta$l)+
delta =*CJ[ll,JJ,k+1,i](delta))) xdelta™(2 *k+1) *etalk,JJ],k=0..
(Hmax/2)),delta):
od;
od;

od;

#Construction of the C-matrices :
for 1l from 1 to N do
for JJ from 1 to N do

#delta = h

#throw away terms with degree(h)>Hmax
u[ll,3J]:=simplify(convert(series(ul[ll,dJ](h),h,Hm ax+1),
polynom)):

up[ll,dJ]:=convert(series(upl[ll,JJ](h),h,Hmax+1),p olynom):

for m from -1 to (Hmax/2+1) do
Cu[ll,JJ,m]:=simplify(coeff(u[ll,JJ],eta[m,JJ],1));

od;

for m from -1 to (Hmax/2+1) do
Cup[ll,3J,m]:=simplify(coeff(up[ll,dJ],eta[m,JJ],1) );
od;

od;

od;

t:=simplify(Cu[1,2,1]); #shows C™{(u)}_1 for i=1,j=2

2. Construction of the elements of theC(?) and C(*") matrices

restart;

with(orthopoly):

Ps:=(n,x)->simplify(P(n,2 *»x-1)): # shifted Legendre polynomials
Mmax:=8:

Hmax:=10: #CPM{10,8}

N:=2: #2x2 matrix

NumberCorr:=5;

#pruning procedure :

REDUCE:= proc(a,P)

local ¢, tmp,red:

red:=0;

tmp:=simplify(rem(rem(convert(a,’polynom’),delta”(P ),delta),
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h*(P),h)):
for i from 1 to nops(tmp) do
c:=op(i,tmp);
if degree(c,{delta,h}) < (P) then
red:=simplify(red+c);
end if;
od:
RETURN(red);
end proc:

#The perturbation :
DV:=unapply(‘if(i<j,sum(VDIi,j,z] *h"z * Ps(z,x/h),z=1..Mmax),
sum(VDj,i,z] *h"z * Ps(z,x/h),z=1..Mmax)),i,j,X);

#First correction :
i=1;
for 1l from 1 to N do
for JJ from 1 to N do
R[11,33,0,i]:=unapply(DV(ll,JJ,delta),delta):
for m from 1 to Hmax/2 do
R[I1,JJ,m,i]:=unapply(0,delta):
od:
C[I1,33,0,i]:=unapply(0,delta):
for m from 1 to (Hmax/2+1) do
C[I1,33,m,i]:=unapply(simplify(1/2/deltam *int(deltal™(m-1) *
(R[I1,33,m-1,i](deltal)-diff(C[II,JJ,m-1,i](deltal) ,deltal$2)-
C[l1,33,m-1,i](deltal) *VD[JJ,3J,0]+VDIIL,I1,0] * C[I1,J3,m-1,i]
(deltal)),deltal=0..delta)),delta);
od:
v1[Il,dJ]:=unapply(sum(CJ[ll,JJ,w,i](delta) xdelta”(2 +*w+1)*
eta[w,JJ],w=0..(Hmax/2+1)),delta):
vpl[ll,JdJ]:=unapply(C[II,JJ,0,i](delta) *etal-1,JJ]+
sum((simplify(diff(C[l1,dJ,k,i](delta),delta$1)+
delta *C[ll,JJ,k+1,i](delta))) xdelta”(2 +k+1) *etalk,JJ],
k=0..(Hmax/2)),delta):
od;
od;

#Remaining corrections :
for i from 2 to NumberCorr do
for 1l from 1 to N do
for JJ from 1 to N do
for m from 0 to Hmax/2 do
R[I1,3J,m,i]:=unapply(REDUCE (expand(sum(DV(ll,k,del ta) *
C[k,JJ,m,i-1](delta),k=1..N)),Hmax-2 *m+1),delta):
od:
C[I1,33,0,i]:=unapply(0,delta):
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for m from 1 to (Hmax/2+1) do

