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Chapter 1

Introduction

1.1 Introductory background

In [92], Murphy describes adifferential equationas a relation involving one or more deriv-
atives and an unknown function. The problem of solving it is asearch for that unknown
function. Thesolutionof a differential equation is then any relation, free from derivatives,
which satisfies the equation identically.

The most generalordinary differential equation(frequently called an ODE) is

F (x, y, y′, y′′, . . . , y(n)) = 0, (1.1)

wherex is the independent variable,y is the dependent variable and the notation

y′, y′′, . . . , y(n) (1.2)

is used to denote the derivatives

dy

dx
,
d2y

dx2
, . . . ,

dny

dxn
. (1.3)

The word “ordinary” is used to emphasize that no partial derivatives appear, since there
is just one independent variable. Ify is a function of more than one independent variable
and partial derivatives with respect to those variables arepresent, the equation is called a
partial differential equation(PDE).

Theorderof a differential equation is the ordern of the highest derivative that appears.
Another important concept is that of linearity. An ordinarydifferential equation is said to
be linear if it has the form

a0(x)y
(n) + a1(x)y

(n−1) + · · ·+ an−1(x)y
′ + an(x)y = Q(x). (1.4)

Thus the equation is linear iny and its derivatives.
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Differential equations are studied in both pure and appliedmathematics. Pure mathe-
maticians study the different types and properties of differential equations, such as whether
or not solutions exist, and when they exist, whether they areunique. Applied mathemati-
cians, physicists and engineers are more interested in how to compute solutions to dif-
ferential equations. However, many of these equations do not have closed form solutions
and must be solved using numerical methods.

This dissertation concerns the design of efficient numerical methods for solving nu-
merically one particular class of ordinary differential equations calledSturm-Liouville
equations. These linear second order differential equations describe a lot of impor-
tant physical phenomena which exhibit a pronounced oscillatory character; behaviour of
pendulum-like systems, vibrations, resonances and wave propagation are all phenomena
of this type in classical mechanics, while the same is true for the typical behaviour of
quantum particles.

Before considering the Sturm-Liouville equation in more detail, we list some nota-
tions which will be used throughout this thesis.

• Intervals. The notations[a, b], (a, b), [a, b) (a, b] are used to denote the closed,
open and half open intervals. LetR represent the real line, then

(i) (a, b) = {x ∈ R : −∞ ≤ a < x < b ≤ +∞}
(ii) [a, b] = {x ∈ R : −∞ < a ≤ x ≤ b < +∞}
(iii) [a, b) = {x ∈ R : −∞ < a ≤ x < b ≤ +∞}
(iv) (a, b] = {x ∈ R : −∞ ≤ a < x ≤ b < +∞}.

• Continuity . A functionf isC0 on an interval if it is continuous there,C1 if it has
a continuous first derivative,C2 if it has a continuous second derivative and so on.
Let I be any interval ofR and letn ∈ {0, 1, 2, . . . }, then

Cn(I) = {f : I → C : f (r) is continuous on I for r = 0, 1, . . . , n}.

• Integrability . A real- or complex-valued function of a real variable is integrable
on an interval if the integral of the function over that interval exists and is finite.
A real- or complex-valued function of a real variable is square-integrable on an
interval if the integral of the square of its absolute value,over that interval, is finite.
Let I be any interval ofR, then

(i) L1(I) = {f : I → C :

∫

I

|f(x)|dx < +∞}

(ii) L2(I) = {f : I → C :

∫

I

|f(x)|2dx < +∞}.

1.2 The Sturm-Liouville problem

A classical Sturm-Liouville equation, named after JacquesCharles François Sturm (1803-
1855) and Joseph Liouville (1809-1882), is a real second-order linear differential equation
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Figure 1.1: The two eponyms of the Sturm-Liouville theory:(Left) Jacques Charles François
Sturm (1803 - 1855), French mathematician, of German extraction.(Right) Joseph Liouville (1809
- 1882), French mathematician.

of the form

− d

dx

[

p(x)
dy(x)

dx

]

+ q(x)y(x) = Ew(x)y(x), (1.5)

wherep(x), q(x) andw(x) are given functions and in the simplest of cases are continuous
on the finite closed interval[a, b]. Often the Sturm-Liouville equation is defined together
with boundary conditions, specifying the solution in the endpointsa andb. In the regular
Sturm-Liouville theory these boundary conditions have theform

a0y(a) + b0p(a)y
′(a) = 0, a1y(b) + b1p(b)y

′(b) = 0 (1.6)

wherea0, b0 are not both zero, nor area1, b1. The value ofE is not specified in the
equation; finding the values ofE for which there exists a nontrivial (nonzero) solution
y of (1.5) satisfying the boundary conditions is part of the problem called theSturm-
Liouville problem. Such values ofE, when they exist, are called theeigenvaluesof the
boundary value problem defined by (1.5) and the prescribed set of boundary conditions.
The corresponding solutionsy(x) (for such aE) are theeigenfunctionsof this problem.

Example 1.1 Solve the following equation

d2y

dx2
+ Ey = 0, 0 ≤ x ≤ π
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with boundary conditions
y(0) = 0, y(π) = 0.

Herep(x) = w(x) = 1, q(x) = 0, a = 0, b = π, a0 = a1 = 1 andb0 = b1 = 0. The
general solution to the differential equation is

y(x) = c1 cos(
√
Ex) + c2 sin(

√
Ex)

with E > 0. If E ≤ 0, then the system has only the trivial solutiony = 0. This is not of
interest, since every Sturm-Liouville system has a trivialsolution.

The conditiony(0) = 0 implies thatc1 = 0; hence the updated solution becomes

y(x) = c2 sin(
√
Ex).

The second conditiony(π) = 0 implies that eitherc2 = 0 (which would lead to the
trivial solution) or

√
Eπ = kπ, that isE = k2, k = 1, 2, 3, . . . . The eigenvalues of the

system are thusE0 = 1, E1 = 4, E2 = 9, . . . . The corresponding eigenfunctions are
y0(x) = sin(x), y1(x) = sin(2x), y2(x) = sin(3x), . . . , and in general

yk(x) = sin((k + 1)x), k = 0, 1, 2, . . . ,

where the arbitrary constants have been set equal to one, since eigenfunctions are unique
only upto a multiplicative constant.

1.2.1 Where Sturm-Liouville problems come from

The one-dimensional Sturm-Liouville problem models a large number of important phys-
ical processes. The general Sturm-Liouville problem even arose first in the context of
the separation of variables method for partial differential equations modelling physical
processes in more than one dimension. The separation of variables method was applied
on the partial differential equation to obtain a Sturm-Liouville problem for each indepen-
dent variable.

Example 1.2 We use the separation of variables to show how we can get solutions of the
two dimensional Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
= 0. (1.7)

We look for solutions of the form

u(x, y) = X(x)Y (y). (1.8)

From Laplace’s equation we get

Y (y)X ′′(x) +X(x)Y ′′(y) = 0. (1.9)
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Separating variables and assumingX(x) 6= 0, Y (y) 6= 0 we get

X ′′(x)

−X(x)
=
Y ′′(y)

Y (y)
. (1.10)

Since the left hand side of this equation depends only onx and the right hand side depends
only ony we get that

X ′′(x)

−X(x)
=
Y ′′(y)

Y (y)
= λ, (1.11)

whereλ is a constant. This leads to the Sturm-Liouville differential equations

X ′′ = −λX, Y ′′ = λY. (1.12)

It follows that if X is a solution of the first differential equation in (1.12) andY is a
solution of the second equation in (1.12) for the sameλ value, then

u(x, y) = X(x)Y (y) (1.13)

is a solution of Laplace’s partial differential equation.

Many mechanical systems lead to a general form of a Sturm-Liouville problem. In
many applications, the Sturm-Liouville problem describesthe oscillation in the physical
system. In [105] e.g. it is shown how a Sturm-Liouville problem arises in the context of
a vibrating (heavy) string. Also in [118] some examples of physical problems leading to
differential equations of Sturm-Liouville type can be found.

1.2.2 The Schr̈odinger problem

Figure 1.2: The Austrian
physicist Erwin Schr̈odinger
(1887 - 1961).

A specific subclass of the Sturm-Liouville equations is
formed by the so-called Schrödinger equations [114]. The
one-dimensionalSchr̈odinger equationis the fundamental
equation of quantum mechanics. It arises there in its time-
independent form as

− ~

2m
y′′(x) + (V (x)− E)y(x) = 0, (1.14)

wherem is the mass of the particle and~ is Planck’s con-
stant over2π. To a quantum physicist or chemist,V (x) is a
potential functiondescribing a potential field, an eigenvalue
E is anenergy leveland its eigenfunction is the correspond-
ing wave functionof a particle, the two together describing a
bound state. For a regular Schrödinger problem the bound-
ary conditions take the form

a0y(a) + b0y
′(a) = 0, a1y(b) + b1y

′(b) = 0 (1.15)
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wherea0, b0 are not both zero, and similarly fora1, b1.
In this thesis the Schrödinger equation is considered in natural units (also called Liou-

ville normal form):
y′′(x) = (V (x)− E)y(x). (1.16)

1.3 Basic properties of the Sturm-Liouville problem

During time an extensive theory was developed for the regular boundary value problem
(1.5)-(1.6), the so-calledSturm-Liouville theory. In this section we bring together those
facts which seem especially relevant for the subject of thisthesis. For a more elaborated
study of the Sturm-Liouville theory we can refer to [105, 111, 132].

It may be assumed throughout the following, thatp(x) andw(x) are strictly positive
on the open interval(a, b) and thatp(x), q(x) andw(x) are piecewise continuous on
(a, b).

1.3.1 Existence, uniqueness and linearity

From the basic existence and uniqueness theorem for (linear) ordinary differential equa-
tions it follows that ifp(x), q(x) andw(x) are (piecewise) continuous on an interval, with
p(x) strictly positive there, then the Sturm-Liouville equation

− d

dx

[

p(x)
dy(x)

dx

]

+ q(x)y(x) = Ew(x)y(x), (1.17)

has a unique solution satisfying any given initial conditions

y(c) = α, (py′)(c) = β (1.18)

at a pointc of the interval (see [132]).

Proposition 1.1. Suppose that(1.17) is a Sturm-Liouville equation withp(x), q(x) and
w(x) continuous, andp(x) > 0 for all x ∈ [a, b]. Then the set of all functionsy(x)
satisfying(1.17)is a vector space of dimension 2. In other words, there exist two linearly
independent solutions of(1.17), and any other solution of(1.17)is a linear combination
of these.

Proof. The differential equation (1.17) is equivalent to the non-autonomous linear system






y′(x) =
1

p(x)
z(x)

z′(x) = [q(x)− Ew(x)]y(x).
(1.19)

Hence, by the basic existence and uniqueness theorem, thereexists a unique solution
of (1.17) with initial valuesy(a) = 1, p(a)y′(a) = 0. Similarly, there exists a unique
solution of (1.17) with initial valuesy(a) = 0, p(a)y′(a) = 1. Let us denote these
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solutions byu(x) andv(x). Thenu(x) andv(x) are linearly independent (neither function
is a constant multiple of the other). Moreover, ify(x) is any solution of (1.17), then

y(x) = y(a)u(x) + p(a)y′(a)v(x).

To see this, consider the functioñy(x) = y(x)−y(a)u(x)−p(a)y′(a)v(x). The function
ỹ(x) is a solution of (1.17) with initial values̃y(a) = y(a)−y(a)u(a)−p(a)y′(a)v(a) =
0 andp(a)ỹ′(a) = p(a)[y′(a)−y(a)u′(a)−p(a)y′(a)v′(a)] = 0. Hence, the uniqueness
theorem implies that̃y(x) = 0 for all x ∈ [a, b].

One can then say that the Sturm-Liouville equation (1.17) isa linear differential equa-
tion. That is, if we define thedifferential operator

L =
1

w(x)

{

− d

dx

(

p(x)
d

dx

)

+ q(x)

}

on a < x < b (1.20)

thenL is a linear operator,

L(αy + βz) = αL(y) + βL(z), (1.21)

whereL(u) is the notation used to denote the function that results fromapplyingL to u.
A consequence of the linearity is that the general solution of (1.17) (for any givenE) is
of the form

y(x) = α1y1(x) + α2y2(x), (1.22)

wherey1(x) andy2(x) are any two linearly independent solutions.

1.3.2 Reality of eigenvalues and orthogonality of eigenfunctions

The eigenvalue problem (1.17) can be written as

L(y) = Ey (1.23)

for the linear differential operatorL defined above. A fundamental result regarding the
linear operatorL is Green’s identity:

Proposition 1.2. Green’s identity

∫ b

a

(

L(yi)y
∗
j − yiL(y∗j )

)

w dx =
[

p(x)
[

yi(x)y
∗
j
′(x)− y′i(x)y∗j (x)

]

]b

a
(1.24)

for any well-behaved (real or complex) functionsyi(x) and yj(x). y∗j is the complex
conjugate of the functionyj .

Proof. The left-hand side of (1.24) can be written as

∫ b

a

[

−(py′i)
′y∗j + qyiy

∗
j

]

dx−
∫ b

a

[

−(py∗j
′)′yi + qyiy

∗
j

]

dx
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=

∫ b

a

[

(py∗j
′)′yi − (py′i)

′y∗j
]

dx

Using partial integration we obtain the required result

[

py∗j
′yi

]b

a
−
∫ b

a

py∗j
′yi

′dx−
[

py′iy
∗
j

]b

a
+

∫ b

a

py′iy
∗
j
′dx.

Let us define theinner-productas

〈yi, yj〉 =

∫ b

a

yiy
∗
jw dx. (1.25)

Then Green’s identity (1.24) can also be written as

〈L(yi), yj〉 − 〈yi, L(yj)〉 =
[

p(x)
[

yi(x)y
∗
j
′(x)− y′i(x)y∗j (x)

]

]b

a
, (1.26)

providedp, q andw are real-valued functions (thenL∗(yj) = L(y∗j )).
For a regular Sturm-Liouville problem any two (real) solutionsyi andyj satisfy the

regular boundary conditons (1.6), this means that
{

a0yi(a) + b0p(a)y
′
i(a) = 0

a1yi(b) + b1p(b)y
′
i(b) = 0

and

{

a0yj(a) + b0p(a)y
′
j(a) = 0

a1yj(b) + b1p(b)y
′
j(b) = 0.

(1.27)

It follows that

〈L(yi), yj〉 − 〈yi, L(yj)〉

=
[

p(x) [yi(x)yj
′(x)− y′i(x)yj(x)]

]b

a

= yi(b)p(b)yj
′(b)− p(b)y′i(b)yj(b)− yi(a)p(a)yj

′(a) + p(a)y′i(a)yj(a)

= −a1

b1
yi(b)yj(b) +

a1

b1
yi(b)yj(b) +

a0

b0
yi(a)yj(a)−

a0

b0
yi(a)yj(a)

= 0,

(1.28)

whenb0 6= 0 andb1 6= 0. If b0 = 0 (and/orb1 = 0), then isyi(a) = yj(a) = 0 (and/or
yi(b) = yj(b) = 0). Thus for a Sturm-Liouville problem with boundary conditions (1.6)
and real-valued coefficient functions, thesymmetryor formal self-adjointnessproperty
holds, namely that

〈L(yi), yj〉 = 〈yi, L(yj)〉 (1.29)

This symmetry relation implies the following simple results:

Proposition 1.3. With the above assumptions on the coefficient functions and boundary
conditions,
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(i) The eigenvalues of a Sturm-Liouville problem are real.

(ii) The eigenfunctions belonging to distinct eigenvaluesare orthogonal (with weight-
ing functionw(x)) with respect to the inner product(1.25).

Proof. Suppose we have eigenfunctionsyi, yj satisfyingL(yi) = Eiyi, L(yj) = Ejyj

whereEi 6= Ej . Then

Ei 〈yi, yj〉 = 〈Eiyi, yj〉 = 〈L(yi), yj〉 = 〈yi, L(yj)〉 = 〈yi, Ejyj〉 = E∗
j 〈yi, yj〉 .

When we takeyi = yj andEi = Ej we haveEi 〈yi, yi〉 = E∗
i 〈yi, yi〉 and sinceyi is not

identically zero we have〈yi, yi〉 6= 0, so thatEi = E∗
i which proves part(i). SinceEj

is real the equation above givesEi 〈yi, yj〉 = Ej 〈yi, yj〉. This means that〈yi, yj〉 = 0
whenEi 6= Ej , proving part(ii).

For real-valued functions the complex conjugate is a needless complication and the
inner-product may be written as

〈yi, yj〉 =

∫ b

a

yi(x)yj(x)w(x) dx. (1.30)

Notice that the scale or normalization of the eigenfunctions is arbitrary. We can choose it
such that the functions are not just orthogonal butorthonormal:

〈yi, yj〉 =

∫ b

a

yi(x)yj(x)w(x)dx = δij =

{

0, i 6= j

1, i = j
(1.31)

with i, j ∈ {0, 1, 2, . . . }. It follows that the eigenfunctions of a Sturm-Liouville problem
can be used to form an orthonormal set of functions.

The symmetry relation also forms the starting point of the fundamental theorem on
regular Sturm-Liouville problems:

Theorem 1.4. For a regular Sturm-Liouville problem

(i) The eigenvaluesEk are simple (i.e. there do not exist two linearly independent
eigenfunctions with the same eigenvalue).

(ii) TheEk can be ordered as an increasing sequence tending to infinity,

E0 < E1 < E2 < . . . (1.32)

and with this labelling the eigenfunctionyk(x) corresponding toEk has exactlyk
zeros on the open interval(a, b).

(iii) The yk form a complete orthogonal set of functions over(a, b) with respect to the
inner product(1.25). That is, any reasonable functionf can be represented on
(a, b) by its Fourier series with respect to theyk,

f(x) ∼
∞
∑

k=0

ckyk(x) (1.33)
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where
ck = 〈f, yk〉 / 〈yk, yk〉 . (1.34)

For a proof of these results see e.g. [30, Chapter 7] or [126].The integerk in part(ii)
is called theindexof the eigenvalueEk.

1.3.3 Interlacing

It is a basic feature of the equation (1.17) that, whenp(x) andQ(x) = Ew(x)− q(x) are
both positive then solutions of the equation are generally of oscillating shape: according
to Theorem 1.4 the eigenvalues are indexed by the number of oscillations, i.e. zeros, of
their eigenfunctions. A classical result about the relative position of the zeros of different
solutions is theSturm Comparison theorem:

Theorem 1.5. Sturm Comparison TheoremLetyi(x) be a nontrivial solution on(a, b)
of

(pi(x)y
′)′ +Qi(x)y = 0

andyj(x) be a nontrivial solution on(a, b) of

(pj(x)y
′)′ +Qj(x)y = 0

where0 < pj ≤ pi andQj ≥ Qi on (a, b). Then (strictly) between any two zeros ofyi

lies at least one zero ofyj except whenyj is a constant multiple ofyi. The latter implies
Qi = Qj andpi = pj except possibly in intervals whereQi = Qj = 0.

For a proof see [30].
The most common application is to a Sturm-Liouville system with different eigenval-

uesEk. Thenpi = pj andQk(x) = Ekw(x)−q(x) and the theorem makes a comparison
of the different eigenfunctions. We assume thatw(x) > 0 andEj > Ei. The zeros of
the eigenfunction ofEj then lie between the zeros of the eigenfunction ofEi. This prop-
erty is calledinterlacing. Colloquially we say that the higher eigenfunction is oscillating
‘more rapidly’ than the lower eigenfunction.

Example 1.3 A simple example is shown by the eigenfunctions of

−y′′(x) = Ey(x), y(0) = y(π) = 0

of which the first four are shown in Figure 1.3. The eigenvalues areEk = (k + 1)2, k =
0, 1, . . . and the eigenfunctions areyk = sin((k + 1)x) (see example 1.1). The theorem
then tells us that the zeros ofyj(x) lie between the zeros ofyi(x) if j > i. If we consider
each eigenfunction in turn, theny0 only has the two zeros at its endpoints,y1 has one
additional zero which must be situated in between the two zeros ofy0. Analogously,y2
has a zero between each zero ofy1 andy3 has a zero between each zero ofy2, and so on.
The eigenfunctions are thus becoming more oscillatory as the eigenvalue increases.
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Figure 1.3: Illustration of the interlacing property: the first four eigenfunctions of−y′′ = Ey.

1.4 Outline

In this first chapter we briefly outlined the subject of interest. We discussed the form and
basic properties of the Sturm-Liouville problem and the special case of a Schrödinger
problem. In the remaining chapters of the thesis, some specific techniques are considered
and implemented for the numerical solution of a Sturm-Liouville or Schr̈odinger problem.
These chapters are organized as follows.

Chapter two discusses into more detail what is meant with the numerical solution of
a Sturm-Liouville problem or a Schrödinger problem. Some basic methods and tech-
niques to compute the eigenvalues will be introduced such asthe Pr̈ufer transformation,
the shooting method and the principle of coefficient approximation.

Chapter three introduces the Constant (reference potential) Perturbation Methods (or
CPM in short). These methods were specially devised for the Schrödinger problem by
Ixaru and co-workers and are based on a piecewise constant approximation of the poten-
tial function. Using a perturbative approach, methods of high order can be constructed.
Our contribution exists in the extension of the CPM{12,10} algorithm to higher order.
This CPM{12,10} algorithm was used as the basis for the code SLCPM12 [61] and is
of order{12, 10} (meaning order 12 at low energies and order 10 at high energies). In
the new algorithm the orders{14, 12}, {16, 14} and{18, 16} are introduced. Just as the
CPM{12,10} method, these new higher order algorithms can be used in a shooting pro-
cedure to compute the eigenvalues efficiently and accurately. The construction and use of
the higher order CPM algorithms was published in [75].
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Chapter four examines the Line (reference potential) Perturbation Methods (or LPM
in short) and its specific difficulties. For these methods thepotential function of the
Schr̈odinger equation is approximated by a piecewise line. We usethe approach which
was already introduced by Ixaru in [58] to effectively construct a LPM algorithm of order
ten. Hereto we compute expressions for the first order and second order corrections. In
addition we propose some asymptotic formulae which should be used in order to avoid
loss in accuracy due to near-cancellations of like-terms. These results were published in
[74].

Chapter five adresses systems of coupled equations. The generalizationof the CPM
to systems of coupled Schrödinger equations is introduced. It is shown that these gener-
alized CPM preserve the important properties of the one-dimensional CPM discussed in
chapter 3. The construction of the generalized CPM was published in [77]. In [78] and
[79] we discussed the computation of the eigenvalues of the associated boundary value
problem. Using the generalized CPM in a shooting process, the eigenvalues are computed
accurately. Atkinson’s matrix generalization of the Prüfer transformation is used to im-
prove this shooting procedure.

Chapter six deals with somesingular Sturm-Liouville problems. A singular problem
occurs when at least one of the coefficientsp−1, q, w is not integrable up to the endpoint
(i.e. is unbounded in a severe way) or if one or both of the endpoints is infinite. These
singular problems present particular difficulties both in the determination of well-posed
problems and in the numerical calculation of the eigenvalues. We discuss an interval trun-
cation procedure for problems defined on an infinite integration interval. We also consider
the important class of radial Schrödinger equations for which an improved truncation al-
gorithm is proposed. Also the algorithm which is applied to deal with the singularity of
the radial Schr̈odinger equations in the origin is explained. This work was published in
[73].

Chapter sevendiscusses the MATSLISE package. We presented an earlier version of
MATSLISE in [76]. MATSLISE is a MATLAB package implementing the one-dimensional
CPM and LPM algorithms discussed in chapter 3 and 4. Also the truncation algorithms
presented in chapter 6 are included. On top of this MATSLISE package a graphical user
interface is built, which makes the package more user-friendly and easy to use. We briefly
discuss the structure and use of MATSLISE and illustrate this with some examples.

Chapter eight concludes this thesis, summarizes contributions and achievements.



Chapter 2

Numerical solution of the
Sturm-Liouville problem

The determination of the eigenvalues of Sturm-Liouville problems is of great interest in
mathematics and its applications. However most eigenvalueproblems cannot be solved
(or are difficult to solve) analytically, and computationally efficient approximation tech-
niques are of great applicability. In this chapter we show that thenumericalsolution of
(regular) Sturm-Liouville problems is not trivial. The challenges are to do this cheaply,
especially when long runs of higher-order eigenvalues are required.

2.1 Computational methods for the Sturm-Liouville prob-
lem

Many numerical methods have been developed for the computation of eigenvalues and
eigenfunctions of Sturm-Liouville boundary value problems. Two standard approaches
to the numerical approximation of eigenvalues of a boundaryvalue problem can be dis-
tinguished: discretizationand shooting. Discretization methods (such as finite differ-
ences and finite elements) involve substantial arithmetic and the storage of large matrices.
Moreover, the accuracy quickly deteriorates for the highereigenvalues. Shooting meth-
ods require less storage and arithmetic, but usually they donot determine the index of
the eigenvalue. For Sturm-Liouville problems, these difficulties are avoided by the Prüfer
method, which is a shooting method based on oscillation. This Pr̈ufer-based shooting
method has been implemented by Bailey, Gordon and Shampine in the SLEIGN code
[21] (and its successor SLEIGN2 [17]) and by Pryce in the NAG library code D02KDF.
The Pr̈ufer-based shooting methods have, however, some problems with stiffness when
standard initial value solvers are used. This stiffness disappears when the Prüfer transfor-
mation is combined with coefficient approximation. The Pruess methods (implemented in
the packages SLEDGE [101] and SL02F [87, 88]) combine a piecewise constant midpoint
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approximation with a Pr̈ufer-based shooting method. Another class of methods usingco-
efficient approximation are the Piecewise Perturbation Methods (PPM). These methods
apply a perturbative approach to successively improve the solution of the approximating
problem.

The discretization methods and the different shooting methods will be discussed in
more detail in the different sections of this chapter.

2.2 Discretization methods

2.2.1 Simple matrix methods

We consider methods based on finite differences [67]. An equally spaced mesh is used

a = x0 < x1 < · · · < xn = b (2.1)

wherexi = a + ih with h = (b − a)/n. The finite difference methods typically lead to
matrix eigenvalue problems. For instance, the simple centred difference approximation

−y′′i ≈
−yi−1 + 2yi − yi+1

h2
, yi = y(xi) (2.2)

leads to an algebraic matrix eigenvalue problemAY = EY whereA is symmetric tridi-
agonal (see [105]). Another method is derived by applying the Numerov method, leading
to a generalized eigenproblemAY = EBY whereA,B are tridiagonal matrices. This
Numerov method

yi−1 − 2yi + yi+1 =
h2

12
(fi−1 + 10fi + fi+1), fi = f(xi, yi), (2.3)

is a well-known method and is used to solve differential equations of the formy′′ =
f(x, y).

An advantage of the finite difference methods is that they arevery simple to set up,
especially when we deal with regular problems defined on a finite interval and a uni-
form mesh. However these simple methods have their limits. They replace an infinite-
dimensional problem by a matrix problem of a dimension related to the number of mesh-
pointsn. As a consequence, they can only approximate a certain number of eigenvalues
for a givenn. Moreover, the quality of thekth eigenvalue deteriorates rapidly ask in-
creases: the error in thekth eigenvalue on a mesh of sizeh is typically of the form
O(hpkq) [66].

As an illustration we use the Numerov method to solve a Sturm-Liouville problem in
its Liouville normal form

−y′′ + q(x)y = Ey, (2.4)

with boundary conditionsy(a) = y(b) = 0. Application of Numerov’s method leads to
the equations

yi−1−2yi +yi+1 =
h2

12
[(q(xi−1)− E)yi−1 + 10(q(xi)− E)yi + (q(xi+1)− E)yi+1] ,

(2.5)



2.2 Discretization methods 15

or equivalently

−yi−1 + 2yi − yi+1

h2
+ (q(xi)−E)yi =

1

12
[−(q(xi−1)− E)yi−1 + 2(q(xi)− E)yi − (q(xi+1)− E)yi+1] , (2.6)

which with the boundary conditionsy0 = yn = 0 leads to a generalized matrix eigen-
problem:

AY = EBY (2.7)

where

Y =







y1
...

yn−1






(2.8)

and

A =
1

h2
M + BQ, B = I− 1

12
M (2.9)

with

M =















2 −1
−1 2 −1

.. .
−1 2 −1

−1 2















, Q =











q(x1)
q(x2)

. . .
q(xn−1)











.

(2.10)
The eigenvaluesE1 < E2 < E3 < ... (in this section we label the eigenvalues from 1
upwards) and eigenfunctions of (2.4) can then be approximated by the eigenvalues and
eigenvectors of the generalized matrix eigenvalue problem. It can be shown that the error
in the kth eigenvalue is of the formO(k6h4) (see [10]). This indicates that the error
in the computed eigenvalue approximations increases rapidly with k. Table 2.1 shows
the exact eigenvaluesEk and some computed estimates for the problem−y′′ = Ey,
y(0) = y(π) = 0 and variousn.

The reason for the decreasing accuracy is that the finite difference methods are based
on approximations of the eigenfunctions by (piecewise) polynomials. These approxima-
tions impair with increasing eigenvalue indexk, since the eigenfunctions oscillate more
rapidly ask increases. Some effort has been done in finding more uniformly valid ap-
proximations. For instance, Anderssen, Andrew, de Hoog andPaine constructed a simple
correction technique [9, 11, 95, 97]. They showed in [97] that for the case of the simple
centred difference discretization, higher eigenvalues can be computed more accurately by
adding the errors for the null potential, which are explicitly known, to the corresponding
eigenvalues of the discretized problem. The same correction technique was also applied
to the Numerov method [12] and finite element methods [13, 89]. Vanden Berghe and
De Meyer [121, 125] used another idea to improve the eigenvalue approximations. They
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Table 2.1: Eigenvalues obtained with the Numerov method for−y′′ = Ey, y(0) = y(π) = 0.

k Ek n = 10 n = 20 n = 40

1 1 0.99995926 0.99999746 0.99999984
2 4 3.99736290 3.99983702 3.99998984
3 9 8.96943979 8.99813471 8.99988417
4 16 15.8246732 15.9894516 15.9993481
5 25 24.3170841 24.9594385 24.9975078
6 36 33.9283646 35.8777592 35.9925389

approximate the solution (eigenfunctions) no longer by polynomials only but by a mixed
interpolation function containing also trigonometric functions. In [122] a modified Nu-
merov method is discussed which delivers more accurate eigenvalues than the classical
one. Also the exponentially-fitted Numerov methods discussed in [124] show a less pro-
nounced increase of the error with the eigenvalue index.

2.2.2 Variational methods

Another class of methods which has been applied to solve the Sturm-Liouville problem
is formed by the variational methods [105] such as the finite element methods. These
methods are based on variational principles and are not really advantegeous over the fi-
nite difference methods. TheRayleigh-Ritzmethod e.g. produces, like the finite difference
methods, an approximating matrix eigenproblem and each discretization can only approx-
imate a limited number of eigenvalues. In addition the accuracy ofEk deteriorates withk
as fast as with finite differences.

2.3 Shooting methods

2.3.1 Basic idea

The shooting method is a method for solving a boundary value problem by reducing it to
the solution of an initial value problem. The differential equation is solved as an initial
value problem over the range[a, b] for a succession of trial values ofE which are adjusted
till the boundary conditions at both ends can be satisfied at once, at which point we have
an eigenvalue. The simplest shooting method ‘shoots’ from one endpoint to the other
endpoint, e.g. froma to b. This means that one chooses initial conditions which satisfy
the boundary condition (1.6) ina:

y(a) = −b0, p(a)y′(a) = a0 (2.11)

The boundary condition atb determines ‘target’ values; if the value ofy matches the
target, we have found an eigenvalue.
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Figure 2.1: The shooting process for the sample problem−y′′ = Ey with y(0) = y(π) = 0.
(Left) The left-hand solutionyL and right-hand solutionyR for different E values. (Right) The
corresponding first derivatives:y′

L andy′
R.

Alternatively, one can shoot from two ends to some interiormatching pointxm ∈
[a, b]. In this case we define a left-hand solutionyL(x,E) and a right-hand solution
yR(x,E). The left-hand solution is the solution of the initial valueproblem starting ina
with initial conditions

yL(a) = −b0, p(a)y′L(a) = a0, (2.12)

while the right-hand solution satisfies the conditions

yR(b) = −b1, p(b)y′R(b) = a1. (2.13)

Example 2.1 Figure 2.1 illustrates the shooting process for the problem−y′′ = Ey
with the boundary conditionsy(0) = y(π) = 0. As seen in example 1.1 this problem
has eigenvalues1, 4, 9, 16, . . . . The matching pointxm is chosen in the middle of the
integration interval. The left figure shows the left-hand solution yL(x,E) and right-hand
solutionyR(x,E) for differentE-values:E = 5, 4.5, 4.25, 4. The corresponding first
order derivatives are shown on the right figure. The left-hand solution starts ina = 0 and
is propagated up to the matching point, while the right-handsolution originates inb = π
and goes down to the matching point. It is clear that only the solutions forE = 4 match
in the matching point, that isyL(xm, 4) = yR(xm, 4). However it is possible for the
otherE-values to rescale e.g. the right-hand solution such thatyL(xm, E) = yR(xm, E).
But in this case, the obtained left- and right-hand first order derivatives no longer agree in
the matching point. We can conclude that the criterion forE to be an eigenvalue is that
the derivativesy′ should match, as well as the valuesy. This criterion is captured in the
mismatch function discussed below.

At the matching point we define amismatchfunctionφ(E). This mismatch function
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Figure 2.2: Mismatch function for the sample problem−y′′ = Ey with boundary conditions(Left)
y(0) = y(π) = 0 and(Right) y(0) + y′(0) = y(π) + y′(π) = 0.

can e.g. be written as the determinant

φ(E) =

∣

∣

∣

∣

p(xm)y′L(xm, E) p(xm)y′R(xm, E)
yL(xm, E) yR(xm, E)

∣

∣

∣

∣

. (2.14)

This mismatch function is only zero whenE is an eigenvalue. ThenyR can be multiplied
by a suitable scalar factor which makes it the continuation of yL for x ≥ xm, producing
an eigenfunction. Thus the procedure for finding the numerical value of an eigenvalue,
consists in evaluating the mismatch functionφ(E), numerically, and then through a finite
series of iterations finding the value ofE such thatφ(E) = 0 to the required degree of
approximation. The usual iterative methods for finding the roots of a function may be
employed here to find the zeros ofφ(E).

Example 2.2 Figure 2.2 shows the shape ofφ(E) for the problem−y′′ = Ey for the
boundary conditionsy(0) = y(π) = 0, which has zeros at1, 4, 9, 16, . . . (see example
1.1), and for the boundary conditionsy(0) + y′(0) = y(π) + y′(π) = 0, which has an
additional zero atE = −1.

2.3.2 Pr̈ufer-based shooting methods

There are however some difficulties associated with the approach discussed above. The
mismatch functionφ(E) is always an oscillating function which makes the rootfinding
process more difficult. Moreover, in order to converge on a specific eigenvalue, say the
kth, one needs to enhance the algorithm, for instance by counting the zeros of the solution
during the integration for each trialE value.

These difficulties can be avoided by using thePrüfer transformation. This technique
first appeared in a 1923 paper [103] by H. Prüfer. There the change of variables was
used to develop oscillation and comparison theorems. The Prüfer transformations reduce
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a Sturm-Liouville problem to an equivalent, nonlinear boundary value problem of first
order. This leads to several useful numerical methods basedon some form of the Prüfer
transformation. Pr̈ufer based shooting methods can be constructed where the counting of
the zeros ofy(x) needed to compute the specific eigenvalue with a given indexk is built
in.

The main idea in the Prüfer method is to introduce polar coordinates(ρ, θ) in the
phase plane. For thesimplePrüfer transformation we take

y = ρ sin θ, py′ = ρ cos θ (2.15)

whereρ = ρ(x;E) is called theamplitudeandθ = θ(x;E) is known as thephaseor
Prüfer angle. Differentiating (2.15) gives

y′ = ρ′ sin θ + ρ θ′ cos θ, (2.16)

and
z′ = ρ′ cos θ − ρ θ′ sin θ, (2.17)

wherez = py′. We can write the Sturm-Liouville differential equation astwo first-order
equations







y′ =
1

p
z,

z′ = (q − Ew)y.
(2.18)

and combine (2.16), (2.17) and (2.18) to solve the resultingsimultaneous linear equations
for ρ′, θ′. We find thatρ andθ satisfy the equations

θ′ =
1

p
cos2 θ + (Ew − q) sin2 θ, (2.19)

ρ′

ρ
=

(

1

p
− (Ew − q)

)

sin θ cos θ. (2.20)

The Pr̈ufer equations have the property that the eigenproblem is reduced to the solution
of theθ equation. OnceE andθ(x;E) are known,ρ can be determined by quadrature

ρ(x) = ρ(a) exp

∫ x

a

[

1

p(t)
− (Ew(t)− q(t))

]

sin θ(t) cos θ(t)dt. (2.21)

The regular boundary conditions (1.6) ata andb define the conditions

θ(a) = α, θ(b) = β, (2.22)

whereα andβ are values oftan−1(−b0/a0), tan−1(−b1/a1) respectively. As we will
see further, the precise value ofα andβ depends on the eigenvalue searched for (theorem
2.1).

ThescaledPrüfer transformation is a generalization of the simple Prüfer method and
is defined by the equations

y = S−1/2ρ sin θ, py′ = S1/2ρ cos θ, (2.23)



20 NUMERICAL SOLUTION OF THESTURM-L IOUVILLE PROBLEM

whereS is a strictly positive scaling function chosen to give good numerical behaviour,
and which in general depends upon bothx andE. In [105] it it shown that the resulting
differential equations forρ andθ are then of the form

θ′ =
S

p
cos2 θ +

(Ew − q)
S

sin2 θ +
S′

S
sin θ cos θ, (2.24)

2ρ′

ρ
=

(

S

p
− (Ew − q)

S

)

sin 2θ − S′

S
cos 2θ. (2.25)

The regular boundary conditions (1.6) ata andb define the conditions forθ

θ(a) = α, θ(b) = β, (2.26)

where

tanα = −S(a)b0
a0

, tanβ = −S(b)b1
a1

. (2.27)

These equations only determineα andβ up to a multiple ofπ. The Pr̈ufer feature is
that each (appropriate) choice of this multiple specifies precisely one eigenvalue. The
following theorem is proved in [105].

Theorem 2.1. Consider the scaled Prüfer equations of a regular Sturm-Liouville problem
whose coefficientsp, q, w are piecewise continuous withp > 0, q > 0. Let the boundary
valuesα andβ satisfy the following normalization:

α ∈ [0, π), β ∈ (0, π]. (2.28)

Then thekth eigenvalue is the value ofE giving a solution of(2.24)satisfying

θ(a,E) = α, θ(b, E) = β + kπ. (2.29)

The main point of this theorem is that the indexk of the eigenvalue equals the number
of zeros of the associated eigenfunctiony(x) on the open interval(a, b). If θ(x) is a
multiple of π at a certain pointx = xi, thenθ′(xi) = S(xi)/p(xi) > 0 by (2.24). This
shows thatθ increases through multiples ofπ asx increases, this means thatθ can never
be decreasing in a pointx = xi wherexi is a multiple ofπ. Sincey = 0 just when
θ is a multiple ofπ, by (2.23), the number of zeros ofy on (a, b) is just the number of
multiples ofπ (strictly) betweenθ(a) andθ(b). The normalization (2.28) ensures that
for any nonnegative integerk, there are preciselyk multiples ofπ strictly betweenα and
β + kπ.

A shooting method can be defined for theθ equation. For simplicity we assume the
scaling function hasE-independent values in the matching pointxm and ina andb, which
makesα andβ in (2.28) also convenientlyE-independent.

Theorem 2.2. For anyE, let θL(x;E) andθR(x;E) be the solutions of(2.24)satisfying

θL(a;E) = α ∈ [0, π), θR(b;E) = β ∈ (0, π], (2.30)
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and define the scaled Prüfer mismatch function by

φ(E) = θL(xm;E)− θR(xm;E). (2.31)

Then

1. The eigenvalueEk is the unique value such that

φ(Ek) = kπ (2.32)

for k = 0, 1, . . . .

2. The functionφ(E) is stricly increasing and differentiable on(−∞,∞).

For a proof, see [105].

Example 2.3 We look at the form of the Prüfer angleθ for a regular Schr̈odinger problem
−y′′ + V (x)y = Ey defined by Paine in [97] with potential function

V (x) =
1

(x+ 0.1)2
. (2.33)

The problem is defined over the interval[0, π] and the boundary conditions arey(0) =
y(π) = 0. The upper figure of Figure 2.3 shows the unscaled Prüfer θ (S = 1) for this
problem forE running through the first 10 eigenvalues. As predicted by theorem 2.1
the different eigenvalues correspond with different multiples ofπ in b. Note that asE
increases the unscaled Prüfer θ equation has solutions of gradually increasing ‘staircase’
shape with ‘plateaus’ atθ = kπ and steep slopes aroundθ ≈ (k − 1/2)π. The integrator
needs to react to the changes in slope of these steps, forcingit to drastically reduce the
stepsize. A good choice of the scaling functionS can smooth out the oscillatory behav-
iour, as shown in the lower figure.

Example 2.4 Figure 2.4 shows an example of the left hand (unscaled) PrüferθL and right
hand (unscaled) PrüferθR appearing in the shooting method (see theorem 2.2). The upper
figure is for the Paine problem (2.33) with matching pointxm = 1.12 and eigenvalueE9.
Another example is shown for the Coffey-Evans equation in the lower figure. The Coffey-
Evans equation is one of the test problems which frequently appears in the literature (see
e.g. [104, 105]). It is a regular Schrödinger equation with

V (x) = −2β cos(2x) + β2 sin2(2x), (2.34)

andy(−π/2) = y(π/2) = 0 as boundary conditions. Here the shooting was done for
β = 20, xm = 0 andE = E8. For both problems it is clear thatθL increases andθR

decreases through multiples ofπ. It can also be seen that each pass through a multiple of
π corresponds with a zero in the eigenfunctiony(x). For the Paine problem shown in the
upper figure,θL(xm;E9) = 3.5π andθR(xm;E9) = −5.5π in the matching point. Thus
the scaled Pr̈ufer mismatch functionφ(E9) given by (2.31) is equal to9π, as predicted by
(2.32). For the Coffey-Evans problem shown in the lower figure,φ(E8) = 4.5π+3.5π =
8π.
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Figure 2.3: (Upper) The unscaled Prüfer functionθ(x; E) for the Paine problem (V (x) = 1/(x +
0.1)2), with E running through the first 10 eigenvalues.(Lower) The Pr̈ufer functionθ(x; E) for
the same problem as above, using scale factorS = 1 whereE − V (x) ≤ 1 andS =

p
E − V (x)

whereE − V (x) > 1.
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1.12). (Lower) The (unscaled) Prüfer θL(x; E8) and θR(x; E8) for the Coffey-Evans problem
(β = 20, xm = 0).
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Each value of the mismatch functionφ(E) involves an integration of (2.24). The
aim of the choice of the scaling functionS(x) is to reduce the cost of these integrations
and allowing the code to take as large steps as possible. Choosing an appropriate scaling
functionS(x) is however a non-trivial task. We consider first the caseEw−q ≫ 0, which
occurs typically when searching for eigenvalues with largeindices. Here the stepsize for
a standard library initial value problem solver is limited by the local accuracy requirement
defined by some tolerancetol. If p, q andw are constant andEw − q > 0 all numerical
problems are eliminated by taking

S =
√

(Ew − q)p. (2.35)

This reduces theθ equation simply to the trivial case

θ′ =

√

Ew − q
p

= constant, (2.36)

for which there is no stepsize restriction. In general, (2.24) can be written as

θ′ =
1

2

[

S

p
+

(Ew − q)
S

+

(

S

p
− (Ew − q)

S

)

cos 2θ +
S′

S
sin 2θ

]

= A+B cos 2θ + C sin 2θ,

(2.37)

then the scaling functionS should be chosen so thatB andC are small andA ≈
√

(Ew − q)/p.
At the other extreme, ifEw− q ≪ 0 theθ equation (2.24) becomesstiff and standard

library methods need to take small steps to avoid instability (see [72] for more infor-
mation on stiffness). A scalar differential equationdy/dx = f(x, y) is considered stiff
over a range if∂f/∂y is large and negative in relation to the lengthL of the range, i.e.
−L∂f/∂y ≫ 1. If we write the right hand side of (2.24) asF (x, θ) and the right hand
side of (2.25) asG(x, θ), then

∂F

∂θ
=

[

−S
p

+
Ew − q
S

]

sin 2θ +
S′

S
cos 2θ = −G(x, θ). (2.38)

This implies that it is precisely whereρ increases rapidly that we encounter stiffness inθ.
Moreover in this case no choice ofS > 0 can make∂F/∂θ small. The best one can do is
to minimize| − S/p+ (Ew − q)/S| which in the constant case means taking

S =
√

(q − Ew)p. (2.39)

Then∂F/∂θ is bounded above and below by±2
√

(q −Ew)/p. However, near singular
endpoints(q − Ew)/p varies rapidly and even a stiff-ODE solver may be forced to take
small stepsizes.

Several variants of the scaled Prüfer transformation have been developed and used in
implementations of the shooting method for solving Sturm-Liouville problems (see [82]).
Bailey developed a modified Prüfer method [15, 16]

y(x) = S−1/2ρ(x) sin θ(x) (2.40)
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p(x)y′(x) = S1/2ρ(x) cos θ(x). (2.41)

whereS is a scaling constant which is chosen by the ruleS = kπ/U wherek is the
eigenvalue index andU is approximately the length of the interval on whichEw − q is
positive. This rule was implemented in the SLEIGN code [19, 21] from Sandia Laborato-
ries. Pryce [104] implemented another scaled Prüfer substitution of the form (2.40) where
S is a positive piecewise linear function chosen so that bothS/p − |q|/S andS′/S are
kept small. This method is implemented in the NAG library as D02KDF and D02KEF.
More details about e.g. the choice of the scaling function orthe matching point used by
these methods can also be found in [105].

Both SLEIGN and the NAG codes use an (explicit) Runge-Kutta method to integrate
the θ equation. Such shooting methods based on standard initial value libraries often
suffer from stepsize restriction when solving for large eigenvalues, or when the potentials
are particularly large, and are not suited for computing a large set of eigenvalues. They
also have some difficulties caused by stiffness of theθ equation (2.24) in a ‘barrier’ region
where(Ew−q)/p is large and negative. Because SLEIGN and D02KEF use Runge-Kutta
integrators, stiffness causes very small stepsizes to be taken. In the next sections, we will
see the advantages of combining a Prüfer formulation withcoefficient approximation, in
which the coefficient functions are approximated piecewisely by low degree polynomials
(constants or lines). Then the integrations may be performed analytically and stiffness is
no longer a problem.

2.3.3 Coefficient approximation methods

An important class of methods for the numerical solution of Sturm-Liouville problems
is based on coefficient approximation. The basic idea here isto replace the coefficient
functionsp(x), q(x), w(x) of the Sturm-Liouville equation piecewisely by low degree
polynomials so that the resulting equation can be solved analytically.

The idea dates back at least to Gordon [41] and Canosa and De Oliveira [28] and was
studied also by Ixaru [55], Paine and de Hoog [96] and Smooke [117]. But the standard
reference for convergence in the piecewise polynomial caseis due to Pruess [99, 100]. He
examined the piecewise constant case and his strategy has been implemented by Pruess
and Fulton in the code SLEDGE [101]. There is also another library code by Marletta and
Pryce, called SL02F [87, 88]. Both codes use a so-called Pruess method to construct a
shooting method which is able to compute a specific eigenvalue. The Pruess method will
be discussed briefly in this section. In the next section the piecewise perturbation methods
(PPM) will be discussed. These methods use the coefficient approximation in combina-
tion with a perturbative procedure which produces correction terms. This perturbative
approach makes it possible to define methods of higher order.

The Pruess method

We review first briefly some of Pruess’s convergence results for coefficient approxima-
tion methods (see also [70]). Consider the approximation ofa regular Sturm-Liouville
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problem
−(p(x)y′(x))′ + q(x)y(x) = Ew(x)y(x), x ∈ (a, b) (2.42)

with
a0y(a) + b0p(a)y

′(a) = 0, a1y(b) + b1p(b)y
′(b) = 0 (2.43)

by another regular problem

−(p̃(x)ỹ′(x))′ + q̃(x)ỹ(x) = Ew̃(x)ỹ(x), x ∈ (a, b) (2.44)

a0ỹ(a) + b0p̃(a)ỹ
′(a) = 0, a1ỹ(b) + b1p̃(b)ỹ

′(b) = 0. (2.45)

Herep̃, q̃ andw̃ are approximations top, q andw, generally taken to be piecewise poly-
nomials over a mesha = x0 < x1 < · · · < xn = b. Both problems, being regular, have
an infinite sequence of eigenvalues (Ek andẼk respectively,k = 0, 1, . . . ) and associ-
ated eigenfunctions (yk and ỹk). The basic convergence result given by Pruess in [99]
states that ifp, q andw are inCm+1[a, b], then using piecewise polynomial interpolants
of degreem will give convergence of the type

|Ek − Ẽk| ≤ Chm+1 max(1, k2), (2.46)

whereh is the maximum stepsize in the mesh andC is a constant independent ofk. An
enhanced convergence result (also given in [99]), states that if p̃, q̃ andw̃ interpolate top,
q andw at the Gauss points (see e.g. [109]) of each subinterval[xi−1, xi] then (2.46) may
be replaced by

|Ek − Ẽk| ≤ Ckh
2m+2. (2.47)

As pointed out in [96], the analysis of Pruess may be followedin detail to show that in
(2.47) the constantCk will grow with k:

Ck ≤ Ckmax(3,2m+2). (2.48)

For piecewise constant approximations at the mesh centres (midpoints)(xi−1 + xi)/2
(that is Gaussian interpolation form = 0) this means

|Ek − Ẽk| ≤ Ch2k3. (2.49)

Knowing the asymptotic behaviour of the eigenvaluesEk ∼ O(k2) (see [131]), we obtain
for largek (see [88, 105])

|Ek − Ẽk|
max(1, |Ek|)

≤ C(h
√
k)2. (2.50)

Thus one would expectE100 to need ten times as many meshpoints to compute to a given
relative tolerance thanE1. However, as mentioned in [88, 105], there are two reasons
why this is not seen in practice. Firstly, (2.46) gives

|Ek − Ẽk| ≤ Chmax(1, k2), (2.51)
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so the bound given by (2.50) cannot be tight for largek. Secondly, many problems occur
in Liouville normal form (Schr̈odinger form) wherep = w = 1 and for these there is an
improved error bound (shown in [55, 96])

|Ek − Ẽk| ≤ Ch2
√

max(1, Ek), (2.52)

which implies for largek
|Ek − Ẽk|

max(1, |Ek|)
≤ Ch2k−1. (2.53)

Thus we can actually use largerh for largek for a given relative error. For this reason,
Paine suggested that all problems be transformed to Liouville normal form before the
Pruess approximation is applied. An idea which was however not incorporated in library
software packages as SLEDGE or SL02F.

Accurate eigenvalue approximations are obtained by dividing each mesh interval into
a number of equal parts and using Richardson extrapolation.Pruess [100] shows that the
eigenvalue error is expandable in even powers ofh when the mesh is uniform, and his
analysis extends easily to nonuniform meshes.

Numerical solution of the approximating problem

As said before, the aim of using coefficient approximation isto obtain an approximating
problem which can be integrated exactly. For the piecewise constant approximation in
particular, theỹ(x) of the approximating problem (2.44) can be integrated explicitly in
terms of trigonometric and hyperbolic functions.

Let p̃, q̃, w̃ have the constant values̃pi, q̃i, w̃i in the ith interval (xi−1, xi), i =
1, . . . , n. In [xi−1, xi] a solution of (2.44) has the form

ỹ(x) = ciFi(x) + diGi(x) (2.54)

whereFi, Gi are fundamental solutions of−ỹ′′ = Λiỹ andΛi is a constant

Λi =
Ew̃i − q̃i

p̃i
. (2.55)

Take
ωi =

√

|Λi|. (2.56)

Convenient definitions are then

Fi(x) =

{

cos(ωi(x− xi−1)) Λi ≥ 0,

cosh(ωi(x− xi−1)) Λi < 0,
(2.57)

and

Gi(x) =























sin(ωi(x− xi−1))

p̃iωi
Λi > 0,

x− xi−1 Λi = 0,
sinh(ωi(x− xi−1))

p̃iωi
Λi < 0.

(2.58)
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Note that these functions also depend onE.
At meshpoints we have thematching conditionsthat ỹ and p̃ỹ′ are continuous. The

solution over[xi−1, xi] is then advanced by the relation
[

p̃(xi)ỹ
′(xi)

ỹ(xi)

]

= Ti

[

p̃(xi−1)ỹ
′(xi−1)

ỹ(xi−1)

]

(2.59)

where the propagation matrix (also called transfer matrix)Ti is given by

Ti =

[

p̃iG
′
i(xi) p̃iF

′
i (xi)

Gi(xi) Fi(xi)

]

(2.60)

When boundary conditions (2.45), equations (2.54) and theirderivatives, and the
matching conditions at the meshpointsxi are used, we obtain a system of4n + 2 linear
equations between the2n unknownsci, di and the2n + 2 unknownsỹ(xi), p̃(xi)ỹ

′(xi).
The coefficients depend onE and eigenvalues are just the values ofE for which this
system is singular.

In [28] theỹ(xi), p̃(xi)ỹ
′(xi) are eliminated to obtain an order2n system for theci, di

and zeros of the determinant are looked for. In [96] theci, di are eliminated producing
an order2n+ 2 system consisting of equations (2.59) and the boundary conditions. Then
the p̃(xi)ỹ

′(xi) are eliminated between adjacent equations (2.59) to yield atridiagonal
system forỹ(x0), . . . , ỹ(xn). These methods have the disadvantage that it is difficult to
home in on the eigenvalueEk for a specified indexk. It is then more convenient to treat
the equations as a method for explicitly integrating(ỹ, p̃ỹ′) over thex range, and to use a
shooting method. This is done in both SLEDGE and SL02F and combined with the ideas
based on the Prüfer substitution to be able to home in on a particular eigenvalue.

The SLEDGE algorithm uses the transfer matrixTi to propagate the solution(p̃ỹ′, ỹ).
The zero count is kept during propagation by noting that ifΛi ≤ 0, ỹ has a (single) zero
in (xi−1, xi) if and only if ỹi−1ỹi < 0, while if Λi > 0 the number of zeros equals the
number of integers in the interval(θ/π, (θ + ωihi)/π) where

θ = arctan
ωiỹi−1

p̃ỹ′i−1

, (2.61)

is an implicit conversion to the Prüfer variable.
SL02F uses a bit different approach and applies an explicit scaled Pr̈ufer transforma-

tion (2.23) of the form

p̃ỹ = S1/2ρ cos θ, ỹ = S−1/2ρ sin θ, (2.62)

where over each mesh interval(xi−1, xi) the scale factorS has the (positive) constant
valueSi. Equations (2.24) and (2.25) then take the form

dθ

dx
=

S

p̃
cos2 θ +

(Ew̃ − q̃)
S

sin2 θ, (2.63)

d

dx
log ρ =

(

S

p̃
− (Ew̃ − q̃)

S

)

sin 2θ, (2.64)
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within each mesh interval.
The mismatch is then as in (2.31) given by

φ(E) = θL(xm)− θR(xm) (2.65)

whereθL andθR are the solutions satisfying the left and right boundary conditions. The
method used in SL02F to integrate (2.63) relies on judiciously choosingS on each subin-
terval, to make the change inθ easy to compute and is discussed into more detail in [105]
and [87, 88].

At the meshpoints a rescaling formula is needed to compute the jumps inθ andρ
caused by the jumps inS. We will discuss the construction of these rescaling formulae
hereafter.

