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Summary 

 

Maize meal, particularly white maize meal, the flour from the maize kernel, is the dominant 

staple food in many parts of Africa. A wide variety of maize meal types, particularly in Eastern 

and Southern Africa are produced by dry milling. New trends in production methods such as 

fortification are also coming with added challenges. White Maize meal is stored at various stages 

of commerce right from production, distribution and as it is being utilized and consumed. The 

unfavorable climatic conditions of Africa do pose a challenge to the storage of this important 

staple food during distribution. Being a staple food, white maize meal consumption in Africa is 

very important as it contributes significantly to caloric and protein intake. The importance of 

maize meal is also amplified by the home and industrial food applications in Africa. 

 

Despite white maize meal being a staple food for many parts of Africa with high involvement in 

commerce, literature is either scarce or non-existent on the stability of functional properties of 

African white maize meal types during storage or distribution. Therefore, this research undertook 

to contribute to filling-up this gap. The research work undertook to study the influence of storage 

conditions on functional properties of white maize meal with a particular emphasis to tropical 

conditions. The experimental work was divided into three parts:  

(i) moisture sorption properties 

(ii) chemical and sensory properties 

(iii) pasting and rheological properties. 

 

In chapter 2, experimental work involved moisture sorption of white maize meal. This included 

determining moisture adsorption isotherms before defatting (non-defatted) and after defatting 

(defatted) the white maize meal and then, the influence of storage conditions on moisture and 

water activity (Aw).  

The adsorption isotherms were type II.  The isotherms and the monolayer moisture contents were 

temperature dependant. Differential heat of sorption and entropy increased with decreasing 

moisture content, while the isokinetic theory showed that moisture adsorption in the temperature 

range studied was enthalpy-driven. Comparing non-defatted and defatted white maize meals, at 

constant temperature, the non-defatted had lower equilibrium moisture contents than defatted. 

The sorption models evaluated fitted better for non-defatted than for defatted, with the GAB 

model being the best.  
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At constant storage relative humidity, white maize meal absorbed or lost more moisture at high 

storage temperatures than at low storage temperatures. 

The packaging type influenced changes in water activity of white maize meal during storage. 

Polypropylene interwoven sacks (PP) showed poor protective barrier against changes in water 

activity while the polyethylene plastic material (PE) showed good properties of retaining the 

water activity at high storage relative humidity and sunlight exposure conditions.  

 

Chapter 3 involved experimental work on the influence of storage conditions on chemical and 

sensory properties of the white maize meal during storage. This involved determining the storage 

influence on acidity, colour, lipolysis, lipid oxidation and sensory properties.  

While storage temperature and storage time had significant effects on the evolution of pH, only 

storage time affected the evolution of titratable acids.  

The L-, a- and b-values of color were highly affected by high storage temperatures. At constant 

relative humidity and storage temperature the evolution of L-, a- and b-values of white maize 

meal stored in PP were different from that stored in PE, while PP was not significantly different 

from the control (without packaging). Of the sensory properties evaluated, a consistent trend was 

established for colour scores, which deteriorated for low storage temperature-high relative 

humidity and high storage temperature conditions. The colour however, remained essentially 

constant for low storage temperature-low relative humidity. The observed change in colour was 

attributed to discoloration of the white maize meal by non-enzymatic browning.   

Storage temperature had a higher influence on lipolysis than storage relative humidity, where 

increasing storage temperature increased the free fatty acid (FFA) contents. However, at constant 

storage temperature, samples at high storage relative humidity resulted in higher increases in 

FFA contents than at low storage relative humidity. Fortified white maize meal evolved higher 

FFA contents than unfortified maize meal during storage. Packaging and sunlight exposure did 

not seem to play a significant role in lipolysis during storage of white maize meal. However, 

after 28 days of storage, the FFA contents at high humidity, particularly at high storage 

temperature, were confounded by appearance of moulds. 

Lipid oxidation determined by peroxide value, increased and then decreased to relatively 

constant values during the storage period. The peak peroxide value in fortified white maize meal 

was lower and appeared two weeks earlier than the unfortified white maize meal. Lipid oxidation 

as determined by p-anisidine value initially increased and then decreased to relatively constant 

values during the storage period, but the influence of storage temperature seemed not to be 

significant. 
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In chapter 4, the influence of storage conditions on gelatinization, pasting and rheological 

behaviour of white maize meal was determined. Gelatinization temperatures were determined for 

white maize meal and its isolated starches. Pasting behaviour involved cooking cycle of white 

maize meal suspensions from 30 to 95oC and then cooling to 50oC, whereas rheological 

behaviour involved determining viscoelastic properties for isolated starch and flow behaviour for 

white maize meal pastes.  

Starch in white maize meal had significantly (P<0.05) higher gelatinization onset temperature 

(To) and gelatinization peak temperature (Tp) than the isolated starch. On the contrary, starch in 

white maize meal had significantly (P<0.05) lower gelatinization enthalpy (∆H) than the isolated 

starch. Storage temperature had no significant (P>0.05) effect on the evolution of Tp and ∆H of 

the gelatinization properties. The gelatinization properties only significantly (P<0.1) changed in 

the To for the isolated starch and gelatinization end temperature (TE ) (P<0.05) for white maize 

meal, with both decreasing during the storage period.  

In terms of pasting properties, low storage humidity resulted in increased peak viscosity (PV), 

initial hot-paste viscosity (V95i) and final hot-paste viscosity (V95f) at both low and high storage 

temperatures. Increasing storage temperature increased cold-paste viscosity (V50), total setback 

(SBt) and cold-paste:hot-paste viscosity ratio (C:H). At constant storage temperature, high 

storage humidity gave higher SBt and C:H than low storage humidity and this phenomenon was 

more pronounced at high storage temperature than at low storage temperature. However, after 28 

days of storage, the pasting properties at high storage humidity, particularly at high storage 

temperature, were confounded by appearance of moulds. 

Storing white maize meal at high temperature and for a long period increased the peak elastic 

modulus (G′p) while it decreased the peak viscous modulus (G″p) of the isolated starch during 

heating.  

The white maize meal exhibited shear-thinning behaviour at all storage conditions throughout 

the storage period. The Herschel-Bulkley and Mizrahi-Berk models best predicted flow 

behaviour for low temperature storage conditions throughout the study storage period, while only 

for a limited storage period at high storage temperatures. The stress overshoot at low storage 

temperature conditions decreased during storage while it increased at high storage temperatures. 

The yield stress and flow behaviour indices decreased while the consistency indices increased at 

all conditions during storage, except at low storage temperature – low humidity conditions. 

 

Thereafter, the conclusions of this research and proposals of some areas requiring further 

research in this line of study are given. 



Summary 

__________________________________________________________________________ 

_____________________________________________________________________________ 
Functional properties of white maize meal stored under tropical conditions 

xii 

 

On the whole, moisture sorption properties are important in the reactivity of other properties like 

browning of white maize meal during storage. The changes in pH, titratable acids and lipid 

oxidation could influence the taste and flavor of the white maize meal. The browning colour due 

to Maillard reactions during storage is undesirable and of nutritional concern as it further lowers 

the protein quality of the white maize meal. Lipolysis is also of great concern as the abundant 

linoleic acid in its non-esterified form in maize meal has been associated with esophagus cancer. 

However, lipolysis has the potential of application to be used as a storage life marker of white 

maize meal. The changes in gelatinization, pasting and rheological properties due to storage can 

have consequences for energy consumption during stirring or mixing or pumping white maize 

meal pastes for the food industry. Manipulation of temperature, humidity and use of appropriate 

packaging material has the potential to control these phenomena. 
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Samenvatting 

 

Maismeel, vooral wit maismeel, gewonnen uit gemalen mais, is het belangrijkste 

basisvoedingsmiddel in grote delen van Afrika. Vooral in Oost- en Zuid-Afrika, worden door 

middel van droge maling verschillende types maismeel geproduceerd. Nieuwe trends in 

productie methoden zoals fortificatie bieden ook bijkomende uitdagingen. Wit maismeel wordt 

opgeslagen na de productie en wordt verder bewaard gedurende distributie en tenslotte bij de 

consument tot het wordt verwerkt en geconsumeerd. De ongunstige klimaatomstandigheden in 

Afrika bemoeilijken de opslag van dit basisvoedingsmiddel.  Maismeelconsumptie in Afrika is 

heel belangrijk aangezien het een belangrijke leverancier is van energie en eiwit. Het belang van 

maismeel wordt nog verhoogd door huiselijke en industriële voedingstoepassingen in Afrika.  

 

Ondanks het grote commerciële belang van maismeel in grote delen van Afrika, is literatuur over 

stabiliteit en functionele eigenschappen van Afrikaanse maïsmeeltypes gedurende bewaring 

eerder schaars of onbestaande. Dit onderzoek tracht om deze lacune aan te vullen. In deze 

doctoraatsthesis wordt het effect van bewaringsomstandigheden op de functionele eigenschappen 

van wit maismeel onderzocht. Meer in het bijzonder wordt de invloed van tropische 

omstandigheden bestudeerd. Het experimentele werk kan opgedeeld worden in drie onderdelen: 

(iv) watersorptie eigenschappen 

(v) chemische en sensorische eigenschappen 

(vi) gelerende en reologische eigenschappen 

 

In hoofdstuk 2 werd de vochtsorptie van wit maismeel onderzocht. Dit omhelsde de bepaling van 

vocht adsorptie isothermen van wit maismeel voor en na het ontvetten. Daarna werd de invloed 

van bewaringsomstandigheden op vocht en watergehalte (Aw) bepaald.  

De adsorptie-isothermen behoorden tot het type II. De isothermen en het monolaag vochtgehalte 

waren temperatuursafhankelijk. Differentiële sorptiewarmte en entropie namen toe met 

afnemend vochtgehalte, terwijl de isokinetische theorie aantoonde dat vochtadsorptie in het 

bestudeerde temperatuursinterval gedreven werd door enthalpie.  Bij constante temperatuur had 

het niet-ontvette maismeel een lager evenwichts vochtgehalte dan ontvet maismeel. De gebruikte 

sorptiemodellen fitten beter voor niet-ontvet maismeel dan voor ontvet maismeel, waarbij het 

GAB model het best past.  
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Bij constante relatieve vochtigheid tijdens de bewaring, adsorbeerde of verloor het witte 

maismeel meer vocht bij hoge temperaturen dan bij lage.  

Het type verpakking had de grootste invloed op de veranderingen in wateractiviteit van het witte 

maismeel tijdens de bewering. Polypropyleen (PP) zakken boden geen bescherming tegen 

veranderingen in wateractiviteit terwijl polyethyleen (PE) de wateractiviteit constant hield bij 

blootstelling aan hoge vochtigheid en zonlicht.  

 

Hoofdstuk 3 behandelde de invloed van bewaringsomstandigheden op chemische en sensorische 

eigenschappen van wit maismeel. Dit omhelsde de invloed van bewaring op zuurheid, kleur, 

lipolyse, vetoxidatie en sensorische eigenschappen.  

Gedurende bewaring hadden de temperatuur en de bewaarduur een significant effect op de 

evolutie van de pH terwijl alleen de bewaarduur een effect had op de evolutie van titreerbare 

zuren.  

De L-, a- en b- kleurwaarden werden sterk beïnvloed door hoge bewaartemperaturen. Bij 

constante relatieve vochtigheid en temperatuur was de evolutie van de L-, a- en b- kleurwaarden 

van wit maismeel bewaard in PP verschillend dan van maismeel bewaard in PE, terwijl PP niet 

significant verschilde van de controle zonder verpakking. Wat betreft de sensorische 

eigenschappen, werd een consistente trend vastgesteld voor kleurwaarden. De kleuren namen af 

bij lage temperatuur-hoge relatieve vochtigheid en hoge temperatuursomstandigheden. Nochtans 

bleef de kleur hoofdzakelijk constant bij lage temperatuur-lage relatieve vochtigheid 

omstandigheden. De waargenomen kleurverandering werd toegeschreven aan verkleuring van 

maismeel door niet enzymatische bruinkleuring. 

De temperatuur had een grotere invloed op de lipolyse dan de relatieve vochtigheid, terwijl een 

temperatuursstijging de gehaltes aan vrije vetzuren verhoogde. Nochtans, bij een constante 

bewaartemperatuur vertoonden stalen bewaard bij een hoge relatieve vochtigheid een grotere 

toename aan vrije vetzuren dan bij lage relatieve vochtigheid. Verrijkt wit maismeel vertoonde 

hogere gehaltes vrije vetzuren dan niet-verrijkt meel gedurende bewaring. De verpakking en 

blootstelling aan zonlicht leken de lipolyse niet significant te beïnvloeden. Nochtans, na een 

bewaarperiode van 28 dagen, werden de gehaltes aan vrije vetzuren bij hoog vochtgehalte en 

vooral bij hoge bewaartemperatuur, beïnvloed door de aanwezigheid van schimmels. 

Vetoxidatie, bepaald door middel van het peroxidegetal, nam eerst toe en daalde daarna tot 

relatief constante waarden tijdens de bewaarperiode. De piek peroxide waarde in verrijkt 

maismeel was lager en deed zich twee weken eerder voor dan in het niet-verrijkte maismeel.  
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Vetoxidatie, bepaald door middel van de p-anisidine waarde, nam eerst toe en daalde dan tot 

relatief constante waarden tijdens de bewaarperiode. De invloed van de bewaartemperatuur leek 

echter niet significant te zijn. 

 

In hoofdstuk 4 werd de invloed van bewaaromstandigheden op gelatinisatie, gelerende 

eigenschappen en reologisch gedrag van wit maïsmeel bepaald. Gelatinisatie temperaturen van 

wit maismeel en geïsoleerd zetmeel werden bepaald. Het geleergedrag werd bepaald na een 

verhitting van wit maïsmeelsuspensie van 30 tot 95°C gevolgd door koeling tot 50°C, terwijl het 

reologisch gedrag het bepalen van de viscoelastische eigenschappen van geisoleerd zetmeel en 

de gelerende eigenschappen van maismeelpap omhelsde.  

Zetmeel uit het wit maïsmeel had een significant (P<0.05) hogere gelatinisatie-starttemperatuur 

(To) en –piektemperatuur (Tp) dan geïsoleerd zetmeel. Daartegenover had zetmeel uit wit 

maïsmeel een significant (P<0.05) lagere gelatinisatie enthalpie (∆H) dan geïsoleerd zetmeel. De 

bewaartemperatuur had geen significant (P>0.05) effect op de evolutie van (Tp) en ∆H. Alleen To 

van het geisoleerd zetmeel (P<0.1) en de gelatinisatie-eindtemperatuur (TE ) (P<0.05) van wit 

maïsmeel veranderden significant, waarbij beide gelatinisatietemperaturen afnamen gedurende 

de bewaarperiode.  

Wat betreft de gelerende eigenschappen, een lage vochtigheidsgraad tijdens de bewaring 

resulteerde in een toenemende piekviscositeit (PV), alsook de initiele warme geleerviscositeit 

(V95i) en de finale warme geleerviscositeit (V95f), zowel bij lage als hoge bewaartemperaturen. 

Een toenemende bewaartemperatuur deed de koude geleerviscositeit toenemen, alsook het 

herstel van viscositeit tijdens koeling (SBt) en de koude/warme geleerviscositeit ratio (C:H). Bij 

constante bewaartemperatuur veroorzaakte een hogere vochtigheid hogere SBt and C:H dan een 

lage vochtigheid. Dit effect was het meest uitgesproken bij hoge dan bij lage temperaturen. 

Nochtans, na een bewaarperiode van 28 dagen, werden de gelerende eigenschappen bij een hoge 

vochtigheidsgraad, vooral bij hoge bewaartemperatuur, beïnvloed door de aanwezigheid van 

schimmels. 

Bewaren van maismeel bij hogere temperaturen gedurende een langere periode deden enerzijds 

de piek elastische modulus (G′p) van geisoleerd zetmeel toenemen, terwijl het de piek visceuze 

modulus (G″p) tijdens verhitting deed afnemen.  

Het witte maismeel vertoonde pseudoplastisch gedrag onder alle omstandigheden bestudeerd 

tijdens de bewaarperiode. De Herschel-Bulkley en Mizrahi-Berk modellen voorspelden het best 

het vloeigedrag bij lage temperaturen tijdens de bewaarperiode, terwijl ze dat bij hoge 

temperaturen alleen konden voor kortere bewaarperiodes. Gedurende de bewaarperiode nam de  
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spanning overshoot af bij lage bewaartemperaturen terwijl het toenam bij hoge temperaturen. De 

zwichtspanning en vloeigedragindicatoren namen af terwijl de consistentie-indicatoren toenamen 

bij alle bewaaromstandigheden, behalve bij lage temperatuur-lage vochtigheid 

bewaaromstandigheden. 

 

Daarna worden de conclusie van dit onderzoek samengevat en voorstellen gedaan voor verder 

noodzakelijk onderzoek in het kader van dit doctoraat.  

 

Als algemene conclusie kan gesteld worden dat vochtsorptie eigenschappen belangrijk zijn voor 

de reactiviteit van andere eigenschappen zoals bruinkleuring van wit maismeel gedurende 

bewaring. Veranderingen in pH, titreerbare zuren en vetoxidatie kunnen de smaak en geur van 

wit maïsmeel beïnvloeden. De bruinkleuring tijdens bewaring is ongewenst en ook nutritioneel 

van belang aangezien het de eiwitkwaliteit van het wit maïsmeel negatief beïnvloedt. Lipolyse is 

eveneens van groot belang aangezien het overvloedig aanwezige linoleen zuur in zijn niet-

veresterde vorm in maismeel geassocieerd wordt met oesofaag kanker. Nochtans heeft lipolyse 

het potentieel om gebruikt te worden als kwaliteitsindicator voor de bewaring van wit maïsmeel. 

Veranderingen in gelatinisatie, gelerende en reologische eigenschappen tijdens bewaring kunnen 

een grote invloed hebben op het energiegebruik tijdens mengen, mixen of pompen van geleerd 

wit maïsmeel in de voedingsindustrie. De manipulatie van temperatuur, vochtigheid en het 

gebruik van geschikt verpakkingsmateriaal hebben het potentieel deze effecten onder controle 

houden. 
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Chapter 1. White maize meal – Literature review 

 

Abstract 

 

Maize remains an important part of the human diet in many developing countries and, where it is 

grown, white maize tends to assume much greater importance for human consumption than 

yellow varieties. White maize production is of paramount importance in Africa and plays a 

major role in the diet. Maize meal, particularly white maize meal, the flour from the ground 

maize kernel, is the dominant staple food in many parts of Africa. In Africa, maize meal is 

produced by dry milling process – non-degerming or degerming process, to produce whole 

meals (considered as inferior) or varying types of partially degermed maize meals (considered 

as superior) depending on the extraction rates, respectively. The new trends in maize meal 

production taking effect in Africa include fortification and fermentation (not entirely new). The 

nutritional compositions of the maize meals are highly dependent on the extraction rates. The 

socio-economic favorable importance of maize meal to Africa is enormous and is amplified in its 

home to industrial food applications. Maize meal is stored at various stages of commerce right 

from production up to and during consumption. The unfavorable climatic conditions of Africa do 

pose a challenge to the storage of this important staple food during distribution. However, also 

of great concern as food technologists is that, despite maize meal being a staple food for Africa 

with high involvement in commerce, literature is either scarce or non-existent on functional 

properties of African maize meal types during storage or distribution in commerce. 

 

Key words: Africa, Dry milling, Fortification, Maize meal, Storage  
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1.1. Introduction 

 

The entire world except Antarctica now produces maize (Zea mays) or corn. Maize ranks as the 

second most, from wheat, widely produced cereal crop world wide (Johnson, 2000). According 

to the FAO, global production of corn was 721.4 million tons in 2004 (FAOSTAT, 2005). Maize 

remains an important part of the human diet in many developing countries and, where it is 

grown, white maize tends to assume much greater importance for human consumption than 

yellow varieties (FAO/CIMMYT, 1997). 

 

Over 90 percent of the white maize is produced in the developing countries. Among the 

individual geographical regions of the developing countries, white maize production is of 

paramount importance in Africa. The main producers include South Africa, Zimbabwe, Kenya, 

Malawi, Tanzania and Zambia, where white maize represents between two-thirds and 90 percent 

of total cereals production. Other important producers of the region include Egypt, Ethiopia and 

Nigeria, where white maize constitutes from 15-35 percent of total cereals production. Two other 

significant areas of white maize production are, Central America (excluding the Caribbean sub-

region) and the northern part of South America (Colombia and Venezuela). In Asia, yellow 

maize is considerably more important in their total cereal production than white maize. However, 

the United States is also increasing the white maize production due to more stable outlets and 

rising profitability in growing white maize (FAO/CIMMYT, 1997).  

 

At least for more than 400 million people world-wide, primarily in sub-Saharan Africa and 

Central America, white maize plays a major role in the diet. Rough estimates based on 

production patterns and international trade flows suggest that developing countries consume over 

90 percent of the white maize produced globally, with consumption concentrated in Africa and 

Central America (FAO/CIMMYT, 1997). In Africa, out of the nations maize needs, maize for 

human consumption takes up most of the requirements. For instance, between 1995 and 1997, 

Eastern and Southern Africa used an average of 72%, Western and Central Africa used 66% and 

North Africa used 45% of the total maize national requirements for human consumption (Aquino 

et al., 2000).  

 

The report by Wiggins (2003), shows that one of the major cereal food items involved in import 

and export transactions in Southern Africa is maize and maize flour (maize meal). As an 

example of a particular country in Southern Africa, in Zambia, human consumption accounts for  
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as much as 90% while livestock feed production and brewing accounts for 8% and 2% only, 

respectively (RATES, 2003). Maize (mostly in form of maize meal) conjures high nationalistic 

sentiments in Zambia. This is mainly due to the fact that it is a staple food and affects food 

security and incomes of about 80% of the population (RATES, 2003). Maize meal, the flour 

from the ground maize kernel, is the dominant staple food throughout Eastern and Southern 

Africa (Jayne et al., 1996). 

 

The major parts of the maize kernel are the endosperm and the germ, which contain most of the 

starch and oil, respectively (Figure 1.1). The distribution of the major components of maize is 

presented in Table 1.1.  

 

Figure 1.1 Cross-section of corn showing location of major components (Source: Shukla & 

Cheryan, 2001) 

 
Table 1.1 Distribution of major components corn$ 
 

Dry weight of components (%) Component Whole 
kernel 
(%) 

Endosperm Germ Pericarp Tip 
carp 

Starch 62.0 87 8.3 7.3 5.3 
Protein 7.8 8 18.4 3.7 9.1 
Oil 3.8 0.8 33.2 1 3.8 
Ash 1.2 0.3 10.5 0.8 1.6 
Others* 10.2 3.9 29.6 87.2 80.2 
Water 15.0 - - - - 

*By difference. Includes fiber, non-protein nitrogen, pentosans, phytic acid, soluble sugars, 
xanthophylls; $Source: Shukla & Cheryan (2001) 
 

Maize is processed primarily by four methods: wet milling, the dry grind process for ethanol 

production, dry milling and alkaline processing. Alkaline processed and dry milled maize goes 

directly for human consumption (Watson & Ramstad, 1987; Shukla & Cheryan, 2001). All  
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maize dry mills produce a line of basic products that includes grits, meals, flour, germ (oil) and 

bran (Peplinski et al., 1984; Johnson, 2000). Maize meal, the flour from the maize kernel and the 

dominant staple food for most of Africa is processed by dry milling. 

 

The importance of white maize meal to the world - the developing nations and Africa in 

particular, can not be overemphasized. Therefore, sections 1.2 to 1.4 of this chapter gives an 

overview of the production, storage and importance of white maize meal in Africa, with a 

particular emphasis to Eastern and Southern Africa. The later sections of this chapter give a 

literature review on selected physico-chemical and functional properties of maize and maize 

products or other cereals with emphasis to effects of storage. 

 

1.2. Production methods and maize meal types 

 

There are significant variations in the type of maize meal consumed in Eastern and Southern 

Africa. Maize meal may be classified along several continuums: extraction rate, dentiness vs. 

flintiness, and color (Jayne et al., 1996). Maize meal is produced by a dry-milling process. The 

objective of dry-milling is to separate the maize kernel into its anatomical parts (endosperm, bran 

and germ). Two different systems are used to dry-mill the maize grain: Non-degerming and 

Degerming (Johnson, 2000).  

 

The non-degerming system grinds maize grain into meal with little, if any separation (Johnson, 

2000). This process yields whole meal, which contains the bran, germ and endosperm in the 

proportions found in the whole kernel. Whole meal is produced by three types of mills - stone, 

plate, and hammer. The former two techniques were used along time ago, but can still be found 

in use in very remote rural parts of Africa. Hammer mills are by far the most common technique 

for making whole meal in Eastern and Southern Africa. Hence, the non-degerming system is also 

referred to as the hammer milling technology. Hammer mill technology does not separate the 

bran, germ and endosperm, but simply shears and grinds the whole kernel or whatever part of it 

is fed into the hopper. The broken grain is sheared in the milling chamber until its size is 

sufficiently reduced to pass through the holes of a screen surrounding the hammers. The most 

typical whole meal product (96-99 percent extraction rate) is variously called posho meal in 

Kenya, mgaiwa in Malawi, and mugayiwa in Zimbabwe (Jayne et al., 1996) and Zambia. 

Hammer milling technology is generally small-scale in nature (Jayne & Argwings-Kodhek, 

1997), and is mostly operated as a family business.  
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The Degerming System is also referred to as the Tempering-Degerming (TD) system (Johnson, 

2000) or Roller Milling Technology (Figure 1.2). In this system, water is added to the maize 

grain to increase the moisture content to about 20%, and the moistened maize grain is allowed to 

equilibrate (tempering) for 1-3 hours.  

 

 

Figure 1.2. Flow sheet for dry corn milling (tempering-degerming system) [Source: Alexander 

(1987)] 

 

This toughens the germ and the bran so that their particle sizes remain large, making separation 

easier. Once the germ and hull are removed, the endosperm is reduced in size to grits with roller 

mills, hence the term roller milling technology. A complex array of additional roller mills and 

particle-size-separating equipment is used to purify and size the endosperm particles (Johnson, 

2000).  

 

Roller milling technology is generally large-scale in nature, and is used by large, urban milling 

firms in Eastern and Southern Africa. Roller milling process yields a large range of partially or  
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fully degermed meals. The concentration of milled bran and germ in the milled endosperm is 

determined by the extraction rate of the maize grain. Extraction rate refers to the proportion by 

weight of the maize kernel which is processed into meal (Jayne et al., 1996). 

 

In general, the roller milling technology produces two major types of maize meals, refined and 

super-refined meals. Refined meals refer to the intermediate grade of maize meal. Refined meals 

are produced by removing part of the germ and bran, resulting in a lower extraction rate than 

whole meals. Super-refined meal on the other hand designate highly-refined meals i.e. with 

much lower extractions rates than refined meals (Jayne et al., 1996). Maize meals with very low 

levels of bran and germ (super-refined meals) are variously called super-refined in Zimbabwe, 

super-sifted in Kenya, Tanzania and South Africa, and breakfast meal in Zambia. Products with 

slightly higher levels of bran and germ (refined meals) are referred to as sifted meal in Kenya, 

Tanzania and South Africa, or roller meal in Zimbabwe (Jayne et al., 1996) and Zambia. If all of 

the bran and germ are re-mixed back with the milled endosperm, this product is often called 

straight-run meal, and is similar to the mugaiwa or posho - whole meal produced from hammer 

mills (Jayne et al., 1996). The major types of maize meal produced in Eastern and Southern 

Africa are summarized in Table 1.2 (Jayne et al., 1996). 

 

Whole maize is a good source of thiamin, pyridoxine and phosphorus, and a fair source of 

riboflavin, niacin, folate, biotin, iron and zinc. However, many of these nutrients are lost during 

milling (MOST/Roche/USAID, 2003). The extraction rate of a meal affects its nutritional 

content (Table 1.3).  

 

The most common colors of maize grain nowadays are white and yellow. This brings about the 

type of maize meal based on its color. In the Eastern and Southern African region, white maize 

has been preferred when priced the same as yellow maize. Yellow maize has been considered as 

being vastly inferior for human consumption to white maize. As a result, yellow maize has been 

consumed only in droughts, when insufficient white maize was available (Jayne et. al., 1996). 

Owing to colour differences in the processed maize meals, white super-refined maize meal is 

preferred to white refined maize meals. Equally, white refined maize meal is preferred to white 

whole meals. The colour of white maize meal becomes duller or darker from super-refined maize 

meal to refined with the darkest being whole meals. 
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Table 1.2 Major types of maize meals produced in Eastern and Southern Africa$ 

Type of maize meal Description Extraction 
rate (%) 

Production 
Technique 

Super-sifted (South Africa, 
Kenya); 
Super refined (Zimbabwe); 
Breakfast meal (Zambia); 
Farinha matabicho 
(Mozambique) 

The bran and germ are 
completely removed; meal 
ground from the starch 
endosperm 

60 - 70 Roller 
milling 

Sifted (Kenya, South Africa, 
Tanzania); 
Roller meal (Zambia, 
Zimbabwe); 
Farinha Sem Farelo 
(Mozambique) 

Much of the bran and germ 
are removed; meal ground 
mostly from the endosperm 

80 – 85 Roller 
milling 

Hammer milled ‘roller meal’ 
(Zimbabwe); Number 1 
(Kenya) 

Much of the bran and germ 
are removed; meal ground 
mostly from the endosperm 

75 – 95 Hammer 
milling 
using 
dehulled 
maize 
before 
processing 

Straight run meal, 
mugayiwa (Zimbabwe);  
Posho (Kenya);  
Dona (Tanzania); 
Farinha Corn Farelo 
(Mozambique)  

By hammer milling: the meal 
is processed from the whole 
maize kernel, with the bran, 
germ and endosperm retained 
 
By roller milling: the bran 
and germ are added back after 
the milling and sieving 
process  

96 – 99% Hammer 
milling 
 
 
Roller 
milling 

$Jayne et al. (1996) 

 

Table 1.3 Nutrient composition of refined and whole maize meal$ 

Refined meal Whole 
meal 

Refined meal Whole 
meal 

Nutrient 
(%) 

Extraction rates 

Nutrient  
(Per 100grams) 

Extraction rates 
 65% 85% 96-99%  65% 85% 96-99% 
Protein 7.9 9.3 10.0 Calories (Kcal) 334.0 341.0 343.0 
Fat 1.2 2.4 3.8 Calcium (mg) 6.0 7.0 12.0 
Carbohydrate 78.4 75.1 73.4 Iron (mg) 1.1 2.0 2.5 
Fibre 0.6 1.1 1.9 Thiamin (mg) 0.14 0.30 0.35 
Ash 0.5 0.7 1.3 Riboflavin (mg) 0.05 0.08 0.13 
    Niacin (mg) 1.0 1.8 2.0 

$Adopted from Jayne et al., 1996 (Source: West et al., 1987) 

 

The consumption of the more costly sifted maize meal is partially determined by attributes of the 

product itself.  In Kenya, urban sifted maize meal consumption has been explained by a  
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combination of factors such as inherent taste (Jayne & Argwings-Kodhek, 1997), and cooking 

attributes of sifted meal compared to whole meal. Mukumbu & Jayne (1995) have noted that the 

relative importance of these factors has received little research attention. The perception of 

strong preferences for sifted meal over unrefined maize meal (posho) has been reinforced by 

substantial advertising by large-scale milling firms portraying refined maize meal as a sign of 

sophistication and modernity. In a survey in Kenya, more households purchasing sifted maize 

meal chose it because it was convenient to procure compared to posho meal. More of those who 

consumed whole meal chose it because it was cheaper and nutritious. This indicates that many 

urban households were already aware of whole meal’s superior nutritional quality at the time of 

this survey (Mukumbu & Jayne, 1995).  

 

Maize flour or maize meal has been considered in fortification programs because it is a staple 

food in many parts of Africa. The growing centralization of maize milling, its world-wide 

consumption, and the simplicity of the fortification technology makes this vehicle a good choice 

for nutritional intervention (MOST/Roche/USAID, 2003). In Southern Africa, a number of 

countries have started maize meal fortification programs: Zambia, South Africa, Zimbabwe and 

Namibia. The maize meals are being fortified with vitamins A, B1, B2, B6, niacin and folate; iron 

and zinc (MOST/Roche/USAID, 2003). The South African Government has already made it 

mandatory legal requirement to have all maize meal milled in South Africa to contain specified 

amounts of vitamin A palmitate, thiamin mononitrate, riboflavin, nicotinamide/niacinamide, 

pyridoxine HCl, folic acid, electrolytic iron, and zinc oxide (Duvenage & Schönfeldt, 2007). 

However, there has been a concern of possible problems of bioavailability, lipid oxidation and 

sensory quality due to fortification (Hurrell et al., 1991; Nestel, 1993; Bovell-Benjamin et al., 

1999). Factors that influence the stability of added vitamins and minerals during storage and 

preparation of maize flour or maize meal must also be considered: temperature, moisture content, 

type of preparation, presence/absence of light, length of cooking, pH, presence of oxygen, length 

of storage, packaging (MOST/Roche/USAID, 2003). 

 

In many African countries, maize is also used for preparations of fermented sour doughs or 

meals. There have been a number of studies in fermentation of maize meals for the purpose of 

innovation of the quality of maize meal (Adeniji & Potter, 1978; Hamad & Fields, 1979; Plahar 

et al., 1983; Addo et al., 1996).  
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1.3. Storage of maize meal in Africa 

 

The climate for storage of food products in Africa is quiet hostile, particularly in terms of 

temperature and relative humidity. Table 1.4 shows the maximum temperatures and relative 

humidity recorded in selected parts of Africa. It is evident that high temperatures above 45oC are 

not uncommon and relative humidity above 70% are equally not uncommon, although the 

humidity drops during the day. This environment gives concern for the storage of maize meal.  