C[I1,33,m,i]:=unapply(simplify(1/2/deltam *int(deltal”(m-1) *
(R[,33,m-1,i](deltal)-diff(C[lI,dJ,m-1,i](deltal) ,deltal$?2)
-C[l1,33,m-1,i](deltal) *VD[JJ,33,0]+VD[l1,11,0] * C[11,93,m-1,i]
(deltal)),deltal=0..delta)),delta);

od:

v1[l1,33]:=unapply(v1[ll,dJ](delta)+sum(C[Il,JJ,w,i ](delta) =+
delta®(2  »w+1) » eta[w,JJ],w=0..(Hmax/2+1)),delta):

vpl[ll,JJ]:=unapply(vpl[ll,JJ](delta)+C][II,JJ,0,i]( delta) =
eta[-1,JJ]+sum((simplify(diff(C[Il,JdJ,k,i](delta),d elta$l)+
delta = CJ[ll,JJ,k+1,i](delta))) xdelta’(2 *k+1) *etalk,JJ],
k=0..(Hmax/2)),delta):

od;
od;
od;

for Il from 1 to N do
for JJ from 1 to N do

V[I1,33]:=simplify(convert(series(v1[ll,JJ](h),h,Hm ax+1),
polynom)):
vp[ll,dJ]:=convert(series(vpl[ll,JJ](h),h,Hmax+1),p olynom):

for n from -1 to (Hmax/2+1) do
Cv[ll,33,n]:=simplify(coeff(v[ll,JJ],eta[n,J],1));

od;
for n from -1 to (Hmax/2+1) do
Cvp[ll,JdJ,n]:=simplify(coeff(vp[ll,dJ],eta[n,JJ],1) );
od;

od;

od;

t:=simplify(Cv[1,2,3]); #shows C*{(v)}_3 for i=1,j=2
t:=simplify(Cvp[1,2,3]); #shows C{(v)}_3 for i=1,j=2
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List of test problems

In this appendix we list the problems predefined in thetllLISE GUI. This test set of problems
collects some problems from the set used by Pruess and Fulton to teBIGH Bnd many prob-
lems from SLTSTPAK [107], a test package for Sturm-Liouville solvéfhe nth problem in the

SLTSTPAK test set is referred to as SLTSTPAK#

C.1 Schrodinger problems

Regular Schrodinger problems

1. Coffey-Evans equation (Coffey_Evans.mat ). (SLTSTPAK #7). Reference: [104].
V(z) = —2Bcos 2z + 47 sin? 2z
a=—m/2 Regular y(a) =0
b=m/2 Regular y(b) =0
As j3 increases there are very close eigenvalue trifléts Es, Es}, {Es, E7, Es}, ... with
the other eigenvalues well separated.
[ =20 : Ey = 0.0000000000000 E; = 77.9161956771440 FE3 = 151.4632236576586
8 =30 : Ey = 0.0000000000000 FE; = 117.946307662070 FE3 = 231.6649293129610
8 =50 : Ey = 0.0000000000000 E; = 197.968726516507 E3 = 391.80819148905.

2. Mathieu equation. (Mathieu.mat ). (SLTSTPAK #2).
V(z) = 2rcos(2z) r parameter
a=0 Regular y(a)=0
b=n Regular y(b)=0
r=1:Ey=—0.1102488169921 E5 = 36.0142899106282 E9 = 100.0050506751595.

3. Paine problem 1 (Painel.mat ). Reference: [97].
Viz) =e”
a=0 Regular y(a) =0
b=m Regular y(b) =0
Ey = 4.896669379968 E1 = 10.04518989325 Ey = 107.11667613827.
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4. Paine problem 2 (Paine2.mat ). (SLTSTPAK #1). Reference: [97].

Vi) = o1y

a=0 Regular y(a) =0

b=m Regular y(b)=0

Ey =1.519865821099 E; = 4.943309822145 FEg9 = 102.424988398249.

5. Pruess-Fulton problem 133 (Pruess_Fulton133.mat ). (SLTSTPAK #11).
Reference: 133th problem in the Pruess-Fulton test set [102].
V(iz)=Inz
a=0 Regular y(a) =0
b=4 Regular y(b) =0
Eo = 1.1248168097 E24 = 385.92821596.