Rescaling at jumps in S

At a meshpoint whereS changes,θ andρ need to be adjusted. LetS, θ, ρ be the old values
andŜ, θ̂, ρ̂ the new ones. From (2.62) we see that

(ρ̂ cos θ̂, ρ̂ sin θ̂) = (σ−1/2ρ cos θ, σ1/2ρ sin θ), (2.66)

whereσ = Ŝ/S > 0. In this form, givenθ this definesθ̂ only up to a multiple of
2π. But, (cos θ̂, sin θ̂) and(cos θ, sin θ) lie strictly in the same quadrant, so we get an
unambiguous definition of̂θ by imposing the condition|θ̂ − θ| < π/2. From (2.66), the
following formula can then be derived (see [105]):

θ̂ = θ + arg(1 + (σ − 1) sin2 θ, (σ − 1) sin θ cos θ). (2.67)

Herearg(x, y) denotes the polar angle of the point(x, y), i.e. the argument ofx+iy in the
range−π < arg ≤ π. Thearg function in (2.67) can be coded in Fortran or MATLAB as

ATAN2((σ − 1) sin θ cos θ, 1 + (σ − 1) sin2 θ). (2.68)

The adjustment formula forρ follows immediately from (2.66): the square of the formulae
(2.66) gives

(

ρ̂

ρ

)2

=
cos2 θ

σ cos2 θ̂
, (2.69)

and
(

ρ̂

ρ

)2

=
σ sin2 θ

1− cos2 θ̂
. (2.70)

Elimination of thecos2 θ̂ term gives us then

ρ̂

ρ
=

(

cos2 θ

σ
+ σ sin2 θ

)1/2

. (2.71)
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Advantages of the Pruess method

The convergence results already show that the Pruess methods have significant advantages
over finite difference and variational methods. Another obvious benefit of Pruess methods
(and coefficient approximation methods in general) is that they produce an approximating
problem with, like the original, a (potentially) infinite spectrum, unlike matrix methods.
Moreover the accuracy is maintained or even improves ask increases. In addition, for
finite differences a uniform mesh is used, and this is rarely agood idea e.g. when dealing
with (truncated) singular problems.

In comparison with shooting methods based on a standard initial-value solver, the fol-
lowing holds.

1. Pruess methods are of low order:O(h2) convergence for fixedk ash → 0 if the
constant midpoint approximation is used. But repeatedh2 extrapolation is valid
for p, q andw sufficiently smooth, to giveO(h4), O(h6), . . . accuracy. Repeated
extrapolation is the basic method of SLEDGE, whereas SL02F uses only one ex-
trapolation forh4 extrapolation (for reasons to do with the interface to the rest of
the package).

2. The overall shooting process consists of a number of integrations with different
values ofE. Unlike a method based on a standard initial-value solver, it is practical
with this method to fix the mesh and evaluate the coefficient midpoint values once
for all before the start of the shooting process. This can give a big speed advantage.

3. Pruess methods are relatively unaffected by the stiffness/instability which can force
a very small stepsize on an initial-value solver in regions whereq − Ew ≫ 0.

A drawback of the Pruess methods is the difficulty in obtaining higher order methods.
It is usual to implement them using Richardson extrapolation. For the piecewise pertur-
bation methods and integral series methods (both related tothe Pruess methods) higher
order methods can be constructed directly. Both classes of methods will be discussed
next.

2.3.4 Piecewise perturbation methods

Linear second-order differential equations describe a lotof important physical phenom-
ena and it is therefore not surprising that physicists contributed with their own special
numerical techniques. The contribution of physicists was to make use of some ideas orig-
inating in mathematical physics. Such an idea is theperturbation approximation. Using
this perturbative approach, methods of higher efficiency can be constructed, called the
Piecewise (reference potential) Perturbation Methods (PPM). Some PPM are discussed in
[58] for the general case of linear second-order differential equations.

As for the Pruess method, the original differential equation is replaced (piecewisely)
by another differential equation (called thereference equationby Ixaru in [58]), which
can be solved exactly. But now the perturbation theory is used, to estimate the deviation
between the solution of the reference equation and the solution of the original equation.
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Some perturbation corrections can then be added to the solution of the reference equation
to obtain a more accurate approximation to the solution of the original equation.

The motivation of the perturbative approach lies in the factthat by taking the approx-
imate solution as e.g. a piecewise zeroth order solution of the approximating problem
plus a number of corrections to this zeroth order solution, we will obtain a more accurate
approximation toy than if we had not included any perturbation corrections. This will
manifest itself in a smaller number of mesh intervals neededto solve the problem numer-
ically. Hence, providing the complexity of evaluating the perturbation corrections is not
too prohibitive, the overall cost of the calculation will bereduced.

The PPM are identified by the type of piecewise approximation. For instance if the
coefficients are approximated by piecewise constants the method is referred to as acon-
stantperturbation method (CPM) while if piecewise lines are usedthe method is called
a line perturbation method (LPM). CPM as well as LPM have been constructed for the
Liouville normal (Schr̈odinger) form. We will discuss these methods in detail in thenext
chapters and give here the main ideas of the general piecewise perturbation approach.

The reference equation

We focus on the initial value problem for the one-dimensional regular Schr̈odinger equa-
tion,

y′′ = (V (x)− E)y , x ∈ [a, b] , (2.72)

with given initial conditions in one of the endpoints, e.g.

y(a) = y0, y′(a) = y′0 . (2.73)

The potential functionV (x) is supposed to be a well behaved (i.e. real, bounded and
continuous) function andE, the energy, is a constant.

A partition of the integration interval[a, b] is introduced

a = x0 < x1 < x2 < · · · < xn = b. (2.74)

This partition is in general non-equidistant. Let us focus on the current intervalIk =
[xi−1, xi] of steplengthhi. Our aim is to construct a piecewise perturbation algorithm
which propagates the solution from one endpoint of this intervalxi−1 to the other endpoint
xi. We introduce the variableδ = x−xi−1, δ ∈ [0, hi] and denote genericallyX = xi−1

andh = hi. The local one-step problem is then

y′′(X + δ) = (V (X + δ)− E)y(X + δ) , δ ∈ [0, h] (2.75)

with some known initial conditionsy(X) = α, y′(X) = β.
We consider two particular solutions of (2.75)u(δ) andv(δ) which satisfy the initial

conditions
u(0) = 1, u′(0) = 0, (2.76)

and
v(0) = 0, v′(0) = 1. (2.77)
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The functionsu andv are linear independent and their wronskian

W (u, v) = uv′ − u′v (2.78)

is equal to 1. It follows that a solution of (2.75) has the form

y(X + δ) = c1u(δ) + c2v(δ), (2.79)

wherec1 andc2 are two constants. From (2.76) and (2.77) we know thatc1 = y(X) and
c2 = y′(X). The solution of Eq. (2.75) can thus be written in matrix formas follows

[

y(X + δ)
y′(X + δ)

]

=

[

u(δ) v(δ)
u′(δ) v′(δ)

] [

y(X)
y′(X)

]

. (2.80)

Taking the inverse of this formula, we obtain
[

y(X)
y′(X)

]

=

[

v′(δ) −v(δ)
−u′(δ) u(δ)

] [

y(X + δ)
y′(X + δ)

]

. (2.81)

The role of the functionsu andv is thus to propagate the (exact) solution fromX toX+δ
and vice versa. Thereforeu andv are called exactpropagators.

It is clear that the knowledge of the propagatorsu, v and their first derivativesu′, v′

is sufficient to advance the solutions in both directions. However, analytic forms of these
u andv are known only for a restricted number of expressions for thefunction V (x),
let such functions be denoted bȳV (x). The idea behind the perturbation approach is to
replaceV (x) piecewisely by aV̄ (x). To further improve the accuracy, the corrections
derived from the perturbation∆V = V (x)− V̄ (x) are added (also piecewisely).

More concrete, we associate to Eq. (2.75) an equation of the same form

y′′(X + δ) =
[

V̄ (X + δ)− E
]

y(X + δ) , δ ∈ [0, h], (2.82)

which is called thereference equation. The functionV̄ (x) (the so-calledreference poten-
tial) is chosen is such a way that this equation has known analyticsolutions. In particular
we are interested in the two solutionsū(δ) and v̄(δ) which are the propagators of Eq.
(2.82). Our purpose is thus to construct the unknown propagatorsu andv of the original
equation (2.75) in terms of the known reference propagatorsū andv̄. Actually, the refer-
ence propagators form the zeroth order approximations ofu andv and some perturbation
corrections derived from theperturbation

∆V (δ) = V (X + δ)− V̄ (X + δ) (2.83)

will successively improve this approximation.

The perturbation corrections

As explained in [58] by Ixaru, the parameter dependent function F (δ; γ), γ ∈ [0, 1] can
be introduced as

F (δ; γ) = V̄ (δ) + γ∆V (δ). (2.84)
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This function reproduces the given potential functionV (δ) and the reference potential
V̄ (δ) whenγ takes its extreme values, i.e.F (δ; 1) = V (δ) andF (δ; 0) = V̄ (δ). The
propagatorsu, v and ū, v̄ are the particular casesγ = 1 andγ = 0 of the propagators
u(δ, γ) andv(δ, γ) of the differential equation

y′′(X + δ; γ) = [F (δ; γ)− E] y(X + δ; γ). (2.85)

The propagatorsu(δ; γ) andv(δ; γ) are written as power series in the parameterγ:

u(δ; γ) =

∞
∑

q=0

uq(δ)γ
q, v(δ; γ) =

∞
∑

q=0

vq(δ)γ
q. (2.86)

We will denote the propagators generically byp, thus Eqs. (2.86) can be written as

p(δ; γ) =

∞
∑

q=0

pq(δ)γ
q, (2.87)

wherep = u if p(0; γ) = 1, p′(0; γ) = 0 andp = v if p(0; γ) = 0, p′(0; γ) = 1.
To calculatepq we introducep(δ; γ) into Eq. (2.85),

p′′(δ; γ) =
[

(V̄ (δ)− E) + γ∆V (δ)
]

p(δ; γ). (2.88)

and organize the terms in powers ofγ:

[p′′0 − (V̄ (δ)− E)p0] +

∞
∑

q=1

γq[p′′q − (V̄ (δ)−E)pq −∆V (δ)pq−1] = 0. (2.89)

Since this has to be satisfied for everyγ ∈ [0, 1], the δ-dependent weights ofγq must
vanish for anyq = 0, 1, 2, . . . , i.e.

p′′0 = (V̄ (δ)− E)p0, (2.90)

p′′q = (V̄ (δ)− E)pq + ∆V (δ)pq−1, q = 1, 2, 3, . . . . (2.91)

From Eq. (2.87) we can derive thatp(δ; 0) = p0(δ). On the other hand, we know that
p(δ; 0) = p̄(δ), so we getp0(δ) = p̄(δ). And since the initial values forp(δ; γ) are the
same as for̄p(δ), the differencesp(0; γ)− p0(0) andp′(0; γ)− p′0(0) must vanish:

∞
∑

q=1

pq(0)γq = 0,

∞
∑

q=1

p′q(0)γq = 0, γ ∈ [0, 1]. (2.92)

This means that
pq(0) = p′q(0) = 0, (2.93)

for anyq = 1, 2, 3, . . . .
In short, we obtained the following results:
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Theorem 2.3. The solution of Eq.(2.75) with the initial conditionsy(X) = α and
y′(X) = β can be written as Eq.(2.80) where the propagatorsu and v are written
as perturbation series

p(δ) = p0(δ) + p1(δ) + p2(δ) + p3(δ) + . . . (2.94)

wherep stands foru or v. The zeroth order propagatorp0(δ) is exactly the reference
propagatorp̄(δ) and theqth correctionpq(δ), q = 1, 2, 3, . . . is the solution of the prob-
lem

p′′q = (V̄ (δ)− E)pq + ∆V (δ)pq−1, pq(0) = p′q(0) = 0. (2.95)

If the potential function is approximated by piecewise constants, the method is re-
ferred to as aConstant(reference potential) Perturbation Method (CPM in short) while
if piecewise straight lines are used the method is called aLine Perturbation Method (or
LPM). The CPM will be considered in detail in chapter 3. The LPM and its specific dif-
ficulties will be discussed in chapter 4. The use of polynomials of a degree higher than
one is problematic in so much that the accurate computation of the two linear independent
solutionsu andv is difficult.

In the chapters 3 and 4, it will become clear that the advantages of the Pruess methods
remain valid for the discussed PPM versions, that is (i) the integrations are performed
analytically, so stiffness is not a problem, (ii) the mesh has to be computed only once and
can be fixed before the start of the shooting process, moreover many information related
to this mesh can be computed before the shooting and stored. (iii) an approximation
to thekth eigenvalue can be found for a user-specifiedk rather than finding a range of
eigenvalues (as a finite difference method might do).

Software packages

Also for the PPM a completely automatic software code can be constructed: the user has
to specify only the information which defines the problem, plus a tolerancetol. The user
does not have to set up a mesh or deal with other algorithmic inconveniences. In [61] the
Fortran package SLCPM12 (available under the identifier ADJV v1 0 in the CPC library
[1]) was presented. This package uses the power of a high order CPM to solve regular
Schr̈odinger and Sturm-Liouville problems. Later we implemented some higher order
CPM versions in a MATLAB package, called MATSLISE [76].

Table 2.2 shows a comparison between different (Fortran) software packages applied
on the regular Schrödinger problem withV (x) = 1/(x+ 0.1)2 on [0, π] (the Paine prob-
lem of example 2.3). In [60] also some comparisons were done for other regular prob-
lems, but they lead to the same conclusion, namely that the CPM software has the power
to outperform the other well-known Sturm-Liouville solvers when it comes to regular
problems.

In the experiment shown in Table 2.2, the CPM code SLCPM12 is compared with the
SLEDGE package [101] and the SLEIGN package [21] as they appear in the SLDRIVER
code of Pryce [108]. All codes were run on a 2.4GHz PC. We askedto compute the first
21 eigenvalues at a user input tolerance10−8. Table 2.2 shows the exact eigenvaluesEk
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Table 2.2: Comparison of different Sturm-Liouville solvers for the Paine problem (tol = 10−8).
nfev is the number of function evaluations andT the CPU time in seconds.

|∆Ek|

k Ek SLCPM12 SLEDGE SLEIGN

0 1.5198658210993471 5.8(−14) 8.2(−9) 5.3(−9)
4 26.7828631583287419 2.4(−13) 1.4(−8) 9.2(−9)
8 83.3389623741632420 3.3(−13) 1.2(−7) 2.1(−8)
12 171.6126448515666790 3.1(−13) 2.4(−7) 1.8(−8)
16 291.7629324611350560 5.1(−13) 4.1(−7) 4.3(−8)
20 443.8529598351504081 1.1(−12) 8.7(−7) 9.9(−8)

nfev 1080 34718 86089
T 0.03 0.07 0.5

and the (absolute value of the) errors∆Ek in the obtained eigenvalue approximations. For
shortness, the table contains only details for some selected eigenvalues and the notation
z(−q) is used forz10−q. We also give the total number of function evaluations (nfev)
of the potential functionV (x) required by each program to compute the whole set of
eigenvalues and the associated CPU timeT (in seconds).

The SLCPM12 code clearly needs much less function evaluations than the other
codes. The main reason is theE-independent partition (mesh): the partition is only con-
structed once and then used in all eigenvalue computations.During the shooting process
no extra function evaluations have to be performed. This is very different to the SLEIGN
code where the computation of each eigenvalue is treated as aseparate problem. More-
over the number of function evaluations increases dramatically with the eigenvalue. When
asking the SLEIGN code to compute the first eigenvalueE0, 2657 function evaluations
are performed, while for the computation of the eigenvalueE5 already 18414 function
evaluations are needed. Another reason is the small number of meshpoints needed by the
CPM code: only 15 steps were needed in the partition. The lower order method SLEDGE
needs a lot more.

We can conclude that the SLCPM12 code is more efficient than the other codes, how-
ever we must add that SLEDGE and SLEIGN cover a wider range of problems than
SLCPM12 (that is SLEDGE and SLEIGN are able to handle also some non-regular prob-
lems). The higher order CPM implemented in the MATLAB package MATSLISE are
even more efficient (less meshpoints, less function evaluations) and MATSLISE also cov-
ers more problems than SLCPM12. MATSLISE comes with a Graphical User Interface
(GUI) which makes the package more user-friendly than the Fortran packages, for which
the access via a driver routine can be a non-trivial task. MATSLISE can be accessed
and modified comparatively easily, but the language being aninterpreter language also
has inherent speed disadvantages when compared to the other(compiled) packages. The
MATSLISE package, its structure and use will be discussed into more detail in chapter 7.
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2.3.5 Magnus and Neumann series methods

A relatively new approach in the numerical solution of Sturm-Liouville eigenvalue prob-
lems is based on Magnus or Neumann expansions. These algorithms are related to the
Pruess ideas, but provide high order approximations. We first introduce the Magnus and
Neumann expansion and consider afterwards some applications to the Sturm-Liouville
equation.

Neumann and Magnus expansions

There is an emerging family of numerical methods based on integral series representation
of ODE solutions. We consider the linear differential equation

y′ = A(t)y, y(0) = y0. (2.96)

The simplest integral series is obtained by applying Picarditeration [44] to obtain the
fundamental solution of the matrix linear ODE

y(t) =y0

[

1 +

∫ t

0

A(τ)dτ +

∫ t

0

A(τ)

∫ τ

0

A(τ1)dτ1dτ

+

∫ t

0

A(τ)

∫ τ

0

A(τ1)

∫ τ1

0

A(τ2)dτ2dτ1dτ + . . .
]

(2.97)

This series is known as the Feynman-Dyson path ordered exponential in quantum me-
chanics, in mathematics it is known as theNeumannseries or Peano series.

The Magnus and Cayley expansions are two other examples. They are obtained by
transforming Eq. (2.96) to the suitable Lie algebra and applying the Picard iteration to
the transformed ODE. Details on both approaches can be foundin [51]. The Cayley
expansion is based on the Cayley transform while the Magnus expansion is based on the
exponential map. The approach of Magnus [83] aims at writingthe solution of Eq. (2.96)
as

y(t) = exp(Ω(t))y0 (2.98)

whereΩ(t) is a suitable matrix. TheMagnus expansionsays that

Ω(t) =

∫ t

0

A(τ)dτ − 1

2

∫ t

0

[∫ τ

0

A(τ1)dτ1, A(τ)

]

dτ

+
1

4

∫ t

0

[∫ τ

0

[∫ τ1

0

A(τ2)dτ2, A(τ1)

]

dτ1, A(τ)

]

dτ

+
1

12

∫ t

0

[∫ τ

0

A(τ1)dτ1,

[∫ τ

0

A(τ2)dτ2, A(τ)

]]

dτ + . . .

(2.99)

where[·, ·] denotes the matrix commutator defined by[X,Y ] = XY − Y X.
Numerical methods based on this expansion are reviewed by Iserles et al. [51]. They

are of the form
yn+1 = exp(Ωn)yn (2.100)



2.3 Shooting methods 37

to give an approximation toy(tn+1) attn+1 = tn+h. HereΩn is a suitable approximation
of Ω(h) given by (2.99), withA(tn + τ) instead ofA(τ). This approximation involves
first truncating the expansion, and second approximating the integrals.

The Magnus expansion converges in the Euclidean 2-norm provided (see [51])

∫ t

0

‖A(τ)‖ dτ < r0
ν

(2.101)

where

r0 =

∫ 2π

0

(

2 +
1

2
τ(1− cot(

1

2
τ))
)−1

dτ = 2.173737 . . . (2.102)

andν ≤ 2 is the smallest constant such that

‖[A1, A2]‖ ≤ ν ‖A1‖ ‖A2‖ , (2.103)

for any two elementsA1 andA2 in the underlying Lie algebra. Taking the crudest case
ν = 2 we get

∫ t

0

‖A(τ)‖ dτ < 1.08686 . . . (2.104)

Hence, a Magnus-based integrator appears to have an inherent time-step restriction. Es-
pecially whenA(t) is non-oscillatory with large norm a small step size is forced. For
differential equations with a highly oscillatory matrixA(t) however, Magnus series nu-
merical methods were shown to be very suitable. In such casesit is speculated that the
convergence interval of the Magnus series will be much larger than predicted by (2.104),
since integration of the norm of the matrix ignores the favourable effects of high oscil-
lation in its entries. Moreover, Hochbruck and Lubich [46] showed that Magnus inte-
grators perform well in situations where the stiffness of the system originates from the
time-independent part of the coefficient matrix. Further, by factoring out the flow of the
time-independent part of the coefficient matrix, Iserles [49] and Degani and Schiff [32]
introduced a right correction Magnus series (RCMS) which has a uniform radius of con-
vergence and uniformly bounded global errors as stiffness is increased (see further).

The numerical schemes based on the Magnus expansion received a lot of attention due
to their preservation of Lie group symmetries (see [51, 52] and references therein). The
Feynmann (Neumann) series does not respect Lie group structure but avoids the use of the
matrix exponential. The use of Neumann series integrators has been proved successfull
for certain large, highly oscillatory systems in [50].

Applying Magnus or Neumann Expansions to eigenvalue problems

Moan discusses in [90] an approach to the numerical solutionof Sturm-Liouville eigen-
value problems based on Magnus expansions. A scheme is constructed in [90] for the
Schr̈odinger equation

−y′′ + V (x) = Ey, (2.105)
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which can be adapted to the general Sturm-Liouville problem. The Schr̈odinger problem
is written as

Y ′(x) =

(

0 1
V (x)− E 0

)

Y (x) = A(x,E)Y (x),

BaY (a) +BbY (b) = 0,

(2.106)

whereBa, Bb ∈ R
2×2 andY (x)T = [y(x), y′(x)]. The fundamental matricesΦa andΦb

of the equationY ′(x) = A(x,E)Y (x) are defined as the matrices satisfying the linear
differential equations

Φ′
a(x) = A(x,E)Φa(x), Φa(a) = I, (2.107)

and
Φ′

b(x) = A(x,E)Φb(x), Φb(b) = I. (2.108)

The eigenvalues are determined using some iterative technique as the solution of

φ(E) = det[BaΦa(xm) +BbΦb(xm)] (2.109)

with the matching pointa < xm < b. Approximations toΦa and Φb are obtained
using the Magnus expansion (over each meshinterval). In fact the Magnus expansion is
truncated after replacingA by a interpolating approximatioñA (over each meshinterval)
and evaluating the integrals. More details can be found in [90].

As mentioned in [90], poor approximations can be expected for large eigenvalues. The
reason is the finite radius of convergence which implies a relation between the maximum
allowable stepsize and the magnitude of the required eigenvalues. The deterioration in
accuracy is improved by adding correction functions to the discrete Magnus expansions
(see [90]). These asymptotic corrections are however rather complex and alternative ap-
proaches may be preferred. It is therefore suggested to use adifferent numerical scheme
especially in the largeE regime as the modified Magnus method [49] or a right correc-
tion Magnus series integrator (RCMS) [32]. Both methods usethe same basic approach,
namely application of a Magnus series integrator to the right correction equation. These
RCMS form a subclass of the more general class of right correction integral series (RCIS)
integrators.

The coefficient matrixA(x,E) is decomposed into its natural constant and varying
parts

A(x,E) = A0(E) +A1(x). (2.110)

The part of the coefficient matrix responsible for the frequency oscillations, namelyA0

is thus isolated. The eigenvalues ofA0 are zero or purely imaginary scaling linearly with
E. The RCIS integrators from Degani et al. [32] transform the original equation

y′ = [A0(E) +A1(x)]y (2.111)

to the right correction equation and approximate its solution by an integral series (e.g.
Magnus for the RCMS). With the constant approximationĀ1 =

∫ xn+1

xn
A1(x)dx of A1
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on [xn, xn+1], Eq. (2.111) can be written as

y′ = [(A0(E) + Ā1) + (A1(x)− Ā1)]y, x ∈ [xn, xn+1]. (2.112)

The right correctionu is defined byy = zu wherez is the fundamental solution of
z′ = (A0(E)+ Ā1)z. u is a solution of theright correction equationu′ = [z−1(A1(x)−
Ā1)z]u. The functionu(x), x ∈ [xn, xn+1] is thus defined by the equationy(x) =
exp(x[A0(E) + Ā1])u(x) and so

u′ =
[

exp
(

−x[A0(E) + Ā1]
) (

A1(x)− Ā1

)

exp
(

x[A0(E) + Ā1]
)]

u. (2.113)

The new coefficient matrix[exp(−x[A0(E) + Ā1])(A1(x)− Ā1) exp(x[A0(E) + Ā1])]
is uniformly bounded inE, as are the rescaled solutionu and correspondingly the radius
of convergence of its Magnus series. The same conclusion canbe drawn from the obser-
vation thatz(x) = exp(x[A0(E) + Ā1]) is highly oscillatory as a function ofx (since
the eigenvalues ofA0 are pure imaginary eigenvalues which grow in absolute valueas
E → ∞). Thus the matrix in (2.113) has entries which are highly oscillatory. Moreover
the difference(A1(x) − Ā1) makes the norm of the matrix small. Therefore, integral
series representations are ideal for the solution of (2.113). The RCMS methods apply
an integrator based on the Magnus series to the right correction equation, whereas Moan
applied a Magnus series integrator directly to (2.106) withpiecewise polynomialV (x).
As said before, the latter is not recommended because of the large norm of the matrix in
(2.106) whenE is large.

PPM as right correction Neumann series

In [32] it is shown that the RCMS integrators, the modified Magnus method from [49], the
piecewise perturbation methods (PPM) and the integrators for near adiabatic propagation
in quantum dynamics discussed in [64] are examples of RCIS schemes. The first two use
the Magnus series and the others use the Neumann series to integrate the right correction
equation. In all such RCIS integrators,V (x) is replaced by polynomial approximations
and the resulting series terms are evaluated analytically.Taking a large number of terms
very high order integrators are obtained.

To understand how a PPM can be seen as a right correction Neumann series, we
consider the case of a constant reference potentialV̄ (CPM) for the Schr̈odinger problem
which can then be written in the form

Y ′(x) =

[(

0 1
V̄ − E 0

)

+

(

0 0
∆V (x) 0

)]

Y (x). (2.114)

The fundamental solutionY on theith interval is constructed as the limit of the series

Y (E, x, xi−1) = P0(x) + P1(x) + P2(x) + . . . , x ∈ [xi−1, xi], (2.115)

where

P0 = exp

[

(x− xi−1)

(

0 1
V̄ − E 0

)]

(2.116)
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and forq = 1, 2 . . . , (see (2.95))

P ′
q =

(

0 1
V̄ − E 0

)

Pq +

(

0 0
∆V (x) 0

)

Pq−1, Pq(xi−1) = 0. (2.117)

With

R(x) = −(x− xi−1)

(

0 1
V̄ − E 0

)

, (2.118)

equation (2.117) can be written as

d

dx
[exp(R(x))Pq(x)] = exp(R(x))

(

0 0
∆V (x) 0

)

Pq−1 (2.119)

or equivalently

Pq(x) = exp(−R(x))

∫ x

xi−1

exp(R(s))

(

0 0
∆V (s) 0

)

Pq−1(s)ds (2.120)

or

Pq(x) = P0(x)

∫ x

xi−1

P−1
0 (s)

(

0 0
∆V (s) 0

)

Pq−1(s)ds. (2.121)

This means that the ‘correction matrices’Pq can be written as

P1(x) = P0(x)

∫ x

xi−1

Bi(s1)ds1

Pq(x) = P0(x)

∫ x

xi−1

Bi(s1)

∫ s1

xi−1

Bi(s2) . . .

∫ sq−1

xi−1

Bi(sq) dsq . . . ds2 ds1,

(2.122)

whereBi is precisely the right correction equation matrix of coefficients for the right
correction defined as

y(E, x, xi−1) = exp

[

(x− xi−1)

(

0 1
V̄ − E 0

)]

ui(x), x ∈ [xi−1, xi]. (2.123)

The right correction equation is then

u′i = Bi(x)ui, (2.124)

where

Bi(x) =

exp

[

−(x− xi−1)

(

0 1
V̄ − E 0

)](

0 0
∆V (x) 0

)

exp

[

(x− xi−1)

(

0 1
V̄ −E 0

)]

.

Thus the CPM approach may be viewed as a Neumann series applied to the right correc-
tion equation (2.124).
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2.4 Conclusion

The discretization methods (both variational and finite difference methods) reduce the
Sturm-Liouville problem to a matrix eigenproblem. There have been many advances in
such methods, especially the correction formulae of Paine,de Hoog, Andrew and Ander-
ssen. However, they inherently produce an approximating problem with finite spectrum,
and the accuracy falls off with the increasing index of the eigenvalue. Another drawback
of many of these methods is that one cannot proceed directly to the computation of a par-
ticular eigenvalue, the prior computation of all the preceding eigenvalues is necessarily
required.

The Pr̈ufer methods are more complicated but give good accuracy, and can calculate
any specified eigenvalue without consideration of other eigenvalues. When the Prüfer
approach is combined with coefficient approximation largerstepsizes can be taken and the
mesh has to be computed only once and is fixed before the shooting process. In addition
these methods allow a variable mesh which makes them more suited for general-purpose
software with an automatic mesh-selection and error control.

The next chapters of this thesis discuss the Piecewise Perturbation Methods (PPM),
which is a class of methods specially devised for the Sturm-Liouville problem in Schr̈o-
dinger form. These PPM are methods based on coefficient approximation which are ap-
plied in a shooting procedure to obtain accurate eigenvalueestimates. The coefficient
approximation is improved by a perturbative approach whichproduces corrections to be
added to the solution of the low order approximating problem.

The PPM can be placed in the general framework of right correction integral series
integrators, covering a whole class of powerfull methods.





Chapter 3

Constant Perturbation
Methods

As mentioned in the previous chapter, the Piecewise Perturbation Methods (PPM) are a
class of methods specially devised for the numerical solution of the (regular) Schrödinger
equation. In this chapter we will consider the PPM approach in more detail and construct
the algorithm for the simplest case where the potential is approximated by a piecewise
constant. This algorithm is then used as propagation methodin a shooting procedure to
compute eigenvalues of the boundary value problem. In addition it is shown how the
algorithm devised for the Schrödinger equation can be extended to numerically solve
regular Sturm-Liouville problems .

3.1 A Constant Perturbation Method for the Schrödinger
equation

Let the potential functionV (x) be approximated bȳV which is a constant in each subin-
terval [xi−1, xi] of the meshπ : a = x0 < x1 < · · · < xn = b. We then say that̄V is a
piecewise constant approximation over the meshπ. The PPM obtained on this basis are
referred to as forming the CPM (Constant Perturbation Method) family. Some early work
in this direction was already described by Ixaru in [53, 54].The CPM algorithm in the
form we will discuss here, was already discussed in [58] in the context of more general
linear second-order differential equations and has later been applied on Schrödinger and
Sturm-Liouville problems in [60] and [61].

Example 3.1 Let us illustrate the piecewise constant approximation technique with an
example. The Coffey-Evans equation is a regular Schrödinger equation−y′′ + V (x)y =
Ey with

V (x) = −2β cos(2x) + β2 sin2 2x, (3.1)
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Figure 3.1: The potentialV (x) and a piecewise constant approximationV0(x) for the Coffey-
Evans equation withβ = 20.

andy(−π/2) = y(π/2) = 0 as boundary conditions. Forβ = 20 the potentialV (x)
looks like Figure 3.1. This figure also shows a piecewise constant approximation of this
potential function. This approximation is constructed by the CPM{12,10} method —
which will be discussed later— at a user tolerancetol = 10−12.

3.1.1 The reference equation

For a constant perturbation method, we use the reference equation

y′′(δ) = (V̄ − E)y(δ), δ ∈ [0, h], (3.2)

whereV̄ is a real constant. The general solution of the reference equation is

y(δ) = c1 exp((V̄ − E)1/2δ) + c2 exp(−(V̄ − E)1/2δ), (3.3)

with c1 and c2 arbitrary constants. The reference propagatorsū(δ) and v̄(δ) are two
particular solutions which satisfy the intial conditionsū(0) = 1, ū′(0) = 0 and v̄(0) =
0, v̄′(0) = 1. For ū this means thatc1 = c2 = 1/2, while for v̄ one obtainsc1 =
−c2 = 1/2(V̄ − E)1/2. Thus, as Ixaru did in [58], we define the functions (note the
correspondence with the functionsFi andGi in section 2.3.3.)

ξ(Z) =

{

cos(|Z|1/2) if Z ≤ 0,

cosh(Z1/2) if Z > 0,
(3.4)

η0(Z) =











sin(|Z|1/2)/|Z|1/2 if Z < 0,

1 if Z = 0,

sinh(Z1/2)/Z1/2 if Z > 0.

(3.5)
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Figure 3.2 shows the functionsξ(Z) andη0(Z). For negativeZ values the functions are
oscillating, while for positiveZ the functions increase exponentially.

We can then write the reference propagators as

ū(δ) = ξ(Z(δ)), v̄(δ) = δη0(Z(δ)), (3.6)

whereZ(δ) = (V̄ − E)δ2. It is easy to show that the corresponding derivatives are

ū′(δ) = Z(δ)η0(Z(δ))/δ, v̄′(δ) = ξ(Z(δ)). (3.7)

These reference propagatorsū, v̄, ū′ and v̄′ form the zeroth order propagators in our
perturbation method. As described in section 2.3.4, corrections of different order can be
added in order to approximate the unknown propagatorsu andv more accurately. These
correctionspq, q = 1, 2, . . . (p = u, v) obey the equation

p′′q = (V̄ − E)pq + ∆V (δ)pq−1, pq(0) = p′q(0) = 0. (3.8)

3.1.2 The construction of the perturbation corrections

First we define some additional functions derived via the following recurrence relations:

η1(Z) = [ξ(Z)− η0(Z)]/Z, (3.9)

ηm(Z) = [ηm−2(Z)− (2m− 1)ηm−1(Z)]/Z, m = 2, 3, . . . . (3.10)

Note that eachηm function is a linear combination of the reference propagators ū = ξ
and v̄ = δη0. The functionsξ(Z), η0(Z), η1(Z), . . . , were already described in [58]
(and denoted there as̄ξ, η̄0, η̄1, . . . ). They satisfy some basic properties which we will
summarize here briefly.

1. Series expansion

ηm(Z) = 2m
∞
∑

q=0

gmqZ
q

(2q + 2m+ 1)!
, (3.11)

with

gmq =

{

1 if m = 0,

(q + 1)(q + 2) . . . (q +m) if m > 0.
(3.12)

In particular

ηm(0) =
1

(2m+ 1)!!
=

1

(2m+ 1)(2m− 1)(2m− 3) . . . 1
. (3.13)

2. Differentiation with respect to Z

ξ′(Z) =
1

2
η0(Z), η′m(Z) =

1

2
ηm+1(Z), m = 0, 1, 2, . . . . (3.14)
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Figure 3.2: The basic functions for the constant perturbation method:ξ(Z), η0(Z), η1(Z) and
η2(Z).

3. Differentiation with respect to δ

∂ξ(Z(δ))

∂δ
= Z(δ)η0(Z(δ))/δ,

∂δη0(Z(δ))

∂δ
= ξ(Z(δ)), (3.15)

∂δ2m+1ηm(Z(δ))

∂δ
= δ2mηm−1(Z(δ)), m = 0, 1, 2, . . . . (3.16)

The set of functionsξ(Z), η0(Z), η1(Z), . . . exhibits a certain hierarchy with respect to
the numerical importance. As illustrated in Figure 3.2,ξ(Z) is the largest member in
the set, followed byη0(Z), η1(Z), η2(Z), . . . . For negativeZ (i.e. E > V̄ ) the func-
tion ηm(Z) is an oscillating function whose amplitude damps out whenZ → −∞. For
positiveZ however, all these functions increase exponentially withZ.

The functionsξ andηm form a set of basic functions for the CPM and are used in the
construction of the perturbation corrections. That is, to construct theqth correctionpq,
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we assume that the inhomogeneous term in (3.8) is a linear combination of the functions
ξ andδη0, δ3η1, ..., δ2M+1ηM , i.e.,

∆V (δ)pq−1(δ) = Q(δ)ξ(Z(δ)) +R0(δ)δη0(Z(δ)) + ...+RM (δ)δ2M+1ηM (Z(δ))

(3.17)

whereQ,R0, R1, ... are polynomials inδ. Now we search forpq of the form

pq(δ) =

+∞
∑

m=0

Cm(δ)δ2m+1ηm(Z(δ)) , (3.18)

and show that this sum has a finite number of terms and that the coefficientsCm(δ),m ≥
0 are polynomials inδ. In fact, we differentiate (3.18) with respect toδ and use (3.15)-
(3.16) to obtain:

p′q(δ) = C0(δ)ξ(Z(δ)) + [C ′
0(δ) + δC1(δ)]δη0(Z(δ)) + . . .

+[C ′
m(δ) + δCm+1(δ)]δ

2m+1ηm(Z(δ)) + . . .
(3.19)

Differentiating this again with respect toδ and using (3.15)-(3.16), one can construct an
expression forp′′q (δ)− (V̄ − E)pq(δ):

p′′q − (V̄ − E)pq = 2C ′
0ξ(Z(δ)) + [C ′′

0 + 2δC ′
1 + 2C1]δη0(Z(δ)) + . . .

+[C ′′
m + 2δC ′

m+1 + 2(m+ 1)Cm+1]δ
2m+1ηm(Z(δ)) + . . .

(3.20)

From (3.8) we know that this should be equal to∆V (δ)pq−1. Then, upon identifying the
coefficients ofξ, η0, η1, ... of the expressions (3.17) and (3.20), one gets

2C ′
0(δ) = Q(δ) (3.21)

C ′′
m(δ) + 2[δC ′

m+1(δ) + (m+ 1)Cm+1(δ)] = Rm(δ), m = 1, 2, . . . ,M. (3.22)

C ′′
m(δ) + 2[δC ′

m+1(δ) + (m+ 1)Cm+1(δ)] = 0, m = M + 1, . . . . (3.23)

These equations can be solved iteratively; forC0 the following formula is obtained

C0(δ) =
1

2

∫ δ

0

Q(δ1)dδ1, (3.24)

while forC1(δ), C2(δ), ... we get

Cm(δ) =
1

2
δ−m

∫ δ

0

δm−1
1 Pm−1(δ1)dδ1, (3.25)

where

Pm(δ) =

{

Rm(δ)− C ′′
m(δ) if m = 0, 1, 2, ...,M

−C ′′
m(δ) if m = M + 1,M + 2, ...

(3.26)
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Let us denote the degree of a polynomialP by d(P ). Eqs. (3.24) and (3.26) im-
ply that P0(δ) is a polynomial with maximal degreed(P0) = max(d(R0), d(C

′′
0 )) =

max(d(R0), d(Q)−1), so thatC1(δ) wich results from (3.25) is a polynomial of the same
degree asP0. Also for highermwe can say that the degree ofCm(δ) is equal to the degree
of Pm−1(δ): d(Pm−1) = max(d(Rm−1), d(C

′′
m−1)) = max(d(Rm−1), d(Cm−1) − 2)

form ≤M+1, butd(Pm−1) = d(C ′′
m−1) = d(Cm−1)−2 form > M+1. It follows that

d(CM+2) = d(CM+1) − 2, d(CM+3) = d(CM+1) − 4 and so on. Thus, upon denoting
the integer part of12d(CM+1) by M̄ , it results thatCm(δ) = 0 for anym > M + M̄ + 1,
i.e. the last term in the sum (3.18) isCM+M̄+1(δ)ηM+M̄+1(Z(δ)).

Upon this point we have shown that if∆V (δ)pq−1(δ) can be written as (3.17) then
pq(δ) results in the form (3.18) with a finite number of terms, and also that the coefficients
are polynomials inδ which can be calculated by Eqs. (3.24)-(3.26). The only remaining
question is whether the assumed form for (3.17) is valid. Theanswer is positive provided
V (δ) is a polynomial inδ. In fact, forq = 1, the expression in (3.17) consists of a single
term. This is the first term, withQ(δ) = ∆V (δ) (which is a polynomial asV is) for
p = u, and the second term, withR0(δ) = ∆V (δ) for p = v. This guarantees thatp1(δ)
will be of the form (3.18). In turn,∆V (δ)p1(δ) will also be of the form (3.17), and so on.

Finally, we can summarize the previous in the following theorem.

Theorem 3.1. If the potential functionV (δ) is a polynomial inδ, then theqth correction
pq for the propagatorp (p = u, v) is of the form

pq(δ) =
∑

m=0

Cm(δ)δ2m+1ηm(Z(δ)) , (3.27)

p′q(δ) = C0(δ)ξ(Z(δ)) +
∑

m=0

[C ′
m(δ) + δCm+1(δ)]δ

2m+1ηm(Z(δ)) (3.28)

with a finite number of terms. This means that the product∆V (δ)pq−1(δ) is of the form

∆V (δ)pq−1(δ) = Q(δ)ξ(Z(δ)) +
∑

m=0

Rm(δ)δ2m+1ηm(Z(δ)), (3.29)

and the coefficientsC0(δ), C1(δ) are then polynomials inδ which are given by quadrature

C0(δ) =
1

2

∫ δ

0

Q(δ1)dδ1, (3.30)

Cm(δ) =
1

2
δ−m

∫ δ

0

δm−1
1 [Rm−1(δ1)− C ′′

m−1(δ1)]dδ1, m = 1, 2, . . . . (3.31)

The starting functions in∆V (δ)u0(δ) areQ(δ) = ∆V (δ), R0(δ) = R1(δ) = · · · = 0,
while forv0 they areQ(δ) = 0, R0(δ) = ∆V (δ), R1(δ) = R2(δ) = · · · = 0.

It is interesting to know that each new correctionpq starts with a term of higher order
than the previous one. In [58] the following result was obtained:
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Proposition 3.2. The first nonvanishing term in the series(3.27)is the term correspond-
ing to ηq−1 in uq and toηq in vq. In series(3.28) it corresponds toξ in u′1 to ηq−2 in u′q
for q ≥ 2, and toηq−1 in v′q.

Also important to remark is that the magnitude of the corrections typically decreases
in magnitude withq.

3.1.3 A pilot reference equation

Theorem 3.1 assumes thatV (δ) is a polynomial inδ. Also we can remark that the suc-
cessive quadratures (3.30)–(3.31) are difficult to deal with when∆V (δ) starting from is
not of the polynomial form. However, we want a procedure which is suitable for any
well-behavedV (X + δ). This suggests to add an extra stage, in whichV (X + δ) is
approximated byV ∗(X + δ), a polynomial inδ. As in [58], V ∗(X + δ) is called the
pilot reference function. The pilot reference potentialV ∗(X + δ) can be expressed as an
expansion over a set of orthogonal polynomials. More exactly, we assume thatV (X + δ)
can be written as a series over shifted Legendre polynomialsP ∗

n(δ/h) in the following
way:

V (X + δ) =
+∞
∑

n=0

Vnh
nP ∗

n(δ/h) . (3.32)

The shifted Legendre polynomialsP ∗
n(z) are a set of functions defined on the interval

[0, 1] (see [3]). They obey the orthogonality relationship

∫ 1

0

P ∗
i (z)P ∗

j (z)dz =
1

2i+ 1
δij , (3.33)

whereδij denotes the Kronecker delta. The first few are

P ∗
0 (z) = 1,

P ∗
1 (z) = 2z − 1,

P ∗
2 (z) = 6z2 − 6z + 1,

P ∗
3 (z) = 20z3 − 30z2 + 12z − 1. (3.34)

The originalV (X + δ) is then approximated by the truncated series

V ∗(X + δ) = V (N)(X + δ) =
N
∑

n=0

Vnh
nP ∗

n(δ/h) . (3.35)

The option for shifted Legendre polynomials was proposed in[60] and is based on the
fact thatV (N)(X + δ) represents the best approximation toV in L2(X,X + h) by a
polynomial of degree≤ N . As will be shown further, the value ofN can be chosen in
such a way (i.e. high enough) that the pilot perturbationV (X + δ)− V (N)(X + δ) does
not affect the accuracy of the method.
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The equation

y(N)′′ = (V (N)(X + δ)− E)y(N) , δ ∈ [0, h] (3.36)

is then the one whose propagators are actually constructed via CPM. With

V̄ = V0, ∆V (δ) = ∆V (N)(δ) =

N
∑

n=1

Vnh
nP ∗

n(δ/h) , (3.37)

the integrals (3.30–3.31) can be solved analytically. EachCm(δ) is a polynomial and the
series (3.27) and (3.28) are finite.

The valuesVn in (3.35) are determined using a least-squares procedure. This means
that the quantity

I =

∫ h

0

[

V (X + δ)−
N
∑

n=0

Vnh
nP ∗

n(δ/h)
]2

dδ (3.38)

is minimized. The minimum condition gives

∂I

∂Vn
= −2

∫ h

0

[

V (X + δ)−
N
∑

i=0

Vih
iP ∗

i (δ/h)
]

hnP ∗
n(δ/h)dδ = 0 (3.39)

and consequently

N
∑

i=0

Vih
i

∫ h

0

P ∗
i (δ/h)P ∗

n(δ/h)dδ =

∫ h

0

V (X + δ)P ∗
n(δ/h)dδ. (3.40)

By taking into account relation (3.33), the following expressions forV0, V1, . . . result:

Vi =
(2i+ 1)

hi+1

∫ h

0

V (X + δ)P ∗
i (δ/h) dδ, i = 0, 1, . . . , N. (3.41)

3.1.4 The CPM[N, Q] methods

The formulae in Theorem 3.1 allow us to obtain the analytic form of the corrections in a
symbolic software package (Mathematica or Maple). Depending on the number of cor-
rections and the degree of the pilot potential, different CPM versions can be formulated.
Ixaru et al. introduced the notation CPM[N,Q] in [60] for a method withN the degree of
the pilotV (N)(x) andQ the number of perturbation corrections retained in the algorithm.
The simplest version, in whichV (x) is approximated by a piecewise constant but no cor-
rection is introduced, is thus identified as CPM[0,0]. In [58] also the notation CPM(0)
was used for this version. The other versions described in [58] takeN = 2 as a default
value andQ = 1, 2. The CPM(0) method was shown to be a method of order two, while
CPM[N,Q] in general is of order2Q+ 2 providedN is sufficiently large.
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Figure 3.3: The potential function of the Mathieu problem

Example 3.2 Consider the Mathieu problem

y′′(x) = [2 cos(2x)− E]y(x), y(0) = y(π) = 0. (3.42)

The potential functionV (x) = 2 cos(2x) is shown in figure 3.3. Table 3.1 shows some
results for the Mathieu initial value problem with initial conditions in one endpoint of
the integration interval:y(0) = 0, y′(0) = 1. The solution is propagated towards the
other endpointπ for differentE values. Since theseE values are the exact eigenvalues
Ek, k = {0, 2, 4, 6, 8, 10} the obtained value fory(π) should be zero. The CPM(0),
CPM[2,1] and CPM[2,2] were used to propagate the solution onan equidistant mesh with
stepsizeh = π/16. It is clear that the accuracy increases with the number of corrections
Q. It also seems that the propagation is more accurate for the higher eigenvalues.

Error analysis

A CPM[N,Q] method consists of two stages to be performed at each step. The first
consists in the approximation ofV (X + δ) by V (N)(X + δ). This approximation causes
the errors

ǫ
(N)
i = max

{

|y(xi)− y(N)(xi)|, |y′(xi)− y(N)′(xi)|
}

, i = 1, 2, . . . , n. (3.43)

The second stage consists in solving (3.36) by the perturbation technique with Q correc-
tions included. The associated errors are

ǭ
[N,Q]
i = max

{

|y(N)(xi)− ȳ(xi)|, |y(N)′(xi)− ȳ′(xi)|
}

, i = 1, 2, . . . , n, (3.44)
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Table 3.1: Propagation of the solution for the Mathieu problem: the value ofy(π) computed with
different CPM[N, Q] versions

k Ek CPM(0) CPM[2,1] CPM[2,2]

0 -0.11024881699209 0.051358056805 0.000286074277 0.000000143111
2 9.04773925980938 -0.000214352004 0.000019319866 -0.000000000463
4 25.02084082328977 -0.000035972251 0.000004091802 -0.000000000099
6 49.01041824942387 -0.000009344032 0.000001155772 -0.000000000025
8 81.00625032663258 -0.000003599759 0.000000169117 -0.000000000010

10 121.00416676126912 -0.000001808249 -0.000000171429 -0.000000000005

where ȳ(xi) and ȳ′(xi) are the numerical values obtained by propagating the solution
along the interval by using CPM[N,Q]. The error of the whole procedure

ǫ
[N,Q]
i = max

{

|y(xi)− ȳ(xi)|, |y′(xi)− ȳ′(xi)|
}

, i = 1, 2, . . . , n, (3.45)

is bounded by the sum of both errors, i.e.

ǫ
[N,Q]
i ≤ ǭ[N,Q]

i + ǫ
(N)
i . (3.46)

In [60] it was shown that for each CPM[N,Q] a h̄ exists such that

Theorem 3.3. If CPM[N,Q] is applied to propagate the solution on an equidistant par-
tition (mesh) withh ≤ h̄, then

• if the energyE is such that|Z(h)| is small in all intervals, a constantCN exists
such that

ǫ
[N,Q]
i < CNh

2N+2, i = 1, 2, . . . , n, (3.47)

providedQ ≥
⌊

2
3N
⌋

+ 1, N = 1, 2, . . . andQ = 0 for N = 0. The energy
dependence ofCN is stronger and stronger asN increases.

• if E is such thatZ(h) ≪ 0 in all intervals, an energy independent constantC̄as
N

exists such that
ǫ
[N,Q]
i < C̄as

N h
N/
√
E, i = 1, 2, . . . , n, (3.48)

providedQ ≥ 1 if N = 1, 2, . . . , andQ = 0 if N = 0.

This theorem suggests that, for one and the same partition, the value of the energyE
determines two different behaviours of the error. IfE is close enough toV (x), such that
|(Z(h)| is small in each interval of the partition, then the method behaves as a method of
orderP0 = 2N + 2. However, whenE is so high thatZ(h) is large and negative, the
asymptotic orderPas = N is valid. The theorem also says that there is a damping of the
error whenE is increased.

The existence of two distinct orders allows an alternative way of formulating and
identifying a CPM version. It is possible to retain in the algorithm only the terms con-
sistent with some input values forP0 andPas. This leads to a uniqueN (i.e.N = Pas)
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but to a sum over incomplete perturbations. Such versions are denoted as CPM{P,N}
with P = P0. The application of high order schemes involves significantanalytic pre-
calculation. This used to be a major obstacle but modern symbolic mathematics software
made such calculations feasible. In [60] the version CPM{12,10} was introduced and
in [75] the construction of some higher order versions was discussed. These high order
CPM{P,N} schemes will be discussed in more detail in section 3.4.

3.2 Solving the boundary value problem using CPM

We consider now again the boundary value problem. As seen in chapter 2 a shooting
procedure can be used to locate the eigenvalues of this boundary value problem. As
integration method for the initial value problems appearing in this shooting procedure we
can use a CPM algorithm.

3.2.1 A shooting procedure

The CPM are very well suited for the repeated solution of the initial value problems which
appear in the shooting procedure. These initial value problems are solved for a fixed
potentialV but for different values ofE. For a CPM, a mesh can be constructed which
only depends on the potential and not on the energyE. This mesh is then computed only
once and used in all eigenvalue computations (at least for regular problems). Moreover
many data related to this mesh can be computed and stored oncefor all before the start of
the shooting process. This means a big speed advantage for the CPM since the repeatedly
asked task of integrating the equation at various values ofE is completely separated
from the time-consuming process of constructing a mesh and computing the data to be
used later on. The construction of the mesh will be discussedin section 3.4.1 for the
CPM{P,N} schemes.

Algorithm 1 shows the basic shooting procedure in which the CPM propagation algo-
rithm is used to propagate the left-hand and right-hand solutions.

It is clear that some points need to be examined further. In the next sections we
discuss the form of the mismatch function and the choice of the matching point. Another
refinement that needs to be added to this, concerns the counting of oscillations of the
solution so as to home in on a particular eigenvalue.

3.2.2 The mismatch function

The criterion for a trial value forE to be an eigenvalue is that the derivativesy′ should
match in the matching pointxm, as well as the values. The matching condition is thus

y′L(xm)

yL(xm)
=
y′R(xm)

yR(xm)
, (3.49)

or equivalently

φ(E) = det

(

yL(xm) yR(xm)
y′L(xm) y′R(xm)

)

= 0. (3.50)
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Algorithm 1 The shooting procedure
1: Choose a meshpointxm (0 ≤ m ≤ n) as the matching point.
2: Set up initial values foryL, y

′
L satisfying the BC ata and initial values foryR, y

′
R

satisfying the BC atb. Choose a trial value forE.
3: repeat
4: for i = 1 tom do

5:

[

yL(xi)
y′L(xi)

]

=

[

ui(δ) vi(δ)
u′i(δ) v′i(δ)

] [

yL(xi−1)
y′L(xi−1)

]

6: end for
7: for i = n down tom+ 1 do

8:

[

yR(xi−1)
y′R(xi−1)

]

=

[

v′i(δ) −vi(δ)
−u′i(δ) ui(δ)

] [

yR(xi)
y′R(xi)

]

9: end for
10: Form a mismatch functionφ(E) by comparing yL(xm), y′L(xm) with

yR(xm), y′R(xm).
11: AdjustE to solve the equationφ(E) = 0.
12: until E sufficiently accurate

The mismatch functionφ(E) is thus a function of the energy that is zero when the trial
value ofE is an eigenvalue.

If the trial value ofE is not found to be an eigenvalue, e.g. when|φ(E)| is larger than
some treshold value close to zero, the procedure is repeatedwith an adjusted value of
E. It is possible to obtain a newE value simply by using one of the standard numerical
procedures for finding a zero of a function. In [60] it was suggested to use a Newton-
Raphson iteration procedure for the CPM:

Et+1 = Et −
φ(Et)
dφ
dE (Et)

. (3.51)

where
φ(E) = yLy

′
R − yRy

′
L (3.52)

and its derivative with respect toE;

φ′(E) = yLE
y′R + yLy

′
RE
− yRE

y′L − yRy
′
LE
. (3.53)

From the analytic theory of regular Sturm-Liouville problems, it is known that the zeros
of φ are simple, hence Newton iterations converge quadratically for starting values near
enough to a zero. The CPM algorithm allows a direct evaluation of the first derivatives of
the solution with respect to the energyE. On differentiating (2.80) with respect toE one
gets

[

yE(X + δ)
y′E(X + δ)

]

=

[

uE(δ) vE(δ)
u′E(δ) v′E(δ)

] [

y(X)
y′(X)

]

+

[

u(δ) v(δ)
u′(δ) v′(δ)

] [

yE(X)
y′E(X)

]

. (3.54)
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Since[ξ(Z(h))]E = − 1
2η0(Z(h)), [ηm(Z(h))]E = − 1

2h
2ηm+1(Z(h)), m = 0, 1, . . .

(see Eq. (3.14)), the expressions ofuE , vE , u′E andv′E can be obtained upon replacing
ξ by− 1

2h
2η0 andηm by− 1

2h
2ηm+1 in the obtained expressions foru, v, u′ andv′. As

initial conditions for the propagation ofyLE
, y′LE

andyRE
, y′RE

one can useyLE
(a) =

y′LE
(a) = 0 andyRE

(b) = y′RE
(b) = 0.

3.2.3 Choice of the matching point

The position of the matching point can considerably influence the efficiency of the method.
The literature agrees that the matching point should generally be in the interior of the
interval, away from singular endpoints, that is in the classically allowed region where
E > V (x) and not near one or both endpoints where the solutions show exponential be-
haviour. Therefore we take as matching point the meshpoint closest to the bottom of the
potential, that isxm is the rightmost meshpoint of the meshinterval corresponding to the
lowestV̄ value.

3.2.4 The Pr̈ufer representation

When we have found a value forE such thatφ(E) = 0, we only know that we have
found an eigenvalue. But we have no way of knowing if we have found the first, fifth or
seventeenth eigenvalue. To obtain the index of the eigenvalue we must have an idea about
the number of zeros in the corresponding solution. As discussed in the previous chapter,
the Pr̈ufer representation can help us count the number of zeros encountered during the
propagation of the solution.

In [61] a procedure is described which allows to calculate the Pr̈ufer anglesθL and
θR from shooting data. The procedure is very similar to the procedure used by SLEDGE.
The solution of the Schrödinger equation is written in the scaled Prüfer variablesρ andθ
in the following way (see section 2.3.2):

y(x) = S−1/2ρ sin θ, y′(x) = S1/2ρ cos θ. (3.55)

Bothρ andθ depend onx andE. We take as a global scaling functionS:

S =

{

1, if E − V̄m < 1,

ωm =
√

E − V̄m, if E − V̄m ≥ 1,
(3.56)

whereV̄m is the constant approximation ofV (x) on the step in the partition whose right-
most end is the matching pointxm. The choice of this scaling function is based on the
observations discussed in section 2.3.2, Eqs. (2.35)-(2.39).