 

Table 1.4 Maximum temperatures (Max Temp), relative humidity (RH) and average sunshine 
hours during the year in selected parts of Africa$ 

Southern Africa East Africa Central Africa West Africa North Africa Southern 
Africa 

Mozambique 
(Zumbo) 

Kenya 
(Mombasa) 

Central 
African 

Republic 
(Bangui) 

Cameroun 
(Yaounde) 

Algeria 
(In Salah) 

Zambia 
(Lusaka) 

Month 

Max 
Temp 
(oC) 

Max 
RH 
(%) 
am* 

Max 
Temp 
(oC) 

Max 
RH 
(%) 
am* 

Max 
Temp 
(oC) 

Max 
RH 
(%) 
am* 

Max 
Temp 
(oC) 

Max 
RH 
(%) 
am* 

Max 
Temp 
(oC) 

Max 
RH 
(%) 
am* 

Average 
Sunshine 
(Hours/ 

day) 
Jan 42 79 35 76 37 92 33 97 31 63 5 
Feb 40 78 35 75 38 90 33 97 35 64 5 
Mar 40 76 36 77 38 91 33 97 39 51 7 
Apr 41 69 36 81 37 92 36 97 42 40 9 
May 38 65 33 85 36 94 34 98 46 37 9 
Jun 36 65 32 82 35 95 32 97 50 36 9 
Jul 35 64 33 82 34 96 31 97 50 29 9 
Aug 39 60 31 76 34 96 34 97 50 31 10 
Sep 43 53 32 81 34 95 31 98 49 38 9 
Oct 44 48 32 79 34 94 33 98 44 44 9 
Nov 49 57 34 78 34 94 32 98 36 61 7 
Dec 43 71 36 78 36 92 32 98 31 65 6 

$Source: BBC weather (2005); *am – morning relative humidity 
 
In Zambia, maximum daily temperatures of 30°C to 40°C are not uncommon particularly for 

low-lying valley areas such as the Zambezi, Gwembe and Luangwa valleys (AQUASTAT, 

2005). Table 1.4 also gives an overview of the average sunlight period per day for the capital of 

Zambia, Lusaka. It is evident that Zambia or most African countries have long hours of day 

sunlight coupled with high temperatures and relative humidity. These observations are of 

significance because white maize meals in Africa are also sold in open markets with exposure to 

sunlight. 

 

Food processing companies have a trend to overlook the intrinsic dimension of quality that 

includes safety, health and shelf-life to focus more on extrinsic factors that promote sales and 

boost the image of the company (Nguz, 2007). In the trade of maize meal and maize meal  
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products, Africa has not been spared from this syndrome. Quality and safety of food products 

have to be assured at each stage of the maize meal value chain – processing, storage and 

distribution. 

 

Packaging is necessary for preserving the organoleptic, nutritional and hygienic characteristics of 

food during storage and commercialization (Ou et al., 2005). The success of most preservation 

methods depends on how well the processed food is protected from adverse environmental 

conditions, which is mostly accomplished by packaging. Characteristics of the packaging 

materials such as mechanical and barrier properties are very important to decide on what type of 

material will be used in the packaging of different types of foods. Exposure to different 

processing conditions may alter the physical and/or chemical properties of the packaging 

materials and the modifications in the properties of the packages may have an effect on the 

quality of the packaged food products (Ozen & Floros, 2001). Different types of packaging 

materials are in use for the packaging of maize meal in different African countries. Packaging 

materials ranging from polypropylene interwoven sacks, polyethylene plastics (thin, thick, 

opaque, translucent and transparent), paper etc can be found in use for packaging maize meal in 

Africa. No research has been found as a scientific basis for the choice of the type of packaging in 

use. Most probable, the choice is dependent on historical use and marketing reasons (package 

appearance).  

 

Raw material quality, the degree to which raw materials (i.e. whole grain, grits, meal, flour) 

possess good physicochemical, nutritional and processing properties, can vary considerably from 

fresh to aged material even though they meet the same physico-chemical specifications 

(McDonough et al., 2004). There has been a number of publications on mycotoxin 

contaminations of maize meals (Gelderblom et al., 1988; Sydenham et al., 1990; Sydenham et 

al., 1991; Rheeder et al., 1992; Thiel et al., 1992; Okoth & Ohingo, 2004; Soriano & Dragacci, 

2004; Williams et al., 2004); however, publications on the stability of physico-chemical and 

functional properties of maize meal, particularly white maize meal, during storage are either 

scarce or non-existent. 

 

In one survey research on the occurrence of aflatoxins in different types of weaning flours for 

young children (maize, cassava, green grams, sorghum, beans, millet, rice, groundnuts and dried 

fish) in Kenya by Okoth & Ohingo (2004) it was found that the duration of storage of the flours 

for the households ranged from 1 day (32.8%) through 1 week (35.0%) to 2-5 weeks (32.2%).  
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However only 20% of the mothers appreciated that their flour would deteriorate with time and 

therefore had spoilage signs (strongly sour or sharp flavour taste, offensive smell, color change, 

shiny surface and formation of lumps). The rest of the mothers used the flour for as long as it 

lasted. Their description of spoilage was close to mould growth and insect infestation.  

 

Some analysts have contended that households may be averse to posho meal (wholemeal) 

because of its shorter shelf life (posho meal contains oil from the maize germ) (Mukumbu & 

Jayne, 1995). In a survey by Mukumbu & Jayne (1995), according to the Nairobi respondents 

that consumed it, posho meal was said to have an average shelf life of 3.7 weeks. This is 

assumed to be at room storage conditions, as the conditions of storage for these estimates of shelf 

life were not stated. Mukumbu & Jayne (1995) have further stated that, the shelf life problem is 

probably more relevant to potential commercial manufacturers of whole meal, who would have 

to be concerned about timely distribution to retail outlets after milling to avoid spoilage. 

 

1.4. Importance of maize meal in Africa 

 

Maize in its different processed forms, but particularly in the form of maize meal, is an important 

food for large numbers of people in Africa, providing significant amounts of nutrients, in 

particular calories and protein. FAO (1992) publications showed that 22 of 145 developing 

countries had a maize consumption of more than 100 g per person per day. In a dietary intake 

survey in South Africa, MacIntyre et al. (2002) found that maize meal was consumed by almost, 

all of the respondents, both males and females, in the rural, farm, informal settlement and middle 

class urban strata. 

 

Mukumbu & Jayne (1995) reported that the average quantity of maize meal consumed per adult 

equivalent (AE) was 1.68 kilograms per week (7.22 kgs per month). In Zambia, it has been 

reported that over 90% of the population consume maize meal with a daily per capita 

consumption of 250-300g (Laleye & Wesley, 2001). In Zambia, over two-thirds of the daily 

energy intake comes from maize and in a number of other countries between 10 and 30 percent 

of daily energy intake is from maize flour or maize meal (MOST/Roche/USAID, 2003). 

 

This data confirms the importance of maize meal as a staple food in a number of African 

countries. It follows that if the maize meal intake is high, maize meal contributes significant 

amounts of calories and protein to the daily intake of people in Africa.  Maize meal is further  
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processed into other foods as a sole ingredient or is used as one of the ingredients in processing 

other food products.  

 

Home consumer food applications of maize meal constitute human consumption of maize meal 

as a dough or thick porridges, common in Southern Africa (Van der Merwe et al., 2001); in 

Zambia (Laleye & Wesley, 2001), in Zimbabwe, South Africa, East Africa including Kenya, 

Tanzania, Uganda, Burundi, Rwanda, and Democratic Republic of the Congo, West Africa 

particularly in Nigeria (Tembo, 2007) and light porridges at breakfast (Sammon, 1999). Ogi or 

Pap a traditional fermented cake (Onyekwere et al., 1989) is consumed in Nigeria (Banigo et al., 

1974; Steinkraus, 1996), in the republic of Togo, Benin, and Ghana (Onyekwere et al., 1989). 

Maize meal porridge is used as complementary food for infants in many African countries 

(Lartey et al., 1999; Huffman et al., 2000; Mamabolo et al., 2004; Faber et al., 2005). In Eastern 

and Southern Africa, fermented starch-based porridges are particularly popular; uji, togwa, 

kenkey, mahewu, ogi and enjera (spongy bread) (Steinkraus, 1996). 

 

In many African countries, maize, in form of maize meal, is also used to prepare non-alcoholic 

fermented products - mostly as beverages: Munkoyo beverage in Zambia and Zaire (Lovelace, 

1977; Lovelace, et al., 1978; Simwamba & Elahi, 1986; Steinkraus, 1996; Zulu et al., 1997), 

mageu or mahewu typical of Southern Africa (Holzapfel, 1989; Steinkraus, 1996), akamu or uji 

in East Africa, mawe in Benin and Togo, togwa in East Africa, especially in Tanzania and a 

variety of sour maize doughs in Ghana (Steinkraus, 1996).  

 

For centuries maize beers have occupied an important place in the diets of many African peoples 

(Haggblade & Holzapfel, 1989). There are various types of African opaque beers: Kenyan 

urwaga, Kenyan bussa, Nigerian and Ghanian pito (Steinkraus, 1996), Zambian opaque maize 

beer (Lovelace, 1977; Steinkraus, 1996) and doro, hwahwa, mhamba, or utshwala in Zimbabwe 

(Gadaga et al., 1999). The essential steps in brewing are malting, mashing, souring, boiling, 

conversion, straining and alcoholic fermentation (Steinkraus, 1996). In contrast with old-

fashioned brewers, many today add maize meal rather than malted or unmalted sorghum or 

millet as a starchy adjunct (Haggblade & Holzapfel, 1989).   

 

Industrial food applications of maize meal include its use in production of non-alcoholic 

fermented products such as commercial production of mageu (Holzapfel, 1989). Maize meal is 

also used in the commercial production of African alcoholic products at industrial level. Africa’s  
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brewers confection a wide variety of indigenous beers using two principal inputs: malt and 

starchy adjunct. Factory brewers almost invariably use maize grits (or maize meal) as starchy 

adjuncts (Haggblade & Holzapfel, 1989). Extrusion products are beginning to have a huge 

market in Africa, especially for children’s ready-to-eat snacks. Maize meal (flour) is one of the 

major ingredients in extruded products (Wen et al., 1990; Martinez-Bustos et al., 1998; Zhang & 

Hoseney, 1998; Onwulata et al., 2001a, 2001b). Maize meal is also used extensively in animal 

feeds as an energy source in Africa. In livestock feeding, yellow maize is preferred because it 

gives poultry meat, animal fat and egg yolk the yellow colour appreciated by consumers in many 

countries (FAO/CIMMYT, 1997). 

 

1.5. Physico-chemical properties 

 

1.5.1. Moisture sorption 

 

Moisture sorption isotherms show in graphical form the variation in water activity (Aw) with 

change in moisture content of a sample at a specified temperature (Rahman, 1995). Labuza et al. 

(1985) determined sorption isotherms in yellow corn meal at 25, 30, 45 and 65oC. Table 1.5 

below gives the equilibrium moisture content (EMC) at constant water activities and 

temperatures of corn meal/flour as obtained by Labuza et al. (1985), Abdullah et al. (2000) and 

Wicklow et al. (1998) determined adsorption isotherms in a hybrid maize grain. Samapundo et 

al. (2007) determined the adsorption and desorption isotherms of yellow dent corn at 25, 30 and 

37oC. The moisture isotherms for yellow dent corn have been found to exhibit Type II behaviour 

and to be temperature dependent as the equilibrium moisture content decreases with increase in 

temperature (Samapundo et al., 2007).  

 

A number of models, mostly semi-empirical and empirical, have been attempted to be fitted to 

maize and maize products moisture isotherms. The GAB model has been considered the best-fit 

model for many food materials in general over a wide range of water activity (Van den Berg, 

1984; Rahman, 1995; McMinn & Magee, 1999; Timmermann et al., 2001; Al-Muhtaseb et al., 

2004a), and yellow dent corn (Samapundo et al., 2007) in particular. The GAB and BET models 

have been used to estimate the monolayer moisture contents. However, different researchers 

have found differing monolayer moisture contents. Samapundo et al. (2007) from the adsorption 

isotherms using the GAB equation found 7.44, 6.57 and 6.03 kg/100 kg db at 25, 30 and 37oC, 

respectively, whereas Labuza et al. (1985) obtained 8.23, 6.50 and 5.68 g/100g db at  25, 30 and  



Chapter 1. White maize meal-Literature review 

__________________________________________________________________________ 

_____________________________________________________________________________ 
Functional properties of white maize meal stored under tropical conditions 

16 

 

45oC, respectively. This shows that while there is agreement on the moisture isotherm trends, 

there is no agreement on the exact positions of the isotherms in maize and maize products.  

 

Table 1.5 Adsorption isotherms of corn meal/flour*,# and a hybrid maize grain$   

Aw-25oC * EMC-25oC* Aw-25o# EMC-25oC# Aw-25oC$ EMC-25oC$ 
0.115 4.69 0.10 3.85 - - 
0.234 7.44 0.20 5.43 - - 
0.329 9.12 0.35 6.75 - - 
0.443 11.04 0.50 8.80 0.43 10.7 
0.536 11.91 0.65 10.52 0.57 12.6 
0.654 13.14 0.75 12.70 - - 
0.765 15.47 0.85 15.60 0.75 14.9 
0.846 19.58 0.95 19.43 0.85 15.9 

- - 0.98 20.69 - - 
      

Aw-30oC * EMC-30oC* Aw-30oC$ EMC-30oC$ Aw-45oC* EMC-45oC* 
0.110 4.46 - - 0.103 3.39 
0.231 6.35 - - 0.197 5.34 
0.325 8.12 - - 0.309 7.07 
0.437 9.90 0.43 10.4 0.429 8.39 
0.521 10.43 0.575 12.1 0.496 8.75 
0.648 12.90 - - 0.599 10.80 
0.727 13.69 0.755 14.6 0.727 13.69 
0.841 19.51 0.845 15.5 0.786 17.04 

* Labuza et al. (1985); #Abdullah et al. (2000); $Wicklow et al. (1998) 
Equilibrium moisture content (EMC): gH2O/100g solids 
 

Thermodynamic parameters such as differential enthalpy and entropy, and integral enthalpy and 

entropy determine the end-point to which food must be dehydrated in order to achieve a stable 

product with optimal moisture content, and yield the theoretical minimum amount of energy 

required to remove a given amount of water from the food. These parameters also provide an 

insight into the food microstructure, water sorption kinetics, and an interpretation of physical–

chemical phenomena occurring at the food–water interface (Rizvi & Benado, 1984; Al-

Mahasneh et al., 2007; Toğrul & Arslan, 2007). Differential heat of sorption can be related to the 

extent of binding between solid food particles and liquid solvent (McMinn & Magee, 2003; Al-

Mahasneh et al., 2007). The net isosteric heat is the amount of energy by which the heat of 

vaporization of moisture in a product exceeds the latent heat of pure water (Toğrul & Arslan, 

2007). It is a measure of the interaction between an absorbate and absorbent (Toğrul & Arslan, 

2007). Differential entropy is proportional to the number of available sorption sites at a specific 

energy level (Madamba et al., 1996). The isokinetic, or enthalpy–entropy compensation, theory 

has been used to evaluate sorption processes. Madamba et al. (1996) and Beristain et al. (1996)  
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successfully applied the enthalpy–entropy compensation to water adsorption in garlic and starchy 

materials, respectively.  

 

The sorption of water vapour by foods has also received much attention because of its 

importance in dehydration processes and in changing of quality during storage. The changes in 

chemical, physical and biological properties of foods, which do not appear to be related directly 

to either moisture content or Aw, often can be explained in terms of the interrelationship between 

the two parameters expressed as a moisture sorption isotherm. Changes in isotherm 

characteristics, related to temperature, provide insight into the physical and chemical changes 

that influence food quality and stability (Sing et al., 2006b).  

 

1.5.2. Maize Lipids 

 

The major classes of lipids includes: free fatty acids, triacylglycerols (triglycerides) consisting of 

fatty acids esterified to glycerol, and phosphoglycerides consisting of fatty acids esterified to 

glycerol and containing phosphoric acid and organic bases (Frankel, 2005). Free lipids are 

portions easily extractable with nonpolar solvents such as petroleum ether, hexane and 

diethylether by a Soxhlet extractor or by shaking. Bound lipids are extracted from the free lipid 

residues at room temperature with more polar solvents-generally alcohol alone or mixed with 

small portion of another solvent, most commonly water. Water-saturated n-butanol is considered 

to be the most efficient solvent system for bound lipid extraction. A mixture of chloroform and 

methanol (2:1, 1:1, 1:2 by volume) also is commonly used. In cereals, the sum of free lipid and 

bound lipid is termed the non-starch total lipids. Non-starch total lipids can also be obtained by 

polar solvent extraction at room temperature without the free lipid extraction step. Measured 

lipid content and composition depend largely on extraction and purification procedures. 

Therefore, it is extremely difficult to compare lipid content or composition data reported by 

various researchers. There are wide ranges in FA compositions of corn oils. A range of 14-64% 

oleic acid and 19-71% linoleic acid for the world collection of 788 varieties of corn was 

reported. They found palmitic acid ranges of 6.3 – 7.6% and 16.7 – 18.2% for low and high 

saturated corn genotypes, respectively. They also reported a range of 43.9 – 46.1% of oleic acids 

for high oleic acid lines (Chung & Ohm, 2000). 

 

Deterioration in the quality of maize meal during storage could be attributed to lipolysis and lipid 

oxidation. Sammon (1999) reported that freeing of fatty acids takes place from the time of  
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milling, presumably due to mixing of natural lipases with esterified fatty acids. Castello et al. 

(1998) reported that wheat and fungal lipases have been implicated in the increase of free fatty 

acids during long term storage of flour. Several food studies have reported increases in free fatty 

acids during storage, for instance, in wheat flour (Castello et al., 1998) and in pistachio nut paste 

(Gamli & Hayoglu, 2007).  

 

Lipid oxidation is a major cause of quality deterioration in dehydrated foods (Pershem et al., 

1995; Maskan & Karatas, 1998). To produce oxidatively stable products, both process and 

storage conditions must be considered (Rutgersson et al., 2000). Although other degradation 

mechanisms are also possible, the oil degradation process has been generally established as 

being a free radical mechanism yielding hydroperoxides, also called primary oxidation products, 

which in turn degrade into aldehydes, ketones, lactones, alcohols, acids, etc., or secondary 

oxidation products (Guillen & Cabo, 2002). The free radical chain mechanism proceeds by three 

major steps: initiation, propagation and termination. These can be complex series of sequential 

and overlapping reactions (Frankel, 2005). 

 

Initiation 

 

Lipid free radicals (Lº) are from unsaturated lipids (LH) which loses a hydrogen radical in the 

presence of initiators (I) (reaction 1.1)  

 

LH    IH + Lº   (1.1) 

 

For oxygen to initiate lipid oxidation, conversion of triplet 3O2 to singlet 1O2 must occur. This    

conversion occurs in the presence of initiators that can produce radicals by different 

mechanisms: 

 

(a) Hydroperoxides (LOOH) present as impurities produce radicals by thermal dissociation 

(reaction 1.2): 

 

LOOH    LOº + ºOH  (1.2) 

 

(b) Redox metals (M) of variable valency catalyse the decomposition of hydroperoxides into 

radicals (reaction 1.3 and 1.4): 

I 



Chapter 1. White maize meal-Literature review 

__________________________________________________________________________ 

_____________________________________________________________________________ 
Functional properties of white maize meal stored under tropical conditions 

19 

 

LOOH + M2+    LOº + ºOH- + M3+  (1.3) 

LOOH + M3+    LOOº + H+ + M2+  (1.4) 

 

(c) Sensitizer moleculecules such as a ketone (RCOR) decompose into radicals when exposed to 

light as shown in reaction 1.5: 

 

RCOR + hv    RCOº + ºR   (1.5) 

 

Sensitizers exist in two excited states. When the singlet (1Sens) absorbs light it can be converted 

to the triplet state (3Sens). The triplet state initiates photosensitized oxidation especially that it 

has a longer life-time than the singlet state. In foods, pigment molecules such as chlorophyll, 

hemeproteins and riboflavin are known to initiate photosensitized oxidation. Initiation of 

oxidation by sensitizers can proceed by two pathways. A Type I sensitizer serves as a 

photochemically activated free radical initiator. By means of hydrogen atom or electron transfer 

the lipids can react with a triplet state sensitizer to form radicals, which can react with O2 

(reaction 1.6).  

 
3Sens + LH   [intermediate] + O2  hydroperoxide + Sens (1.6) 

 

The hydroperoxides produced in (Equation 1.6) are the same as those from free radical 

autoxidation. However, this photosensitized reaction is not inhibited by chain-breaking 

antioxidants. Riboflavin reacts with unsaturated fatty acid esters by type I photosensitized 

oxidation to give the same isomeric hydroperoxides as free radical autoxidation. 

The type II sensitizer in the triplet state reacts with O2 by energy transfer to give nonradical 

singlet oxygen. The singlet oxygen reacts with unsaturated lipids to produce hydroperoxides 

(reaction 1.7). The chain breaking antioxidants do not also inhibit this type of photosensitized 

oxidation. 

 
3Sens + O2   [intermediate] + 1Sens  1O2   hydroperoxides (1.7) 

 

Chlorophyll, methylene blue, protoporphyrins and erythrosine react with unsaturated fatty esters 

by type II photosensitized oxidation. 

 

 

hv 

hv LH 
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Propagation 

 

Peroxyl radicals are formed by a rapid reaction between molecualar oxygen and an alkyl of 

unsaturated lipid (Lº) containing a labile hydrogen (reaction 1.8). Hydroperoxides are also 

formed by the hydrogen transfer reaction between peroxyl radicals and unsaturated lipids 

(reaction 1.9). 

 

 Lº + O2    LOOº  (1.8) 

 LOOº + LH    LOOH + Lº (1.9) 

 

Termination 

 

Towards the end of autoxidation the peroxyl radicals accumulate. At relatively high levels the 

peroxyl radicals interact with each other to form non-radical products by the termination 

reaction. Condensation of peroxyl, alkoxyl or alkyl radicals can constitute termination reactions. 

Peroxyl radicals can combine to produce peroxyl-linked dimmers (LOOL) with formation of 

oxygen at low temperatures (reaction 1.10). 

 

LOOº + LOOº    LOOL + O2   (1.10) 

 

At low oxygen pressures and elevated temperatures, alkoxyl and alkyl radicals can combine to 

produce ether-containing dimmers (reaction 1.11), and carbon-carbon linked dimmers (reaction 

1.12). 

 

LOº + Lº    LOL   (1.11) 

Lº + Lº     L-L   (1.12) 

 

Antioxidants inhibit or retard lipid oxidation, therefore may be considered under the termination 

stage. Antioxidants may be classified under various categories depending on their mechanism of 

inhibition or retardation of lipid oxidation. The chain-breaking antioxidants inhibit or retard lipid 

oxidation by interfering with either chain propagation or initiation by hydrogen-atom transfer 

and readily donating hydrogen atoms to lipid alkyl, alkoxyl and peroxyl radicals (reactions 1.13 

to 1.16).  
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LOOº + AH    LOOH + Aº  (1.13) 

 

Lº + AH    LH + Aº  (1.14) 

Aº + LOOº    LOOA   (1.15) 

LOOº + AH    LOOH + Aº   (1.16) 

 

Where AH is a chain breaking antioxidant. 

 

To be effective, chain-breaking antioxidants produce a relatively stable radical Aº. The 

antioxidant radical Aº will either react again with peroxyl radicals to form stable peroxides 

LOOA by reaction (reaction 1.15) or dimerize with another antioxidant radical to produce A-A 

by reaction (reaction 1.17). 

 

Aº + Aº    A-A   (1.17) 

 

 

Phenolic compounds with bulky alkyl substituents near the hydroxyl group, such as BHA, BHT, 

TBHQ are effective chain-breaking antioxidants. To effectively break the free radical chain, the 

structure of an active antioxidant is designed to produce phenoxyl radicals in which the unpaired 

electron is delocalized around the aromatic structure and is stabilized by high resonance energy. 

 

Several types of compounds can inhibit lipid oxidation by mechanisms that do not involve 

deactivation of free radical chains. One class of antioxidants in this category is known as 

initiator inhibitors or preventive antioxidants. Metal inactivators are the most important 

compounds of this type; they deactivate metal ions, which promote the initiation and 

decomposition of hydroperoxides, and thus retard the formation of aldehydes. They function 

either by coordinating the metals and changing their potential by suppressing the redox reactions 

producing peroxyl and alkoxyl radicals (reactions 1.3 and 1.4), or by blocking complex 

formation with hydroperoxides and preventing their decomposition. Common inactivating 

chelating compounds include citric acid, phosphoric acid, ethylenediamine tetraacetic acid 

(EDTA), polyphosphates, phytate, and 8-hydroxy-quinoline.  

 

In multi-component systems antioxidants may also be used in combination and reinforce each 

other by cooperative effects through synergistic mechanisms. Many antioxidants are known to  
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impart more protection against lipid oxidation than sum of the activities of the components when 

used separately. Effective synergistic inhibition can be achieved if both initiation and 

propagation are suppressed. Combinations of a preventive metal inactivator such as citric acid or 

EDTA and a chain breaking antioxidant, such as BHA, BHT, TBHQ, or tocopherols are 

commonly used in foods (Frankel, 2005). 

 

It is evident from the above mechanism that lipid oxidation in food can be influenced by several 

factors such as temperature, oxygen availability, water activity, exposure to light, the 

concentration of antioxidants and prooxidants, fat content and distribution, etc (Rutgersson et al., 

2000) and metal catalysts (Frankel, 2005). Oxidation of lipids during processing or storage of 

cereals is a complicated phenomena where the state of the substrate and the balance between 

antioxidative and prooxidative factors of the matrix play an important role (Kaukovirta-Norja et 

al., 1998).  

 

Regardless of the actual mechanism of the oxidation and the reasons for it, oxidation of lipids 

reduces the nutritional value of cereal products, affects the color, and the appearance of the 

products, and causes the formation of off-odors and off-flavors. Thus, the overall quality of 

cereal products is affected (Kaukovirta-Norja et al., 1998). Such oxidative processes ultimately 

leads to the condition of rancidity, resulting in the food becoming unacceptable for consumers. 

 

The methods used to determine the rate at which the oxidation process advances are related to 

the measure of the concentration of primary or of secondary oxidation products or of both, or to 

the amount of oxygen consumed during the process. Among those based on the evolution of the 

concentration of primary oxidation products, peroxide value, which measures hydroperoxide 

concentration, is one of the most widely used. Some other methods are based on the 

concentration of secondary oxidation products including aldehydes, ketones, acids, alcohols, 

lactones, ethers, hydrocarbons and furan derivatives (Gray, 1978; Guillen & Cabo, 2002). 

Determination of α and β-alkenals content is the basis of the anisidine value method (Guillen & 

Cabo, 2002  

 

1.5.3. Colour during storage 

 

Color is one of the most important appearance attributes of food materials, since it influences 

consumer acceptability (Maskan, 2001; Kahyaoglu & Kaya, 2006). Several researchers have  
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studied the color of food instrumentally (Ahmed et al., 2000; Ahmed et al., 2002). Tristimulus 

colorimetry has been accepted as a rapid and simple instrumental method of specifying visual 

perception of the food products (Rocha et al., 1993). The color of any product may be 

represented in terms of tristimulus L-, a-, and b-values, or combination thereof, depending upon 

the nature of pigment present in the food material (Shin & Bhowmik, 1994; Avila & Silva, 1999; 

Ahmed et al., 2000; Ahmed et al., 2002; Zhu et al., 2004; Corzo et al., 2006). 

 

The L a b color space (also referred to as CIELAB) is presently one of the most popular color 

space for measuring object color and is widely used in virtually all fields. It is one of the color 

spaces defined by CIE in 1976. In this color space, L indicates lightness and a and b are the 

chromaticity coordinates. In the a, b chromaticity diagram, the a and b indicate color directions: 

+a is the red direction, -a is the green direction, +b is the yellow direction, and –b is the blue 

direction (Minolta, 2002). L-values can range from 0 to 100, while a- and b-values vary between 

-60 and +60 (Carrefio & Martinez, 1995). ∆E shows the difference in the space between two 

colors. The sensitivity of the human eye is capable approximately to notice small differences 

between the colors of the order of 0.2 ∆E (Esteller et al., 2006). 

 

Common browning of foods during storage is usually caused by a chemical reaction between 

reducing sugars and a free amino group that could part of a protein chain. This reaction is called 

the Maillard reaction (MR). It is also called non-enzymatic browning to differentiate it from the 

often rapid enzyme-catalyzed browning (BeMiller & Whistler, 1996). The chemistry underlying 

the Maillard reaction is very complex. It encompasses a whole network of pathways (Martins et 

al., 2001) as outlined in Fig. 1.3. In the first step of the MR, the carbonyl group of the reducing 

carbohydrate and the free amino group of the amino acid or protein form a condensation product 

with the loss of a molecule of water to form a Schiff base. The N-substituted glucosylamine 

derived from the cyclisation of the Schiff base is converted to the 1-amino-1-deoxy-2-ketose by 

the Amadori rearrangement (Dexter et al., 1984; Sensidoni et al., 1999). The subsequent 

degradation of the Amadori product is dependent on the pH of the system. At pH 7 or below, it 

undergoes mainly 1,2-enolisation with the formation of furfural (when pentoses are involved) or 

hydroxymethylfurfural (HMF) (when hexoses are involved). At pH >7 the degradation of the 

Amadori compound is thought to involve mainly 2,3 enolisation, where reductones, such as 4-

hydroxy-5-methyl-2,3-dihydrofuran-3-one (HMFone), and a variety of fission products, 

including acetol, pyruvaldehyde and diacetyl are formed (Martins et al., 2001). 
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Figure 1.3. Maillard reaction scheme adapted from Hodge (Source: Martins et al., 2001) 

 

The extent of browning reactions is influenced by many other factors such as temperature, time, 

water activity and state of food system (Resnik & Chirife, 1979; Petriella et al., 1985; O’Briene, 

1986; Lerici et al., 1990; Sensidoni et al., 1991; Sensidoni et al., 1999; Kumar et al., 2006), and 

the concentrations of components (Oh et al., 2006).  

 

Of the many factors which influence the Maillard reaction rate, water activity appears to be 

particularly important; the initial reaction which produces glycosylamine plus water can be 

slowed by high water activity values (inhibition by reaction product). In addition, water may 

enhance deamination reactions for the production of furfural or hydroxyl-methylfurfural (HMF). 

Another important factor which could decrease reaction rates is the dilution of the reactive 

components when the water content increases (Sensidoni et al., 1999).  
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The early stages of Maillard reaction can reduce nutrition value, because they induce a decrease 

in amino acid availability. For example, the ε-amino group of lysine forms a stable Amadori 

compound (ε-fructosyl-lysine) which blocks the amino acid; ε-fructosyl-lysine is converted by 

acid hydrolysis into furosine, an index of the early stages of MR (Dexter et al., 1984; Sensidoni 

et al., 1999). It has also been speculated that Maillard reaction products inhibit proteolytic and 

glycolytic enzymes (Friedman, 1996; Rombo et al., 2001). 

 

1.5.4. Microbiological quality of maize meal 

 

Cereals meals ordinarily are not processed to greatly reduce their natural micro flora. 

Consequently, these products are likely to contain molds, yeasts, and bacteria, which will grow if 

enough moisture is added. A little moistening will permit growth of molds only, whereas more 

moisture will allow yeasts and bacteria to grow. Usually, the natural microflora of maize meal 

does not constitute a spoilage problem in themselves because moisture content is too low to 

support even the growth of molds. However, storage temperature and moisture may be critical 

factors affecting quality. In a storage study of maize meal, the predominant microorganism 

molds identified in maize meal were Aspergillus glaucus and Aspergillus candidus. A few 

species of pencillium and Fusarium were also observed. A very small number of Actinomycetes 

were detected in a few samples, but no particular pattern to their occurrence was found (Bothast 

et al., 1981). 

 

1.6. Pasting and rheological properties 

 

Starch is the major plant storage carbohydrate consumed by mankind. It is an important 

component of our diet present in starch-rich and processed foods (Ridout et al., 2002). Starch is a 

major form of carbohydrate in maize meal as well. Starch often contributes to the characteristic 

properties of foods, and is also added as a functional ingredient in many products. The demand 

for functionality may vary for different products (Fredriksson et al., 1998). In evaluating the 

functional properties of starch and starchy-foods, gelatinization, pasting and flow behaviour 

properties are some of the properties usually studied (Abdelrahim et al., 1995; Bhattacharya & 

Bhattacharya, 1996; Chen & Ramaswamy, 1999; Jane et al., 1999; Song & Jane, 2000; 

Yoshimoto et al., 2000; Yoshimoto et al., 2002; Tang et al., 2004; Hagenimana et al., 2007) 
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1.6.1. Overview of starch granule structure  

 

Despite the advances in the understanding of starch biochemistry and genetics, there is still 

incomplete understanding of the bio-assembly of granule structure, and insufficient information 

on the ultra-structure of granules. However, there is a growing interest in this field (Buleon et al., 

1998a; Ridout et al., 2002). Native starch granules present three levels of organization: 

macromolecular structure, crystal structure and ultrastructure. The macromolecular structure of 

many plant starches have been investigated in detail (Tang et al., 2004). 

 

Based on scattering data and TEM, various models of the crystalline architecture of starch 

granules have been proposed (Oostergetel & van Bruggem, 1993; Gallant et al., 1997; Ridout et 

al., 2002). By combining research results provided over the years by a range of microscopic 

techniques, scientists have been able to gather together some of the pieces of the puzzle 

concerning starch granule internal structure and organization. This gathering of information is 

illustratively summarized in Figure 1.4. 

 

Starch granules (2–100 µm) are composed of alternating semi-crystalline (120–500 nm) and 

amorphous (120–500 nm) growth rings (Vandeputte & Delcour, 2004). Inside the granule the 

starch polysaccharides are arranged into concentric rings radiating out from the central hilum to 

the surface of the granule. The number and size of the rings depends on the botanical origin of 

the starch (Ridout et al., 2002). Experimental studies suggest that the rings are semi-crystalline 

and composed chiefly of amylopectin (Buleon et al., 1998b; Ridout et al., 2002). It has been 

suggested that rings can be further subdivided into blocklets (Gallant et al., 1997; Ridout et al., 

2002). It is now widely accepted that the amylopectin polymer (which comprises around 75% of  

the granule composition in non-mutant starches) is predominantly responsible for granule 

crystallinity (Gallant et al., 1997). 

 

Collaborating evidence for the presence of channels within starch granules comes from the 

observations of Fannon et al. (1992; 1993) who, using TEM and SEM, have observed surface 

pores and interior channels in corn, sorghum and millet starches and have observed surface pores 

along the equatorial groove of wheat, rye and barley starch granules. The surface pores and 

interior channels are believed to be naturally occurring features of the starch granule structure, 

with the pores being the external openings of the interior channels (Gallant et al., 1997). 
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Figure 1.4 Starch granule internal structure and organization (Source: Gallant et al., 1997) 

 

The most probable location of amylose is as randomly interspersed radial chains (Jane et al., 

1992; Kasemsuwan & Jane, 1994) with an increasing concentration of amylose (in non-mutant 

starches) towards the granule exterior (Morrison & Gadan, 1987; Gallant et al., 1997). 