6. Truncated Gelfand-Levitan. (Gelfand_Levitan_truncated.mat ). (SLTSTPAK
#6).
Reference: [39].
V(z) = 2(Tsin 2z + cos® ) /T?, T =1+ z/2 +sin(2z)/4
a=0 Regular y(a) —y'(a) =0
b=100 Regular y(b)=0
Non-uniform oscillations of decreasing sizelif{z).
7. Version of Mathieu equation. (Mathieu_version.mat ). (SLTSTPAK #5).
V(x) = ccos(x) cparameter
a=0 Regular y(a)=0
b=40 Regular y(b) =0
The lower eigenvalues form clusters of 6; more and tighter clusterénaseases.

Infinite integration interval
1. Airy equation. (Airy.mat ). (SLTSTPAK #27). Reference: [119] p.91.

Viz)==x
a=0 Regular y(a) =0
b=+oc0 LPN

Number of eigenvaluesso  continuous spectrum: none
Eigenvalues are the zeros of Airy functieti(E) = (J1/3 + J_1/3)(2E'/?).
Fo = 2.338107410459 E9 = 12.82877675287.

2. Anharmonic oscillator potential. (anharm_oscillator.mat ). Reference: [37].
V(z) =2? +Az?/(1+gx?) A, g parameters
a=—-o LPN
b=+40c0 LPN
Number of eigenvaluesso  continuous spectrum: none
A=0.1,¢g=0.1: Eo =1.04317371304

A=10.0,g=10.0: Eo = 1.58002232739.

3. Bender-Orszag potential (Bender_Orszag.mat ). (SLTSTPAK #14).
Reference: [23] p. 28.
V(z) = —m(m + 1)/ cosh® = m parameter
a=-o0 LPN/O
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b=+4oc0 LPN/O

Number of eigenvalues: Number of integers in rafgé k < m
Continuous spectrun{p, co)

Ek:—(m—k)2, 0<k<m.

4. Biswas potential (Biswas.mat ). Reference: [24, 36].
V(z) = pa® +va*  p,v parameters
a=—00 LPN
b=+oc0 LPN
Number of eigenvaluesioc  continuous spectrum: none
uw=00,v=10: FEy=1.0603620905
u=10,vr=10: Ey=1.3923516415.

5. Close-eigenvalues problem(Close_eigenvalues.mat ). (SLTSTPAK #38).
V(z) = z* — 2527
Double well version of quartic anharmonic oscillator
a=—oc0 LPN Trunc. BC.iy(a) =0
b=+oco LPN Trunc. BC.iy(b) =0
Number of eigenvaluesio  continuous spectrum: none
Eo = —149.219456142 FE; = —149.219456142
Half-range reduction makes the problem more tractable.

6. Harmonic oscillator. (Harmonic_oscillator.mat ). (SLTSTPAK #28).
Reference: [119] p.1536.
V() = a?
a=—o0 LPN
b=+40c0 LPN
Number of eigenvaluesso  continuous spectrun(0, co)
Er=2k+1,k=0,1,....

7. Half-range anharmonic oscillator. (HR_anharm_oscillator.mat ). (SLTSTPAK
#17).
Reference: [84].
Vizg)=z% a>0
a=0 Regular y(a) =0
b=+40c0 LPN
Number of eigenvaluesso  continuous spectrum(0, co)
a=2:E,=4k+ 3, k=0,1,2,... (alternate eigenvalues of harmonic oscillator)
o = 3: By = 3.4505626899 E24 = 228.520881389
o =4: By =3.7996730298 E»4 = 397.141326781
a =5 Eg =4.0891593149 E54 = 588.178249691.

8. Morse potential. (Morsel.mat ). (SLTSTPAK #35). Reference: [91].
V(z) = 972" —18¢™"
a=—-o LPN
b=+oc0 LPN/O
Number of eigenvalues: 3  continuous spectrifyoo)
E,=-02—(3-k)(2—-k), k=0,1,2.