Our purpose is to followθ (θL or θR) during propagation. We consider the current
interval [xi−1, xi], i = 1, 2, . . . , n, in which the constant approximation ofV (x) is V̄i.
Suppose nowθ is known in the endpointxi−1 and we want to obtainθ(xi). We distinguish
two cases.
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• E > V̄i. In this (well) case, we take as local scaling factorSi = ωi =
√

E − V̄i.
The Pr̈ufer phaseθi over the interval[xi−1, xi] is of the form

θi(x) = ωi(x− xi−1) + ϕ(x), (3.57)

whereϕ(x) is close to the constant valueϕ(xi−1) = arctan(ωiy(xi−1)/y
′(xi−1)).

If it is assumed thatϕ(x) remains unchanged over[xi−1, xi], then the number of ze-
ros ofy in (xi−1, xi) is the number of integers in the interval(ϕ(xi−1)/π, (ωi(xi−
xi−1) + ϕ(xi−1))/π), which is the procedure used by SLEDGE. Ixaru suggested
in [61] to not just assume thatϕ(x) remains unchanged but to add a correction in
the phase. This means, that we assume thatϕ(x) is of the formϕ(xi−1) + ∆ϕ(x)
and thus writeθi as

θi(x) = ωi(x− xi−1) + ϕ(xi−1) + ∆ϕ(x), (3.58)

with ∆ϕ(xi−1) = 0. The value of∆ϕ(xi) is calculated using the available data
y(xi−1), y

′(xi−1), y(xi) andy′(xi). Specifically, we compute

ϕ∗ = arctan(ωiy(xi)/y
′(xi)). (3.59)

If nϕ is the integer part of(ωi(xi−xi−1)+ϕ(xi−1))/π thenϕ̄ = ωi(xi−xi−1)+
ϕ(xi−1)− nϕπ lies between0 andπ. ∆ϕ(xi) is then given by

∆ϕ(xi) =











ϕ∗ − ϕ̄+ π, if ϕ∗ − ϕ̄ < −π/2,
ϕ∗ − ϕ̄− π, if ϕ∗ − ϕ̄ > π/2,

ϕ∗ − ϕ̄, otherwise.

(3.60)

Once the values ofθi at the two ends of the current step are known, the values
of θ corresponding to the original globalS, are easily obtained by the rescaling
procedure already described in section 2.3.3.

• E ≤ V̄i. In this (barrier) case the values ofθ corresponding to the original (global)
S can be obtained directly. In fact

θ(xi−1) = arctan(Sy(xi−1)/y
′(xi−1)), (3.61)

while to getθ(xi) the value ofθ1 = arctan(Sy(xi)/y
′(xi)) is computed separately

and, if y(xi−1)y(xi) ≥ 0 then the number of zeros ofy in (xi−1, xi) is zero and
therefore we take

θ(xi) =











θ1 + π, if θ(xi−1) > 0 and θ1 < 0,

θ1 − π, if θ(xi−1) < 0 and θ1 > 0,

θ1, otherwise,

(3.62)

while if y(xi−1)y(xi) < 0 theny has a (single) zero in the interval and thus we
take

θ(xi) =

{

θ1 + π, if θ(xi−1)θ
1 > 0,

θ1, otherwise.
(3.63)
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In each of the two cases the important quantity is the one stepincrement ofθ, ∆i =
θ(xi)− θ(xi−1), since it allows constructing the global Prüfer phase in a simple way. In
the shooting procedure, the solution is advanced in two directions, once forwards, froma
to xm and once backwards fromb down toxm. The values ofθ(xm) obtained from the
two directions are given by

θL(xm) = θa +

im
∑

i=1

∆i, θR(xm) = θb −
n
∑

i=im+1

∆i, (3.64)

whereθa andθb correspond to the values ofθL andθR in a andb as determined by (2.30),
i.e.θa ∈ [0, π), θb ∈ (0, π]:

θa =

{

θ(a), if θ(a) ≥ 0,

θ(a) + π, if θ(a) < 0,
(3.65)

and

θb =

{

θ(b), if θ(b) > 0,

θ(b) + π, if θ(b) ≤ 0,
(3.66)

The quantity
∆θ = θL(xm)− θR(xm) (3.67)

allows identifying the eigenvalues (see Eq. (2.32)). If∆θ is regarded as a function ofE
thenEk is thatE-value for which∆θ(E) = kπ.

3.2.5 Eigenvalue computation

Algorithm 2 shows the procedure followed to compute the eigenvalues in the user
input range[Emin, Emax]. It uses the shooting algorithm 1 in combination with the scaled
Prüfer variables to prevent any accidental jump over some eigenvalue during the search.

To locate the eigenvalues, the range[Emin, Emax] is scanned for a set of test values
of E. In the shooting procedure, for eachE the solution of the Schrödinger equation is
advanced in two directions, forwards froma to the matching point and backwards from
b down to the matching point. The numerical method used to advance the solution is a
CPM which produces not onlyy andy′ at each meshpoint but also their derivatives with
respect toE: yE andy′E . TheyE andy′E are needed at each side of the matching point
in the Newton iteration procedure (3.51) which is used to findthe roots of the mismatch
functionφ(E) defined by (3.50). This Newton procedure is convergent only if the initial
guess forE is sufficiently close to the eigenvalueEk which has to be located. Therefore
the eigenvalue computation consists of two stages. In the first stage (line 3 in algorithm
2), an energy interval[Elow, Eup] is searched for such that eachE in this interval is a good
starting value for the Newton iteration. The second stage (lines 4-15) is then the Newton
iteration process itself: the eigenvalue estimate is iteratively adjusted until the requested
accuracy is achieved.
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Algorithm 2 Computation of the eigenvalues betweenEmin andEmax

1: Compute the lower and upper limits for the indices of the eigenvalues: kmin =
⌊∆θ(Emin)/π⌋ andkmax = ⌊∆θ(Emax)/π − 1⌋.

2: for k = kmin to kmax do
3: Find a good initial guess forEk to start the Newton iteration with.
4: repeat
5: for i = 1 tom do

6:

[

yL(xi)
y′L(xi)

]

=

[

ui(δ) vi(δ)
u′i(δ) v′i(δ)

] [

yL(xi−1)
y′L(xi−1)

]

7:

[

yL
E(xi)

y′
L
E(xi)

]

=

[

uiE
(δ) viE

(δ)
u′iE

(δ) v′iE
(δ)

] [

yL(xi−1)
y′L(xi−1)

]

+

[

uiδ) vi(δ)
u′i(δ) v′i(δ)

] [

yL
E(xi−1)

y′
L
E(xi−1)

]

8: end for
9: for i = n down tom+ 1 do

10:

[

yR(xi−1)
y′R(xi−1)

]

=

[

v′i(δ) −vi(δ)
−u′i(δ) ui(δ)

] [

yR(xi)
y′R(xi)

]

11:

[

yR
E(xi−1)

y′
R
E(xi−1)

]

=

[

v′iE
(δ) −viE

(δ)
−u′iE

(δ) uiE
(δ)

] [

yR(xi)
y′R(xi)

]

+

[

v′i(δ) −vi(δ)
−u′i(δ) ui(δ)

] [

yR
E(xi)

y′
R
E(xi)

]

12: end for
13: Compute the mismatch functionφ(E) and its derivativeφ′(E).
14: AdjustE using a Newton iteration:E ← E − φ(E)/φ′(E).
15: until E sufficiently accurate, that is|φ(E)/φ′(E)| < tol.
16: Ek = E
17: end for

The second stage was already discussed in 3.2.1, now we briefly explain the first stage.
Algorithm 3 shows the algorithm which returns a suitable starting valueEc to be used as
the initial value in the Newton procedure for locatingEk. First we look forElow andEup

such thatElow ≤ Ek ≤ Eup. TheseElow andEup can be found with the aid of the scaled
Prüfer representation discussed above: the quantity∆θ from (3.67) indicates where a
certainE value is situated in the energy spectrum. The algorithm usesthe functionζ
defined as

ζ(E) =
∆θ(E)

π
− k. (3.68)

Then we look for sharper lower and upper limitsElow andEup and an approximate value
Ec for Ek. Ec is calculated by alternative use of linear interpolation and of halving.
When |ζ(Elow)| + |ζ(Eup)| < 0.2, we assume that the interval[Elow, Eup] aroundEk

is sufficiently small andEc is a good initial guess forEk. The Newton iteration process
is thus started withE = Ec. To continue the calculation for the next eigenvalueEk+1 a
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good starting value forElow is thenElow = Eup.

Algorithm 3 Finding a starting value for the Newton iteration process

1: FindElow andEup such thatζ(Elow) ≤ 0 andζ(Eup) ≥ 0.
2: it = 0
3: repeat
4: if it eventhen

5: Ec =
Elow + Eup

2
6: else

7: Ec =
ζ(Eup)Elow − ζ(Elow)Eup

ζ(Eup)− ζ(Elow)
8: end if
9: if ζ(Elow)ζ(Ec) ≤ 0 then

10: Eup = Ec

11: else
12: Elow = Ec

13: end if
14: it = it+ 1
15: until |ζ(Elow)|+ |ζ(Eup)| < 0.2 andElow < Ec < Eup

16: TakeEc as initial approximation forEk to start the Newton iteration process with

3.3 The Sturm-Liouville problem

The CPM are constructed for equations of the Schrödinger form, not for equations of
the Sturm-Liouville form. For this reason these methods canbe applied to the Sturm-
Liouville problems only if the Sturm-Liouville equation can be converted to the Schrödinger
form. The conversion is possible and is achieved via the so-calledLiouville’s transforma-
tion.

3.3.1 Liouville’s transformation

Consider the regular Sturm-Liouville problem to be solved

− d

dr

(

p(r)
dz

dr

)

+ q(r)z = Ew(r)z, rmin < r < rmax, (3.69)

wherermin andrmax are finite, functionsp, q andw are defined on[rmin, rmax] with p
andw strictly positive (it also tacitly assumed thatp andw can be differentiated twice on
the interval). The boundary conditions are of the form

a0z(rmin) + b0p(rmin)z′(rmin) = 0,

a1z(rmax) + b1p(rmax)z
′(rmax) = 0, (3.70)
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where the constantsa0 andb0 are not both zero and similarly fora1 andb1.
A transformation ofdependent variableis performed of the form

z = σ(r)y. (3.71)

This gives

− d

dr

(

pσ
dy

dr

)

− d

dr

(

py
dσ

dr

)

+ qσy = Ewσy. (3.72)

which we multiply byσ to restore the self-adjoint form:

− d

dr

(

pσ2 dy

dr

)

+

(

− d

dr

(

p
dσ

dr

)

σ + qσ2

)

y = Ewσ2y. (3.73)

Then a transformation ofindependent variablefrom r to x

r = r(x) (3.74)

converts (3.73) to the transformed equation

− d

dx

(

pσ2

ṙ

dy

dx

)

+

(

− d

dx

(

p

ṙ

dσ

dx

)

σ + qσ2ṙ

)

y = Ewσ2ṙy, (3.75)

whereṙ = dr/dx.
When we choose as changes of variable

x =

∫ r

rmin

√

w(r′)/p(r′)dr′ (3.76)

and
σ(r) = (p(r)w(r))−1/4, (3.77)

we obtain an equation in the Liouville normal form or Schrödinger form

−y′′(x) + V (x)y(x) = Ey(x) (3.78)

where

V (x) =
q

w
+ σ

d2

dx2

(

1

σ

)

. (3.79)

The regular boundary conditions (3.70) are transformed thereby to

A0y(xmin) +B0y
′(xmin) = 0,

A1y(xmax) +B1y
′(xmax) = 0, (3.80)

whereB0 = b0, B1 = b1 and

A0 = a0σ
2(rmin) + b0p(rmin)σ′(rmin)σ(rmin),

A1 = a1σ
2(rmax) + b1p(rmax)σ

′(rmax)σ(rmax). (3.81)

To summarize, the original regular Sturm-Liouville problem Eqs. (3.69) and (3.70), is
equivalent to the Schrödinger problem Eqs. (3.78) and (3.80) which has the same eigen-
value spectrum. To compute the eigenvalues of a Sturm-Liouville problem, the CPM al-
gorithm is thus applied to the Schrödinger problem which appears after Liouville’s trans-
formation.
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3.3.2 Implementation of Liouville’s transformation

To be able to extend the CPM to the solution of Sturm-Liouville problems, we need an
implementation of Liouville’s transformation. This meansthat we need a procedure for
computing the quadrature (3.76), which allows us to obtainx for a givenr and vice versa.
In [61] it was suggested to identify a set of pointsrG

0 = rmin < rG
1 < rG

2 < ... <
rG
K+1 = rmax, such that the integral

qk =

∫ rG
k+1

rG
k

√

w(r′)/p(r′)dr′, k = 0, 1, ...K, (3.82)

evaluated by a Gauss formula with twelve points (denoted asQk) is correct in all digits
available in the double precision arithmetic. More exactly, the interval[rG

k , r
G
k+1] is taken

small enough such that|Q(1)
k +Q

(2)
k −Qk| < ǫ, with ǫ a precision threshold representing

the double precision arithmetic andQ(1)
k andQ(2)

k the numerical values of the integrals

q
(1)
k =

∫ (rG
k+1+rG

k )/2

rG
k

√

w(r′)/p(r′)dr′, q
(2)
k =

∫ rG
k+1

(rG
k+1

+rG
k

)/2

√

w(r′)/p(r′)dr′,

(3.83)
evaluated by the same twelve points Gauss method. The value of xG

k associated withrG
k

is xG
k = q0 + q1 + ... + qk−1 and we store thexG and therG in some vectors. When

during the computations, the value ofx corresponding to some givenr is required, then
the interval[rG

k , r
G
k+1] which contains the inputr is first identified and only the integral

from rG
k up tor is evaluated. When anx value is known andr is required, one first looks

for the interval[xG
k , x

G
k+1] and one then applies a Newton iteration procedure to compute

r as the root of
∫ r

rG
k

√

w(r′)/p(r′)dr′ − x+ xG
k . (3.84)

3.4 Higher Order CPM{P, N}methods

As mentioned before, there exists a family of CPM algorithmswhich are identified as
CPM{P,N}. A CPM{P,N} includes just enough terms in the perturbation corrections
to have an algorithm of orderP whenZ(h) = (V0 − E)h2 → 0 and of orderN for
−Z(h) → +∞. The results of Theorem 3.1 allow us to obtain the expressions for the
perturbation corrections. However it is clear that a lot of algebraic computations are re-
quired and that one has to make use of a powerful symbolic software package to construct
CPM{P,N} of high order. In [60] the version CPM{12, 10} was introduced. This algo-
rithm was later implemented in the Fortran program SLCPM12 [61] which is included in
the CPC (Computer Physics Communications) program library[1]. In [75], we introduced
a MAPLE code which computes the expressions for the perturbation corrections for an in-
put value ofP andN . Using this MAPLE code, versions of higher order CPM{14, 12},
CPM{16, 14} and CPM{18, 16} were defined (see also [75]).
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The expressions of the propagatorsu(h), hu′(h), v(h)/h andv′(h) of the CPM{P ,N}
algorithms have the following form:

u(h) = ξ(Z) +

∞
∑

m=1

C(u)
m ηm(Z), (3.85)

hu′(h) = Zη0(Z) +

∞
∑

m=0

C(u′)
m ηm(Z), (3.86)

v(h)/h = η0(Z) +

∞
∑

m=2

C(v)
m ηm(Z), (3.87)

v′(h) = ξ(Z) +
∞
∑

m=1

C(v′)
m ηm(Z). (3.88)

where the coefficientsC(u)
m , C

(u′)
m , C

(v)
m andC(v′)

m are expressed in terms of thēVi vari-
ables, withV̄i = Vih

i+2, i = 1, 2, . . . . In Appendix A.1 (part of) theC(u)
m coefficients

are listed for the CPM{18, 16} algorithm. The full expressions and theC(u′)
m , C

(v)
m and

C
(v′)
m can be generated by the MAPLE code included in Appendix B.1. Note that the sum-

mations in (3.85)–(3.88) are finite, e.g. for CPM{18, 16} the coefficientsC(u)
m are equal

to zero form ≥ 9, while for CPM{16, 14} alsoC(u)
8 is zero which means that in the

expression for the CPM{16, 14} propagatoru(h), the coefficient ofη8(Z) contains no
terms with degree inh smaller or equal to 16.

It is also important to remark that the coefficientsC(u)
m , C

(u′)
m , C

(v)
m andC(v′)

m areE-
independent. As a consequence they have to be computed only once on each step and
can be stored at the very beginning of the run. When the solution for a givenE is then
advanced on successive steps, only theE-dependentξ andηm remain to be calculated.

Another important feature of the CPM is that the partition (mesh) of a finite integra-
tion interval is formulated from the very beginning of the run and never altered again, no
matter how small or how big the energy is. This means that the numerical solution of
a Schr̈odinger or Sturm-Liouville problem consists of two separated stages. In the first
stage, if the problem is of Sturm-Liouville form, it is converted to the Schr̈odinger equa-
tion. Then the partition of[a, b] is constructed in terms of a tolerance specified by the
user. Also some quantities (i.e. the stepsizeh, V0 and theC(...)

m coefficients) associated
to each interval in the partition are generated and stored. These quantities depend only
on the potential and will be used repeatedly in the second stage. In the second stage the
requested eigenvalues are then calculated. To locate theseeigenvalues the shooting pro-
cedure is applied. The shooting data is also used to evaluatethe Pr̈ufer variable which
enables a correct estimation of the eigenvalue index.

The construction of theE-independent partition or mesh will be discussed in the next
subsection.
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3.4.1 Stepsize selection - the mesh

For a high order CPM{P ,N} an adaptive stepsize selection algorithm consistent with
a user input tolerancetol can be applied. The choice of the stepsize is based on a uni-
formly distributed local error which requires an estimation for the local error. In [60]
and [75] the principle of embedding was used. For a method of higher order — say the
method CPM{P ,N} — a second method of lower order CPM{P ′,N ′} (the embedded
method) was used for the purpose of error estimation. However we are now able to for-
mulate a different procedure. The MAPLE program allows us to obtain expressions for a
higher order version CPM{P ∗,N∗} and all disregarded contributions which appear in the
CPM{P ∗, N∗} algorithm but not in the CPM{P, N} formulae can be used to estimate
the error. The chosen higher order versions areP ∗ = 14, N∗ = 12 for CPM{12, 10},
P ∗ = 16, N∗ = 14 for CPM{14,12} andP ∗ = 18, N∗ = 16 for CPM{16,14}.

Let us focus on CPM{16,14}: All terms in the expressions foru(h), hu′(h), v(h)/h
andv′(h) of the CPM{18,16} version which are supplementary to the terms to be used in
the CPM{16,14} version can be used to construct an estimation of the error. To start with
we take a trial valueh for the size of the step originating atX and use a Gauss quadrature
formula to calculatēV , V̄1, V̄2, . . . , V̄N from (3.41). HerēVi is again a short-hand notation
for Vih

i+2.
Since theη-functions obtain their maximum value inZ(h) = 0, we computeǫ0 which

is defined as

ǫ0 = max(|∆u(h)|, |∆hu′(h)|, |∆v(h)/h|, |∆v′(h)|), (3.89)

atZ(h) = 0. ∆u(h),∆hu′(h),∆v(h)/h and∆v′(h) are the terms in the equations in
Appendix A.1 which are additional to the terms of CPM{16,14}. That is, all terms where
either(i) the V̄i have14 < i ≤ 16 or (ii) where the degreed in h satisfies16 < d ≤ 18
(whereby the degree of̄Vi in h is i+ 2). For∆u(h), e.g. we have

∆u(h) = −
(

V̄15/2
)

η1 (Z(h)) +
(

119V̄15/2− V̄ 2
7 /120

)

η2(Z(h))

+
(

− 6783V̄15/2 + [2V̄ 2
7 + 10V̄3V̄10 + 10V̄2V̄11 + 10V̄5V̄8 + 5V̄3V̄11

+ 5V̄1V̄13 + 5V̄5V̄9 + 10V̄4V̄9 + 10V̄1V̄12 + 10V̄6V̄7]/20
)

η3(Z(h))

+
(

237405V̄15/2 + [−23V̄ 2
7 − 282V̄5V̄8 − 120V̄3V̄11 − 170V̄1V̄13

− 78V̄5V̄9 − 306V̄4V̄9 − 450V̄1V̄12 − 270V̄6V̄7 − 342V̄3V̄10

− 390V̄2V̄11 + 42V̄6V̄8 + 6V̄2V̄12 + 20V̄4V̄10]/8 + [5005V̄3V̄
2
4

+ 9009V̄ 2
2 V̄7 + 15015V̄ 2

1 V̄9 + 4095V̄1V̄
2
5 + 6435V̄ 2

3 V̄5 + 810V̄ 3
4

+ 9450V̄2V̄4V̄6 + 5400V̄3V̄4V̄5 + 11340V̄1V̄5V̄6 + 3150V̄2V̄
2
5

+ 4500V̄ 2
3 V̄6]/720720

)

η4(Z(h))−
(

5460315V̄15/2 + . . .
)

η5(Z(h))

+
(

81904725V̄15/2 + . . .
)

η6(Z(h))−
(

737142525V̄15/2 + . . .
)

η7(Z(h))

+
(

3053876175V̄15/2 + . . .
)

η8(Z(h))

(3.90)
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Figure 3.4: The coefficient functionc15(Z).

Reordening the terms in this expression, we obtain

∆u(h) = c15V̄15 + c7,7V̄
2
7 + c3,10V̄3V̄10 + ... (3.91)

where, e.g.,

c15 =
[

− η1(Z) + 119η2(Z)− 6783η3(Z) + 237405η4(Z)

− 5460315η5(Z) + 81904725η6(Z)− 737142525η7(Z)

+ 3053876175η8(Z)
]

/2.

(3.92)

Thesec15, c7,7, . . . expressions reach maximum values at different values ofZ(h). In the
case of|c15|,e.g., we have a maximum of approximately 0.0023 atZ = −293 (see Figure
3.4). Using these maxima, the following contribution is obtained

ǫuloc = 0.0023|V̄15|+ 0.000025V̄ 2
7 + 0.000018|V̄3V̄10|+ . . . (3.93)

In the same wayǫu
′

loc, ǫ
v
loc andǫv

′

loc are computed and the final error estimate is then

ǫloc = max(ǫ0, ǫ
u
loc, ǫ

u′

loc, ǫ
v
loc, ǫ

v′

loc). (3.94)

This error estimate is used to construct a new step size:

hnew = h(tol/ǫloc)
1/(P−1), (3.95)

wheretol is the input tolerance. When|hnew/h−1| > 0.1 the procedure is repeated with
h = hnew. Otherwiseh is accepted to be a good choice for the stepsize and the procedure
continues with the stepsize selection for the next interval, which will originate atX + h.
As first trial value for the stepsize of this new interval one can takeh.
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Figure 3.5: Piecewise constant approximation of the Mathieu potential function obtainedwith
CPM{12,10} andtol= (a)10−6, (b)10−8, (c) 10−10, (d)10−12, (e)10−14 and (f) the exact poten-
tial.

As mentioned above, thēVi are determined by applying a Gauss quadrature procedure
on

V̄i = (2i+ 1)h

∫ h

0

V (X + δ)P ∗
i (δ/h)dδ. (3.96)

For CPM{12,10} a ten point Gauss quadrature formula is sufficient for the evaluation
of these integrals. The CPM{14,12} needs at least twelve points, CPM{16,14} fourteen
points and CPM{18,16} sixteen points, respectively.

3.4.2 Some illustrations

Figure 3.5 shows the piecewise constant approximation constructed by CPM{12,10} for
the Mathieu potential functionV (x) = 2 cos(2x), x ∈ [0, π] for different values of the
input tolerancetol. The number of intervals in the mesh increases with the tolerance: 3
intervals fortol = 10−6, 5 for tol = 10−8, 7 for tol = 10−10, 10 fortol = 10−12 and 14
for tol = 10−14. Also Figure 3.6 shows the piecewise approximation of the potential but
now for different CPM versions. It is clear that for higher order methods the stepsizes are
larger: CPM{12,10} needs 14 steps to reach a10−14 accuracy, while CPM{16,14} needs
only 9. The reason is that more correction terms are included. The same conclusions
can be drawn from Figure 3.7. This figure shows the number of steps chosen for the
Coffey-Evans equation withV (x) = −2β cos(2x) + β2 sin2 2x with β = 20.
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Figure 3.6: Piecewise constant approximation of the potential function for the Mathieu equation
obtained withtol = 10−14 and different CPM{P, N} versions: (a) CPM{12,10}, (b) CPM{14,12}
and (c) CPM{16,14}.
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Table 3.2: Propagation of the solution for the Mathieu problem : the value ofy(π) computed
with different CPM. Three differentE-values are used:E = E1, E10, E20. N is the number of
equidistant steps.

k N CPM{12,10} CPM{14,12} CPM{16,14}
1 1 -0.02318892816899 -0.01456898484001 0.00564390992140

2 -0.00016711628732 0.00001372532522 0.00000239548106
3 -0.00000201724621 -0.00000044655324 0.00000000764493
4 0.00000001824467 -0.00000000398729 0.00000000006233
6 -0.00000000013490 -0.00000000002371 0.00000000000018
8 -0.00000000000272 -0.00000000000041 0.00000000000001

10 1 -0.00000173522196 -0.00000047856561 0.00000008111233
2 0.00000002087816 -0.00000000145525 -0.00000000009680
3 -0.00000000013744 -0.00000000008640 0.00000000000077
4 0.00000000094777 0.00000000002487 -0.00000000000025
6 -0.00000000002253 -0.00000000000012 0.00000000000001
8 -0.00000000000054 0.00000000000000 0.00000000000000

20 1 -0.00000024712704 -0.00000001236933 -0.00000000147455
2 -0.00000000003327 -0.00000000000812 0.00000000000160
3 -0.00000000005096 -0.00000000000613 0.00000000000017
4 0.00000000000618 0.00000000000001 0.00000000000001
6 -0.00000000000039 -0.00000000000001 0.00000000000000
8 -0.00000000000015 0.00000000000000 0.00000000000000

Table 3.2 shows some results for the Mathieu initial value problem with initial con-
ditions in one endpoint of the integration interval:y(0) = 0, y′(0) = 1. The solution is
propagated towards the other endpointπ for three differentE values. Since these three
E values are the exact eigenvaluesEk, k = {1, 10, 20} the value fory(π) is zero.N is
the number of steps in the equidistant partition. It is clearthat when the number of steps
N is increased, the solution obtained inπ is more correct. A higher order method needs
a smallerN value to reach a given accuracy than a lower order method. Moreover the
number of steps used is remarkably small. Note also that the values ofy(π) go faster to
zero for a largerE (or k) value.

The higher order CPM{P, N} are implemented in the MATLAB package called
MATSLISE (see chapter 7). The package exploits the power of the CPM to calculate the
eigenvalues and eigenfunctions of a Schrödinger or Sturm-Liouville problem specified by
the user. It therefore uses the shooting procedure discussed in section 3.2. We calculate a
set of eigenvalues in MATSLISE for some test problems which appear in the problem set
listed in appendix C.

The first test potential we consider is a Woods-Saxon potential [123] of the form

V (x) = −50 (1− (5t)/[3(1 + t)]) /(1 + t), with t = ex−7/0.6 (3.97)

over the integration interval[0, 20]. For this problem we calculated the first 14 eigenval-
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Table 3.3: Calculation of the first 14 eigenvalues of the Woods-Saxon problem with different CPM
codes andtol = 10−10. nint is the number of steps in the partition,nfev the number of function
evaluations andT the CPU time in seconds.

Errors CPM

k Ek {12,10} {14,12} {16,14}
0 −49.45778872808258 8.6(−11) 1.4(−12) 1.0(−11)
2 −46.29075395446608 1.3(−10) 1.4(−10) 1.6(−10)
4 −41.23260777218022 1.0(−10) 2.1(−10) 1.6(−11)
6 −34.67231320569966 1.4(−10) 3.7(−10) 2.3(−10)
8 −26.87344891605987 1.2(−10) 3.8(−11) 1.9(−10)
10 −18.09468828212442 6.8(−10) 1.3(−10) 2.4(−10)
12 −8.67608167073655 7.3(−10) 1.7(−11) 3.6(−10)

nint 22 17 16
nfev 600 546 528
T 0.9 0.7 0.6

ues. For the second test run we consider again the Coffey-Evans equation withβ = 20.
The first 21 eigenvalues are computed. The third test problemis the Mathieu equation for
which we calculate the first 51 eigenvalues. As last test problem we consider a Sturm-
Liouville problem not in Schr̈odinger form withp(x) = 1, q(x) = −7x2 + 0.5x3 + x4,
w(x) = 0.5 over [−10, 10]. We calculate the first 15 eigenvalues for this problem. For
each problem the eigenvalues are determined with three CPM versions of different order
which are implemented in MATSLISE: CPM{12, 10}, CPM{14, 12} and CPM{16, 14}.
In all cases an accuracy tolerancetol of 10−10 is requested.

In Tables 3.3-3.6 we present for each problem a selection of the considered exact
eigenvaluesEk and the (absolute value of the) error in the eigenvalues returned by MAT-
SLISE. The ‘exact’ eigenvaluesEk were obtained with a Fortran code implementing a
CPM algorithm in quadruple precision.nint is the number of intervals in the partition,
nfev is the number of function evaluations (of the potential function V ) andT the CPU
time (in seconds).

The data reported in the tables lead to a number of conclusions.

• First of all, one can see that the different CPM versions all produce results within
the required accuracy.

• The number of intervals determined by the stepsize selection algorithm decreases
with increasing order of the method.

• As a consequence the number of function evaluations also decreases with increasing
order. This will however reach somewhere a limit. A higher order method reduces
the number of steps in the partition, but in order to keep the accuracy in all inter-
mediate steps the number of nodes in the used Gauss quadrature rules (to compute
(3.96)) has to be increased, resulting in a higher number of function evaluations per
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Table 3.4: Calculation of the first 21 eigenvalues of the Coffey-Evans problem (β = 20) with
different CPM codes andtol = 10−10. nint is the number of steps in the partition,nfev the
number of function evaluations andT the CPU time in seconds.

Errors CPM

k Ek {12,10} {14,12} {16,14}
0 0.00000000000000 5.8(−10) 1.8(−10) 5.5(−11)
1 77.91619567714397 3.8(−10) 1.0(−9) 2.9(−10)
2 151.46277834645663 2.5(−11) 8.3(−10) 2.0(−10)
3 151.46322365765863 2.0(−10) 8.6(−10) 2.8(−10)
4 151.46366898835165 2.5(−11) 8.3(−10) 2.1(−10)
5 220.15422983525995 5.6(−10) 1.1(−10) 1.1(−9)
10 380.09491555093168 4.7(−10) 6.0(−10) 2.6(−10)
15 477.71051260907674 3.7(−10) 3.1(−10) 9.8(−11)
20 652.99045708465674 2.5(−10) 1.3(−10) 4.5(−10)

nint 32 24 19
nfev 540 476 464
T 2.3 1.6 1.4

Table 3.5: Calculation of the first 51 eigenvalues of the Mathieu problem with differentCPM
codes andtol = 10−10. nint is the number of steps in the partition,nfev the number of function
evaluations andT the CPU time in seconds.

Errors CPM

k Ek {12,10} {14,12} {16,14}
0 −0.11024881699209 2.5(−12) 4.9(−11) 8.4(−12)
10 121.00416676126912 1.0(−10) 8.2(−11) 2.0(−11)
20 441.00113636549330 2.1(−11) 6.7(−12) 2.0(−13)
30 961.00052083351094 2.1(−13) 3.4(−13) 2.1(−13)
40 1681.00029761908068 3.7(−13) 3.7(−13) 1.1(−13)
50 2601.00019230770122 1.4(−12) 5.8(−13) 1.2(−13)

nint 7 5 4
nfev 108 84 96
T 0.9 0.5 0.5
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Table 3.6: Calculation of the first 15 eigenvalues of the Sturm-Liouville problem with different
CPM codes andtol = 10−10. nint is the number of steps in the partition,nfev the number of
function evaluations andT the CPU time in seconds.

Errors CPM

k Ek {12,10} {14,12} {16,14}
0 −24.51759770716 8.0(−10) 2.3(−10) 2.8(−10)
3 −1.29384368195 8.4(−10) 6.4(−11) 1.4(−10)
6 14.73535195708 5.8(−10) 2.8(−10) 7.7(−11)
9 39.87238796401 6.0(−10) 8.6(−10) 3.9(−10)
12 70.05073428985 7.9(−10) 1.2(−9) 2.3(−10)

nint 185 131 109
nfev 6672 5920 5856
T 16.1 12.4 11.9

Table 3.7: Calculation of some higher eigenvalues of the Mathieu problem with different CPM
codes andtol = 10−10.

Errors CPM

k Ek {12,10} {14,12} {16,14}
100 10201.00004901960799 1.8(−12) 1.8(−12) 1.8(−12)
500 251001.00000199203187 6.8(−11) 8.1(−12) 8.1(−12)
1000 1002001.00000049900200 3.0(−10) 9.8(−11) 9.8(−11)
1500 2253001.00000022192632 1.7(−10) 1.7(−10) 1.7(−10)
2000 4004001.00000012487512 8.2(−10) 7.5(−11) 7.5(−11)

interval. This higher order Gauss quadrature rules explainthe re-increase of the
number of function evaluations with increasing order for the Mathieu test problem.

• The introduction of higher order terms results in most casesin a smaller CPU time.
For the Mathieu problem, the higher number of function evaluations means that the
CPM{16, 14} spends more time determining the partition (i.e., the setting of the
steph, the calculation ofV0 and theC(...)

i coefficients) than for the CPM{14, 12}.
However, even when the partitioning process requires more time, the total time can
still be smaller for a higher order method: the computation of the eigenvalues (the
shooting process), which occurs after the partition has been fixed, is faster for the
higher order method when there are less intervals. The gain in time in the shooting
process can be big enough for a large set of eigenvalues to compensate the loss of
time in the partitioning process.

Table 3.7 shows some higher eigenvalues for the Mathieu problem. It is clear that also
for these high indices accurate results are obtained.
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3.5 Conclusion

This chapter has covered: the CPM class of methods which can be used to efficiently
integrate a Schrödinger equation; the shooting method which uses a CPM as propagation
method to obtain eigenvalue approximations; the Prüfer form and the choice of a suitable
scaling functionS, which are used to select a good interval of energy values on which
the Newton iteration process can be applied in order to home in on a specific eigenvalue;
the extension to Sturm-Liouville problems and the construction of a class of high order
methods, identified as the CPM{P,N}. These high order CPM{P,N} methods were
shown to have the power of producing very accurate results even for large energies.





Chapter 4

Line Perturbation Methods

In this chapter we consider a class of perturbation methods based on the linear approx-
imation of the (Schr̈odinger) potential function. Although the solution of the reference
equation is closer to the exact solution than if a piecewise constant reference potential
would have been used, such an approach will be shown not to be advantageous in practice
over the constant approximation technique discussed in theprevious chapter.

4.1 A Line Perturbation Method for the Schrödinger equa-
tion

The idea of adding perturbation corrections to improve the accuracy of a CPM is already a
few decennia old [56, 58]. This is not the case for the Line Perturbation Methods (LPM).
Gordon, [41]-[42] was the first to suggest a code based on piecewise line approximation
but no perturbation corrections were included. Also the improvements brought to this
method along time were mainly related to the computation of the Airy functions which
appear in the propagators of the reference equation (see, e.g. [4]) but we are unaware
of any attempt of constructing and adding corrections. One reason may be that, though
Gordon’s papers include a way to compute such corrections, the results produced on this
basis would often suffer of heavy loss in accuracy due to near-cancellations of like terms.

In this chapter we will examine the problem of the perturbation corrections for the
LPM. We will effectively construct first and second-order corrections. To evaluate them
we rely on an approach developed by Ixaru in [58] which is different from that in Gordon’s
papers. Its results are less exposed to the near-cancellation effect but an extra treatment is
still needed.
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4.1.1 The reference equation

We again consider the Schrödinger equation

d2y

dx2
+ [E − V (x)]y = 0, x ∈ [a, b] . (4.1)

The interval[a, b] is divided in a set of subintervals, resulting in a partitionwith the mesh-
pointsa = x0, x1, x2, . . . , xn = b. Let us focus on the current interval[xi−1, xi] which
we denote[X,X+h], whereh is the current stepsize. As for the CPM, we want to obtain
expressions for the propagatorsu andv and their first derivativesu′ andv′, so that the
formulae (withδ ∈ [0, h])

[

y(X + δ)
y′(X + δ)

]

=

[

u(δ) v(δ)
u′(δ) v′(δ)

] [

y(X)
y′(X)

]

, (4.2)

and
[

y(X)
y′(X)

]

=

[

v′(δ) −v(δ)
−u′(δ) u(δ)

] [

y(X + δ)
y′(X + δ)

]

(4.3)

can be used to propagate the solution from one end of the interval to the other.
Zeroth order approximations to these propagators are derived from the reference equa-

tion. For the LPM, the potentialV (x) is first approximated on[X,X + h] by a ‘line’
functionV̄ (x) such that the equationy′′ = [V̄ (x)− E]y can be solved analytically. This
means that the reference equation over the interval[X,X + h] is of the form

y′′(δ) = (V̄ (X + δ)− E)y(δ)

= (F0 + F1δ −E)y(δ)
(4.4)

with F0 andF1 two constants. The reference propagatorsū(δ) andv̄(δ) are two particular
solutions of this reference equation which satisfy the initial conditionsū(0) = 1, ū′(0) =
0 andv̄(0) = 0, v̄′(0) = 1.

The reference propagators can be expressed in terms of Airy functions. To see this,
we introduce the following change of variable:F0 + F1δ − E = Cz, whereC will be
chosen conveniently. By simple manipulations Eq. (4.4) becomes

y′′(z)− C3

F 2
1

zy(z) = 0 . (4.5)

When we takeC3 = F 2
1 , the relation betweenδ andz is then

z =
F0 + F1δ − E

3

√

F 2
1

(4.6)

and Eq. (4.5) reduces to
y′′(z)− zy(z) = 0. (4.7)
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Figure 4.1: The Airy functions.(Left) Ai(z) andAi′(z). (Right) Bi(z) andBi′(z).

Two linear independent solutions of this equation are the Airy functionsAi andBi (see
[3] or [120]) and a general solution of Eq. (4.7) is a linear combination of the functions
Ai andBi:

y(z) = αAi(z) + βBi(z), y′(z) = αAi′(z) + βBi′(z) . (4.8)

To determine the constantsα andβ corresponding to the reference propagatorsū andv̄,
their associated initial conditions are used. By definingγ = F1/

3
√

F 2
1 = 3

√
F1, z0 =

z(0) = (F0 −E)/ 3
√

F 2
1 and making use of the Wronskian relationW{Ai(z), Bi(z)} =

Ai(z)Bi′(z) − Ai′(z)Bi(z) = 1/π, we get the expressions for the propagators of the
reference equation (4.4):

ū(δ) = π [Bi′(z0)Ai(z)−Ai′(z0)Bi(z)] (4.9)

ū′(δ) = πγ [Bi′(z0)Ai
′(z)−Ai′(z0)Bi′(z)] (4.10)

v̄(δ) =
π

γ
[−Bi(z0)Ai(z) +Ai(z0)Bi(z)] (4.11)

v̄′(δ) = π [−Bi(z0)Ai′(z) +Ai(z0)Bi
′(z)] . (4.12)

4.1.2 The construction of the perturbation corrections

As pointed out in section 2.3.4, each of the two propagatorsu(δ) andv(δ), denoted gener-
ically p(δ), is written as a perturbation series,

p(δ) = p0(δ) + p1(δ) + p2(δ) + p3(δ) + . . . . (4.13)

The zeroth-order termp0(δ) is the solution of the reference equation (thusp0(δ) = p̄(δ)),
while the correctionpq, q = 1, 2, . . . obeys the equation

p′′q = [V̄ (X + δ)− E]pq + ∆V (X + δ)pq−1, pq(0) = p′q(0) = 0, (4.14)
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where∆V (X + δ) = V (X + δ)− V̄ (X + δ) is the perturbation. We can then construct
each correction as a linear combination withδ dependent coefficients of the reference
propagators and of their first-order derivatives (see [58]):

pq(δ) = aq(δ)ū(δ) + bq(δ)v̄(δ) + cq(δ)ū
′(δ) + dq(δ)v̄

′(δ), (4.15)

whereaq, bq, cq anddq are functions to be determined. First we evaluatep′q andp′′q (with
F̄ = V̄ (X + δ)− E):

p′q = a′qū+ aqū
′ + b′q v̄ + bq v̄

′ + c′qū
′ + cqū

′′ + d′q v̄
′ + dq v̄

′′

= a′qū+ (aq + c′q)ū
′ + b′q v̄ + (bq + d′q)v̄

′ + cqF̄ ū+ dqF̄ v̄

= (a′q + cqF̄ )ū+ (b′q + dqF̄ )v̄ + (aq + c′q)ū
′ + (bq + d′q)v̄

′

(4.16)

p′′q =[a′′q + (2c′q + aq)F̄ + cqF̄
′]ū+ [b′′q + (2d′q + bq)F̄ + dqF̄

′]v̄

+ [c′′q + 2a′q + cqF̄ ]ū′ + [d′′q + 2b′q + dqF̄ ]v̄′
(4.17)

and write the right hand side of Eq. (4.14) as

F̄ pq + ∆V pq−1 = (aqF̄ + ∆V aq−1)ū+ (bqF̄ + ∆V bq−1)v̄

+ (cqF̄ + ∆V cq−1)ū
′ + (dqF̄ + ∆V dq−1)v̄

′.
(4.18)

Combining Eqs. (4.17) and (4.18) we obtain the following system of differential equations
for the coefficientsaq, bq, cq, dq

a′′q + 2c′q(V̄ − E) + cqV̄
′ = ∆V aq−1

b′′q + 2d′q(V̄ − E) + dqV̄
′ = ∆V bq−1

c′′q + 2a′q = ∆V cq−1

d′′q + 2b′q = ∆V dq−1. (4.19)

Taking into account that̄u(0) = 1, ū′(0) = 0 and v̄(0) = 0, v̄′(0) = 1, Eqs (4.15) and
(4.16) give us the initial conditions

aq(0) + dq(0) = 0, a′q(0) + (V̄ (0)− E)cq(0) + bq(0) + d′q(0) = 0 (4.20)

for the system (4.19).
Forq = 0 we havea0 = 1, b0 = c0 = d0 = 0 if p = u andb0 = 1, a0 = c0 = d0 = 0

if p = v. For q ≥ 1, the coefficients of indexq − 1 are introduced in the right-hand
side of system (4.19) and then the system is solved with the initial conditions (4.20) to
getaq, bq, cq, anddq. Note that there are onlytwo initial conditions forfour differential
equations and hence the solution of (4.19)) is not unique. This allows some flexibility in
the determination ofaq, bq, cq anddq.
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4.1.3 A pilot reference equation

Since, as for CPM, the perturbation corrections can be evaluated analytically in closed
form only when the perturbation∆V is a polynomial, we make use of the same strategy
as in section 3.1.3. This means that we introduce a pilot reference function of the form

V (N)(X + δ) =

N
∑

n=0

Vnh
nP ∗

n(
δ

h
) (4.21)

to finally consider only corrections from the pilot perturbation. It is thus the equation

y′′(X + δ) = [V (N)(X + δ)− E]y(X + δ), δ ∈ [0, h] (4.22)

for which propagators are constructed.
To compute the reference potentialF0 + F1δ we use a least-squares procedure. This

means that
∫ h

0

[V (X + δ)− (F0 + F1δ)]
2
dδ (4.23)

has to be minimized. To explicitly evaluateF0 andF1 we set to zero the first-order partial
derivatives of (4.23) with respect toF0 andF1 and obtain the following system of linear
equations















hF0 +
h2

2
F1 =

∫ h

0

V (X + δ)dδ

h2

2
F0 +

h3

3
F1 =

∫ h

0

δV (X + δ)dδ

(4.24)

whose solution is given by














F0 =
4

h

∫ h

0

V (X + δ)dδ − 6

h2

∫ h

0

δV (X + δ)dδ

F1 = − 6

h2

∫ h

0

V (X + δ)dδ +
12

h3

∫ h

0

δV (X + δ)dδ.

(4.25)

Knowing that (see section 3.1.3)

V0 =
1

h

∫ h

0

V (X + δ)dδ, (4.26)

V1 = − 3

h2

∫ h

0

V (X + δ) dδ +
6

h3

∫ h

0

δV (X + δ) dδ (4.27)

we have the following form forF0 andF1

F0 = V0 − V1h, F1 = 2V1. (4.28)

This means that, while for the CPM the reference potential and the perturbation were

V̄ (X + δ) = V0, ∆V (X + δ) =
N
∑

n=1

Vnh
nP ∗

n(
δ

h
), (4.29)
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Figure 4.2: Piecewise line approximation of the potential function for the Mathieu equationcon-
structed by the LPM[4,2] method withtol= (a)10−6, (b) 10−8 and (c)10−10.

we now take for the LPM

V̄ (X + δ) = V0 + V1hP
∗
1 (
δ

h
), ∆V (X + δ) =

N
∑

n=2

Vnh
nP ∗

n(
δ

h
). (4.30)

To identify the different LPM versions, we use the notation LPM[N,Q] whereN is
the number of Legendre polynomials andQ > 0 is the number of perturbations. When
Q = 0, then the pilot potential is not involved and the method is denoted by LPM(0) (see
[58]).

Example 4.1 Figure 4.2 shows some piecewise line approximations of the Mathieu po-
tential functionV (x) = 2 cos(2x), x ∈ [0, π]. The piecewise line approximations are
constructed by the LPM[4,2] method for different values of the input tolerancetol. The
LPM[4,2] method will be discussed in more detail in the next sections.

4.2 The LPM[4,2] method

In this section we will efffectively construct the first and the second order corrections for
the LPM. We assume a pilot potential of fourth degree (i.e.N = 4 in Eq. (4.21)); this
value will be justified by the error analysis.

4.2.1 Perturbation corrections

The procedure discussed in section 4.1.2 was implemented inthe symbolic software pack-
age Maple. The Maple program is listed in B.2.1 and produces the expressions of the first
and second order corrections for the LPM[4,1] and LPM[4,2] method.
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First order corrections

We briefly discuss the procedure followed to construct the first order correctionu1(δ).
This correction is of the form

u1(δ) = a1(δ)ū(δ) + b1(δ)v̄(δ) + c1(δ)ū
′(δ) + d1(δ)v̄

′(δ), (4.31)

wherea1(δ), b1(δ), c1(δ) andd1(δ) satisfy the system (4.19). This means

a′′1 + 2c′1(F0 + F1δ − E) + c1F1 =
4
∑

n=2

Vnh
nP ∗

n(
δ

h
) (4.32)

b′′1 + 2d′1(F0 + F1δ − E) + d1F1 = 0 (4.33)

c′′1 + 2a′1 = 0 (4.34)

d′′1 + 2b′1 = 0. (4.35)

with the initial conditions

a1(0) + d1(0) = 0, a′1(0) + (F0 − E)c1(0) + b1(0) + d′1(0) = 0. (4.36)

To solve this system, Eq. (4.34) is differentiated and introduced into Eq. (4.32) to obtain

−1

2
c′′′1 + 2c′1(F0 + F1δ − E) + c1F1 =

4
∑

n=2

Vnh
nP ∗

n(
δ

h
). (4.37)

A particular solution of this differential equation inc1 is

c1(δ) =

[

256

9

V4

F1

]

Q4 +

[

−64

63

14 δ V4 + 9V3 − 63V4h

F1

]

Q3

+

[

16

105

21V2 + 315V4h
2 + 30 δ V3 − 210 δ V4h− 105V3h+ 70V4δ

2

F1

]

Q2

+

[

4

315F1

(

315V2h− 270 δ2V3 − 1890V4h
2δ + 1050V4h

3 − 126V2δ+

630V3hδ − 630V3h
2 − 700V4δ

3 + 1890 δ2V4h
)

− 800

9

V4

F1
2

]

Q

+
1

315F1

(

900 δ3V3 + 378 δ2V2 − 630 δ V2h− 6300 δ3V4h− 2100 δ V4h
3+

2450V4δ
4 + 315V2h

2 + 1260 δ V3h
2 − 1890 δ2V3h+ 5670 δ2V4h

2−

315V3h
3 + 315V4h

4
)

+
20

63

98 δ V4 + 27V3 − 189V4h

F1
2

(4.38)

with Q = (F0−E)/F1. We also differentiate Eq. (4.35) and introduce it in Eq. (4.33). A
particular solution of the equation

−1

2
d′′′1 + 2d′1(F0 + F1δ − E) + d1F1 = 0 (4.39)
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is thend1(δ) = 0. The particular solutions forc1 andd1 are then introduced in Eqs.
(4.34) and (4.35) to get the general solutions ofa1 andb1. The particular solutions fora1

andb1 are determined by the two initial conditions (4.36), to get

a1(δ) =−
[

32

3

V4δ

F1

]

Q2 −
[

2

105

−700V4δ
2 + 1260 δ V4h− 180 δ V3

F1

]

Q

− 2

315

δ
(

189V2 + 2450V4δ
2 − 945V3h+ 2835V4h

2 + 675 δ V3 − 4725 δ V4h
)

F1

(4.40)

b1(δ) =− 256

9
V4Q

5 −
[

64

7
(−V3 + 7V4h)

]

Q4 −
[

16

5

(

V2 + 15V4h
2 − 5V3h

)

]

Q3

+

[

−4V2h−
40

3
V4h

3 + 8V3h
2 +

896

9

V4

F1

]

Q2 +
[

V3h
3 − V2h

2 − V4h
4

+
84V4h− 12V3

F1

]

Q+
6

5

V2 + 15V4h
2 − 5V3h

F1
.

(4.41)

By direct differentiation of (4.31), the expression ofu′1(δ) is obtained. An analogous
procedure can be followed to constructv1(δ) andv′1(δ). The calculations were done using
the Maple program. The resulting formulae can be written in the following form:

u1(h) =
2
∑

k=0

αkQ
kū(h) +

5
∑

k=0

βkQ
kv̄(h) +

4
∑

k=0

γkQ
kū′(h)

u′1(h) =

5
∑

k=0

δkQ
kū(h) +

3
∑

k=0

ǫkQ
kū′(h) +

5
∑

k=0

βkQ
kv̄′(h)

v1(h) =

4
∑

k=0

ζkQ
kū(h)−

3
∑

k=0

ǫkQ
kv̄(h) +

4
∑

k=0

γkQ
kv̄′(h)

v′1(h) =
5
∑

k=0

δkQ
kv̄(h) +

4
∑

k=0

ζkQ
kū′(h)−

2
∑

k=0

αkQ
kv̄′(h)

This form only shows the non-zero terms, e.g. all terms inQkū(h), k > 2 for u1(h) are
zero terms (see (4.40)). The coefficientsαk, βk, γk, δk..., which do not depend on the
energy, are calculated only once and stored before the actual propagation. They are:

α0 = −2h(189V2 − 270V3h+ 560V4h
2)/ (315F1)

α1 = −8h (28V4h− 9V3)/(21F1)

α2 = −32V4h/(3F1)

β0 = (18V4h
2 + 6/5V2 − 6V3h)/F1
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β1 = V3h
3 − V4h

4 − V2h
2 + (−12V3 + 84V4h)/F1

β2 = 8V3h
2 − 40/3V4h

3 − 4V2h+ 896V4/(9F1)

β3 = −16/5V2 − 48V4h
2 + 16V3h

β4 = 64/7V3 − 64V4h

β5 = −256/9V4

γ0 = (1/5V2h
2 + 1/9V4h

4 − 1/7V3h
3)/F1 + (−260/9V4h+ 60/7V3) /F1

2

γ1 = (12/5V2h+ 40/9V4h
3 − 24/7V3h

2)/F1 − 800V4/(9F1
2)

γ2 = (80/3V4h
2 − 80/7V3h+ 16/5V2)/F1

γ3 = (448/9V4h− 64/7V3)/F1

γ4 = 256V4/(9F1)

δ0 = 1/9V4h
5 + 1/5h3V2 − 1/7h4V3 + (6V3h− 6/5V2 − 302/9V4h

2)/F1

δ1 = −25/7V3h
3 + 41/9V4h

4 + 13/5V2h
2 + (12V3 − 1036/9V4h) /F1

δ2 = 280/9V4h
3 + 28/5V2h− 104/7V3h

2 − 896V4/(9F1)

δ3 = 688/9V4h
2 − 144/7V3h+ 16/5V2

δ4 = 704/9V4h− 64/7V3

δ5 = 256/9V4

ǫ0 = (−28/9V4h
3 + 16/7V3h

2 − 4/5V2h)/F1 + 280V4/(9F1
2)

ǫ1 = (32/7V3h− 8/5V2 − 40/3V4h
2)/F1

ǫ2 = (−64/3V4h+ 32/7V3) /F1

ǫ3 = −128V4/(9F1)

ζ0 = (−V4h
4 − V2h

2 + V3h
3)/F1 + (60V4h− 60/7V3)/F1

2

ζ1 = (8V3h
2 − 40/3V4h

3 − 4V2h)/F1 + 800V4/(9F1
2)

ζ2 = (−16/5V2 − 48V4h
2 + 16V3h)/F1

ζ3 = (64/7V3 − 64V4h) /F1

ζ4 = −256V4/(9F1)

Second order corrections

Also the second order corrections are computed solving a system of the form (4.19). The
obtained expressions can be written in the form

u2(h) =
9
∑

k=0

α
(u)
k Qkū(h) +

8
∑

k=0

β
(u)
k Qkv̄(h) +

7
∑

k=0

γ
(u)
k Qkū′(h) +

9
∑

k=0

δ
(u)
k Qkv̄′(h)
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u′2(h) =

8
∑

k=0

α
(u′)
k Qkū(h) +

10
∑

k=0

β
(u′)
k Qkv̄(h) +

9
∑

k=0

γ
(u′)
k Qkū′(h) +

8
∑

k=0

δ
(u′)
k Qkv̄′(h)

v2(h) =

7
∑

k=0

α
(v)
k Qkū(h) +

9
∑

k=0

β
(v)
k Qkv̄(h) +

8
∑

k=0

γ
(v)
k Qkū′(h) +

7
∑

k=0

δ
(v)
k Qkv̄′(h)

v′2(h) =

9
∑

k=0

α
(v′)
k Qkū(h) +

8
∑

k=0

β
(v′)
k Qkv̄(h) +

7
∑

k=0

γ
(v′)
k Qkū′(h) +

9
∑

k=0

δ
(v′)
k Qkv̄′(h)

The coefficientsαk, βk, γk, δk are also calculated and stored before the actual propaga-
tion. Their expressions are too long to be listed here. They can be reproduced by using
the Maple code in B.2.1.

4.2.2 Error analysis

Let us consider the original equation on the interval[X,X + h]:

y′′(X + δ) = [V (X + δ)− E] y(X + δ), δ ∈ [0, h]. (4.42)

We restrict the error analysis to the case when the stepsizeh is so small that we can rely
on the power series representation of the propagatorsu(δ) andv(δ), to accept that the
first neglected term in the perturbation expansion is numerically sufficient to measure the
error (see again [58]).