Furthermore, it is has been hypothesized that amylose may be predominantly located in the 

amorphous zones of the granule and that increased interaction between amylose and amylopectin 

in these regions causes their decreased crystallinity (Zobel, 1988; Morrison et al., 1994; Jenkins 

& Donald, 1995; Gallant et al., 1997). 

 

1.6.2. Starch granule and gelatinization 

 

Many different definitions have been proposed for gelatinization: a phase transition of starch 

granules from an ordered to a disordered state during heating with excess water (Chaiwanichsiri 

et al., 2001); the collapse (disruption) of molecular orders within the starch granule manifested in  
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irreversible changes in properties such as granular swelling, native crystallite melting, loss of 

birefringence, and starch solubilization (White et al., 1990); ability of starch granules to progress 

from semi-crystalline to amorphous material when heated in excess water (Tester & 

Sommerville, 2003); and the break up and partial dissolution of the starch granule upon heating 

in the presence of water (Tananuwong & Reid 2004).  

 

Research on the structural changes in starch granules induced by heating in the presence of 

moisture has been achieved using techniques such as differential scanning calorimetry (DSC), 

infra-red spectroscopy (IR), dynamic mechanical thermal analysis (DMTA), nuclear magnetic 

resonance (NMR), microscopy and small- and wide-angle X-ray scattering (SAXS, WAXS) 

(Thiewes & Steeneken, 1997). 

 

The knowledge regarding starch granule structure may be related to the structural changes which 

occur at the beginning of starch granule swelling. This is the phase when structural changes 

within the granule are just starting to occur, and relates to the region of the DSC curve when the 

endothermic peak is just beginning to form. This phase can, therefore, also be considered as the 

stage where the amorphous regions have been swollen due to water absorption and crystallite 

melting is just starting to occur (i.e. the beginning of the irreversible swelling process) (Miller et 

al., 1973; Gallant et al., 1997).  

 

By combining simultaneous SAXS/WAXS data with the results from DSC and SANS 

experiments, Jenkins & Donald (1998) studied the nature of the gelatinisation process in more 

detail for a variety of starches. It was found that all starches studied by SAXS/WAXS behaved in 

broadly the same way. Most of the crystallinity loss occurred during the DSC gelatinization 

endotherm, but this occurred only after a significant amount of water had already entered the 

amorphous background region, which has been tentatively identified with the amorphous growth 

ring seen in etched SEM micrographs. The amorphous background is where all the initial 

swelling is concentrated, and the repeat distance of the semicrystalline stack remains unchanged 

at all times during gelatinisation. The driving force for water uptake appears to be so strong in 

the amorphous background region that SANS on waxy maize shows it appears to pull water out 

of the amorphous lamellae. Jenkins & Donald (1998) suggested that this is because the rate of 

transport of water from outside the granule is not sufficiently fast on its own to accommodate the 

potential swelling process. It appears that only once a large amount of swelling has occurred in 

the amorphous background is there sufficient stress imposed, by virtue of the connectivity of  
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molecules from the growth ring into the semicrystalline lamellae, to start disrupting the crystals 

themselves. Thus the final loss of crystallinity and ultimate breakdown of the granule only 

occurs quite late in the gelatinisation process. 

 

It has been reported that upon enzymatic attack, the semi-crystalline (soft) layers of the granule 

are more easily and rapidly hydrolyzed than the crystalline (hard) layers (Gallant et al., 1997).  

Several researchers have shown that α-amylases can simultaneously solubilize both amorphous 

and crystalline regions of starch granules (Colonna et al., 1988; Lauro et al., 1999). Crystallinity 

and gelatinization enthalpy have been shown to decrease during the later stages of α-amylolysis 

(Lauro et al., 1999). This has been suggested to mean that extensive hydrolysis effectively 

destroys and solubilizes the crystalline areas of the granule.  Gallant et al. (1997) hypothesized 

that the hydrolysis rate of starch granules depends to a great extent on the distribution of the 

semi-crystalline and crystalline layers and on the size, identity and interaction of their 

constituents.  

 

1.6.3. Hydrothermal treatments of starch 

 
Annealing and heat–moisture treatments are related processes, where the starch to moisture ratio, 

temperature and heating time affects the starch functionality. Annealing represents ‘physical 

modification of starch slurries in water at temperatures below gelatinisation’ whereas heat–

moisture treatment ‘refers to the exposure of starch to higher temperatures at very restricted 

moisture content (18–27%). Annealing leads to physical reorganisation of starch granules (or 

appropriate polysaccharide matrices like amylose–lipid complexes) when heated in water (or 

appropriate plasticiser) at a temperature between glass transition temperature and the onset 

gelatinisation temperature of the native starch (or polymeric system). Fig 1.5(a) shows the 

structure of the starch granule of a dry starch, while Fig 1.5(b) shows the hydrated annealed 

starch (Tester & Debon, 2000). 

 

The effect of annealing at the molecular level of the starch granule has been explained in various 

ways. Some researchers have discussed the molecular event in terms of increasing granule 

stability, reorganising granule structure or lowering free energy (Tester & Debon, 2000). Other 

researchers have discussed annealing with more emphasis on the crystalline and amorphous 

domains. Crystallinity and crystalline ‘perfection’ (optimisation of crystalline order) have been 

proposed (Jacobs et al., 1998; Tester & Debon, 2000). 
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Fig. 1.5. Pictorial representation of the effect of hydration and subsequent annealing on the semi-

crystalline lamellae (amylopectin double helices are represented as rectangles): (a) dry starch 

with glassy amorphous regions; (b) hydrated annealed starch with rubbery amorphous regions 

(Adopted from Tester & Debon, 2000). 
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The annealing process improves the crystalline register of existing helices, thereby ’perfecting’ 

starch crystallites (Tester & Debon, 2000). The perfection of the crystallites has been attributed 

to incipient swelling and the resulting mobility of amorphous α-glucans, which facilitates 

ordering of double helices and, probably greater ordering of the amorphous regions (Lawal, 

2005). Others recognise the importance of interactions between, and mobility of, amorphous and 

crystalline regions, and the constituent amylose and amylopectin molecules. Further more, 

granular reorganizations have been discussed in terms of rigidity and realignments and partial 

melting (Tester & Debon, 2000). 

 

Annealing causes structural rearrangement within starch granules, leading to increase in starch 

crystallinity. Structural rearrangement enables realignment of bonding forces in starch granules, 

promoting formation of ordered double helical amylopectin side chain clusters, thereby limiting 

starch swelling (Lawal, 2005). Enhancement of crystallinity after hydrothermal treatments limits 

starch swelling which contribute significantly to starch viscosity (Lawal, 2005).  The decreased 

swelling power has been attributed to restriction in percolation of water within starch matrices as 

a result of increased starch crystallinity after starch modifications (Adebowale et. al., 2005). 

Reduction in viscosity values following heat moisture treatment has been reported a number of 

starch types (Hoover & Manuel, 1996a, Hoover & Manuel, 1996b; Adebowale et. al., 2005).  

 

1.6.4. Dynamic rheology 

 

Oscillation tests are known as dynamic tests. In such tests, the stress and strain are temporary 

oscillatory functions. These functions can be in phase (δ = 0oC), out of phase (δ = 90oC) or 

between 0 and 90oC. In the first case, a maximum deformation occurs for a maximum stress 

imposed and it distinguishes an elastic solids. In the second case, a maximum stress is imposed 

and a minimum deformation is obtained, corresponding to a viscous fluid. In the third case, it is a 

viscoelastic fluid. Oscillation tests give important results such as the Complex modulus (G*).The 

complex modulus can be represented as a function of the elastic modulus or storage modulus 

(G′), and as a function of the viscous modulus or loss modulus (G″): 

 

G* = G′ + i G″            (1.18) 

 

(Da Costa & Pereira, 2002). In eq. (2.2), G′ measures the elastic response or energy stored per 

deformation cycle of the material or represents the temporary energy of storage during the test,  
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and can be recovered afterwards. In the same equation, G″ measures the viscous response or the 

energy dissipated per deformation cycle of the material or the energy necessary for the fluid 

flow, being converted into heat. Thus a fluid can be considered viscous (G′ = 0 and G″ = G*), 

elastic (G′ = G* and G″ = 0) or viscoelastic (G′ ≠ 0 and G″ ≠ 0). The two moduli characterize the 

solid-like or elastic behavior of the tested material (G′) and liquid-like or fluid-like or viscous 

(G″) behavior of the material (Tadros, 1996; Da Costa & Pereira, 2002; Chiou et al., 2005; Line, 

et al., 2005). Rheological measurements, either by transient rotational viscometry or dynamic 

oscillatory methods, are useful in determining the stability of starch-based products submitted to 

different processing conditions or in testing different formulation performances (Navarro et al., 

1997).  

 

1.6.5. Pasting properties 

 

Pasting is the phenomenon following gelatinisation in the dissolution of starch. A starch paste is 

a viscous mass consisting of a continuous phase (a molecular dispersion) of solubilised amylose 

and/or amylopectin and a discontinuous phase of granule remnants (granule ghosts and 

fragments) (Nelles et al., 2000). It involves granular swelling, exudation of molecular 

components from the granule, and eventually total disruption of the granules. To some degree, 

the terms gelatinisation and pasting are interchangeable. Gelatinisation, however, refers 

specifically to the disruption of molecular order of the starch polymers and occurs first; whilst 

pasting refers more to the evidence of disruption of molecular order such as viscosity 

development (i.e. increase in the viscosity of the starch paste). A combination of granule 

swelling and solubilisation results in a very high increase in viscosity (Ziegler et al., 1993). If 

shear is applied at this stage, granules are disrupted and a paste is formed (Nelles et al., 2000). 

Without shear, the granule is not completely solubilised until a temperature in excess of 120 °C 

is reached (Hoseney, 1998; Nelles et al., 2000).  

 

Typically the pasting curve for maize starch shows a rapid increase in viscosity due to granule 

swelling and amylose leaching, with a peak in viscosity above the starch gelatinization 

temperature (Figure 1.6). This is typically followed by a decline in viscosity (viscosity 

breakdown) due to soluble starch molecules orienting themselves in the direction that the system 

is being stirred and the break up of starch granules (Nelles et al., 2000). Finally, viscosity 

increases due to a decrease of energy in the system and subsequent hydrogen bond formation  
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between starch chains (setback) when the starch product is cooled (Hoseney, 1998; Nelles et al., 

2000).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 Illustration of a pasting curve (Source of definition of parameters: Sowbhagya & 

Bhattacharya, 2001) 

 

Some of the properties obtained directly from pasting curve include:  

 

(i) Peak viscosity (PV) – maximum value of viscosity reached during ‘heating’ and ‘cooking’ 

(ii) Initial Hot-paste viscosity (V95i) – initial viscosity as the temperature first reached 95oC 

(iii) Final Hot-paste viscosity (V95f) – final viscosity reached at the end of cooking at 95oC 

(iv) Cold-paste viscosity (V50) – viscosity value attained as the paste was cooled to 50oC. 

(v) Swelling rate (SR) – slope of the pasting curve (McDonough et. al., 2004) 

 

Other properties are derived by calculation from the above properties. These include: 

 

(i) Breakdown index (BD) = PV - V95f       (1.19) 

(ii) Setback (SB) = V50 – PV         (1.20) 

(iii) Total setback (SBt) = V50 - V95f = BD + SB      (1.21) 

(iv) Cold-paste: Hot-paste viscosity ratio   
fV

V
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50: =      (1.22) 

Cold-paste viscosity indicates the extent of starch retrogradation that occurs during the cooling 

process. When hot pastes are cooled, the extent of increase in viscosity is governed by the  
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re-association tendency of the starch (Hagenimana et al., 2006). Setback value is the recovery of 

the viscosity during cooling of the heated starch suspension (Singh et al., 2006a). During 

cooling, re-association between starch molecules, especially amylose, will result in the formation 

of a gel structure and, therefore, viscosity will increase to a final viscosity. This phase is 

commonly described as the setback region and is related to retrogradation and reordering of 

starch molecules (Ragaee & Abdel-Aal, 2006). Sowbhagya & Bhattacharya (2001) have defined 

C:H ratio as the true reflection of retrogradation during cooling. Sowbhagya & Bhattacharya 

(2001) found that the C:H ratio is relatively unaffected by the paste concentration but is species 

specific. They interpreted this as showing that C:H ratio might be a fundamental property and a 

characteristic index of various starches. 

 

The pasting viscosity properties may be classified into two major groups: primary viscosity 

values and derived viscosity indexes. Primary viscosity values are properties obtained straight 

from the viscosity profile graphs during the heating and cooling of the sample suspensions. 

These properties include PV, V95i, V95f and V50. On the other hand, derived viscosity indexes are 

calculated values using primary viscosity values and they include BD, SB, SBt and C:H ratio   

(Sowbhagya & Bhattacharya, 2001). Sowbhagya & Bhattacharya (2001) has also reported that 

viscograms of starch flour or flour are on the whole of three types (Figure 1.7).  

 

 

Figure 1.7 Viscograms (Source: Sowbhagya & Bhattacharya, 2001) 
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The first type is characterized by the PV appearing before the V95i, (Figure 1.7a) whereas the 

second type by PV appearing between the cooking period i.e. between V95i and V95f (Figure 

1.7b) and the third by the absence of a well defined PV (Figure 1.7c). In the third type, the 

viscosity continues to rise until V95f, where the V95f is taken as PV. 

 

A number of studies have reported significant changes in the Rapid Visco-Analyzer (RVA) in 

cereals during storage such as in maize (McDonough et al., 2004), in rice (Zhou et al., 2002) and 

rough rice (Sowbhagya & Bhattacharya, 2001; Zhou et al., 2003). The pasting of starch granules 

have been mostly studied (Noomhorm et al., 1997; Wang et al., 2000; Zhou et al., 2003; 

Oluwamukomi et al., 2005; Anderson & Guraya, 2006; Lim & Narsimhan, 2006; Ragaee & 

Abdel-Aal, 2006;). 

 

1.6.6. Flow behavior properties 

 

Rheological properties of food products have been found to be strongly influenced by 

temperature, concentration and physical state of dispersion (Ahmed et al., 2007). A number of 

models are used to describe flow behaviour. The most commonly evaluated models include 

Power law, Herschel-Bulkley, Casson, and Bingham, for instance, in starch solution (Abdeh-

ahim et al., 1995), cooked maize flour suspensions (Bhattacharya and Bhattacharya, 1996), rice 

flour (Hagenimana et al., 2007) and tapioca starch (Chen & Ramaswamy, 1999). Food industries 

often use cooked maize flour and starch suspensions (Bhattacharya & Bhattacharya, 1996). In 

maize meal related products, Bhattacharya & Bhattacharya (1996) found the Herschel-Bulkley 

and Mizrahi-Berk models to best fit cooked maize flour suspensions at concentrations between 2 

and 10%.  The flow behaviour index (n) less than unity means that the substance exhibits a 

shear-thinning behavior, while a greater than unity value means that the substance exhibits a 

shear-thickening behaviour (Al-Malah et al., 2000).  

 

Rheological measurements have been considered as an analytical tool to provide fundamental 

insights on the structural organization of food and play an important role in heat transfer to fluid 

foods (Ahmed et al., 2007). Rheological data, such as shear rate and shear stress, can provide 

information that is useful for the design of flow systems, heat exchangers, mixing and pumping, 

evaporators, sterilizers and filters (Rao, 1987; Bhattacharya & Bhattacharya, 1996), as well as 

for the sensory assessment of viscosity (Bhattacharya & Bhattacharya, 1996). Yield stress is an 

important quality control parameter to process industries. A true value of the yield stress could  
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be beneficial for the optimal design of food-processing systems such as those required during 

thermal processing (Steffe, 1992; Ahmed et al., 2007), and is important in preventing flow 

(Bhattacharya & Bhattacharya, 1996). 

 

1.7. Conclusions 

 

Maize, particularly white maize, is a staple food in many parts of Africa, of which maize meal is 

the major form of maize utilization in Africa. Maize meal is produced by dry milling process – 

degerming and non-degerming processes. The degerming processes are used by large 

commercial milling firms and produces varying types of superior (refined) maize meals 

depending on the extraction rates. The nutritional compositions of the maize meals are highly 

dependent upon the extraction rates. Consumer preference of the maize meal types is much more 

dependent on the color and level of refining the product. The new trends in maize meal 

production underway in Africa include fortification. The socio-economic importance of maize 

meal to Africa lies in its home to industrial food applications; hence a major contributor to the 

nutrition of the African population. Despite maize meal being a staple food for Africa with high 

involvement in commerce, literature is either scarce or non-existent on the stability of functional 

properties of the African maize meal types during storage or distribution in commerce. Moisture 

sorption isotherms in literature for maize related products seem to have concentrated on yellow 

maize grain and maize meal. Research done on maize grain and other cereals has shown that 

storage can have influence on the functional properties.  

 

1.8. Problem statement 

 

It has been established from the literature review that white maize meal is of economic 

importance in many of the African countries as a staple food. Many small to large international 

enterprises are involved in processing and distribution of white maize meal. The distribution 

chains of the white maize meal may vary from one country to another. However, in Zambia, the 

distribution of white maize meal from the commercial millers to the final consumer involves 

many forms of product treatment some of which affect its quality.  

 

When white maize meal is produced at the mills, it might be in the warehouse for days or weeks 

before being dispatched to wholesalers or directly to retailers. At the wholesalers or retailers the 

white maize meal might further stay for days or weeks before the consumer buys it. The  
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consumer as well will keep it for days or weeks while consuming it, depending on the packaging 

volume and other factors such as the consumption rate. Some data about how long consumers 

keep the maize meal has been provided by Okoth & Ohingo (2004) who found that weaning 

flours (including maize meal) for young children was kept up to five weeks while it was being 

consumed. 

 

Most millers in Zambia use polypropylene sacks for packaging white maize meal. Often, it is 

also packed in polyethylene plastics of varying properties. At the retail level, white maize meal is 

often repackaged from the manufacturer’s package into smaller and thin transparent polyethylene 

plastics to make the price of white maize meal affordable. In addition, the re-packaged white 

maize meal is usually sold by placing it on shelves exposed to the direct sunlight during the day 

in open markets. These practices may affect the quality of white maize meal during storage and 

distribution. This ultimately affects its shelf life. Like any food, if the quality of white maize 

meal is to be retained, the optimal conditions must be provided during processing, marketing, 

distribution and storage. However, to obtain the optimum conditions for the storage and 

distribution of white maize meal, there is need to have adequate data on the chemical, 

microbiological and physical stability of the white maize meal under such varying conditions.  

 

The chemical, microbiological and physical properties of the white maize meal will depend on 

the climatic storage conditions where the white maize meal is stored and distributed. It has been 

shown from the literature review (section 1.3) and is well known fact that Africa’s climatic 

conditions such as temperature, humidity and sunlight are on the extreme high, where for 

example, temperatures of above 45oC are not uncommon. If the white maize meal is affected in 

the storage and distribution chain, being a staple food and a major ingredient in preparations of 

many African foods as shown from literature review, it will have far reaching consequences on 

the food quality and safety for the populations consuming such foods. In addition, the new trends 

of maize meal production, such as fortification, will probably make white maize meal even more 

susceptible to deterioration under the already difficult storage and distribution chain. 

 

The literature review has also shown that data on the stability of physico-chemical and functional 

properties of the white maize meal types being consumed in Africa is either scarce or non-

existent. This data might be important in determining the possible quality and safety effects that 

maize meal will impart on the food products made from it. Without such data, it also becomes 

difficult to recommend storage conditions during distribution, types of suitable packaging and  
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the accurate determination of the shelf life of the maize meal. Studies into such aspects may 

generate data required by policy makers and implementers of regulations regarding food quality 

and safety. Therefore, the research objectives of this study were: 

 

1.9. Research objectives 

 

1.9.1. Overall objective 

 

The main objective of this research was: 

 

� To investigate changes in functional properties of white maize meal during storage under 

tropical conditions 

 

1.9.2. Specific objectives 

 

The specific objectives of the research were: 

 

� To determine the moisture sorption behaviour of Zambian white maize meal during 

storage 

� To determine changes in chemical and sensory properties of Zambian white maize meal 

during storage at tropical conditions 

� To determine pasting and rheological behaviour of Zambian white maize meal during 

storage at tropical conditions 

 

1.10. Storage conditions to be studied 

 

Storage conditions to be evaluated in this study were chosen on the basis of approximating the 

average normal to worst case climatic scenarios in Africa in general. Four conditions were 

selected as given below: 

(a) Normal average seasonal temperature taken as 25oC with low humidity taken as 43% 

(b) Normal average seasonal temperature taken as 25oC with high humidity taken as 90% 

(c) Hot season temperature for worst case taken as 45oC with low humidity taken as 43% 

(d) Hot season temperature for worst case taken as 45oC with high humidity taken as 90% 
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Further more, three packaging case scenarios were to be evaluated for storage under these 

climatic conditions as described below: 

 

(a) Open bulk storage: This scenario was experimentally simulated by storing the maize meal 

directly exposed to the four climatic case scenarios above 

(b) Maize meal storage in commonly used packaging materials in Zambia: This scenario was 

simulated by storing maize meal covered in the packaging materials under investigation, then 

exposed to the four climatic case scenarios above 

(c) Maize meal in closed bottles: This scenario was simulated by storing maize meal in glass 

bottles with cover caps and the bottles with their contents were stored at the normal average 

seasonal temperature (25oC) and hot seasonal temperature (43oC). 

 

The experiments involving fortified maize meal were performed as a special case in which the 

interest was to establish the influence of fortification and sunlight exposure on the quality 

properties dealing with rancidity of maize meal.   
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Chapter 2. Moisture sorption of white maize meal  

 

Abstract 

 

This chapter outlines moisture sorption properties of white maize meal. This included 

determining moisture adsorption isotherms before defatting (non-defatted) and after defatting 

(defatted) the white maize meal. The influence of storage conditions on moisture and water 

activity was also evaluated. Adsorption moisture isotherms of the non-defatted and the defatted 

white maize were experimentally determined at 25, 30 and 45
o
C. The adsorption isotherms for 

non-defatted and defatted white maize meal, exhibited a sigmoidal shape, representing Type II 

isotherms. The equilibrium moisture content increased with decrease in temperature at the same 

water activity.  The isotherm data was better fitted to GAB, Oswin and Smith models for both 

non-defatted and defatted white maize meals, with the GAB model being the best. The models 

fitted much better for non-defatted than for defatted white maize meals. The differential heat of 

sorption and entropy increased with decreasing moisture content and the moisture adsorption 

was found to be enthalpy-driven. The monolayer moisture content decreased with increase in 

temperature of sorption. Monolayer moisture content increased upon defatting at a lower 

temperature (30
o
C) but not significantly at higher temperature (45

o
C). 

The changes in moisture content of maize meal stored at temperature-humidity of 25
o
C-43%RH, 

25
o
C-90%RH, 45

o
C-43%RH and 45

o
C-90%RH showed that at constant storage relative 

humidity, white maize meal absorbed or lost more moisture at high storage temperatures than at 

low storage temperatures.  

The water activity of maize meal stored in polypropylene at low storage relative humidity 

decreased whereas at high storage relative humidity increased during the storage period. On the 

other hand, the water activity of the maize meal stored in polyethylene at high storage relative 

humidity was essentially constant while at low storage relative humidity decreased. Changes in 

water activity in fortified and unfortified maize meal during storage was influenced by the 

packaging type. 

 

Key words: Adsorption isotherms, Differential heat of sorption, Differential entropy of sorption, 

Fortification, Maize meal, Moisture, Packaging, Storage, Relative humidity, Water activity  
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2.1. Introduction 

 

Moisture sorption isotherms show in graphical form the variation in water activity (Aw) with 

change in moisture content of sample at a specified temperature (Rahman, 1995). Moisture 

sorption is an extremely valuable tool for the food scientist because it can be used in, prediction 

of potential changes in food stability, packaging selection, ingredient selection (Bell & Labuza, 

2000), process design, process control, thermodynamic properties prediction and structure 

investigation (Rahman, 1995). On the basis of this insight, more rational bases are established for 

improving processing, packaging and storage conditions for both raw and processed foods (Sing 

et al., 2006b).  

 

In terms of thermodynamic properties, the net isosteric heat of sorption, or differential enthalpy, 

is an indicator of the state of water adsorbed by the solid particles, which in turn is a measure of 

the physical, chemical and microbial stability of biological materials under storage (Fasina et al., 

1997; McMinn et al., 2007; Toğrul & Arslan, 2007); differential entropy is proportional to the 

number of available sorption sites at a specific energy level (Madamba et al., 1996). Enthalpy–

entropy compensation theory is used to evaluate physical and chemical phenomena such as 

sorption reactions. The theory states that in order to minimize free energy changes due to these 

phenomena, compensation (by changing ∆Hd or ∆Sd) arises from the nature of the interaction 

between the solute and solvent causing the reaction and that the relationship between the 

enthalpy and entropy for a specific reaction is linear (Madamba et al., 1996; Fasina, 2006). 

Beristain et al. (1996) successfully applied the enthalpy–entropy compensation to water 

adsorption in starchy materials.  

 

White maize meal is stored at various stages of commerce and Africa’s climatic conditions are 

on the extreme high in temperature, humidity, and sunlight, where temperatures of above 45oC 

are not uncommon (BBC Weather, 2005). This may alter the moisture sorption properties of 

maize meal; hence affect the water activity of the maize meal during distribution. One of the 

major differences in the composition of the commercial maize meal brands in Africa is the oil 

content due to different levels of germ extraction. It is envisaged that oil in maize meal 

influences the moisture adsorption properties.  

 

Literature found shows that most moisture sorption studies have been concentrated on yellow 

maize and maize meal (Labuza et al., 1985; Wicklow et al., 1998; Abdullah et al., 2000;  
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Samapundo et al., 2007). Despite white maize meal being a staple food and hence of commercial 

significance to many parts of Africa, data on sorption isotherms of white maize meals under 

commerce in this region is scarce.  

 

Therefore, the purpose of this part of the study was to determine the:  

(a) adsorption isotherms of white maize meal at 25, 30 and 45oC, assess several sorption models 

for their ability to describe the experimental adsorption data, use the best fitting model to 

estimate thermodynamic properties and, compare the adsorption isotherms of non-defatted and 

defatted white maize meal 

(b) influence of storage conditions on moisture content and water activity of maize meal 

 

2.2. Adsorption isotherms of white maize meal before and after defatting 

 

2.2.1. Materials 

 

Freshly produced 25kg of white roller meal was obtained from National Milling Corporation 

(Lusaka, Zambia). Roller maize meal is a partially degermed commercial brand on the Zambian 

market (Table 1.2). It is produced by dry milling at extraction rates between 80-85% (Jayne et 

al., 1996). Chemicals were purchased from (Merck, South Africa). The glass jars were purchased 

from Game Stores (Zambia).  

 

2.2.2. Proximate analysis of white maize meal 

 

Proximate analysis of the white maize meal was carried out in triplicates according to AOAC 

methods (1998): moisture content, crude protein content, ash content, and crude fiber content. 

Oil content of the maize meal was determined in triplicates by shaking 5g of maize meal in 

100ml chloroform-methanol (2:1 v/v) mixture for 8 hours at room temperature according to 

Folch et al. (1957). The mixture was passed through filter paper to remove the insoluble 

material. The extract was evaporated to dryness in a rotary evaporator at 40°C under reduced 

pressure. Total carbohydrate was calculated by difference. The determinations were calculated as 

% on wet basis. 
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2.2.3. Defatting the white maize meal for adsorption isotherms 

 

Samples of 100g were extracted using redistilled technical n-hexane, by continuous extraction in 

a Soxhlet equipment for 8 h. Residual solvent was removed by evaporation in a forced air 

circulation oven at 40°C for 1 hour.  

 

2.2.4. Sample preparation for adsorption isotherms 

 

About 200g of the maize meal sample was dehydrated in a forced air circulation oven at 70oC for 

24 h.  

 

2.2.5. Determination of adsorption isotherms 

 

The equilibrium moisture content (EMC) of the dehydrated non-defatted and defatted white 

maize meal was determined by a gravimetric technique, in which the weight was monitored 

discontinuously. A 2 ± 0.001 g sample of the white maize meal was weighed in a glass petri-dish 

and the petri-dishes were placed inside a glass jar in triplicate. Sulphuric acid solutions were 

used to maintain the specified relative humidity inside the glass jars. The effect of temperature 

and acid concentration on the equilibrium relative humidity values of sulphuric acid solutions are 

presented in Table 2.1 (Ruegg, 1980). Sulphuric acid has been used in sorption isotherm studies 

by other researchers (Peng et al., 2007).  

 

Table 2.1. Water activity of sulphuric acid solutions at selected concentrations and temperature$ 

Water activity (Aw) H2SO4 solutions %(v/v) 

25oC 30oC 45oC 

20 0.8805 0.8814 0.8839 

30 0.7521 0.7549 0.7629 

40 0.5656 0.5711 0.5866 

50 0.3509 0.3574 0.3765 

60 0.1625 0.1677 0.1834 

70 0.0445 0.0470 0.0548 
$Source: Ruegg (1980) 
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The prepared glass jars were capped and placed in temperature controlled incubators maintained 

at 25, 30 and 45 ± 1oC. The samples were allowed to equilibrate until there was no discernible 

weight change (±0.001 g). After equilibration, the moisture content was determined by drying in 

a forced air circulation oven at 130oC for 1 h (AOAC, 1998). The moisture content was 

calculated on dry basis. 

 

2.2.6. Modelling of adsorption isotherms 

 

Six sorption isotherm models, shown in Table 2.2, were fitted to the experimental data of 

adsorption isotherms for non-defatted and defatted white maize meal.  

 

Table 2.2. Isotherm models for experimental data fitting 

Isotherm Model* Source 
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Rahman (1995) 

*A and B are constant, Mw the moisture content (g/g dry basis), aw the water activity, Mgm the 

GAB monolayer moisture content (gH2O/g db), Y the GAB model parameter and K the GAB 

model parameter. 
$Guggenheim-Andersen-de Boer 

 

These sorption models are amongst those most widely used to describe sorption isotherms for 

various food materials. The parameters of the sorption models were estimated using nonlinear 

regression function of SPSS® Version 11.0 (SPSS Inc., Chicago). The goodness of fit of the  
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models was evaluated by means of determination coefficient (r2) and the mean relative error 

(MRE) as a percentage, defined as: 

 

∑
=

−
=

N

i ei

ciei

E

EE

N
MRE

1

100
(%)         (2.1) 

 

where 
eiE and 

ciE are the experimental and predicted EMC values, respectively, and N  is the 

number of experimental data. A model is considered acceptable if it has a MRE value less than 

10% (Kaymak-Ertekin & Gedik, 2005). 

 

2.2.7. Thermodynamic functions 

 

2.2.7.1. Isosteric heat of sorption 

 

The net isosteric heat of sorption, or differential enthalpy ( )dh∆  was determined from the 

experimental data using the Clausius–Clapeyron equation (Tsami et al., 1990): 

 

( )
( )

x

w

d
Td

LnAd
Rh 








=∆−

/1
     (2.2) 

 

Re-plotting the experimental sorption isotherm in the form ( )wALn versus T/1 , for a specific 

moisture content x , the slope of the regression line Rhd /∆−  provided a measure of the net 

isosteric heat of sorption.  

 

This procedure is based on the assumption that ( )dh∆ is invariant with temperature, with 

measurement of the sorption isotherms at more than two temperatures being required for 

application of the method (Tsami et al., 1990; McMinn et al., 2007). 

 

2.2.7.2. Enthalpy–entropy compensation 

 

The differential entropy ( )dS∆  was obtained by fitting the equation: 

 

( ) RSRThInA ddxw // ∆−∆=−       (2.3) 
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to the equilibrium data ( )wALn versus T/1 . The differential entropy of sorption ( )dS∆ at a 

specific moisture content, was determined from the intercept RSd /∆ . The differential 

entropy ( )dS∆ was determined at different moisture contents allowing the variation in ( )dh∆  and 

( )dS∆  with moisture content to be determined (Aguerre et al., 1986). 

 

The enthalpy–entropy compensation theory proposes a linear relationship between ( )dh∆  and 

( )dS∆  (Leffer & Grunwald, 1963): 

 

GSTh dd ∆+∆=∆ β        (2.4) 

 

From a plot of ( )dh∆  versus ( )dS∆ , the isokinetic temperature βT and free energy at βT ( )G∆  

were calculated using linear regression. To corroborate the existence of true compensation a 

statistical analysis test, proposed by Krug et al. (1976a, 1976b) was applied to the data. This 

involved comparison of the isokinetic temperature with the harmonic mean temperature ( )hmT : 
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Where n is the total number of isotherms used and T is the temperature in kelvins. 

An approximate ( )α−1 100 percent confidence interval for βT  may be calculated from: 
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In Eq. 2.7 and 2.8, m  is the number of ( )dd Sh ∆∆ ,  data pairs, ( )dh∆  is the average enthalpy, and 

( )dS∆  the average entropy (Gabas et al., 2000; McMinn et al., 2007). The compensation theory 

only applies if hmTT ≠β . If 
hmT  is within the βT interval, the observed distribution of data in 

the ( )dd Sh ∆−∆ ,  plane solely reflects experimental error, and not chemical factors (Beristain et 

al., 1996). In this work a 95% confidence interval for βT  was calculated for the data. 

 

2.2.7.3. Monolayer moisture content 

 

The monolayer moisture content ( )
gmM was determined from the GAB model (Table 2.2).  

 

2.2.8. Results and Discussion 

 

2.2.8.1. Proximate composition 

 

The non-defatted white maize meal used in this study was analysed for proximate composition 

and was found to have moisture 10.37 ± 0.05%, crude protein (Nx6.25) 9.17 ± 0.15%, crude oil 

3.66 ± 0.04 %, crude fibre 1.96 ± 0.42 %, ash 1.92 ± 0.12 % and carbohydrates (by difference) 

72.92% wb.  