9. Morse potential. (Morse2.mat ). (SLTSTPAK #39). Reference: [84]
V(z) = 8000e 3% — 16000e3*/2
a=—-oc0 LPN
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b=+4oc0 LPN/O

Number of eigenvalues: 60 continuous spectriinoo)

With this deep well, a large truncated interval seems to be needed to gideagpooxima-
tions to higher eigenvalues.

Ey = —7866.39842135 Es7 = —10.19345525 Ess = —2.86529795.

10. Problem with ‘pseudo-eigenvalue! Pryce60.mat . (SLTSTPAK #60). Reference: [84].
V(z) =3(z —31)/(4(1 + z)(4 + )?)
a=0 Regular 5y(a)+8y(a)=0
b=o0c0 LPN/O
Number of eigenvalues: 1  continuous spectrum: none
Ey = —1.185214105.

11. Quartic anharmonic oscillator. (Quartic_anharm_oscillator.mat ). (SLTST-
PAK #37). Reference: [115].
V(z) = 2* 4+ 22
a=—oc0 LPN
b=+cc LPN
Number of eigenvaluesioc  continuous spectrum: none
Ey =1.3923516415 E9 = 46.965009506.

12. The Razavy potential (Razavy.mat ). Reference: [37].
V(z) = 1/8m?(cosh(4x) — 1) — m(n + 1) cosh(2z) n,m parameters
a=—o LPN
b=+40c0 LPN
Number of eigenvaluesso  continuous spectrum: none
n=1m=1:Ey=-2, £;1 =0
n=2m=1:FEy=—-2(14++2), BE1 = —4, Fx =2(v/2 - 1)
n=1m=10: Ey=—11, F; =9
n=2m=10: Ey = —2(1 ++/101), E1 = —4, E, = 2(/101 — 1).

13. Symmetric double-well potential (symm_double_well.mat ). Reference: [37].
V(z) = 2% — Bz*> B parameter
a=—-oc0 LPN
b=+40c0 LPN
Number of eigenvaluesioc  continuous spectrum: none
B = 11: known exact eigenvalues(=8, 0, 8}
B = 13: known exact eigenvalues{=11.3137085, 0, 11.3137085}
B = 15: known exact eigenvalueg=15.07750851, —3.55931694, 3.55931694, 15.07750851}.

14. Wicke-Harris problem . Wicke_Harris.mat . (SLTSTPAK #40). Reference: [130].
V(z) _ 12506783.363(3372.47826)2 + 3906.25(1 _ 62.3237795)2
a=0 Regular y(a) =0
b=+4o0c0 LPN/O
Number of eigenvalues: 61 continuous spectrg8906.25, co)
Ey = 163.223887 Eg9 = 1277.5368406
This has a spike at the bottom of the well.
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C.2 Sturm-Liouville problems

1.

Bessel equation, orderl /2. (Bessel.mat ). (SLTSTPAK #19). Reference: [119].
p)=z gq(z)=a/z w()==z

a=1%v=>1
a=0 LCN
b=1 Regular y(b) =0

Ey = ((k + 1)m)?, thisis—v” = Ev transformed by = z'/?u .

2

. Collatz problem. (Collatz.mat ). Reference: [31].

p(z)=1 q(z)=0 w(x)=3+ cos(x)
a=—-m Regular y(a)=0

b=+m Regular y(b) =0

Eo = 0.071250472.

. Infinite interval problem . (Pryce33.mat ). (SLTSTPAK #33). Reference: [20].

px) =1 gqz)=—-T2>+0.52% +2* w(x) =05
a=—o0 LPN

b=o00 LPN

Number of eigenvaluesso  continuous spectrum: none
Eo = —24.5175977072 Es = 8.10470769427.

. Klotter problem . (Klotter.mat ). (SLTSTPAK #3). Reference: [68] p.12.

pl@)=1 g(x)=3/(42%) w(z)= 64r>/(9z°)

a=28/7 Regular y(a)=0

b=28 Regular y(b) =0

Er=((k+1)%Ek=01,..