It is convenient to assume that the original potential is an infinite series over shifted
Legendre polynomials. Then Eq. (4.42) reads

y′′(X + δ) =

(

∞
∑

n=0

Vnh
nP ∗

n(δ/h)− E
)

y(X + δ) . (4.43)

The two independent solutions of Eq. (4.43)u andv (with initial valuesu(0) = 1, u′(0) =
0 andv(0) = 0, v′(0) = 1 ) then have the following form

p(δ) =

∞
∑

s=0

psδ
s (4.44)

with p eitheru or v. Their derivatives can easily be obtained by differentiation of Eq.
(4.44):

p′(δ) =

∞
∑

s=1

spsδ
s−1. (4.45)

LPM(0)

The zeroth order propagators (or reference propagators)u0(= ū) andv0(= v̄) are the
solutions of the corresponding reference equation

y′′(X + δ) =
[

V̄ (δ)− E
]

y(X + δ) (4.46)
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whereV̄ (δ) =
∑1

n=0 Vnh
nP ∗

n(δ/h). The zeroth order propagators and their derivatives
can be written as

p0(δ) =
∞
∑

s=0

p(0)
s δs, p′0(δ) =

∞
∑

s=1

sp(0)
s δs−1. (4.47)

The error of the LPM(0) method is then determined by the four quantities:

∆u0(h) = u(h)− u0(h), ∆v0(h) = v(h)− v0(h),
∆u′0(h) = u′(h)− u′0(h), ∆v′0(h) = v′(h)− v′0(h) (4.48)

which are calculated by subtracting Eq. (4.47) from Eq. (4.44) and Eq. (4.45). We have
used Maple to get:

∆u0(h) = [V3E − V3V0 + V2V1]h
7/210 +O(h8)

∆v0(h) = −V2 h
5/30 +O(h7)

∆u′0(h) = [−V2E + V2V0]h
5/30 +O(h7)

∆v′0(h) = [−V3E + V3V0 − V2V1]h
7/210 +O(h8). (4.49)

The smallest power ofh in these errors is five. The LPM(0) is thus afourth-order method,
as was already shown in [58]. We notice that the determination of V0 andV1 in terms of
shifted Legendre polynomials is essential to obtain this order. Any other determination
will lead to lower orders. For example, ifV0 andV1 are chosen to represent the tangent
to V (x) at the midpoint(xi−1 + xi)/2, as in [41], the order of the method is two. For a
proof of this see [55].

LPM[4,1]

The first order correctionp1 satisfies the equation

p′′1 = (V̄ (δ)− E)p1 + ∆V (δ)p0, p1(0) = p′1(0) = 0 (4.50)

where∆V (δ) =
∑N

n=2 Vnh
nP ∗

n(δ/h) andN = 4. Also this first order correction can be
expressed as a power series:

p1(δ) =

∞
∑

s=0

p(1)
s δs, p′1(δ) =

∞
∑

s=1

sp(1)
s δs−1. (4.51)

The error of the LPM[4,1] method is then determined by

∆u1(h) = u(h)− (u0(h) + u1(h)), ∆v1(h) = v(h)− (v0(h) + v1(h)),

∆u′1(h) = u′(h)− (u′0(h) + u′1(h)), ∆v′1(h) = v′(h)− (v′0(h) + v′1(h)).

(4.52)
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Using Maple, we obtain

∆u1(h) = −V 2
2 h

8 /420 +O(h9)

∆v1(h) = [V4V2/2970− V1V5/8316− V 2
3 /4620−

(V0 − E)V 2
2 /415800]h11 +O(h13)

∆u′1(h) = −V 2
2 h

7 /210 +O(h9)

∆v′1(h) = −V 2
2 h

8 /420 +O(h9). (4.53)

We can conclude that the LPM[4,1] method is ofsixth order. As a matter of fact, all
versions LPM[N ,1] withN ≥ 3 will give the same order, such that for the versions with
Q = 1 takingN = 3 in the pilot potential is sufficient.

LPM[4,2]

The error for the LPM[4,2] version is obtained in the same way, with the result:

∆u2(h) = [−V5V2/3465− V5(V0 − E)2/20790]h11 +O(h12)

∆v2(h) = −V1V5/8316h11 +O(h13)

∆u′2(h) = [V5V3/1386 + V5V1(V0 − E)/5940− V 3
2 /6930]h11 +O(h13)

∆v′2(h) = [V5(V0 − E)2/20790 + V2V5/3465]h11 +O(h12).

The LPM[4,2] method is thus a method of ordertenand the same holds for all versions
LPM[N ,2] with N ≥ 4. This is actually the reason why we have adoptedN = 4 in the
pilot potential. More general, our investigations have shown that the order of LPM[N ,Q],
Q = 1, 2, 3, . . . is 4Q+ 2 for anyN ≥ Q+ 2.

4.2.3 Near-cancellation effects

Some precaution is necessary when computing the propagators in terms of the Airy func-
tions. Near-cancellation of like-terms may appear, causing a severe decrease in accuracy.

Looking at Table 4.1, it is clear that for large arguments it is not a good idea to cal-
culate the values ofAi, Bi, Ai′ andBi′ at z andz0 separately, and introduce them in
(4.9)-(4.12). For large positive arguments the Airy function Ai and its derivativeAi′

will eventually underflow, whileBi andBi′ will overflow. Also for (very) large negative
arguments the evaluation of the Airy functions may be numerically inaccurate. These in-
accuracies in the reference propagators are then propagated into the first and second order
corrections, where they become even worse. Especially whenthe potential is nearly flat
(F1 → 0), the powers ofQ appearing in the first and second order corrections become
very large and near-cancellation of like terms causes heavyloss of accuracy.

The near-cancellation of like-terms will force us to distinguish two regimes for com-
putation in terms ofz(h) = [F0 − E + F1h]/

3
√

F 2
1 (denoted hereinafter simplyz) and

z0 = z(0), with distinct formulae in each regime. The analytic formulae for the refer-
ence propagators and the corrections discussed in section 4.2.1 are used for small values
of z andz0 while for big values ofz andz0 asymptotic formulae are introduced. These
asymptotic expressions will be discussed in section 4.3.2.
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Table 4.1: The Airy functions at large arguments, obtained in Maple.
Z Ai(Z) Bi(Z) Ai′(Z) Bi′(Z)

0 0.36 0.61 -0.26 0.45
10 0.11(-9) 0.46(9) -0.35(-9) 0.14(10)
25 0.81(-37) 0.39(36) -.41(-36) 0.20(37)
50 0.46(-103) 0.49(102) -0.32(-102) 0.35(103)
75 0.84(-189) 0.22(188) -0.73(-188) 0.19(189)
100 0.26(-290) 0.60(289) -0.26(-289) 0.60(290)
150 0.10(-532) 0.13(532) -0.12(-531) 0.16(533)

4.3 Some technical issues

In this section we concentrate on some technical issues concerning the LPM. In 4.3.1
we consider the computation of the Airy functions appearingin the expressions of the
zeroth order propagators. Alternative formulae, based on some asymptotic representations
are discussed in section 4.3.2. These asymptotic representations also form the basis for
asymptotic formulae for the first and second order corrections. The formulae are obtained
by a Maple code presented in B.2.2. In a last subsection (4.3.3) we propose a procedure
for choosing the stepsize in terms of the preset accuracy.

4.3.1 Computation of the Airy functions

The standard way of expressing the zeroth order propagatorsis through the Airy functions
of argumentsz andz0; see the formulae (4.9)-(4.12). There is a rich literature on the
computation of these functions. For real arguments we cite [29], [48], [93], [98], [133],
while for complex arguments we mention [8], [35], [40]. Moreinformation about the
calculation of Airy functions can be found in the recent bookof Vallée and Soares [120].

Only the codes with real arguments are potentially important for us and we have com-
pared them on a set of test cases. The accuracies were quite similar, but the NAG sub-
routines [93] proved to be somewhat faster and have been finally adopted for the Fortran
implementation of the LPM[4,2] method. For the MATLAB implementation we used the
MATLAB build-in Airy functions which are based on the work ofAmos [7, 8].

4.3.2 Asymptotic formulae

The accuracy in the computation of the Airy functions appearing in formulae (4.9)-(4.12)
depends on the range of the argumentsz andz0. In particular severe accuracy losses are
observed whenz andz0 have big (negative or positive) values. The experimental inves-
tigations have then lead us to introduce an asymptotic rangewhich collects the situations
whenz, z0 ≤ −2 or z, z0 ≥ 2. Asymptotic expansions for the propagators will be used
on this range while the standard representation through Airy functions is used otherwise.
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Figure 4.3: The Woods-Saxon potential in the interval[0, 15]

Example 4.2 As a rule big values (in modulus) forz andz0 appear when the slopeF1 of
the potential is small andF0 − E is big. We illustrate this on the Woods-Saxon potential
defined by

V (x) = v0w(x)

(

1− 1− w(x)

a0

)

(4.54)

withw(x) = {1 + exp[(x− x0)/a0]}−1, v0 = −50, x0 = 7, a0 = 0.6, x ∈ [0, xf = 15]
- see Figure 4.3. We used the MATLAB implementation of the LPM[4,2] method with
a user input tolerancetol = 10−10 to construct the Figures 4.4. In the upper figure the
variation withx of F1 and ofF0 − E = V0 − V1h − E is shown (in the middle of each
meshinterval) for three test values ofE. The choice of these values is rather free but we
have chosen three eigenvalues:E0 ≈ −49.458, E7 ≈ −30.912 andE13 ≈ −3.908.
Since the stepsizesh are rather small,F0 is in essence the potentialV (x) shifted byE.
We see thatF1(x) is small whenx is in the vicinity of the endpoints and that it has a root
somewhere around7.75, i.e. at the maximum of the potential function. If these curves
are compared with thex dependence ofz(h) = [F0 − E + F1h]/

3
√

F 2
1 , shown in the

lower figure, we see that smallF1 and bigF0−E indeed lead toz in the asymptotic zone.
Moreover, oncez is in the asymptotic range the same holds forz0 because the difference
|z − z0| = |F1|1/3h is small.

Asymptotic expressions for the reference propagators

Since big values forz andz0 appear whenF1 is small andG0 = F0 − E is big, it is
appropriate to expand the zeroth order propagators in powers ofF1 and1/(G0) in order
to remove the near-cancellation effects. As a matter of fact, whenF1 → 0 such formulae
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Figure 4.4: Woods-Saxon potential: the parametersF1(x) andF0(x) − E for E = E0, E7, E13

in terms ofx ∈ [0, 15] and the evolution ofz(x, E) = [F1(x)h + F0(x) − E]/ 3
p

F1(x)2 for
E = E0, E7, E13, tol = 10−10 andx ∈ [0, 15].
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must tend to the expressions of the zeroth order propagatorsfor the CPM.
We have used the known asymptotic expansions of the Airy functions (see [3], chapter

10.4). Define

c0 = 1, d0 = 1 (4.55)

ck =
(6k − 5)(6k − 1)

72k
ck−1, dk = −6k + 1

6k − 1
ck (4.56)

and
ζ = (2/3)Z3/2. (4.57)

The asymptotic expansions of the Airy functions forZ large negative are then of the form

Ai(Z) = π−1/2Z−1/4
[

sin(ζ +
π

4
)

∞
∑

k=0

(−1)kc2kζ
−2k− (4.58)

cos(ζ +
π

4
)

∞
∑

k=0

(−1)kc2k+1ζ
−2k−1

]

Ai′(Z) = −π−1/2Z1/4
[

cos(ζ +
π

4
)

∞
∑

k=0

(−1)kd2kζ
−2k+ (4.59)

sin(ζ +
π

4
)

∞
∑

k=0

(−1)kd2k+1ζ
−2k−1

]

Bi(Z) = π−1/2Z−1/4
[

cos(ζ +
π

4
)

∞
∑

k=0

(−1)kc2kζ
−2k+ (4.60)

sin(ζ +
π

4
)

∞
∑

k=0

(−1)kc2k+1ζ
−2k−1

]

Bi′(Z) = π−1/2Z1/4
[

sin(ζ +
π

4
)

∞
∑

k=0

(−1)kd2kζ
−2k− (4.61)

cos(ζ +
π

4
)

∞
∑

k=0

(−1)kd2k+1ζ
−2k−1

]

and the asymptotic expansions of the Airy functions forZ large positive are given by

Ai(Z) = (1/2)π−1/2Z−1/4 exp(−ζ)
∞
∑

k=0

(−1)kckζ
−k (4.62)

Ai′(Z) = −(1/2)π−1/2Z1/4 exp(−ζ)
∞
∑

k=0

(−1)kdkζ
−k (4.63)

Bi(Z) = π−1/2Z−1/4 exp(ζ)
∞
∑

k=0

ckζ
−k (4.64)
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Bi′(Z) = π−1/2Z1/4 exp(ζ)
∞
∑

k=0

dkζ
−i (4.65)

These asymptotic expressions are introduced in the standard representation of the propa-
gators and the result is organized in the mentioned form (in powers ofF1 and1/(G0)).
The Maple code listed in B.2.2 has been used for this purpose.We give below the resulting
asymptotic formulae.

With the notations

C(h) = cos
(

√

−G0h
)

, S(h) = −
√

−G0 sin
(

√

−G0h
)

.

when bothz0 andz arelarge negativeand

C(h) = cosh
(

√

G0h
)

, S(h) =
√

G0 sinh
(

√

G0h
)

when bothz0 andz arelarge positivewe have

ū(h) = C(h) +
[

−G0hC(h) +
(

G0h
2 + 1

)

S(h)
]

F1/(4G0
2)

+
[

(

3h4G0
2 + 21h2G0

)

C(h) +
(

−10h3G0 − 21h
)

S(h)
]

F1
2/(96G0

3)

+
[

(

h6G3
0 + 28h4G2

0 + 105h2G0 + 105
)

S(h) +
(

− 7h5G0
3 − 70h3G0

2

−105hG0

)

C(h)
]

F1
3/(384G0

5) +
[

(

3h8G0
4 + 238h6G0

3 + 3255h4G0
2

+12285h2G0

)

C(h) +
(

− 36h7G3
0 − 1050h5G2

0 − 7350h3G0

−12285h
)

S(h)
]

F1
4/(18432G0

6) (4.66)

v̄(h) = S(h)/G0 +
[

G0h
2C(h)− hS(h)

]

F1/(4G0
2) +

[

(

− 10h3G0
2

−15hG0

)

C(h) +
(

3h4G2
0 + 15h2G0 + 15

)

S(h)
]

F1
2/(96G0

4)

+
[

(

h6G0
3 + 25h4G0

2 + 105h2G0

)

C(h) +
(

− 60h3G0 − 7h5G2
0

−105h
)

S(h)
]

F1
3/(384G0

5) +
[

(

− 36h7G0
4 − 966h5G0

3 − 6930h3G0
2

−10395hG0

)

C(h) +
(

3h8G4
0 + 226h6G3

0 + 3045h4G2
0 + 10395h2G0

+10395
)

S(h)
]

F1
4/(18432G0

7) (4.67)

ū′(h) = S(h) +
[

G0h
2C(h) + hS(h)

]

F1/(4G0) +
[

(

2G0
2h3 + 21G0h

)

C(h)

+
(

+ 3G0
2h4 − 9G0h

2 − 21
)

S(h)
]

F1
2/(96G0

3) +
[

(

G0
3h6 − 7G0

2h4
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−105G0h
2
)

C(h) +
(

−G0
2h5 + 42G0h

3 + 105h
)

S(h)
]

F1
3/(384G0

4)

+
[

(

− 12G0
4h7 + 378G0

3h5 + 5670G0
2h3 + 12285G0h

)

C(h)

+
(

3G0
4h8 − 14G0

3h6 − 1995G0
2h4 − 9765G0h

2 − 12285
)

S(h)
]

F1
4

/(18432G0
6)

(4.68)

v̄′(h) = C(h) +
[

(

G0h
2 − 1

)

S(h) +G0hC(h)
]

F1/(4G0
2)

+
[

(

3G0
2h4 − 15G0h

2
)

C(h) +
(

2G0h
3 + 15h

)

S(h)
]

F1
2/(96G0

3)

+
[

(

−G0
3h5 + 40G0

2h3 + 105G0h
)

C(h) +
(

− 10G0
2h4 − 75G0h

2

+G0
3h6 − 105

)

S(h)
]

F1
3/(384G0

5) +
[

(

− 1785G0
2h4 − 10395G0h

2

−26G0
3h6 + 3G0

4h8
)

C(h) +
(

5250G0h
3 + 390G0

2h5 − 12G0
3h7

+10395h
)

S(h)
]

F1
4/(18432G0

6). (4.69)

It is obvious that for a flat potential (F1 → 0) these formulae reduce to the CPM zeroth
order propagators (see 3.1.1), as expected (note that the CPM basic functionξ(Z(h)) is
the same asC(h) and thathη0(Z) corresponds toS(h)/G0). Extensive experimental
tests with values ofG0 andF1 which lead toz andz0 in the asymptotic range have shown
that these truncated series are sufficient to produce the zeroth order propagators with an
accuracy of16 digits.

Asymptotic expressions for first and second-order corrections

Asymptotic expressions for the first and second order correction are obtained by sub-
stituting the asymptotic formulae for the reference propagators (4.66)-(4.69) in the ana-
lytic expressions of the first and second order correction discussed in section 4.2.1. With
Q = (F0 − E)/F1, the resulting asymptotic expansions of the first and secondorder
corrections are then of the following form :

u1(h) =
∞
∑

k=0

σ
(u)
k Q−k, v1(h) =

∞
∑

k=0

σ
(v)
k Q−k

u′1(h) =
∞
∑

k=0

σ
(u′)
k Q−k, v′1(h) =

∞
∑

k=0

σ
(v′)
k Q−k

u2(h) =
∞
∑

k=0

ρ
(u)
k Q−k, v2(h) =

∞
∑

k=0

ρ
(v)
k Q−k
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u′2(h) =
∞
∑

k=0

ρ
(u′)
k Q−k, v′2(h) =

∞
∑

k=0

ρ
(v′)
k Q−k

where the coefficientsσ andρ do not depend onF1. In our implementation the series
were truncated atk = 4 for the first order corrections and atk = 3 for the (smaller)
second order corrections. These truncations ensure valueswhich are accurate enough for
double precision calculations.

The expressions of the coefficients are too long to be listed in full. We give only the
expressions of the first threeσ(u) coefficients to offer an idea on how they look like. The
otherσ andρ coefficients can be derived using the Maple code in the Appendix B.2.2.
With T0 = 1/(F0 − E) the first three coefficients are:

σ
(u)
0 = 15/2V3S (h)T0

3 +
(

3h2S (h)− 15/2hC (h)
)

V3T0
2 − 1/2V3h

3
C (h)T0

σ
(u)
1 = − 2205/8V4S (h)T0

4 +
[

− 15/4V2S (h)− 45/4V3hS (h)

+
(

−975/8S (h)h2 + 2205/8hC (h)
)

V4

]

T0
3 +

[

(

− 39/8h3S (h)

+ 45/4h2
C (h)

)

V3 +
(

−33/8h4S (h) + 30h3
C (h)

)

V4

+
(

15/4hC (h)− 3/2S (h)h2
)

V2

]

T0
2 +

[

(

− 1/8h5S (h)

+ 9/8h4
C (h)

)

V3 + 1/4h3V2C (h) + 1/4V4h
5
C (h)

]

T0

σ
(u)
2 =

[

7245/64V3S (h) + 21735/32V4hS (h)
]

T0
4 +

[

(

1995/32S (h)h2

− 7245/64hC (h)
)

V3 +
(

4935/16h3S (h)− 21735/32h2
C (h)

)

V4

+231/32V2hS (h)
]

T0
3 +

[

(

115/16h4S (h)− 1575/64h3
C (h)

)

V3

+
(

435/32h5S (h)− 2625/32h4
C (h)

)

V4 +
(

99/32h3S (h)

− 231/32h2
C (h)

)

V2

]

T0
2 +

[

(

−3/2h5
C (h) + 5/24h6S (h)

)

V3

+
(

−43/32h6
C (h) + 1/16h7S (h)

)

V4 +
(

11/160h5S (h)

− 11/16h4
C (h)

)

V2

]

T0 −
1

64
V3h

7
C (h) .

4.3.3 Stepsize selection

As for the CPM, the problem of constructing a rule for the stepsize adjustment in terms
of the preset error is not easy. This is because, in contrast with most of the numerical
methods for the Schrödinger equation, these methods usually achieve high accuracy at
very coarse partitions, with steps too big for the error evaluation in terms of its leading
term only. A number of extra terms of higher order must be added for a reasonable
evaluation.
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LPM[4,2] is of order ten and then the collection in the local error of all the terms
proportional toh11 up to no less thanh13 orh14 is sufficient. By applying Maple we have
obtained the following error formulae for the four propagators whereZ = V0 − E:

∆u = −1/540540h13V5Z
3 +

[

− 1/20790h11V5 + 1/1081080h14V5V1

]

Z2

+
[

− 1/54054h13V1V6 + 41/1081080h14V3V5 + 1/180180h14V2V6

+23/75675600h14V2
3 + 1/41580h12V5V1 − 1/135135h13V5V2

]

Z

−1/3465h11V5V2 + 1/5148h14V6V4 + 1/2772h12V5V3 + 1/138600h12V2
3

+29/1801800h14V2
2V4 + 19/1081080h13V5V1

2 + 1/154440h14V6V1
2

+5/36036h13V5V4 − 5/36036h13V6V3 − 1/103950h14V2V3
2

−1/1081080h13V2
2V3 − 1/5148h14V5

2 − 17/540540h14V2V5V1

∆u′ = 1/270270h13V6Z
3 + 1/360360h13V5V1Z

2 +
[

− 1/150150h13V2
3

+1/16380h13V2V6 + 1/5940h11V5V1 + 3/20020h13V3V5

]

Z

−1/6930h11V2
3 − 43/270270h13V2V5V1 + 1/1386h11V5V3

+23/270270h13V4V2
2 − 1/13860h13V2V3

2 + 1/2574h13V6V4

−1/2574h13V5
2 + 1/77220h13V6V1

2

∆v = −1/270270h13Z2V6 − 1/1081080h13V1V5Z − 1/8316h11V1V5

+1/1351350h13V2
3 − 1/20020h13V2V6 + 1/6006h13V3V5

∆v′ = 1/540540h13V5Z
3 +

[

1/20790h11V5 + 1/1081080h14V1V5

]

Z2

+
[

1/54054h13V1V6 + 1/180180h14V2V6 + 1/135135h13V2V5

+41/1081080h14V3V5 + 1/41580h12V1V5 + 23/75675600h14V2
3
]

Z

+1/3465h11V2V5 − 1/103950h14V2V3
2 + 1/138600h12V2

3

+1/2772h12V3V5 + 1/154440h14V1
2V6 + 1/1081080h13V3V2

2

+1/5148h14V6V4 + 5/36036h13V3V6 − 5/36036h13V4V5

−19/1081080h13V1
2V5 − 1/5148h14V5

2 + 29/1801800h14V4V2
2

−17/540540h14V1V2V5

To evaluate the size of the step originating atX we take some trialh value and calculate

∆loc = max{|∆u(h)|, |h∆u′(h)|, |∆v(h)/h|, |∆v′(h)|} (4.70)

at some value ofZ chosen such that the above deviations reach their maximum. Actually,
we observed that a reasonable choice is the following : let

Zm = max{|V0 − Emin|, |V0 − Emax|} (4.71)
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whereEmin andEmax are the lower and the upper bound, respectively, of the eigenvalue
spectrum, fixed by input. IfZm ≤ π2/h2 thenZ = Zm, otherwiseZ = π2/h2.
The deviation∆u′ is multiplied byh and the deviation∆v is divided byh in order to
ensure a uniform dimension of the compared quantities.

We define a newh as
hnew = h(tol/∆loc)

1/10 (4.72)

and examineH = |hnew/h− 1|. If H > 0.1 the procedure is repeated withh = hnew. If
H ≤ 0.1, h is accepted and the procedure continues to compute the stepsize of the next
interval, which originates atX + h.

4.4 Eigenvalue computation

As for the CPM, a shooting procedure can be formulated to compute the eigenvalues. As
described in section 2.3.1, this means that the Schrödinger equation is integrated forwards
and backwards from the two boundary points and the eigenvalues are found from the
matching condition

yL(xm)y′R(xm)− yR(xm)y′L(xm) = 0. (4.73)

The roots of this mismatch function can be found using an iterative procedure as the
bisection method, or more preferably the iterative procedure suggested by Blatt in [25].
The LPM[4,2] method was implemented together with the shooting procedure in Fortran.
The program includes not only the analytic expressions of the perturbation corrections of
section 4.2.1 but also the asymptotic expressions described in section 4.3.2. In addition, a
MATLAB version of the LPM[4,2] method was developed, which can be used to compute
the eigenvalues of a regular Schrodinger problem. This MATLAB version also includes
a Pr̈ufer procedure, similar as the one used for the CPM in section3.2.4, which allows
to compute the index of an eigenvalue. The Fortran code applied on the Woods-Saxon
problem as well as the MATLAB program are available at [2].

4.5 Some illustrations

As first test potential we again consider the Woods-Saxon potential defined by

V (x) = v0w(x)

(

1− 1− w(x)

a0

)

(4.74)

with w(x) = {1 + exp[(x− x0)/a0]}−1
, v0 = −50, x0 = 7, a0 = 0.6, x ∈ [0, xf =

15]. We computed the eigenvaluesE0, . . . , E13, that is we consideredE ∈ (−50, 0) with
the boundary conditions

a0y(0) + b0y
′(0) = 0 (4.75)

a1y(xf ) + b1y
′(xf ) = 0, (4.76)
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Table 4.2: Woods-Saxon potential: errors∆Ek at several equidistant steps: versions Gordon (upper
entries) and LPM(0) (lower entries).

k Ek h = 1/4 h = 1/8 h = 1/16

0 −49.45778872808258 9.91(−4) 2.46(−4) 6.15(−5)
5.08(−6) 3.16(−7) 1.98(−8)

1 −48.14843042000636 2.91(−3) 7.23(−4) 1.81(−4)
1.29(−5) 8.07(−7) 5.04(−8)

2 −46.29075395446608 5.22(−3) 1.30(−3) 3.24(−4)
1.83(−5) 1.14(−6) 7.13(−8)

3 −43.96831843181423 7.69(−3) 1.92(−3) 4.79(−4)
1.81(−5) 1.13(−6) 7.05(−8)

4 −41.23260777218022 1.01(−2) 2.53(−3) 6.31(−4)
1.04(−5) 6.47(−7) 4.04(−8)

5 −38.12278509672792 1.23(−2) 3.08(−3) 7.71(−4)
−5.30(−6) −3.36(−7) −2.11(−8)

6 −34.67231320569966 1.41(−2) 3.54(−3) 8.85(−4)
−2.78(−5) −1.76(−6) −1.10(−7)

7 −30.91224748790885 1.53(−2) 3.85(−3) 9.62(−4)
−5.44(−5) −3.43(−6) −2.15(−7)

8 −26.87344891605987 1.57(−2) 3.95(−3) 9.90(−4)
−8.00(−5) −5.06(−6) −3.17(−7)

9 −22.58860225769321 1.51(−2) 3.81(−3) 9.53(−4)
−9.83(−5) −6.23(−6) −3.91(−7)

10 −18.09468828212442 1.33(−2) 3.35(−3) 8.38(−4)
−1.01(−4) −6.43(−6) −4.03(−7)

11 −13.43686904025008 9.98(−3) 2.51(−3) 6.28(−4)
−7.97(−5) −5.09(−6) −3.20(−7)

12 −8.67608167073655 4.84(−3) 1.21(−3) 3.02(−4)
−2.67(−5) −1.75(−6) −1.11(−7)

13 −3.90823248120623 −2.54(−3) −6.59(−4) −1.66(−4)
5.88(−5) 3.65(−6) 2.28(−7)

wherea0 = 1, b0 = 0, a1 =
√

V (xf )− E, b1 = 1. Note that the condition atxf is
slightly different from the standard Sturm-Liouville formulation since at least one coeffi-
cient is not a constant but energy dependent.

Some numerical results are presented in the Tables 4.2 and 4.3. Four different methods
were used as propagation methods in a shooting procedure to compute the eigenvalues:
Gordon’s original method (that is LPM(0) with the local linear approximation̄V (X+δ) =
V (X + h/2) + (δ − h/2)V ′(X + h/2), δ ∈ [0, h]), LPM(0) (Table 4.2), LPM[4,1] and
LPM[4,2] (Table 4.3). The calculations were done in Fortranusing double precision
arithmetic. We give the errors in the eigenvalues for different (uniform) stepsizes (h =
1/4, 1/8, 1/16) and different numbers of perturbation corrections. For each eigenvalue
Ek the error is defined as∆Ek = Eexact

k − Ecalc
k (h).

One can see the substantial gain in accuracy produced when introducing more per-
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Table 4.3: Woods-Saxon potential: errors∆Ek at several equidistant steps: versions LPM[4, 1]
and LPM[4, 2].

LPM[4,1] LPM[4,2]
k h = 1/4 h = 1/8 h = 1/16 h = 1/4 h = 1/8

0 −6.16(−9) −9.38(−11) −1.46(−12) −2.13(−13) < 1.0(−14)
1 −3.58(−8) −5.46(−10) 8.46(−12) −2.21(−12) 2.1(−14)
2 −1.05(−7) −1.60(−9) −2.48(−11) −8.57(−12) < 1.0(−14)
3 −2.21(−7) −3.35(−9) −5.20(−11) −2.23(−11) −2.1(−14)
4 −3.76(−7) −5.67(−9) −8.78(−11) −4.45(−11) −5.0(−14)
5 −5.48(−7) −8.23(−9) −1.27(−10) −7.08(−11) −8.0(−14)
6 −7.08(−7) −1.06(−8) −1.63(−10) −9.34(−11) −1.1(−13)
7 −8.24(−7) −1.21(−8) −1.86(−10) −1.05(−10) −1.2(−13)
8 −8.72(−7) −1.27(−8) −1.93(−10) −9.44(−11) −1.1(−13)
9 −8.52(−7) −1.21(−8) −1.82(−10) −5.89(−11) −8.5(−14)
10 −7.99(−7) −1.10(−8) −1.64(−10) −3.10(−11) −6.7(−14)
11 −7.94(−7) −1.08(−8) −1.59(−10) 7.76(−12) −3.4(−14)
12 −9.63(−7) −1.34(−8) −1.98(−10) 1.41(−10) 3.2(−14)
13 −1.46(−6) −2.13(−8) −3.20(−10) 3.15(−10) 1.9(−13)

turbation corrections. The data at different steps also confirm the prediction of the error
analysis that Gordon’s method is of order 2, LPM(0) is of order 4 and LPM[4,1] of order
6 (see an illustration in Figure 4.5). A full confirmation of the order is impossible for
LPM[4,2] because with this version we practically get14 exact decimal digits already at
h = 1/8 such that the error ath = 1/16 would be beyond the limit accessible in double
precision. This is why the column corresponding toh = 1/16 is no more included in
Table 4.3 for LPM[4,2].

The experimental evidence for the order, based on the errorsat 2h andh, is reliable
only whenh is sufficiently small and the data are not altered significantly by round-off
errors. For the low-order versions both conditions hold forh = 1/8 or 1/16, but for the
version LPM[4,2] of order 10 the accuracy in the eigenvaluesis often inside the round-
off limits for double precision calculations, especially at the two ends of the spectrum.
For this reason only data from the middle part of the spectrumhave been presented on
Figure 4.5. Concerning the Gordon method, the low order (two) is a consequence of the
linear approximation of the potential by a Taylor series instead of the best fit polynomial
approximation, i.e. by shifted Legendre polynomials.

We used the Fortran implementation of the LPM[4,2] method tosolve three eigenvalue
problems for the Schrödinger equation. Now the automatic stepsize selection is applied.
The three problems are:(i) the Woods-Saxon potential,(ii) the Paine potentialV (x) =
1/(x+0.1)2, x ∈ [0, π], with the boundary conditionsy(0) = y(π) = 0, (iii) the Mathieu
potentialV (x) = 2 cos(2x), x ∈ [0, π] with the boundary conditionsy(0) = y(π) = 0.
For problems (ii) and (iii) only a selection of eigenvalues was investigated.

To check for the validity of the rule for the stepsize adjustment we carried out com-
putations at three values of the tolerance viz.tol = 10−10, 10−12 and10−14. To get an
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Figure 4.5: Woods-Saxon potential: experimental evidence for the method order: variation withk
of log2 |∆Ek(2h)/∆Ek(h)| ath = 1/8.

Table 4.4: Woods-Saxon potential: absolute errors∆Ek at different input tolerances.nint is the
number of steps.

k tol = 10−10 tol = 10−12 tol = 10−14

0 −3.1(−12) 4.0(−14) 7(−14)
1 −2.4(−11) −5.3(−13) 2(−14)
2 −8.6(−11) −1.9(−12) −3(−14)
3 −1.7(−10) −4.0(−12) −5(−14)
4 −2.1(−10) −4.9(−12) −6(−14)
5 −1.5(−10) −3.6(−12) −5(−14)
6 −1.5(−10) −3.1(−12) −6(−14)
7 −1.8(−10) −4.3(−12) −8(−14)
8 −1.5(−10) −5.0(−12) −8(−14)
9 6.4(−12) −3.8(−12) −8(−14)
10 5.0(−11) −2.7(−12) −8(−14)
11 −4.1(−12) −3.9(−12) −8(−14)
12 −3.7(−12) 3.3(−12) −1(−14)
13 8.6(−11) 2.8(−12) 8(−14)

nint 42 64 96
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Figure 4.6: The Woods-Saxon potential: the dots represent the values at the meshpoints of the
partition consistent with a tolerance of10−10.

Table 4.5: Paine potential: absolute errors∆Ek at different input tolerances.nint is the number
of steps.

k Ek tol = 10−10 tol = 10−12 tol = 10−14

0 1.519865821099347 2.7(−13) 2.3(−13) −7.8(−14)
10 123.4977068009282 −9.9(−10) −4.6(−12) −7.3(−12)
20 443.8529598351504 5.4(−10) 2.0(−11) −2.0(−13)
30 963.9644462621100 −1.5(−08) 4.5(−12) 1.0(−12)
40 1684.012014337853 2.1(−08) −1.1(−10) < 1(−12)
50 2604.036332024594 −1.7(−09) 1.2(−10) < 1(−12)

nint 23 40 67

idea on the distribution of the meshpoints resulting from the stepsize adjustment, we give
in Figure 4.6 the partition sample corresponding totol = 10−10 for the Woods-Saxon
potential.
The absolute errors∆Ek = Eexact

k − Ecalc
k are collected on Tables 4.4-4.6.

A first remark is that the data from problems(ii) and(iii) involve sets of eigenvalues
with uncommonly large values but no systematic deterioration of the accuracy is observed
ask is increased. As a rule the results around some mid-lyingk, k = 30 for these prob-
lems, are the least accurate but whenk is further increased the accuracy tends to improve
again. This is a general behaviour with the piecewise perturbation methods. We also see
that, as expected, the maximal error along the spectrum attol = 10−10 is approximately
by two orders of magnitude bigger than the one at10−12 and the same holds if the data at
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Table 4.6: Mathieu potential: absolute errors∆Ek at different input tolerances.nint is the number
of steps.

k Ek tol = 10−10 tol = 10−12 tol = 10−14

0 −0.1102488169920971 −1.4(−11) −3.0(−14) 5.8(−14)
10 121.0041667612691 −2.5(−10) −6.0(−13) < 1(−13)
20 441.0011363654933 9.6(−10) −2.2(−11) < 1(−13)
30 961.0005208335109 −2.3(−08) −1.1(−10) −2(−13)
40 1681.000297619081 3.5(−09) 1.0(−10) < 1(−12)
50 2601.000192307701 −3.4(−10) 1.0(−10) −1(−12)

nint 15 28 52

tol = 10−12 and10−14 are compared but here we must be aware that the latter data are
often within the roundoff limit.
It is perhaps worth noticing that one may expect that the order of magnitude of the max-
imal error in the eigenvalues must be equal totol but there is no solid basis for such an
expectation. This is becausetol is used to control the error in the wave function, not in
the eigenenergy. The two are certainly related somehow but they may be very different
in magnitude. Expressed in other words, although for the three problems considered here
the order of magnitude of the maximal error in the eigenvalues happens to agree withtol,
this is not a general property. The only behaviour which has to be normally expected is
that the ratio of the maximal error at two tolerances is closeto the ratio of the tolerances.

A final set of tests was aimed at comparing the LPM[4,2] with a CPM. We compared
the LPM Fortran implementation with the Fortran implementation of the CPM{12,10}
method (the SLCPM12 package [61]). The order of the CPM{12,10} (twelve) is close to
that of the LPM[4,2] (ten). The number of steps consistent with similar accuracies was
slightly in the favour of the CPM version, which is normal because the order is higher.
A major difference was detected for the computational effort. We observed that the CPU
time / step for the LPM[4,2] is about fifteen times bigger thanfor the CPM{12,10}. Again,
this was not a surprise: the zeroth order propagators of the CPM are the Fortran functions
sin, cos or sinh, cosh while for the LPM they are Airy functions, whose computation
requires adequate software. Also the formulae of the CPM forperturbation corrections
are much shorter and easier to compute than those of the LPM.

4.6 Conclusion

In this chapter, we investigated the old problem of improving the accuracy of the LPM
for the Schr̈odinger equation by adding perturbation corrections to thealgorithm. We
effectively constructed the first and the second order corrections. We also performed
the error analysis to predict that the introduction of successive corrections substantially
enhances the order of the method from four, for the zeroth order version, to six and ten
when the first and the second order corrections are included.In order to remove the
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effect of the accuracy loss due to near-cancellation of like-terms when evaluating the
perturbation corrections we constructed alternative asymptotic formulae using a Maple
code.

Numerical tests confirmed that the LPM versions share the general property of the
piecewise perturbation methods of producing eigenvalues with uniform accuracy over
large sets for the indexk. However, the LPM approach does not seem to be more con-
venient in practice than CPM since the evaluation of the Airyfunctions on a computer
is not only more difficult but also much more time consuming than the evaluation of the
trigonometric or hyperbolic functions required by the CPM algorithm. The right way of
using them in practice consists perhaps in activating them only in the subintervals where
the potential exhibits a strong variation.





Chapter 5

Solving systems of coupled
Schr ödinger equations

The successful CPM{P,N} methods for the one-dimensional time-independent Schrö-
dinger problem are generalized to the coupled channel case.The derivation of the for-
mulae is discussed and a Maple program code is presented which allows us to determine
the analytic expressions of the perturbation corrections needed to construct methods of
different orders. As for the one-dimensional problem, we apply the generalized CPM in a
shooting procedure to compute the eigenvalues of the matrixboundary value problem. A
generalization of the Prüfer method for scalar Sturm-Liouville problems makes the whole
procedure more robust and allows us to specify the required eigenvalue by its index.

5.1 Introduction

A coupled channel Schrödinger equation is a system of linear ordinary differential equa-
tions of the second order obtained after separating the so-called scattering (or radial)
coordinate from the rest of variables in the multidimensional Schr̈odinger equation de-
scribing the motion of an atomic or molecular system (see [47]). Such a time-independent
Schr̈odinger equation may be written as

HΨ = ǫΨ (5.1)

with the Hamiltonian

H(R,Ω) = − ~
2

2µ

d2

dR2
+ V (R,Ω), (5.2)

whereǫ is the energy of the system,µ is the appropriate reduced mass,R is the ‘radial’
coordinate describing the separation of two particles,Ω is the set of ‘angular’ coordinates
which describe the ‘internal motion’ of a system, andV (R,Ω) is the interaction potential.
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Problems of this type frequently arise from the interactions of pairs of molecules, but also
occur in electronic structure theory and nuclear physics.

There are some different approaches to find the eigenvalues and eigenfunctions of
Hamiltonians as (5.2). In the so-calledcoupled channelapproach, the total wave function
Ψ(R,Ω) for the kth state is expanded over the complete orthonormal set of thebasis
angular functions{Φj(Ω)}∞j=1:

Ψk(R,Ω) =

∞
∑

j=1

ψjk(R)Φj(Ω). (5.3)

The wavefunction in eachchannelj is described by a radialchannel functionψjk(R).
The expansion (5.3) is substituted into the total Schrödinger equation, and the result is
projected onto a basis functionΦi(Ω). Taking advantage of the orthonormality of the
Φj(Ω), we obtain a differential equation for the channel functionψik(R),

d2ψik

dR2
=
∑

j

[Qij(R)− Eδij ]ψjk(R), (5.4)

whereδij is the Kronecker delta,E is the energy scaled by2µ/~2 (that isE = (2µ/~2)ǫ),
and

Qij(R) =
2µ

~2

∫

Φ∗
i (Ω)V (R,Ω)Φj(Ω)dΩ. (5.5)

Here,∗ denotes the complex conjugate. A similar equation arises for each channel, and
the different equations are coupled by the off-diagonal termsQij(R) with i 6= j.

Having chosenM angular basis functions as an adequate approximate representation
of Ψ we can truncate the infinite sum in Eq. (5.3). This approximation is known as the
close-couplingapproximation: the name indicates that only channels that are ‘close’ to
one another in some sense are retained. The Schrödinger equation (5.1) then reduces to a
system ofM coupled differential equations which can be written in matrix form as

d2ψ

dR2
= [Q(R)− EI]ψ(R), (5.6)

whereψ(R) is a column vector of orderM with elementsψjk(R), I is theM × M
unit matrix, andQ is the symmetricM × M potential matrix with elementsQij(R).
The particular choice of the basis functionsΦj(Ω) and the resulting form of the coupling
matricesQij(R) depend on the physical problem being considered.

There are various approaches to the solution of the coupled equations (5.6) (see a.o.
[5, 6, 47, 81, 113]). In the more early work approximate schemes were used which attempt
to reduce the coupled equations to a set of one-dimensional problems (e.g. in [81]). A
more modern approach is to propagate the solutions numerically, without reducing them
to a one-dimensional form. A large number of numerical methods have been suggested
for carrying out the propagation. However when bound state boundary conditions are
applied, acceptable solutions of the coupled equations exist only whenE is an eigenvalue



5.2 Generalized CPM{P,N} methods 103

of the Hamiltonian and additional techniques are needed to locate the eigenvalues. Early
methods for doing this were developed by Gordon [41] and Johnson [65].

It was already decribed in [58] by Ixaru that a piecewise perturbation method can be
constructed for a system of differential equations. In [59]a CPM-based method was for-
mulated for systems of coupled Schrödinger equations and implemented by the Fortran
program LILIX (available under the identifier ADQFv1 0 in the CPC library [1]). How-
ever using the CPM formulation implemented by LILIX it is very difficult to construct
high order correction terms and only a limited number of correction terms was calcu-
lated and included in the LILIX program. Using the symbolic software package Maple
we are now able to determine the analytic expressions of additional perturbation correc-
tions and to formulate the natural extension of the CPM{P,N} methods to the coupled
channel case. These extensions preserve the important features of the one-dimensional
CPM{P,N} method such as the uniform accuracy with respect to the energy E and the
big step widths. The generalized CPM{P,N} as discussed in this chapter, include some
additional improvements over the LILIX method. One such improvement is that more
information associated to the partition is calculated at the very beginning of the procedure
and stored (i.e. theC-matrices, see further). When the CPM method is used in a shooting
method for the generation of the eigenvalues, this improvement will certainly speed up
the eigenvalue search.

5.2 Generalized CPM{P, N} methods

5.2.1 Brief description of the procedure

Consider the initial value problem for the coupled channel Schrödinger equation withn
channels:

y′′ = (V(x)− EI)y, x ∈ [a, b] (5.7)

whereI is then× n unity matrix. When the domain endsa andb are complex numbers,
x ∈ [a, b] means thatx is placed along the line segment joininga andb in the complex
plane. Then×nmatrixV(x) is assumed symmetric, i.e.Vij(x) = Vji(x), i, j = 1, 2, ...n
and it is also assumed that each component of this matrix is a well behaved function of
the argumentx. y is a set ofnsol column vectors withn components andnsol ≤ n
represents the number of different (generally linear independent) solutions needed.

A partition of [a, b] is introduced, with the mesh pointsx0 = a, x1, x2, ..., xnstep = b.
Let I = [X,X + h] be the current one step interval of this partition. A transfer matrix
is constructed, which allows a blockwise propagation of thesolutiony and of its first
derivativey′ :

[

y(X + h)
y′(X + h)

]

= T

[

y(X)
y′(X)

]

. (5.8)

To constructT we use two particular solutions of the equation

p′′ = (V(X + δ)− EI)p, δ ∈ [0, h]. (5.9)
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Specifically, ifu(δ) andv(δ) are then×n solutions corresponding to the initial conditions
p(0) = I, p′(0) = 0 andp(0) = 0, p′(0) = I, respectively (0 is then by n zero matrix)
thenT has the form

T =

[

u(δ) v(δ)
u′(δ) v′(δ)

]

. (5.10)

To determineu andv the potential matrix is approximated by a truncated series over the
shifted Legendre polynomialsP ∗

n(δ/h). The used parametrization is

V(X + δ) =
N
∑

m=0

Vmh
mP ∗

m(δ/h) (5.11)

where the matrix weights are calculated by quadrature (V̄m = Vmh
m+2,m = 1, 2, ...),

V0 =
1

h

∫ h

0

V(X + δ)dδ,

V̄m = (2m+ 1)h

∫ h

0

V(X + δ)P ∗
m(δ/h)dδ, m = 1, 2, 3, . . . . (5.12)

The symmetric matrixV0 is then diagonalized and letD be the diagonalization matrix.
In theD representation Eq. (5.9) becomes

pD′′
=

(

N
∑

m=0

VD
mh

mP ∗
m(δ/h)− EI

)

pD, δ ∈ [0, h] (5.13)

and this is solved foruD andvD; the initial conditions are the same as in the original
representation. The perturbation procedure is used, in which the diagonal matrixVD

 is
the reference potential and

∆V =

N
∑

m=1

VD
mh

mP ∗
m(δ/h) (5.14)

is the perturbation withVD
m symmetric matrices. The perturbation corrections can be

determined analytically up to any order (see 5.2.2). Once the values ath of theuD, vD

matrices and of their derivatives have been evaluated, theyare reconverted to the original
representation to obtain the desiredT.

It is also possible to write the algorithm to advance the derivatives with respect toE
of y andy′. These derivatives are propagated by the partial derivative with respect toE
of (5.8), that is

[

yE(X + h)
yE

′(X + h)

]

= T

[

yE(X)
yE

′(X)

]

+ TE

[

y(x)
y′(x)

]

. (5.15)

For the evaluation of the elements ofTE the analytic expressions of the partial derivatives
of uD,uD′

,vD,vD′
with respect toE are computed and reconverted to the original

representation. As in the one-dimensional case, the knowledge of the first derivative with
respect toE allows implementing a Newton-Raphson procedure for the localization of the
eigenvalues of the boundary value problem associated to thecoupled channel Schrödinger
equation.



5.2 Generalized CPM{P,N} methods 105

5.2.2 Construction of the perturbation corrections

We now describe the procedure used to construct the correction terms. First, the matrices
of functionsuD andvD are written as the perturbation series:

uD(δ) = u0(δ) + u1(δ) + u2(δ) + u3(δ) + . . . (5.16)

vD(δ) = v0(δ) + v1(δ) + v2(δ) + v3(δ) + . . . (5.17)

whereu0(δ) andv0(δ) are the solutions of

p′′
0 =

(

VD
 − E

)

p0 (5.18)

with p0(0) = I,p′
0(0) = 0 for u0 andp0(0) = 0,p′

0(0) = I for v0. The n × n
‘correction’ matrices of functionsuq andvq (q = 1, 2, ...) are the solutions of the systems

u′′
q = (VD

 − EI)uq + ∆V(δ)uq−1 (5.19)

v′′
q = (VD

 − EI)vq + ∆V(δ)vq−1 (5.20)

with vanishing initial conditions;

uq(0) = vq(0) = u′
q(0) = v′

q(0) = 0. (5.21)

As for the one-dimensional CPM we will express the corrections in terms of the func-
tionsξ(Z), η0(Z), η1(Z), .... Note that when working with complex numbers, the com-
plex extension [59, 63] of these functions can be used:

ξ(Z) = cos(iZ1/2) (5.22)

and

η0(Z) =

{

−i sin(iZ1/2)/Z1/2 if Z 6= 0 ,

1 if Z = 0 .
(5.23)

With Zi(δ) = (V D
0ii
− E)δ2, the zeroth order propagatorsu0(δ) andv0(δ) are diagonal

matrices, defined as follows:
u0 = v′

0 = ξ(Z) (5.24)

δu′
0 = Z(δ)η0(Z) (5.25)

v0 = δη0(Z) (5.26)

where
Z(δ) = (VD

 − EI)δ2 (5.27)

andξ(Z), ηm(Z) two n× n diagonal matrices of functions

ξ(Z) =







ξ(Z1) . . . 0
...

. . .
...

0 . . . ξ(Zn)






, (5.28)
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ηm(Z) =







ηm(Z1) . . . 0
...

. ..
...

0 . . . ηm(Zn)






. (5.29)

The following iteration procedure exists to construct the corrections.
Correctionpq−1 (p = u,v) is assumed to be known and of such a form that the

product∆V(δ)pq−1 reads

∆V(δ)pq−1(δ) = Q(δ)ξ(Z) +

+∞
∑

m=0

δ2m+1Rm(δ)ηm(Z). (5.30)

Thenpq(δ) andp′
q(δ) are of the form

pq(δ) =

+∞
∑

m=0

δ2m+1Cm(δ)ηm(Z), (5.31)

p′
q(δ) = C0(δ)ξ(Z) +

+∞
∑

m=0

δ2m+1

(

dCm(δ)

dδ
+ δCm+1(δ)

)

ηm(Z). (5.32)

All Cm matrices are given by quadrature. To show this, we first differentiate each element
of pq(δ) twice with respect toδ and formP = p′′

q (δ)− (VD
 − EI)pq. One gets

P = 2
dC0

dδ
ξ(Z) + δ

(

d2C0

dδ2
+ 2δ

dC1

dδ
+ 2C1 + [C0,V

D
 ]

)

η0(Z) + . . .

+δ2m+1

(

d2Cm

dδ2
+ 2δ

dCm+1

dδ
+ 2(m+ 1)Cm+1 + [Cm,V

D
 ]

)

ηm(Z)

+ . . . (5.33)

where[Cm,V
D
 ] is the commutator of the matricesCm andVD

 . Upon identifying the
coefficients in (5.30) and (5.33) we get

2
dC0

dδ
= Q(δ) (5.34)

and
d2Cm

dδ2
+ 2δ

dCm+1

dδ
+ 2(m+ 1)Cm+1 + [Cm,V

D
 ] = Rm (5.35)

or
d2Cm−1

dδ2
δm−1 + 2

dδmCm

dδ
+ [Cm−1,V

D
 ]δm−1 = Rm−1δ

m−1. (5.36)

C0 is then given by

C0(δ) =
1

2

∫ δ

0

Q(δ1)dδ1 (5.37)
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andCm,m = 1, 2, 3, ... results as

Cm(δ) =
1

2
δ−m

∫ δ

0

δm−1
1

(

Rm−1(δ1)−
d2Cm−1(δ1)

dδ21
− [Cm−1(δ1),V

D
 ]

)

dδ1.

(5.38)
To calculate successive corrections foru, the starting functions in∆V(δ)p0(δ) are

Q(δ) = ∆V andR0(δ) = R1(δ) = ... = 0. Forv the starting functions areQ(δ) = 0,
R0(δ) = ∆V(δ), R1(δ) = R2(δ) = ... = 0.

In Appendix A.2 we give the expressions ofuD(h), uD′
(h), vD(h) andvD′

(h) ob-
tained by Maple with a sufficient number of terms to generate the CPM{10,8} algorithm
of maximum order ten at low energies and order eight at the asymptotic regime. This
means that the terms in (A.5)-(A.8) are collected on the basis that only contributions pro-
portional tohp, p ≤ 10 are retained. For those also interested in the full expressions of
uD(h), uD′

(h), vD(h) andvD′
(h) for other CPM{P,N} algorithms we give in appen-

dix B.3 the source of the Maple program by which these expressions can be generated.
TheE-independent coefficient matricesC(u), C(u′), C(v) andC(v′) in (A.5)-(A.8) are
computed only once on each step and are stored. When the solution for a givenE is
advanced on successive steps, only theE dependentξ andηm remain to be calculated.
This is an important difference with the LILIX method [59] where the correction terms
are constructed during propagation, i.e. in the LILIX package only theV-matrices are
calculated and stored prior to the propagation.

The expressions of the coefficient matrices in (A.5)-(A.8) contain many commutators
of two matrices. Note that in the one-dimensional case all these commutators are zero
and the same expressions are obtained as for the CPM{P,N} methods described for the
one-dimensional problem.

5.2.3 Stepsize selection

We want to construct a partition with nonequal steps whose widths are consistent with
a preset tolerancetol. A procedure is used which is very analogously to the stepsize
selection for the one-dimensional case discussed in [60, 75]. The evaluation of the step
lengths in terms of only the leading term of the one-step error is usually unsatisfactory.
Several terms must be used instead. The terms generated by the Maple code in Appendix
A.2 do not allow expressing the error for the considered CPM{P,N} but they allow it for
weaker versions CPM{P ′, N ′}. Let us focus on the CPM{10,8}method: all terms in the
expressions foruD(h), huD′

(h), vD(h)/h andvD′
(h) which are supplementary to the

terms to be used in the weaker CPM{8,4}-version are used to construct an estimation of
the error. To start with, we take a trial valueh for the size of the step originating atX and
use a Gauss quadrature formula to calculate the matricesV̄0, V̄1, ..., V̄8, directly by

V̄i = (2i+ 1)h

∫ h

0

V(X + δ)P ∗
i (δ/h)dδ, i = 0, 1, . . . 8. (5.39)

It is sufficient to take eight points in the quadrature formula. After diagonalization of
theV0 matrix, we obtain the matrices in theD representation:̄VD

0 , V̄D
1 ,...,V̄D

8 . Since
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theη(Z(h))-functions obtain their maximum value inZ(h) = 0, we computeǫ which is
defined as

ǫ = max
(

|∆u(h)|, |∆u′(h)h|, |∆v(h)/h|, |∆v′(h)|
)

,

at Z(h) = 0. Herein∆u(h), ∆u′(h), ∆v(h) and∆v′(h) are determined by the terms
in the equations in appendix B (or generated by the Maple code), which are additional
to the terms of CPM{8, 4}. That is, all terms where either (i) thēVD

i ’s haveN ′ = 4 <
i ≤ N = 8 or (ii) where the degreed in h satisfiesP ′ = 8 < d ≤ P = 10 (whereby
the degree of̄Vi in h is i+ 2). For ∆u(h) e.g. we have (where the upper labelD is
suppressed)

∆u(h) =

max
(

− (V̄5 + V̄7)/2 + [V̄3, V̄2]/280
)

η1(Z(h))

+max
(

(14V̄5 + 27V̄7)/2− V̄2
3/56 + [V̄3, V̄2]/280 + [3V̄5 − 3V̄6, V̄0]/24

−
[

[V̄2, V̄1], V̄1

]

/1680−
[

[V̄2, V̄0], V̄2

]

/3360 +
[

[V̄1, V̄2], V̄0

]

/480

−
[

[V̄1, V̄0], V̄3

]

/1680 +
[

[V̄3, V̄0], V̄1

]

/1120
)

η2(Z(h))

+max
(

(−63V̄5 − 297V̄7)/2 + V̄2
3/14 + {V̄1,+2V̄4 + V̄5}/8 + {V̄2, V̄3}/4

+4[V̄2, V̄3]/35 +
(

13[V̄1, V̄2]V̄1 + V̄1[V̄1, V̄2]
)

/3360

+[−15V̄5 + 18V̄6, V̄0]/8−
[

[+5V̄3 − 5V̄4, V̄0], V̄0

]

/160

−
(

6V̄2[V̄1, V̄0] + 3[V̄2, V̄0]V̄1 + 3V̄1[V̄2, V̄0]− 4[V̄1, V̄0]V̄2

)

/480

+
(

4V̄2[V̄2, V̄0] + 3[V̄2, V̄0]V̄2

)

/560 +
[

[[3V̄1 − V̄2, V̄0], V̄0], V̄0

]

/1920

−
(

41[V̄1, V̄0]V̄3 + 29V̄3[V̄1, V̄0] + 9
[

V̄1, [V̄3, V̄0]
] )

/3360

+
[[

[V̄1, V̄0], V̄0

]

, V̄1

]

/1920 + [V̄1, V̄0]
2/1152

)

η3(Z(h))

+max
(

1287V̄7/2− 15V̄2
3/56 + V̄3

1/48− {V̄1, 21V̄4 + 9V̄5}/8

+{V̄2,−15V̄3 + 3V̄4}/8 + V̄1{V̄1, V̄2}/80 + 3[V̄2, V̄3]/56 + [V̄1, V̄4]/8

−(5V̄1[V̄1, V̄2] + 2[V̄1, V̄2]V̄1)/560 + [72V̄5 − 99V̄6, V̄0]/8

+
(

2V̄1[V̄3, V̄0] + 6[V̄1, V̄0]V̄3 + V̄3[V̄1, V̄0] + 5[V̄3, V̄0]V̄1

)

/112

+
[

[V̄3 − 2V̄4, V̄0], V̄0

]

/8 +
[

[[2V̄1 − 3V̄2, V̄0], V̄0], V̄0

]

/480

−
[

[V̄2V̄1, V̄0], V̄0

]

/10−
(

4[V̄1, V̄0]V̄2 + 6V̄1[V̄2, V̄0]− 3[V̄2, V̄0]V̄1

)

/80

+
(

9[V̄2, V̄0]V̄2 + 12V̄2[V̄2, V̄0]
)

/140 +
[

[V̄1, V̄0], V̄0

]

V̄1/480

+[V̄1, V̄0]
2/240

)

η4(Z(h))

wheremax(M) is the absolute value of the matrix element ofM with the largest absolute
value and the notations[A,B] and{A,B} are used to denote the commutator and anti-
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commutator of the matricesA andB. The error estimateǫ atZ(h) = 0 is then used to
construct a new stepsize:

hnew = h(tol/ǫ)1/9. (5.40)

When |hnew/h − 1| > 0.1 the procedure is repeated withh = hnew. Otherwiseh is
accepted to be a good choice for the stepsize and the procedure starts computing the
stepsize of the next interval which will originate atX + h.