 

2.2.8.2. Adsorption isotherms of non-defatted white maize meal 

 

The sorption isotherm is defined as the relationship between the water activity (or the 

equilibrium relative humidity – ERH of the surrounding air) and the equilibrium moisture 

content (EMC) of the material at constant temperature. Desorption isotherms are obtained when 

the equilibrium process departs from wet samples and allows them to equilibrate with the 

surrounding air by loosing moisture, and adsorption isotherms are the equilibrium process that 

departs from dry samples. The adsorption isotherms of the non-defatted white maize meal at 25, 

30 and 45oC are shown in Figure 2.1. The adsorption isotherms have a sigmoidal shape showing 

an increase in the EMC with Aw. Adsorption of water can be ascribed to the basic components of 

foods such as polymeric materials, proteins, starch and soluble solids e.g. sugars at high moisture 

contents (Kumar et al., 2005b). The sigmoidal-shaped curve of the isotherms obtained in this 

study represents Type II isotherms, according to the classification introduced by Brunauer as  
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reported by Bell & Labuza (2000). This has also been reported for yellow dent corn by 

Samapundo et al. (2007). 
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Figure 2.1. Adsorption isotherms of non-defatted white maize meal at 25, 30 and 45oC (Bars 

represent standard deviations for n=3) 

 

The EMC values of white maize meal obtained are very comparable to the ones by Abdullah et 

al. (2000) in their determination in corn flour (cornmeal) and Wicklow et al. (1998) in a hybrid 

maize grain, particularly at 25oC (corn flour, cf. Section 1.5.1). However, comparing EMC 

values obtained for white maize meal to those obtained by Labuza et al. (1985) and Samapundo 

et al. (2007) at 25, 30 or 45oC, they appear to be lower. This is probably due to the different 

working conditions such as dehydration methods and variety differences in the products.  

 

Figure 2.1 also illustrates the temperature dependence of the adsorption isotherms of the white 

maize meal. The EMC is seen to increase with decrease in temperature at the same Aw, or Aw is 

seen to increase with temperature at the same EMC. This indicates that the white maize meal 

becomes less hygroscopic when temperature is increased. This is because with increase in 

temperature, water molecules get activated due to their energy level, causing them to become 

less stable and to break away from the water binding site of the food materials (Hossain et al., 

2001; Fasina, 2006). Further, Mazza & Lemaguer (1980) and Samapundo et al. (2007) have  
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suggested that an increase in temperature induces physical and/or chemical changes in the 

product that can reduce the number of active sites for water binding. The temperature shifts 

observed have an important practical effect on the chemical and microbiological reactions which 

cause quality deterioration (Al-Muhtaseb et al., 2004a). An increase in temperature causes an 

increase in the Aw, at the same moisture content, which in turn causes an increase in the reaction 

rates leading to quality deterioration (Van den Berg & Bruin, 1981; Al-Muhtaseb et al., 2004a). 

Hence, this phenomenon can be a major determinant of shelf life of food products. 

 

2.2.8.3. Modelling of adsorption isotherms for non-defatted white maize meal 

 

Tables 2.3 shows the coefficients of the models fitted to the experimental adsorption isotherm 

data by non-linear regression for non-defatted and defatted white maize meal. The table also 

gives the MRE (%) and the determination coefficients (r2) which are used to assess the fitness of 

the model to the experimental data. The GAB, Oswin, Smith and Chung-Pfost models had an 

average MRE (%) less than 10 for non-defatted maize meal. The GAB model gave the smallest 

average MRE followed by the Oswin, Smith and Chung-Pfost models. The Henderson and 

Iglesias-Chirife models had an average MRE (%) greater than 10. The determination coefficients 

(r2) for all six models were greater than 0.939. The GAB and Oswin models had the same and 

highest determination coefficients (r2 = 0.9967), followed by the Smith, Chung-Pfost, Henderson 

and Iglesias-Chirife models which had the least. 

 

The experimental adsorption data and the fitted models for the best-fit (GAB model) is shown in 

Figures 2.2. The usefulness of models may also be assessed considering the number of 

parameters involved. The Oswin and Smith models use two against three parameters on the GAB 

model. A small number of parameters for modeling not only simplifies the calculation procedure, 

but also contributes to obtain more reliable values, since it decreases the degrees of freedom on 

the identification procedure (García-Pérez et al., 2007). While the model-selection-statistics 

show that the GAB, Oswin and Smith models could be used acceptably for the white maize 

meal, it seems that the GAB model would be the best option. The GAB model would 

additionally provide parameters with physical meaning. Its only drawback, however, is the high 

number of parameters to be identified.  
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Table 2.3 Parameter estimates of the models fitted to adsorption isotherms of non-defatted and 

defatted white maize meal at 25, 30 and 45oC 

Non-defatted roller meal Defatted roller meal 

Temperature (oC) Temperature (oC) Model 

25 30 45  30 45  

Smith (1974) 

A 0.03686 0.02837 0.02420  0.04270 0.03678  

B -0.07035 -0.06492 -0.06133  -0.08432 -0.07450  

r2 0.9966 0.9924 0.9891  0.9980 0.9654  

MRE (%) 5.0920 9.8135 11.7868  4.9674 10.1991  

Oswin (1946) 

A 0.09049 0.0777 0.07014  0.10622 0.09075  

B 0.3561 0.3759 0.3959  0.36512 0.38677  

r2 0.9972 0.9978 0.9945  0.9977 0.9684  

MRE (%) 5.6711 5.2470 8.4206  5.2115 12.5752  

Henderson (1952) 

A 51.6837 50.3207 47.4015  34.2815 37.1383  

B 1.8402 1.7168 1.6254  1.7870 1.7053  

r2 0.9849 0.9940 0.9910  0.9821 0.9383  

MRE (%) 16.6100 9.6229 9.3735  17.6659 23.3736  

Chung & Pfost (1967) 

A 5.3952 4.5880 4.1704  5.2332 5.0530  

B 21.2987 22.7280 23.7301  17.7540 20.0076  

r2 0.9885 0.9949 0.9916  0.9860 0.9451  

MRE (%) 10.7738 7.8792 8.9988  11.5340 15.2144  

Iglesias & Chirife (1981) 

A 0.05571 0.04652 0.04202  0.06525 0.05571  

B 0.019158 0.01735 0.01617  0.02302 0.02089  

r2 0.9549 0.9388 0.9394  0.9646 0.9749  

MRE (%) 16.4788 21.0749 21.0780  15.8517 14.0219  

GAB (1984) 

Mgm (gH2O/g solids) 0.05304 0.05065 0.04642  0.06047 0.0461  

Y 43.6805 18.6116 14.9885  49.3066 123.4292  

K 0.8138 0.7907 0.7982  0.8299 0.8790  

r2 0.9974 0.9979 0.9944  0.9996 0.9735  

MRE (%) 3.3173 3.3029 6.7148  1.3283 11.5532  
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Figure 2.2. Experimental vs predicted values of the GAB model for non-defatted white maize 

meal 

 

The GAB model has also been previously considered the best-fit model for many food materials 

in general over a wide range of water activity (Van den Berg, 1984; Rahman, 1995; McMinn & 

Magee, 1999; Timmermann et al., 2001; Al-Muhtaseb et al., 2004a), and yellow dent corn 

(Samapundo et al., 2007) in particular. However, it must be mentioned that the goodness of fit of 

a sorption model to experimental data does not describe the nature of the sorption process, it only 

reflects on the mathematical quality of the model. Also as water is associated with the food 

matrix by different mechanisms in different Aw regions, no single model can be considered 

accurate over the entire Aw range (Labuza, 1975; Samapundo et al., 2007). 

 

2.2.8.4. Thermodynamic functions of non-defatted white maize meal 

 

2.2.8.4.1. Differential enthalpy and entropy 

  

The differential enthalpy and entropy at different moisture contents were respectively obtained 

from the slope and intercept of ( )wALn versus T/1 . The Aw at different constant EMCs were 

obtained by the best fitting model, the GAB model. Figure 2.3 shows the plots of differential 

enthalpy and entropy as a function of moisture content. The graphs clearly show an exponential 

decrease in differential enthalpy and entropy with increasing moisture content.  
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Figure 2.3. Differential Enthalpy and Entropy of adsorption as a function of moisture content for 

white maize meal 

 

This trend has also been reported in yellow dent corn for isosetric heat of sorption (Samapundo 

et al., 2007);   and for isostetric heat of sorption and entropy in cookies and corn snacks (Palou et 

al., 1997), potatoes (Beristain et al., 1996; McLaughlin & Magee, 1998), sweet potatoes (Fasina, 

2006) and potato starches (Al-Muhtaseb et al., 2004b). This marked decrease has been attributed 

to the fact that sorption initially occurs on the most active primary sites giving rise to higher 

exothermic interaction energies than those released when these sites become occupied (Iglesias 

& Chirife, 1976; Samapundo et al., 2007). Other researchers have also interpreted this as 

reflecting the water binding strength; initial occupation of highly active polar sites to form a 

surface monolayer, followed by the progressive filling of the less available sites (with lower 

bonding activation energies) (Tsami et al., 1990; McMinn et al., 2007).  

 

The existence of enthalpy–entropy compensation was checked by plotting differential enthalpy 

against differential entropy (Figure 2.4). A linear relationship was obtained as follows: 

 

4227.06.404 −∆=∆ dd Sh ,  9947.02 =r      (2.9) 

where dh∆ is the differential enthalpy (kJ/mol) and dS∆ is the differential entropy (kJ/mol/K). 

The slope of equation (2.9) is called the isokinetic temperature ( )βT  which is the temperature at 

which all reactions in the series proceed at the same rate (Al-Mahasneh et al., 2007).  
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Figure 2.4. Diferential Enthalpy against Differential Entropy of adsorption for white maize meal 

 

As a linear relation between 
dh∆  and 

dS∆  was exhibited for the white maize meal the 

compensation theory was assumed to exist. The isokinetic temperature ( )βT  and free energy at 

( )βT  ( )G∆  were determined by linear regression (Eq. 2.4) within a 95% confidence interval, and 

the  βT  value was found to be 404.6 ± 6.2 K. The isokinetic temperature for white maize meal 

found in our work is within the results reported by other researchers in starchy materials; 466.8 

and 423 K for high amylose and amylopectin corn starch powders, respectively for adsorption 

(McMinn et al., 2005), 407.6 K in sweet potatoes (Fasina, 2006),  376.6, 377.8 and 366.8 K for 

potato, potato gel and potato starch powder, respectively, for adsorption (McMinn et al., 2005)  

and 382.5, 327 and 380.5K for starchy food products (Ferro-Fontan et al.,1982; Aguerre et al., 

1986; Beristain et al.,1996), respectively.  

 

The compensation theory can be proved to exist if the calculated harmonic mean temperature 

hmT  (Equation 2.5) was significantly different from βT  (Krug et al., 1976a). For our white maize 

meal, 
hmT was found to be 306.2 K. This temperature was significantly lower than βT  of 404.6 K 

obtained from 
dh∆ vs 

dS∆  linear relationship (Equation 2.9).  If βT  > 
hmT  the process is 

enthalpy driven, while if βT  < 
hmT , the process is entropy controlled (McMinn et al., 2007). In 

the white maize meal, the former condition was observed; this suggested that the sorption 

mechanism was enthalpy-driven or controlled. This is in agreement with other researchers who  
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have reported similar findings in starchy materials (Aguerre et al., 1986; Beristain et al., 1996; 

McMinn et al., 2005; Fasina, 2006).  

 

From a thermodynamic point of view, the free energy change ( )G∆  can be considered as 

indicative of the affinity of the sorbent for water, and further provide a criterion as to whether the 

moisture sorption behaviour is spontaneous ( )G∆− , or non-spontaneous ( )G∆+  (Apostolopoulos 

& Gilbert, 1990). The negative value of ( )G∆  found (cf. Equation 2.9 and 2.4) in the white 

maize meal suggest that adsorption in white maize meal was spontaneous. The spontaneous 

sorption process for starchy materials has been reported (Aguerre et al., 1986; Beristain et al., 

1996; McMinn et al, 2005; Fasina, 2006). 

 

2.2.8.4.2. Monolayer moisture content 

 

The monolayer moisture contents of the non-defatted white maize meal at each of the 

temperatures studied were calculated using the GAB model (Table 2.2). The estimated 

monolayer moisture contents, gmM , from the adsorption isotherms were 5.30, 5.06 and 4.64 

g/100 g db at 25, 30 and 45oC, respectively (Table 2.3). The estimated values in our study are 

somewhat lower than the values reported for yellow cornmeal by Labuza et al. (1985) who 

obtained 8.23, 6.50 and 5.68 g/100g db at 25, 30 and 45oC, respectively and yellow dent corn by 

Samapundo et al. (2007) who obtained 7.44 and 6.57 g/100g db at 25 and 30oC, respectively. 

However, Abdullah et al. (2000) in their determination in corn flour (maize meal) and Wicklow 

et al. (1998) in a hybrid maize grain did not determine the monolayer moisture contents for us to 

compare with. gmM  was plotted against temperature in oC as shown in Fig. 2.5. The results show 

that monolayer moisture content decreased with increase in temperature of sorption. A 

decreasing linear relationship was obtained as follows: 

 

0607.00003.0 +−= TM gm ,   9852.02 =r      (2.10) 

 

The decrease in the monolayer moisture content with increase in temperature has also been 

reported by Labuza et al. (1985) in yellow cornmeal, Samapundo et al. (2007) in yellow dent 

corn, and in other foods (Westgate et al., 1992; McLaughlin & Magee, 1998; Al-Muhtaseb et al., 

2004a). 
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Figure 2.5. Changes in monolayer moisture content of adsorption for white maize meal as a 

function of temperature in oC 

 

The reason is probably that, with an increase in temperature the water molecules get activated 

due to an increase in their energy level, causing them to become less stable and to break away 

from the water binding site of the food material, thus decreasing the monolayer moisture content 

(Palipane & Driscoll, 1992; Chowdhury et al., 2006).The reason for the decrease has also been 

attributed to reduction in the number of sites available for water binding as a result of 

physiochemical changes caused by temperature increase (Mazza & LeMaguer, 1978).  

 

It was imperative to study the moisture sorption behaviour of maize meal as it is a major 

determinant in the reactivity or behaviour of the other properties studied. A number of research 

works are in agreement with the observation made here that, maize and maize products moisture 

isotherms exhibit Type II behaviour, are temperature dependent as the equilibrium moisture 

content decreases with increase in temperature and the GAB model best describes the 

experimental data (Labuza et al., 1985; Wicklow et al., 1998; Abdullah et al., 2000; Samapundo 

et al., 2007). However, variations in data still exists on the actual positions of the isotherms and 

the estimated monolayer moisture contents (Labuza et al., 1985; Wicklow et al., 1998; Abdullah 

et al., 2000; Samapundo et al., 2007). These differences could be attributed to the different 

working conditions such as dehydration methods, variety differences in the products and the 

extraction rates, in case of maize meal. For maize meals, the particle size could also have an 

influence on the position of the isotherms. 
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2.2.8.5. Non-defatted Vs defatted white maize meal adsorption isotherms 

 

One of the major differences in the composition of the commercial brands or types of maize 

meal in Africa is in the oil content due to different levels of germ extractions. The oil content in 

the maize grain is concentrated in the germ, although the endosperm also contains oil. During 

dry milling most of the oil removed by the degerminator is oil contained in the germ. It is a well 

known fact that the lower the oil contents of the maize meal the longer the shelf life. The 

comparison of the defatted and non-defatted was carried out in order to determine the role of oil 

in affecting the Aw value of the maize meal. Aw is related to shelf life of maize meal. Figure 2.6 

(a) and (b) gives adsorption isotherms at 30 and 45oC, respectively, for non-defatted and defatted 

white maize meals. In comparison to non-defatted, the defatted white maize meal maintained a 

sigmoidal shape, typical of Type II isotherms at both temperatures. 
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Figure 2.6 Adsorption isotherms of non-defatted and defatted white maize meal at 30 and 45oC. 

DF: Defatted maize meal and NDF: Non-defatted maize meal (Bars are standard deviations for 

n=3) 

 

Figure 2.6 also illustrates the dependence of the adsorption isotherms of the white maize meal on 

the oil content. At constant temperature, the EMC is seen to increase upon defatting at the same 

Aw. Other researchers (Pollio et al., 1984; Pollio et al., 1987; Bianco et al., 2001) also reported 

that soybeans and sunflower samples with higher oil content have a lower EMC. This indicates 

that the white maize meal becomes more hygroscopic when defatted. It seems that the oil hinders 

access of water molecules to hydrophilic sorption sites. Other researchers have interpreted the  
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the presence of fat as having a lowering effect of the binding energy of sorbed water (Aviara et 

al., 2002; McMinn et al., 2007). This phenomenon of the EMC dependence on oil content may 

have an important practical bearing on chemical and microbiological reactions associated with 

spoilage, hence, may affect the shelf life of food products as well. At the same EMC, higher oil 

content entails a higher Aw which is associated with faster rates of deterioration. Therefore, at the 

same water content, the faster deterioration of foods higher in oil contents may also be explained 

based on its effect on Aw. However, some of the differences could be attributed to the change in 

microstructure due to the hexane extraction process. There is also a possibility that the particle 

size of the maize meal changed after the fat extraction. All these factors may contribute to the 

moisture isotherm positional differences observed between the defatted and undefatted white 

maize meal. 

 

Table 2.3 also shows the coefficients of the models fitted to the experimental adsorption data by 

non-linear regression for defatted white maize meal. The GAB, Oswin, Smith and Chung-Pfost 

models had an average MRE (%) less than 10 for non-defatted whereas it was only for the GAB, 

Smith and Oswin models for defatted white maize meal. Generally, the MRE (%) and the 

determination coefficients for non-defatted white maize meal were lower and higher than those 

for the defatted white maize meal, respectively. This means that the models fitted much better for 

non-defatted than for defatted white maize meal. The experimental adsorption isotherm data and 

the best-fitted model (GAB) for the defatted white maize meal is shown in Figure 2.7. 

 

The estimated monolayer moisture contents gmM  by the GAB model from the adsorption 

isotherms for non-defatted white maize meal were 5.06 and 4.64 g/100 g db whereas for defatted 

white maize meal were 6.05 and 4.61 g/100 g db at 30 and 45oC, respectively. The results show 

that monolayer moisture content increased upon defatting at 30oC, but no significant change was 

observed at 45oC. The increase in monolayer moisture content upon defatting could be due to 

increased access of water molecules to hydrophilic sorption sites. Studies on the rates of 

chemical reactions in foods have shown that for most dry foods a moisture content exists below 

which the rates of quality loss are negligible. 
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Figure 2.7. Experimental vs predicted values of the GAB model for defatted white maize meal 

 

This moisture content corresponds fairly well with the monolayer value, as determined from the 

BET isotherm equation or GAB isotherm equation. This monolayer value can be viewed as a 

critical moisture content which is associated with a critical Aw value (Bell & Labuza, 2000). In 

our case, this entails that defatting increased this critical moisture content or critical Aw. The 

meaning of this is that, for a defatted food dried to below its critical moisture content or Aw, it 

must adsorb more moisture to exceed its critical moisture content or Aw than if it was not 

defatted. 

 

2.3. Influence of storage conditions on moisture content 

 

2.3.1. Open bulk storage of maize meal 

 

2.3.1.1. Materials 

 

Freshly produced white roller maize meal was obtained from National Milling Corporation 

(Lusaka, Zambia). Roller maize meal is a partially degermed commercial brand on the Zambian 

market (Table 1.2). It is produced by dry milling at extraction rates between 80-85% (Jayne et 

al., 1996). The white roller maize meal was packaged in a white opaque polypropylene 10kg  

 



Chapter 2. Moisture sorption of white maize meal  

__________________________________________________________________________ 

_____________________________________________________________________________ 
Functional properties of white maize meal stored under tropical conditions 

62 

 

sack and sent from Lusaka (Zambia) to Gent (Belgium) within 48 hours. The sack was rapped in 

two layers of polyethylene to minimize moisture loss and was stored in a cold room at 5oC for 22 

days before the storage study commenced. 

 

2.3.1.2. Storage protocol 

 

400g of the white maize meal was weighed into porcelain dishes. The dishes were placed in 4 

desiccators, two with saturated salt solutions of BaCl2 and the other two with K2CO3 solution. 

One desiccator of each solution was kept in an incubator at 45°C and the other two at room 

temperature (25°C). A saturated solution of BaCl2 at 25 and 45°C represents a relative humidity 

of 90% (Simal et al., 2007) and a saturated K2CO3 solution represents 43% RH (Tunç & Duman, 

2007). About 70g sample was drawn from each dissecator at 7 days intervals for analysis.  

 

2.3.2. Analytical methods 

 

2.3.2.1. Proximate analysis 

 

Proximate analysis of the white maize meal was carried out according to AOAC methods: 

moisture content, crude protein, ash, and crude fiber (1998). The determinations were performed 

in triplicates and the data was calculated on wet basis, except for moisture which was presented 

on dry basis. 

 

2.3.2.2. Moisture 

 

After sampling, the moisture content was determined by drying in a forced air circulation oven at 

130oC for 1 h (AOAC, 1998). The moisture content was calculated on dry basis. 

 

2.3.3. Results and discussion 

 

2.3.3.1. Proximate composition 

 

The maize meal used in this study was analysed for proximate composition and was found to 

have moisture 11.87 ± 0.12%, crude protein (N x 6.25) 10.83 ± 0.12%, crude oil 4.48 ± 0.09 %, 

crude fibre 2.08 ± 0.10 % wb, ash 1.27 ± 0.09 % and carbohydrates (by difference) 69.47% wb. 
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2.3.3.2. Changes in moisture content in open bulk storage 

 

Figure 2.8 shows the changes in moisture content of white maize meal samples stored at 

different combinations of temperature – relative humidity conditions. The samples at 25oC-

43%RH / 45oC-43%RH and 25oC-90%RH / 45oC-90%RH decreased and increased sharply, 

respectively, up to about 21 days, after which the change was marginal. The samples stored in 

the relative humidity of 90% adsorbed moisture whereas the samples stored in the relative 

humidity of 43% desorbed moisture in an attempt to reach an equilibrium. This means that given 

the same storage relative humidity, maize meal will absorb or loose more moisture and at a faster 

rate at a high storage temperature than at a low storage temperature. This has consequences for 

the storability of maize meal in that we expect the same trends in water activity under such 

storage conditions. Water activity is known to correlate well with storability of foods. 
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Figure 2.8 Changes in moisture content of white maize meal stored at temperatures and relative 

humidity of 25oC-43%RH, 25oC-90%RH, 45oC-43%RH and 45oC-90%RH 

 

2.4. Influence of storage conditions on water activity 

 

2.4.1. Open bulk storage and storage in commonly used packaging material 

 

2.4.1.1. Materials 
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Freshly produced 25 kg of white roller maize meal was obtained from National Milling 

Corporation (Lusaka, Zambia). Roller meal maize meal is a partially degermed commercial 

brand of on the Zambian market (Table 1.2). It is produced by dry milling at extraction rates 

between 80-85% (Jayne et al., 1996). 

 

2.4.1.2. Storage protocol 

 

250g of the white maize meal was weighed into 250ml beakers to just completely fill the 

beakers. Polypropylene interwoven sack packaging material and thick opaque polyethylene 

plastic packaging material were cut into circular shapes with circumferences larger than the 

beakers’ openings. The openings of some beakers were covered with the polypropylene (PP) 

while other beakers were covered with the polyethylene (PE) materials by fastening the 

packaging materials to the beakers with elastic rubber bands several times. Another set of 

beakers with the maize meal were left uncovered to act as the controls. Four sets of dessicators 

were prepared, two with saturated salt solutions of barium chloride (BaCl2) and the other two 

with potassium carbonate (K2CO3) solution. Three (3) beakers with maize meal (one covered 

with polypropylene packaging sack material, another covered with polyethylene plastic 

packaging material and the third without any covering) were placed in each dessicator. One 

desiccator of each solution was kept in an incubator at 45°C and the other two at 25°C. A 

saturated solution of BaCl2 at 25 and 45°C represents a relative humidity of 90% (Simal et al., 

2007) and a saturated K2CO3 solution represents 43% RH (Tunç & Duman, 2007). At least 35g 

sample was drawn from each beaker at 7 days intervals for analysis.  

 

2.4.2. Analytical methods 

 

2.4.2.1. Water activity 

 

After sampling, the water activity of the white maize meal samples was determined at room 

temperature using an electronic dew-point water activity meter, Aqualab Model Series 3 

(Decagon Devices Inc., Pullman, Washington, USA). The equipment was calibrated with 

saturated salt solutions as in the instrument manual. The samples were placed in Aqualab sample 

dishes and immediately well covered with aluminium foil. The samples at high temperatures 

were left for not more than 15 minutes to equilibrate to room temperature before measurements 

were performed. For each determination three replicates were obtained. 
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2.4.2.2. Water vapor transmission rate (WVTR) of the packaging 

 

Water vapor transmission rate (WVTR) of the packaging material was measured according to 

Jongjareonrak et al. (2006), but with some modifications. The packaging materials were firmly 

fixed with elastic bands onto the opening of glass cups containing 3.0000g silica gel (0% relative 

humidity). The glass cups had internal diameter of 49.0 ± 1.0 mm and a depth of 58.00 ± 1.0 

mm. The glass cups were placed in desiccators with distilled water maintained at 25 and 45°C in 

incubators (Memmert, Gmbh+Co.KG, Schwabach FRG, Germany). The cups were weighed at 

24 h intervals over a 5 days period and WVTR of the packaging materials were calculated using 

the equation: 

 

tA

w
WVTR =          (2.11) 

 

where w  is the weight gain of the cup (g), t  is the time of gain (days) and A  is the area of 

exposed packaging material (m2). A total of three determinations were made for each film. The 

term 
t

w
 was calculated by linear regression from the points of weight gain and time, in the 

constant rate period. Packaging material thickness was determined from the mean of 4 

measurements across circular cuttings of the packaging material using a digital micrometer 

(Mitutoyo Corp., England, UK).  

 

2.4.2.3. Statistical analysis 

 

ANOVA statistical comparisons were performed with Duncan tests at a level of α = 0.05 using 

SPSS® Version 11.0 (SPSS Inc., Chicago). 

 

2.4.3. Results and discussion 

 

2.4.3.1. Packaging properties 

 

The packaging materials used in this study were chosen because of their widespread use in the 

packaging of maize meal for commerce. The water vapor transmission rates (WVTR) of the 

packaging materials were experimentally determined because this information was not available.  
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Table 2.4 shows the water vapor transmission rates (WVTR) and thicknesses of the polyethylene 

plastic (PE) and polypropylene interwoven sack (PP) materials used in this experiment.  

 

Table 2.4. Water vapour transmission rates (WVTR) and thickness of the packaging materials 

Packaging 

material 

type 

Thickness 

(µµµµm) 

WVTR 

(g m-2 day-1) at 25oC 

and 100% RH 

WVTR 

(g m-2 day-1) at 45oC and 

100% RH 

PE 128 ± 20 14 ± 1 45 ± 10 

PP 277 ± 26 160 ± 13 631 ± 8 

 

The PP packaging material was thicker than the PE packaging material. It can be observed that 

the WVTRs for PP were higher than for PE at both low and high temperatures. The WVTR at 

low temperature for PP was 11 times higher than for PE, whereas it was 14 times higher at high 

temperature. The WVTRs at high temperatures were higher than at low temperatures for both PE 

and PP. The WVTR for PP at high temperature was 4 times higher than at low temperature, 

whereas it was 3 times higher for PE. 

 

2.4.3.2. Water activity 

 

Figure 2.9 shows the changes in water activity as affected by packaging material, storage 

temperature and relative humidity during storage. Figure 2.9(a) illustrates the influence of 

storage temperature and relative humidity on Aw, and the patterns of evolution are as observed 

for moisture in section 2.3.3.2. Figures 2.9 (b) and (c) illustrate the influence of packaging 

material on Aw when maize meal is stored under the same four storage conditions. There was no 

significant difference in the evolution patterns of Aw for the control samples and samples in PP at 

all the storage conditions (Figure 2.9a and b). The water activity of the control samples and 

samples in PP stored at low relative humidity significantly (p<0.05) decreased while the samples 

stored at high relative humidity increased during the storage period. At low storage relative 

humidity for the control and samples in PP, the samples at 45oC-43%RH decreased to lower 

water activity values than for the samples at 25oC-43%. On the other hand for the control and 

samples in PP, the samples at 45oC-90%RH initially increased to higher water activity values 

than for samples at 25oC-90%RH, up to between 43 and 51 storage days. Thereafter, the water 

activity for the control and samples in PP at 25oC-90%RH was significantly higher than for the  
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samples at 45oC-90%RH. However, the equilibrium may not have been reached due to storage of 

large sample size.  
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Figure 2.9 Changes in water activity of white maize meal during storage (a) without packaging 

(Cont: Control), (b) in Polypropylene (PP) and (c) Polyethylene (PE) packaging materials and 

exposed to temperature-humidity conditions of 25oC-43%RH, 25oC-90%RH, 45oC-43%RH and 

45oC-90%RH. 

 

The samples in PE had rather a different pattern of water activity changes during the storage 

period (Figure 2.9c). The water activity of samples in PE at low relative humidity decreased 

while the samples at high relative humidity remained significantly (p<0.05) constant during the 

storage period. At low relative humidity for the samples in PE, the samples at 45oC-43%RH 

decreased to lower water activity values than at 25oC-43%RH after 28 days of storage.  

 

In terms of magnitudes, the control samples at 45oC-43%RH and samples in PP at 45oC-43%RH 

did not significantly (P>0.05) differ and had the lowest water activity. The control samples at  
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45oC-90%RH and samples in PP at 45oC-90%RH did not significantly differ and had 

significantly (P>0.05) the highest water activity. The water activity of the following pairs of 

storage conditions: the control samples at 25oC-43%RH and samples stored in pp at 25oC-

43%RH, samples in PE at 25oC-43%RH and in PE at 45oC-43%RH, the control samples at 25oC-

90%RH and samples in PP at 25oC-90%RH, respectively, did not differ significantly (P>0.05). 

The water activity for the samples stored in PE at 25oC-90%RH and PE at 45oC-90%RH did not 

match any other conditions, and were fourth and fifth highest, respectively, from the lowest. 

 

In summary, PP interwoven sack material showed poor barrier protection against Aw changes 

when maize meal is stored under varying temperature and humidity. The PE plastic material on 

the other hand showed good barrier protection against Aw change when maize meal is stored at 

high humidity for both low and high storage temperatures. On the other hand, PE plastic material 

had good protection for a limited storage period of time at low humidity storage for both low and 

high storage temperature. The differences in the water activity of the samples packaged in PP 

and PE, and the absence of differences between the control and PP could be attributed to the 

higher WVTRs in PP and lower WVTRs in PE observed in section 2.4.3.1 above. 

 

2.4.4. Fortified-packaged-sunlight exposed storage  

 

2.4.4.1. Materials 

 

Freshly produced 25 Kg of unfortified white roller maize meal was obtained from National 

Milling Corporation, Lusaka, Zambia. Roller maize meal is a partially degermed commercial 

brand on the Zambian market (Table 1.2). It is produced by dry milling at extraction rates 

between 80-85% (Jayne et al., 1996). The maize meal was immediately delivered to the 

Department of Food Science and Technology Laboratory, University of Zambia. The sample was 

divided into two portions, one portion remained unfortified and the other portion was 

immediately delivered to National Institute for Scientific and Industrial Research (NISIR), 

Lusaka – Zambia, for fortification. Chemicals were supplied by Merck (South Africa), the maize 

meal fortificant was given by DSM (former Roche, South Africa). 
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2.4.4.2. Fortification Procedure 

 

The maize meal was fortified at the National Institute for Scientific and Industrial Research of 

Zambia, the government institute in Zambia with the mandate to carry out fortification trials in 

collaboration with the National Food and Nutrition Commission of Zambia. The fortification was 

performed using the hand operated stainless steel ribbon blender. The fortification was carried 

out to have the following composition of the fortified nutrients mg/100g : vitamin A (0.08-0.12), 

vitamin B1 – thiamine (0.43-0.63), vitamin B2 – riboflavin (0.36-0.44), vitamin B3 – niacin (3.02 

– 3.66), vitamin B6 – pyridoxine (1.04-1.46), vitamin B12 – cyanocobalamine (0.0004 – 0.0006), 

folic acid (0.143-0.237), iron (2.99-5.87) and zinc (3.08-3.98). The fortificant premix also 

contained butylated hydroxytoluene (BHT), which is an antioxidant. The homogeneity of the 

fortificant was verified by determining the iron content of the white maize meal taken from 

various positions of the blender.  

 

2.4.4.3. Storage Protocol 

 

The unfortified and fortified samples were repackaged into 150 g thin polyethylene plastic and 

polypropylene interwoven sack packages. The repackaged 150g pack sample sets were stored 

under two storage conditions; (i) in the dark in the cupboard at room condition until sampling for 

analysis (ii) exposed to sunlight from 08.00hrs to 17.00 hrs everyday until sampling. The storage 

period was from June to August i.e. the transition from dry-cold season and to dry hot season in 

Zambia. The experimental design was as summarized in Table 2.5. 2x150g packages were drawn 

at random from each treatment for analysis every one week for fortified samples and every two 

weeks for unfortified samples. The sample was immediately analyzed for water activity. The 

water activity was monitored for a total period of ten weeks.  

 

2.4.5. Analytical methods 

 

2.4.5.1. Proximate analysis 

 

Proximate analysis (moisture, crude protein, ash and crude fiber) were determined according to 

AOAC methods (1998). 
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Table 2.5 Experimental design 

 
RUN 
No. 

FORTIFICATION PACKAGING 
TYPE 

SUNLIGHT 
EXPOSURE 

ABREVIATIONS 
USED IN THE 
PAPER 

1 Fortified PE Sunlight FES 
2 Fortified PP Sunlight FPS 
3 Fortified PE Dark FED 
4 Fortified PP Dark FPD 
5 Unfortified PE Sunlight UES 
6 Unfortified PP Sunlight UPS 
7 Unfortified PE Dark UED 
8 Unfortified PP Dark UPD 

 

 

2.4.5.2. Water activity 

 

The water activity of the white maize meal samples was determined at room temperature using 

an electronic dew-point water activity meter, Aqualab Model Series 3 (Decagon Devices Inc., 

Pullman, Washington, USA). The equipment was calibrated with saturated salt solutions as in 

the instrument manual. For each determination three replicates were obtained and the mean was 

recorded.  

 

2.4.5.3. Water vapor transmission rate (WVTR) of packaging material 

 

WVTR was determined as described in section 2.4.2.2, except it was only determined at 45oC 

  

2.4.5.4. Light transmission and transparency of packaging material 

 

The ultraviolet and visible light barrier properties of the films were measured at selected 

wavelengths, from 350 to 800 nm (350, 400, 500, 600 and 800), using a UV–visible recording 

spectrophotometer (UV-160, Shimadzu Co., Kyoto, Japan) according to Hamaguchi et al (2005). 

The light transmission of film was measured on the film specimens measuring 7x7 cm in size 

and the transparency of the films was calculated as follows: 

  

x

A
cyTransparen 600=           or           

x

LogT
cyTransparen 600−

=     (2.12) 

where 600A is absorbance at 600 nm, 600T is transmittance (%) at 600 nm, and x  is film thickness 

(mm).  
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2.4.6. Statistical Analysis 

 

ANOVA statistical comparisons were performed with Duncan tests at a level of α = 0.05 using 

SPSS® Version 11.0 (SPSS Inc., Chicago). 