Transformation of-d*v/dt* = Ev, v(m/48) = 0 = v(497/48) by t = 2%, u = 2°/%0.
(The original reference had = 1, b = 2 corresponding te (7 /3) = 0 = v(47/3) which
is much tamer.

. Paine problem Paine_slp.mat . Reference: [61].

Using Liouville’s transformation, this problem becomes a Schrodingeaitson withV (z) =
1/(x +0.1)2, i.e. Paine problem 2.

p(a) = (u+2)* g@)=4u+z) w)=@w+z)’ u=v02

a=0 Regular y(a) =0

b=—-u++vu?+2r Regular y(b)=0.

. Pruess-Fulton problem 19 (Pruess_Fulton19.mat ). (SLTSTPAK #25).

Reference: 19th problem in the Pruess-Fulton test set [102].
p(z) =a* q(z) = -20" w(z)=2a"

a=0 LCN

b=1 Regular y(b) =0

Ex=((k+1)m)? k=0,1,..

. Simple Sturm-Liouville problem 1. (simple_slpl.mat ).

px)=1 qz)=0 w(x)=1

a=0 Regular y(a)=0

b=1 Regular y(b) =0

Number of eigenvaluesso  continuous spectrum: none
Ey = ((k+ 1)m)>.
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8. Simple Sturm-Liouville problem 2. (simple_slp2.mat ).
p(z)=1 gq(z)=0 w(z)=1/2*
a=1 Regular y(a)=0
b=e Regular y(b)=0
Number of eigenvaluesioc  continuous spectrum: none
B = ((k+1)m)*+1/4.

C.3 Radial Schrodinger problems with a distorted Coulomb
potential

Finite integration interval

1. Bessel equation in normal form (Bessel_normalform.mat ). (SLTSTPAK #13).
V(z) = (a—1/4)/2> (= (-1+2Va)/2)
o=V
a=0 LCN
b=1 Regular y(b)=0
Number of eigenvaluesso  continuous spectrum: none.

2. Bessel equation in normal form, order O (Bessel_order0.mat ). (SLTSTPAK #18).
Reference: [119].
V(z) = (a—1/4)/2* (= (-1+2/a)/2)
a=0
a=0 LCN
b=1 Regular y(b) =0
Ey = 5.78318596295 FE19 = 3850.01252885.

3. Bessel equation in normal form, smallkx. (Pryce43.mat ). (SLTSTPAK #43).
Bessel equation in normal form witih = 0.01.
LCN for smalla > 0
Number of eigenvaluesioc  continuous spectrum: none
Fo = 6.540555712  Eq4 = 6070.441468.

4. Truncated hydrogen equation (hydrogen_truncated.mat ). (SLTSTPAK #4).
V(z) = —1/z + 2/2>
a=20 LPN
b=1000 Regular y(b) =0
Ey = —6.2500000000 1072  Eg = —2.066115702478 103
Eir = —2.5757359232 107*  Ej3 = 2.873901310 10~°
The lower eigenvalues approximate those of the infinite problem.

Infinite integration interval

1. Pure attractive Coulomb potential. (pure_coulomb.mat ).
Viz) =1(1+1)/2*> —2Z/x
a=0 LCN
b=+oc0 LPN/O
Number of eigenvaluesso  continuous spectrun{, co)
Ey=-2%/(n+1+1)2 k=0,1,...
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2. Chemical model potential (Pryce42.mat ). (SLTSTPAK #42). Reference: [123].
Viz) =1(1+1)/2® + (=1 +5e7")/z
a=0 LCN( =0), LPN(=1)
b=+oc0 LPN/O
Number of eigenvaluesso  continuous spectrum(0, o)
l=0:Ep=—0.156358880971 FE, = —0.023484895664
l=1:Ey=—-0.061681846633 FE> = —0.015501561691.