A very important property of the CPM is that their errors are bounded vs. the energy
E. This is proved in [60] for the single Schrödinger equation but, since the set of reasons
invoked in that proof remains the same for systems, the mentioned property continues to
apply in this case. The implication is that, once the partition has been fixed, the error
will be more or less the same (i.e. irrespective of the value of E) and for this reason
the partition should be generated only once and never modified again during the session.
Also important is that there is no theoretical upper bound for the stepsize, which is a
useful feature when treating long range potentials.

5.2.4 Stabilizing transformations

In many applications, the computation ofn linear independent vector solutions is required
(e.g. to compute the eigenvalues of the associated boundaryvalue problem, see further).
The procedure described above requires that the wavefunction matrix and its first order
derivative be propagated explicitly. However there is one well known difficulty in the the-
ory of close-coupled equations. The propagation of the wavefunction into the so-called
classically forbidden region(whereV (x) > E) is numerically unstable. It is due to the
fact that the exponentially growing componentyj of the wavefunction in the most strongly
closed (Vjj(x) > E) channel soon dominates the entire wavefunction matrix anddestroys
the required linear independence of the solutions. One way to avoid the difficulty is to
use a so-calledinvariant imbeddingmethod, in which the propagated quantity is not the
wave function matrixY(x) but rather its logarithmic derivativeY′(x)Y(x)−1 (see e.g.
[47, 65]). Another approach to overcome the difficulty is to apply certain stabilizing
transformations during propagation. Gordon e.g. (see [41]) minimized the undesired ex-
ponentially increasing functions by a “triangularization” method. In [59] Ixaru describes
a stabilizing procedure based on the LU decomposition for the propagation by CPM. Af-
ter some propagation steps this regularization procedure can be applied to re-establish the
linear independence of the columns in the wavefunction matrix.

Consider e.g. the LU decomposition of the 2 by 2 matrix with large elements

Y = 1016

[

0.1 2
0.03 0.5

]

. (5.41)

This means that we computeL, U andP such thatY = PLU, whereL is a lower
triangular matrix with a unit diagonal andU is an upper triangular matrix.P is the
permutation matrix such thatLU = P−1Y. The LU decomposition for matrixY defined
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above results in the following matrices

L =

[

1 0
0.3 1

]

, U = 1016

[

0.1 2
0 −0.1

]

, P =

[

1 0
0 1

]

. (5.42)

Thus the exponential behaviour is collected in theU matrix, whileL andP contain small
elements. This observation was used by Ixaru to develop a procedure to avoid exponen-
tially increasing values in the wavefunction matrix. To explain Ixaru’s procedure, we
consider the forward propagation of the solution between the two meshpointsX0 and
XM and select the pointsX1,X2, ...,Xp among the meshpoints on[X0,XM ], where the
regularization should be performed. Then vector solutions atX1 form an × n matrix
Y(X1). The LU decomposition of this matrix is performed, i.e.Y(X1) = P1L1U1.We
then use the new, renormalizedn × n matricesYnew(X1) = P1L1, Y′new

(X1) =
Y′(X1)U

−1
1 , YE

new(X1) = YE(X1)U
−1
1 andY′

E
new

(X1) = Y′
E(X1)U

−1
1 as the

initial conditions for the propagation fromX1 up toX2. The resultantY(X2), Y′(X2),
YE(X2) andY′

E(X2) are replaced byYnew(X2) = P2L2, Y′new
(X2) = Y′(X2)U

−1
2 ,

YE
new(X2) = YE(X2)U

−1
2 andY′

E
new

(X2) = Y′
E(X2)U

−1
2 for the further propaga-

tion and so on.
Clearly, the solution obtained in this way, is no longer consistent with the initial con-

ditions imposed atX0. The original solution at any mesh point betweenXt andXt+1 is
recovered if each of the four matrices representing the renormalized solution is postmulti-
plied by then bynmatrixUtUt−1...U2U1. Note however that in a shooting process (see
further) the renormalized solution obtained in the matching point can be used to construct
the mismatch function.

5.2.5 Some experiments

The test system reads




y′′1
y′′2
y′′3



 =





3− 2x− E −x 1 + x
−x −1− 2x− E 1− x

1 + x 1− x 1− 2x− E









y1
y2
y3



 (5.43)

and is solved onx ∈ [0, 10] for E = 0 with the initial conditions

y1(0) = y2(0) = y′3(0) = 1, y′1(0) = 2, y3(0) = y′2(0) = 0. (5.44)

The exact solution is

y1(x) = (1 + x)ex, y2(x) = (1− x)ex, y3(x) = xex. (5.45)

The experiment exists in the forward propagation of the solution fromx = 0 to x = 10.
Table 5.1 shows the relative errors

∆ỹi(10) =

∣

∣

∣

∣

ỹi(10)− yi(10)

yi(10)

∣

∣

∣

∣

(5.46)
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Table 5.1: Relative errors iñy(10) computed with three different CPM-versions: (a) the LILIX
method, (b) CPM{8,6} and (c) CPM{10,8}.

tol nstep T ∆ỹ1(10) ∆ỹ2(10) ∆ỹ3(10)

10−8 (a) 77 1.43 5.33(−8) 5.32(−8) 5.33(−8)
(b) 90 1.51 1.77(−10) 1.75(−11) 1.05(−10)
(c) 59 1.23 3.86(−11) 8.18(−12) 2.49(−11)

10−10 (a) 165 2.67 5.70(−10) 5.74(−10) 2.50(−11)
(b) 174 2.81 9.20(−13) 3.05(−13) 6.44(−13)
(c) 97 1.96 2.55(−13) 4.29(−14) 1.60(−13)

10−12 (a) 355 5.26 5.88(−12) 5.92(−12) 5.90(−12)
(b) 357 5.43 1.61(−14) 1.76(−14) 1.45(−14)
(c) 162 2.93 3.72(−15) 2.50(−15) 5.50(−15)

in the computed solutioñy(10) obtained with the MATLAB implementation of three
different methods: (a) the LILIX method [59], (b) the CPM{8,6} method and (c) the
CPM{10,8} method. The experiment was repeated for different values ofthe accuracy
tolerancetol. nstep represents the number of intervals in the partition constructed by the
method andT is the CPU time (in seconds) needed to obtain the results (in MATLAB).
The data reported in the table enable some conclusions:

• The two CPM{P,N}methods produce more accurate results than the LILIX method;
LILIX should have a higher number of intervals in its partition to reach the same
accuracy as the other two methods.

• As for the one-dimensional formulation of the CPM{P,N} methods, the number
of intervals decreases with increasing order.

• As a consequence of the lower number of intervals, CPM{10,8} is the fastest
method. The CPM{8,6} method is somewhat slower than LILIX, but, as already
mentioned, the results of this CPM{8,6} method are more precise.

So the CPM{10,8} method seems to be the best choice, even though the CPM{10,8}
method needs a higher number of matrix multiplications (in the calculation of theCm

matrices in (A.5)-(A.8))per intervalthan the CPM{8,6} method and the LILIX method
to construct its correction terms. Note however that the number of matrix multiplica-
tions actually performed can be reduced substantially by computing each matrix product,
which occurs in the computation of theCm matrices, only once. In addition, we can re-
mark that a commutator[V̄i, V̄j ] or an anticommutator{V̄i, V̄j} needs only one matrix
multiplication sinceV̄jV̄i = (V̄iV̄j)

T for V̄i andV̄j symmetric matrices. Moreover in
MATLAB, matrix multiplications are performed relatively rapidly and as a consequence
the matrix multiplications take only a small part of the total time. Also important is that
the matrix multiplications appearing in the CPM{P,N} algorithm must be performed
only once (before the actual propagation), while for the LILIX method the matrix multi-
plications occur during propagation. This is particularlyimportant for the solution of the
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boundary value problem where the solution is advanced for several trial values ofE in a
shooting procedure (see further). This means that even whenthe time needed to construct
the partition and to calculate the data associated to it, is higher for a certain CPM{P,N}
method than for the LILIX method, the CPM{P,N}method can be expected to be faster
when it is used to calculate a sufficiently large batch of eigenvalues.

A minor drawback of the higher order CPM{P,N}methods is that they require more
memory resources. The reason is that more information is stored prior to propagation, in
other words, in order to gain some speed in the propagation process some memory had
to be sacrificed. However we believe that the higher memory load forms no problem for
modern computer capacities, at least not for then values which occur in practice.

5.3 Solving the boundary value problem

5.3.1 Problem definitions

We consider the numerical solution of theregularboundary value problem of the form

y′′(x) = [V(x)− EI]y(x), x ∈ [a, b]. (5.47)

If there aren channels,y(x) is a column vector of ordern, I is then×n unity matrix and
V(x) is a symmetricn×n matrix. For a regular problem the endpoints of the integration
interval a and b are finite and the functions in theV(x) matrix lie in L1[a, b]. In the
endpointsa andb regular boundary conditions are applied. Acceptable solutions of the
coupled equations exist only whenE is aneigenvalueof the system. The regular boundary
conditions are of the following form (with0 the zero vector):

A0y(a) + B0y
′(a) = 0

A1y(b) + B1y
′(b) = 0 (5.48)

whereA0,B0,A1,B1 are realn by n matrices satisfying the so-calledconjointness
conditions (see [43] or [85])

AT
0 B0 −BT

0 A0 = 0

AT
1 B1 −BT

1 A1 = 0, (5.49)

and the rank conditions

rank(A0|B0) = n, rank(A1|B1) = n. (5.50)

Here(A0|B0) denotes then × 2n matrix whose firstn columns are the columns ofA0

and whose(n+ 1)st to 2nth columns are the columns ofB0.
For the regular problem there are infinitely many eigenvalues. The eigenvalues are

real, there are countable many of them and they can be orderedto satisfy

−∞ < E0 ≤ E1 ≤ E2 ≤ . . . , with Ek →∞ as k →∞.
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Only for the scalar casen = 1, it is guaranteed that all the eigenvalues are simple and
distinct. Forn > 1 however, any of the eigenvalues may have amultiplicity as great asn
(see [34]).

The objective of this section is to show how these eigenvalues can be found using a
CPM{P,N} method. A CPM{P,N} method is expected to be well suited to use as the
propagation method in a shooting procedure: since the partition isE-independent, many
information associated to this partition has to be computedonly once and can be stored
before the actual propagation. First we describe the shooting method more elaborately.
Next it is shown how the shooting procedure can be improved using the theory of Atkinson
[14] which extends the Prüfer theory to the vector case.

5.3.2 A shooting procedure

For a system ofn coupled equations, a shooting procedure can be used which islargely
inspired from the method outlined in section 3.2 for the one-dimensional problem. One
way to locate the eigenvalues is to look forE such that the determinant

φ(E) =

∣

∣

∣

∣

YL YR

Y′
L Y′

R

∣

∣

∣

∣

(5.51)

is zero in the interior matching pointxm ∈ (a, b) (see [41, 47]).YL andYR represent
the left- and right-hand matrix solutions. Amatrix solutionY of (5.47) is a matrix each
of whose columns is a solution such that

Y′′(x) = [V(x)− EI]Y(x). (5.52)

The leftn×n fundamental solutionYL(x) with columns satisfying the left hand boundary
conditions, is found by taking the initial valuesYL(a) = B0,Y

′
L(a) = −A0. Then any

solution satisfying these boundary conditions is of the formYL(x)c wherec is a constant
vector. Similarly we can find a fundamental solutionYR(x) with YR(b) = B1,Y

′
R(b) =

−A1. So the basis for our numerical method is to integrate the fundamental solutions
from the ends to some matching pointxm, evaluateφ(E) and take this as themismatch
(also called miss-distance in [105] and [85]).

Example 5.1 As a first test problem we use

y′′(x) =

[

3x/2− E −x/2
−x/2 3x/2− E

]

y(x), x ∈ [0, 1] (5.53)

with boundary condition matrices

A0 = B0 =

[

1 0
0 1

]

, A1 = B1 =

[

0 0
0 0

]

. (5.54)

Table 5.2 lists the first 16 exact eigenvalues (rounded to 12 decimals) as they are men-
tioned in [22]. Figure 5.1 shows the mismatch functionφ(E) for this test problem. It is
clear that the functionφ(E) is zero forE equal to an eigenvalue.
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Table 5.2: First 16 exact eigenvalues of test problem (5.53)
k Ek k Ek

0 10.368507161836 8 247.24018932857
1 10.865215710533 9 247.74042723263
2 39.978744789883 10 355.805814598764
3 40.479726088439 11 356.305983077456
4 89.326634542478 12 484.110657395956
5 89.827219332229 13 484.610782623713
6 158.41378981431 14 632.154713876864
7 158.91414800462 15 632.654810465433
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Figure 5.1: Mismatch functionφ(E) for test problem (5.53).

Example 5.2 The second test problem is of the form

y′′(x) = [V(x)− EI]y(x), x ∈ [0.1, 1], y(0.1) = y(1) = 0, (5.55)

whereV(x) is the4× 4 matrix:

Vij =
1

max(i, j)
cos(x) +

δi,j
xi
. (5.56)

This problem was discussed by Marletta as a test example for the SL12F-code [86]. This
Fortran code solves eigenvalue problems for linear Hamiltonian systems and is available
in the Netlib repository. The mismatch function for test problem 2 is shown in Figure 5.2.
The first few eigenvalues of the problem are{14.94180054, 17.04349658, 21.38042053,
26.92073133, 51.82570724, 55.80351609,. . . }.

There are some problems associated with the approach outlined above. One problem
is that the functionφ(E) does not change sign asE passes through an eigenvalueEk of
even multiplicity.
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Figure 5.2: Mismatch functionφ(E) for test problem (5.55)-(5.56).
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Figure 5.3: Mismatch functionφ(E) for problem (5.57) aroundE2 = 11.

Example 5.3 Consider the Schrödinger system where

V(x) =

[

x2 0
0 x2

]

(5.57)

over the interval[0, 10]. Each of the eigenvaluesEk = 3, 7, 11, ... has then multiplicity
equal ton = 2. Figure 5.3 shows theφ(E) function around the eigenvalueE2 = 11.
Theφ(E) function is zero atE = 11 but does not change sign, making it very difficult to
locateEk = 11.

Another problem is that the functionφ(E) does not give any way of determining
the index of the eigenvalue once it has been found. Thus we have no way of knowing
which eigenvalue we found whenφ(E) = 0. For the scalar case (n = 1), this problem
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was avoided by the Prüfer method (see sections 2.3.2 and 3.2.4). Using the Prüfer form
we were able to index the eigenvalues and to approximate thekth eigenvalue without
consideration of other eigenvalues. We would like to use an analogous procedure for a
matrix Schr̈odinger eigenvalue problem.

Atkinson [14] developed a Prüfer-like method for the matrix Sturm-Liouville prob-
lem. Marletta [85] used Atkinson’s theory to construct an integer-valued functionM(E)
with jumps at each eigenvalue. IfE is an eigenvalue with multiplicitym, thenM(E+)−
M(E−) = m, with M(E+) andM(E−) the right and left limit ofM(E). ThisM(E)
function allows us to define the spectral function

N(E) = The number of eigenvalues of (5.47) that are less thanE.

If we can calculate this function from shooting data, we are able to determine whether
a trial value ofE is “near” the eigenvalueEk we are looking for, and whether it is too
high or too low. IfE′ < E′′ are two values such thatN(E′) ≤ k andN(E′′) ≥ k + 1,
then thekth eigenvalueEk lies in the intervalE′ ≤ Ek < E′′. Once an interval[E′, E′′]
has been found which contains just one eigenvalue and is “sufficiently small” (see further
in 5.3.5), a Newton iteration process can be applied on the mismatch functionφ(E),
(with E′ ≤ E ≤ E′′) to obtainEk.

5.3.3 The Atkinson-Pr̈ufer method

Before considering the general problem and its complexities, we will reconsider briefly
the classical Pr̈ufer method and describe how this classical method can be used to con-
struct the functionN(E) for the simplest case: a scalar equation.

The classical Pr̈ufer method

Consider the one-dimensional equation

y′′(x) = [V (x)− E] y(x), x ∈ (a, b), (5.58)

with boundary conditions

a0y(a) + b0y
′(a) = 0, (5.59)

a1y(a) + b1y
′(a) = 0. (5.60)

We introduce coordinates in the phase plane:

u = y, w = y′. (5.61)

In a shooting process, the equation (5.58) is integrated from left to right, with initial values
u(a) = b0, w(a) = −a0, to obtain a left solutionuL, wL; and integrated from right to
left, with initial valuesu(b) = b1, w(b) = −a1, to obtain a right solutionuR, wR.

The main idea of the Prüfer method is to introduce polar coordinates(ρ, θ) in the
phase plane:

u = ρ sin θ, w = ρ cos θ. (5.62)
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The phase angleθ is defined (moduloπ) by the equation

tan θ =
u

w
. (5.63)

Using (5.58) and (5.61)-(5.62) it can be shown thatθ = θ(x) satisfies a differential
equation of first order (see section 2.3.2):

θ′ = cos2 θ − [V (x)− E] sin2 θ, a < x < b. (5.64)

Equation (5.64) has a left-solutionθL(x), with θL(a) = θ0(a); and a right-solutionθR(x),
with θR(b) = θ0(b), where the initial conditionsθ0(a) andθ0(b) are defined by

tan θ0(a) =

(

− b0
a0

)

, 0 ≤ θ0(a) < π, (5.65)

tan θ0(b) =

(

− b1
a1

)

, 0 < θ0(b) ≤ π. (5.66)

From equation (5.64) we see that ifθ(xi) = mπ (wherem is an integer), then
θ′(xi) = 1 > 0. This shows thatθL(x) increases through multiples ofπ asx increases,
this means thatθL can never be decreasing in a pointx = xi whenxi is a multiple of
π. Similarly θR(x) decreases through multiples ofπ asx decreases (see e.g. Figure 2.4).
Sinceu = 0 just whenθ is a multiple ofπ, the number of zeros ofu (or y) on (a, xm)
is then the number of multiples ofπ (strictly) betweenθL(a) andθL(xm). Analogously
the number of zeros ofu on (xm, b) is the number of multiples ofπ through whichθR

decreases going fromb to xm. Knowing that the indexk of an eigenvalue equals the
number of zeros of the associated eigenfunctionu(x) on the open interval(a, b), we can
use these results to formulate the functionN(E).

The functionsθL, θR depend onE. So we can write explicitlyθL(x,E) andθR(x,E).
To define a formula forN(E), let

θL(xm, E)− θR(xm, E) = n(xm, E)π + ω(xm, E) (5.67)

wheren(xm, E) is an integer and

0 ≤ ω(xm, E) < π.

N(E) can then be defined as follows:

N(E) = n(xm, E) + 1

or

N(E) =
1

π
[θL(xm, E)− θR(xm, E)− ω(xm, E)] + 1. (5.68)

The functionN(E) is a piecewise constant with jumps at the eigenvalues:N(E+) −
N(E−) = 1.
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The Atkinson-Prüfer Method for matrix problems

We again consider the vector Schrödinger equation (5.47). As for the scalar case, we
introduce:

U = Y, W = Y′.

We integrate the equation (5.47) from the left and right endpoints towards a chosen
point xm ∈ [a, b]. Let UL,WL be the matrix solution of (5.47) with initial conditions
U(a) = B0,W(a) = −A0, andUR,WR the solution with initial valuesU(b) =
B1,W(b) = −A1. Although it is possible to define an inverse-tangent function for ma-
trix variables, the result is not really useful. The difficulty is that the corresponding sine
and cosine functions do not have the desirable derivative properties of their scalar coun-
terparts, introducing difficulties in the formulation of a first order differential equation.
Therefore Atkinson used another mapping from complex analysis to map the real line
onto some bounded curve in the complex plane.

The matrix functionΘ is defined:

Θ(x,E) = [W(x) + iU(x)] [W(x)− iU(x)]
−1
. (5.69)

This matrixΘ and its phase angles were introduced into oscillation theory by Atkinson
[14] and Reid [110]. The conjointness property (5.49) and rank conditions (5.50) ensure
thatΘ exists and is unitary.

Also here the differential equation (5.47) may be reformulated in terms of a nonlinear
first-order differential equation forΘ:

Θ′ = iΘΩ, a < x < b, (5.70)

whereΩ is the Hermitian matrix given by

2Ω = (Θ + I)+(Θ + I)− (Θ− I)+(V − EI)(Θ− I), (5.71)

with + as the conjugate transpose (or hermitian conjugate) symbol.
Let nowΘL andΘR be the unitary matrices obtained fromUL,WL andUR,WR

by formula (5.69). Because theseΘ matrices are unitary, their eigenvalues all lie on the
unit circle. The eigenvalues ofΘL andΘR are denoted by{exp(iφL

j (x)) | j = 1, . . . , n}
and{exp(iφR

j (x)) | j = 1, . . . , n} respectively. The so-calledphase anglesφL
j (x), φR

j (x)
are uniquely determined continuous functions when the following conditions are imposed

φL
1 (x) ≤ φL

2 (x) ≤ · · · ≤ φL
n(x) ≤ φL

1 (x) + 2π,

φR
1 (x) ≤ φR

2 (x) ≤ · · · ≤ φR
n (x) ≤ φR

1 (x) + 2π,

0 ≤ φL
j (a) < 2π, 0 < φR

j (b) ≤ 2π. (5.72)

From [14] and [85] we know that the phase-anglesφL
j of the matrixΘL increase (and

never decrease) through multiples of2π with increasingx. Similarly theφR
j decrease

through multiples of2π asx decreases. Notice the correspondence betweenφj/2 and the
scalarθ appearing in the classical Prüfer method.
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At the chosen pointxm ∈ [a, b] let the eigenvalues ofΘ+
R(xm)ΘL(xm) be{exp(iωj)

| j = 1, . . . , n}, where theωj are normalized by the condition

0 ≤ ωj < 2π. (5.73)

We can now give the formula for the functionM(E) which was defined by Marletta in
[84] and [85]:

M(E) =
1

2π







n
∑

j=1

φL
j (xm)−

n
∑

j=1

φR
j (xm)−

n
∑

j=1

ωj(xm)







. (5.74)

This formula can be used to define the functionN(E) (see [43]), which is the number of
eigenvalues of (5.47) that are less thanE:

N(E) = M(E) + n. (5.75)

In [85] the following notations were used to represent the three quantities appearing in
Eq. (5.74):

argdetΘL(xm, E) =

n
∑

j=1

φL
j (xm), (5.76)

argdetΘR(xm, E) =

n
∑

j=1

φR
j (xm), (5.77)

argdetΘLR(xm, E) =
n
∑

j=1

ωj(xm). (5.78)

The overbar onargdet ΘLR(xm, E) indicates that the angles are normalized to lie in the
interval[0, 2π).

Example 5.4 Figure 5.4 shows the phase anglesφL
j (x), j = 1, . . . , 4 for the first 6 eigen-

values of the second test problem given by (5.55)-(5.56) (see Example 5.2). We just took
xm = b = 1, that is we propagated the left-hand solution froma up to b. It is clear
that theφL

j (x) increase through multiples of2π. For the first eigenvalueE0, there is one
phase angle reaching2π, for the second eigenvalueE1 there are two phase angles passing
through2π, for the third eigenvaluesE2 one can see three phase angles passing through
2π and so on.

Example 5.5 Figure 5.5 illustrates the construction of Marletta’sM function for the first
test problem (5.53) given in Example 5.1. Since the problem is symmetric the two phase
angles coincide, that isφL

1 (x) = φL
2 (x) andφR

1 (x) = φR
2 (x). In the matching pointxm =

0.24, we haveargdetΘL (xm) ≈ 4.4π, argdetΘR(xm) ≈ −14.1π andargdetΘLR ≈
2.5π. With the formula (5.74) we computeM(350) = [4.4π + 14.1π − 2.5π]/(2π) = 8,
and thus the number of eigenvalues less than 350 is then givenby N(350) = 10. Table
5.2 indeed shows thatE = 350 is larger thanE9 but smaller thanE10.
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Figure 5.4: The phase anglesφL
j (x), j = 1, . . . , 4 for the first 6 eigenvalues of the second test

problem (5.55)-(5.56). In all casesxm = b = 1.



5.3 Solving the boundary value problem 121

0 0.2 0.4 0.6 0.8 1

−16*pi

−14*pi

−12*pi

−10*pi

−8*pi

−6*pi

−4*pi

−2*pi

0

2*pi

4*pi

6*pi
argdet Θ

L
(x)

argdet Θ
R

(x)

φ
j
L(x)

φ
j
R(x)

argdet Θ
LR

x

Figure 5.5: The Atkinson-Pr̈ufer functions for the first test problem (5.53) withE = 350,
xm = 0.24. The two phase angles coincide, that isφL

1 (x) = φL
2 (x) and φR

1 (x) =
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2 (x). argdetΘL(x) =
Pn

j=1 φL
j (x), argdetΘR(x) =

Pn
j=1 φR

j (x) and argdetΘLR =Pn
j=1 ωj(xm).

5.3.4 Computing Marletta’s M(E) function

In order to computeM(E) for a certainE-value, we need to be able to compute the quan-
titiesargdetΘL(xm, E), argdetΘR(xm, E) =

∑n
j=1 φ

R
j (xm) andargdetΘLR(xm, E) =

∑n
j=1 ωj(xm). Note that we need only to knowΘL(xm, E) andΘR(xm, E) to cal-

culate argdetΘLR(xm, E), since the anglesωj are normalized to lie in the interval
[0, 2π). ΘL(xm, E) (or ΘR(xm, E)) is easily obtained by substituting the matrix so-
lution UL(xm), WL(xm) (or UR(xm),WR(xm)) in (5.69).

The calculation ofargdetΘL(xm, E) or argdetΘR(xm, E) is more difficult. We
have to integrateΘL (actually we integrate the original differential system (5.47) and
form theΘ matrices from the appropriate matrix solutions of (5.47)),from x = a to
x = xm, andΘR from x = b to x = xm. During the integration we have to follow
argdetΘL and argdetΘR continuously and count the number of multiples of2π in each. In
[85], Marletta describes a method based on constant coefficient approximation to compute
argdetΘL and argdetΘR for the general Sturm-Liouville problem. The algorithm we will
describe here is based on this method of Marletta, but adapted to the use of a CPM as
propagation method for the solution of the original differential equation (5.47).

A CPM is used to propagate the solutionU,W over the mesh

a = x0 < x1 < · · · < xnstep = b.
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argdetΘL(a) and argdetΘR(b) are unambiguously known from (5.72). Consider now
the propagation across an interval[xt−1, xt]. Suppose argdetΘ (argdetΘL or argdetΘR)
is known in one endpoint of the intervalxbegin and we want to obtain argdetΘ in the
other endpoint, calledxend. This means that for the left propagationxbegin = xt−1 and
xend = xt, while for the right propagationxbegin = xt andxend = xt−1.

In order to compute argdetΘ correctly, and not just modulo2π, we must count the
number of times that some phase-angleφj , j = 1, . . . , n of Θ passes through a multiple
of 2π asx moves fromxbegin to xend. We try to do this by decoupling the system into
n scalar ones to which the simple Prüfer method can be applied. This means that we try
to obtain a problem in diagonal form. Again, we consider the diagonalization process
discussed in section 5.2.1. Since

D−1ΘD = (WD + iUD)(WD − iUD)−1 = ΘD (5.79)

we know that the eigenvalues ofΘ are precisely the same as those ofΘD. So we may
forget aboutΘ and think only in terms ofΘD.

As seen in section 5.2.2, the zeroth order propagation of thematricesUD andWD

can be written as

UD(x) ≈ ξ(Z)UD(xbegin) + δη0(Z)WD(xbegin),

WD(x) ≈ (Z/δ)η0(Z)UD(xbegin) + ξ(Z)WD(xbegin), (5.80)

with Z = (VD
0 − EI)δ2 andδ = x− xbegin. Note that hereδ is positive for the forward

propagation and negative for the backward propagation.
In order to compute argdetΘD(x) from argdetΘD(xbegin) we consider the auxiliary

matrixΦ(x) given by

Φ(x) = (ξ − iδη0)
−1

(ξ + iδη0)Θ
D(xbegin). (5.81)

This is a product of unitary matrices and is therefore unitary. Let now the eigenvalues of
ΘD beexp(iφj) and those ofΦ beexp(iψj), and suppose that

φj = 2πnj + βj , ψj = 2πmj + αj ,

wherenj andmj are integers andαj andβj lie in [0, 2π). Then we can write

argdetΘD = argdetΦ +

n
∑

j=1

(βj − αj) + 2π

n
∑

j=1

(nj −mj). (5.82)

The αj andβj are easily computed directly fromΦ andΘD, because the number of
multiples of2π in theαj andβj is unambiguous.ΘD is calculated fromUD andWD

using (5.79) andΦ is obtained using (5.81).
The quantity argdetΦ can be calculated using the following identity

argdetΦ = argdetΘD(xbegin) + argdet(ξ − iδη0)
−1(ξ + iδη0). (5.83)
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The termargdet(ξ−iδη0)
−1(ξ+iδη0) is computed by applying a Prüfer transformation

to each diagonal term in turn: for eachj let yj be the solution of the initial value problem

−y′′j + djyj = 0, yj(xbegin) = 0, y′j(xbegin) = 1,

where thedj are the elements of the diagonal matrixVD
0 −EI. The Pr̈ufer transformation

yj = ρj sin θj , y′j = ρj cos θj .

is applied. Thenθj satisfies the initial value problem

θ′j = cos2 θj − dj sin2 θj , θj(xbegin) = 0.

This may be solved exactly in terms of elementary functions as follows

θj(x) = atan2(δη0(Zj(δ)), ξ(Zj(δ)))

with atan2 the four-quadrant inverse tangent. Then we may compute

argdet(ξ − iδη0)
−1(ξ + iδη0) = 2

n
∑

j=1

θj . (5.84)

Returning to (5.82), the only unknown quantity is

n
∑

j=1

nj −
n
∑

j=1

mj .

In [85], it was shown that when only zeroth order propagatorsare used, this quantity is
zero, provided the interval is taken small enough such that the (zeroth order) propagation
is exact. Here larger intervals are used, on which the propagation by the CPM is exact.
As a consequence it is no longer guaranteed that

∑n
j=1 nj −

∑n
j=1mj is zero. However

when we want the CPM propagation to be exact, the chosen intervals are small enough to
reach already a reasonable approximation of the solution bythe zeroth order propagation.
The differences between the phases calculated by the zerothorder propagation and the
ones obtained with the CPM will then generally be much smaller than2π and in almost
all cases

∑n
j=1 nj −

∑n
j=1mj is zero. Only some special care is necessary when one

of the phases is close to a multiple of2π. In this case we compute argdetΘ over the two
halves of the current interval[xbegin, xend]. The accumulation of the results over the two
subintervals should lead to the same change in multiples of2π as over the whole interval.

In the assumption that the intervals are small enough to have
∑n

j=1 nj −
∑n

j=1mj =
0, we use the formula

argdetΘD(x) = argdetΘD(xbegin) + argdet(ξ − iδη0)
−1(ξ + iδη0) +

n
∑

j=1

(βj − αj)

to propagateargdetΘD. And sinceargdetΘ = argdetΘD, this result allows us to keep
track of the number of multiples of2π in argdetΘ as we integrate across an interval.
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Figure 5.6: The functionN(E) for the first test problem (5.53).
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Figure 5.7: The functionN(E) for the second test problem (5.55)-(5.56).

Example 5.6 Figures 5.6 and 5.7 show theN(E) function (computed by the algorithm
described above) for the test problems given in Examples 5.1-5.2. As we increase the
E value, we see a “jump” in the index value asE passes through an eigenvalue of the
Schr̈odinger problem. The size of the jump indicates the multiplicity of the eigenvalue.

5.3.5 Eigenvalue computation

Algorithm

Our objective is now to describe how we can useN(E) to compute the eigenvalueEk.
Of course, first a mesh must be constructed for our CPM. We again create a mesh

which has stepsizes consistent with a user specified tolerance. As already mentioned, this
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mesh has to be generated only once (since it is independent ofE) at the very beginning of
the run and can then be used for all eigenvalue calculations.For this reason our algorithm
is particularly suited for calculating large sets of eigenvalues.

Over the generated mesh, for different trial values ofE a left solution will be com-
puted on[a, xm] and a right solution on[xm, b] to obtain the values ofY,Y′ at each
side of the matching pointxm. This matching point was fixed at the very beginning of
the computation and is the meshpoint which is the closest to the deepest bottom of the
potential functionsVij (1 ≤ i ≤ n, 1 ≤ j ≤ i). The data obtained at each side ofxm

are combined to calculate the mismatch functionφ(E) using Eq. (5.51). Since the CPM
algorithm allows a direct evaluation of the first derivativeof Y andY′ with respect to
E, the derivative ofφ(E) with respect toE can be computed. This means that a Newton
iteration procedure can be used to locate the roots ofφ(E):

Enew = E − φ(E)

φ′(E)
. (5.85)

The Newton iteration procedure is convergent only if the initial guess forE is sufficiently
close to the eigenvalueEk which has to be located. Therefore, the procedure consists of
two stages. In the first stage, a good initial guess for the Newton iteration is searched for.
The second stage consists in effectively iterating until the requested accuracy is achieved.

In the first stage we look for an interval[Elow, Eup] containing just one eigenvalue
(Ek), using the functionN(E). BothEnew(Elow) (from (5.85)) andEnew(Eup) must
be inside[Elow, Eup]. Once acceptable values forElow andEup are found, the Newton
iteration (stage 2) is started withE = (Elow + Eup)/2 as initial guess. To continue the
calculation for the next eigenvalueEk+1, a good starting value isElow = Eup.

The error in the eigenvalue approximations can be estimatedby calculating for each
eigenvalue an associated ‘reference’ eigenvalue. The estimation of the error in a certain
calculated eigenvalue (the so-called basic eigenvalue) isthen the difference between the
basic eigenvalue and the more accurate reference eigenvalue. One way to obtain a ref-
erence eigenvalue is to use an additional mesh with finer stepsizes. We constructed the
additional ‘reference’ mesh by halving each interval of theoriginal ‘basic’ mesh.

The search for the basic eigenvalues is first done (on the basic mesh) and only in this
case the first stage of the search is activated. The search forthe reference eigenvalues
involves only the Newton iteration (stage 2) which starts with the basic eigenvalue as
initial guess. Since the difference of the two eigenvalues is usually very small, only a
small number of extra iterations is necessary to calculate areference eigenvalue.

MATLAB code

The algorithm described in the previous sections is implemented in a MATLAB package.
The package was developed in MATLAB version 7.1 and can be downloaded from [2].
The package includes some examples showing how the different methods can be called in
order to compute some eigenvalues. Here, we briefly discuss the MATLAB code needed
to solve the first test problem. The following commands definethe system of Schrödinger
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equations and initialize the CPM:

a=0; % Integration interval
b=1;
n=2; % Dimension of the problem
V={'3 * x/2','-x/2','3 * x/2'}; % Potential matrix
s=scs(V,a,b,n); % constructs the system
cp=cpm10_8(s,1e-10); % constructs the partitions

First the problem is specified by its endpointsa andb and the potential matrix func-
tion V(x). This potential matrix is symmetric and only the elements inthe lower triangle
have to be specified. The constructor of the classscs is called, which constructs an ob-
ject respresenting the system of coupled Schrödinger equations. This object is then passed
to another method which implements the CPM. Here we usedcpm10_8 which imple-
ments the CPM{10,8} algorithm, but alsocpm8_6 is included. The second argument of
cpm10_8 is a positive constant representing the accuracy requestedin the results. An
object is returned containing information on the partition.

The methodget_eigenvalues can be used to calculate a batch of eigenvalues

E = get_eigenvalues(cp,pmin,pmax,indices)

wherecp is an instance of the classescpm10_8 or cpm8_6. If indices is true, the
eigenvaluesEk with index k betweenpmin andpmax are calculated. Ifindices is
false the eigenvalues in the energy-range[pmin,pmax] are computed. The method re-
turns a structureE, in which all information related to the calculated eigenvalues is stored.
E.eigenvalues contains the eigenvalues in ascending order, while the associated in-
dices are collected inE.indices andE.errors holds the estimated errors. The field
E.success is false when the CPM was not able to obtain any data.E.status is a
vector of status-flags. WhenE.status(k) > 0, there were some difficulties detected
during the calculation of thekth eigenvalue or its index. WhenE.status(k) is equal
to one, the input tolerancetol was too large to ensure a correct evaluation of theN(E)
function (see section 5.3.4). A status flag larger than zero suggests that the input tolerance
should be decreased.

When we want to calculate the eigenvalues with indices from 0 to 10, we use the
following command:

E = get_eigenvalues(cp,0,10,true)

while

E = get_eigenvalues(cp,50,100,false)

returns the eigenvalues between 50 and 100.
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Table 5.3: Some eigenvalues of the first test problem calculated with the CPM{10,8} in a shooting
procedure.k is the eigenvalue index andnint is the number of intervals in the basic partition.

k tol = 10−6 tol = 10−8 tol = 10−10

0 10.3685071614415 10.3685071618259 10.3685071618362
1 10.8652157041883 10.8652157103674 10.8652157105314
2 39.9787447902932 39.9787447898867 39.9787447898833
3 40.4797260951163 40.4797260884903 40.4797260884383
4 89.3266345425364 89.3266345424888 89.3266345424788
5 89.8272193331295 89.8272193323913 89.8272193322298

10 355.8058145966053 355.8058145987640 355.8058145987645
15 632.6548104654120 632.6548104654298 632.6548104654330

nint 2 3 4

Some results

We take again the first test problem (5.53). Table 5.3 shows some results we obtained
with the CPM{10,8} algorithm for different values of the input tolerance. The last line of
the table contains the number of intervalsnint in the basic partition. Table 5.4 shows the
ratio of the true error to the estimated error for the two CPM:CPM{8,6} and CPM{10,8}.
This ‘goodness’ ratio has always values smaller or very close to one, which illustrates the
adequacy of our error estimation.

We also included some results for the second test problem (5.55). Table 5.5 contains
the first eigenvalues of the problem calculated to a high accuracy. These eigenvalues cor-
respond to the roots of the mismatch function shown in Figure5.2. Table 5.6 shows some
results for a higher eigenvalue index. The second column shows the ‘exact’ eigenvalues
which were obtained using the algorithm with an input tolerance10−12. The eigenvalue
approximations calculated with an input tolerance10−6 are listed in the third column.
The fourth column contains the estimated errors∆E for these eigenvalues, i.e. the differ-
ences between the reference eigenvalues and the basic eigenvalues. Again one can see the
accuracy of the error estimates.

All calculations were done using the CPM{10,8}method, however the same accuracy
can be reached using the CPM{8,6}method. In most cases, the CPM{8,6}method needs
some more time than the CPM{10,8} algorithm. The reason is that the CPM{8,6}method
needs more meshpoints in its partition than the CPM{10,8} method.

5.4 Conclusion

In this chapter we discussed the extension of the CPM to systems of coupled Schrödinger
equations. As for the one-dimensional problem, a Maple program was developed to com-
pute the expressions of the perturbation corrections for the class of CPM{P,N}methods.
A CPM{10,8} algorithm was presented.
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Table 5.4: Ratio |actual error|
|error estimate|

for the first test problem (tol = 10−8). k is the eigenvalue index
andnint is the number of intervals in the basic partition.

k CPM{8,6} CPM{10,8}

0 1.000 1.001
1 0.993 1.001
2 1.000 0.998
3 0.998 0.997
4 1.002 1.002
5 1.001 1.000

10 0.997 0.887
15 0.999 0.995

nint 6 3

Table 5.5: The first 6 eigenvalues of the second test problem (5.55)-(5.56) calculated with the
CPM{10,8} in a shooting procedure.∆E is the error estimate,k is the eigenvalue index andnint
is the number of intervals in the basic partition.

k tol = 10−12 ∆E

0 14.94180054416473 3.6(−15)
1 17.04349658304373 3.8(−15)
2 21.38042052885422 1.8(−14)
3 26.92073133400956 6.0(−15)
4 51.82570724029870 4.3(−14)
5 55.80351609486795 2.8(−14)

nint 81

Table 5.6: Some higher eigenvalues of the second test problem (5.55)-(5.56):the exact eigenvalues,
the calculated eigenvalues fortol = 10−6 and the corresponding error estimates∆E. k is the
eigenvalue index andnint is the number of intervals in the basic partition.

k true eigenvalue tol = 10−6 ∆E

201 31702.815244147 31702.8152435166−6.3(−7)
202 31747.557394158 31747.55739415814.0(−10)
203 32069.904602246 32069.9046041610 1.9(−6)
204 32950.776323037 32950.7763247290 1.7(−6)

nint 81 15
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We also discussed the computation of the eigenvalue problemfor systems of regular
equations. Using a CPM in a shooting procedure, eigenvaluesare calculated accurately.
However such a shooting method does not determine the index of the eigenvalue. To solve
this problem, the algorithm has been supplemented by Atkinson’s matrix generalization
of the Pr̈ufer transformation.





Chapter 6

Singular problems

Until now the main focus was on regular Sturm-Liouville and Schrödinger problems de-
fined on a finite integration interval for which the CPM were shown to be very efficient.
However many problems are defined on an infinite integration interval, i.e.a = −∞
and/orb = +∞. Other Sturm-Liouville problems have singular endpoints,that is at least
one ofp−1, q, w is not integrable in any neighbourhood of the endpointa or b. Both
problems defined on an infinite integration interval and problems with singular endpoints
require a special numerical treatment.

6.1 A singular Sturm-Liouville problem

A singular problem is, of course, one that is not regular. More precisely, a classical
singular Sturm-Liouville problem is one that is defined by the Sturm-Liouville differential
equation

− d

dx

[

p(x)
dy(x)

dx

]

+ q(x)y(x) = Ew(x)y(x), (6.1)

on a finite or infinite interval(a, b) wherep,w andq are piecewise continuous withp and
w strictly positive and one or both ofa, b is a singular endpoint. The endpoint (say)x = b
is singular if one or more of

∫
∣

∣

∣

∣

1

p

∣

∣

∣

∣

dx,

∫

|q| dx,
∫

|w| dx (6.2)

diverges atx = b, and regular if they all converge. The above allows the endpoint a =
−∞ or the endpointb = +∞ to be regular, but from the computational viewpoint some
special treatment will be needed to deal with the infinite integration interval.

The theory of singular Sturm-Liouville problems is more complicated than for regu-
lar Sturm-Liouville problems and gives rise to a whole rangeof difficult numerical tasks,
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such as(i) the classification of the endpointsa, b as limit-circle or limit-point and oscil-
latory or nonoscillatory;(ii) automatically finding appropriate (approximating) boundary
conditions in the endpoints;(iii) determining how many eigenvalues there are, if this is
finite; (iv) finding resonances (quasi eigenvalues) within the continuous spectrum (see
e.g. [106] and [38]).

Since the theory for singular problems can be very intricate, we only attempt to de-
scribe briefly some of the main points. More concrete we will briefly discuss in section
6.2 the different types of singular endpoints and the form ofthe associated eigenvalue
spectra. For the full theory, we can refer to the classical works of Weyl [129], Kodaira
[69], Titchmarsh [119], or Dunford and Schwartz [33] and fora numerical viewpoint to
[105].

For singular problems and problems defined on an infinite integration interval anin-
terval truncationprocedure must be adopted. For instance assume thatx = b is a singular
or infinite endpoint, andx = a is regular and finite (the case of two singular or infinite
points is a simple extension of this case). We then choose some b∗ < b and solve a trun-
cated problem on[a, b∗] to obtain our results. The choice ofb∗ will generaly depend on
the indexk of the eigenvalue sought, and it will also be necessary to impose some sort of
artificial boundary condition atx = b∗. We will discuss a truncation procedure for prob-
lems with infinite endpoints in section 6.3, while in section6.4 we consider the treatment
of a specific class of singularities.

6.2 Classification of singular endpoints

The most important properties of a singular endpoint are theWeyl-Kodairalimit-point,
limit-circle classification, which is independent ofE; and whether it isoscillatory or
nonoscillatory, which may depend onE. To avoid making all statements twice (once at
each end), we will often use the lettere as a generic endpoint, i.e. eithere = a or e = b.

6.2.1 Limit-point and limit-circle endpoints

The primary classification of a singular endpoint is the classical one of Weyl [129], Ko-
daira [69] and Titchmarsh [119] as follows.

The endpointe is limit-circle (LC) if e is singular and all solutionsy(x) of the Sturm-
Liouville differential equation aresquare-integrable(L2) at e with respect to the weight-
functionw, i.e., for someE any solutiony(., E) of the differential equation (6.1) satisfies

∫ e+ǫ

e

|y(x,E)|2w(x)dx < +∞. (6.3)

Otherwise the equation is calledlimit-point (LP) atx = e, that is for someE there exists
only one nonzero solutiony(., E) (up to a scalar factor) of the differential equation which
is square-integrable at the endpointe. This LC/LP classification is independent ofE (see
[126]). In the LP case no boundary condition is required atx = e to get a well-posed
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Sturm-Liouville problem: the condition (6.3) is sufficient(see [88]). For the LC case
however, a boundary condition is needed.

As mentioned in [88], for both LP and LC, if the problem concerned has akth eigen-
value, then imposing the boundary conditiony(e∗) = 0 at the truncation pointe∗ yields
a regular problem whosekth eigenvalue converges to thekth eigenvalue of the original
problem ase∗ → e.

6.2.2 Oscillatory and nonoscillatory behaviour

A second classification is intononoscillatorybehaviour, for which some solution and
hence every solution has only finitely many zeros in some neighbourhood of the endpoint
e; and oscillatory, for which every solution has infinitely many zeros neare. For LC
endpoints this classification is independent ofE; for LP endpoints it may beE-dependent.

For each singular endpointx = e of Eq. (6.1) one and only one of the following cases
occurs:

• O: Eq. (6.1) is oscillatory atx = e for all realE.

• N: Eq. (6.1) is nonoscillatory atx = e for all realE.

• N/O: There exists a real numberΛ such that (6.1) is nonoscillatory atx = e for all
E ∈ (−∞,Λ) and oscillatory atx = e for E ∈ (Λ,+∞). The cutoff valueΛ may
be oscillatory or nonoscillatory.

Independently of square-integrability, if for a given realE solutions of the Sturm-
Liouville differential equation are nonoscillatory ate, then there is a unique (up to a
constant multiple) ‘small’ solutionyp(x), calledprincipal or subdominant, such that ifz
is any solution linearly independent ofyp, we have

yp(x)/z(x)→ 0 as x→ e. (6.4)

For this and other related results on principal solutions see [45]. For both LPN (limit-
point nonoscillatory) and LCN (limit-circle nonoscillatory), the ‘small’ principal solution
is the most numerically stable. In the LCN case there is one special boundary condition,
theFriedrichs boundary condition, which selects the principal solution for anyE. This is
the boundary condition that is relevant in almost all physical applications. For a discussion
of the Friedrichs boundary condition, see [94].

6.2.3 Classifying the spectrum

Whereas the spectrum of a regular Sturm-Liouville problem always consists of a sequence
of isolated, simple eigenvalues tending monotonely to+∞, that of a singular problem is
a closed infinite subset of the real line which can show a wide variety of ‘shapes’. The
most common cases are:

(a) The eigenvalues form an infinite sequence bounded below with +∞ the only accu-
mulation point, as for a regular Sturm-Liouville problem;
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(b) As case (a), but a sequence unbounded in both directions,i.e. tending to both−∞
and+∞;

(c) An infinite sequence of eigenvalues, bounded below, withone finite accumulation
pointEc such that allE ≥ Ec are in the continuous spectrumσc;

(d) A finite, possibly empty, sequence all less thanEc such that allE ≥ Ec are inσc.

Example 6.1 An example of a singular problem having both discrete spectrum (eigen-
values) and continuous spectrum (σc) is the hydrogen atom equation

y′′ = (−1/x+ 2/x2 − E)y, a = 0, b = +∞. (6.5)

This problem has a discrete spectrum with exact eigenvaluesof the formEk = −1/(2k+ 4)2,
k = 0, 1, . . . and a continuous spectrumσc = (0,+∞).

The limit-circle/limit-point (LC/LP) and nonoscillatory/oscillatory (N/O) classifica-
tion of endpoints tells us a lot about the spectrum. There arefive possible combinations
at an endpoint:

• LCN : LC and nonoscillatory for all realE.
• LCO : LC and oscillatory for all realE.
• LPN: LP and nonoscillatory for all realE.
• LPN/O: LP and nonoscillatory forE less than some criticalΛ, oscillatory forE >

Λ. The changeover pointΛ is the infimum of thecontinuous spectrum.
• LPO: LP and oscillatory for all realE.

This includes cases of regular endpoints since we may regarda regular endpoint as an ex-
ample of an LCN endpoint. There are close connections between the oscillatory/ nonoscil-
latory behaviour of solutions, the LP/LC endpoint classifications, and the qualitative prop-
erties of the spectrum, particularly, the location of discrete and continuous spectra, and
boundedness below of the spectrum.

A problem with no LCO or LPO endpoint has a spectrum bounded below, and the
eigenvalues can be counted from the lowest oneE0 upward to form an increasing se-
quence(Ek) (possiblily finite or empty), the integerk, the eigenvalue index, being the
number of zeros of the associated eigenfunction in(a, b). This case is thus the closest to
a regular problem.

By contrast a problem having one LCO endpoint and one LCN or regular endpoint
will have a discrete spectrum with an infinite decreasing sequence extending to−∞, as
well as an increasing sequence tending to+∞. Then all the eigenfunctions have infinitely
many zeros clustering at the LCO endpoint, so the eigenvalues can no longer be labeled
by the number of zeros in(a, b) as in the nonoscillatory case.

When one of the endpoints is LPN/O there is a finite or infinite set, possibly empty, of
eigenvaluesE0 < E1 < · · · < Ek, bounded above by a continuous spectrum.

For a LPO endpoint, for all realE the solutions oscillate infinitely often and are not
square-integrable. The spectrum is then the whole real lineand there are no eigenvalues.

There are also some other possibilities, such as bands of continuous spectrum, sepa-
rated by gaps. Such situations can occur when the coefficientfunctions are oscillating on
an infinite interval.
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Our MATSLISE package (see chapter 7) only solves problems with no oscillatory
(LCO or LPO) endpoints, that is problems with a spectrum bounded below (and possibly
bounded above by a continuous spectrum) where thekth eigenfunction has preciselyk
zeros in the interval(a, b). The numerical problems in the oscillatory case are partic-
ularly difficult. In this case every eigenfunction has an infinite number of zeros in any
neighbourhood of the endpoint and specialized techniques are required (see [18]).

6.2.4 The automatic classification of Sturm-Liouville problems

As already mentioned, Sturm-Liouville problems can be classified as regular or singular,
limit point or limit circle, oscillatory or nonoscillatory. From the classical Sturm-Liouville
solvers only SLEDGE [101] has an automatic endpoint classification algorithm build-in.
The algorithm (by S. Pruess, C.T. Fulton and Y. Xie) is based on a number of evaluations
of the coefficient functions near the endpoints and the returned classification information
can be used to improve the determination of eigenvalues and eigenfunctions.

6.3 Problems defined on an infinite integration interval

In the previous chapters we devised the CPM and LPM algorithms for a Schr̈odinger
problem defined on a finite integration interval. In this section we now discuss the devel-
opment of a truncation algorithm for Schrödinger problems defined on an infinite integra-
tion interval. We adopt the technique developed in [57] for anharmonic oscillators, based
on a WKB-approximation (named after Wentzel[128] - Kramers[71] - Brillouin[27]) and
apply it on a larger class of potentials.

We also show that a separate technique, with better results,can be introduced for the
potentials with a Coulomb-like tail. The explicit use of theasymptotic form of a Coulomb
equation leads us to a smaller cutoff value (truncation point) and more precise boundary
conditions.

We will use the truncation algorithms in combination with a CPM, but the procedures
discussed in this section can equally well be applied for theLPM.

6.3.1 Truncation of an infinite integration interval

Introduction

Let us first illustrate things by considering an example. Suppose the problem consists in
computing the first eigenvalues of the hydrogen problem

y′′(x) =

(

l(l + 1)

x2
− 1

x
− E

)

y(x), x ∈ (0,+∞), (6.6)

giving exact eigenvaluesEk = −1/(2k + 4)2, k = 0, 1, . . . when l = 1. We simply
impose the regular boundary conditionsy(ǫ) = 0 = y(b∗) whereǫ is a small andb∗ is
a largex-value, and solve the resulting problem on[ǫ, b∗]. Table 6.1 shows the obtained
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Table 6.1: The eigenvalues of the truncated hydrogen problem on [0.0001, 1000], computed with
CPM{16,14} andtol = 10−12.

k Ẽk |Ek − Ẽk| k Ẽk |Ek − Ẽk|
0 −0.062500000000 4.41(−15) 11 -0.001479288720 1.22(−9)
1 −0.027777777778 1.14(−15) 12 -0.001275339874 1.70(−7)
2 −0.015625000000 1.30(−16) 13 -0.001106144110 4.97(−6)
3 −0.010000000000 3.94(−16) 14 -0.000939152963 3.74(−5)
4 −0.006944444444 8.02(−16) 15 -0.000744066802 1.21(−4)
5 −0.005102040816 1.29(−15) 16 -0.000515946529 2.56(−4)
6 −0.003906250000 1.50(−15) 17 -0.000257573592 4.35(−4)
7 −0.003086419753 1.52(−15) 18 0.000028739013 6.54(−4)
8 −0.002500000000 1.45(−15) 19 0.000341439723 9.08(−4)
9 −0.002066115702 9.13(−16) 20 0.000679441392 1.20(−3)
10 −0.001736111109 1.75(−12) 21 0.001041942107 1.51(−3)

eigenvalue approximations̃Ek for the truncated problem withǫ = 0.0001 andb∗ = 1000.
The CPM{16,14} method is used with a user input tolerancetol = 10−12. The first
eigenvalues from the truncated intervalẼk obviously agree with those from the infinite
intervalEk. However, whenk is further increased the agreement gradually deteriorates.
In particular, all eigenvalues withk ≥ 18 are even positive. An increase withk of the
value ofb∗ is then needed to preserve a certain level of accuracy.

The need to increase the value ofb∗ with the indexk is also illustrated in Figure 6.1,
where the first eigenfunctions of the hydrogen equation are shown. The horizontal dotted
lines represent the energy levels of the (exact) eigenvalues and the associated wavefunc-
tions (eigenfunctions) are shown on the same level. The wavefunction is oscillating in the
region where the eigenvalueE is larger than the potential function (i.e.E > V (x)) but
it decreases exponentially in the so-called classically forbidden region (E < V (x)). The
value of the truncation pointb∗ for a certain value ofE should thus be taken far enough
into the classically forbidden region to be able to imposey(b∗) = 0 as boundary condition
without loss of accuracy in the eigenvalue calculations.