 

2.4.7. Results and discussion 

 

2.4.7.1. Proximate composition 

 

The maize meal sample was analyzed at the beginning of the experiment. It had a moisture 

content of 11.0 ± 0.4%, crude oil content 4.2 ± 0.5 %, crude protein content of 9.16 ± 0.01%, 

crude fiber content of 2.00 ± 0.14 %, and total ash content of 1.93 ± 0.014 %.  

 

2.4.7.2. Packaging properties 

 

The packaging materials used in this study were chosen because of their widespread use in the 

packaging and re-packaging of maize meal by open market vendors. The packaging materials 

were experimentally determined in this study for their water vapor transmission rates (WVTR) 

because this information was not available. Table 2.6 shows the water vapor transmission rates 

(WVTR) and thicknesses of the polyethylene plastic (PE) and polypropylene interwoven sack 

(PP) materials used in this experiment. The PP packaging material was 11.5 times thicker than 

the PE packaging material. It can be observed that the WVTRs for PP were more than 4 times 

higher than for PE.  

 

Table 2.6 Water vapor transmission rates (WVTR) and thickness of the packaging materials 

Packaging type Thickness (µµµµm) WVTR (g m-2 day-1) at 45oC and 100% RH 

PE  24 ± 2 145 ± 13  

PP 277 ± 26 631 ± 8 

 

Table 2.7 presents the light transmission, at selected wavelengths from 350 to 800 nm, and 

transparency (A600/mm) of the packaging material. The selected wavelength represents the UV-

visible range. It is clear that light transmission, indicated by light transmittance in the table, of 

the PE is of greater magnitudes higher than the PP. The light transmission increased with 

increase in wavelength for the PE. The PE material is more transparent, as indicated by  
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transparency in the table, than the PP material. Physically, the PE material was very transparent 

and clear as a see-through packaging material, whereas the PP is not a see-through material. 

 
Table 2.7. Light transmission and transparency of the packaging materials 
 

Wavelength 

(nm) 

Light transmittance (%) Transparency (Awavelength/mm) 

 PP PE PP PE 

350 1.60 ± 1.58 79.23 ± 0.96 - - 

400 1.76 ± 1.67 81.10 ± 0.99 - - 

500 1.96 ± 1.82 83.83 ± 0.94 - - 

600 2.15 ± 1.93 85.44 ± 0.97 6.57 ± 1.61 2.80 ± 0.20 

800 1.87 ± 2.07 87.29 ± 0.91 - - 

 

2.4.7.3. Changes in water activity 

 

Figure 2.10 below, shows that there was a decrease in water activity in all the samples during the 

70 days of storage.  
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Figure 2.10 Changes in water activity of the fortified and non-fortified white maize meal 

packaged in polypropylene sack and polyethylene plastic packages with exposure and non-

exposure to sunlight conditions. The three letter abbreviation in the legend gives the maize meal 

treatments: type of maize meal - packaging type - sunlight/darkness storage. FED: Fortified-PE-

Darkness; FES: Fortified-PE-Sunlight; FPD: Fortified-PP-Darkness; FPS: Fortified-PP-Sunlight; 

UED: Unfortified-PE-Darkness; UES: Unfortified-PE-Sunlight; UPD: Unfortified-PP-Darkness 

and UPS: Unfortified-PP-Sunlight. 
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This means that both room conditions and outside - sunlight conditions, might had environments 

which had lower relative humidity than the samples. Hence, the samples were losing their 

moisture to the environment. It has been reported that differences among the water activities of 

food components, food domains and the external environment outside the package introduces a 

driving force for water transport (Labuza & Hyman, 1998; Risbo 2003). Risbo (2003) further 

noted that water transport ceases when the differences in water activity have levelled out, i.e., the 

water activities converge to a common equilibrium value.  

 

From Figure 2.10, magnitudes of change in water activity based on the initial water activity 

between day zero and day 70 were calculated and expressed as percent water activity 

retention )(WR :  

100*100
0

700







 −
−=

C

CC
WR        (2.13) 

where 0C is the initial water activity, 70C is the water activity on the 70th day. WR was mainly 

influenced by the packaging material. Samples stored in polyethylene had higher WR  (ranging 

between 78 and 93%) than in polypropylene (53 – 72 %). PE had higher WR because of the low 

WVTR compared to PP as shown in Table 2.6. Dirim et. al., (2004) noted that PE is the mostly 

used polymer film for packaging as it offers the advantages of being inert and comparatively less 

permeable to water vapor. Therefore, in any application it is considered more like a barrier for 

water and/or its vapor on either side of the film. Within polyethylene, the fortified samples had 

WR of (FES = 93 % and FED = 91 % retention) while the unfortified samples had (UED = 85 % 

and UES = 78 %). On the contrary, at the beginning of the experiment fortified maize meal had 

lower Aw than the unfortified samples. The possible reason for the decrease in Aw of fortified 

maize meal is the change in particle size during blending of fortified maize meal. The fortificant 

levels used here may not have that immediate influence on the Aw. 

 

For the samples stored in polypropylene, the samples in the dark room condition had WR of 

(FPD = 72 % and UPD = 71 % retention), while the samples exposed to sunlight had (FPS = 

60% and UPS = 53 %). This indicates that, of all the three conditions, packaging type plays a 

significant role in retention of the water activity during storage of white maize meal. From 

Figure 2.10, it is also clear that, the difference in water activity for samples stored in the dark and 

samples exposed to sunlight was highly pronounced for PP packaging for the maize meal in PE.  
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2.5. Conclusions 

 

� The adsorption isotherms determined at 25, 30 and 45oC before and after defatting white 

maize meal, exhibited a sigmoidal shape, representing Type II isotherms. The 

temperature had an influence on adsorption isotherms, the EMC increased with decrease 

in temperature at the same Aw.  Among the models evaluated, the data was better fitted to 

GAB, Oswin and Smith models for both non-defatted and defatted white maize meals, 

with the GAB model being the best. The models fitted much better for non-defatted than 

for defatted white maize meals. The differential heat of sorption and differential entropy 

of sorption increased with decreasing moisture content. Moisture adsorption was 

enthalpy-driven in the temperature range studied. The monolayer moisture content 

decreased with increase in temperature of sorption. Comparing non-defatted and defatted 

maize meals, at constant temperature, the defatted had higher EMCs than the non-

defatted.  

 

� The changes in moisture content of white maize meal have been found to be influenced 

by temperature and relative humidity during storage. At constant storage relative 

humidity, white maize meal will absorb or loose more moisture at high storage 

temperatures than at low storage temperatures. 

 

� The packaging type was found to influence the changes in water activity of white maize 

meal during storage. PP interwoven sack material had poor barrier protection against Aw 

changes when maize meal was stored under varying temperature and humidity. The PE 

plastic material had good barrier protection against Aw change when maize meal was 

stored at high humidity for both low and high storage temperatures. On the other hand, 

PE plastic material had good protection against Aw change for a limited storage period of 

time at low storage humidity for both low and high storage temperature. The differences 

in the water activity of the samples packaged in PP and PE is attributed to the higher 

WVTRs in PP than in PE. 

 

� In addition to relative humidity, which is the primary determinant, packaging type plays a 

significant role in maintaining the Aw during storage of both fortified and unfortified 

maize meals.  
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Chapter 3. Chemical and sensory properties of white maize meal during storage 

 

Abstract 

 

This chapter involved studies on the influence of storage conditions on acidity, colour, lipolysis, 

lipid oxidation and sensory properties of white maize meal during storage. High storage 

temperature resulted in lower pH than low storage temperature in function of storage time, while 

titratable acids were only affected by storage time.  

The colour of white maize meal during storage was monitored using L-, a- and b-values. The L-

values decreased after a short period of storage at temperature-humidity of 45
o
C-43%RH and 

45
o
C-90%RH, while at 25

o
C-90%RH after a longer storage period. The a- and b-values at 45

o
C-

43%RH and 45
o
C-90%RH increased, while at 25

o
C-43%RH and 25

o
C-90%RH did not 

significantly change. The change in sensory properties was only established for colour scores, 

which decreased for maize meal storage at 25
o
C-90%RH, 45

o
C-43%RH and 45

o
C-90%RH. The 

L-values at 25
o
C-90%RH and 45

o
C-90%RH decreased in polypropylene (PP) packaging 

material, while it decreased at 45
o
C-43%RH and 45

o
C-90%RH for polyethylene (PE). The a- 

and b-values increased at 45
o
C-43%RH and 45

o
C-90%RH for the PP and PE, with the L-, a- 

and b-values increasing at the same rate in PE for both storage conditions. The observed change 

in colour is attributed to discoloration of the maize meal by non-enzymatic browning.  

Lipolysis was evaluated by determining the evolution of free fatty acid (FFA) contents. FFA at 

high storage temperatures had higher contents and evolved faster than at low storage 

temperatures.  However, at constant storage temperature, samples at high storage relative 

humidity had higher increases in FFA contents and evolved faster than at low storage relative 

humidity. Packaging material type did not seem to have influence on lipolysis. Fortified maize 

meal had higher increases in FFA contents than the unfortified maize meal, while packaging and 

sunlight exposure did not seem to affect FFA contents. 

Lipid oxidation was evaluated by determining peroxide and p-anisidine values, and both 

increased and then decreased to relatively constant values during the storage period. Higher 

peroxide values in unfortified than the fortified maize meal were recorded, while packaging and 

sunlight exposure did not seem to significantly influence the evolution of peroxide values. The 

influence of storage temperature on p-anisidine values was not significant. 

 

Key words: Chemical stability, Fortification, Lipid oxidation, Lipolysis, Maize meal, Packaging, 

Sensory, Storage  
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3.1. Introduction 

 

Chapter 1 has shown that there are numerous food products produced from maize meal.  These 

products may contribute directly to human nutritional status or be utilised as relatively low cost, 

bulk nutrient and energy sources in industrial processes (Nelles et al., 2000). The distribution 

chains of the maize meal may vary from one country to another in Africa. However, taking a 

case of Zambia, as outlined in section 1.8, the distribution of maize meal from the commercial 

millers to the final consumer involves: (a) long life on the shelf (b) a variety of packaging and (c) 

exposure to sunlight. Moreover, tropical temperatures in Africa exceeding 45°C are not 

uncommon particularly for low-lying valleys coupled with high humidity (AQUASTAT, 2005). 

 

Deterioration in the quality of maize meal during storage could be attributed to lipid hydrolysis 

(lipolysis) and lipid oxidation. The literature review has shown that storage of cereal and cereal 

products can lead to lipolysis (Castello et al., 1998; Sammon, 1999). Lipid oxidation in 

dehydrated foods (Pershem et al., 1995; Maskan & Karatas, 1998). Oxidation of lipids has been 

reported to be of great influence on the deterioration of foods, even if the lipid content is small 

(Rutgersson et al, 2000). Oxidation of lipids reduces the nutritional value of cereal products, 

affects the color, and the appearance of the products, and causes the formation of off-odors and 

off-flavors (Kaukovirta-Norja et al., 1998).  

 

Color measurement is a critical objective quality parameter that can be used for analyses of 

quality changes as a result of food processing, storage, and other factors (Esteller et al., 2006). 

Browning of foods on storage due to Maillard reaction  or non-enzymatic browning (BeMiller & 

Whistler, 1996) is considered an important factor influencing food nutritional value and quality 

(Tsen et al., 1982; Dexter et al., 1984; Sensidoni et al., 1999). In a study of maize meal by 

Bothast et al. (1981), they investigated lipid oxidation by monitoring hexanal, but did not report 

on the browning. Bovel-Benjamin et al. (1997) evaluated the sensory quality and storability of 

whole maize fortified with novel iron and concluded that fortification compromises the sensory 

quality and oxidative stability of maize porridge, depending upon the nature of the fortificant. 

The role of packaging in stability of foods depends on how well the packaging protects the food 

from adverse environmental conditions (Ou et al., 2005).  

 

From the literature review, it is evident that the chemical and sensory stability of quality 

properties such as lipolysis, lipid oxidation and the role of packaging material in white maize  
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meal produced in Africa are either scarce or non-existent. Therefore, the purpose of this chapter 

was to determine the influence of storage conditions on: (a) acidity (b) colour (c) lipolysis (d) 

lipid oxidation, and (e) sensory properties 

 

3.2. Influence of storage conditions on bacteria, yeast and moulds 

 

3.2.1. Materials and sampling 

 

Regarding samples involving fortification, the materials, fortification procedure, storage 

protocol, WVTR and light transmission were as described in section 2.4.4.1, section 2.4.4.2, 

section 2.4.4.3, section 2.4.2.2 and section 2.4.5.4, respectively. However, the WVTR here was 

only determined at 45oC. In case of samples involving storage at different temperature-humidity 

conditions, the materials and storage protocol were as described in section 2.3.1.1 and section 

2.3.1.2, respectively. The samples for microbial analysis were taken prior to handling for other 

analyses. 

 

3.2.2. Microbial counts 

 

Total plate counts were determined on plate count agar pour plates and enumerated after an 

incubation period of 48–72 h at 30°C. Enumeration of yeast and moulds was done using 

oxytetracycline glucose yeast extract (OGYE) agar by the pour plate technique and incubated at 

25oC for 120 hours according to IDF-94B method (1990) using chloromphenicol as a selective 

supplement.  

 

3.2.3. Results and discussions 

 

Microbial growth was monitored by microbial counts and visual inspection of mould appearance. 

In Figure 3.1, fortified white maize meal recorded higher populations of yeast and moulds than 

the unfortified white maize meal in the first 21 days, both reaching a maximum in 14 days. This 

obviously is because the fortified maize meal had a better nutrient base than the unfortified 

maize meal, hence, the fortified maize meal offered better growth conditions for yeast and mould 

growth. Bothast et al. (1981) found that both bacteria and mold counts in maize meal increased 

during the storage period before finally decreasing. Within the fortified and unfortified maize 

meals, there was no significant difference in yeast and mould population changes in the first 21  
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days. After the peak growth periods up to termination of the storage study, fortification, 

packaging type and sunlight exposure had insignificant influence on the yeast and mould count 

changes. This could be due to the decreasing water activity during storage (See Figure 2.10) 
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Figure 3.1 Changes in yeast & mould counts of fortified and non-fortified white maize meal 

packaged in PP and PE with exposure and non-exposure to sunlight conditions.The three letter 

abbreviations in the legend gives the maize meal treatments: type of maize meal - packaging type 

- sunlight/darkness storage. FPD: Fortified-PP-Darkness; FPS: Fortified-PP-Sunlight; FES: 

Fortified-PE-Sunlight; FED: Fortified-PE-Darkness; UPS: Unfortified-PP-Sunlight; UES: 

Unfortified-PE-Sunlight; UPD: Unfortified-PP-Darkness and UED: Unfortified-PE-Darkness. 

 

Table 3.1 shows the total plate, yeast and mould counts for the fresh white maize meal and for 

the white maize meal stored at four different conditions for 49 days. The bacterial counts 

depicted by total plate counts were higher in the fesh maize meal than the stored maize meal. 

The white maize meal was more dominated by the moulds than the yeasts at all the four storage 

conditions for both fresh and stored maize meal. 

 

Table 3.1 Total plate, yeast and mould counts of fresh white maize meal and white maize meal 
stored for 49 days at different temperature-humidity conditions 

Storage condition Total plate counts 
(cfu/g) 

Yeast counts 
(cfu/g) 

Mould counts 
(cfu/g) 

Fresh 1.2x107 15 1.8x104 
25oC-43%RH 2.9x104 <10 2.0x104 
25oC-90%RH 8.8x105 6.2x103 8.6x105 
45oC-43%RH 2.9x104 2.0x102 9.2x103 
45oC-90%RH 4.8x106 <10 5.4x106 

 

Moreover, the maize meal at 45oC-90%RH storage condition was visually observed to be caking 

and having whitish-like moulds by day 28 and, heavy caking and greenish-like moulds by day  
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35.  At 25oC-90%RH storage condition, the caking was visually observed by day 35 and heavy 

caking coupled with blackish fungal/mould growth were observed by day 49. This was observed 

for the samples initially kept for 22 days at 5oC before commencing the experiments. Bothast et 

al. (1981) found that maize meal stored at 25°C became visibly moldy after 1.5 months (6 

weeks) of storage, which is one week later than our observation. The growth of moulds in the 

maize meal samples may confound the results from the points were they proliferated. This is 

because growth of moulds requires nutrients, hence may be consuming some of the nutrients 

from the maize meal during storage. The moulds would also produce different kinds of enzymes 

which may begin to degrade the lipids, carbohydrates or proteins. This has consequences on the 

other quality parameters of the maize meal during storage. 

 

3.3. Influence of storage conditions on acidity 

 

3.3.1. Maize meal storage in closed bottles 

 

3.3.1.1. Materials 

 

Freshly produced white maize meal branded ‘Super fine’ was obtained from Superior Milling 

Company (Lusaka, Zambia). This brand belongs to the low extraction generic brands known as 

‘breakfast’ maize meal (Table 1.2). White breakfast maize meal is a partially degermed 

commercial brand on the Zambian market. It is produced by dry milling at extraction rates 

between 60-70% (Jayne, et. al., 1996). The white breakfast maize meal was packaged in an 

opaque thick polyethylene 5kg plastic bag and sent from Lusaka (Zambia) to Gent (Belgium) 

within two days.  

 
3.3.1.2. Storage protocol 

 

230g of maize meal was weighed into bottles. The bottles were capped to make them air and 

moist-tight. The bottles were further wrapped on the exterior with aluminium foils. One set of 

bottles was stored in a cupboard at room temperature ( ≈ 25°C) and another at 43°C in an 

incubator until sampling day. Two bottles from each set were taken out of storage at random for 

analysis on days 0, 29, 42, 54, 68, 89 and 124 of the storage period. 
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3.3.1.3. Proximate, pH and Titratable acids Determinations 

 

pH determinations were carried out in at least duplicates according to AOAC method (1984). 

Titratable acids were determined by titrating 25ml an aliquot from extracts obtained from pH 

determinations against standardized 0.05M NaOH and was calculated as mg NaOH per 100g 

(db) white maize meal. 

  

3.3.2. Results and discussion 

 

3.3.2.1. Acidity of white maize meal stored in closed bottles 

 

pH decreased very fast within the first 30 days of storage for both 43°C and ( ≈ 25°C) storage 

(Figure 3.2a) and was followed by a period of minimal decrease. The maize meal stored at 43°C 

decreased faster and much lower than the maize meal stored at ( ≈ 25°C) throughout the storage 

period. 
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Figure 3.2 Changes in pH and titratable acids of white maize meal during storage at room 

temperature ( ≈25°C) and 43°C. 

 

The faster decrease in pH at 43°C than at room temperature shows that storage temperature 

influences changes in pH of maize meal. Titratable acids, expressed as mg NaOH per 100g white 

maize meal, increased very slowly for both 43°C storage and 25°C storage, until after 90 days 

when there was a steep increase (Figure 3.2b). The titratable acidity is used to approximate total 

acidity. There was no significant difference in the titratable acids of maize meal at the two  
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storage temperatures. Zia-Ur-Rehman (2006) has reported a decrease in pH and an increase in 

titratable acids after three months of storage at 25oC in maize grain. The increase in the acidity of 

the stored grains has been attributed to the increasing concentration of the free fatty acids and 

phosphate, which result from increased grain deterioration. The other possible cause of increased 

acidity in stored cereals has been attributed to the binding of the amino group of amino acids, 

short chain peptides, and protein, leaving the carboxylic ends free and the presence of acid 

byproducts of advanced Maillard reactions. 

 

3.4. Influence of storage conditions on colour 

 

3.4.1. Open bulk storage 

 

3.4.1.1. Materials 

 

Freshly produced 25 kg of white roller maize meal was obtained from National Milling 

Corporation (Lusaka, Zambia). Roller maize meal is a partially degermed commercial brand of 

on the Zambian market (Table 1.2) It is produced by dry milling at extraction rates between 80-

85% (Jayne et al., 1996). 

 

3.4.1.2. Storage protocol 

 

1200g of the white maize meal was weighed into salad glass bowls. The bowls were placed in 4 

dessicators, two with saturated salt solutions of BaCl2 and the other two with K2CO3 solution. 

One desiccator of each solution was kept in an incubator at 45°C and the other two in an 

incubator at 25°C. A saturated solution of BaCl2 at 25 and 45°C represented a relative humidity 

of 90% and a saturated K2CO3 solution represented 43%RH. 200g sample was drawn from each 

dissecator at 7 days intervals for analysis. 

 

3.4.2. Maize meal storage in commonly used packaging material 

 

The materials, storage protocol, WVTR and statistical analyses were as described in section 

2.4.1.1, section 2.4.1.2, section 2.4.2.2 and section 2.4.2.3, respectively. 
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3.4.3. Analytical Methods 

 

3.4.3.1. Colour (L, a and b-values) 

 

The colour of the white maize meal during storage was measured with a hand-held tristimulus 

Konica Minolta Color Reader CR-10 (Konica Minolta Sensing Inc., Japan). The Minolta color 

reader allocates each sample a colour co-ordinate within the CIE (Commission Internationale 

l’Eclairage) three-dimensional (L,a,b) colour space. CIE L values represent brightness on a 0 

(pure black) –100 (pure white) unit scale, CIE a values range from -60 (pure green) to +60 (pure 

red), and CIE b values range from -60 (pure blue) to +60 (pure yellow). 9g of the white maize 

meal was partially compacted in a cell provided by the manufacturer to the required level by 

gently tapping the cell on a laboratory bench. The glass cell containing the maize meal was 

placed against the light source and post-processing L, a, b values were recorded. Each CIE  L, a, 

and b value was an average from three readings. From these values, total color difference ∆E 

was calculated using the formula: 

 

( ) ( ) ( )2
0

2
0

2
0 iii bbaaLLE −+−+−=∆      (3.1) 

 

Where L0, a0 and b0, denote the color parameters for the initial samples (fresh maize meal 

sample); and Li, ai and bi-values denote the color parameters of the maize meal samples during 

storage. 

 

3.4.3.2. Statistical analysis 

 

ANOVA statistical comparisons were performed with Duncan tests at a level of α = 0.05 using 

SPSS® Version 11.0 (SPSS Inc., Chicago). 

 

3.4.4. Results and Discussion 

 

3.4.4.1. Changes in colour properties (L, a and b-values) in open bulk storage 

 

The L a b color space (also referred to as CIELAB) was used to measure the colour changes in 

white maize meal during storage. Figure 3.3 shows the evolution of L-values for white maize 

meal exposed to a combination of temperature-humidity of 25oC-43%RH, 25oC-90%RH, 45oC- 
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43%RH and 45oC-90%RH. The L-values of samples at 25oC-43%RH remained essentially 

constant during the storage period (Figure 3.3a). At 45oC-43%RH and 45oC-90%RH storage, 

lightness decreased by 9.6 and 17.3% respectively, during the storage period. The L-values at 

25oC-90%RH decreased by 12.8% after being constant for the first 28 days of storage. 
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Figure 3.3. Changes in (a) L-values (b) a-values, (c) b-values and (d) ∆E-values of white maize 

meal during storage at 25oC-43%RH, 25oC-90%RH, 45oC-43%RH and 45oC-90%RH 

 

The a- and b-values of samples stored at 25oC-43%RH and 25oC-90%RH did not differ 

significantly (p<0.05) in their evolution, and were essentially constant (Figure 3.3 c and b). The 

maize meal pigments shifted towards the yellow colour by 56.1 and 76.5% at 45oC-43%RH and 

45oC-90%RH, respectively during the storage period. 
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The ∆E-values of samples stored at 25oC-43%RH did not significantly change throughout the 

storage period (Figure 3.3d). After 28 days of storage, samples at 25oC-90%RH substantially 

increased up to the end of storage study. The ∆E of samples at 45oC-43%RH increased during 

the storage period and were higher than at 25oC-90%RH up to 28 days of storage. The ∆E of 

samples stored at 45oC-90%RH increased almost linearly and had the highest ∆E-values after 7 

days of storage.  

 

3.4.4.2. Changes in L-, a- and b-values in packaging commonly in use 

 

Figure 3.4, 3.5, 3.6 and 3.7 shows the changes in L-, b-, a- and ∆E-values of white maize meal as 

affected by packaging material stored at four temperature-humidity conditions.  
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Figure 3.4 Changes in L-values of white maize meal during storage at different conditions: (a) 

without packaging (Cont: Control), (b) in polypropylene (PP) and (c) in polyethylene (PE) 

packaging materials with exposure to temperature-humidity conditions of 25oC-43%RH, 25oC-

90%RH, 45oC-43%RH and 45oC-90%RH. 
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Figure 3.4 (a), 3.5(a), 3.7(a) and 3.7(a) illustrates the influence of storage temperature-humidity 

on L-, b-, a- and ∆E-values, and the patterns of evolution are similar to those observed for Figure 

3.3(a), (b), (c) and (d), respectively. Figures 3.4 (b) and (c) illustrate the influence of packaging 

material on L-values when packaged white maize meal is stored under the same four storage 

conditions. In terms overall quantitative differences, ANOVA revealed that L-values for the 

control at 25oC-43%RH, PP at 25oC-43%RH, PE at 25oC-43%RH, and PE at 25oC-90%RH 

remained high and did not significantly (p>0.05) differ. The L-values for the control at 45oC-

90%RH and PP at 45oC-90%RH had the lowest values and did not significantly (p>0.05) differ. 

On the other hand, the L-values for the control samples at 25oC-90%RH and PP at 25oC-90%RH 

did not significantly differ just as the control at 45oC-43%RH and PP at 45oC-43%RH did not 

significantly differ. However, the L-values for PE at 45oC-43%RH and PE at 45oC-90%RH were 

appreciably low and, had the third and second lowest values, respectively. 

 

Figures 3.5 (b) and (c) illustrate the influence of packaging material on b-values when packaged 

maize meal is stored under the same four storage conditions. ANOVA showed that b-values for 

the control at 25oC-90%RH and PP at 25oC-90%RH did not significantly differ and had the 

lowest values. The b-values for the control at 45oC-90%RH and PP at 45oC-90%RH did not 

significantly differ and had significantly the highest values. The b-values for the control at 25oC-

43%RH, PP at 25oC-43%RH, PE at 25oC-43%RH and PE at 25oC-90%RH did not significantly 

differ and had the second lowest values. The b-values for the control at 45oC-43%RH and PP at 

45oC-43%RH did not significantly differ and had the third highest values. On the other hand, the 

b-values for PE at 45oC-43%RH and PE at 45oC-90%RH did not significantly differ and had the 

second highest values. 

 

Figures 3.6 (b) and (c) illustrate the influence of packaging material on a-values when packaged 

maize meal is stored under the same four storage conditions. Using ANOVA it was found that 

the control at 45oC-90%RH had significantly the highest a-values followed by PP at 45oC-

90%RH, PE at 45oC-90%RH and PE at 45oC-43%RH, in that order. The a-values for the control 

at 45oC-43%RH and PP at 45oC-43%RH did not significantly differ and had the fifth highest 

values. 

 

The evolution of ∆E for the control and PP at all the four storage conditions did not significantly 

differ during the storage period (Figure 3.7). The ∆E for the control and PP at 45oC-90%RH, 
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Figure 3.5 Changes in b-values of white maize meal during storage at different conditions: (a) 

without packaging (Cont: Control), (b) in polypropylene (PP) and (c) in polyethylene (PE) 

packaging materials with exposure to temperature-humidity conditions of 25oC-43%RH, 25oC-

90%RH, 45oC-43%RH and 45oC-90%RH. 

 

45oC-43%RH and 25oC-90%RH increased during the storage period with samples at 45oC-

90%RH having the highest ∆E –values (Figure 3.7a and b). The ∆E for control and PP at 25oC-

90%RH were only higher than the ∆E at 45oC-43%RH after 43 days of storage, while ∆E at 

25oC-43%RH was the lowest and was significantly constant during the storage period. The ∆E at 

high storage temperature (45oC-90%RH and 45oC-43%RH) for samples in PE were higher than 

the samples at low storage temperature (25oC-43%RH and 25oC-90%RH) during the storage 

period (Figure 3.7c). The ∆E for samples in PE at 45oC-90%RH and 45oC-43%RH did not 

significantly differ until after 43 days when the samples at 45oC-90%RH became significantly 

higher than at 45oC-43%RH. On the other hand the ∆E for samples in PE at 25oC-43%RH and 

25oC-90%RH did not significantly differ throughout the storage period. 
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Figure 3.6 Changes in a-values of white maize meal during storage at different conditions: (a) 

without packaging (Cont: Control), (b) in polypropylene (PP) and (c) in polyethylene (PE) 

packaging materials with exposure to temperature-humidity conditions of 25oC-43%RH, 25oC-

90%RH, 45oC-43%RH and 45oC-90%RH. 

 

Overall, storing maize meal in PP interwoven sacks had poor barrier protection from effects of 

storage temperature and relative humidity on L-, a- and b-values. PE plastic maintained L-values 

(suppressed reduction in L-values) at low temperature-high humidity storage conditions. 

However, PE plastic decreased L-values faster than in PP interwoven sacks at high temperature-

low humidity. Storing maize meal in PE plastic increasesd b- and a-values faster and to higher 

values than in PP interwoven sacks at high temperature-low humidity. The overall colour (∆E-

values) in the PE plastics changed faster and more intensely than in PP interwoven sacks at high 

temperature-low humidity. In fact, the rate of change in colour was equivalent to the rate of 

change at high temperature-high humidity. 
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Figure 3.7 Changes in ∆E-values of white maize meal during storage at different conditions: (a) 

without packaging (Cont: Control), (b) in polypropylene (PP) and (c) in polyethylene (PE) 

packaging materials with exposure to temperature-humidity conditions of 25oC-43%RH, 25oC-

90%RH, 45oC-43%RH and 45oC-90%RH. 

 

The results have shown that low storage temperatures and low humidity maintains the color 

quality of maize meal for a longer storage time even without packaging. However, PE plastics 

could be used to slow down the browning at high humidity, if the storage tempearure can be 

maintained low. These results also indicate that at high storage temperatures and high humidity, 

neither the PP nor the PE would inhibit the browning in the white maize meal. It is clear that to 

avoid browning, high storage temperatures must be avoided. This is a big challenge for low lying 

regions of Africa like the valleys which record extreme high temperatures. 
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3.5. Influence of storage conditions on sensory properties 

 

3.5.1. Open bulk storage of maize meal 

 

3.5.1.1. Materials and storage protocol 

 

The materials and the storage protocol were as described in Section 3.4.1.1 and section 3.4.1.2, 

respectively. 

 

3.5.2. Sensory testing 

 

3.5.2.1. Sample preparation and serving 

 

Immediately after sampling, 5g maize meal samples were placed in small clear bottles (approx. 

volume = 40ml, internal diameter = 22mm and height = 70mm). The bottles were capped with a 

lid immediately to avoid loss in aroma/smell and were marked with a three digit code. The 

sample bottles consisted of a control (untreated sample), and the four treated samples. The 

samples were left to equilibrate overnight in the sample bottles at room temperature before 

sensory analysis. The control sample used in sensory evaluation was kept in hermetically closed 

glass bottles in the refrigerator maintained at 4 - 7oC.  

 

3.5.2.2. Sensory panel and training 

 

Sensory analysis was accomplished by 11 panellists consisting of 4 males and 7 females aged 

between 20 and 50 years. The panellists were staff members from the faculty of Agricultural 

Sciences of the University of Zambia, Lusaka, Zambia. The panellists were selected on the basis 

of willingness to participate through out the study period, regular users (at least once a week) of 

maize meal and not allergic to maize meal. The sensory analysis was conducted in the 

Laboratory at the Department of Food Science & Technology of the University of Zambia, 

Lusaka, Zambia.  

 

The panellists were familiarized in one 2-hour session with samples previously stored under 

similar conditions. The panellists were also familiarized with the attributes to be evaluated, the 

techniques to be used during the evaluation process, the use of the questionnaire and the terms 

used were explained in detail.  
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3.5.2.3. Sensory attributes and evaluation 

 

Attributes evaluated included aroma, colour and texture of the maize meal and were evaluated in 

that order. For aroma, the panellists were instructed to open the sample bottle and smell the 

maize meal provided in the bottle. The panellists were asked to rank the maize meal based on the 

intensity of maize meal aroma of the reference/control sample using the scale (1 = Extreme off-

odor, 5 = Typical Maize meal Aroma, and 9 = No maize meal aroma). For colour, the panellists 

were instructed to place the samples on a white disposable plate and using the scale (1 = 

Extremely more browned, 5 = Typical ‘white’ roller meal, and 9 = Extremely more whiter), they 

were asked to rank the colour of the maize meal based on the intensity of the colour of the 

reference sample. For the texture, the panellists were asked to examine the maize meal sample by 

picking and pressing a small amount of it in between their thumb-finger and the middle-finger, 

for a few seconds. By comparing with the reference/control sample, they were then asked to rank 

the texture (stickiness or agglomeration to itself) of the maize meal using the scale (1 = 

extremely more sticky, 5 = typical stickiness of roller maize meal, and 9 = extremely less sticky).  

 

3.5.2.4. Statistical analysis 

 

ANOVA statistical comparisons were performed with Duncan tests at a level of α = 0.05 using 

SPSS® Version 11.0 (SPSS Inc., Chicago). 

 

3.5.3. Results and discussions 

 

The white maize meal was evaluated for three sensory properties during storage; aroma, colour 

and texture. The sensory properties were only significantly (p<0.05) established for colour. In 

this study, low colour scores means that the colour of the maize meal deteriorated, in fact 

became browner. The sensory mean colour scores of the maze meal at 25oC-43%RH slightly but 

significantly (p<0.05) increased during the storage period (Figure 3.8). This means that the 

maize meal was perceived by the panellists to become whiter during storage at 25oC-43%RH. 

The sensory mean colour scores of the maze meal at 25oC-90%RH significantly (p<0.05) 

decreased from the 28th day of storage up to the end of the storage period. The colour scores of 

the maze meal at 45oC-43%RH and 45oC-90%RH significantly (p<0.05) decreased between 7th 

and 14th days of storage and remained constant during the rest of the storage period. However, 

the colour of the maize meal at 45oC-90%RH reduced significantly (p<0.05) to lower mean 

colour scores than at 45oC-43%RH.  