3. Coulomb potential. (Coulomb.mat ). (SLTSTPAK #30). Reference: [18, 119].
With b = 1, u(b) = 0 also called Boyd equation.
V(z)=-1/z
a=0 LCN
b=+4o00 LPN/O
Number of eigenvaluesso  continuous spectrun{0, o)
Ep=-1/[4k+1)?2, k=0,1,....
4. Partially screening exponential-cosine potential(Expon_cosine_part_screening.mat
Reference: [62].
Viz) =1(1+1)/2> = 2ZoVee(z, \, 1) — 2Z0s(1/x — Vee(z, M\, 1))
Vee(z, A, p) = e cos(ux) /.
a=0 LCN (I=0) LPN( =5,10)
b=+c0 LPN/O
Number of eigenvaluesso  continuous spectrum(0, co)
1=0,Z0=50,Zqs =1, A = p = 0.025: Ey = —2497.550000612
1=05,Z0=050,Zas =1, A\ = p=0.025: Ey = —66.9947751270
1 =10,Z0 =50, Zss =1, A = = 0.025: £y = —18.2144512404.
5. Screening exponential-cosine potential(Expon_cosine_screening.mat ). Refer-
ence: [62].
V(z) =114+ 1)/2? = 2ZVee(z, A\, 1)
Vee(z, A, 1) = e cos(uz) /.
a=0 LCN(I=0) LPN( =5,10)
b=+4o00 LPN/O
Number of eigenvaluesso  continuous spectrun(0, co).

6. Hulth én partially screening potential (Hulthen_part_screening.mat ). Refer-
ence: [62].
Viz) =1(1+1)/2® — 2ZoVi(x,\) — 2Z4s(1/x — Vi (2, N))
)\efkcv eka/2
VH(Z'7 /\) =

1—e=2  zno((Az/2)?)’
a=0 LCN(=0) LPN(=5,l=10)
b=+occ LPN/O
Number of eigenvaluesso  continuous spectrun(0, co)
1=0,Z0=050,Z,s =1, A =0.025: Fy = —2498.775153125
l=05,Z0=>50,Zqs =1, A =0.025: Fy = —68.2234257245
1 =10, 2o =50, Zoss = 1, A = 0.025: Ey = —19.4490716959.
7. Hulth én screening potential (Hulthen_screening.mat ). Reference: [62].
Viz) =1(1+1)/2* —2Z Vi (z,\)
—Az

Ae
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a=0

b= +oco LPN/O

Number of eigenvaluesso  continuous spectrum(0, co)

Exact eigenvalues only known fér= 0: E, = —[2Z — (k + 1)®\]?/4(k + 1)%, k =

0,1, cokmaz = WWJ _

8. Hydrogen atom. (hydrogen.mat ). (SLTSTPAK #29). Reference: [119].
V(z) = -1/ +2/2?
a=0 LPN
b=+4o00 LPN/O
Number of eigenvaluesso  continuous spectrum(0, o)
Ep=-1/2k+4)? k=0,1,....

9. Laguerre’s equation. (Laguerre.mat ). (SLTSTPAK #32).
V(z) =z + 3/(42?)
a=0 LPN  Trunc. BC:y(a) =0
b=+oco LPN Trunc. BCy(b) =0
Number of eigenvaluesioc  continuous spectrum: none
Ep=4(k+1),k=0,1,..

10. Morse potential. (Pryce36.mat .) (SLTSTPAK #36). Reference: [116].
V( )_2/1: _2000(26—17(50 1.3) _ —34(:c 13)
a=0 LPN
b=+oc0 LPN/O
Number of eigenvalues: 26  continuous spectrum: none
FEo = —1923.529655 E; = —1777.290819 FEi3 = —473.29712549.

11. Woods-Saxon potential (Woods_Saxon.mat ). (SLTSTPAK#41). Reference: [123].
V(z) =11+ 1)/2* —50(1 — 5¢/(3(1 +¢)))/(1 + )
t = e(L 7)/0.6
a=0 Regular(=0) LPN(=2) y(a)=0
b=+4o00 LPN/O
1 = 0: Number of eigenvalues: 14  continuous spectr{doo)
Ey = —49.457788728 [E1o = —18.094688282
I = 2 : Number of eigenvalues: 13  continuous spectriiso)
Eo = —48.349481052 FE10 = —13.522303353.
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