Selection of the cutoff value

The need for finding a rule for an accurate updating of the cutoff value b∗ in terms of
E is not restricted to the case of Coulomb-like potentials, asin the hydrogen example.
The problem was already considered in [57] by Ixaru for oscillators. He proposed an
algorithm based on the WKB-approximation. We will show now that this algorithm is
also applicable to other potential forms. We will describe the procedure for the case
whereb is infinite. An infinite endpointa can then be treated in the same way.

Let us fix the value ofE and letxt be the corresponding outer turning point, that is
the rightmost point whereE = V (x). We also assume thatV (x) > E for all x > xt.
As we are interested in the physically acceptable wavefunction we normally impose the
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Figure 6.1: The first eigenvalues, eigenfunctions and potential of the hydrogen equation

asymptotic conditionlimx→∞ y(x) = 0. The Schr̈odinger equation has two linearly in-
dependent solutions and forx > xt these are well described by the WKB approximation,
which means in essence that

y±(x) ∼ exp[±w(xt, x)] (6.7)

where

w(x1, x2) =

∫ x2

x1

z(t)dt with z(x) = [V (x)− E]1/2. (6.8)

As a matter of fact, the genuine WKB formulae contain also a factor [V (x)−E]−1/4 but its
consideration would only complicate the derivation without altering the main conclusion.
The form (6.7)-(6.8) allows using simple relations like

y±(x) = 1/y∓(x) (6.9)

and
y′±(x) = ±z(x)y±(x) (6.10)

in deriving the formulae below.
The problem is to determineb∗ as the leftmost point such that the cut does not affect

the accuracy. In applications initial conditions which mimic the physical condition will
be imposed at this point (these arey(b∗) = 0 andy′(b∗) = A) and the numerical solution
will be propagated backwards. The value of the constantA 6= 0 is arbitrary because the
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equation is homogenous. The general solution is a linear combination of the two linearly
independent solutions,

y(x) = α+y+(x) + α−y−(x) , (6.11)

and similarly for its first derivative,

y′(x) = α+y
′
+(x) + α−y

′
−(x) . (6.12)

On imposing the stated initial conditions and applying the relations (6.9) and (6.10) we
get

α+ =
Ay−(b∗)

2z(b∗)
, α− = −Ay+(b∗)

2z(b∗)
,

and then

y(x) =
Ay+(b∗)y−(x)

2z(b∗)
(S(x , b∗)− 1) , (6.13)

y′(x) =
Az(x)y+(b∗)y−(x)

2z(b∗)
(S(x , b∗) + 1) , (6.14)

where
S(x, b∗) = [y+(x)y−(b∗)]2 = exp[−2w(x, b∗)]. (6.15)

We see thatS(x, b∗) depends on the distance betweenx andb∗, to decrease fastly when
x moves to the left, for fixedb∗, or whenb∗ moves to the right, for fixedx. The influence
of the position ofb∗ on the value of the logarithmic derivative at somex, that is

y′(x)

y(x)
= z(x)

S(x , b∗) + 1

S(x , b∗)− 1
,

depends on howS(x, b∗), which measures the influence of the propagation fromb∗ to x,
compares with the other term (1 or -1) to which it has to be added. For double precision
arithmetic,S(x, b∗) is no longer ‘seen’ if it is smaller than10−16. It follows that no
gain has to be expected ifb∗ is chosen bigger than the value which ensures simply that
w(x, b∗) ≈ 18 (equivalent toS(x, b∗) = exp[−2w(x, b∗)] ≈ 10−16). Taking forx the
turning point, the condition for the determination of the suitableb∗ is

w(xt, b
∗) =

∫ b∗

xt

[V (x)− E]1/2dx ≥ 18 (6.16)

and this will be used in all runs.
What this condition (6.16) actually says is that the area enclosed by the energy level

and the potential function should be sufficiently large. This is illustrated by Figure 6.2:
when the potential functionV (x) increases rapidly the cutoff pointb∗ can be close to the
turning pointxt; when the potential increases less rapidly the cutoff pointmust be chosen
further away from the turning point.
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Figure 6.2: The selection of the cutoff value using the WKB-condition (6.16).

Eigenvalue computation

Suppose that we want to compute the energy spectrum betweenEmin andEmax. First a
suitable cutoffb∗ is computed forE = Emax, i.e. we look for the leftmost pointb∗ such

that
∫ b∗

xt
[V (x)−Emax]

1/2dx ≥ 18. The integral is approximated by repeated application
of the trapezoidal rule which is accurate enough for such an estimation. As for a regular
problem, we then generate a partition over the interval[a, b∗] and calculate the quantities
associated to this partition. One of these quantities is thearrayV̄ which contains for each
step the constant reference potential used by the CPM algorithm. For each trial valuēE of
E in [Emin, Emax] appearing in the shooting procedure, a truncation pointb̄ ∈ [a, b∗] can
then be found. The integral used to deduce a value forb̄ can now easily be approximated
usingV̄ in the quadrature formula (so no new function evaluations ofV (x) are necessary):

∫ b̄

xt

[V (x)− Ē]1/2dx ≈
ib̄
∑

i=it

hi[V̄i − Ē]1/2 (6.17)

whereit is the index of the interval containing the outer turning point. hi andV̄i are the
stepsize and constant reference potential of theith step. The solution is then propagated in
the shooting procedure froma up to the matching pointxm and fromb̄ (where the solution
is assumed to be zero, i.e. the right boundary condition is taken asy(b̄) = 0) down toxm

to generate the mismatch. A new trial valueĒ is calculated in terms of this mismatch and
the procedure is repeated as many times as necessary to obtain the eigenvalue within the
tolerance specified by the user.
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Table 6.2: The first eigenvalues of the harmonic oscillator calculated with CPM{16,14} andtol =
10−12.

k b̄ Ek

0 5.7306 0.999999999998
1 6.1815 2.999999999999
2 6.6459 4.999999999999
3 6.6459 6.999999999998
4 7.0940 8.999999999997
5 7.5422 10.999999999996
6 7.9903 12.999999999995
7 7.9903 14.999999999994
8 8.4360 16.999999999999
9 8.4360 18.999999999995
10 8.4360 20.999999999995

Table 6.3: Some higher eigenvalues of the harmonic oscillator calculated with CPM{16,14} and
tol = 10−12.

k b̄ Ek

100 17.4590 201.000000000003
500 35.0838 1000.999999999998
1000 50.1788 2001.000000000012

Numerical illustrations

Consider the harmonic oscillator defined over an infinite integration interval:

y′′ =
(

x2 − E
)

y, x ∈ (−∞,+∞) (6.18)

with exact eigenvalues given byEk = 2k + 1, k = 0, 1, . . . . We solved this problem
with the CPM{16,14}method included inMATSLISE (with input tolerancetol = 10−12).
Table 6.2 shows the first eigenvalues obtained in MATSLISE. When asking for the cal-
culation of the first 11 eigenvalues, the value obtained forb∗ is 8.4360 (anda∗ = −b∗
due to the symmetry of the problem). The partition is then constructed over the trun-
cated integration interval[a∗, b∗]. However during the shooting process, the solution is
only propagated on different[ā, b̄] intervals with ā and b̄ two meshpoints in the parti-
tion andb̄ ≤ b∗, ā = −b̄. The second column shows the value ofb̄ obtained for each
eigenvalue. Figure 6.3 shows the eleven lowest-energy eigenfunctions of the harmonic
oscillator problem. Again the horizontal dotted lines represent the energy levels of the
(exact) eigenvalues and the associated wavefunctions (eigenfunctions) are shown on the
same level. It is clear that the chosenb̄ values are all situated in the classically forbidden
region and that an eigenfunction can be assumed to be zero in its correspondinḡb value.
Table 6.3 shows that also for higher eigenvalues good cutoffvalues̄b are obtained.
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Figure 6.3: The first eleven eigenfunctions of the harmonic oscillator.

Table 6.4: Some eigenvalues of the hydrogen problem calculated with CPM{16,14} and tol =
10−12.

k b̄ Ek

0 1.05E2 −0.0625000000000
10 1.27E3 −0.0017361111111
100 5.32E4 −0.0000240292195
1000 4.25E6 −0.0000000249003

Let us also reconsider the hydrogen problem. Table 6.4 liststhe eigenvalue approxi-
mations and truncation points for some differentk values. All digits shown in the eigen-
value approximations are exact. The value ofb̄ increases rapidly withk.

6.3.2 Adapted boundary conditions for Coulomb-like potentials at
large distance

As shown in the previous section, a WKB-approach can be used toobtain good choices for
the cutoff values of the integration interval. These cutoffpoints are chosen large enough
such that the solution in these points may be assumed to be zero. However the algorithm
can be improved for problems with a potential which behaves as a Coulomb potential in
the asymptotic range, that is for largex values. Using an approximation of the asymptotic
Coulomb function more precise boundary conditions can be constructed which allows us
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to take smaller cutoff values.

The Coulomb equation in the asymptotic region

We consider the Coulomb equation of the form

y′′ +

(

E +
Z

x
− l(l + 1)

x2

)

y = 0, x > 0. (6.19)

whereZ is a constant. This Coulomb equation is an example of a radialSchr̈odinger
equation, as we will see in section 6.4.

With the change of variable

x =
r

2
√
−E

, (6.20)

and dividing by−4E Eq. (6.19) becomes:

d2w

dr2
+

(

−1

4
+

Z

2
√
−Er

− l(l + 1)

r2

)

w = 0, w(r) = y(x(r)). (6.21)

When we take

µ = l +
1

2
, κ =

Z

2
√
−E

(6.22)

we obtain the Whittaker differential equation [3]

d2w

dr2
+

(

−1

4
+
κ

r
+

1
4 − µ2

r2

)

w = 0. (6.23)

The solution of this equation can be expressed in terms of thesecond confluent hyperge-
ometric function (see Eq. (13.1.33) in [3])

Wκ,µ(r) = e−
r
2 rµ+ 1

2U(
1

2
+ µ− κ, 1 + 2µ, r), (6.24)

where, according to Eq. (13.5.2) in [3],U(a, b, r) can be written for larger as

U(a, b, r) = r−a
∑

n

(a)n(1 + a− b)n

n!
(−r)−n (6.25)

with

(a)0 = 1,

(a)n = a(a+ 1) . . . (a+ n− 1).

This means that for larger, we can write Eq. (6.24) as

Wκ,µ(r) = e−
r
2 rκ

∑

n

cnr
−n (6.26)
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where the coefficientscn are defined by

c0 = 1,

(n+ 1)cn+1 = −(l + 1− κ+ n)(−l − κ+ n)cn. (6.27)

The first derivative (with respect to the original Coulomb-variablex) is then

dWκ,µ

dx
= 2
√
−E dWκ,µ

dr
(6.28)

with (for larger)

dWκ,µ

dr
= −1

2
Wκ,µ(r) +

κ

r
Wκ,µ(r)− e− r

2 rκ
∑

n

ncnr
−n−1. (6.29)

We have the additional result that the derivative ofWκ,µ andW ′
κ,µ with respect toE can

be expressed as
dWκ,µ

dE
= − x√

−E
dWκ,µ(r)

dr
(6.30)

and

d

dE

dWκ,µ

dx
= − x√

−E
d

dr

dWκ,µ(r)

dx

= −2x
d2Wκ,µ(r)

dr2

= 2x

(

−1

4
+
κ

r
+

1
4 − µ2

r2

)

Wκ,µ(r).

(6.31)

These derivatives with respect to the energy are needed in the Newton iteration procedure
to obtain the eigenvalue approximations as the roots of the shooting mismatch function.
This means that we need the derivatives with respect to the energy to evaluateφ′(Et) in
the Newton formula

Et+1 = Et − φ(Et)/φ
′(Et) (6.32)

whereφ(E) = yLy
′
R − yRy

′
L is the mismatch function (see section 3.2.2).

Adapted boundary conditions for problems with a Coulomb-like potential in the
asymptotic region

The formulae derived above can be used to improve the truncation algorithm for problems
which behave as a Coulomb problem in the asymptotic region. Instead of assuming that
the solution is zero in the truncation pointb̄ we can use Eq. (6.26) and Eqs. (6.28),(6.29)
to obtain more precise values fory(b̄) andy′(b̄).

We also want to mention that as the eigenvalue indexk increases the eigenvalues
of a Coulomb problem come close to zero. As a result,κ increases very rapidly with
increasingk and the factorrκ in Eq. (6.26) and Eq. (6.29) can give rise to some overflow
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problems. However in the shooting procedure the values of the left-hand and right-hand
solutions can be normalized arbitrarily. This means that weonly need to know the ratio
W ′

κ,µ/Wκ,µ in b̄. So we construct the expressions for the scaled wavefunctionsW̄κ,µ such
thatW̄κ,µ = 1, i.e.:

W̄κ,µ(x) = 1, (6.33)

dW̄κ,µ

dx
(r) = 2

√
−E Ω(r), (6.34)

dW̄κ,µ

dE
(r) = − x√

−E
Ω(r), (6.35)

d

dE

dW̄κ,µ

dx
(r) = 2x

(

−1

4
+
κ

r
+

1
4 − µ2

r2

)

, (6.36)

with

Ω(r) = −1

2
+
κ

r
−
∑

n ncnr
−n−1

∑

n cnr
−n

. (6.37)

These last expressions are used to compute the boundary conditions in the cutoff point̄b
for problems which behave like a Coulomb problem aroundb̄. This allows us to cut off
the interval even at points where the solution is not yet zero(or close to zero).

Levin’s summation algorithm

The accurate summation of the asymptotic series
∑

n cnr
−n and

∑

n ncnr
−n−1 in (6.37)

gives rise to some problems. The evaluation of such series bydirect summation is very
difficult in so much that the required number of terms can become very large and uncon-
trolled numerical instabilities may occur. Some special approach should be used instead
and we have taken advantage of the convergence accelerationand summation procedures.
Generally, given a sequencesn, which can be the sequence of the partials sums of a series,
these procedures consist in introducing a transformation of the sequence which enables
us to obtain either a more rapidly convergent sequence, if the sequence has a limit, or an
approximation of its sum (anti-limit), if the sequence is divergent but deduced from an
asymptotic series. There are a large number of such methods (see e.g. [26]). We have
used the Levin algorithm [80], the best suited for summing the asymptotic series. We will
describe in short the main ideas of this Levin procedure.

If we want to construct a transformation which is able to accelerate the convergence
of an infinite series

∞
∑

n=0

anz
−n, (6.38)

we are confronted with the practical problem that the information contained in a finite
string of partial sumss0, s1, . . . , sm has to be extracted and utilized in a way which is
more efficient than the conventional approach of adding up one term after the other. We
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assume that for alln ∈ N a sequence elementsn can be partitioned into the limits and
the remainderrn

sn = s+ rn. (6.39)

This essentially means that we have to find a way of eliminating the remainderrn and
determining the limits at least approximately by exploiting the information stored in the
finite sequences0, s1, . . . , sm of the partial sums.

The idea of Levin’s transformation is to find a sequenceωn which gives the leading
behaviour of the remainderrn, so that

sn − s
ωn

=
rn
ωn
→ c, n→∞. (6.40)

One chooses

sn − s
ωn

≈ c0 +
c1

(n+ β)
+

c2
(n+ β)2

+ · · ·+ ct
(n+ β)t

(6.41)

whereβ is some nonzero constant. This is a Poincaré-type expansion which is equivalent
to

sn ≈ s+ ωn

(

c0 +
c1

(n+ β)
+

c2
(n+ β)2

+ · · ·+ ct
(n+ β)t

)

. (6.42)

By inserting values ofsn andωn into (6.42) we obtain a system of equations which can
be solved fors giving an approximate value for it. For this method a recursive scheme
also exists (see [127]).

Levin suggested some simple remainder estimatesωn which can be computed from at
most two termsan of the series (6.38) to be transformed. With the help of theseremainder
estimates the following variants of Levin’s sequence transformation result:

- ωn = (β + n)an (u transformation)

- ωn = an (t transformation)

- ωn = an+1 (d transformation)

- ωn = (anan+1)/(an − an+1) (v transformation).

We used thed transformation, the most appropriate for our series.

Numerical illustrations

Again we reconsider the hydrogen problem. Table 6.5 shows the same experiment as
in Table 6.4, only now we used adapted boundary conditions inb̄. Theseb̄ must be
sufficiently large so that the asymptotic expansion of the Coulomb equation is valid. Here

we selected the values ofb̄ using the condition
∫ b̄

xt
[V (x) − Ē]1/2dx ≈ ∑ib̄

i=it
hi[V̄i −

Ē]1/2 ≥ 2 (instead of 18 as before). Compared to the results shown in Table 6.4, this
means that thēb can be taken smaller now to reach the same accuracy in the eigenvalue
approximations. The condition forb̄ is now related only to the Coulomb behaviour and not
to the decrease of the solution according to the WKB approximation. For the hydrogen
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Table 6.5: Some eigenvalues of the hydrogen problem calculated with CPM{16,14} and tol =
10−12. Now the adapted boundary condition inb̄ is used.

k b̄ Ek

0 6.63E1 −0.0625000000000
10 8.32E2 −0.0017361111111
100 4.60E4 −0.0000240292195
1000 4.11E6 −0.0000000249003

Table 6.6: The first eigenvalues of problem (6.43) calculated with CPM{16,14}, tol = 10−12 and
adapted boundary conditions inb̄a.

k b̄ b̄a Ek

0 110.80 18.35 −0.061681846633
1 137.13 42.56 −0.027498099943
2 203.53 88.74 −0.015501561691
3 243.83 110.80 −0.009935496851
4 340.03 168.07 −0.006906701382

problem, the value of 2 for the above integral was found to be sufficient to ensure an
accurate evaluation of the asymptotic series with a reasonable number of terms.

Table 6.6 shows some results for another test potential witha Coulomb-type decay at
x =∞ :

y′′(x) =

(

l(l + 1)

x2
+
−1 + 5e−2x

x
− E

)

y(x), x ∈ (0,+∞), (6.43)

where we takel = 1 (see [123]). The eigenvalues were calculated using the adapted
boundary conditions in̄ba. For this problem the Coulomb-type decay is reached already
for (approximately)x > 18, that is the term5e−2x can be neglected forx > 18. Therefore
we can use āba value which is very close to the turning point. To obtain the results in
Table 6.6, we used the right endpoint of the interval containing the turning point as cutoff
valueb̄a. Theb̄ values are the cutoff values which would have been used without adapted
boundary conditions, thus the cutoff values selected by theWKB-condition. All figures
shown in the eigenvalue approximations are exact.

The procedure can also be used to obtain boundary conditionsfor a Woods-Saxon
problem

y′′(x) =

(

l(l + 1)

x2
− 50 [1− 5t/(3(1 + t))] /(1 + t)− E

)

y(x), x ∈ (0,+∞),

(6.44)
with t = e(x−7)/0.6, since for largex values the term50 [1− 5t/(3(1 + t))] /(1 + t)
disappears and only the centrifugal terml(l + 1)/x2 remains. Whenl = 2, there are 13
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Table 6.7: The eigenvalues of the Woods-Saxon problem (l = 2) calculated with CPM{16,14},
tol = 10−12 and adapted boundary conditions inb̄ = 15.

k Ek

0 −48.34948105212
2 −44.12153737732
4 −38.25342653968
6 −31.02682092177
8 −22.68904151018
10 −13.52230335295
12 −3.97249143284

eigenvalues in the discrete spectrum (see [123]). Table 6.7shows the approximations ob-
tained for these eigenvalues using the adapted boundary conditions in b̄ = 15. Again all
displayed figures are exact. For this problem the region withthe Coulomb-like behaviour
starts relatively far from the different turning points, because the central term (with expo-
nentials) is negligible only at rather large distance (x > 30). But since the area delimited
by the potential and the energy increases quickly after the outer turning point, the solution
decays rapidly (according to the WKB approximation) and we can take the cutoff at more
reduced distance, where the central part is only a few ordersof magnitude smaller than
the other terms.

The hydrogen problem, as well as problems (6.43) and (6.44) are radial Schr̈odinger
equations with a potential which exhibits singularities ofthe formx−2 andx−1 near the
origin. In the next section, we discuss the procedure which was applied to deal with such
singularities.

6.4 Solution near the origin for radial Schrödinger equa-
tions

An important class of Schrödinger equations is formed by theradial Schr̈odinger equa-
tions. The radial Schrödinger equation can be written as

y′′ =

(

l(l + 1)

x2
+ V (x)− E

)

y, x > 0, (6.45)

wherex represents the distance from a spherically symmetric nucleus, andl is a con-
stant arising out of the method of separation of variables applied to the three-dimensional
Schr̈odinger equation. Physically,l is called an orbital rotational quantum number and the
terml(l+1)/x2 is thecentrifugalcomponent of theeffective potentiall(l+1)/x2+V (x).
Theunderlying potentialV (x) tends to a limit, thedissociation energy, at infinity.

For the radial Schr̈odinger problem a specific problem occurs: the potential is sin-
gular at the origin and therefore on a short interval around the origin a specially tuned
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implementation is used, withl(l + 1)/x2 as reference potential and the rest of the poten-
tial seen as a perturbation. This technique was already described in [58] and [112] for
the more general case of a system of coupled channel Schrödinger equations. In [112],
Rizea described the PERSYSFortran code which is included in the CPC library. A dif-
ferent technique, based onl(l + 1)/x2+constant as reference potential and valid for a
single equation, is proposed in [62]. Here we apply the algorithm from [112] to the one-
dimensional Schr̈odinger problem. This algorithm allows us to obtain the value of the
solution inǫ 6= 0, whereǫ is small enough such that the centrifugal term is numerically
dominating with respect to the other terms of the potential.The solution and its deriv-
atives in thisǫ then form the starting values for the integration (using theCPM) on the
interval [ǫ, b̄].

6.4.1 Algorithm

A wide variety of physical problems has a potential which canbe put in the form

V (x) =
l(l + 1)

x2
+
S(x)

x
+R(x), (6.46)

whereR(x) is the non-singular part. We assume that the functionsS(x) andR(x) can be
approximated by a second degree polynomial over the interval [0, ǫ]:

S(x) = S0 + S1x+ S2x
2, R(x) = R0 +R1x+R2x

2, (6.47)

whereS0, S1, S2, R0, R1, R2 are constants. This means that the potential is approximated
by

l(l + 1)

x2
+
V−1

x
+ V0 + V1x+ V2x

2 (6.48)

where
V−1 = S0, V0 = S1 +R0, V1 = S2 +R1, V2 = R2. (6.49)

With the operatorL =
d2

dx2
− l(l + 1)

x2
and∆V (x) =

V−1

x
+ V0 + V1x+ V2x

2 −E, we

can write the radial Schrödinger equation as

Ly(x) = ∆V (x)y(x) (6.50)

where the dominant term inx−2 is retained in the left-hand side while the other terms are
collected in the right-hand side. This suggests a perturbative approach. This means that
we introduce a parameterλ and consider the equation

Lȳ(x) = λ∆V (x)ȳ(x). (6.51)

The solutionȳ depends on the parameterλ. Upon expandinḡy(x;λ) in powers ofλ,

ȳ(x;λ) = y0(x) + λy1(x) + λ2y2(x) + . . . , (6.52)
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the coefficientsyq(x) are found to satisfy the recurrence relations

Ly0(x) = 0, Lyq+1(x) = ∆V (x)yq(x), q = 0, 1, . . . . (6.53)

Forλ = 1, the expansion (6.52) gives the solution of Eq. (6.50):

y(x) = y0(x) + y1(x) + y2(x) + . . . . (6.54)

For the zeroth order solution one takes

y0(x) = xl+1 (6.55)

sincexl+1 is the regular solution of the equationLy0(x) = 0. The first perturbationy1(x)
is then obtained using the recurrence relation in (6.53),

Ly1(x) = ∆V (x)y0(x) = ∆V (x)xl+1 (6.56)

which can also be written as

Ly1(x) =

4
∑

p=1

Ap
1x

l+p−1 (6.57)

whereA1
1 = V−1, A2

1 = V̄0 = V0 − E, A3
1 = V1 andA4

1 = V2. The first perturbation
y1(x) is then of the formy1(x) =

∑4
p=1 zp(x) wherezp(x) is the solution of the equation

Lzp(x) = Ap
1x

l+p−1. (6.58)

In general,zp(x) = s0(x)+sp(x) wheres0(x) is the regular solution of the homogeneous
equation andsp(x) is a particular solution of the non-homogeneous equation.s0(x) is al-
ready included in the final solution (it isy0(x)). It only remains to compute the particular
solution. Supposezp is of the following form

zp(x) = Bp
1x

k, (6.59)

then Eq. (6.58) gives

[k(k − 1)− l(l + 1)]Bp
1x

k−2 = Ap
1x

l+p−1. (6.60)

By identification, it results thatk = l + p+ 1 and

Bp
1 =

Ap
1

p(1 + p+ 2l)
. (6.61)

The first order solutiony1 is then introduced in the right-hand side of (6.53) to com-
putey2 and so on. Eachqth perturbation is then obtained from an equation of the form

Lyq(x) =

4q
∑

p=q

Ap
qx

l+p−1 (6.62)
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with

Aq
q = V−1B

q−1
q−1 ,

Aq+1
q = V−1B

q
q−1 + V̄0B

q−1
q−1

Aq+2
q = V−1B

q+1
q−1 + V̄0B

q
q−1 + V1B

q−1
q−1

Aq+3
q = V−1B

q+2
q−1 + V̄0B

q+1
q−1 + V1B

q
q−1 + V2B

q−1
q−1

. . . = . . .

A4q−3
q = V−1B

4(q−1)
q−1 + V̄0B

4q−5
q−1 + V1B

4q−6
q−1 + V2B

4q−7
q−1

A4q−2
q = V̄0B

4(q−1)
q−1 + V1B

4q−5
q−1 + V2B

4q−6
q−1

A4q−1
q = V1B

4(q−1)
q−1 + V2B

4q−5
q−1

A4q
q = V2B

4(q−1)
q−1 .

(6.63)

We can write the perturbation asyq(x) =
∑4q

p=q zp(x) where eachzp(x) is of the form

zp(x) = Bp
qx

l+p+1, (6.64)

with

Bp
q =

Ap
q

p(1 + p+ 2l)
. (6.65)

As shown in [112] the calculation of the perturbationsy1, y2, . . . leads to values which
typically decrease in magnitude. In our implementation, weadd (iteratively) as many
perturbation correctionsyq as necessary to reach a certain preset accuracy.

6.4.2 Fitting of the potential

The algorithm requires an initial approximation of the potential functionsS(x) andR(x)
of Eq. (6.46) by second degree polynomials. An approximation by shifted Legendre poly-
nomials is used, known to give the best fit in the least square sense. We approximate the
functionS(x) (the same can be done forR(x)) by

S(x) ≈
2
∑

j=0

cjP
∗
j (x) (6.66)

where theP ∗
j are the shifted Legendre polynomials (see [3]):

P ∗
0 (t) = 1, P ∗

1 (t) = 2t− 1, P ∗
2 (t) = 6t2 − 6t+ 1. (6.67)

Using a least squares procedure, it can be shown that the coefficientscj should be chosen
as follows:

cj =
2j + 1

ǫ

∫ ǫ

0

S(r)P ∗(r/ǫ)dr. (6.68)
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A four point Gauss quadrature rule was used to evaluate theseintegrals. The approximant
of S(x) can then be expressed as a polynomial inx:

S(x) ≈ S0 + S1x+ S2x
2 (6.69)

with S0 = c0−c1 +c2, S1 = 2c1/ǫ−6c2/ǫ andS2 = 6c2/ǫ
2. The quality of the solution

of the original equation depends of course on how good is the approximation of theS
andR functions by polynomials of second degree. A value forǫ should be chosen which
is small enough such that the fitting by a parabola is sufficiently accurate and there is a
strong domination of the reference potential (proportional to x−2).

It is also important to mention that the coefficientsS0, S1, S2 andR0, R1, R2 do not
depend on the energyE and have thus to be computed only once at the beginning of the
whole procedure.

6.5 Other singularities: numerical treatment

The algorithm considered in section 6.4 only deals with a specific type of singularities.
For other types of singularities it is possible to develop similar procedures which com-
pute the solution in a truncation point close to the singularendpoint. The user can also
apply the interval truncation manually, the user chooses a sequence of regular endpoints
converging to the singular one and applies the CPM to each of the regular problems. Of
course, this process can also be done automatically. An algorithm can be constructed
which selects an initial pointb∗ < b (in the assumption thatb is the singular endpoint).
The partitiona = x0 < x1 < · · · < xN = b∗ is then first constructed on the interval
[a, b∗] and the eigenvalue approximation is computed over this partition. An additional
meshpointxN+1 ∈ (b∗, b) can then be added to the partition and a new eigenvalue ap-
proximation is computed. This process can be repeated untila number of successive
eigenvalue approximations seem to agree within the requested accuracy. In each itera-
tion, the shooting algorithm for the next eigenvalue approximation is started using the
previous approximation, so that the process gets faster as the truncated endpoint comes
closer tob.

6.6 Conclusion

In this chapter we considered the treatment of some singularproblems. In particular, we
discussed an interval truncation algorithm for problems defined on an infinite integration
interval. This truncation procedure is based on the WKB-approximation of the wave-
function and selects a cutoff point which is large enough such that the solution may be
assumed to be zero there. For a Schrödinger problem with a potential which behaves as a
Coulomb potential at large distance, we described a more accurate procedure to compute
the value of the solution in the cutoff point.

For the important class of radial Schrödinger equations, we discussed an algorithm
which can be used in a small region around the origin. This algorithm deals with the
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singularity of the problem in the origin and computes the value of the solution in a small
valueǫ. This value of the solution inǫ then forms the boundary condition inǫ for the
truncated problem defined over[ǫ, b∗] which can be solved by one of the CPM.



Chapter 7

The MATSLISE package

MATSLISE is a MATLAB package collecting the CPM and LPM codes for (one-dimen-
sional) Sturm-Liouville and Schrödinger equations. In this chapter we discuss the struc-
ture and use of this package. Given the interest of researchers in various fields (quantum
chemistry, quantum physics, ...) in this type of software, auser-friendly graphical user
interface has been built on top of the package. This graphical user interface allows one
to enter the input in a straightforward manner, to control certain parameters interactively
and to present the results graphically.

7.1 The MATLAB language

MATLAB is a software tool and programming environment that has become common
place among scientists and engineers. Working in MATLAB hashowever advantages and
drawbacks. With the purpose of a tool for research and education, the advantages are
briefly

• MATLAB is a wide-spread, standardized programming environment with a big
number of built-in functionalities. Many useful mathematical functions and graph-
ical features are integrated with the language.

• Programming in MATLAB is easy.

• The multitude of MATLAB toolboxes allows programmers to choose from a large
number of prewritten functions to accomplish tedious or hard tasks.

• MATLAB runs on many platforms and operating systems.

• A MATLAB package like MATSLISE requires no installation or compilation (when
MATLAB is installed).

Whereas the drawback are mainly two points:

• MATLAB is commercial and costly.
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• Although operations on matrices are very fast, the overall speed of MATLAB can
be poor. Since MATLAB is an interpreted (i.e. not pre-compiled) language, it can
be slow compared to other compiled languages (Fortran, C++).

7.2 TheMATSLISE package

MATSLISEcontains an implementation of the CPM algorithms CPM{12,10}, CPM{14,12},
CPM{16,14} and CPM{18,16} discussed in section 3.4 and of the LPM code LPM[4,2]
(see section 4.2). These PPM algorithms are used as propagation methods in a shooting
procedure in order to compute eigenvalue approximations (as described in sections 3.2
and 4.4). A Pr̈ufer representation is applied which makes the search of theeigenvalues
more efficient. Also the truncation algorithms discussed inchapter 6 for problems defined
on an infinite integration interval are included in MATSLISE as well as the procedure dis-
cussed in section 6.4 which deals with the singularity in theorigin of a radial Schr̈odinger
problem.

As mentioned in chapter 6, it is not possible to solve problems with oscillatory end-
points using MATSLISE. This means that MATSLISE only solves problems which have
a spectrum bounded below where thekth eigenfunction has preciselyk zeros in the in-
terval(a, b). The spectrum can be bounded above by a continuous spectrum,this means
that one of the endpoints may be LPN/O. MATSLISE includes (part of) the SLEDGE au-
tomatic classification algorithm [101] to determine the form of the eigenvalue spectrum,
i.e. to know the number of eigenvalues in the discrete spectrum or to detect if there is a
continuous spectrum and where it starts. This information returned by the classification
algorithm is used by MATSLISE to return an error message e.g. when the user asks to solve
a problem with an oscillatory endpoint or when the users wants to compute eigenvalues
in an energy-range situated in the continuous spectrum.

The MATSLISE package is available for download at [2]. The file MATSLISE2006.zip
contains the latest version of the MATSLISE package. Unzipping the file creates a di-
rectoryMATSLISEwith three subdirectories:

• GUI : collects all *.fig files and *.m files which produce the graphical user interface
(GUI). The GUI can be considered as the top layer of the package: the methods
from the GUI call the (public) methods from thesource -directory. A subdirectory
of the GUI directory ispredefined_problems . This subdirectory contains
several problems (saved as *.mat files) which are predefined in the GUI. Many of
these problems are included in SLTSTPAK [108] or the Pruess-Fulton test set [102]
(see also Appendix C).

• examples : holds some example MATLAB M-files, demonstrating the use ofthe
different MATSLISE (command line) functions.

• source : contains the actual source-code. This directory collectssome classes:
a number of classes representing the different types of problems: schrod , slp ,
distorted_coulomb ; some classes implementing the actual PPM algorithms:
cpm12_10 , cpm14_12 , cpm16_14 , cpm18_16 , lpm10 and some auxiliary
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classes such as e.g.transformed_slp used by Liouville’s transformation.

These three directories need to be added to the MATLAB searchpath in order to run
MATSLISE. The MATLAB addpath command can be used for this purpose, e.g. the
commands

addpath([cd ’/source/’]);
addpath([cd ’/GUI/’]);
addpath([cd ’/examples/’]);

add the three directories to the search path when the currentdirectory is the MATSLISE

directory.
The current version of MATSLISE requires the symbolic toolbox of MATLAB. This

symbolic toolbox allows us e.g. to calculate the derivatives of the coefficient functions of
a Sturm-Liouville equation in the implementation of Liouville’s transformation.

The numerical solution of a Sturm-Liouville or Schrödinger problem by MATSLISE

is subdivided in three stages. In the first stage the partition is constructed, this partition is
passed into the second stage where the eigenvalues are calculated. In the third stage it is
possible to calculate the eigenfunctions of some of the eigenvalues. Each of these stages
has its own methods (or functions) and information is passedfrom one stage to the other
by the input arguments of these methods.

7.2.1 Stage 1: Construction of the partition / Liouville’s transforma-
tion

Specification of the problem

First we have to define the problem to be solved. The followingscheme gives an overview
of the classes used in the representation of the equations:

@schrod

@distortedcoulomb @transformedslp

@slp
��	

A Schr̈odinger problem is represented by an object of the classschrod . The PPM al-
gorithms are applied on objects of this type. To be able to apply the PPM algorithm to
a Sturm-Liouville problem (i.e. an object of the typeslp ) Liouville’s transformation is
used to transform theslp object to atransformed_slp object. Thetransformed_
slp class is a child class ofschrod : a transformed_slp object contains aschrod
object, namely the Schrödinger problem obtained after Liouville’s transformation, but
also some additional fields (such as e.g. thexG andrG vectors, see section 3.3.2). Another
child class ofschrod is distorted_coulomb . The problems of thedistorted_
coulomb type are radial Schrödinger problems for which the improved truncation al-
gorithm discussed in section 6.3.2 is applied when the problem is defined on an infinite
integration interval. Also the treatment of the singularity in the origin seen in section 6.4
is applied for thesedistorted_coulomb problems.
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Using the constructor of the classschrod

sch = schrod(V,a,b,a0,b0,a1,b1)
sch = schrod(V,a,b,a0,b0,a1,b1,var)

a Schr̈odinger object is created. The first argumentV is a string representing the poten-
tial function V . The double precision constantsa, b, a0 , b0 , a1 andb1 specify the
integration interval and the boundary conditions. It is allowed to enter-inf or inf for
the two input parametersa andb. Good truncated endpoints are then determined auto-
matically for every eigenvalue, using the truncation algorithm discussed in chapter 6. If
there are less than eight input arguments, then the independent variable is supposed to
bex, otherwise the independent variable is the character or string in var andV is then
V (var ).

In a very analogous manner a Sturm-Liouville equation is specified:

sl = slp(p,q,w,a,b,a0,b0,a1,b1)
sl = slp(p,q,w,a,b,a0,b0,a1,b1,var)

wherep, q andware strings representing the coefficient functionsp(x), q(x) andw(x) (or
p(var ), q(var ) andw(var )) and the double precision numbersa, b, a0 , b0 , a1 , b1 are
the endpoints of the integration interval and the coefficients of the boundary conditions.
Again inf -values are allowed fora andb.

An object representing an equation with adistorted Coulomb potential

l(l + 1)

x2
+
S(x)

x
+R(x)

is produced by

d = distorted_coulomb(l,S,R,xmax)
d = distorted_coulomb(l,S,R,xmax,var)

whereS and R are two strings (representingS(x) andR(x)) and the orbital quantum
numberl is a double. xmax is the endpoint of the integration interval(0, xmax), in
many examplesxmax=inf .

Initialization of the CPM or LPM

In addition to the classes for the equations themselves, a number of classes which imple-
ment the actual PPM algorithms, were developed :

@ppm

@cpm @lpm

@lpm10@cpm1210 @cpm1816@cpm1412 @cpm1614
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These classes collect the methods which construct the partition and calculate the eigen-
values and eigenfunctions. The different PPM methods are instances of the parent class
ppm. This class collects the information and methods which is used by both the CPM
algorithms and the LPM algorithm. The classcpm contains all methods and properties
which are shared among the various CPM algorithms. The childclassescpm12_10 ,
cpm14_12 , cpm16_14 andcpm18_16 only contain the information which is specific
for a certain order. In this way a new method of a given order can be added easily. Sim-
ilarly we have alpm10 class, which implements the LPM[4,2] algorithm of order 10.
This lpm10 class is a child class oflpm .

The user calls a constructor of a child class e.g.:

cp = cpm16_14(slp/schrod/distorted_coulomb,tol)

with tol a positive constant representing the accuracy requested inthe results. This
constructor of the child class then calls the constructor ofcpm. The cpm constructor
is never called by the user directly. The constructors startthe calculation of the par-
tition but when the first input argument is aslp object some additional work is done
first. The Sturm-Liouville equation is converted to the Schrödinger form: that is the
slp object is transformed into atransformed_slp -object. As already mentioned,
a transformed_slp -object is aschrod -object but contains some more information
which is necessary e.g. to obtain the eigenfunctions of the original Sturm-Liouville equa-
tion.

The partition of[a, b] (or (ǫ, xmax] for distorted Coulomb problems whereǫ is set by
an empirical formula) is constructed in terms of the tolerance tol and some potential

dependent expressions (e.g.C
(u)
m ,C(u′)

m ,C(v)
m ,C(v′)

m from Eqs. (3.85)-(3.88) andV0 from
Eq. (3.37) for the CPM), which will be used repeatedly in the second and third stage, are
calculated in each step of the partition and stored. Additionally the execution of this stage
furnishes the value of the matching pointxm.

It is important to point out that the partition is dictated only by the behaviour ofV (x);
the value ofE is not involved. So the construction of the partition (stage1) happens
completely in advance of and separate from the calculation of the eigenvalues and eigen-
functions (stages 2 and 3). At least this is true for a problemwith a finite integration
interval. For an infinite integration interval however, thepartition is not constructed in the
first stage, but in the second stage (see further). TheE-independence of the partition is
thus lost for an infinite problem: as seen in chapter 6 a highereigenvalue needs a larger
(truncated) integration interval than a lower eigenvalue.This means that in the calcula-
tion of the eigenvalues (stage 2) a lengthening of the partition interval may be necessary,
which makes the eigenvalue-search for an infinite problem somewhat slower.

7.2.2 Stage 2: Eigenvalue computation

In this stage the eigenvalues, in a range fixed by the user, arecalculated. The user starts
the calculation by calling a method from theppmclass:

E = get_eigenvalues(pp_child,pmin,pmax)
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E = get_eigenvalues(pp_child,pmin,pmax,indices)

wherepp_child is an instance of one of the child classes of thecpm class orlpm
class. If indices is true , the eigenvaluesEk (k = 0, 1, ...) with indicesk be-
tweenpmin and pmax are calculated; ifindices is false or omitted the eigen-
values in the range [pmin ,pmax] are calculated. The method returns a structureE,
in which all information related to the calculated eigenvalue(s) is stored. The fields
E.eigenvalues , E.indices andE.errors are three vectors.E.eigenvalues
contains the calculated eigenvalues in ascending order. The associated indices are col-
lected inE.indices andE.errors holds an estimation of the error for each eigen-
value. The fieldE.success is false when the PPM was not able to obtain the data due
to an error, e.g. when there is no eigenvalue in the interval [pmin ,pmax]. In some cases
a warning is generated in the methodget_eigenvalues : e.g. when two eigenvalues
are so close that double precision accuracy is not sufficientto differentiate between them
adequately.

The estimation of the error inE.errors is the difference between the calculated
eigenvalue (the so-called basic eigenvalue) and a reference eigenvalue computed on the
same partition but with a higher order method. To make thingsclear, let us assume that the
CPM{16,14} is used. First the CPM{16,14} algorithm is applied to construct the partition
and to calculate the basic eigenvalue, and then the reference eigenvalue is computed using
the higher order CPM{18,16} (but on the CPM{16,14} partition). The difference between
the basic eigenvalue and the (more accurate) reference eigenvalue forms the estimation of
the error in the basic eigenvalue. The Newton iteration process in the shooting procedure
for the reference eigenvalue starts with the basic eigenvalue. Since the difference between
the two eigenvalues is usually small, only a small number of Newton iterations is neces-
sary and thus the calculation of the reference eigenvalue requires an extra effort which is
almost negligible. Analogously, the error in a CPM{12,10} (or CPM{14,12}) eigenvalue
is estimated using the CPM{14,12} (or CPM{16,14} resp.). Table 7.1 shows the ratio of
the true error to the estimated error (using the CPM{16,14}–CPM{18,16} combination)
for the harmonic oscillator

y′′ =
(

x2 − E
)

y, x ∈ (−∞,∞), (7.1)

for which the correct eigenvalues are known:Ek = 2k + 1, k = 0, 1, ..., and for the
hydrogen atom equation

y′′ =

(

− 1

x
+

2

x2
− E

)

y, x > 0 (7.2)

with known eigenvaluesEk = −1/(2k + 4)2, k = 0, 1, .... This ‘goodness’ ratio al-
ways has values smaller or very close to one, which illustrates the adequacy of our error
estimation. When the first eigenvalues of the hydrogen atom equation are calculated with
tolerance≤ 10−12 , the obtained eigenvalues are (nearly) as accurate as the machine pre-
cision (10−16). This means that the ‘actual error’ will be very close to zero (or even zero)
which explains the smaller values in the last column of Table7.1.
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Table 7.1: Ratio |actual error|
|error estimate|

for the harmonic oscillator and hydrogen equation using
CPM{16,14} at different input tolerances.

Harmonic Oscillator Hydrogen
k 10−8 10−10 10−12 10−8 10−10 10−12

0 1.016 1.006 1.034 0.987 0.994 0.931
1 0.971 0.929 0.692 0.978 0.707 0.021
2 0.990 0.981 0.945 0.981 1.048 0.036
3 0.980 0.984 0.871 0.974 0.834 0.206
4 0.991 0.990 1.054 0.975 1.100 0.442
5 1.000 0.996 0.909 0.974 1.016 0.959
6 1.020 0.999 0.995 0.975 0.987 0.901
7 0.989 0.993 0.995 0.961 0.992 0.975
8 0.988 0.995 0.884 0.968 0.991 1.012
9 1.006 0.998 1.054 0.998 0.989 0.971

10 1.001 0.997 0.995 0.977 0.989 0.994

Since we have no higher order LPM available, we use a slighty different procedure to
compute error estimates for the LPM[4,2] algorithm (something analogously is applied
for CPM{18,16}). This procedure was also used by Ixaru to compute error estimates in
the SLCPM12 Fortran package [61]. A second partition is constructed (called the refer-
ence partition by Ixaru) by halving each interval of the ‘basic’ partition. The reference
eigenvalue is then computed on the reference partition and the error estimate is again
formed by the difference between the basic and reference eigenvalue.

For a problem with a infinite integration interval, an extra output argument can be
returned:

[E,pp_child] = get_eigenvalues(pp_child,pmin,pmax)
[E,pp_child] = get_eigenvalues(pp_child,pmin,pmax,ind ices)

The returned objectpp_child then contains information on the constructed partition.
This partition was constructed on a truncated integration interval which is large enough
for the largest requested eigenvalue (see section 6.3.1). All eigenvalue calculations were
done on (parts of) this partition.

Table 7.2 displays the times needed by CPM{16,14} (on a 2.4GHz PC) to calculate
some eigenvalues of the Mathieu equation

y′′ = (2 cos(2x)− E) y, 0 < x < π, (7.3)

and of the hydrogen atom equation (7.2). The Mathieu problemis a regular problem with
a finite integration interval. This means that the shooting procedure for each eigenvalue is
performed on one and the same partition which was already constructed in the first stage.
This explains why the time increases only very slowly with the eigenvalue index. For
the hydrogen atom equation however, the (truncated) integration interval grows with the
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Table 7.2: Time (s) to compute some eigenvalues with CPM{16,14} at different input tolerances.

Mathieu Hydrogen
k 10−8 10−10 10−12 10−8 10−10 10−12

0 0.06 0.09 0.11 0.57 0.60 0.63
10 0.09 0.09 0.13 0.86 0.89 0.92
100 0.09 0.11 0.13 1.37 1.51 1.75
1000 0.11 0.13 0.14 3.44 3.94 4.78
10000 0.13 0.16 0.17 13.8 16.7 21.3

eigenvalue index and as a consequence the calculation of a higher eigenvalue requires a
larger amount of time. The truncation algorithm is also partly the reason why the com-
putation ofE0 for the hydrogen atom equation needs more time than for the Mathieu
equation. Another reason is the larger amount of intervals needed in the partition con-
structed for the hydrogen atom equation.

7.2.3 Stage 3: Eigenfunction computation

Another method in theppmclass which is visible to the user, is the method which allows
the calculation of the eigenfunction associated with a certain eigenvaluee:

V = get_eigenfunction(pp_child,e)
V = get_eigenfunction(pp_child,e,n)
V = get_eigenfunction(pp_child,e,ap,bp,n)

where againpp_child is an instance of one of the child classes ofcpm or lpm . This
pp_child is the returned object from one of thecpm or lpm constructors or from the
get_eigenvalues method when the problem is infinite. To obtain a good approxima-
tion for the eigenfunction the eigenvaluee must be sufficiently accurate (e.g. by choosing
a small value fortol in stage 1). Ifn is omitted, then the eigenfunction is evaluated
only in the meshpoints of the partition. In most cases the number of meshpoints in the
partition is too small to have a good idea of the shape of the eigenfunction. Therefore
the eigenfunction can be evaluated in more points by choosing a sufficiently high value
for n: the interval [ap ,bp ] is then taken and partitioned inn intervals of equal size. On
these intervals the additional potential-dependent expressions are calculated and the prop-
agation matrix algorithm (2.80) is applied to produce the eigenfunction. Only the part of
the eigenfunction corresponding with then+1 points in [ap ,bp ] is returned. When the
input-argumentsap andbp are omitted, then the whole interval[a, b] is considered. The
structureV has three fields: the three vectorsV.x , V.y andV.yprime of which the
meaning is clear.
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7.2.4 The Coffey-Evans example

As an illustration we compute the eigenvalues of an example from [105], the Coffey-
Evans equation

−y′′ + (−2β cos 2x+ β2 sin2 2x)y = Ey (7.4)

with
y(−π/2) = y(π/2) = 0. (7.5)

For our first test run, we assume that the parameterβ is equal to 20. The commands
used to solve this problem can also be found inexample8.m in theexamples direc-
tory. The example can be runned by enteringexample8 in the MATLAB command
window. Here we discuss each of these commands. First we specify our Coffey-Evans
problem:

r=schrod(’-2 * 20* cos(2 * x)+20ˆ2 * sin(2 * x)ˆ2’,...
-pi/2,pi/2,1,0,1,0);

Theschrod constructor is used, the first argument is a string representing the potential
function, the second and third argument are the two endpoints of the integration interval
and the last arguments specify the boundary conditions.

We want to solve the problem with the CPM{16,14} method. We initialize this
method by the following command

cp=cpm16_14(r,1e-10);

We have chosen the input tolerance to be10−10. The objectcp now contains information
on the partition. Using the command

plot_partition(cp);

a plot of this partition and the meshpoints is made (Figure 7.1).
We ask for the first 11 eigenvalues

E=get_eigenvalues(cp,0,10,true);

The computed eigenvalues and the error estimates can then beaccessed through the fields
E.eigenvalues andE.errors . The lines

disp(sprintf(’k \t E_k \t\t\t\t estimated error’))
for i=1:length(E.eigenvalues)

disp([num2str(E.indices(i),’%4.0f\t’) ’ ’ ...
num2str(E.eigenvalues(i),’%16.12f\t’) ’ ’...
num2str(E.errors(i),’%+5.2e’)])

end

produce the following output
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Figure 7.1: Plot of the partition generated by MATSLISE for the Coffey-Evans potential withβ =
20.

k E_k estimated error
0 -0.000000002121 -2.05e-009
1 77.916195679902 +2.78e-009
2 151.462778348882 +2.40e-009
3 151.463223659596 +1.98e-009
4 151.463668990776 +2.40e-009
5 220.154229836780 +1.44e-009
6 283.094814694590 -8.70e-010
7 283.250743741632 -1.55e-009
8 283.408735402515 -9.90e-010
9 339.370665648747 -3.76e-009
10 380.094915551000 -1.04e-009

The eigenfunction associated to the fifth eigenvalue (i.e.y4(x)), evaluated in 100 points
is given by

V=get_eigenfunction(cp,E.eigenvalues(5),100);

A simple plot command

plot(V.x,V.y);
xlabel(’x’)
ylabel(’y’)

produces Figure 7.2.
We can then compute some other eigenvalues, e.g. the eigenvalues between 1000 and

1500:
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Figure 7.2: Eigenfunctiony4 for the Coffey-Evans potential forβ = 30.

E=get_eigenvalues(cp,1000,1500,false);

which gives as result

k E_k estimated error
28 1047.204086283367 -2.83e-010
29 1105.794050195401 +1.28e-010
30 1166.423692498202 -6.14e-010
31 1229.087995655108 +2.09e-009
32 1293.782722437993 +4.12e-010
33 1360.504272201038 +1.78e-009
34 1429.249567674530 -6.13e-010

Note that these last eigenvalue computations still use the same partition, i.e. still the same
cp -object is passed to theget_eigenvalues method.

Even though the theory guarantees that for the separated boundary conditions (7.5),
there can be no multiple eigenvalues, the triple well of the Coffey-Evans potential pro-
duces triples of eigenvalues which can be made arbitrarily close by deepening the well.
The potential looks like Figure 7.3. The parameterβ, typically in the range 0 to 50, con-
trols the depth of the well. When we thus takeβ = 50, the eigenvalues in the triplets will
be even closer than forβ = 20. The clustering of the eigenvalues causes difficulty for all
library codes (see [105]) and computation is often expensive. The MATSLISE commands
are

r=schrod(’-2 * 50* cos(2 * x)+50ˆ2 * sin(2 * x)ˆ2’,-pi/2,pi/2,1,0,1,0);
cp=cpm16_14(r,1e-14);
E=get_eigenvalues(cp,0,10,true);
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Figure 7.3: Coffey-Evans potential for different values ofβ.

k Estimate ofE Time(s)
0 -0.000000000002 0.5
1 197.968726516499 0.3
2 391.808191489040 1.0
3 391.808191489045 1.6
4 391.808191489061 2.0
5 581.377109231564 0.5
6 766.516827285497 1.5
7 766.516827285506 1.1
8 766.516827285516 1.6
9 947.047491585820 0.3
10 1122.762920067867 0.7

Table 7.3: Eigenvalues of the Coffey-Evans Equation (β = 50), computed in MATSLISE.

When the tight tolerance of10−14 is requested, the CPM{16,14} code in MATSLISE

delivers the output in Table 7.3 for the first 11 eigenvalues.While the code had to work
harder on some of the triplets, it was able to return what appear to be reasonable answers.

Numerically, clustering of the eigenvalues causes the eigenfunctions to be very ill-
conditioned (the so-called ‘flea on the elephant’ effect, see [105]). This makes it very
difficult for a Sturm-Liouville code to compute eigenfunctions of the Coffey-Evans equa-
tion with a largerβ value. This difficulty can be (partly) avoided by using half-range
reduction (see further).
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7.3 The graphical user interface

The methods mentioned in the previous section, can all be called from the MATLAB
command line. But in order to increase the ease of use and to hide the technical issues
from the user, a graphical user interface (GUI) has been built on top of the classes in
MATSLISE. It slows the computations down somewhat; but on the other hand, it facilitates
giving input, it gives the user more control and graphical features are built in.

The GUI-version of MATSLISE uses the CPM{16,14} method to calculate the (ba-
sic) eigenvalue and the higher order CPM{18,16} is used on the same CPM{16,14} par-
tition to obtain a reference eigenvalue. As seen in section 7.2.2, this reference eigen-
value enables an accurate error estimation. The (slower) CPM{12,10}, CPM{14,12} and
LPM[4,2] are not used in the GUI but they can still be invoked from the command line
using the constructorscpm12_10 , cpm14_12 andlpm10 .

The root directory of MATSLISE contains two files:matslise.m andmatslise_
help.m . By enteringmatslise at the command line, the GUI is opened.matslise_
help opens the corresponding Help-files.

7.3.1 The problem specification window

In Figure 7.4 the input window is shown for the Coffey-Evans equation. Similar windows
can be opened for Sturm-Liouville equations or for problemswith a distorted Coulomb
potential. The Coffey-Evans problem is one of the predefinedproblems which is included
within MATSLISE in the directorypredefined_problems . To see a list of the other
problems included in this directory, typeshowPredefinedProblems at the com-
mand line. The list of predefined problems is also shown in Appendix C. For more details
on the different inputfields and buttons of the problem specification windows we refer to
the MATSLISE help files.

After the input has been entered, the “Construct”-button starts the calculations of stage
1. That is the constructors of the classesschrod andcpm16_14 are called. A second
window is opened where the user is able to obtain the eigenvalues of the problem he/she
specified: the eigenvalues window.

7.3.2 The eigenvalues window

Figure 7.5 shows the eigenvalues window for the Coffey-Evans test problem. In this win-
dow the user specifies which eigenvalues he/she wants to calculate. Several batches of
eigenvalues can be calculated one after the other without revisiting the problem specifica-
tion window.

7.3.3 Computation and visualization of the eigenfunctions

The eigenfunctions associated to the selected eigenvaluesare calculated by pressing the
“Eigenfunction”-button in the eigenvalues window, which opens a new window. When
only one eigenvalue is selected the eigenfunction window isopened; when more than
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Figure 7.4: Example of the Schrödinger problem specification window of the MATSLISE GUI
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Figure 7.5: Example of the eigenvalues window of the MATSLISE GUI.

one eigenvalue is selected another window is opened: the eigenfunctions window. Figure
7.6 shows an example of the eigenfunction window, while Figure 7.7 shows the eigen-
functions window. For more information on the different options and features avaible
in these windows we again refer to the MATSLISE help files. With the “Show with
potential”-button in the eigenfunctions window e.g. it possible to plot the eigenfunctions
together with the potential function and generate plots like Figures 6.1 and 6.3 discussed
in chapter 6. Another interesting button is the “Test orthonormality”-button, which al-
lows to test the correctness of the eigenfunctions via an orthogonality-check. This check
applies the trapezoidal rule on each interval between two points where the eigenfunc-
tion was evaluated, in order to compute a crude approximation of

∫

yk(x)yl(x)dx (or
∫

yk(x)yl(x)w(x)dx for a Sturm-Liouville problem). When two eigenfunctions seem to
be not orthogonal, the eigenfunctions cannot be correct. This inadequacy can be caused
by two reasons:

• The eigenvalue is not accurate enough to compute the associated eigenfunction
correctly. Decreasing the input tolerance might help in this case.