Chapter3. Chemical and sensory properties of white maize meal during storage 

___________________________________________________________________________________________________ 

_______________________________________________________________________________________________________ 
Functional properties of white maize meal stored under tropical conditions 

93 

 

This entails that the panellists perceived browner colour development with storage time at 25oC-

90%RH, 45oC-43%RH and 45oC-90%RH storage conditions. However, the rate of brown colour 

development at these storage conditions were perceived by the panellists to be different, with 

45oC-90%RH having the highest rate and 25oC-90%RH having the least while 45oC-43%RH 

was intermediate. 
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Figure 3.8 Mean colour scores of white maize meal during storage at temperature – relative 

humidity of 25oC-43%RH, 25oC-90%RH, 45oC-43%RH and 45oC-90%RH. 

 

Table 3.2 shows the correlation coefficients between L-, a- and b-values obtained by a Minolta 

camera and the mean sensory colour scores obtained by panellists during storage of white maize 

meal. The samples at low storage temperature only showed a significant (p<0.05) negative 

correlation for ∆E (overall colour change) and the mean sensory colour scores. On the contrary, 

high temperature storage had all the Minolta colour values significantly correlating with the 

mean sensory colour scores. At high storage temperatures, L-values positively correlated with 

mean sensory colour scores while b-, a- and ∆E-values negatively correlated with mean sensory 

colour scores. The b- and a-values at high temperature storage increased during storage, meaning 

that the maize meal pigments became more reddish and yellowish in colour in the course of 

storage. A combination of these colours is what the panellist scored as brownish hue. From table 

3.2, it is also evident that the correlation values were higher for 45oC-90%RH than for 45oC-

43%RH storage conditions. This means that the storage relative humidity also influenced the 

changes in colour during storage. Higher relative humidity at high storage temperature increased 

the intensity of discoloration or browning of the maize meal during storage. 
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Table 3.2 Correlation coefficients between sensory colour scores and Minolta colour values of 

white maize meal during storage at temperature – relative humidity of 25oC-43%RH, 25oC-

90%RH, 45oC-43%RH and 45oC-90%RH* 

Sensory colour scores Minolta colour 

values 25oC-43%RH 25oC-90%RH 45oC-43%RH 45oC-90%RH 

Storage time 

(days) 

0.77* -0.59 -0.77* -0.79* 

L-values -0.75 0.75 0.77* 0.89* 

b-values -0.64 0.40 -0.87* -0.98* 

a-values -0.60 0.41 -0.84* -0.96* 

∆E-values -0.09 -0.80* -0.78* -0.94* 

*Significant at p<0.05 
 

It seems that even though there was a change in the aroma during storage of the white maize 

meal, the changes were not at a level perceivable for differentiation by the panelists. In a study of 

cornmeal, Bothast et al. (1981) also found that with respect to flavor and ordor scores, storage 

time did not appear to be a factor in low-temperature storage of either product at 11 and 13% 

moisture. Probably, the aroma and texture attributes of the maize meal needed a well elaborate 

training for the panelists, unlike the level of familiarization/training given in this study. For 

aroma, the researcher’s observation was that the off-flavours could be sensed on the first time of 

opening the product under the storage conditions, but not afterwards. Therefore, it seems that in 

order to capture the aroma trend during maize meal storage, a real time aroma sensory evaluation 

is required. 

 

The decrease in the lightness (decrease in L-values), the shift towards red (increase in a-values) 

and yellow (increase in b-values) hue in colour at high storage temperature conditions were 

principally due to pronounced browning which was visually observed.  No browning was 

observed at low temperature – low humidity conditions. On the other hand, the browning at low 

temperature – high relative humidity storage condition was only manifested in decreasing L-

values (lightness) but no shifts in the a- and b-values. A decline in lightness has been associated 

with darkening in irradiated maize flour (maize meal) due to Maillard (Rombo et al., 2001), 

enhanced Maillard browning reactions in rice (Wootton et al., 1988; Wang et al., 1983) and in 

dry bean flours (Cunha et al., 1993; Rombo et al., 2001).  
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In white maize meal, the L-values clearly depicted the increase in browning at 45oC-43%RH and 

45oC-90%RH after 7 days of storage, and after 28 days of storage for 25oC-90%RH storage 

conditions (Figure 4.5). 

 

Common browning of foods during storage has been attributed to Maillard reactions (BeMiller & 

Whistler, 1996). The white maize meal became brown during storage due to the reaction 

between sugars and free amino proteins. Total soluble sugars have been reported at 3.6% in 

maize grain. A decrease in total soluble sugars has been reported in maize grain during six 

months of storage at 45oC while an increase has been observed at 25oC. The increase in the 

soluble sugars has been attributed to activity of endogenous amylases whereas the decrease in 

soluble sugars at 45oC has been attributed to their involvement in Maillard reactions (Zia-Ur-

Rehman, 2006). 

 

Browning was not observed at low temperature – low humidity conditions during the storage of 

the white maize meal. The white maize meal at this storage condition decreased to low water 

activities during the storage period. It has been suggested that the decrease of Maillard reaction 

rate in low water activity systems is due to higher viscosity, which reduces the mobility of 

reagents (Sensidoni et al., 1999).  

 

The white maize meal increased in browning at 45oC-43%RH and 45oC-90%RH after 7 days of 

storage and after 28 days of storage for 25oC-90%RH. Some researchers (Eichner & Karel, 1972; 

Sensidoni et al., 1999) have reported that the maximum rate of the non-enzymatic browning 

reaction appears when dry food materials are humidified. The region where the maximum occurs 

is usually near water activity = 0.65 – 0.70, which corresponds to the water activity of 

intermediate moisture foods. The water activities in the white maize meal for the high humidity 

storage were falling between 0.6 and 0.8 (section 2.4.3.2, Figure 2.9) which is within the stated 

range. These researchers (Eichner & Karel, 1972; Sensidoni et al., 1999) have further suggested 

that the differences in reactivity with increasing water activity can be explained by considering 

the non-enzymatic browning reaction as a diffusion limited reaction. Increasing water activity 

generally leads to higher reaction rates due to higher mobility of reactants.  

 

However, the white maize meal stored at high temperature-low humidity conditions resulted in 

high amounts of non-enzymatic browning and yet the water activities in this storage condition 

decreased to below 0.6, with the lowest water activities around 0.4 (section 2.4.3.2, Figure 2.9).  
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Assuming equilibrium, water activities of 0.4 for the white maize meal gives moisture content of 

7.5% which is slightly above the estimated monolayer moisture content obtained. This indicates, 

however that increasing temperature even with low water activities causes browning in white 

maize meal during storage. Goddard (1999) has indicated that, in general, as with all chemical 

reactions, heat accelerates and in many cases initiates the browning reaction.  

 

The degradation of the Amadori product formed from the reaction of sugars and amino protein is 

dependent on the pH of the system. At pH 7 or below, the Amadori product mostly rearranges 

through the 1,2-enolisation to form furfural (when pentoses are involved) or 

hydroxymethylfurfural (HMF) (when hexoses are involved) (Martins et al., 2001). The pH of the 

white maize meal in this study decreased during storage at both low and high temperatures. In 

light of this observation and referring to the Maillard pathways presented in Figure 1.3, one 

would postulate that the browning mechanism in white maize meal during storage would proceed 

via schiff’s base of hydroxymethylfurfural (HMF) or furfural. The HMF or furfural would 

probably react with amino compounds to produce melanoidins (brown nitrogenous polymers).  

 

Brown colors obtained during long-term storage of foods containing reducing sugars are 

undesirable (BeMiller & Whistler, 1996). Browning or discoloration is undesirable among white 

maize meal consumers too. Maillard reaction is also known to be an important factor influencing 

food nutritional value and quality. This must be of concern in white maize meal because it is a 

product that is already low in protein quality, particularly, lysine and tryptophan. If the small 

amounts in essential amino acids in the maize meal react in Maillard reactions, this further 

lowers the nutritional quality of this staple food.  

 

3.6. Influence of storage conditions on lipolysis 

 

3.6.1. Maize meal storage in closed bottles 

 

The materials and storage protocol were as described in section 3.3.1.1 and section 3.3.1.2, 

respectively. 
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3.6.2. Open bulk storage of maize meal 

 

The materials, storage protocol and statistical analysis were as described in section 2.3.1.1, 

section 2.3.1.2 and section 2.4.2.3. 

 

3.6.3. Maize meal storage in commonly used packaging material 

 

The materials, storage protocol, WVTR and statistical analyses were as described in section 

2.4.1.1, section 2.4.1.2, section 2.4.2.2 and section 2.4.2.3, respectively. 

 

3.6.4. Fortified-packaged-sunlight exposed storage 

 

The materials, fortification procedure, storage protocol, WVTR, light transmission and statistical 

analyses were as described in section 2.4.4.1, section 2.4.4.2, section 2.4.4.3, section 2.4.2.2, 

section 2.4.5.4 and section 2.4.6, respectively. However, the WVTR here was only determined at 

45oC. 

 

3.6.5. Free fatty acids determination 

 

For the maize meal storage in closed bottles, open bulk storage and fortified-packaged-sunlight 

exposed storage, the oil extraction procedure was as follows: Maize meal oil was extracted by 

shaking 5g of maize meal in 100ml chloroform-methanol (2:1 v/v) mixture for 8 hours at room 

temperature according to Folch et al. (1957). The mixture was passed through filter paper to 

remove the insoluble material. The extract was evaporated to dryness in a rotary evaporator at 

40°C under reduced pressure. 

 

For the maize meal storage in commonly used packaging material, the oil extraction procedure 

was as follows: Oil was extracted by shaking 5g of maize meal in 100ml n-hexane for 8 hours at 

room temperature. The mixture was passed through filter paper to remove the insoluble material. 

The filtrate was evaporated to dryness in a rotary evaporator at 65°C under reduced pressure.   

 

The dry oil extracts were weighed. Free fatty acid contents were determined in duplicates 

according to DGF-Standard methods (1984). 
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3.6.6. Results and discussion 

 

3.6.6.1. Maize meal storage in closed bottles 

 

Figure 3.9 shows the evolution of free fatty acids for the samples stored in capped bottles at low 

and high temperature. The fats in this section were extracted using choloroform:methanol (2:1) 

mixture. The use of a mixture of chloroform and methanol (2:1, 1:1, 1:2 by volume) is used to 

extract non-starch total lipids at room temperature. In cereals, the sum of free lipid and bound 

lipid is termed the non-starch total lipids (Chung & Ohm, 2000). Free fatty acid contents 

increased almost linearly throughout the 124 days of storage at both room temperature ( ≈ 25°C) 

and 43°C. The gradient for the 43°C storage graph was steeper than the room temperature 

( ≈ 25°C) storage graph.  The results show that both storage temperature and time have a 

profound effect on the free fatty acid contents in maize meal. This could be due to increased 

lipase activities with an increase in storage temperature.  
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Figure 3.9 Changes in free fatty acids of white maize meal during storage at room temperature 

( ≈ 25°C) and 43°C 

 

Castello et al. (1998) reported that wheat lipases have been implicated in the increase of free 

fatty acid contents during long term storage of flour. 
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3.6.6.2. Open bulk storage of maize meal 

 

Figure 3.10 shows the changes in free fatty acid contents of maize meal stored at 25oC-43%RH, 

25oC-90%RH, 45oC-43%RH and 45oC-90%RH. The fats in this section were extracted using 

choloroform:methanol (2:1) mixture. The free fatty acid contents of samples stored at 25oC-

90%RH increased slowly the first 30 days and thereafter increased sharply. The free fatty acid 

contents of samples stored at 45oC-90%RH increased very sharply in the first 35 days before 

decreasing sharply again up to the 49th day of the storage study. There was mould or fungal 

growth from 28 days and 49 days at 45oC-90%RH and 25oC-90%RH, respectively. At low 

humidity storage no fungal growth was observed throughout the storage period. Castello et al. 

(1998) reported that wheat and fungal lipases have been implicated in the increase of free fatty 

acids during long term storage of flour. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10 Changes in free fatty acid contents of white maize meal stored at 25oC-43%RH, 

25oC-90%RH, 45oC-43%RH and 45oC-90%RH. A – Caking and mould appearance; B – Caking; 

C- Mould appearance 

 

Storage temperature has a higher influence on the changes in free fatty acid contents than storage 

relative humidity. Free fatty acid contents at high storage temperatures were higher and evolved 

faster than at low storage temperatures.  However, it is also clear that at constant storage 

temperature, samples at high storage relative humidity had faster and higher increases in free 

fatty acid contents than at low storage relative humidity.  
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This effect is more pronounced at high storage temperatures than at low storage temperatures. 

This phenomenon could be explained on the basis of moisture content. In section 2.3.3.2, high 

storage relative humidity was associated with higher moisture contents and higher water activity 

in section 2.4.3.2. Higher moisture contents could have increased substrate mobility hence, 

enhanced lipolytic reactions. Water activity affects chemical reactions in foods. 

 

3.6.6.3. Maize meal storage in commonly used packaging material 

 

The properties of the packaging materials used were as reported in section 2.4.3.1. In order to 

determine the influence of packaging on lipolysis the white maize meal was stored in 

polypropylene interwoven sacks and polyethylene plastic materials together with samples 

without packaging as a control at different temperature-humidity conditions. The two packaging 

materials were used in the study because they are in common use in the packaging of maize meal 

in Zambia. Free fatty acids (FFA) are a measure of the extent of lypolysis. In this study FFA was 

expressed as % oleic acid on oil basis. The fats in this section were extracted using hexane. 

Unlike the chloroform:methanol mixture which extracts non-starch total lipids, hexane is a 

nonpolar solvent and only extracts free lipids. Figure 3.11 (a) illustrates the influence of storage 

temperature and relative humidity on FFA. Figures 3.11 (b) and (c) illustrate the influence of 

packaging material on FFA when maize meal is stored under the same four storage conditions.  

 

The FFAs for the control samples increased during the storage period and did not significantly 

differ particularly the first 20 days, for all the four storage conditions (Figure 3.11a). However, 

the FFA at high storage temperatures were significantly higher than for the samples at low 

storage temperatures for the control after 20 days of storage. At high storage temperature, the 

FFAs for the samples at 45oC-90%RH were significantly higher than at 45oC-43%RH after 28 

days of storage. Similarly, at low storage temperature, the FFAs for the samples at 25oC-90%RH 

were significantly higher than at 25oC-43%RH after 28 days of storage.  

 

The FFAs for the samples in PP also increased during the storage period for all the four storage 

conditions (Figure 3.114b). However, the FFAs at high storage temperatures were significantly 

higher than for the samples at low storage temperatures for the samples in PP particularly after 

28 days of storage. 
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Figure 3.11 Changes in free fatty acid (FFA) contents of white maize meal during storage at 

different conditions: (a) without packaging (Cont: Control), (b) in polypropylene (PP) and (c) in 

polyethylene (PE) packaging materials with exposure to temperature-humidity conditions of 

25oC-43%RH, 25oC-90%RH, 45oC-43%RH and 45oC-90%RH. 

 

At high storage temperature, FFAs for the samples at 45oC-90% were significantly higher than at 

45oC43%RH just after 7 days of storage. The FFAs for the samples stored in PP at 45oC-43%RH 

did not significantly differ from the samples at low storage temperature until after 28 days of 

storage. On the contrary, at low storage temperature, FFAs for the samples at 25oC-90%RH and 

at 25oC-43%RH did not significantly differ during the storage period. 

 

The FFAs for the samples stored in PE also increased during the storage period with samples at 

high storage temperature being higher than at low storage temperatures (Figure 3.11c). At high 

storage temperature, FFAs at 45oC-90%RH were significantly higher than at 45oC-43%RH.  

However, the FFAs for the samples in PE at 25oC-43%RH and 25oC-90%RH did not 

significantly differ during the storage period. 
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Quantitatively, ANOVA showed that the control samples stored at 45oC-90%RH had 

significantly the highest FFAs. The free fatty acids of samples stored in PP at 45oC-90%RH and 

in PE at 45oC-90%RH did not significantly differ and had the second highest FFAs. The control 

samples stored at 25oC-43%RH, the samples stored in PP at 25oC-43%RH and stored in PE at 

25oC-90%RH did not significantly differ and had the second lowest FFAs after samples in PE at 

25oC-43%RH which had significantly the lowest. The control samples at 45oC-43%RH and the 

samples in PP at 45oC-43%RH had the third and fourth highest. The control samples at 25oC-

90%RH and the samples in PE 45oC-43%RH did not significantly differ though they had 

significantly higher FFAs than samples in PP at 25oC-90%RH. In essence, it seems that 

packaging material has no direct influence on the evolution of FFA. The increase in free fatty 

acid contents in the white maize meal during storage could be an implication of lipases. Sammon 

(1999) reported that freeing of fatty acids takes place from the time of milling, presumably due 

to mixing of natural lipases with esterified fatty acids.  

 

3.6.6.4. Fortified-packaged-sunlight exposed storage 

 

The fat in this section was extracted using chloroform:methanol (2:1) mixture. When maize meal 

was fortified, packaged and exposed to sunlight, there was an increase in free fatty acids in all 

the samples during the 70 days storage period (Figure 3.12). All the fortified samples had higher 

free fatty acids contents than the unfortified samples, throughout the storage period, except for 

FSP which had the same as the unfortified in the first two weeks, but crossed on the higher side 

thereafter. Quantitatively, ANOVA showed that FED and FES had significantly (P<0.05) the 

highest FFA followed by FPD and FPS, in that order. On the contrary, there was no significant 

(P<0.05) difference in FFA among UPS, UES, UPD and UED which had the lowest FFA. This 

indicates that, of all the three conditions, fortification was a major determinant of the FFA during 

storage. 

 

The magnitudes of change in FFA between day zero and day 70 were also calculated from 

Figure 3.12. The calculations were based on the initial free fatty acids as: 

 

100*
0

070







 −
=∆

C

CC
CFFA         (3.2) 

where FFAC∆  is the percentage change in FFA, 0C is the initial concentration of FFA, 70C is the 

concentration of FFA on 70th day. 
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Figure 3.12 Changes in free fatty acid contents of fortified and non-fortified white maize meal 

packaged in polypropylene sack and polyethylene plastic packages with exposure and non-

exposure to sunlight conditions. The three letter abbreviation in the legend gives the maize meal 

treatments: type of maize meal-packaging type-sunlight/darkness storage. FED: Fortified-PE-

Darkness; FES: Fortified-PE-Sunlight; FPS: Fortified-PP-Sunlight; FPD: Fortified-PP-Darkness; 

UPS: Unfortified-PP-Sunlight; UES: Unfortified-PE-Sunlight; UPD: Unfortified-PP-Darkness 

and UED: Unfortified-PE-Darkness. 

 

The fortified samples’ increase in free fatty acid contents ranged between 342 and 433 %, 

whereas the unfortified ranged between 284 and 354 %. Within fortified samples, the samples 

packaged in polyethylene (FED = 433 % and FES = 411 %) had a higher increase in free fatty 

acids than the samples in polypropylene (FPS = 358 % and FPD = 342 %). Within the unfortified 

samples, samples stored in sunlight had higher increase in free fatty acids (UPS = 354 % and 

UES = 334 %) than samples in the dark room condition (UPD = 305 % and UED = 284 %), 

although ANOVA has shown that these were not statistically different. The higher magnitudes of 

increase in free fatty acid contents in the fortified samples than unfortified could be attributed to 

increased yeast & mould growth. The yeast & moulds are capable of producing lipases which 

increases the free fatty acid contents. Among the fortified samples, polyethylene increased free 

fatty acids more than polypropylene because of the good water activity retention properties in 

polyethylene than polypropylene, as reported in Table 2.6 section 2.4.7.2.  

 

Lipolysis may be of great concern in maize meal as it is now being associated with oeasphagus 

cancer. Squamous cancer of the esophagus is endemic in Southern Africa and consumption of 

maize meal has been shown to be strongly associated with cancer of the esophagus (Van  
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Rensburg et al., 1985; Sammon, 1999). The effect of milling is the mixing of esterified fatty 

acids with natural lipases, resulting in release of the non-esterified form. It has been suggested 

that an aetiological link exists between maize meal and cancer of the esophagus by means of 

elevated Prostaglandin E2 (PGE2) levels in the stomach (Sammon, 1999). Linoleic acid is a 

precursor of PGE2. A diet high in linoleic acid leads to a high level of PGE2 production in the 

stomach, the production of PGE2 apparently rising steadily as the dietary linoleic acid rises 

(Grant et al., 1988; Schepp et al., 1988; Sammom, 2006). This means that the longer the maize 

meal stays on the shelf, the higher the risk to the consumers. Therefore, to minimize the 

occurrence of non-esterified fatty acids in maize meal, storage temperature and humidity are 

major factors to be addressed. In fact, Sammon (2006) has recommended that health measures 

including poverty alleviation, health education, and monitoring and control of maize meal 

storage and content may be required to reduce the incidence of this disease in Africa. 

 

However, proponents of mycotoxins also have a strong view that oesophagus cancer in the high 

maize consumption regions is due to fumonisins intake. Fumonisins have been proven to cause 

cancer in experimental animals. Experimental evidence proving or disapproving suspected 

effects on human subjects cannot be found in literature because of ethical considerations 

(Samapundo, 2006). However, evidence from experimental animals gives fumonisins a stronger 

association between oesophagus cancer and maize consumption. 

 

3.7. Influence of storage conditions on lipid oxidation of maize meal during storage 

 

3.7.1. Fortified-packaged-sunlight exposed storage 

 

3.7.1.1. Materials and methods 

 

The materials, fortification procedure, storage protocol, WVTR, light transmission and statistical 

analyses were as described in section 2.4.4.1, section 2.4.4.2, section 2.4.4.3, section 2.4.2.2, 

section 2.4.5.4 and section 2.4.2.3, respectively. However, the WVTR here was only determined 

at 45oC. Oil extraction procedure was performed as in section 3.6.5 using chloroform:methanol 

mixture. 
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3.7.2. Maize meal storage in closed bottles 

 

The materials and the storage protocol were as described in section 3.3.1.1 and section 3.3.1.2, 

respectively. Oil extraction procedure was as in section 3.6.5 using chloroform:methanol 

mixture.  

 

3.7.3. Analytical methods 

 

3.7.3.1. Peroxide value determination 

 

Peroxide value was determined according to Egan et al. (1981). The peroxide value was 

calculated as mEq/kg (based on oil content). 

 

3.7.3.2. p-Anisidine value determination 

 

The dry oil extract was weighed and was used to determine p-anisidine value according to DGF-

Standard methods (1984). 

 

3.7.4. Results and discussion 

 

3.7.4.1. Fortified-packaged-sunlight exposed storage 

 

The properties of the packaging material used were as reported in section 2.4.7.2. The evolutions 

of peroxide value were highly influenced by whether the maize meal was fortified or unfortified. 

Figure 3.13 shows that the fortified samples reached their peak peroxide values in the second 

week, whereas the unfortified samples reached their peak peroxide values in the fourth week. 

The mean peak peroxide values of the unfortified samples were higher (15.4 mEq/kg) than the 

fortified mean peak peroxide values (8.8 mEq/kg). Thereafter, all the samples decreased in the 

peroxide value contents, although the unfortified still maintained higher peroxide values than the 

fortified samples up to the termination of storage. Peroxide value provides a clear indication of 

the initial oxidation potential of different lipids since hydroperoxides are the primary products of 

lipid oxidation (Wanasundara et al., 1995).  
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Figure 3.13 Changes in peroxide value of fortified and non-fortified maize meal packaged in 

polypropylene sack and polyethylene plastic packages with exposure and non-exposure to 

sunlight conditions. The three letter abbreviation in the legend gives the maize meal treatments: 

Type of maize meal - Packaging type - Sunlight/darkness storage. UES: Unfortified-PE-

Sunlight; UPD: Unfortified-PP-Darkness; UPS: Unfortified-PP-Sunlight; UED: Unfortified-PE-

Darkness. FPD: Fortified-PP-Darkness; FED: Fortified-PE-Darkness; FES: Fortified-PE-

Sunlight and FPS: Fortified-PP-Sunlight.  

 

The unfortified white maize meal contains metals such as iron and vitamins such as riboflavin. 

However, the metals in the white maize meal may be found in complexed states with compounds 

such as phytates. Fortification raises the concentration of iron and riboflavin in the white maize 

meal. In terms of lipid oxidation, white maize meal stored in the dark would be initiated only by 

thermal dissociation of hydroperoxides initially present in the maize meal and decomposition of 

hydroperoxides catalysed by iron. The two mechanisms would also dominate the initiation of 

lipid oxidation in the white maize meal stored in opaque PP material and exposed to sunlight.  

 

In addition to these two lipid oxidation iniation mechanisms, the lipid oxidation of white maize 

meal stored in transparent PE plastics and exposed to sunlight would be initiated by riboflavin 

photosensitized reactions. The riboflavin photosensitized initiation reactions are not inhibited by 

chain breaking antioxidants like BHT. The presence of BHT in the fortified white maize meal 

could not therefore inhibit this mechanism of lipid oxidation initiation. This lipid oxidation 

initiation mechanism would thus contribute more towards free radical production in fortified 

white maize meal than in the unfortified white maize meal in transparent PE exposed to sunlight.  
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In addition, iron in the fortified maize meal would equally highly contribute towards free radical 

production in lipid oxidation of the fortified than in unfortified white maize meal. 

 

The chain-breaking antioxidants inhibit or retard lipid oxidation by interfering with either chain 

propagation or initiation by hydrogen-atom transfer and readily donating hydrogen atoms to lipid 

alkyl, alkoxyl and peroxyl radicals. Phenolic compounds such as BHT are effective chain-

breaking antioxidants (Frankel, 2005). Therefore, the presence of BHT in the fortified white 

maize meal could have inhibited the lipid oxidation initiation by thermal dissociation of 

hydroperoxides and decomposition of hydroperoxides catalysed by iron. The BHT could have 

also inhibited the chain propagation stage of lipid oxidation reactions thereby reducing the 

secondary products in fortified maize meal. 

 

Therefore, sunlight exposure in fortified samples had lower maximum peak peroxide value and 

appeared earlier than in unfortified maize meal probably due to increased rates of oxidation. The 

hydroperoxides formed in fortified white maize meal could have been lost at a faster rate than 

what the method of determination of peroxides used could capture due to a combination of 

catalysis by sunlight energy (photosensitized reactions), iron and thermal decomposition lipid 

oxidation initiation reactions. It has been argued that the peroxide value method is limited by the 

transitory nature of the peroxides which are intermediate products in the formation of carbonyl 

compounds (Fernández et al., 1997). It is further argued that hydroperoxides decompose rapidly 

during storage (Wanasundara et al., 1995). 

 

3.7.4.2. Maize meal storage in closed bottles 

 

The evolution of p-anisidine value for the samples stored in capped bottles at low and high 

temperature is shown in Figure 3.14. The peak para-anisidine value of 23 for the sample stored at 

room temperature ( ≈25°C) appeared around the 29th day. On the other hand, the peak para-

anisidine value for the sample stored at 43°C was not detected. The para-anisidine values after 

the peak value were almost constant and there was no significant (P<0.05) difference between 

the two storage temperatures.  

 

The para-anisidine value measures secondary products of lipid oxidation, namely carbonyl 

compounds (Wanasundara et al., 1995). Measuring secondary oxidation products is important in  
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the determination of lipid oxidation in food products for human consumption because they are 

generally odour-active, whereas primary oxidation products are colourless and flavourless.  

 

Unlike hydroperoxides, carbonyls do not decompose rapidly and thus allow the history of an oil 

to be determined by the para-anisidine value (Osborn & Akoh 2004). The peak para-anisidine 

value for samples stored at 43°C was not detected most probably because it occurred much 

earlier than the chosen sampling interval. 
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Figure 3.14 Changes in para-anisidine value of white maize meal during storage at room 

temperature ( ≈25°C) and 43°C 

 

3.8. Storage life markers for white maize meal 

 

3.8.1. Use of lipid oxidation indices 

 

Among the lipid related properties, the use of peroxide value and para-anisidine value to assess 

the freshness or the storage life of maize meal must be used with caution. This is because in the 

determination of peroxide value, there are two storage time points that one can get the same 

peroxide value during the storage of maize meal. For instance, results in section 3.7.4.1, Figure 

3.13, shows that a value of about 11 mEq/kg can be obtained around the 14 and 35th day of 

storage for unfortified maize meal during storage. A similar observation can be made concerning 

the use of para-anisidine values as seen in section 3.7.4.2, Figure 3.14. This makes this primary  
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(peroxide value) and the secondary lipid oxidation (anisidine value) indices unusable as storage 

life indicators or markers for maize meal during storage. 

 

3.8.2. Use of lipolytic index 

 

On the other hand, lipolysis has shown that it has a better potential of easily being used as a 

storage life marker for maize meal. This is because FFA increased at all storage conditions in 

this study for most of the storage period, except for the case of high temperature – high relative 

humidity storage. In other words, lipolytic index (free fatty acids) seems to be sensitive to 

storage time at all the storage conditions studied in this research. Moreover, even for the high 

temperature – high humidity storage, by the time the free fatty acids begin to decrease, the maize 

meal would have been visually/physically noticed rancid.  

 

3.8.3. Use of colour indices 

 

The sensory colour change produced trends which could be used to determine the shelf life of 

maize meal. When the colour becomes significantly different (negatively) from the typical 

(control/reference sample) then the end of shelf life has been reached. The mean colour scores at 

45oC-43%RH and 45oC-90%RH were consistently below the mean scores of the control after 7 

to 14 days, where as they were consistently below for 25oC-90%RH after 28 days of storage 

(Section 3.5.3, Figure 3.8). On the other hand, the colour mean scores at 25oC-43%RH were 

consistently slightly above the control after 28 days of storage. Therefore, it can be interpreted 

that the shelf life of the maize meal at 45oC-43%RH and 45oC-90%RH using colour as a shelf 

life marker is between 7 and 14 days, whereas the shelf life at 25oC-90%RH would be about 28 

days. On the other hand, the shelf life of the maize meal at 25oC-43%RH was beyond the 49 

days of storage. However, this analysis is invalid in the absence of data on other chemical and 

microbiological storage life markers, which might be more sensitive and of more food safety 

concern to storage of maize meal than colour. What is of interest is also the fact that the 

correlations between sensory colour and instrumental colour were quiet high although for high 

storage temperatures only. This offers an opportunity for the use of instrumental colour to easily 

determine the storage life of maize meal as it is a rapid method. 
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3.9. Conclusions 

 

� At increased storage temperature decreased evolution of pH in function of time is 

observed. Storage period affected the evolution of titratable acids but storage temperature 

did not. Titratable acids increased in function of storage time. 

 

� The colour of white maize meal changed depending on the storage conditions. The L-

values decreased after a short period of storage at high storage temperature conditions, 

while at low storage temperature-high humidity after a longer storage period. The L-

values at low storage temperature-low humidity conditions did not significantly change 

over the storage period. The a- and b-values at high storage temperatures increased, while 

at low storage temperature conditions did not significantly change during the storage 

period. These changes depicted the browning of white maize meal during storage as 

collaborated by sensory analysis. 

 

� Storing maize meal in PP interwoven sacks had no barrier protection from effects of 

storage temperature and humidity on L-, a- and b-values. Storing maize meal in PE 

plastic maintained the colour at low temperature-high humidity storage conditions. On 

the contrary, storing maize meal in PE plastic deteriorated colour of white maize meal 

faster and more intense than in PP interwoven sacks at high temperature-low humidity. 

Infact, the rate of change in colour at high temperature-low humidity was equivalent to 

the rate of change at high temperature-high humidity. 

 

� Storage temperature had a higher influence on the changes on lipolysis than storage 

relative humidity. Free fatty acids contents at high storage temperatures were higher and 

evolved faster than at low storage temperatures.  At constant storage temperature, 

samples at high storage relative humidity had higher increases in free fatty acid contents 

and evolved faster than at low storage relative humidity. However, at high storage 

temperature-high humidity, the free fatty acid contents were confounded by mould 

growth after 28 days storage. Fortification had great influence on the evolution of FFA, 

with fortified maize meal evolving higher FFA than unfortified maize meal during 

storage. Packaging and sunlight exposure did not seem to play a significant role in the 

evolution of FFA during storage of maize meal. 
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�  Lipid oxidation as observed in changes of peroxide value increased and then decreased 

to relatively constant values during the storage period. Unfortified maize meal generated 

higher peroxide values than the fortified maize meal, while packaging and sunlight 

exposure did not significantly influence the evolution of peroxide values. P-anisidine 

value also increased and then decreased to relatively constant values during the storage 

period, while the influence of storage temperature was not significant. 
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Chapter 4. Pasting and rheological properties of white maize meal during storage 

 

Abstract 

 

This chapter evaluates the influence of storage conditions on gelatinization, pasting and 

rheological behaviours of white maize meal during storage. Starch in maize meal had 

significantly (P<0.05) higher gelatinization onset temperature (To) and gelatinization peak 

temperature (Tp) than the isolated starch for maize meal stored at both low and high 

temperature. On the contrary, starch in maize meal had significantly (P<0.05) lower 

gelatinization enthalpy (∆H) than the isolated starch. Storage temperature had no significant 

(P>0.05) effect on the evolution of Tp and ∆H. The gelatinization properties only significantly 

(P<0.1) changed in the To for the isolated starch and gelatinization end temperature (TE) 

(P<0.05) for maize meal, with both decreasing during the storage period.  

In terms of pasting behaviour, low storage humidity increased peak viscosity (PV), initial hot-

paste viscosity (V95i) and final hot-paste viscosity (V95f) at both low and high storage 

temperatures. High storage temperature resulted in higher cold-paste viscosity (V50), total 

setback (SBt) and cold-paste:hot-paste viscosity ratio (C:H) than low storage temperature. At 

constant storage temperature, high storage humidity resulted in higher SBt and C:H than low 

storage humidity and this phenomenon was more pronounced at high storage temperature than 

at low storage temperature. 

Storing maize meal at higher temperature and for a long period increased the peak elastic 

modulus (G′p) while it decreased the peak viscous modulus (G″p) of the isolated starch during 

heating. The white maize meal exhibited shear-thinning behaviour at all storage conditions 

throughout the storage period. The Herschel-Bulkley and Mizrahi-Berk models best predicted 

flow behaviour for low temperature storage conditions throughout the storage period, while only 

for a limited storage period at high storage temperatures. The stress overshoot at low storage 

temperature conditions decreased during storage while it increased at high storage 

temperatures. The flow behaviour indices and yield stress decreased while the consistency 

indices increased at all storage conditions, except at low storage temperature-low humidity 

conditions.  

 

Key words: Flow behaviour, Functional properties, Gelatinization, Maize meal, Oscillatory 

rheology,  Pasting behaviour, Stability, Starch, storage  
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4.1. Introduction 

 

Almost any application of starch involves the gelatinization or melting of the granule structure 

(Thiewes & Steeneken, 1997). Differential Scanning Calorimetry (DSC) is used to detect 

enthalpy changes in the phase transition of starch (Chaiwanichsiri et al., 2001). At 30% or higher 

moisture contents, starches are analogous to other natural and synthetic polymers where the 

degree of crystalline order and polymer-solvent/plasticizer interactions are major factors in 

determining their melting behaviour and other properties (Zobel et al., 1988). 

  

Dynamic rheology has been used in the past to study the rheological properties of corn starches 

by monitoring of elastic modulus (G′) and viscous modulus (G″) of starch granule dispersions 

(Yoshimura et al., 1988; Navarro et al., 1997; Rosalina & Bhattacharya, 2002; Singh et al., 2002; 

Freitas et al., 2003; Wang et al., 2003; Sandhu et al., 2004). Dispersion of cereal flour or starch 

in water results in a suspension whose rheology depends largely on the type and composition of 

the cereal, the concentration of the soluble and insoluble solids, heat treatment (such as extent of 

gelatinization and retrogradation) and the temperature of measurements (Bhattacharya & 

Bhattacharya, 1996). Cooked maize starches were found to possess yield stresses, and exhibited 

shear-thinning, pseudoplastic behaviour (Doublier, 1987; Bhattacharya & Bhattacharya, 1996). 

Further, it is also necessary to know to which the rheological model, or models, the cooked corn 

(or maize) flour suspensions conform (Bhattacharya & Bhattacharya, 1996).  

 

In chapter 1 it has been shown that maize meal is consumed in many parts of Africa and is a 

major ingredient in the preparation and production of food products. Heating of maize meal 

suspensions or cooking in these processes is a major unit operation. Cooked maize flour and 

starch suspensions are often used in the food industry (Bhattacharya & Bhattacharya, 1996). 

Therefore, gelatinization and rheology of starch contained in the maize meal are important 

phenomena. Generally, a concern for the food industry is the production and maintenance of the 

product while preserving the proper consistency and texture properties of the food in question. 

Gelatinization and rheological properties of maize meal suspensions and pastes may change 

during food processing and storage due to the changes in composition of maize meal. The 

changes in gelatinization and rheological properties of maize meal may affect its processibility as 

a major ingredient in food products and indeed the quality of the products made from such 

affected maize meal. Hence, the objective of this chapter was to investigate the influence of 

storage conditions on: (a) gelatinization and pasting properties, and (b) rheological properties.  
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4.2. Influence of storage conditions on gelatinization and pasting properties 

 

4.2.1. Gelatinization properties 

 

4.2.1.1. Maize meal storage in closed bottles 

 

The materials used were as in section 3.3.1.1. 230g of maize meal was weighed into bottles. The 

bottles were capped to make them air and moist-tight. The bottles were further wrapped on the 

exterior with aluminium foils. One set of bottles was stored in a cupboard at room temperature 

( ≈ 25°C) until sampling day. Another set of bottles was stored at 43°C in an incubator until 

sampling day. Two bottles from each set were taken out of storage at random for analysis on 

days 0, 54 and 124 of the storage period. The content of each bottle was divided into two 

portions. One portion was used for the starch granule isolation whereas the other portion was 

analyzed as maize meal. 

 

4.2.1.2. Starch granule isolation for gelatinization properties 

 

Starch granules were isolated using method of Tester & Morrison (1990) with slight 

modifications. The white maize meal (100g) was steeped in water, kept at 3-5°C for 24 hours, 

then ground in a kitchen blender to release a suspension of starch that was passed through a 90-

µm aperture sieve. The crude starch that was recovered by centrifuging (1,550 g, 15 minutes) at 

room temperature was slurried in 20ml of 80% (w/v) CsCl and centrifuged at 10,000 g for 20 

min at 15°C. The starch granules were then washed six times with water and centrifuged for 5 

min at 1,550 g to recover starch at each stage. The starch was dried in an air convection oven at 

40°C. The isolated starch for DSC and oscillatory rheological analyses were defatted by shaking 

the starch granules in chloroform-methanol (2:1 v/v) mixture for 8 hours at room temperature. 

The starch granule to solvent ratio was maintained at 1:20. The mixture was passed through filter 

paper to remove the solvent. The defatted starch granules were dried at 40°C in an oven for 1 

hour. 

 

4.2.1.3. Defatting maize meal for DSC analysis 

 

Maize meal was defatted by shaking 5g of maize meal in 100ml chloroform-methanol (2:1 v/v) 

mixture for 8 hours at room temperature. The mixture was passed through filter paper to remove  
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the insoluble material. The defatted maize meal residual was dried at 40°C in an oven for 1 hour 

and was used for DSC analysis.  

 

4.2.1.4. Gelatinization by DSC 

 

The gelatinization was performed on a 2010 CE DSC with a refrigerated cooling system (Texas 

Instruments, New Castle, DE, USA). The DSC was calibrated with indium (TA Instruments, 

New Castle, DE, USA), azobenzene (Sigma–Aldrich, Bornem, Belgium) and undecane (Acros 

Organics, Geel, Belgium) prior to analyses. Gelatinization of the samples was investigated using 

a method adopted from Singh et al. (2001) with slight modifications. Defatted isolated starch 

granule/maize meal samples (3.5mg db) and water (8 µl) were weighed in aluminium pans, 

sealed and allowed to equilibrate for 1 hour at room temperature. The pans were then heated 

from 25 to 120°C at a rate of 10°C/min in the DSC heating chamber, using an empty sealed pan 

as a reference pan. To evaluate whether the sample materials (particularly maize meal) were 

completely gelatinized during the DSC scan, several samples were rescanned immediately after 

being cooled to 25°C after the first scan (Fan & Marks, 1998). No endothermic transition was 

observed in these rescan thermograms, indicating fully gelatinized starches during the first DSC 

run. Because of the unsymmetrical and slanting baseline of the endotherms obtained, To and TE 

were determined using the method of Foubert et al. (2003) using excel spreadsheets. The 

gelatinization enthalpy change (∆H) was obtained using the software of the DSC by in-putting 

the obtained To, Tp and TE values. The analyses were performed in duplicates. 

 

4.2.2. Pasting properties 

 

4.2.2.1. Open bulk storage of maize meal 

 

The materials, storage protocol and statistical analysis were as described in section 2.3.1.1, 

section 2.3.1.2 and section 2.4.2.3. 

 

4.2.2.2. Pasting properties measurements 

 

Pasting properties of the white maize meal were determined on an AR2000 rheometer (TA 

Instruments, England, UK) attached with computer control software (Rheology Advantage Data 

Analysis Program, TA Instruments, England, UK). The AR 2000 rheometer was equipped with a 

Starch Pasting Cell and an impeller which attaches to the rheometer spindle and was  
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supplemented with an efficient Peltier temperature control system and the sample temperatures 

were precisely controlled and monitored. A white maize meal sample of 3.25g (db) was 

transferred into the starch pasting cup cell and distilled water was added accordingly to bring the 

total weight to 25.00g thereby giving a maize meal dispersion of 13% (w/w). The suspension 

was stirred rapidly at 900 rev/min (94.28 rad/s) and temperature raised from 20 – 50°C at 

10°C/min, before decreasing the shear input and holding it constant at 160 rev/min (16.76 rad/s) 

for the heating and cooling cycles. The slurry was heated from 50°C to 95°C at 5°C/min and held 

at 95°C for 5 min, and finally cooled to 50°C at 5°C/min. Simultaneously, the attached computer 

software recorded the experimental conditions and the resulting viscosity profiles. The data was 

captured from the software and the viscosity profiles representing pasting curves were made in 

excel. The determinations were performed in triplicates. Five of the primary pasting properties 

were obtained from pasting curves: SR – slope of the pasting curve (McDonough et. al., 2004) 

between 75 and 90oC, PV, V95i, V95f and V50. Thereafter, four derived viscosity indices 

calculated from the primary viscosity values were obtained: BD, SB, SBt and HC : . For 

definition of these properties see section 1.6.5. 

 

4.2.3. Statistical analysis 

 

ANOVA statistical comparisons were performed with Duncan tests at a level of α = 0.05 using 

SPSS® Version 11.0 (SPSS Inc., Chicago). 

 

4.2.4. Results and discussion 

 

4.2.4.1. Gelatinization properties 

 

First of all, the rationale behind determining the gelatinization properties in maize meal and its 

isolated starch granules was that, the effect of rancidity/storage breakdown products during the 

gelatinization process would be eliminated in the isolated starch. This would give a rough idea of 

the effect of rancidity/storage breakdown products on the evolution of the gelatinization process. 

However, the interpretation must be taken with caution due to the compositional complex nature 

of the maize meal.  Figure 4.1 shows the changes in the To, Tp, TE, and ∆H of a suspension of  

maize meal and its isolated starch granules during storage at room temperature ( ≈ 25°C) and 

43°C. Storage temperature had no significant (P>0.05) effect on the To. Maize meal stored at 

25oC and 43oC were not significantly (P>0.05) different, just as the isolated starch. Starch in  
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maize meal had significantly (P<0.05) higher To than the isolated starch from the maize meal at 

both storage temperatures. In terms of evolution, the To for the maize meal slightly increased at 

both room and 43oC storage temperatures, respectively (Figure 4.1a), although the increases 

were not statistically significant (P>0.1).  

  

62

63

64

65

66

67

68

0 50 100 150

Storage times (days)

O
n
s
e
t 

T
e
m

p
e
ra

tu
re

 (
o
C

)

T0 -43-MM T0 -25-MM
T0 -43-IS T0 -25-IS

(a)

 

72.0

72.5

73.0

73.5

74.0

74.5

75.0

75.5

0 50 100 150
Storage times (days)

P
e
a
k
 T

e
m

p
e
ra

tu
re

 (
o
C

)

Tp - 43-MM Tp - 25-MM
Tp - 43-IS Tp - 25-IS

(b)

 

76

78

80

82

84

86

88

0 50 100 150
Storage times (days)

E
n
d
 T

e
m

p
e
ra

tu
re

 (
o
C

)

TE-43-IS TE-25-IS
TE-43-MM TE-25-MM

(c)

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 50 100 150

Storage times (days)

E
n
th

a
lp

y
 (

J
/g

)

DH - 43-IS DH - 25-IS

DH - 43-MM DH - 25-MM

(d)

 

Figure 4.1 Changes in the gelatinization (a) onset temperature (To), (b) peak temperature (Tp), (c) 

end temperature (TE) and, (d) enthalpy change (∆H) of a suspension of  white maize meal and its 

isolated starch granules during storage of white maize meal at room temperature ( ≈ 25°C) and 

43°C. MM : Maize meal and, IS: Isolated starch  

 

On the other hand, the To for the isolated starch significantly (P<0.1) decreased at both room and 

43oC storage temperatures during the storage period. This signifies that the isolated starch  
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behaved differently from the starch in the maize meal. This also indicates that the storage period 

had affected the starch granules. The decrease in To in the isolated starch may be due to the 

amorphous background material being affected by storage conditions. It may have become more 

porous due to the degradation effects of storage on the amorphous material components. 

 

Starch in maize meal had significantly (P<0.05) higher Tp than the isolated starch from the maize 

meal. On the other hand, storage temperature did not significantly (P>0.05) affect the Tp. Tp for 

maize meal at 25oC and 43oC were not significantly (P>0.05) different just as the isolated starch. 

In addition, Tp of both maize meal and isolated starch granules remained essentially constant 

during the storage period (Figure 4.1b). This indicates that the integrity of the three dimensional 

crystal structure and the double helicity was unaffected by the storage conditions. Yeh & Li 

(1996) reported that most granules lose their molecular order at Tp. Jenkins & Donald (1998) 

found that there is an initial gradual drop in crystallinity index from room temperature until 

somewhere between onset and peak temperature of the DSC endotherm. After this point the rate 

of crystallinity loss increases. Around the peak of the DSC endotherm, the rapid swelling and 

water uptake of the amorphous background region ceases. After this point, the crystalline 

packing of the double helices within the crystalline lamellae starts to be lost. 

 

The TE for maize meal significantly (P<0.05) decreased during the storage period at both room 

and 43oC storage temperatures (Figure 4.1c). On the other hand, the TE for the isolated starch 

seemed to decrease, although this decrease was not statistically significant (P>0.1) at both room 

and 43oC storage temperatures. On the other hand, the TE of isolated starch remained unaffected 

during the storage period. This could suggest that the deterioration products could have affected 

the gelatinization of maize meal, since TE for isolated starch did not change. 

 

Starch in maize meal had significantly (P<0.05) lower ∆H than the isolated starch from the 

maize meal. On the other hand, storage temperature did not significantly (P>0.05) affect the ∆H. 

However, neither the ∆H of maize meal nor the isolated starch significantly (P>0.05) changed 

during the storage period (Figure 4.1d). The endothermic enthalpy of gelatinization has been 

proposed to primarily reflect the loss of molecular order (Cooke & Gidley 1992; Hoover & 

Vasantha, 1994; Yeh & Li, 1996) and of the double-helical order (Cooke & Gidley, 1992; 

Fredriksson et al., 1998). It has been shown that the endothermic transition observed during the 

melting of granular starches reflects the melting of both crystalline and molecular ordered 

structures (Yuryev et al., 1996; Matveev et al., 2001).  
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In this study, both the ∆H for maize meal and isolated starch granules were not significantly 

affected during storage. Like the Tp, ∆H reflects that the crystalline and molecular ordered 

structures were probably affected by the storage conditions. 

 

An attempt has been made to explain theoretically these findings on gelatinization properties. 

This is based on the research findings by other researchers and theory known so far about starch 

gelatinization. The To for the isolated starch significantly decreased at both high and low storage 

conditions. The decrease in To in the isolated starch has been attributed on the amorphous 

background material as being affected by storage conditions. The beginning of starch granule 

swelling has been proposed to be related to the region of the DSC curve when the endothermic 

peak is just beginning to form (Miller et al., 1973; Gallant et al., 1997). This phase can, 

therefore, also be considered as the stage where the amorphous regions have been swollen due to 

water absorption and crystallite melting is just starting to occur (i.e. the beginning of the 

irreversible swelling process). At this point, SEM observation of cassava starch granules showed 

the presence of groups of pores which divide the surface of the granule into polygonal areas of 

about one micron diameter (Miller et al., 1973; Gallant et al., 1997).  

 

The isolated starch granules of the stored white maize meal may have become more porous due 

to the degradation effects of storage on the amorphous material components. This rendered easy 

access of water to the amorphous background region, hence decreasing the onset temperature. 

The cause of this phenomenon could be hypothesized on enzymatic attack of starch which 

involves hydrolysis of the bonds in the starch polymers probably taking place during storage. In 

enzymatic attack, the semi-crystalline (soft layers) of the granule are more easily and rapidly 

hydrolyzed than the crystalline (hard) layers (Gallant et al., 1997). Gallant et al. (1997) 

hypothesized that the hydrolysis rate of starch granules depends to a great extent on the 

distribution of the semi-crystalline and crystalline layers and on the size, identity and interaction 

of their constituents. Several researchers have shown that α-amylases can simultaneously 

solubilize both amorphous and crystalline regions of starch granules (Colonna et al., 1988; Lauro 

et al., 1999). While the cause of the decrease in To of the isolated starch and the decrease of TE of 

maize meal observed in this study have been hypothesized on the rancidity/storage breakdown 

products, it might be very difficult to pin point the real cause due to the compositional complex 

nature of the maize meal. 
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The second possible explanation of the observation is based on the storage conditions which 

were an annealing-like process. The storage conditions where characterized by the low moisture 

content and exposure to moderately high temperatures of white maize meal over a long period of 

time. The gelatinization temperature range of the white maize meal decreased in a similar 

manner as the TE (results not shown). For annealed starches, a narrowing of the gelatinization 

temperature range has been observed at higher temperature. It has been pointed out that the 

alterations in the DSC curve are sensitive indicators of the type of hydrothermal treatment the 

starch has undergone. For annealed starches, the narrower peaks have been interpreted to 

indicate greater homogeneity during melting of crystallites (Collado & Corke, 1999; Hormdok & 

Noomhorm, 2007). The decrease or narrowing of the gelatinization temperature in the white 

maize meal could be due to shifting of the starch granule structure towards a more perfect 

structure. Collado & Corke (1999) have broadly described annealing as a condition in which 

granules assume a more stable configuration. This is viewed as the realignment of polymer 

chains within the non-crystalline regions of the granule as well as in the crystallites or change in 

the coupling forces between the crystallites and the amorphous matrix.  

 

4.2.4.2. Pasting properties 

 

4.2.4.2.1. Pasting curve characteristics 

 

The pasting viscosity properties may be classified into two major groups: primary viscosity 

values and derived viscosity indices. Primary viscosity values are properties obtained straight 

from the viscosity profile graphs during the heating and cooling of the sample suspensions as 

illustrated in section 1.6.5. On the other hand, derived viscosity indices are calculated values 

using primary viscosity values, sections 1.6.5 (Sowbhagya & Bhattacharya, 2001).  

 

Figure 4.2 shows the pasting curves of the cooking of a 13% suspension of the white maize meal 

during storage on days 7 and 35 at 45oC-90%RH storage condition. Figure 4.2 (a) represents the 

type of pasting curves also obtained for 25oC-43%RH, 25oC-90%RH and 45oC-43%RH storage 

conditions. Figure 4.2 (b) gives the same curve when one zooms in the curve (Figure 4.2a) 

between 85 and 95oC. These curves are typical for starch pasting curves.  
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Figure 4.2 Pasting curves of white maize meal during storage: (a) and (b) storage on day 7 at 

45oC and 90% relative humidity; (c) and (d) storage on day 35 at 45oC and 90% relative 

humidity 

 

Typically the resulting pasting curve for maize starch shows a rapid increase in viscosity due to 

granule swelling and amylose leaching, with a peak in viscosity above the starch gelatinization 

temperature. Then a decline in viscosity (viscosity breakdown) follows due to soluble starch 

molecules orienting themselves in the direction that the system is being stirred and the break up 

of starch granules (Nelles et al., 2000). Thereafter, viscosity increases due to a decrease of 

energy in the system and subsequent hydrogen bond formation between starch chains (setback) 

when the starch product is cooled (Hoseney, 1998; Nelles et al., 2000). 

 

Sowbhagya & Bhattacharya (2001) have reported three types of starch and flour viscograms (see 

section 1.6.5, Figure 1.7). The first type is characterized by the PV appearing before the V95i, the 

second type by PV appearing between the cooking period i.e. between V95i and V95f and the third 

by the absence of a well defined PV. In the third type, the viscosity continues to rise until V95f, 

where the V95f is taken as PV. The type of pasting curves obtained for 25oC-43%RH,  
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25oC-90%RH and 45oC-43%RH storage conditions as illustrated in Figure 4.2 (b) in this study 

are representative of the second type described by Sowbhagya & Bhattacharya (2001). 

 

However, pasting curves at 45oC-90%RH storage conditions were only of the Sowbhagya & 

Bhattacharya (2001) second type, up to 21 days of storage. From 28 days of storage, the curves 

obtained were as shown in Figures 4.2(c). This type of pasting curves never showed a peak 

viscosity and a trough viscosity, even when one zooms in the curve between 85 and 95oC as 

illustrated in Figure 4.2(d). They were of the Sowbhagya & Bhattacharya (2001) third type, in 

which the viscosity continues to rise until V95f with no distinct PV. This observation could be 

attributed to the mould growth observed from day 28.    

 

4.2.4.2.2. Primary viscosity indices: swelling rate and peak viscosity 

 

Figure 4.3 shows the changes in swelling rate (SR) and peak viscosity (PV) of starch granules in 

the white maize meal stored at 25oC-43%RH, 25oC-90%RH, 45oC-43%RH and 45oC-90%RH. 

The SR was calculated as slopes of the pasting curves (McDonough et al., 2004) between 75 and 

90oC. The SR at 25oC-90%RH, 45oC-43%RH and 45oC-90%RH decreased whereas SR at 25oC-

43%RH increased during the storage period (Figure 4.3a).  
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Figure 4.3 Changes in (a) swelling rate, and (b) peak viscosity of white maize meal during 

storage at 25oC-43%RH, 25oC-90%RH, 45oC-43%RH and 45oC-90%RH 

 

The initial pasting slope decreased by 30.8% at 25oC-90%RH, 24.6% at 45oC-43%RH and the 

highest decrease of 82.9% was at 45oC-90%RH, while it increased by 19.8% at 25oC-43%RH  
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after 49 days of storage and all evolved significantly different (P<0.05). McDonough et al. 

(2004) found that aging of maize decreased the rate of swelling of starch granules by 22% after 

15 days of storage, as measured by the slope of the pasting curve. Decreased pasting slope has 

been interpreted by McDonough et al. (2004) as indicating that, as materials aged, more time and 

energy were required to increase the viscosity of the gelatinized starch. The cause of the 

decreased starch granule swelling in aged samples was reported to probably related to changes in 

protein and starch. 

 

The PV for all storage conditions was essentially constant and evolved essentially the same the 

first 21 days of storage (Figure 4.3b). After 21 days, the samples at 25oC-43%RH and 45oC-

43%RH gradually but significantly (p<0.05) increased by 10.6 and 7.0% respectively, at the 

termination of the storage study. However, the evolution at the two storage conditions were not 

significantly different (P<0.05). Oluwamukomi et al. (2005) have interpreted high PV as 

reflecting fragility of the swollen granules, which first swell and then break down under the 

continuous mechanical stirring conditions. Lim & Narsimhan (2006) have found that starch 

granules that seemed to swell more as temperature increased, were solubilized or rearranged 

more easily during shearing thus resulting in higher peak viscosity. Equally, Wang et al. (2000) 

found that rigid and hard starch granules do not rupture immediately when they are subjected to 

heating and shearing and that such starch granules displayed high peak viscosity as a result of the 

swelling of starch granules. Further more, Zhou et al. (2002) have interpreted the increase in 

peak viscosity of stored rice as showing that the starch granules of stored rice are more resistant 

to swelling than those of fresh rice which showed lower peak viscosity. All these interpretations 

suggest that PV can be used as a swelling index for starch granule.  

 

On the contrary, after 21 days of storage, the peak viscosity of samples stored at 25oC-90%RH 

and 45oC-90%RH gradually decreased by 5.9 and 1.6% respectively, but this decrease was not 

significant (p>0.05). The peak viscosity could have also been confounded by the mould growths 

at 45oC-90% from day 28. The evolution of 25oC-43%RH and 45oC-43%RH were significantly 

different (P<0.05) from 25oC-90%RH and 45oC-90%RH. Generally, at low storage humidity PV 

of the white maize meal increased for both low and high storage temperatures. 
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4.2.4.2.3. Primary viscosity indices: Initial hot-paste and final hot-paste viscosities 

 

Figure 4.4 shows the evolution of the initial hot-paste viscosity (V95i) and final hot-paste 

viscosity (V95f) during storage of the white maize meal at 25oC-43%RH, 25oC-90%RH, 45oC-

43%RH and 45oC-90%RH. There were no major differences in the evolution of V95i in the first 

14 days (Figure 4.4a). The differences began to emerge on the 21st day of sampling. The samples 

at 25oC-43%RH and 45oC-43%RH storage significantly (p<0.05) increased by 15.6 and 10.9% 

respectively after 49 days of storage, although the difference between them was not significant 

(P<0.05). The V95i for samples stored at 25oC-90%RH remained significantly (p<0.05) constant 

but lower than 25oC-43%RH and 45oC-43%RH throughout the storage period. The V95i for 

samples stored at 45oC-90%RH reduced to lower V95i values than other three storage condition. 

However, there was mould growth from day 28 at 45oC-90%RH storage. 

 

1.1

1.3

1.5

1.7

1.9

2.1

2.3

0 10 20 30 40 50

Storage time (days)

V
9
5

i (
P

a
.s

)

25°C-43% 45°C-43%

25°C-90% 45°C-90%

(a)

 

1.80

1.90

2.00

2.10

2.20

2.30

0 10 20 30 40 50

Storage time (days)

V
9

5
f (

P
a

.s
)

45°C-43% 25°C-43%

45°C-90% 25°C-90%

(b)

 

Figure 4.4 Changes in (a) initial hot-paste viscosity and (b) final hot-paste viscosity of white 

maize meal during storage at 25oC-43%RH, 25oC-90%RH, 45oC-43%RH and 45oC-90%RH 

 

There was no difference in the evolution of V95f the first 21 days of storage as well (Figure 4.4b). 

The evolution of V95f at 25oC-43%RH and 45oC-43%RH were not significantly different 

(P<0.05) although they both evolved significantly different from 25oC-90%RH. Storage 

conditions at 25oC-43%RH and 45oC-43%RH increased V95f significantly (p<0.05) by 7.7 and 

8.5% respectively. The increase in V95f indicates that the white maize meal starch granules were 

becoming more resistant to fragmentation during cooking (Wang et al., 2000) in function of 

storage time. On the contrary, storage at 25oC-90%RH affected V95f by decreasing it by 5.5%.  
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Decrease in V95f illustrates that starch granules became fragile and broke down easily during 

cooking at these storage conditions (Wang et al., 2000). The V95f for the samples stored at 45oC-

90%RH increased up to 21 but not statistically significant. There was mould growth after 28 

days at this storage condition which could have cuased the uncharacteristic trend. 

 

4.2.4.2.4. Primary viscosity index - Cold-paste Viscosity (V50) 

 

The changes in cold-paste viscosity (V50) during storage for 49 days of white maize meal at 

25oC-43%RH, 25oC-90%RH, 45oC-43%RH and 45oC-90%RH, is shown in Figure 4.5.  
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Figure 4.5 Changes in cold-paste viscosity of white maize meal during storage at 25oC-43%RH, 

25oC-90%RH, 45oC-43%RH and 45oC-90%RH 

 

Cold-paste viscosity indicates the extent of starch retrogradation that occurs during the cooling 

process. When hot pastes are cooled, the extent of increase in viscosity is governed by the re-

association tendency of the starch (Hagenimana et al., 2006). The V50 values of samples stored at 

25oC-43%RH and 25oC-90%RH increased up to the termination of the storage study. The two 

evolved significantly the same till about 35 days of storage. By the end of storage however, 

samples at 25oC-43%RH had increased by 20.7% and was higher than for samples at 25oC-

90%RH which increased by 10.7%. However, on the overall, statistically there was no 

significant difference (P<0.05) in the evolution at the two storage temperatures. The V50 values 

of samples stored at 45oC-43%RH increased sharply and were significantly (P<0.05) higher than 

for samples stored at 25oC-43%RH and 25oC-90%RH throughout the storage study. The V50 

values of samples stored at 45oC-43%RH increased by 58.5% at the end of storage study.  
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The V50 values of samples stored at 45oC-90%RH increased sharply and were the highest up to 

21 days were it increased by 66%, before rapidly reducing. The unusual drastic decrease could 

be attributed to the mould growth observed from 28th day of storage. It is however clear that all 

storage conditions experimented here increased the V50 during storage. Storage temperature had 

a higher influence on the changes in V50 than storage relative humidity. V50 values at high 

storage temperatures were higher than at low storage temperatures. However, at constant high 

storage temperature, samples at high storage relative humidity evolved higher than at low storage 

relative humidity.   

 

4.2.4.2.5. Derived viscosity index  - Breakdown index (BD) 

 

Figure 4.6 shows the evolution of Breakdown (BD) index during storage of white maize meal at 

various storage temperature – relative humidity conditions. The BD index was essentially the 

same for all storage conditions until after 7 days of storage. The samples stored at 25oC-43%RH 

had minimal but significant (p<0.05) increases in BD and evolved higher than 45oC-43%RH and 

45oC-90%RH from about 14th day of storage. The BD index at 45oC-43%RH decreased 

minimally but the decrease was not significant (p<0.05) during the storage study. Breakdown 

index has been defined as a measure of resistance to shear and disintegration of starch during 

cooking (Lawal, 2005). It has also been defined as a measure of the ease with which the swollen 

starch granule can be disintegrated and as an indication of the degree of its organization 

(Olayinka et al., 2008).  
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Figure 4.6 Changes in Breakdown of white maize meal during storage at 25oC-43%RH, 25oC-

90%RH, 45oC-43%RH and 45oC-90%RH 
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However, the BD index for 25oC-90%RH significantly (p<0.05) increased only up to 28 days of 

storage but thereafter decreased sharply to the same final values as 45oC-43%RH. The BD index 

for samples stored at 45oC-90%RH significantly (<0.05) decreased sharply from the 7th day to 

lower values than all the other storage conditions. However, the BD index for samples at 45oC-

90% from day 28 could have been confounded by mould growth. 

 

The decrease in BD indicates that the capacity of the starch granules to rupture after cooking was 

reduced significantly (Noomhorm et al., 1997; Zhou et al., 2003) during storage. Sowbhagya & 

Bhattacharya (2001) and Zhou et al. (2003) explained the steady decrease in paste BD during 

storage of rough rice on the basis of the granule surface as representing the primary barrier to 

processes such as hydration that may depend on the charge characteristics of the starch granule 

surface. They proposed that pasting may be influenced by the presence, orientation and nature of 

surface lipids and proteins. The changes at the granule surface could contribute to the change in 

hydrophilicity that would affect granule hydration and swelling.  

 

4.2.4.2.6. Derived viscosity indices: Total Setback and Cold-paste:Hot-paste Viscosity Ratio 

 

Figure 4.7 shows the evolution of total setback (SBt) and cold-paste:hot-paste viscosity ratio 

(C:H) during storage of white maize meal at 25oC-43%RH, 25oC-90%RH, 45oC-43%RH and 

45oC-90%RH storage conditions for a storage period of 49 days. Setback value is the recovery of 

the viscosity during cooling of the heated starch suspension (Singh et al., 2006a).  
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Figure 4.7 Changes in (a) total setback and (b) Cold-paste: Hot-paste viscosity ratio of white 

maize meal during storage at 25oC-43%RH, 25oC-90%RH, 45oC-43%RH and 45oC-90%RH 
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During cooling, re-association between starch molecules, especially amylose, will result in the 

formation of a gel structure and, therefore, viscosity will increase to a final viscosity. This phase 

is commonly described as the setback region and is related to retrogradation and reordering of 

starch molecules (Ragaee & Abdel-Aal, 2006). The SBt at all the storage conditions of this study 

increased during the storage period (Figure 4.7a). There was significant differences (p<0.05) in 

the evolution of SBt when all the four storage conditions are compared. Equally, there was clear 

distinction in SBt between samples stored at 45oC-43%RH / 45oC-90%RH, and, 25oC-43%RH / 

25oC-90%RH, where the former were higher than the later right from the beginning of storage 

studies. 

 

The graph shows that the samples stored at 25oC-43%RH and 25oC-90%RH had minimal and 

steady increases in SBt. The differences between the two storage conditions in SBt was 

statistically (p<0.05) but very small, with 25oC-90%RH evolving higher than 25oC-43%RH. The 

SBt of 45oC-43% increased sharply and higher than 25oC-43% and 25oC-90% throughout the 

storage period. However, the SBt for 45oC-90%RH increased sharply and had the highest SBt up 

to 21 days before decreasing sharply. This decrease is attributed to the mould growths observed 

after 28 days of storage. Oluwamukomi et al. (2005) interpreted flours having higher setbacks as 

having higher retrogradation tendency. Higher setback was attributed to increased formation of 

not only thermally reversible hydrogen bonds but also thermally irreversible hydrophobic and/or 

covalent bonds (Luck et al., 2002; Roesch & Corredig, 2002; Singh et al., 2003a; Tolstoguzov, 

2003; Lim & Narsimhan, 2006). These intermolecular bonds contribute to a higher final paste 

viscosity upon subsequent cooling (Lim & Narsimhan, 2006).   

 

Sowbhagya & Bhattacharya (2001) have defined C:H ratio as the true reflection of retrogradation 

during cooling. The C:H ratio at all storage conditions increased during storage and there was 

clear differences in C:H ratio at all the storage conditions (Figure 4.7b). The samples stored at 

25oC-43%RH slightly increased and had the lowest C:H ratio throughout the storage period. The 

samples stored at 25oC-90%RH increased up to about 35 days and evolved significantly (p<0.05) 

higher than samples stored at 25oC-43%RH, thereafter it reduced to the same final value of 

samples at 25oC-43%RH. It is worth noting that, while V50 and SB ttt at 25oC-43%RH and 25oC-

90%RH storage were not very indistinguishable in their evolution, the C:H at these storage 

conditions are much more distinguishable in their evolution.  This means that C:H might be a 

better retrogradation index than V50 and SB ttt alone. Probably, this agrees with Sowbhagya & 

Bhattacharya’s (2001) definition of C:H.   
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However, the C:H ratio for 45oC-90%RH increased sharply and had the highest C:H ratio up to 

28 days.  The decrease thereafter is attributed to the mould growth observed on the same day. 

The C:H ratio of 45oC-43%RH increased sharply and higher than 25oC-43%RH and 25oC-

90%RH  throughout the storage period. Storage temperature has a higher influence on C:H ratio 

than storage relative humidity. High storage temperature had higher C:H ratios than low storage 

temperature. Nevertheless, given the same storage temperature, high relative humidity had 

higher C:H ratio than low relative humidity.  

 

Sowbhagya & Bhattacharya (2001) found that the C:H ratio is relatively unaffected by the paste 

concentration but is species specific. They interpreted this as showing that C:H ratio might be a 

fundamental property and a characteristic index of various starches. Contrary to the white maize 

meal findings, Sowbhagya & Bhattacharya (2001) further found that C:H ratios were largely 

unaffected by the storage time during storage of rice grain despite the large and sustained change 

in all other viscogram parameters. At this point it is also worth noting that the evolution of C:H, 

SBt and V50 were very similar, probably, confirming that they are all indices showing the 

changes of the same property i.e. retrogradation and/or syneresis. 

 

4.2.4.2.7. An overview on pasting properties 

 

Like for gelatinization, the pasting parameters during the cooking period of the pasting cycle 

may be explained on the observation that the storage conditions may be considered as an 

annealing-like process. The storage conditions of the white maize meal where characterized by 

low moisture content to moderately high moisture content with exposure to moderately high 

temperatures of white maize meal over a long period of time.  

 

The PV, V95i and V95f of the white maize meals stored at low humidity for both storage 

temperatures increased during storage. High swelling starches usually show high pasting peak 

(Adebowale et al., 2005). On the other hand, the PV, V95i and V95f at high humidity either 

decreased or remained essentially constant. Reduction in PV, V95i and V95f after heat moisture 

treatment and annealing of starch from different types of foods has been observed (Hoover & 

Manuel, 1996a; Hoover & Manuel, 1996b; Adebowale & Lawal, 2003; Adebowale et al., 2005; 

Lawal, 2005; Hormdok & Noomhorm, 2007). Reduction in V95f after annealing rice starch has 

been interpreted as indicating less stability of swollen granules (Hormdok & Noomhorm, 2007). 