• Very close eigenvalues occur and as mentioned in [105] clustering causes the eigen-
functions to be very ill-conditioned. Therefore the user will be warned and asked
to be cautious when close eigenvalues are detected. For symmetric double well
problems, half-range reduction (see further) may make the problem more tractable:
check the option “Half-range reduction” in the Options menuof the problem spec-
ification window.
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Figure 7.6: Example of the eigenfunction window of the MATSLISE GUI.

7.3.4 Half-range reduction

A Schr̈odinger problem (or Sturm-Liouville problem) is symmetricwhen the problem is
defined on the interval−b to b, whereb may be+∞, the potential function is even and
the boundary conditions are symmetric, this means in the regular case thata0 = a1 and
b0 = −b1. For a symmetric problem the eigenfunctions belonging to eigenvalueEk,
(k = 0, 1, ...) are even or odd functions according ask is even or odd. The eigenvalues
can be obtained by solving the given equation, but on the interval [0, b], with the given
boundary condition atb and with(i) y′(0) = 0 to get the even eigenvalues,(ii) y(0) = 0
to get the odd eigenvalues. The eigenvaluesE0, E2, E4, . . . of the full-range problem are
then the eigenvalues of the half-range problem with boundary condition (i) in x = 0,
while E1, E3, E5, . . . are the eigenvalues of the half-range problem with the boundary
condition(ii). The normalized eigenfunctions of the full-range problem are reconstructed
from those of the half-range problem by extending in the appropriate way and dividing
by
√

2. For symmetric double well problems, this reduction may make the difference
between a highly ill-conditioned problem and a perfectly straightforward one.

An example of a symmetric double well problem with close eigenvalues is the Coffey-
Evans equation with a largeβ value. Another example is the close-eigenvalues problem
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Figure 7.7: Example of the eigenfunctions window of the MATSLISE GUI.

which is also included in the test set of SLTSTPAK ([108]).

V (x) = x4 − 25x2, x ∈ (−∞,∞), y(−∞) = y(∞) = 0 (7.6)

The lowest eigenvalues of this problem occur in very close pairs. The clustering of eigen-
values causes difficulty in the computation of the eigenfunctions for all Sturm-Liouville
codes. Figure 7.8(a) shows the first four eigenfunctions of the close eigenvalues problem,
calculated in the GUI-version of MATSLISE with input tolerancetol = 10−12 but without
half-range reduction. In this case MATSLISE returns a message which warns the user that
the eigenfunctions are very ill-conditioned. And indeed, it is easy to see that the eigen-
functions are not correct: the number of roots of the eigenfunction should correspond
with the eigenvalue index. Also the ortogonality-check included in MATSLISE (started
by clicking the “Test orthonormality”-button) indicates that the computed eigenfunctions
are not correct. Figure 7.8(b) shows the same eigenfunctions but now calculated with
half-range reduction. It is clear that these last eigenfunctions are the correct ones.
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Figure 7.8: The eigenfunctions of the close-eigenvalues problem (7.6),(a) calculated on the full-
range,(b) on the half-range.
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7.3.5 Using parameters

It is possible to use a parameter (or parameters) in the specification of the problem. These
parameters can occur in the definition of the coefficients, and/or the range, and/or the
boundary conditions. The parameter-name(s) and -value(s)are defined by checking the
‘Parameter’-box and filling in the two corresponding fields in the problem specification
window (Figure 7.4). The parameter can then be used in the other inputfields. This is used
to facilitate the input process or to replace rather lengthysubexpressions in the potential
function by a parameter, but also to study the behaviour of the eigenvalue(s) or solution
when the parameter changes. The directorypredefined_problems contains some
examples of the use of parameters in the problem specification. One such an example is
the problem inparameter_example3.mat . It is the Coffey-Evans equation

V (x) = −2β cos(2x) + β2 sin(2x)2, y(−π/2) = y(π/2) = 0, (7.7)

with the parameterβ running through10:2.5:30 , that is the values in[10, 12.5, . . . , 30].
The potentialV (x) changes with the parameter values as in Figure 7.9. Note thatthe
problem is symmetric and half-range reduction can (should)be applied.

We taketol = 10−12 and solve the problem using the GUI. MATSLISE automatically
generates acpm16_14 -object for each parameter value and all thesecpm16_14 -objects
are used when the eigenvalues are calculated. The eigenvalues of the different problems
are easily compared by plotting them: Figure 7.10 contains the plot of the first 21 eigen-
values of Eq. (7.7). The lower eigenvalues are clustered in groups of three with an isolated
eigenvalue between clusters. Increasingβ makes more clusters appear and makes each
one tighter. After calculating the eigenvalues, the eigenfunction corresponding to a cer-
tain eigenvalue index can be computed for each parameter value. In Figure 7.11 the result
is shown for eigenfunctiony2 of Eq. (7.7).

7.4 Conclusion

In this chapter we discussed the MATSLISE package. MATSLISE is a graphical MATLAB
software package for the interactive numerical study of one-dimensional (regular) Sturm-
Liouville problems and Schrödinger equations and radial Schrödinger equations with a
distorted Coulomb potential. It allows the accurate computation of the eigenvalues and
the visualization of the corresponding eigenfunctions. This is realized by making use of
the power of the high order PPM algorithms discussed in chapter 3 and 4. We looked at the
different MATSLISE functions and demonstrated the use of the graphical user interface,
which was built on top of the package in order to increase the accessibility.
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Figure 7.9: Example of the potential window of the MATSLISE GUI.
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Figure 7.10: Example of a plot generated by MATSLISE: the eigenvalues of a problem defined with
parameters.
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Figure 7.11: Example of the MATSLISE eigenfunction window for a problem with parameters.



Chapter 8

Conclusions

In this chapter, the conclusions from this dissertation aresummarized, and an overview of
the main contributions is given.

8.1 Summary

In this thesis, we mainly concentrated on a specific class of methods specially devised
for the numerical solution of a Sturm-Liouville problem or aSchr̈odinger problem. This
class of methods is formed by the family of Piecewise Perturbation Methods (PPM). The
main idea behind these methods is the perturbation approximation. This means that the
orginal differential equation is replaced piecewisely by another differential equation (the
so-called reference differential equation) which can be solved exactly. The perturbation
theory is used to construct some correction terms which are added to the (known) solution
of the reference differential equation in order to approximate the (unknown) solution of
the orginal equation. The accuracy in the solution increases with the number of correction
terms included.

In this thesis we considered two subclasses of the PPM: the Constant Perturbation
Methods (CPM) and the Line Perturbation Methods (LPM). BothCPM and LPM are
constructed for a Sturm-Liouville problem in Schrödinger form. By applying Liou-
ville’s transformation any (regular) Sturm-Liouville equation can be transformed to such
a Schr̈odinger form. A CPM approximates the potential function of the Schr̈odinger prob-
lem by a piecewise constant, while for the LPM piecewise lines are used.

Both CPM and LPM are well suited to be used as the integration method in a shoot-
ing procedure to solve the boundary value problem. We applied a procedure based on
the Pr̈ufer transformation to estimate the index associated to an eigenvalue. This allows
us to compute a specific eigenvalue without consideration ofother eigenvalues. For the
LPM, we constructed some alternative asymptotic formulae for the perturbation correc-
tions which are less affected by the accuracy loss due to the near-cancellation of like-
terms.
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Also for systems of coupled Schrödinger equations a CPM algorithm can be formu-
lated. As for the one-dimensional problem, the generalizedCPM is used in a shooting
procedure to compute the eigenvalues of the associated boundary value problem. The
shooting algorithm has been supplemented by Atkinson’s matrix generalization of the
Prüfer transformation.

We also devoted a chapter to the solution of some singular problems. We mainly
concentrated on a truncation algorithm to cut off the integration interval of problems with
infinite endpoints. Also an algorithm was described which deals with the singularity in
the origin of some radial Schrödinger equations.

The different PPM algorithms were implemented in the MATLABenvironment. The
one-dimensional algorithms e.g. are collected in the MATSLISE software package. MAT-
SLISE allows the computation and visualization of the eigenvalues and eigenfunctions of
a Sturm-Liouville or Schr̈odinger problem.

8.2 Contributions

The main novelties and contributions presented in this thesis are the following. In chapter
3, we presented a Maple program which automates the construction of the perturbation
corrections for the so-called CPM{P,N} methods. This made it possible for us to for-
mulate the higher order CPM{14,12}, CPM{16,14} and CPM{18,16}. In chapter 4 we
collected some new results, in particular the obtained formulae for the first and second
order correction of a LPM algorithm of order 10 are new. Also some asymptotic formu-
lae for these corrections are presented. The use of these asymptotic expressions avoids
loss in accuracy due to near-cancellations of like-terms during computation. In chapter
5 we discussed our extension of the CPM algorithm to systems of coupled Schr̈odinger
equations. We developed a shooting procedure which uses this generalized CPM to com-
pute the eigenvalues of the boundary value problem. We improved the calculation of the
eigenvalues by adapting an algorithm by Marletta to the CPM case. In chapter 6, our con-
tribution exists in the development of the truncation algorithms for problems defined on an
infinite integration interval. We implemented the different CPM and LPM algorithms in
MATLAB. The M ATSLISE package, discussed in chapter 7, collects the one-dimensional
algorithms and allows the computation of the eigenvalues and eigenfunctions of a problem
specified by the user.



Chapter 9

Nederlandse samenvatting

Een groot aantal belangrijke fysische processen, zowel uitde klassieke fysica als uit de
kwantumfysica, worden beschreven aan de hand van een Sturm-Liouville vergelijking.
Een dergelijke Sturm-Liouville vergelijking is een lineaire tweede orde differentiaalver-
gelijking met als algemene vorm

− d

dx

[

p(x)
dy(x)

dx

]

+ q(x)y(x) = Ew(x)y(x), met x in [a, b]. (9.1)

Wanneer randvoorwaarden worden opgelegd in de eindpuntena en b van het integratie-
interval [a, b], bestaat een niet-triviale oplossingy(x) enkel voor bepaalde waarden van
de parameterE. DezeE-waarden en de bijhorende oplossingeny(x) worden deeigen-
waarden, respectievelijkeigenfunctiesvan het Sturm-Liouville probleem genoemd.

Een specifieke klasse van Sturm-Liouville problemen wordt gevormd door de Schrö-
dinger problemen. De Schrödinger vergelijking is de fundamentele vergelijking in de
kwantummechanica en kan in de volgende vorm geschreven worden:

y′′(x) = [V (x)− E]y(x) met x in [a, b]. (9.2)

Het oplossen van een Sturm-Liouville of Schrödinger probleem bestaat erin de koppels
(Ek, yk) te bepalen, waarbijEk de k-de eigenwaarde is enyk de eigenfunctie die erbij
hoort. Het natuurlijk getalk (k = 0, 1, 2, ...) wordt de index van de eigenwaardeEk

genoemd. Een Sturm-Liouville probleem is over het algemeenniet analytisch oplosbaar
en computationeel efficiënte benaderingsmethoden zijn dan ook van groot belang.

In de literatuur werden reeds verschillende numerieke methoden beschreven voor de
berekening van de eigenwaarden en eigenfuncties van Sturm-Liouville randwaardepro-
blemen. Deze technieken omvatten onder andere de eindige differentiemethoden (waar
de optredende afgeleiden worden gediscretiseerd), variationele methoden en ‘shooting’
methoden. Maar de nauwkeurigheid van zowel de variationeleals eindige differentie-
methoden neemt sterk af bij stijgende index van de eigenwaarde. Dit is een gevolg van
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het toenemende oscillatorisch gedrag van de eigenfunctie bij een stijgende eigenwaarde-
index. Hetzelfde geldt ook voor veel van de shooting methoden wanneer ze rechtstreeks
op het Sturm-Liouville probleem worden toegepast. Een ander minpunt van veel metho-
den is dat eerst alle voorafgaande eigenwaarden moeten berekend worden vooraleer met
de berekening van een specifieke eigenwaardeEk kan gestart worden.

Voor het Sturm-Liouville probleem kunnen de moeilijkhedenopgelost worden door
gebruik te maken van de Prüfer transformatie. Deze Prüfer transformatie laat toe om een
shooting methode op te stellen waar een specifieke eigenwaarde met een bepaalde index
wordt berekend zonder dat er kennis nodig is van de voorafgaande (lagere) eigenwaar-
den. Ook maakt de Prüfer gebaseerde shooting methode het mogelijk om een redelijke
nauwkeurigheid te bekomen voor eigenwaarden met een hogereindex.

Wanneer de Prüfer gebaseerde shooting methoden echter gebruik maken vanstan-
daard codes voor beginwaardeproblemen (bvb. een Runge-Kutta code), kunnen proble-
men met stijfheid ontstaan, waardoor zeer kleine stapgroottes genomen worden. Deze
problemen verdwijnen wanneer de shooting procedure wordt gecombineerd met coëfficiënt-
approximatie. Hierbij worden de coëfficiëntfunctiesp(x), q(x) enw(x) stuksgewijs ver-
vangen door polynomen van een lage graad zodat de resulterende vergelijking analytisch
kan opgelost worden. Pruess en Fulton gebruikten een stuksgewijs constante benade-
ring van de cöefficiëntfuncties in hun gekende SLEDGE code. Ixaru beschreef de basis-
principes voor een andere klasse van methoden gebaseerd op coëfficiëntapproximatie, de
zogenaamde PPM (Eng.: Piecewise Perturbation Methods). Aan deze PPM wordt een per-
turbatietechniek toegevoegd om de oplossing van het benaderende probleem bijkomend te
corrigeren. Hoe hoger het aantal perturbaties, hoe nauwkeuriger de bekomen oplossing.
Dit laat toe om methoden met hogere ordes te definiëren.

Het is vooral de klasse van PPM die het onderwerp van deze thesis vormt. In hoofd-
stuk 3 concentreren we ons op een belangrijke subklasse van de PPM, namelijk de CPM
(Constant Perturbation Methods) die speciaal werd ontworpen voor de Schr̈odinger ver-
gelijking. Deze CPM steunen op de benadering van de optredende potentiaalfunctieV (x)
door een stuksgewijsconstantereferentiefunctie om een oplossing van orde nul te vormen.
Deze CPM hebben het belangrijke voordeel dat de toename van de fout bij stijgende in-
dex k verdwijnt, dit in contrast met de traditionele methoden waar de fout stijgt met
de energieE. Als een direct gevolg, kan een energie-onafhankelijke verdeling van het
integratie-interval geconstrueerd worden met ongewoon grote stapgroottes waarover de
berekeningen snel kunnen gebeuren. Het construeren van eendergelijk CPM-algoritme
werd echter in het verleden erg moeilijk bevonden doordat een groot aantal analytische
berekeningen nodig zijn voor het opstellen van de correctietermen. Door het symbolisch
softwarepakket Maple te gebruiken, slaagden we erin om dezebarrìere grotendeels te
overbruggen. Verschillende hogere orde CPM-versies werden ontwikkeld en toegepast op
het Sturm-Liouville en Schrödinger probleem. Meer concreet behandelen we de extensie
van de zogenaamde CPM{12,10} methode, gëıntroduceerd door Ixaru et. al. en gebruikt
in de Fortran SLCPM12 code, naar de hogere orde methodes CPM{14,12}, CPM{16,14}
en CPM{18,16}. Een aantal numerieke tests toont aan dat de hogere orde methoden nog
efficiënter zijn dan het CPM{12,10} algoritme: het aantal subintervallen in de partitie kan
sterk gereduceerd worden waardoor de CPU-tijd, die nodig isom een aantal eigenwaarden
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binnen een vooraf opgelegde nauwkeurigheid te bepalen, kleiner is.
De CPM representeren slechtséén mogelijke manier om een PPM te implementeren.

Een andere mogelijkheid bestaat erin om methoden te construeren die gebaseerd zijn op
een stuksgewijslineaire coëfficiëntapproximatie in plaats van een stuksgewijs constante
coëfficiëntapproximatie. Deze methoden duiden we aan als de LPM (Line Perturbation
Methods). We verfijnden het LPM algoritme en bespreken in hoofdstuk 4 de constructie
van de eerste en tweede orde correctieterm. Deze correctieslaten ons toe om een methode
van orde 10 te definiëren. Numerieke testen bevestigen dat ook deze LPM-versie voldoet
aan de belangrijke eigenschap van de PPM-methoden: de eigenwaarden kunnen benaderd
worden met een uniforme nauwkeurigheid overéén en dezelfde partitie van het integratie-
interval. Het spreekt vanzelf dat lijnsegmenten betere stuksgewijze benaderingen geven
van een functie dan constantes. Toch tonen we aan dat in de praktijk de LPM-versie vaak
minder geschikt is dan een CPM van dezelfde orde. De reden is dat de propagatie van de
oplossing over een subinterval meer tijd vraagt voor de LPM.Dit komt doordat de exacte
oplossing van het benaderende referentieprobleem wordt uitgedrukt in Airy functies. De
evaluatie van deze Airy functies is complexer dan de evaluatie van de goniometrische
en hyperbolische functies die optreden in het algoritme vande CPM. Het is dan ook
aangewezen een LPM enkel te gebruiken wanneer de potentiaalsterk varieert. In alle
andere gevallen hoort een CPM de voorkeur te krijgen.

In hoofdstuk 5 bestuderen we de ontwikkeling van CPM voor stelsels van meerdere
Schr̈odinger vergelijkingen. De behoefte aan goede numerieke methodes voor het oplossen
van stelsels van gekoppelde Schrödinger vergelijkingen duikt op in vele kwantummecha-
nische berekeningen, zowel uit de nucleaire als moleculaire fysica. We construeerden
een aantal CPM-gebaseerde methodes van hoge orde door een zeer analoge procedure
te gebruiken als bij het́eén-dimensionale geval. Opnieuw werden de berekeningen voor
het opstellen van de correctietermen uitgevoerd in het symbolisch softwarepakket Maple.
De geconstrueerde algoritmes zijn erg stabiel en vertonen (net zoals de CPM voor een
één-dimensionaal probleem) een uniforme nauwkeurigheid ten opzichte van de energie.
Er wordt aangetoond dat de meer-dimensionale CPM in feite een veralgemening is van
de één-dimensionale versie: de bekomen formules reduceren totde formules van de
één-dimensionale CPM wanneer het aantal vergelijkingen gelijk is aan één. De meer-
dimensionale CPM kan dan gebruikt worden in een shooting procedure om de eigenwaar-
den te bepalen van een stelsel van gekoppelde vergelijkingen.

Hoofdstuk 6 handelt over singuliere Sturm-Liouville problemen. Een singulier pro-
bleem ontstaat wanneer minstenséén van de cöefficiëntenp−1, q, w niet integreerbaar is
tot aan een eindpunt van het integratie-interval of alséén (of beide) eindpunt(en) oneindig
is. Deze singuliere problemen brengen een aantal specifiekemoeilijkheden met zich
mee. We bespreken een interval-truncatieprocedure voor problemen gedefinieerd over
een oneindig integratie-interval. Daarnaast beschouwen we ook de belangrijke klasse
van radiale Schr̈odinger vergelijkingen waarvoor een verbeterd truncatie-algoritme wordt
voorgesteld. Ook bespreken we een algoritme dat rekening houdt met het singulier karak-
ter van een radiaal Schrödinger probleem in de oorsprongx = 0. Dit algoritme dient dan
toegepast te worden in een klein interval rond de oorsprong.

In hoofdstuk 7 tenslotte, wordt wat meer uitleg gegeven overde structuur en het ge-
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bruik van het softwarepakket MATSLISE. MATSLISE is een MATLAB-pakket dat alle
CPM en LPM algoritmes voor hetéén-dimensionale Sturm-Liouville en Schrödinger pro-
bleem implementeert. Ook de truncatie-algoritmes voor problemen gedefinieerd over een
oneindig integratie-interval, zijn geı̈ncludeerd in MATSLISE, net als de procedure die de
singulariteit in de oorsprong van een radiaal Schrödinger probleem afhandelt. Om de
gebruiksvriendelijkheid van het pakket te verhogen werd een grafische gebruikersinter-
face toegevoegd. Aan de hand van een voorbeeld illustreren we de mogelijkheden van
deze gebruikersinterface.

De onderzoeksresultaten besproken in deze doctoraatsthesis werden gepubliceerd in
gespecialiseerde wetenschappelijke tijdschriften, zie [73–79].



Appendix A

CPM Coefficients

A.1 One-dimensional CPM{P, N}
The four elements of the propagation matrix atδ = h are (see section 3.4)

u(h) = ξ(Z) +

∞
∑

m=1

C(u)
m ηm(Z), (A.1)

hu′(h) = Zη0(Z) +

∞
∑

m=0

C(u′)
m ηm(Z), (A.2)

v(h)/h = η0(Z) +

∞
∑

m=2

C(v)
m ηm(Z), (A.3)

v′(h) = ξ(Z) +
∞
∑

m=1

C(v′)
m ηm(Z), (A.4)

where theC coefficients only depend upon the perturbation while the energy dependence
is absorbed entirely in theZ = (V −E)h2-dependent functionsξ andηm. Below we give
a list of theC coefficients for the CPM{18,16} method. For brevity reasons, the ellipsis
symbol was used in some coefficients. The full expressions can be reproduced by using
the Maple code given in section B.1. TheVi, i = 1, 2, . . . , 16 are defined by expression
(3.41) andV̄i = Vih

i+2, i = 1, 2, . . . , 16.

C
(u)
1 = −[V̄1 + V̄3 + V̄5 + V̄7 + V̄9 + V̄11 + V̄13 + V̄15]/2 + O(h19),

C
(u)
2 = [5 V̄3 + 14 V̄5 + 27 V̄7 + 44 V̄9 + 65 V̄11 + 90 V̄13 + 119 V̄15]/2

−[15015 V̄ 2
1 + 9009 V̄ 2

2 + 6435 V̄ 2
3 + 5005 V̄ 2

4 + 4095 V̄ 2
5 + 3465 V̄ 2

6

+3003 V̄ 2
7 ]/360360 + O(h19),

C
(u)
3 = [−63 V̄5 − 297 V̄7 − 858 V̄9 − 1950 V̄11 − 3825 V̄13 − 6783 V̄15]/2

+[−9009 V̄ 2
2 + 8580 V̄ 2

3 − 5005 V̄ 2
4 + 10920 V̄ 2

5 − 3465 V̄ 2
6 + 12012 V̄ 2

7
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+60060 V̄1V̄2 + 30030 V̄1V̄3 + 60060 V̄1V̄4 + 30030 V̄1V̄5 + 60060 V̄1V̄6

+30030 V̄1V̄7 + 60060 V̄1V̄8 + 30030 V̄1V̄9 + 60060 V̄1V̄10 + 30030 V̄1V̄11

+60060 V̄1V̄12 + 30030 V̄1V̄13 + 60060 V̄2V̄3 + 60060 V̄2V̄5 + 60060 V̄2V̄7

+60060 V̄2V̄9 + 60060 V̄2V̄11 + 60060 V̄3V̄4 + 30030 V̄3V̄5 + 60060 V̄3V̄6

+30030 V̄3V̄7 + 60060 V̄3V̄8 + 30030 V̄3V̄9 + 60060 V̄3V̄10 + 30030 V̄3V̄11

+60060 V̄4V̄5 + 60060 V̄4V̄7 + 60060 V̄4V̄9 + 60060 V̄5V̄6 + 30030 V̄5V̄7

+60060 V̄5V̄8 + 30030 V̄5V̄9 + 60060 V̄6V̄7]/120120 + O(h19),

C
(u)
4 = [1287 V̄7 + 8580 V̄9 + 33150 V̄11 + 96900 V̄13 + 237405 V̄15]/2

+[−126126 V̄1V̄4 − 54054 V̄1V̄5 − 324324 V̄1V̄6 − 132132 V̄1V̄7

−594594 V̄1V̄8 − 234234 V̄1V̄9 − 936936 V̄1V̄10 − 360360 V̄1V̄11

−1351350 V̄1V̄12 − 510510 V̄1V̄13 − 90090 V̄2V̄3 + 18018 V̄2V̄4

−252252 V̄2V̄5 + 18018 V̄2V̄6 − 486486 V̄2V̄7 + 18018 V̄2V̄8 − 792792 V̄2V̄9

+18018 V̄2V̄10 − 1171170 V̄2V̄11 + 18018 V̄2V̄12 − 6435 V̄ 2
3 − 216216 V̄3V̄4

−54054 V̄3V̄5 − 414414 V̄3V̄6 − 132132 V̄3V̄7 − 684684 V̄3V̄8 − 234234 V̄3V̄9

−1027026 V̄3V̄10 − 360360 V̄3V̄11 + 25025 V̄ 2
4 − 378378 V̄4V̄5

+60060 V̄4V̄6 − 612612 V̄4V̄7 + 60060 V̄4V̄8 − 918918 V̄4V̄9 + 60060 V̄4V̄10

−31122 V̄ 2
5 − 576576 V̄5V̄6 − 132132 V̄5V̄7 − 846846 V̄5V̄8 − 234234 V̄5V̄9

+59598 V̄ 2
6 − 810810 V̄6V̄7 + 126126 V̄6V̄8 − 69069 V̄ 2

7 ]/24024

+[15015 V̄ 3
1 + 18018 V̄ 2

1 V̄2 + 15015 V̄ 2
1 V̄3 + 15015 V̄ 2

1 V̄5 + 15015 V̄ 2
1 V̄7

+15015 V̄
2
1 V̄9 + 9009 V̄1V̄

2
2 + 23166 V̄1V̄2V̄3 + 6435 V̄1V̄

2
3

+17160 V̄1V̄3V̄4 + 5005 V̄1V̄
2
4 + 13650 V̄1V̄4V̄5 + 4095 V̄1V̄

2
5

+11340 V̄1V̄5V̄6 + 2574 V̄ 3
2 + 9009 V̄ 2

2 V̄3 + 7722 V̄ 2
2 V̄4 + 9009 V̄ 2

2 V̄5

+9009 V̄ 2
2 V̄7 + 5148 V̄2V̄

2
3 + 11700 V̄2V̄3V̄5 + 3900 V̄2V̄

2
4

+9450 V̄2V̄4V̄6 + 3150 V̄2V̄
2
5 + 6435 V̄ 3

3 + 3510 V̄ 2
3 V̄4 + 6435 V̄ 2

3 V̄5

+4500 V̄ 2
3 V̄6 + 5005 V̄3V̄

2
4 + 5400 V̄3V̄4V̄5 + 810 V̄ 3

4 ]/720720 + O(h19),

C
(u)
5 = [−36465 V̄9 − 314925 V̄11 − 1526175 V̄13 − 5460315 V̄15]/2

+ . . . + O(h19),

C
(u)
6 = [1322685 V̄11 + 14040810 V̄13 + 81904725 V̄15]/2 + . . . + O(h19),

C
(u)
7 = −[58503375 V̄13 + 737142525 V̄15]/2 + . . . + O(h19),

C
(u)
8 = 3053876175 V̄15/2 + . . . + O(h19),

C
(u)
m = 0 + O(ht(m)) with t(m) ≥ 19, ∀m ≥ 9.

C
(u′)
0 = [V̄2 + V̄4 + V̄6 + V̄8 + V̄10 + V̄12 + V̄14 + V̄16]/2 + O(h20),

C
(u′)
1 = −[3V̄2 + 10V̄4 + 21V̄6 + 36V̄8 + 55V̄10 + 78V̄12 + 105V̄14 + 136V̄16]/2

−[15015V̄ 2
1 + 9009V̄ 2

2 + 6435V̄ 2
3 + 5005V̄ 2

4 + 4095V̄ 2
5 + 3465V̄ 2

6

+3003V̄ 2
7 ]/360360 + O(h20),
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C
(u′)
2 = = [35V̄4 + 189V̄6 + 594V̄8 + 1430V̄10 + 2925V̄12 + 5355V̄14 + 4522V̄16]/2

−[105105V̄ 2
1 + 180180V̄1V̄3 + 180180V̄1V̄5 + 180180V̄1V̄7 + 180180V̄1V̄9

+180180V̄1V̄11 + 180180V̄1V̄13 + 96525V̄ 2
3 + 180180V̄3V̄5 + 180180V̄3V̄7

+180180V̄3V̄9 + 180180V̄3V̄11 + 94185V̄ 2
5 + 180180V̄5V̄7 + 180180V̄5V̄9

+93093V̄ 2
7 + 54054V̄ 2

2 + 90090V̄2V̄4 + 90090V̄2V̄6 + 90090V̄2V̄8

+90090V̄2V̄10 + 90090V̄2V̄12 + 50050V̄ 2
4 + 90090V̄4V̄6 + 90090V̄4V̄8

+90090V̄4V̄10 + 48510V̄ 2
6 + 90090V̄6V̄8]/360360 + O(h20),

C
(u′)
3 = [−693V̄6 − 5148V̄8 − 21450V̄10 − 66300V̄12 − 169575V̄14 − 379848V̄16]/2

+[4144140V̄5V̄7 + 480480V̄1V̄3 + 3963960V̄6V̄8 + 2849847V̄ 2
7

+1291290V̄1V̄5 + 1482390V̄ 2
5 + 5675670V̄5V̄9 + 700700V̄ 2

4 + 2072070V̄4V̄6

+2972970V̄4V̄8 + 3483480V̄2V̄10 + 2342340V̄2V̄8 + 1441440V̄2V̄6

+780780V̄2V̄4 + 8138130V̄1V̄13 + 5885880V̄1V̄11 + 3993990V̄1V̄9

+2462460V̄1V̄7 + 6486480V̄3V̄11 + 4594590V̄3V̄9 + 3063060V̄3V̄7

+1891890V̄3V̄5 + 4864860V̄2V̄12 + 4114110V̄4V̄10 + 171171V̄ 2
2 + 534105V̄ 2

3

+1528065V̄ 2
6 ]/120120 + [3003V̄ 2

1 V̄2 − 15015V̄ 2
1 V̄4 − 15015V̄ 2

1 V̄6

−15015V̄ 2
1 V̄8 − 15015V̄ 2

1 V̄10 + 23166V̄1V̄2V̄3 + 17160V̄1V̄3V̄4

+13650V̄1V̄4V̄5 + 11340V̄1V̄5V̄6 − 6435V̄ 3
2 − 1287V̄ 2

2 V̄4 − 9009V̄ 2
2 V̄6

−9009V̄ 2
2 V̄8 − 1287V̄2V̄

2
3 + 11700V̄2V̄3V̄5 − 1105V̄2V̄

2
4 + 9450V̄2V̄4V̄6

−945V̄2V̄
2
5 − 2925V̄ 2

3 V̄4 − 1935V̄ 2
3 V̄6 + 5400V̄3V̄4V̄5 − 4195V̄ 3

4 ]/720720

+O(h20),

C
(u′)
4 = [19305V̄8 + 182325V̄10 + 944775V̄12 + 3561075V̄14 + 10920630V̄16]/2

+ . . . + O(h20),

C
(u′)
5 = [−692835V̄10 − 7936110V̄12 − 49142835V̄14 − 218412600V̄16]/2

+ . . . + O(h20),

C
(u′)
6 = [30421755V̄12 + 409523625V̄14 + 2948570100V̄16]/2 + . . . + O(h20),

C
(u′)
7 = [−1579591125V̄14 − 24431009400V̄16]/2 + . . . + O(h20),

C
(u′)
8 = 94670161425V̄16/2 + . . . + O(h20),

C
(u′)
m = 0 + O(ht(m)) with t(m) ≥ 20, ∀m ≥ 9.

C
(v)
2 = −[V̄2 + V̄4 + V̄6 + V̄8 + V̄10 + V̄12 + V̄14]/2 + O(h18),

C
(v)
3 = [7V̄4 + 18V̄6 + 33V̄8 + 52V̄10 + 75V̄12 + 102V̄14]/2

−[15015V̄ 2
1 + 9009V̄ 2

2 + 6435V̄ 2
3 + 5005V̄ 2

4 + 4095V̄ 2
5 + 3465V̄ 2

6 ]/360360

+O(h18),

C
(v)
4 = −[99V̄6 + 429V̄8 + 1170V̄10 + 2550V̄12 + 4845V̄14]/2

+[60060V̄1V̄3 + 60060V̄1V̄5 + 60060V̄1V̄7 + 60060V̄1V̄9 + 60060V̄1V̄11

+27027V̄ 2
2 + 90090V̄2V̄4 + 90090V̄2V̄6 + 90090V̄2V̄8 + 90090V̄2V̄10
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+17160V̄ 2
3 + 60060V̄3V̄5 + 60060V̄3V̄7 + 60060V̄3V̄9 + 35035V̄ 2

4

+90090V̄4V̄6 + 90090V̄4V̄8 + 21840V̄ 2
5 + 60060V̄5V̄7 + 38115V̄ 2

6 ]/120120

+O(h18),

C
(v)
5 = [2145V̄8 + 13260V̄10 + 48450V̄12 + 135660V̄14]/2 + . . . + O(h18),

C
(v)
6 = −[62985V̄10 + 508725V̄12 + 2340135V̄14]/2 + . . . + O(h18),

C
(v)
7 = [2340135V̄12 + 23401350V̄14]/2 + . . . + O(h18),

C
(v)
8 = −105306075V̄14/2 + . . . + O(h18),

C
(v)
m = 0 + O(ht(m)) with t(m) ≥ 18, ∀m ≥ 9.

C
(v′)
1 = [V̄1 + V̄3 + V̄5 + V̄7 + V̄9 + V̄11 + V̄13 + V̄15]/2 + O(h19),

C
(v′)
2 = −[5V̄3 + 14V̄5 + 27V̄7 + 44V̄9 + 65V̄11 + 90V̄13 + 119V̄15]/2

−[15015V̄ 2
1 + 9009V̄ 2

2 + 6435V̄ 2
3 + 5005V̄ 2

4 + 4095V̄ 2
5 + 3465V̄ 2

6

+3003V̄ 2
7 ]/360360 + O(h19),

C
(v′)
3 = [63V̄5 + 297V̄7 + 858V̄9 + 1950V̄11 + 3825V̄13 + 6783V̄15]/2

+[−9009V̄ 2
2 + 8580V̄ 2

3 − 5005V̄ 2
4 + 10920V̄ 2

5 − 3465V̄ 2
6 + 12012V̄ 2

7

+30030V̄1V̄3 + 30030V̄1V̄5 + 30030V̄1V̄7 + 30030V̄1V̄9 + 30030V̄1V̄11

+30030V̄1V̄13 − 60060V̄1V̄2 − 60060V̄1V̄4 − 60060V̄1V̄6 − 60060V̄1V̄8

−60060V̄1V̄10 − 60060V̄1V̄12 + 30030V̄3V̄5 + 30030V̄3V̄7 + 30030V̄3V̄9

+30030V̄3V̄11 − 60060V̄3V̄2 − 60060V̄3V̄4 − 60060V̄3V̄6V̄3V̄8 − 60060V̄3V̄10

+30030V̄5V̄7 + 30030V̄5V̄9 − 60060V̄5V̄2 − 60060V̄5V̄4 − 60060V̄5V̄6

−60060V̄5V̄8 − 60060V̄7V̄2 − 60060V̄7V̄4 − 60060V̄7V̄6 − 60060V̄9V̄2

−60060V̄9V̄4 − 60060V̄11V̄2]/120120 + O(h19),

C
(v′)
4 = −[1287V̄7 + 8580V̄9 + 33150V̄11 + 96900V̄13 + 237405V̄15]/2

+[−54054V̄1V̄5 − 132132V̄1V̄7 − 234234V̄1V̄9 − 360360V̄1V̄11

−510510V̄1V̄13 + 126126V̄1V̄4 + 324324V̄1V̄6 + 594594V̄1V̄8 + 936936V̄1V̄10

+1351350V̄1V̄12 − 6435V̄ 2
3 − 54054V̄3V̄5 − 132132V̄3V̄7 − 234234V̄3V̄9

−360360V̄3V̄11 + 90090V̄3V̄2 + 216216V̄3V̄4 + 414414V̄3V̄6 + 684684V̄3V̄8

+1027026V̄3V̄10 − 31122V̄ 2
5 − 132132V̄5V̄7 − 234234V̄5V̄9 + 252252V̄5V̄2

+378378V̄5V̄4 + 576576V̄5V̄6 + 846846V̄5V̄8 − 69069V̄ 2
7 + 486486V̄7V̄2

+612612V̄7V̄4 + 810810V̄7V̄6 + 792792V̄9V̄2 + 918918V̄9V̄4 + 1171170V̄11V̄2

+18018V̄2V̄4 + 18018V̄2V̄6 + 18018V̄2V̄8 + 18018V̄2V̄10 + 18018V̄2V̄12

+25025V̄ 2
4 + 60060V̄4V̄6 + 60060V̄4V̄8 + 60060V̄4V̄10 + 59598V̄ 2

6

+126126V̄6V̄8]/24024 + [5400V̄3V̄4V̄5 + 13650V̄1V̄4V̄5 + 11340V̄1V̄5V̄6

+17160V̄1V̄3V̄4 + 3150V̄2V̄
2
5 + 9450V̄2V̄4V̄6 + 23166V̄1V̄2V̄3 + 11700V̄2V̄3V̄5

−15015V̄ 2
1 V̄5 + 18018V̄ 2

1 V̄2 + 4500V̄ 2
3 V̄6 + 7722V̄ 2

2 V̄4 − 9009V̄1V̄
2
2

−6435V̄1V̄
2
3 − 15015V̄ 2

1 V̄7 + 3900V̄2V̄
2
4 + 5148V̄2V̄

2
3 + 3510V̄ 2

3 V̄4 + 2574V̄ 3
2
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+810V̄ 3
4 − 15015V̄ 2

1 V̄3 − 15015V̄ 2
1 V̄9 − 5005V̄1V̄

2
4 − 4095V̄1V̄

2
5 − 9009V̄ 2

2 V̄3

−9009V̄ 2
2 V̄5 − 9009V̄ 2

2 V̄7 − 6435V̄ 2
3 V̄5 − 5005V̄3V̄

2
4 − 15015V̄ 3

1

−6435V̄ 3
3 ]/720720 + O(h19),

C
(v′)
5 = [36465V̄9 + 314925V̄11 + 1526175V̄13 + 5460315V̄15]/2 + . . . + O(h19),

C
(v′)
6 = −[1322685V̄11 + 14040810V̄13 + 81904725V̄15]/2 + . . . + O(h19),

C
(v′)
7 = [58503375V̄13 + 737142525V̄15]/2 + . . . + O(h19),

C
(v′)
8 = −3053876175V̄15/2 + . . . + O(h19),

C
(v′)
m = 0 + O(ht(m)) with t(m) ≥ 19, ∀m ≥ 9.

A.2 Generalized CPM{P, N}
The propagators atδ = h have the following form :

uD(h) = ξ(Z) +

∞
∑

m=1

C(u)
m ηm(Z), (A.5)

huD′
(h) = Zη0(Z) +

∞
∑

m=0

C(u′)
m ηm(Z), (A.6)

vD(h)/h = η0(Z) +
∞
∑

m=2

C(v)
m ηm(Z), (A.7)

vD′
(h) = ξ(Z) +

∞
∑

m=1

C(v′)
m ηm(Z), (A.8)

whereξ(Z) andηm(Z) are then× n diagonal matrices as defined in section 5.2.2.
TheCm coefficient matrices only depend upon the perturbation and the channel sep-

aration while the energy dependence is absorbed entirely inthe Z = (VD
 − EI)h2-

dependent matrices of functionsξ(Z) andηm(Z). Below we give a list of theCm coeffi-
cients for the CPM{10,8} method as obtained by the MAPLE code listed in section B.3.
For notational brevity the upper labelD is suppressed and̄Vi = Vih

i+2, i = 0, 1, . . . , 8.
The coefficients are expressed in commutators and anticommutators of two matrices with
[A,B] = AB −BA the commutator and{A,B} = AB + BA the anticommutator of
the matricesA andB.

C
(u)
1 = −(V̄1 + V̄3 + V̄5 + V̄7)/2 + [V̄1, V̄0]/24

+[−7V̄1 + 3V̄3, V̄2]/840 + O(h11),

C
(u)
2 = (5V̄3 + 14V̄5 + 27V̄7)/2 − V̄

2
1/24 − V̄

2
2/40 − V̄

2
3/56

+[4V̄1 − 3V̄2 + 3V̄3 − 3V̄4 + 3V̄5 − 3V̄6, V̄0]/24
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+[−7V̄1 + 3V̄3, V̄2]/840 +
�
[V̄1, V̄2], 2V̄1 + 7V̄0

�
/3360

−
�
[V̄1, V̄0], 7V̄1 + 2V̄3

�
/3360 −

�
[V̄2, V̄0], V̄2

�
/3360

+
�
[V̄3, V̄0], V̄1

�
/1120 −

�
[5V̄1 − V̄2, V̄0], V̄0

�
/480 + O(h11),

C
(u)
3 = (−63V̄5 − 297V̄7)/2 − 3V̄2

2/40 + V̄
2
3/14 + {V̄2, V̄3}/4

+{V̄1, 2V̄2 + V̄3 + 2V̄4 + V̄5}/8 − [7V̄1 + 32V̄3, V̄2]/280

+[−6V̄3 + 7V̄4 − 15V̄5 + 18V̄6, V̄0]/8 −
�
[V̄1, V̄0], V̄1

�
/160

−
�
[5V̄1 − 6V̄2 + 5V̄3 − 5V̄4, V̄0], V̄0

�
/160

+
�
(24V̄2 − 21V̄1)[V̄2, V̄0] + [V̄2, V̄0](18V̄2 − 21V̄1)

�
/3360

+
�
13[V̄1, V̄2]V̄1 + V̄1[V̄1, V̄2]

�
/3360 −

�
[V̄1, V̄0](41V̄3 − 28V̄2)

+(29V̄3 + 42V̄2)[V̄1, V̄0] + 9
�
V̄1, [V̄3, V̄0]

� �
/3360

+
�
[[3V̄1 − V̄2, V̄0], V̄0], V̄0

�
/1920 +

��
[V̄1, V̄0], V̄0

�
, V̄1

�
/1920

+[V̄1, V̄0]
2/1152 + O(h11),

C
(u)
4 = 1287V̄7/2 − 15V̄2

3/56 + V̄
3
1/48 − {V̄1, 21V̄4 + 9V̄5}/8

+{V̄2,−15V̄3 + 3V̄4}/8 + V̄1{V̄1, V̄2}/80 + 3[V̄2, V̄3]/56

+[V̄1, V̄4]/8 − (5V̄1[V̄1, V̄2] + 2[V̄1, V̄2]V̄1)/560

+[72V̄5 − 99V̄6, V̄0]/8 +
�
10V̄1[V̄3, V̄0] + 25[V̄3, V̄0]V̄1

+[V̄1, V̄0](30V̄3 − 28V̄2) + 5V̄3[V̄1, V̄0]
�
/560

+
�
[V̄3 − 2V̄4, V̄0], V̄0

�
/8 +

�
[[2V̄1 − 3V̄2, V̄0], V̄0], V̄0

�
/480

−
�
[V̄2V̄1, V̄0], V̄0

�
/10 +

�
[V̄1, V̄0], V̄0

�
V̄1/480

+
�
[V̄2, V̄0](36V̄2 + 21V̄1) + (48V̄2 − 42V̄1)[V̄2, V̄0]

�
/560

+[V̄1, V̄0]
2/240 + O(h11)

C
(u)
m = 0 + O(ht(m)) with t(m) ≥ 11, ∀m ≥ 5.

C
(u′)
0 = (V̄2 + V̄4 + V̄6 + V̄8)/2 + [V̄1, V̄0]/24 + [−7V̄1 + 3V̄3, V̄2]/840

+[V̄4, V̄3]/504 + O(h12),

C
(u′)
1 = −(3V̄2 + 10V̄4 + 21V̄6 + 36V̄8)/2 − V̄

2
1/24 − V̄

2
2/40 − V̄

2
3/56

+[V̄1 − V̄2 + V̄3 − V̄4 + V̄5 − V̄6 + V̄7, V̄0]/8

+
�
[−5V̄1 + V̄2, V̄0], V̄0

�
/480 +

�
V̄1 − V̄2, [V̄1, V̄0]

�
/480

+
�
7V̄1 + V̄2, [V̄2, V̄0]

�
/3360 +

�
[V̄1, V̄2], V̄1

�
/1680

−
�
3
�
V̄1, [V̄3, V̄0]

�
− 2

�
V̄3, [V̄1, V̄0]

��
/3360 +

�
[V̄2, V̄3], V̄0

�
/1120

+O(h12),

C
(u′)
2 = (35V̄4 + 189V̄6 + 594V̄8)/2 − 7V̄2

1/24 − 3V̄2
2/20 − 15V̄2

3/56

−{V̄1, V̄3 + V̄5}/4 + ([V̄3, V̄4] − {V̄2, V̄4})/8
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+[V̄1, V̄2 + V̄4 + V̄6]/8 + 11[V̄2
2, V̄1]/3360 + [V̄2

1, V̄3]/672

+[3V̄2 − 5V̄3 + 10V̄4 − 14V̄5 + 21V̄6 − 27V̄7, V̄0]

+
�
77V̄1[V̄1, V̄0] − 7[V̄1, V̄0]V̄1 + 20[V̄2, V̄0]V̄2

+22V̄2[V̄2, V̄0]
�
/3360 +

�
−3{V̄1, [V̄2, V̄0]} + 4{V̄2, [V̄1, V̄0]}

�
/480

+3
�
[V̄1, V̄2], V̄1

�
/1120 + {V̄4, [V̄1, V̄0]}/96

−
�
[15V̄1 − 16V̄2 + 15V̄3 − 15V̄4 + 15V̄5, V̄0], V̄0

�
/480

+
�
[[21V̄1 − 7V̄2 + V̄3, V̄0], V̄0], V̄0

�
/13440

+
�
− 11

�
[V̄1, V̄0], [V̄2, V̄0]

�
− 3

�
V̄1, [[V̄2, V̄0], V̄0]

�
+5

�
V̄2, [[V̄1, V̄0], V̄0]

� �
/13440 − V̄1[V̄1, V̄0]V̄1/4480

−
�
{V̄3, [V̄2, V̄0]} + 2{V̄2, [V̄3, V̄0]}

�
/560

+
�
−3

�
V̄1, [[V̄1, V̄0], V̄0]

�
+ 5[V̄1, V̄0]

2� /5760 + [V̄3
1, V̄0]/13440

+
�
−3

�
V̄1, [V̄3, V̄0]

�
+ 37

�
V̄3, [V̄1, V̄0]

��
/3360 + O(h12),

C
(u′)
3 = −693/2V̄6 − 2574V̄8 + 57/40V̄2

2 + 249/56V̄2
3 + {V̄1, 16V̄3 + 43V̄5}/8

+13/4{V̄2, V̄4} + 3/8[V̄2, V̄3 + V̄5] + 7/8[V̄4, V̄1 + V̄3] + 9/4[V̄6, V̄1]

+[−35V̄4 + 63V̄5 − 189V̄6 + 297V̄7, V̄0]/8 + 5[V̄2
1, V̄3]/336

+
�
[V̄1, V̄0](154V̄1 − 231V̄2 + 309V̄3 − 455V̄4)

+(336V̄1 − 21V̄2 + 111V̄3 − 245V̄4)[V̄1, V̄0] + (−378V̄1 + 45V̄2)[V̄2, V̄0]

+[V̄2, V̄0](−168V̄1 + 207V̄2) − 105[V̄4, V̄0]V̄1 − 315V̄1[V̄4, V̄0]

+114[V̄3, V̄0]V̄1 + 306V̄1[V̄3, V̄0]
�
/3360

+
�
[−9V̄2 + 25V̄3 − 45V̄4 + 70V̄5, V̄0], V̄0

�
/160

−
�
76{V̄3, [V̄2, V̄0]} + 47{V̄2, [V̄3, V̄0]}

�
/1120

+
�
[[V̄1, V̄0], V̄0]V̄1 + [V̄1, V̄0]

2 − 3V̄1[[V̄1, V̄0], V̄0]
�
/640

+
�
− 18V̄2[[V̄1, V̄0], V̄0] + 31[V̄2, V̄0][V̄1, V̄0] + 46[[V̄2, V̄0], V̄0]V̄1

−47[V̄1, V̄0][V̄2, V̄0] + 33V̄1[[V̄2, V̄0], V̄0] − 29[[V̄1, V̄0], V̄0]V̄2

�
/13440

−
�
[[[V̄1, V̄0], V̄0], V̄0], V̄0

�
/5760 +

�
[[63V̄1 − 77V̄2 + 73V̄3, V̄0], V̄0], V̄0

�
+7V̄1{V̄1, V̄2}/3360 − (20V̄1[V̄1, V̄2] − 13[V̄1, V̄2]V̄1)/3360

+11/1120[V̄2
2, V̄1] − 11/8064V̄1[V̄1, V̄0]V̄1 − [V̄3

1, V̄0]/8064 + O(h12),

C
(u′)
4 = 19305V̄8/2 − 1065/56V̄2

3 −
�
261{V̄1, V̄5} + 165{V̄2, V̄4}

�
/8

+[693V̄6 − 1287V̄7, V̄0]/8 +
�
[20V̄4 − 63V̄5, V̄0], V̄0]

�
/32

+
�
99[V̄1, V̄6] + 27[V̄5, V̄2] + 15[V̄3, V̄4]

�
/8

+
�
[[7V̄2 − 25V̄3, V̄0], V̄0], V̄0

�
/1120 − 1/1920

�
[[[V̄1, V̄0], V̄0], V̄0], V̄0

�
+(16V̄2[[V̄1, V̄0], V̄0] + 59[V̄2, V̄0][V̄1, V̄0] + 25[[V̄2, V̄0], V̄0]V̄1

+66V̄1[[V̄2, V̄0], V̄0] + 74[V̄1, V̄0][V̄2, V̄0] + 26[[V̄1, V̄0], V̄0]V̄0)/2240

−(5
�
[V̄1, V̄0], V̄0

�
V̄1 + 18V̄1

�
[V̄1, V̄0], V̄0

�
+ 16[V̄1, V̄0]

2)/960

+
�
(−492V̄2 + 705V̄3)[V̄2, V̄0] − 306[V̄2, V̄0](V̄2 + 495V̄3)

�
/1120

+
�
[V̄1, V̄0](−72V̄3 + 154V̄4) + (−152V̄3 + 56V̄4)[V̄1, V̄0]

+2171V̄1[V̄4, V̄0] + 119[V̄4, V̄0]V̄1 + [V̄3, V̄0](−88V̄1 + 114V̄2)
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+(−136V̄1 + 72V̄2)[V̄3, V̄0]
�
/224 + 9/112[V̄2

2, V̄1]

+259V̄1{V̄1, V̄2}/1120 − (101V̄1[V̄1, V̄2] + 158[V̄1, V̄2]V̄1)/1120

−9[V̄2
1, V̄3]/224 − 1/560V̄1[V̄1, V̄0]V̄1 − 31/6720[V̄3

1, V̄0] + O(h12),

C
(u′)
m = 0 + O(ht(m)) with t(m) ≥ 12, ∀m ≥ 5.

C
(v)
2 = −(V̄2 + V̄4 + V̄6)/2) + [V̄1, V̄0]/24 + [−7V̄1 + 3V̄3, V̄2]/840 + O(h10),

C
(v)
3 = 7V̄4/2 + 9V̄6 − V̄

2
1/24 − V̄

2
2/40 + [V̄2, 7V̄1 − 3V̄3]/280

−[V̄3 − V̄2 − V̄4 + V̄5, V̄0]/8 +
�
−5V̄1 + V̄2, V̄0], V̄0

�
/480

+
�
[V̄1, V̄2], V̄0

�
/480 +

�
V̄1, [V̄1, V̄0]

�
/480 + O(h10),

C
(v)
4 = −99V̄6/2 + 9V̄2

2/40 + {V̄1, 2V̄3 + V̄4}/8 + 3[V̄3, V̄2]/56

+[−7V̄4 + 9V̄5, V̄0]/8 +
�
[−3V̄2 + 5V̄3, V̄0], V̄0

�
/160

+
�
[V̄1, V̄0], V̄0], V̄0

�
/640 −

�
[V̄1, V̄0](−4V̄1 + 3V̄2)

+(−6V̄1 + 9V̄2)[V̄1, V̄0] + 6[V̄2, V̄0]V̄1

�
/480 + O(h10),

C
(v)
m = 0 + O(ht(m)) with t(m) ≥ 10, ∀m ≥ 5.

C
(v′)
1 = (V̄1 + V̄3 + V̄5 + V̄7)/2 + [V̄1, V̄0]/24 + [−7V̄1 + 3V̄3, V̄2]/840 + O(h11),

C
(v′)
2 = −(5V̄3 + 14V̄5 + 27V̄7)/2 − V̄

2
1/24 − V̄

2
2/40 − V̄

2
3/56

+[V̄2, 7V̄1 − 3V̄3]/840 + [−2V̄1 + 3V̄2 − 3V̄3 + 3V̄4 − 3V̄5 + 3V̄6, V̄0]/24

+
�
[−5V̄1 + V̄2, V̄0], V̄0

�
/480 +

�
V̄1 − V̄2, [V̄1, V̄0]

�
/480

+
�
7V̄1 + V̄2, [V̄2, V̄0]

�
/3360 −

�
V̄1, [V̄3, V̄0]

�
/1120 +

�
V̄3, [V̄1, V̄0]

�
/1680

−
�
V̄1, [V̄1, V̄2]

�
/1680 + O(h10),

C
(v′)
3 = +

�
63V̄5 + 297V̄7

�
/2 + {V̄1, V̄3 − 2V̄4 + V̄5}/8 − {V̄2, V̄1 + V̄3}/4

−3V̄2
2/40 + V̄

2
3/14 + [4V̄3 − 7V̄4 + 13V̄5 − 18V̄6, V̄0]/8

+[V̄2, 7V̄1 + 32V̄3]/280 +
�
5V̄1 − 12V̄2 + 15V̄3 − 15V̄4, V̄0], V̄0

�
/480

+
�
−3V̄1[[V̄1, V̄0], V̄0] + 5[V̄1, V̄0]

2 + 13[[V̄1, V̄0], V̄0]V̄1

�
/5760

+
�
[V̄1, V̄0](7V̄1 − 4V̄2) + (13V̄1 + 2V̄2)[V̄1, V̄0]

�
/480

+
�
[V̄2, V̄0](−35V̄1 + 18V̄2) + (−7V̄1 + 24V̄2)[V̄2, V̄0]

�
/3360

+
�
9
�
[V̄3, V̄0], V̄1

�
+ 41V̄3[V̄1, V̄0] + 29[V̄1, V̄0]V̄3

�
/3360

+
�
[[3V̄1 − V̄2, V̄0], V̄0], V̄0

�
/1920

+([V̄2, V̄1]V̄1 − 13V̄1[V̄1, V̄2])/3360 + O(h10),

C
(v′)
4 = −1287V̄7/2 − 15V̄2

3/56 − V̄
3
1/48 + {V̄2, 105V̄3 + 21V̄4}/56

+63{V̄1, 147V̄4 − 63V̄5}/56 + [V̄1, V̄4]/8 − 3[V̄2, V̄3]/56

+V̄1{V̄1, V̄2}/80 + (−5V̄1[V̄1V̄2] + 2[V̄1V̄2]V̄1)/560 − 27[V̄5, V̄0]/4

+
�
(42V̄1 − 15V̄2)[V̄2, V̄0] + [V̄2, V̄0](21V̄1 − 27V̄2)

�
/560

+
�
(35V̄2 + 65V̄3)[V̄1, V̄0] + [V̄1, V̄0](21V̄2 + 40V̄3)

�
/560
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−
�
12V̄1[V̄3, V̄0] + 9[V̄3, V̄0]V̄1

�
/112 +

�
[−V̄3 + 3V̄4, V̄0], V̄0

�
/16

+
�
[[3V̄2 − V̄1, V̄0], V̄0], V̄0

�
/960 − [[V̄1, V̄0], V̄0]V̄1/480

−[V̄1[V̄1, V̄0], V̄0]/160 + O(h10),

C
(v′)
m = 0 + O(ht(m)) with t(m) ≥ 11, ∀m ≥ 5.

Note that the number of matrix multiplications actually performed can be reduced
substantially by computing the commutators and matrix products which occur several
times (as e.g.[V̄1, V̄0], [V̄2, V̄0], [V̄1, V̄2], V̄2

2, . . . ) only once. In addition, we can
remark that a commutator[V̄i, V̄j ] or an anticommutator{V̄i, V̄j} needs only one matrix
multiplication sinceV̄jV̄i = (V̄iV̄j)

T for V̄i andV̄j symmetric matrices.





Appendix B

Maple Code

The Maple codes listed in this appendix are available for download at [2] .

B.1 The generation of the coefficients for the one-dimensional
CPM{P, N}

Maple code which generates the expressions of the corrections for the CPM{P,N}meth-
ods of chapter 3.

restart;
# include package for the generation of orthogonal polynomi als:
with(orthopoly):
# shifted Legendre polynomials:
Ps:=(n,x)->simplify(P(n,2 * x-1)):

# a pruning procedure:
REDUCE:= proc(a,P)

local operand, tmp, reduced, i:
reduced:=0;
tmp:=simplify(rem(rem(convert(a,’polynom’),deltaˆ(P ),delta),

hˆ(P),h)):
for i from 1 to nops(tmp) do

operand:=op(i,tmp);
if degree(operand,{delta,h}) < (P) then

reduced:=simplify(reduced+operand);
end if;

od:
RETURN(reduced);

end proc:

# Construct elements of the propagation matrix for CPM{18,1 6}
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# Here the CPM{18,16} method is constructed:
# (by changing Hmax and N other CPM{P,N} methods can be
# constructed)
Hmax:=18:
N:=16:
NumIt:=floor(2 * N/3) + 1:

# DV(delta) = VˆN(X+delta) - Vc[0] = perturbation
DV:=x->sum(Vc[n] * hˆn * Ps(n,x/h),n=1..N):

# construct u1(delta) :
C[1,0]:=delta->integrate(DV(x),x=0..delta)/2:
# m from 1 to Hmax/2+1 suffices because C[i,m] and C’[i,m] are
# multiplied by deltaˆ(2m+1) and terms with degree(delta) > Hmax
# are ignored later.
for m from 1 to Hmax/2+1 do

C[1,m]:=unapply(simplify( -1/2/deltaˆm * int(delta1ˆ(m-1) *
diff(C[1,m-1](delta1),delta1$2),delta1=0..delta)),
delta):

od:
u:=unapply(xi(delta)+sum(C[1,k](delta) * deltaˆ(2 * k+1) * eta[k],

k=0..(Hmax/2+1)),delta):
up:=unapply(Z * eta[0]+C[1,0](delta) * xi+

sum((simplify(diff(C[1,k](delta),delta$1)+delta *
C[1,k+1](delta))) * deltaˆ(2 * k+1) * eta[k],k=0..(Hmax/2)),delta):

# calculate remaining corrections u_i(delta) :
for i from 2 to NumIt do
# --> REDUCE-method avoids calculating terms which will be
# ignored later.

for m from 0 to Hmax/2 do
R[i,m]:=unapply(REDUCE(expand(DV(delta) * C[i-1,m](delta)),

Hmax-2* m+3),delta):
od:
C[i,0]:=delta->0:
for m from 1 to Hmax/2+1 do

C[i,m]:=unapply(simplify(1/2/deltaˆm * int(delta1ˆ(m-1) *
(R[i,m-1](delta1)-diff(expand(C[i,m-1](delta1)),
delta1$2)),delta1=0..delta)),delta):

od:
u:=unapply(u(delta)+sum(C[i,k](delta) * deltaˆ(2 * k+1) * eta[k],

k=0..(Hmax/2+1)),delta):
up:=unapply(up(delta)+sum((diff(C[i,k](delta),delta )+

delta * C[i,k+1](delta)) * deltaˆ(2 * k+1) * eta[k],k=0..(Hmax/2)),
delta):

end:
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# construct v1(delta) :
R[1,0]:=unapply(DV(delta),delta):
for m from 1 to Hmax/2 do

R[1,m]:=delta->0:
od:
C[1,0]:=delta->0:
for m from 1 to Hmax/2+1 do

C[1,m]:=unapply(simplify(1/2/deltaˆm * int(delta1ˆ(m-1) *
(R[1,m-1](delta1)-diff(expand(C[1,m-1](delta1)),
delta1$2)),delta1=0..delta)),delta):

od:
v:=unapply(delta * eta[0]+sum(C[1,k](delta) * deltaˆ(2 * k+1) *

eta[k],k=0..(Hmax/2+1)),delta):
vp:=unapply(delta * xi+C[1,0](delta) * xi+

sum((simplify(diff(C[1,k](delta),delta)+delta * C[1,k+1]
(delta))) * deltaˆ(2 * k+1) * eta[k], k=0..(Hmax/2)),delta):

# calculate remaining corrections v_i(delta) :
for i from 2 to NumIt do

for m from 0 to Hmax/2 do
R[i,m]:=unapply(REDUCE(expand(DV(delta) * C[i-1,m](delta)),

Hmax-2* m+3),delta):
od:
C[i,0]:=delta->0:
for m from 1 to Hmax/2+1 do

C[i,m]:=unapply(simplify(1/2/deltaˆm * int(delta1ˆ(m-1) *
(R[i,m-1](delta1)-diff(expand(C[i,m-1](delta1)),
delta1$2)),delta1=0..delta)),delta):

od:
v:=unapply(v(delta)+sum(C[i,k](delta) * deltaˆ(2 * k+1) * eta[k],

k=0..(Hmax/2+1)),delta):
vp:=unapply(vp(delta)+sum((diff(C[i,k](delta),delta $1)+

delta * C[i,k+1](delta)) * deltaˆ(2 * k+1) * eta[k],
k=0..(Hmax/2)),delta):

end:

# delta = h
# throw away terms with degree(h) > Hmax
u_ser:=convert(series(u(h),h,Hmax+1),polynom):
up_ser:=convert(series(up(h),h,Hmax+1),polynom):
v_ser:=convert(series(v(h),h,Hmax+1),polynom):
vp_ser:=convert(series(vp(h),h,Hmax+1),polynom):

# Vb[m] = {\bar V}_m
for m from 0 to N do

Vc[m]:=Vb[m]/hˆ(m+2)
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od:

ord:=[seq(Vb[i],i=1..N)]:
for n from 0 to NumIt do

Cu[n]:=sort(simplify(coeff(u_ser,eta[n],1)),ord);
Cup[n]:=sort(simplify(coeff(up_ser,eta[n],1)),ord);
Cv[n]:=sort(simplify(coeff(v_ser,eta[n],1)),ord);
Cvp[n]:=sort(simplify(coeff(vp_ser,eta[n],1)),ord);

od;

B.2 The generation of the corrections of the LPM[4,2]
method

B.2.1 The analytic expressions for the first and second order correc-
tion

Maple code which generates the expressions of the first and second order correction for the LPM[4,1]
and LPM[4,2] method (see 4.2.1).

restart;
with(orthopoly): # includes the orthopoly package
Ps:=(n,x)->simplify(P(n,2 * x-1)): # shifted Legendre polynomials
N:=4: # N=4 (up to V_4)
DV:=unapply(sum(V[n] * hˆn * Ps(n,x/h),n=2..N),x): # perturbation

Calculation of the first order correction:

# Using the procedure described in sections 3.3 and 3.5 from
# L. Gr. Ixaru, Numerical Methods for Differential Equation s
# and Applications, Reidel (1984).

# We assume that u1(delta) is of the form :
u1:=unapply(a1(delta) * u0(delta)+b1(delta) * v0(delta)+c1(delta) *

u0p(delta)+d1(delta) * v0p(delta),delta):
# (Note = Q=F[0]/F[1])
# where a1, b1, c1 and d1 satisfy the system :
eq1:=diff(a1(delta),delta$2)+2 * diff(c1(delta),delta) *

(Q* F[1]+F[1] * delta)+c1(delta) * F[1]=DV(delta):
eq2:=diff(b1(delta),delta$2)+2 * diff(d1(delta),delta) *

(Q* F[1]+F[1] * delta)+d1(delta) * F[1]=0:
eq3:=diff(c1(delta),delta$2)+2 * diff(a1(delta),delta)=0:
eq4:=diff(d1(delta),delta$2)+2 * diff(b1(delta),delta)=0:
# with initial conditions :
ini1:=a1(0)+d1(0)=0:
ini2:=D(a1)(0)+c1(0) * Q* F[1]+b1(0)+D(d1)(0)=0:
# solution of the system :
c1:=unapply(rhs(simplify(dsolve(subs(diff(a1(delta) ,‘$‘(delta,2))=
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-diff(c1(delta),‘$‘(delta,3))/2,eq1),c1(delta)),{_C 1=0,_C2=0,
_C3=0,_C4=0})),delta):

d1:=unapply(rhs(simplify(dsolve(subs(diff(b1(delta) ,‘$‘(delta,2))=
-diff(d1(delta),‘$‘(delta,3))/2,eq2),d1(delta)),{_C 1=0,_C2=0,
_C3=0,_C4=0})),delta):

a1:=unapply(rhs(dsolve({eq3,ini1},a1(delta))),delta ):
b1:=unapply(rhs(dsolve({eq4,ini2},b1(delta))),delta ):
# the expression of the first derivative of u1(delta) w.r.t. delta:
u1p:=unapply(((diff(a1(delta),delta)+c1(delta)

* (Q* F[1]+F[1] * delta)) * u0(delta)+(diff(b1(delta),delta)
+d1(delta) * (Q* F[1]+F[1] * delta)) * v0(delta)+(a1(delta)
+diff(c1(delta),delta)) * u0p(delta)+(b1(delta)+diff(d1(delta),
delta)) * v0p(delta)),delta):

# We assume that v1(delta) is of the form :
v1:=unapply(e1(delta) * u0(delta)+f1(delta) * v0(delta)+g1(delta) *

u0p(delta)+h1(delta) * v0p(delta),delta):
# where e1, f1, g1 and h1 satisfy the system :
eq1:=diff(e1(delta),delta$2)+2 * diff(g1(delta),delta) *

(Q* F[1]+F[1] * delta)+g1(delta) * F[1]=0:
eq2:=diff(f1(delta),delta$2)+2 * diff(h1(delta),delta) *

(Q* F[1]+F[1] * delta)+h1(delta) * F[1]=DV(delta):
eq3:=diff(g1(delta),delta$2)+2 * diff(e1(delta),delta)=0:
eq4:=diff(h1(delta),delta$2)+2 * diff(f1(delta),delta)=0:
# with initial conditions :
ini1:=e1(0)+h1(0)=0:
ini2:=D(e1)(0)+g1(0) * Q* F[1]+f1(0)+D(h1)(0)=0:
# solution of the system :
g1:=unapply(rhs(simplify(dsolve(subs(diff(e1(delta) ,‘$‘(delta,2))=

-diff(g1(delta),‘$‘(delta,3))/2,eq1),g1(delta)),{_C 1=0,_C2=0,
_C3=0,_C4=0})),delta):

h1:=unapply(rhs(simplify(dsolve(subs(diff(f1(delta) ,‘$‘(delta,2))=
-diff(h1(delta),‘$‘(delta,3))/2,eq2),h1(delta)),{_C 1=0,_C2=0,
_C3=0,_C4=0})),delta):

e1:=unapply(rhs(dsolve({eq3,ini1},e1(delta))),delta ):
f1:=unapply(rhs(dsolve({eq4,ini2},f1(delta))),delta ):
# expression of the first derivative of v1(delta)
v1p:=unapply(((diff(e1(delta),delta)+g1(delta)

* (F[1] * Q+F[1] * delta)) * u0(delta)+(diff(f1(delta),
delta)+h1(delta) * (F[1] * Q+F[1] * delta)) * v0(delta)
+(e1(delta)+diff(g1(delta),delta)) * u0p(delta)
+(f1(delta)+diff(h1(delta),delta)) * v0p(delta)),delta):

# These commands print out the expressions of the first
# order correction:
# first order correction for u (with Q=F[0]/F[1]) :
collect(simplify(u1(h)),[u0(h),v0(h),u0p(h),v0p(h), Q]);
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# first order correction for v:
collect(simplify(v1(h)),[u0(h),v0(h),u0p(h),v0p(h), Q]);
# first order correction for u’:
collect(simplify(u1p(h)),[u0(h),v0(h),u0p(h),v0p(h) ,Q]);
# first order correction for v’:
collect(simplify(v1p(h)),[u0(h),v0(h),u0p(h),v0p(h) ,Q]);

Calculation of the second order correction:

# The same procedure as for the first order correction is used .
u2:=unapply(a2(delta) * u0(delta)+b2(delta) * v0(delta)+c2(delta) *

u0p(delta)+d2(delta) * v0p(delta),delta):
eq1:=diff(a2(delta),delta$2)+2 * diff(c2(delta),delta) *

(Q* F[1]+F[1] * delta)+c2(delta) * F[1]=DV(delta) * a1(delta):
eq2:=diff(b2(delta),delta$2)+2 * diff(d2(delta),delta) *

(Q* F[1]+F[1] * delta)+d2(delta) * F[1]=DV(delta) * b1(delta):
eq3:=diff(c2(delta),delta$2)+2 * diff(a2(delta),delta)=

DV(delta) * c1(delta):
eq4:=diff(d2(delta),delta$2)+2 * diff(b2(delta),delta)=

DV(delta) * d1(delta):
ini1:=a2(0)+d2(0)=0:
ini2:=D(a2)(0)+c2(0) * Q* F[1]+b2(0)+D(d2)(0)=0:
eq3s:=(diff(eq3,delta)-(diff(c2(delta),‘$‘(delta,3) )=

diff(c2(delta),‘$‘(delta,3))))/2:
c2:=unapply(rhs(subs({_C1=0,_C2=0,_C3=0,_C4=0},dsol ve(subs(eq3s,

eq1),c2(delta)))),delta):
eq4s:=(diff(eq4,delta)-(diff(d2(delta),‘$‘(delta,3) )=

diff(d2(delta),‘$‘(delta,3))))/2:
d2:=unapply(rhs(subs({_C1=0,_C2=0,_C3=0,_C4=0},dsol ve(subs(eq4s,

eq2),d2(delta)):)),delta):
a2:=unapply(rhs(value(dsolve({eq3,ini1},a2(delta))) ),delta):
b2:=unapply(rhs(value(dsolve({eq4,ini2},b2(delta))) ),delta):
u2p:=unapply((diff(a2(delta),delta)+c2(delta) * (Q* F[1]+F[1] * delta))

* u0(delta)+(diff(b2(delta),delta)+d2(delta) * (Q* F[1]
+F[1] * delta)) * v0(delta)+(a2(delta)+diff(c2(delta),delta))

* u0p(delta)+(b2(delta)+diff(d2(delta),delta)) * v0p(delta),
delta):

v2:=unapply(e2(delta) * u0(delta)+f2(delta) * v0(delta)+g2(delta) *
u0p(delta)+h2(delta) * v0p(delta),delta):

eq1:=diff(e2(delta),delta$2)+2 * diff(g2(delta),delta) *
(Q* F[1]+F[1] * delta)+g2(delta) * F[1]=DV(delta) * e1(delta):

eq2:=diff(f2(delta),delta$2)+2 * diff(h2(delta),delta) *
(Q* F[1]+F[1] * delta)+h2(delta) * F[1]=DV(delta) * f1(delta):

eq3:=diff(g2(delta),delta$2)+2 * diff(e2(delta),delta)=
DV(delta) * g1(delta):

eq4:=diff(h2(delta),delta$2)+2 * diff(f2(delta),delta)=
DV(delta) * h1(delta):

ini1:=e2(0)+h2(0)=0:
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ini2:=D(e2)(0)+g2(0) * Q* F[1]+f2(0)+D(h2)(0)=0:
eq3s:=(diff(eq3,delta)-(diff(g2(delta),‘$‘(delta,3) )=

diff(g2(delta),‘$‘(delta,3))))/2:
g2:=unapply(rhs(subs({_C1=0,_C2=0,_C3=0,_C4=0},dsol ve(subs(eq3s,

eq1),g2(delta)))),delta):
eq4s:=(diff(eq4,delta)-(diff(h2(delta),‘$‘(delta,3) )=

diff(h2(delta),‘$‘(delta,3))))/2:
h2:=unapply(rhs(subs({_C1=0,_C2=0,_C3=0,_C4=0},dsol ve(subs(eq4s,

eq2),h2(delta)))),delta):
e2:=unapply(rhs(value(dsolve({eq3,ini1},e2(delta))) ),delta):
f2:=unapply(rhs(value(dsolve({eq4,ini2},f2(delta))) ),delta):
v2p:=unapply((diff(e2(delta),delta)+g2(delta) * (Q* F[1]+F[1] * delta))

* u0(delta)+(diff(f2(delta),delta)+h2(delta) * (Q* F[1]+F[1]

* delta)) * v0(delta)+(e2(delta)+diff(g2(delta),delta))

* u0p(delta)+(f2(delta)+diff(h2(delta),delta)) * v0p(delta),
delta):

# These commands print out the expressions of the second
# order correction:
# second order correction for u:
collect(expand(u2(h)),[u0(h),v0(h),u0p(h),v0p(h),Q] );
# second order correction for u’:
collect(expand(u2p(h)),[u0(h),v0(h),u0p(h),v0p(h),Q ]);
# second order correction for v:
collect(expand(v2(h)),[u0(h),v0(h),u0p(h),v0p(h),Q] );
# second order correction for v’:
collect(expand(v2p(h)),[u0(h),v0(h),u0p(h),v0p(h),Q ]);

B.2.2 The asymptotic forms for the zeroth, first and second order
correction

Maple code which should be appended to the previous Maple code in orderto generate the asymp-
totic forms of the zeroth, first and second order correction.

# asymptotic expansions of the Airy functions
# (see Eqs. 10.4.58-10.4.67 in M. Abramowitz and I. Stegun,
# Handbook of Mathematical Functions.):
c[0]:=1:
d[0]:=1:
M:=7:
for k from 1 to 2 * M+1 do

c[k]:=(6 * k-5) * (6 * k-1) * c[k-1]/(72 * k):
d[k]:=(-(6 * k+1)/(6 * k-1)) * c[k]:

od:
zeta:=(2/3) * Zmˆ(3/2):
# asymptotic expansions of the Airy functions for Z large neg ative :
nAi:=unapply(Piˆ(-1/2) * Zmˆ(-1/4) * (sin(zeta+Pi/4) * sum((-1)ˆi * c[2 * i]

* zetaˆ(-2 * i),i=0..M)-cos(zeta+Pi/4) * sum((-1)ˆi * c[2 * i+1] * zeta
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ˆ(-2 * i-1),i=0..M)),Zm):
nAip:=unapply(-Piˆ(-1/2) * Zmˆ(1/4) * (cos(zeta+Pi/4) * sum((-1)ˆi * d[2 * i]

* zetaˆ(-2 * i),i=0..M)+sin(zeta+Pi/4) * sum((-1)ˆi * d[2 * i+1] * zeta
ˆ(-2 * i-1),i=0..M)),Zm):

nBi:=unapply(Piˆ(-1/2) * Zmˆ(-1/4) * (cos(zeta+Pi/4) * sum((-1)ˆi * c[2 * i]

* zetaˆ(-2 * i),i=0..M)+sin(zeta+Pi/4) * sum((-1)ˆi * c[2 * i+1] * zeta
ˆ(-2 * i-1),i=0..M)),Zm):

nBip:=unapply(Piˆ(-1/2) * Zmˆ(1/4) * (sin(zeta+Pi/4) * sum((-1)ˆi * d[2 * i]

* zetaˆ(-2 * i),i=0..M)-cos(zeta+Pi/4) * sum((-1)ˆi * d[2 * i+1] * zeta
ˆ(-2 * i-1),i=0..M)),Zm):

# asymptotic expansions of the Airy functions for Z large pos itive:
pAi:=unapply((1/2) * Piˆ(-1/2) * Zmˆ(-1/4) * exp(-zeta) * sum((-1)ˆi * c[i]

* zetaˆ(-i),i=0..2 * M),Zm):
pAip:=unapply(-(1/2) * Piˆ(-1/2) * Zmˆ(1/4) * exp(-zeta) * sum((-1)ˆi * d[i]

* zetaˆ(-i),i=0..2 * M),Zm):
pBi:=unapply(Piˆ(-1/2) * Zmˆ(-1/4) * exp(zeta) * sum(c[i] * zetaˆ(-i),

i=0..2 * M),Zm):
pBip:=unapply(Piˆ(-1/2) * Zmˆ(1/4) * exp(zeta) * sum(d[i] * zetaˆ(-i),

i=0..2 * M),Zm):

Calculation of the asymptotic expansion of the zeroth order correction :

Z:=F[1]ˆ(1/3) * h+F[0]/(F[1])ˆ(2/3): # Z(h) = alfa * (h+beta)
Z0:=F[0]/(F[1])ˆ(2/3): # Z0 = alfa * beta
# zeroth order propagators must be calculated up to F1ˆ14 to
# obtain the first correction up to F1ˆ4 and the second order
# correction up to F1ˆ3:
K:= 15:
# for Z and Z0 both large negative:
nu0:=convert(simplify(series(simplify(combine(Pi * (nAi(-Z) * nBip(-Z0)

-nBi(-Z) * nAip(-Z0)),trig)),F[1],K)),polynom):
nv0:=convert(simplify(series(simplify(combine(Pi * (nBi(-Z) * nAi(-Z0)

-nAi(-Z) * nBi(-Z0))/F[1]ˆ(1/3),trig)),F[1],K)),polynom):
nu0p:=convert(simplify(series(simplify(combine(F[1] ˆ(1/3) * Pi *

(nAip(-Z) * nBip(-Z0)-nBip(-Z) * nAip(-Z0)),trig)),F[1],K)),
polynom):

nv0p:=convert(simplify(series(simplify(combine(Pi * (nBip(-Z) *
nAi(-Z0)-nAip(-Z) * nBi(-Z0)),trig)),F[1],K)),polynom):

# for Z and Z0 both large positive:
pu0:=convert(simplify(convert(series(combine(Pi * (pAi(Z) * pBip(Z0)-

pBi(Z) * pAip(Z0))),F[1],K),trig)),polynom):
pv0:=convert(simplify(convert(series(combine(Pi * (pBi(Z) * pAi(Z0)-

pAi(Z) * pBi(Z0))/F[1]ˆ(1/3)),F[1],K),trig)),polynom):
pu0p:=convert(simplify(convert(series(combine(F[1]ˆ (1/3) * Pi *

(pAip(Z) * pBip(Z0)-pBip(Z) * pAip(Z0))),F[1],K),trig)),polynom):
pv0p:=convert(simplify(convert(series(combine(Pi * (pBip(Z) * pAi(Z0)

-pAip(Z) * pBi(Z0))),F[1],K),trig)),polynom):

Calculation of the asymptotic expansion of the first order correction :
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# Conversion of the first order correction (in the analytica l
# form) into asymptotic form.
# First order correction in asymptotic form for Z and Z0 both
# large negative:
K:=5: # up to F1ˆ4
nu1:=collect(factor(convert(series(simplify(subs({u 0(h)=nu0,

v0(h)=nv0,u0p(h)=nu0p,v0p(h)=nv0p},subs({Q=F[0]/F[1 ]},
u1(h)))),F[1],K),polynom)),F[1]);

nv1:=collect(factor(convert(series(simplify(subs({u 0(h)=nu0,
v0(h)=nv0,u0p(h)=nu0p,v0p(h)=nv0p},subs({Q=F[0]/F[1 ]},
v1(h)))),F[1],K),polynom)),F[1]);

nu1p:=collect(factor(convert(series(simplify(subs({ u0(h)=nu0,
v0(h)=nv0,u0p(h)=nu0p,v0p(h)=nv0p},subs({Q=F[0]/F[1 ]},
u1p(h)))),F[1],K),polynom)),F[1]);

nv1p:=collect(factor(convert(series(simplify(subs({ u0(h)=nu0,
v0(h)=nv0,u0p(h)=nu0p,v0p(h)=nv0p},subs({Q=F[0]/F[1 ]},
v1p(h)))),F[1],K),polynom)),F[1]);

# First order correction in asymptotic form for Z and Z0 both
# large positive:
pu1:=collect(factor(convert(series(simplify(subs({u 0(h)=pu0,

v0(h)=pv0,u0p(h)=pu0p,v0p(h)=pv0p},subs({Q=F[0]/F[1 ]},
u1(h)))),F[1],K),polynom)),F[1]);

pv1:=collect(factor(convert(series(simplify(subs({u 0(h)=pu0,
v0(h)=pv0,u0p(h)=pu0p,v0p(h)=pv0p},subs({Q=F[0]/F[1 ]},
v1(h)))),F[1],K),polynom)),F[1]);

pu1p:=collect(factor(convert(series(simplify(subs({ u0(h)=pu0,
v0(h)=pv0,u0p(h)=pu0p,v0p(h)=pv0p},subs({Q=F[0]/F[1 ]},
u1p(h)))),F[1],K),polynom)),F[1]);

pv1p:=collect(factor(convert(series(simplify(subs({ u0(h)=pu0,
v0(h)=pv0,u0p(h)=pu0p,v0p(h)=pv0p},subs({Q=F[0]/F[1 ]},
v1p(h)))),F[1],K),polynom)),F[1]);

Calculation of the asymptotic expansion of the second order correction :

# Conversion of the second order correction (in the analytic al
# form) into asymptotic form.
# Second order correction in asymptotic form for Z and Z0 both
# large negative:
K:=4: #up to F1ˆ3
nu2:=collect(factor(convert(series(simplify(subs({u 0(h)=nu0,

v0(h)=nv0,u0p(h)=nu0p,v0p(h)=nv0p},subs({Q=F[0]/F[1 ]},
u2(h)))),F[1],K),polynom)),F[1]);

nv2:=collect(factor(convert(series(simplify(subs({u 0(h)=nu0,
v0(h)=nv0,u0p(h)=nu0p,v0p(h)=nv0p},subs({Q=F[0]/F[1 ]},
v2(h)))),F[1],K),polynom)),F[1]);

nu2p:=collect(factor(convert(series(simplify(subs({ u0(h)=nu0,
v0(h)=nv0,u0p(h)=nu0p,v0p(h)=nv0p},subs({Q=F[0]/F[1 ]},
u2p(h)))),F[1],K),polynom)),F[1]);
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nv2p:=collect(factor(convert(series(simplify(subs({ u0(h)=nu0,
v0(h)=nv0,u0p(h)=nu0p,v0p(h)=nv0p},subs({Q=F[0]/F[1 ]},
v2p(h)))),F[1],K),polynom)),F[1]);

# Second order correction in asymptotic form for Z and Z0 both
# large positive:
pu2:=collect(factor(convert(series(simplify(subs({u 0(h)=pu0,

v0(h)=pv0,u0p(h)=pu0p,v0p(h)=pv0p},subs({Q=F[0]/F[1 ]},
u2(h)))),F[1],K),polynom)),[F[1],F[0]]);

pv2:=collect(factor(convert(series(simplify(subs({u 0(h)=pu0,
v0(h)=pv0,u0p(h)=pu0p,v0p(h)=pv0p},subs({Q=F[0]/F[1 ]},
v2(h)))),F[1],K),polynom)),[F[1],F[0]]);

pu2p:=collect(factor(convert(series(simplify(subs({ u0(h)=pu0,
v0(h)=pv0,u0p(h)=pu0p,v0p(h)=pv0p},subs({Q=F[0]/F[1 ]},
u2p(h)))),F[1],K),polynom)),[F[1],F[0]]);

pv2p:=collect(factor(convert(series(simplify(subs({ u0(h)=pu0,
v0(h)=pv0,u0p(h)=pu0p,v0p(h)=pv0p},subs({Q=F[0]/F[1 ]},
v2p(h)))),F[1],K),polynom)),[F[1],F[0]]);

B.3 The generation of the coefficients for the generalized
CPM{P, N}

1. Construction of the elements of theC(u)
m

and C(u′)
m

matrices

restart;
# built-in package for the generation of orthogonal polynom ials:
with(orthopoly):
# shifted Legendre polynomials (n = degree):
Ps:=(n,x)->simplify(P(n,2 * x-1)):

# By changing the parameters Mmax and Hmax, coefficients for other
# CPM{P,N} methods can be calculated :
Mmax:=8: # V_0,V_1,...,V_8
Hmax:=10: # CPM{10,8}=CPM{Hmax,Mmax}
NumberCorr:=5; # 5 corrections is sufficient for CPM{10,8}

# The parameter N should be changed to obtain the coefficient s
# for other NxN problems:
N:=2: # 2x2 matrix

#a pruning procedure:
REDUCE:= proc(a,P)
local c, tmp,red:
red:=0;
tmp:=simplify(rem(rem(convert(a,’polynom’),deltaˆ(P ),delta),
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hˆ(P),h)):
for i from 1 to nops(tmp) do

c:=op(i,tmp);
if degree(c,{delta,h}) < (P) then

red:=simplify(red+c);
end if;

od:
RETURN(red);
end proc:

#The perturbation :
#Note: VD’s are symmetric
DV:=unapply(‘if‘(i<j,sum(VD[i,j,z] * hˆz * Ps(z,x/h),z=1..Mmax),

sum(VD[j,i,z] * hˆz * Ps(z,x/h),z=1..Mmax)),i,j,x);

#First correction :
i:=1:
for II from 1 to N do

for JJ from 1 to N do
C[II,JJ,0,i]:=unapply(integrate(DV(II,JJ,x),x=0..de lta)/2,

delta):
for m from 1 to (Hmax/2+1) do

C[II,JJ,m,i]:=unapply(simplify(-1/2/deltaˆm * int(delta1ˆ(m-1)

* diff(C[II,JJ,m-1,i](delta1),delta1$2)+C[II,JJ,m-1,i ](delta1)

* VD[JJ,JJ,0]-VD[II,II,0] * C[II,JJ,m-1,i](delta1)),delta1=0..
delta)),delta);

od;
u1[II,JJ]:=unapply(sum(C[II,JJ,w,i](delta) * deltaˆ(2 * w+1) *

eta[w,JJ],w=0..(Hmax/2+1)),delta):
up1[II,JJ]:=unapply(C[II,JJ,0,i](delta) * eta[-1,JJ]+

sum((simplify(diff(C[II,JJ,k,i](delta),delta$1)+del ta *
C[II,JJ,k+1,i](delta))) * deltaˆ(2 * k+1) * eta[k,JJ],k=0..(Hmax/2)),
delta):

od;
od;

#Remaining corrections :
for i from 2 to NumberCorr do

for II from 1 to N do
for JJ from 1 to N do

for m from 0 to Hmax/2 do
R[II,JJ,m,i]:=unapply(REDUCE(expand(sum(DV(II,k,del ta) *

C[k,JJ,m,i-1](delta),k=1..N)),Hmax-2 * m+1),delta):
od:
C[II,JJ,0,i]:=unapply(0,delta):
for m from 1 to (Hmax/2+1) do

C[II,JJ,m,i]:=unapply(simplify(1/2/deltaˆm * int(delta1ˆ(m-1) *
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(R[II,JJ,m-1,i](delta1)-diff(C[II,JJ,m-1,i](delta1) ,delta1$2)
-C[II,JJ,m-1,i](delta1) * VD[JJ,JJ,0]+VD[II,II,0] * C[II,JJ,m-1,i]
(delta1)),delta1=0..delta)),delta);

od:
u1[II,JJ]:=unapply(u1[II,JJ](delta)+sum(C[II,JJ,w,i ](delta) *

deltaˆ(2 * w+1) * eta[w,JJ],w=0..(Hmax/2+1)),delta):
up1[II,JJ]:=unapply(up1[II,JJ](delta)+C[II,JJ,0,i]( delta) *

eta[-1,JJ]+sum((simplify(diff(C[II,JJ,k,i](delta),d elta$1)+
delta * C[II,JJ,k+1,i](delta))) * deltaˆ(2 * k+1) * eta[k,JJ],k=0..
(Hmax/2)),delta):

od;
od;

od;

#Construction of the C-matrices :
for II from 1 to N do

for JJ from 1 to N do
#delta = h
#throw away terms with degree(h)>Hmax
u[II,JJ]:=simplify(convert(series(u1[II,JJ](h),h,Hm ax+1),

polynom)):
up[II,JJ]:=convert(series(up1[II,JJ](h),h,Hmax+1),p olynom):
for m from -1 to (Hmax/2+1) do

Cu[II,JJ,m]:=simplify(coeff(u[II,JJ],eta[m,JJ],1));
od;
for m from -1 to (Hmax/2+1) do

Cup[II,JJ,m]:=simplify(coeff(up[II,JJ],eta[m,JJ],1) );
od;

od;
od;

t:=simplify(Cu[1,2,1]); #shows Cˆ{(u)}_1 for i=1,j=2

2. Construction of the elements of theC(v)
m

and C(v′)
m

matrices

restart;
with(orthopoly):
Ps:=(n,x)->simplify(P(n,2 * x-1)): # shifted Legendre polynomials
Mmax:=8:
Hmax:=10: #CPM{10,8}
N:=2: #2x2 matrix
NumberCorr:=5;

#pruning procedure :
REDUCE:= proc(a,P)
local c, tmp,red:
red:=0;
tmp:=simplify(rem(rem(convert(a,’polynom’),deltaˆ(P ),delta),
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hˆ(P),h)):
for i from 1 to nops(tmp) do

c:=op(i,tmp);
if degree(c,{delta,h}) < (P) then

red:=simplify(red+c);
end if;

od:
RETURN(red);
end proc:

#The perturbation :
DV:=unapply(‘if‘(i<j,sum(VD[i,j,z] * hˆz * Ps(z,x/h),z=1..Mmax),

sum(VD[j,i,z] * hˆz * Ps(z,x/h),z=1..Mmax)),i,j,x);

#First correction :
i:=1;
for II from 1 to N do

for JJ from 1 to N do
R[II,JJ,0,i]:=unapply(DV(II,JJ,delta),delta):
for m from 1 to Hmax/2 do

R[II,JJ,m,i]:=unapply(0,delta):
od:
C[II,JJ,0,i]:=unapply(0,delta):
for m from 1 to (Hmax/2+1) do

C[II,JJ,m,i]:=unapply(simplify(1/2/deltaˆm * int(delta1ˆ(m-1) *
(R[II,JJ,m-1,i](delta1)-diff(C[II,JJ,m-1,i](delta1) ,delta1$2)-
C[II,JJ,m-1,i](delta1) * VD[JJ,JJ,0]+VD[II,II,0] * C[II,JJ,m-1,i]
(delta1)),delta1=0..delta)),delta);

od:
v1[II,JJ]:=unapply(sum(C[II,JJ,w,i](delta) * deltaˆ(2 * w+1) *

eta[w,JJ],w=0..(Hmax/2+1)),delta):
vp1[II,JJ]:=unapply(C[II,JJ,0,i](delta) * eta[-1,JJ]+

sum((simplify(diff(C[II,JJ,k,i](delta),delta$1)+
delta * C[II,JJ,k+1,i](delta))) * deltaˆ(2 * k+1) * eta[k,JJ],
k=0..(Hmax/2)),delta):

od;
od;

#Remaining corrections :
for i from 2 to NumberCorr do

for II from 1 to N do
for JJ from 1 to N do

for m from 0 to Hmax/2 do
R[II,JJ,m,i]:=unapply(REDUCE(expand(sum(DV(II,k,del ta) *

C[k,JJ,m,i-1](delta),k=1..N)),Hmax-2 * m+1),delta):
od:
C[II,JJ,0,i]:=unapply(0,delta):



204 Appendix B

for m from 1 to (Hmax/2+1) do
C[II,JJ,m,i]:=unapply(simplify(1/2/deltaˆm * int(delta1ˆ(m-1) *

(R[II,JJ,m-1,i](delta1)-diff(C[II,JJ,m-1,i](delta1) ,delta1$2)
-C[II,JJ,m-1,i](delta1) * VD[JJ,JJ,0]+VD[II,II,0] * C[II,JJ,m-1,i]
(delta1)),delta1=0..delta)),delta);

od:
v1[II,JJ]:=unapply(v1[II,JJ](delta)+sum(C[II,JJ,w,i ](delta) *

deltaˆ(2 * w+1) * eta[w,JJ],w=0..(Hmax/2+1)),delta):
vp1[II,JJ]:=unapply(vp1[II,JJ](delta)+C[II,JJ,0,i]( delta) *

eta[-1,JJ]+sum((simplify(diff(C[II,JJ,k,i](delta),d elta$1)+
delta * C[II,JJ,k+1,i](delta))) * deltaˆ(2 * k+1) * eta[k,JJ],
k=0..(Hmax/2)),delta):

od;
od;

od;

for II from 1 to N do
for JJ from 1 to N do

v[II,JJ]:=simplify(convert(series(v1[II,JJ](h),h,Hm ax+1),
polynom)):

vp[II,JJ]:=convert(series(vp1[II,JJ](h),h,Hmax+1),p olynom):
for n from -1 to (Hmax/2+1) do

Cv[II,JJ,n]:=simplify(coeff(v[II,JJ],eta[n,JJ],1));
od;
for n from -1 to (Hmax/2+1) do

Cvp[II,JJ,n]:=simplify(coeff(vp[II,JJ],eta[n,JJ],1) );
od;

od;
od;

t:=simplify(Cv[1,2,3]); #shows Cˆ{(v)}_3 for i=1,j=2
t:=simplify(Cvp[1,2,3]); #shows Cˆ{(v’)}_3 for i=1,j=2
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List of test problems

In this appendix we list the problems predefined in the MATSLISE GUI. This test set of problems
collects some problems from the set used by Pruess and Fulton to test SLEDGE and many prob-
lems from SLTSTPAK [107], a test package for Sturm-Liouville solvers. Thenth problem in the
SLTSTPAK test set is referred to as SLTSTPAK#n.

C.1 Schr̈odinger problems

Regular Schrödinger problems

1. Coffey-Evans equation. (Coffey_Evans.mat ). (SLTSTPAK #7). Reference: [104].
V (x) = −2β cos 2x + β2 sin2 2x
a = −π/2 Regular y(a) = 0
b = π/2 Regular y(b) = 0
As β increases there are very close eigenvalue triplets{E2, E3, E4}, {E6, E7, E8}, ... with
the other eigenvalues well separated.
β = 20 : E0 = 0.0000000000000 E1 = 77.9161956771440 E3 = 151.4632236576586
β = 30 : E0 = 0.0000000000000 E1 = 117.946307662070 E3 = 231.6649293129610
β = 50 : E0 = 0.0000000000000 E1 = 197.968726516507 E3 = 391.80819148905.

2. Mathieu equation. (Mathieu.mat ). (SLTSTPAK #2).
V (x) = 2r cos(2x) r parameter
a = 0 Regular y(a) = 0
b = π Regular y(b) = 0
r = 1 : E0 = −0.1102488169921 E5 = 36.0142899106282 E9 = 100.0050506751595.

3. Paine problem 1. (Paine1.mat ). Reference: [97].
V (x) = ex

a = 0 Regular y(a) = 0
b = π Regular y(b) = 0
E0 = 4.896669379968 E1 = 10.04518989325 E9 = 107.11667613827.
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4. Paine problem 2. (Paine2.mat ). (SLTSTPAK #1). Reference: [97].

V (x) =
1

(x + 0.1)2

a = 0 Regular y(a) = 0
b = π Regular y(b) = 0
E0 = 1.519865821099 E1 = 4.943309822145 E9 = 102.424988398249.

5. Pruess-Fulton problem 133. (Pruess_Fulton133.mat ). (SLTSTPAK #11).
Reference: 133th problem in the Pruess-Fulton test set [102].
V (x) = ln x
a = 0 Regular y(a) = 0
b = 4 Regular y(b) = 0
E0 = 1.1248168097 E24 = 385.92821596.

6. Truncated Gelfand-Levitan. (Gelfand_Levitan_truncated.mat ). (SLTSTPAK
#6).
Reference: [39].
V (x) = 2(T sin 2x + cos4 x)/T 2, T = 1 + x/2 + sin(2x)/4
a = 0 Regular y(a) − y′(a) = 0
b = 100 Regular y(b) = 0
Non-uniform oscillations of decreasing size inV (x).

7. Version of Mathieu equation. (Mathieu_version.mat ). (SLTSTPAK #5).
V (x) = c cos(x) c parameter
a = 0 Regular y(a) = 0
b = 40 Regular y(b) = 0
The lower eigenvalues form clusters of 6; more and tighter clusters asc increases.

Infinite integration interval

1. Airy equation . (Airy.mat ). (SLTSTPAK #27). Reference: [119] p.91.
V (x) = x
a = 0 Regular y(a) = 0
b = +∞ LPN
Number of eigenvalues:∞ continuous spectrum: none
Eigenvalues are the zeros of Airy functionAi(E) = (J1/3 + J−1/3)(

2
3
E1/3).

E0 = 2.338107410459 E9 = 12.82877675287.

2. Anharmonic oscillator potential. (anharm_oscillator.mat ). Reference: [37].
V (x) = x2 + λx2/(1 + gx2) λ, g parameters
a = −∞ LPN
b = +∞ LPN
Number of eigenvalues:∞ continuous spectrum: none
λ = 0.1, g = 0.1 : E0 = 1.04317371304
λ = 10.0, g = 10.0 : E0 = 1.58002232739.

3. Bender-Orszag potential. (Bender_Orszag.mat ). (SLTSTPAK #14).
Reference: [23] p. 28.
V (x) = −m(m + 1)/ cosh2 x m parameter
a = −∞ LPN/O
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b = +∞ LPN/O
Number of eigenvalues: Number of integers in range0 ≤ k < m
Continuous spectrum:(0,∞)
Ek = −(m − k)2, 0 ≤ k < m.

4. Biswas potential. (Biswas.mat ). Reference: [24, 36].
V (x) = µx2 + νx4 µ, ν parameters
a = −∞ LPN
b = +∞ LPN
Number of eigenvalues:∞ continuous spectrum: none
µ = 0.0, ν = 1.0 : E0 = 1.0603620905
µ = 1.0, ν = 1.0 : E0 = 1.3923516415.

5. Close-eigenvalues problem. (Close_eigenvalues.mat ). (SLTSTPAK #38).
V (x) = x4 − 25x2

Double well version of quartic anharmonic oscillator
a = −∞ LPN Trunc. BC.:y(a) = 0
b = +∞ LPN Trunc. BC.:y(b) = 0
Number of eigenvalues:∞ continuous spectrum: none
E0 = −149.219456142 E1 = −149.219456142
Half-range reduction makes the problem more tractable.

6. Harmonic oscillator. (Harmonic_oscillator.mat ). (SLTSTPAK #28).
Reference: [119] p.1536.
V (x) = x2

a = −∞ LPN
b = +∞ LPN
Number of eigenvalues:∞ continuous spectrum:(0,∞)
Ek = 2k + 1, k = 0, 1, ....

7. Half-range anharmonic oscillator. (HR_anharm_oscillator.mat ). (SLTSTPAK
#17).
Reference: [84].
V (x) = xα, α > 0
a = 0 Regular y(a) = 0
b = +∞ LPN
Number of eigenvalues:∞ continuous spectrum:(0,∞)
α = 2: Ek = 4k + 3, k = 0, 1, 2, ... (alternate eigenvalues of harmonic oscillator)
α = 3: E0 = 3.4505626899 E24 = 228.520881389
α = 4: E0 = 3.7996730298 E24 = 397.141326781
α = 5: E0 = 4.0891593149 E24 = 588.178249691.

8. Morse potential. (Morse1.mat ). (SLTSTPAK #35). Reference: [91].
V (x) = 9e−2x − 18e−x

a = −∞ LPN
b = +∞ LPN/O
Number of eigenvalues: 3 continuous spectrum:(0,∞)
Ek = −0.25 − (3 − k)(2 − k), k = 0, 1, 2.

9. Morse potential. (Morse2.mat ). (SLTSTPAK #39). Reference: [84]
V (x) = 8000e−3x − 16000e−3x/2

a = −∞ LPN
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b = +∞ LPN/O
Number of eigenvalues: 60 continuous spectrum:(0,∞)
With this deep well, a large truncated interval seems to be needed to give good approxima-
tions to higher eigenvalues.
E0 = −7866.39842135 E57 = −10.19345525 E58 = −2.86529795.

10. Problem with ‘pseudo-eigenvalue’. Pryce60.mat . (SLTSTPAK #60). Reference: [84].
V (x) = 3(x − 31)/(4(1 + x)(4 + x)2)
a = 0 Regular 5y(a) + 8y′(a) = 0
b = ∞ LPN/O
Number of eigenvalues: 1 continuous spectrum: none
E0 = −1.185214105.

11. Quartic anharmonic oscillator. (Quartic_anharm_oscillator.mat ). (SLTST-
PAK #37). Reference: [115].
V (x) = x4 + x2

a = −∞ LPN
b = +∞ LPN
Number of eigenvalues:∞ continuous spectrum: none
E0 = 1.3923516415 E9 = 46.965009506.

12. The Razavy potential. (Razavy.mat ). Reference: [37].
V (x) = 1/8m2(cosh(4x) − 1) − m(n + 1) cosh(2x) n, m parameters
a = −∞ LPN
b = +∞ LPN
Number of eigenvalues:∞ continuous spectrum: none
n = 1, m = 1 : E0 = −2, E1 = 0
n = 2, m = 1 : E0 = −2(1 +

√
2), E1 = −4, E2 = 2(

√
2 − 1)

n = 1, m = 10 : E0 = −11, E1 = 9
n = 2, m = 10 : E0 = −2(1 +

√
101), E1 = −4, E2 = 2(

√
101 − 1).

13. Symmetric double-well potential. (symm_double_well.mat ). Reference: [37].
V (x) = x6 − Bx2 B parameter
a = −∞ LPN
b = +∞ LPN
Number of eigenvalues:∞ continuous spectrum: none
B = 11: known exact eigenvalues ={−8, 0, 8}
B = 13: known exact eigenvalues ={−11.3137085, 0, 11.3137085}
B = 15: known exact eigenvalues ={−15.07750851,−3.55931694, 3.55931694, 15.07750851}.

14. Wicke-Harris problem . Wicke_Harris.mat . (SLTSTPAK #40). Reference: [130].
V (x) = 1250e−83.363(x−2.47826)2 + 3906.25(1 − e2.3237−x)2

a = 0 Regular y(a) = 0
b = +∞ LPN/O
Number of eigenvalues: 61 continuous spectrum:(3906.25,∞)
E0 = 163.223887 E9 = 1277.5368406
This has a spike at the bottom of the well.
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C.2 Sturm-Liouville problems

1. Bessel equation, order1/2. (Bessel.mat ). (SLTSTPAK #19). Reference: [119].
p(x) = x q(x) = α/x w(x) = x
α = ν2, ν = 1

2

a = 0 LCN
b = 1 Regular y(b) = 0
Ek = ((k + 1)π)2, this is−v′′ = Ev transformed byv = x1/2u .

2. Collatz problem. (Collatz.mat ). Reference: [31].
p(x) = 1 q(x) = 0 w(x) = 3 + cos(x)
a = −π Regular y(a) = 0
b = +π Regular y(b) = 0
E0 = 0.071250472.

3. Infinite interval problem . (Pryce33.mat ). (SLTSTPAK #33). Reference: [20].
p(x) = 1 q(x) = −7x2 + 0.5x3 + x4 w(x) = 0.5
a = −∞ LPN
b = ∞ LPN
Number of eigenvalues:∞ continuous spectrum: none
E0 = −24.5175977072 E5 = 8.10470769427.

4. Klotter problem . (Klotter.mat ). (SLTSTPAK #3). Reference: [68] p.12.
p(x) = 1 q(x) = 3/(4x2) w(x) = 64π2/(9x6)
a = 8/7 Regular y(a) = 0
b = 8 Regular y(b) = 0
Ek = (k + 1)2, k = 0, 1, ...
Transformation of−d2v/dt2 = Ev, v(π/48) = 0 = v(49π/48) by t = 4π

3x2 , u = x3/2v.
(The original reference hada = 1, b = 2 corresponding tov(π/3) = 0 = v(4π/3) which
is much tamer.

5. Paine problem. Paine_slp.mat . Reference: [61].
Using Liouville’s transformation, this problem becomes a Schrodinger equation withV (x) =
1/(x + 0.1)2, i.e. Paine problem 2.
p(x) = (u + x)3 q(x) = 4(u + x) w(x) = (u + x)5 u =

√
0.2

a = 0 Regular y(a) = 0

b = −u +
p

u2 + 2π Regular y(b) = 0.

6. Pruess-Fulton problem 19. (Pruess_Fulton19.mat ). (SLTSTPAK #25).
Reference: 19th problem in the Pruess-Fulton test set [102].
p(x) = x4 q(x) = −2x2 w(x) = x4

a = 0 LCN
b = 1 Regular y(b) = 0
Ek = ((k + 1)π)2, k = 0, 1, ....

7. Simple Sturm-Liouville problem 1. (simple_slp1.mat ).
p(x) = 1 q(x) = 0 w(x) = 1
a = 0 Regular y(a) = 0
b = 1 Regular y(b) = 0
Number of eigenvalues:∞ continuous spectrum: none
Ek = ((k + 1)π)2.
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8. Simple Sturm-Liouville problem 2. (simple_slp2.mat ).
p(x) = 1 q(x) = 0 w(x) = 1/x2

a = 1 Regular y(a) = 0
b = e Regular y(b) = 0
Number of eigenvalues:∞ continuous spectrum: none
Ek = ((k + 1)π)2 + 1/4.

C.3 Radial Schr̈odinger problems with a distorted Coulomb
potential

Finite integration interval

1. Bessel equation in normal form. (Bessel_normalform.mat ). (SLTSTPAK #13).
V (x) = (α − 1/4)/x2 (l = (−1 + 2

√
α)/2)

α = ν2

a = 0 LCN
b = 1 Regular y(b) = 0
Number of eigenvalues:∞ continuous spectrum: none.

2. Bessel equation in normal form, order 0. (Bessel_order0.mat ). (SLTSTPAK #18).
Reference: [119].
V (x) = (α − 1/4)/x2 (l = (−1 + 2

√
α)/2)

α = 0
a = 0 LCN
b = 1 Regular y(b) = 0
E0 = 5.78318596295 E19 = 3850.01252885.

3. Bessel equation in normal form, smallα. (Pryce43.mat ). (SLTSTPAK #43).
Bessel equation in normal form withα = 0.01.
LCN for smallα ≥ 0
Number of eigenvalues:∞ continuous spectrum: none
E0 = 6.540555712 E24 = 6070.441468.

4. Truncated hydrogen equation. (hydrogen_truncated.mat ). (SLTSTPAK #4).
V (x) = −1/x + 2/x2

a = 0 LPN
b = 1000 Regular y(b) = 0
E0 = −6.2500000000 10−2 E9 = −2.066115702478 10−3

E17 = −2.5757359232 10−4 E18 = 2.873901310 10−5

The lower eigenvalues approximate those of the infinite problem.

Infinite integration interval

1. Pure attractive Coulomb potential. (pure_coulomb.mat ).
V (x) = l(l + 1)/x2 − 2Z/x
a = 0 LCN
b = +∞ LPN/O
Number of eigenvalues:∞ continuous spectrum:(0,∞)
Ek = −Z2/(n + l + 1)2, k = 0, 1, ....



List of test problems 211

2. Chemical model potential. (Pryce42.mat ). (SLTSTPAK #42). Reference: [123].
V (x) = l(l + 1)/x2 + (−1 + 5e−2x)/x
a = 0 LCN (l = 0), LPN (l = 1)
b = +∞ LPN/O
Number of eigenvalues:∞ continuous spectrum:(0,∞)
l = 0 : E0 = −0.156358880971 E2 = −0.023484895664
l = 1 : E0 = −0.061681846633 E2 = −0.015501561691.

3. Coulomb potential. (Coulomb.mat ). (SLTSTPAK #30). Reference: [18, 119].
With b = 1, u(b) = 0 also called Boyd equation.
V (x) = −1/x
a = 0 LCN
b = +∞ LPN/O
Number of eigenvalues:∞ continuous spectrum:(0,∞)
Ek = −1/[4(k + 1)2], k = 0, 1, ....

4. Partially screening exponential-cosine potential. (Expon_cosine_part_screening.mat ).
Reference: [62].
V (x) = l(l + 1)/x2 − 2Z0Vec(x, λ, µ) − 2Zas(1/x − Vec(x, λ, µ))
Vec(x, λ, µ) = e−λx cos(µx)/x.
a = 0 LCN (l = 0) LPN (l = 5, 10)
b = +∞ LPN/O
Number of eigenvalues:∞ continuous spectrum:(0,∞)
l = 0, Z0 = 50, Zas = 1, λ = µ = 0.025: E0 = −2497.550000612
l = 5, Z0 = 50, Zas = 1, λ = µ = 0.025: E0 = −66.9947751270
l = 10, Z0 = 50, Zas = 1, λ = µ = 0.025: E0 = −18.2144512404.

5. Screening exponential-cosine potential. (Expon_cosine_screening.mat ). Refer-
ence: [62].
V (x) = l(l + 1)/x2 − 2ZVec(x, λ, µ)
Vec(x, λ, µ) = e−λx cos(µx)/x.
a = 0 LCN (l = 0) LPN (l = 5, 10)
b = +∞ LPN/O
Number of eigenvalues:∞ continuous spectrum:(0,∞).

6. Hulth én partially screening potential. (Hulthen_part_screening.mat ). Refer-
ence: [62].
V (x) = l(l + 1)/x2 − 2Z0VH(x, λ) − 2Zas(1/x − VH(x, λ))

VH(x, λ) =
λe−λx

1 − e−λx
=

e−λx/2

x η0((λx/2)2)
.

a = 0 LCN (l = 0) LPN (l = 5, l = 10)
b = +∞ LPN/O
Number of eigenvalues:∞ continuous spectrum:(0,∞)
l = 0, Z0 = 50, Zas = 1, λ = 0.025: E0 = −2498.775153125
l = 5, Z0 = 50, Zas = 1, λ = 0.025: E0 = −68.2234257245
l = 10, Z0 = 50, Zas = 1, λ = 0.025: E0 = −19.4490716959.

7. Hulth én screening potential. (Hulthen_screening.mat ). Reference: [62].
V (x) = l(l + 1)/x2 − 2Z VH(x, λ)

VH(x, λ) =
λe−λx

1 − e−λx
.
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a = 0
b = +∞ LPN/O
Number of eigenvalues:∞ continuous spectrum:(0,∞)
Exact eigenvalues only known forl = 0: Ek = −[2Z − (k + 1)2λ]2/4(k + 1)2, k =

0, 1, ...,kmax =
jp

2Z/λ
k
− 1.

8. Hydrogen atom. (hydrogen.mat ). (SLTSTPAK #29). Reference: [119].
V (x) = −1/x + 2/x2

a = 0 LPN
b = +∞ LPN/O
Number of eigenvalues:∞ continuous spectrum:(0,∞)
Ek = −1/(2k + 4)2, k = 0, 1, ....

9. Laguerre’s equation. (Laguerre.mat ). (SLTSTPAK #32).
V (x) = x2 + 3/(4x2)
a = 0 LPN Trunc. BC:y(a) = 0
b = +∞ LPN Trunc. BC:y(b) = 0
Number of eigenvalues:∞ continuous spectrum: none
Ek = 4(k + 1), k = 0, 1, ....

10. Morse potential. (Pryce36.mat .) (SLTSTPAK #36). Reference: [116].
V (x) = 2/x2 − 2000(2e−1.7(x−1.3) − e−3.4(x−1.3))
a = 0 LPN
b = +∞ LPN/O
Number of eigenvalues: 26 continuous spectrum: none
E0 = −1923.529655 E1 = −1777.290819 E13 = −473.29712549.

11. Woods-Saxon potential. (Woods_Saxon.mat ). (SLTSTPAK#41). Reference: [123].
V (x) = l(l + 1)/x2 − 50(1 − 5t/(3(1 + t)))/(1 + t)
t = e(x−7)/0.6

a = 0 Regular (l = 0) LPN (l = 2) y(a) = 0
b = +∞ LPN/O
l = 0 : Number of eigenvalues: 14 continuous spectrum:(0,∞)
E0 = −49.457788728 E10 = −18.094688282
l = 2 : Number of eigenvalues: 13 continuous spectrum:(0,∞)
E0 = −48.349481052 E10 = −13.522303353.
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