Reduction in peak viscosity has been attributed to reorganization within the granule of the  
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modified starches. Enhancement of crystallinity after hydrothermal treatments leads to limited 

starch swelling and structural disintegration, which contribute significantly to starch viscosity 

(Adebowale et al., 2005). Reduction in swelling power after heat moisture treatment and 

annealing of starch from different types of foods has also been observed (Lawal, 2005; 

Adebowale & Lawal, 2003; Hoover & Manuel, 1996a; Hoover & Manuel, 1996b).  

 

Storage of white maize meal at 25oC-43%RH and 45oC-43%RH reduced the moisture content 

overtime. This could have enhanced the starch granule to shift more towards a structure 

consistent with dry starch granules (Section 1.6.3, Figure 1.5a).  The starch granules thus became 

more rigid and increased the ability to swell more as observed in the increase in PV, V95i and 

V95f for the low humidity storage conditions. On the other hand, storage of white maize meal at 

25oC-90%RH and 45oC-90%RH increased the moisture content overtime. This shifted the starch 

granule towards a more perfect structure (Section 1.6.3, Figure 1.5b). The mobility of the 

amorphous and crystalline regions were enhanced and probably decreased the ability to swell 

during cooking.  

 

The V50, SBt and C:H of the white maize meal increased at all the four storage conditions. The 

three parameters are indices of retrogradation of starch after gelatinization. Annealing has been 

reported to make the granules resistant to deformation by strengthening the intra-granular 

binding forces. It has also been speculated that, in annealed starch, swollen gelatinized granules 

are more rigid, contributing significantly to high cold paste viscosities (Collado & Corke, 1999). 

But this explanation is not consistent with the observed V50, SBt and C:H in white maize meal in 

this study. Therefore, the more plausible reason for the increase in V50, SBt and C:H for the 

white maize meal at all the four storage conditions has to do with FFA-amylose complexation. 

Free fatty acids at 25oC-43%RH and 45oC-43%RH positively correlated with PV, V95i, V95f, V50, 

SBt and C:H. Kaur and Singh (2000) found that peak viscosity (PV), viscosity at 95oC (V95i) and 

viscosity at 50oC (V50) of rice flour increased with the increase in levels of fatty acids. They 

attributed the change in peak viscosity, viscosity at 95 and 50oC with the addition of fatty acids 

to the formation of amylose-lipid complexes. Therefore, the increase in the retrogradation 

properties of the pastes reported in this study could be attributed to lipolysis which enhanced the 

formation of FFA-amylose complexes during cooking. The increase in V50, SBt and C:H pasting 

properties can lead to increased energy consumption during stirring or mixing of white maize 

meal pastes in function of maize meal storage time.  
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4.3. Influence of storage conditions on rheological properties 

 

4.3.1. Viscoelastic properties 

 

4.3.1.1. Maize meal storage in closed bottles 

 

The materials and storage protocol used were the same materials as in section 3.3.1.1 and 

3.3.1.2, respectively. Then, starch granules were isolated from the sampled maize meal on days 0 

and 124 of the storage period. Starch granules were isolated from maize meal as outlined in 

section 4.2.1.2. 

 
4.3.1.2. Viscoelastic measurements 

 

Rheological measurements were carried out on a Bohlin CVO50 (Bohlin Instruments Ltd, United 

Kingdom) controlled stress rheometer, equipped with a circulating water bath for temperature 

control (± 0.1oC), using a parallel plate-plate geometry (diameter 40mm). The strain and 

frequency were set at 1.0% and 1 Hz, respectively, for all determinations. The dispersions were 

prepared by addition of the isolated dry starch granules to the required amount of distilled water 

to make a 20% starch suspension with continuous stirring in a small beaker for 1hour at room 

temperature at the same rpm for all samples. To maximize homogeneity, the suspension was 

sampled with a small syringe while stirring. 1.3ml of the suspension from the syringe was 

immediately loaded onto the centre of the lower plate of the rheometer which was maintained at 

25oC and the upper plate was lowered to give a gap size of 1000µm. The sides of the gap 

exposing the sample to the outside environment were covered with a thin layer of low-density 

silicon oil to minimize evaporation losses. The starch samples were then subjected to 

temperature sweep testing by heating from 25 to 90oC at the rate of 1oC/min.  The dynamic 

rheological properties, storage modulus (G′) and loss modulus (G″) were recorded automatically 

by the instrument. All analyses were done in at least duplicate i.e. separate suspensions were 

prepared and each was run once. 

 

4.3.2. Flow behaviour properties 

 

4.3.2.1. Open bulk storage of maize meal 
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The materials, storage protocol and statistical analysis were as described in section 2.3.1.1, 

section 2.3.1.2 and section 2.4.2.3. 

 

4.3.2.2. Flow behaviour measurements 

 

The first part of the flow behaviour measurement was as described under pasting measurements, 

section 4.2.2.2. After the heating and cooling cycle, the resulting paste was held at 50°C for 5min 

without shear input. Then, the steady shear flow properties (stress/viscosity) of the paste were 

determined in the shear rate range of 0.1-1000 s-1 at 50°C and were timed for 10 points per 

decade. Determinations were performed in triplicates for the samples sampled at 7 days intervals. 

Rheological values (shear stress, viscosity and shear rate) were obtained from the software. Five 

rheological flow models based on shear stress–shear rate (Bingham, Herschel-Bulkley, Power 

law, Mizrahi-Berk and Casson models) as obtained from Bhattacharya & Bhattacharya (1996), 

were fitted to the data obtained. The goodness of fit of the models was evaluated by the mean 

relative error (MRE) as a percentage as given in Eqation. 2.1. A model is considered acceptable 

if it has a MRE value less than 10% (Kaymak-Ertekin & Gedik, 2005). 

 

4.3.4. Statistical analysis 

 

ANOVA statistical comparisons were performed with Duncan tests at a level of α = 0.05 using 

SPSS® Version 11.0 (SPSS Inc., Chicago). 

 

4.3.5. Results and discussion 

 

4.3.5.1. Viscoelastic properties 

 

Figure 4.8 below illustrates the evolution of elastic modulus (G′) and viscous modulus (G″) as a 

function of temperature during heating in a dynamic rheometer of a 20% starch isolated from 

maize meal stored at room temperature (≈25oC) and 43oC. The peak elastic modulus (G′p) of 

starch isolated from maize meal stored at 43oC on Day124 (6046 ± 122 Pa) was significantly 

(P<0.1) higher than for starch isolated on Day0 (5468 ± 118 Pa), whereas there was no 

significant difference for the starch from fresh maize meal (5468 ± 118 Pa) and for the starch of 

maize meal stored at room temperature for 124 days (5670 ± 72 Pa) (Figure 4.8a). On the 

contrary, the peak viscous modulus (G″p) of starch isolated from maize meal on Day0 (690 ± 54  
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Pa) was significantly (P<0.1) higher than starch isolated from maize meal stored at 43oC on 

Day124 (570 ± 6 Pa) (Figure 4.8b). 
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Figure 4.8 Evolution of (a) elastic modulus (G′) and (b) viscous modulus (G″) during heating of 

a 20% dispersion of starch isolated from fresh maize meal (Day-0) and maize meal stored for 

124 days at 25oC (25-Day-124) and 43oC (43-Day-124). 

 

Similar to an observation made in elastic modulus, there was no significant (P>0.05) difference 

between starch isolated from maize meal on Day0 (690 ± 54 Pa) and starch isolated on Day124 

(630 ± 6 Pa) for peak viscous modulus (G″p) at room storage temperature. The higher G′p of 

isolated starch from a stored maize meal than a fresh maize meal, and a higher G″p of isolated 

starch from a fresh maize meal than a stored maize meal indicates that starch pastes of stored 

maize meal became more solid-like with storage time at higher storage temperatures.  

 

In terms of the rheometer instrument, the rise in G′ upon heating starch suspension is on the basis 

that with further increase in temperature during heating of the starch dispersion, the G′ increases 

to a maximum value termed peak elastic modulus (G′p). This increase in G′ has been attributed to 

the closely packed network of swollen starch granules (Hsu et al., 2000; Singh et al., 2002). It 

has been stated that the swollen granules fully occupy the available volume at the moment the 

moduli reach their maximum, G′p (Van Vliet et al., 1996). In a bid to explain the observed 

increase in G′p upon high temperature storage, one can interpret this as; at a higher storage 

temperature of maize meal, the isolated starch appears to loose its ability for rapid swelling, 

leading to the requirement of additional heating to achieve close packing and rupturing of the 

starch granules. Hence the starch isolated from fresh maize meal had a lower G′p than the starch 

isolated from maize meal stored at 43oC for 124 days.  
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4.3.5.2. Flow behaviour properties 

 

4.3.5.2.1. Flow behaviour 

 

Fig. 4.9 shows the viscosity against shear rate for the fresh maize meal dispersion and for the 

maize meal stored for 7, 21 and 49 days at temperature–humidity conditions of 45oC-90%RH 

and gives a good representation of curves at all the other storage conditions. The curves for the 

maize meal were experimentally obtained at concentration of 13% (w/w, dry basis). It is obvious 

from these figures that the viscosity for all storage conditions were changing with shear rate, 

which means that the examined maize meal dispersion systems are non-Newtonian. A sharp 

decrease in viscosity with increase in shear rate is a clear indication of shear-thinning behaviour 

exhibited by the maize meal used in this study. 
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Figure 4.9 Viscosity against shear rate of a 13% (w/w, dry basis) white maize meal during 

storage at temperature-humidity of 45oC-90%RH. D0, D7, D21 and D49 denote storage times: 

Day 0 (fresh sample), day 7, day 21 and day 49, respectively. 

 

4.3.5.2.2. Modeling of the flow curves 

 

The shear stress/shear rate data depicting the flow behavior of the white maize meal dispersions 

at temperature-humidity of 25oC-43%RH, 25oC-90%RH, 45oC-43%RH and 45oC-90%RH 

storage conditions were examined using five rheological models for non-Newtonian fluids. The 

models included the Bingham, Herschel-Bulkley, Power law, Mizrahi-Berk and Casson models.  

 



Chapter4. Pasting and rheological properties of white maize meal during storage 

___________________________________________________________________________________________________ 

_____________________________________________________________________________ 
Functional properties of white maize meal stored under tropical conditions 

138 

 

The goodness of fit over the storage period at all the four storage conditions was assessed using 

mean relative error [MRE (%)] (Table 4.1). According to Kaymak-Ertekin & Gedik (2005), a 

model is considered acceptable if MRE values are below 10%.  

 

Table 4.1 MRE(%) and r2 ranges for flow behaviour models during 49 days storage of white 

maize meal stored at temperature-humidity of 25oC-43%RH, 25oC-90%RH, 45oC-43%RH and 

45oC-90%RH  

25oC-43%RH 25oC-90%RH 45oC-43%RH 45oC-90%RH 
Model* 

MRE(%) r2 MRE(%) r2 MRE(%) r2 MRE(%) r2 

HB 7.7-9.0 0.94-0.96 7.7-9.2 0.94-0.97 7.7-12.0 0.92-0.95 7.7-20.2 0.70-0.95 

MB 7.8-9.2 0.93-0.96 7.8-9.4 0.94-0.97 7.8-12.1 0.91-0.95 7.8-22.6 0.67-0.95 

C 8.0-9.9 0.93-0.96 8.0-14.1 0.90-0.95 8.9-15.5 0.84-0.94 8.9-22.7 0.70-0.93 

B 10.7-13.8 0.87-0.91 11.9-20.5 0.80-0.90 11.9-20.4 0.73-0.90 11.9-27.8 0.69-0.90 

PL 11.3-15.5 0.80-0.88 10.9-14.1 0.83-0.96 10.9-14.9 0.83-0.92 10.8-23.3 0.62-0.96 

*HB: Herschel-Bulkley; MB:  Mizrahi-Berk; C: Casson; B: Bingham; PL: Power law 

 

At 25oC-43%RH storage, the Herschel-Bulkley, Mizrahi-Berk and Casson models gave MRE 

(%) less than 10 throughout the storage period. At 25oC-90%RH storage, the Herschel-Bulkley 

and Mizrahi-Berk gave MRE (%) less than 10 throughout the storage period. At 45oC-43%RH 

and 45oC-90%RH storage, the Herschel-Bulkley and Mizrahi-Berk models were within 

acceptable ranges up to about 21 and 14 days of storage, respectively. Generally, only the 

Herschel-Bulkley and Mizrahi -Berk models best predicted the flow behaviour of the white 

maize meal throughout the storage period, but this was only for low storage temperatures. For 

high storage temperatures, all the models tested here were not acceptable to predict the 

experimental data throughout the storage period. Bhattacharya & Bhattacharya (1996) also found 

the Herschel-Bulkley and Mizrahi-Berk models to best fit cooked maize flour suspensions at 

concentrations between 2 and 10%. 

 

4.3.5.2.3. Stress overshoot 

 

Figure 4.10 (a) shows the shear stress against shear rate for fresh white maize meal dispersions 

and for white maize meal stored for 7, 21 and 49 days at temperature–humidity condition of 

25oC-43%RH for shear rates up to 5 s-1. These curves represent the type of curves obtained at 

25oC-90%RH, 45oC-43%RH and 45oC-90%RH. The curves for the white maize meal were 

experimentally obtained at concentration of 13%, w/w dry basis. The shear stress initially 

increased and then reduced.  
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Figure 4.10 (a) Shear stress against shear rate for white maize meal during storage at 

temperature-humidity of 25oC-43%. D0, D7, D21 and D49 denote storage times: Day 0 (fresh 

sample), day 7, day 21 and day 49, respectively. (b) Evolution of maximum stress overshoot 

values of white maize meal during storage at temperature and relative humidity of 25oC-43%RH, 

25oC-90%RH, 45oC-43%RH and 45oC-90%RH. 

 

During the elongational flow studies of set yoghurt, Raphaelides & Gioldasi (2005) obtained 

similar kind of data. They described these kinds of curves as being a shape characteristic for a 

structured material such as a gel which is subjected to a large deformation. Starting with 

undisturbed material, on applying a constant deformation rate (the lowest possible to avoid 

inertia effects), the stress will increase initially about proportional to the deformation. On further 

deformation, a large and increasing structural breakdown occurs until it reaches to a maximum 

overshoot value. The stress overshoot is a property of non-linear viscoelastic materials. During 

structure rupturing, crosslinks continuously break and reform. At the maximum overshoot value, 

called sometimes yield value, reformation can no longer compete with structure breakdown. 

After a transition period of lower stress level, further deformation leads to a region where flow is 

dominant.  

 

The maximum stress overshoot values of these curves for all the four storage conditions were 

obtained at 7 days storage intervals. The changes in mean maximum stress overshoot values at 

different temperature-relative humidity storage conditions during storage of the white maize 

meal are given in Figure 4.10(b). From the graph, the maximum stress overshoot values were 

essentially the same the first 7 to 14 days of storage and generally decreased during that period  
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of storage of the white maize meal at all the four storage conditions. The maximum stress 

overshoot values of samples stored at 25oC-43%RH slightly but significantly (P = 0.03) 

decreased while maximum stress overshoot values at 25oC-90%RH significantly (p<0.05) 

decreased during the storage period. There was also a significant difference (p<0.05) in the 

evolution of the maximum stress overshoot values between 25oC-43%RH and 25oC-90%RH. 

The maximum stress overshoot values at 25oC-43%RH decreased by 8%, whereas, at 25oC-

90%RH the maximum stress overshoot values decreased by 24% after 49 days of maize meal 

storage. Stress overshoot at 45oC-43%RH and 45oC-90%RH generally increased during the 

storage period. The rapid drop in stress overshoot at 45oC-90%RH from day 28 could be 

attributed to the appearance of moulds. The decrease in stress overshoot observed at low 

temperature storage could be due to weaker gel formation, while the increase at high storage 

temperatures could be due to stronger gel formation after the resting period. As observed under 

pasting, low temperature storage had lower retrogradation indices than high storage 

temperatures. Higher retrogradation is due to higher bond formation which leads to stronger gels.  

 

4.3.5.2.4. Yield stress 

 

The two best fitting models, Herschel-Bulkley and Mizrahi-Berk, with a yield stress parameter 

were used for extrapolation to estimate the yield stresses. The Herschel-Bulkley and Mizrahi-

Berk yield stress values had similar trends of evolution during the storage period and the two 

were not statistically different (p<0.05). The change in the yield stress values at 25oC-43%RH 

storage condition was not statistically significant (p>0.05) (Figure 4.11a). After 49 days of maize 

meal storage, the yield stress at 25oC-90%RH significantly (P<0.05) decreased by an average of 

53% (Figure 4.11b). At 45oC-43%RH and 45oC-90%RH storage, there was significant (p<0.05) 

reduction in Herschel-Bulkley and Mizrahi-Berk yield stress by an average of 33% and 73% 

during the 21 and 14 days, respectively, of valid model prediction period (Figure 4.11c and d). 

Loisel et al. (2006) indicated that the decrease in yield stress is an indication of the increasing 

fluidity of the paste. High temperature storage had a faster decrease in yield stress than low 

storage temperature. At constant high temperature storage, high humidity storage had a more 

pronounced decrease in yield stress. At low storage temperature, humidity effect was only 

significant at high storage humidity. Yield stress is an important quality control parameter to 

process industries. Yield stress could be beneficial for the optimal design of food-processing 

systems such as those required during thermal processing (Steffe, 1992; Ahmed et al., 2007), and 

is important in preventing flow (Bhattacharya & Bhattacharya, 1996). 
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Figure 4.11 Changes in Herschel-Bulkley (HB) and Mizrahi-Berk (MB) yield stress for white 

maize meal during storage at temperature-humidity of: (a) 25oC-43%RH, (b) 25oC-90%RH, (c) 

45oC-43%RH and (d) 45oC-90%RH. 

 

4.3.5.2.5. Flow behaviour index  

 

The change in the flow behaviour index (n) of the Herschel-Bulkley (nHB) and Mizrahi-Berk 

(nMB) models during storage of the white maize meal at different temperature – relative humidity 

conditions is shown in Figures 4.12. The observations and explanations of the flow behaviour 

indexes has been restricted to the Herschel-Bulkley and Mizrahi-Berk models  
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since the two gave better predicted flow behaviour data. However, it must be remembered that 

even these two models gave acceptable predictions only for 25oC-43%RH and 25oC-90%RH, for 

data throughout the storage period.  
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Figure 4.12 Changes in flow behaviour index of Herschel-Bulkley (HB) model and of Mizrahi-

Berk (MB) model for white maize meal during storage at temperature and relative humidity of: 

(a) 25oC-43%RH, (b) 25oC-90%RH, (c) 45oC-43%RH and (d) 45oC-90%RH.  

 

The Herschel-Bulkley and Mizrahi-Berk flow behaviour indices had similar trends of evolution 

throughout the storage period. Although the Herschel-Bulkley model shows numerically higher 

mean flow behaviour indices than Mizrahi-Berk in the graphs, the two were not statistically 

different (p<0.05). However, Bhattacharya & Bhattacharya (1996) found that, for cooked maize  
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flour with concentrations between 2 and 10%, the flow behaviour index calculated from the 

Herschel-Bulkley model were higher than the corresponding values of the Mizrahi-Berk model. 

 

The mean flow behaviour indices for all storage conditions, ranged between 0.71 and 0.14 for 

Herschel-Bulkley model. Values of n less than unity means that the substance exhibits a shear-

thinning behavior, while a greater than unity value means that the substance exhibits a shear-

thickening behaviour (Al-Malah et al., 2000). It is obvious from these results that n values were 

less than 1. The n values obtained in this study, also confirms the pseudo-plasticity behaviour of 

the white maize meal during storage at all storage conditions. At 25oC-43%RH storage, both the 

Herschel-Bulkley and Mizrahi-Berk mean flow behaviour indices seemingly marginally reduced 

from about 0.55 on the 7th day of storage up to about 0.4 on the 21st day of storage, where it 

remained almost constant up to the end of storage study (Figure 4.12a). 

 

Although the nHB at 25oC-43%RH storage condition decreased, by 11% after 49 days of storage, 

the reduction was not statistically significant (p<0.05). At 25oC-90%RH storage, there was a 

nearly linear and significant (p<0.05) decrease from about 0.55 to about 0.2 in Herschel-Bulkley 

and Mizrahi-Berk flow behaviour indices throughout the storage period (Figure 4.12b). After 49 

days of maize meal storage, the nHB significantly (P<0.05) decreased by an average of 44%. At 

45oC-43%RH storage, there was significant (p<0.05) reduction in Herschel-Bulkley and 

Mizrahi-Berk flow behaviour indices from about 0.55 to about 0.15 during the 21 days of valid 

model prediction period (Figure 4.12c). Equally, at 45oC-90%RH storage, the Herschel-Bulkley 

and Mizrahi-Berk flow behaviour indices significantly (p<0.05) decreased from about 0.55 to 

about 0.1 during the 14 days of valid model prediction period (Figure 4.12d). The reduction in 

the n values for the samples stored indicates that the white maize meal dispersions exhibited 

more pseudoplasticity or shear thinning behaviour with storage time. 

 

4.3.5.2.6. Consistency Index 

 

Figures 4.13 shows the changes in the consistency index (k) of the Herschel-Bulkley (kHB) and 

Mizrhi-Berk (kMB) models during storage of the white maize meal at different temperature – 

relative humidity conditions. Similar to the flow behaviour index, the observations and 

explanations of the consistency indices are restricted to the Herschel-Bulkley and Mizrahi-Berk 

models. The Herschel-Bulkley and Mizrahi-Berk consistency indices had similar trends of 

evolution throughout the storage period. 
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Figure 4.13 Changes in consistency index of Herschel-Bulkley (HB) model and Mizrahi-Berk 

(MB) Model of white maize meal during storage at temperature and relative humidity of: (a) 

25oC-43%RH, (b) 25oC-90%RH, (c) 45oC-43%RH and (d) 45oC-90%RH. Units for consistency 

index in HB and MB models are Pa sn and Pa0.5.sn 

 

On the other hand, the Herschel-Bulkley model had significantly (p<0.05) higher consistency 

indices than Mizrahi-Berk. Similar to the flow behaviour index, Bhattacharya & Bhattacharya 

(1996) also found that the consistency index calculated from the Mizrahi-Berk model were lower 

than the corresponding values of the Herschel-Bulkley model.  

 

At 25oC-43%RH storage, the Herschel-Bulkley and Mizrahi-Berk consistency indices marginally 

increased during storage period, but this increase was not statistically (p<0.05) significant  
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(Figures 4.13a). The Herschel-Bulkley and Mizrahi-Berk consistency indices significantly 

(p<0.05) increased during the storage period at 25oC-90%RH (Figure 4.13b). Similarly, the 

Herschel-Bulkley and Mizrahi-Berk consistency indices significantly (p<0.05) increased during 

the storage period at 45oC-43%RH (Figure 4.13c) and 45oC-90%RH (Figure 4.13d) within their 

valid periods of model prediction of 21 and 14 storage days, respectively. Flow behaviour index 

decreased during the storage period while the consistency index increased at all storage 

conditions. In a study of rice pastes, Kaur & Singh (2000) also found that the consistency 

coefficients of cooked rice pastes increased with the increase in fatty acid contents. They also 

found that addition of fatty acids decreased the flow behaviour values. They attributed the 

increase in consistency values with the addition of fatty acids to the formation of inclusion 

complexes with starch. In the white maize meal, free fatty acid contents increased during storage 

at all storage conditions just as the flow behaviour index decreased during the storage period 

while the consistency index increased at all storage conditions. Therefore, this observation could 

also be attributed to lipolysis, which resulted in formation of FFA-amylose complexes. 

 

4.4. Conclusions 

 

� Gelatinization properties were affected by the storage period, while storage temperature 

had no significant effect (P<0.05). Starch in maize meal had significantly (P<0.05) higher 

To, and Tp than the isolated starch. On the contrary, starch in intact maize meal had 

significantly (P<0.05) lower ∆H than the isolated starch. The gelatinization properties 

only significantly (P<0.1) changed in the To for the isolated starch and TE (P<0.05) for 

maize meal which both decreased at both storage temperatures during the storage period. 

 

� Both primary and derived pasting properties of white maize meal have been found to 

change during storage. Low storage humidity increased PV, V95i and V95f at both low and 

high storage temperatures. High storage temperature evolved V50, SBt and C:H higher 

than low storage temperature. At the same storage temperature, high storage humidity 

had higher SBt and C:H than low storage humidity and this phenomenon was more 

pronounced at high storage temperature than at low storage temperature. 

 

� Storing maize meal at higher storage temperature and for long a period increased the 

peak elastic modulus (G′p) while it decreased the peak viscous modulus (G″p) of the 

isolated starch during heating. 
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� The white maize meal has been found to exhibit shear-thinning behaviour at all storage 

conditions throughout the storage period. The Herschel-Bulkley and Mizrahi-Berk 

models predicted flow behaviour for low temperature – low humidity and low 

temperature – high humidity storage conditions throughout the storage period, while it 

was only for a limited period at high storage temperatures. The stress overshoot at low 

temperature storage conditions decreased during storage while it increased at high 

temperature storage. The flow behaviour indices and yield stress also decreased while the 

consistency indices increased during storage. 
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5. Conclusions and recommendations  

 

5.1. Conclusions of the research 

 

This research has shown through literature search that maize is a staple food in many parts of 

Africa, of which maize meal is the major form of maize utilization. Maize meal is produced by a 

dry milling process – degerming and non-degerming processes. In Africa, the degerming 

processes are used by large commercial milling firms and produces varying types of superior 

(refined) maize meals depending on the extraction rates. Consumer preference of the maize meal 

types is much more dependent on the color and level of refining the product, although no much 

research has been done in this area. The new trends in maize meal production underway in 

Africa include fortification. The socio-economic importance of maize meal to Africa lies in its 

home to industrial food applications. The climatic conditions in Africa do pose a challenge for 

storage of white maize meal during distribution.  Despite white maize meal being a staple food 

for many parts of Africa with high involvement in commerce, literature is either scarce or non-

existent on the stability of functional properties of the African maize meal types during storage 

or distribution. This major finding led to this research on the functional properties of white maize 

meal stored under tropical conditions. The study was based on chosen storage conditions taken 

as case study conditions. The properties studied included moisture sorption, lipolysis, lipid 

oxidation, colour, gelatinization, pasting, viscoelastic and flow properties. 

 

The research has found that the adsorption isotherms before and after defatting white maize 

meal, exhibited sigmoidal shapes, representing Type II isotherms. Temperature influenced the 

adsorption isotherms, with the EMC increasing with decreasing temperature at the same Aw.  

GAB, Oswin and Smith models acceptably fitted the adsorption isotherms for both non-defatted 

and defatted white maize meal, with the GAB model being the best. The monolayer moisture 

content decreased with increase in temperature of adsorption. The differential heat of sorption 

and differential entropy of sorption increased with decreasing moisture content. Moisture 

adsorption has been found to be enthalpy-driven in the temperature range studied. 

 

When stored at constant storage relative humidity, white maize meal would absorb or lose more 

moisture at high storage temperatures than at low storage temperatures. Storing white maize 

meal in polypropylene interwoven sack material under varying temperature and humidity 

conditions did not protect it against water activity changes. Polyethylene plastic material had  
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good barrier protection against water activity change when maize meal is stored at high humidity 

for both low and high storage temperatures. On the other hand, polyethylene plastic material had 

good protection against water activity change for a limited storage period of time at low storage 

humidity for both low and high storage temperature. The differences in the water activity of the 

samples packaged in polypropylene and polyethyelene was attributed to the higher water vapour 

transmission rates in polypropylene than in polyethylene.  

 

Storage temperature and storage time had significant effects on the evolution of pH. At increased 

storage temperature decreased evolution of pH in function of time was observed. Storage period 

affected the evolution of titratable acidity, as it increased during storage, while storage 

temperature was not found to influence evolution of titratable acids. 

 

The L-values decreased after a short period of storage at high storage temperature conditions, 

while at low storage temperature-high humidity after a longer storage period. The L-values at 

low storage temperature and low humidity conditions were significantly stable over the storage 

period. The a- and b-values at high storage temperatures increased, while at low storage 

temperature conditions were stable. These observations paralleled colour by sensory evaluation, 

for which colour deteriorated for low storage temperature-high relative humidity and high 

storage temperature conditions. The colour however, remained essentially constant for low 

storage temperature-low relative humidity. The observed change in colour was attributed to 

discoloration of the maize meal by non-enzymatic browning. 

 

Storing maize meal in polypropylene interwoven sacks had poor barrier protection from effects 

of storage temperature and relative humidity on L-, a- and b-values. Storing maize meal in 

polyethylene plastic maintained L-values (suppressed reduction in L-values) at low temperature-

high humidity storage conditions. Maize meal in polyethylene decreased L-values faster than in 

polypropylene at high temperature-low humidity during storage.  

 

Storing maize meal in polyethylene increased b- and a-values faster and to higher values than in 

polypropylene at high temperature-low humidity. Storing maize meal in polyethylene changed 

the overall colour (∆E-values) faster and more intensely than in polypropylene at high 

temperature-low humidity. In fact, the rate of change in all these properties at high temperature-

low humidity was equivalent to the rate of change at high temperature-high humidity. 
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Storage temperature had a higher influence on lipolysis than storage relative humidity. Free fatty 

acids at higher storage temperatures had higher contents and evolved faster than at lower storage 

temperatures.  However, at constant storage temperature, samples at high storage relative 

humidity had higher increases in free fatty acids contents and evolved faster than at low storage 

relative humidity. Fortification had great influence on the evolution of FFA, with fortified maize 

meal evolving higher FFA contents than unfortified maize meal during storage. Packaging and 

sunlight exposure did not play a significant role in the evolution of FFA contents during storage 

of maize meal. 

 

Lipid oxidation determined by peroxide value, increased and then decreased to relatively 

constant values during the storage period. Fortification seemed to suppress the evolution of 

peroxide value, and this was attributed to high rates of lipid oxidation due to a combination of 

thermal, iron and photosensitized catalyzed lipid oxidation. Lipid oxidation as determined by p-

anisdine value initially increased and then decreased to relatively constant values during the 

storage period, but the influence of storage temperature seemed not to be significant 

 

Gelatinization properties of white maize meal and its isolated starch were inherently different 

due to the compositional difference. The To, Tp, and TE of maize meal were higher, while ∆H was 

lower in maize meal than in its isolated starch. The To,, Tp and ∆H maintained this status quo 

during the storage period, while the TE changed with time. The evolutions of the Tp and ∆H 

gelatinization parameters were not affected by storage temperature nor storage period. However, 

the To for the isolated starch decreased at both storage temperatures, while the TE for maize meal 

also decreased at both storage temperatures. The changes in gelatinization properties during 

storage period have been hypothesized on the storage effects on the amorphous background and 

on the starch granule perfection due to prolonged hydrothermal effects. 

 

In terms of pasting properties, low storage humidity increased peak viscosity (PV), initial hot-

paste viscosity (V95i) and final hot-paste viscosity (V95f) at both low and high storage 

temperatures. This observation has been explained based on the starch granule perfection due to 

prolonged hydrothermal effects. Increasing storage temperature increased cold-paste viscosity 

(V50), total setback (SBt) and cold-paste:hot-paste viscosity ratio (C:H). At constant storage 

temperature, high storage humidity had higher SBt and C:H than low storage humidity and this 

phenomenon was more pronounced at high storage temperature than at low storage temperature. 

The increase in the three retrodagradation parameters is due to the FFA-amylose complexation.  
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Storing the maize meal at higher temperature and for a long period increased the peak elastic 

modulus (G′p) while decreased the peak viscous modulus (G″p) of the isolated starch during 

heating. 

 

The white maize meal exhibited shear-thinning behaviour during storage. The Herschel-Bulkley 

and Mizrahi-Berk models could be used to predict the flow behaviour for low temperature 

storage conditions during storage, while only for a limited storage period at high storage 

temperatures. The stress overshoot at low storage temperature conditions decreased during 

storage while it increased at high storage temperatures. This observation is due to formation of 

stronger gels at high storage temperatures than low storage temperatures due to the 

retrogradation effects observed during pasting. The flow behaviour indices and the yield stress 

decreased while the consistency indices increased at all conditions during storage. The changes 

in flow behaviour indices and consistency indices have also been attributed to formation of FFA-

amylose complexes. 

 

5.2. Significance of the research findings 

 

In determining the stability of functional properties of white maize meal in Zambia, a developing 

nation, with all its attendant problems of data acquisitions and logistics, the researcher has added 

to the required knowledge of quality dynamics during storage of this staple food for many parts 

of Africa. The researcher has hope that this data may be valuable for decisions of quality related 

aspects of this staple food for Africa. Moisture sorption properties are important in the reactivity 

of other properties like browning of white maize meal during storage. The lowering of pH, 

increase in titratable acids and increase in lipid oxidation have the potential to affect the taste or 

flavor of the white maize meal. The browning colour encountered during storage is not only 

undesirable by the consumers but is also of nutritional concern as it further lowers the protein 

quality in white maize meal. Lipolysis is also of great concern as the abundant linoleic acid in its 

non-esterified form in maize meal has been associated with oesphagus cancer. Nonetheless, 

lipolysis has the potential of application to be used as a storage life marker of white maize meal. 

The increase in retrogradation properties during pasting and increase in consistency index for the 

flow behaviour due to storage conditions can have consequences for energy consumption during 

stirring, mixing or pumping of gelatinized maize meal pastes for the food industry. Manipulation 

of temperature, humidity and use of appropriate packaging material has the potential to control 

these phenomena. For instance, it clear from this study that for low temperature-high humidity  
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regions, the polyethyelene packaging would be recommended as it would retain the colour of 

maize meal for a longer period. On the other hand, for high temperature regions like the valleys, 

research into appropriate packaging would be required as the two packaging types studied here 

may not perform well in such regions. 

 

5.3. Recommendations 

 

While the influence of storage conditions on functional related properties have been established 

in this research, probably one would also say more questions have been raised especially for a 

product that has not been researched by many researchers yet. To better understand this product 

and to fully utilize it, the recommendations for further work in the area of white maize meal 

types in Africa cannot be avoided: 

 

i. Almost all the research in literature on partially degermed maize meal does not report 

the extraction rates of the maize meal used. It seems that the extraction rates of the 

partially degermed maize meals could have a great influence on the quality properties 

of maize meals. It is therefore, recommended that the moisture sorption behaviour be 

determined for the different extraction rates in the African maize meal types 

 

ii. It also appears that the enzymes might be playing a big role during storage of maize 

meal. To better understand there role or effects on quality properties there is need to 

study the role of enzymes like lipoxygenase, lipases, amylases and proteases. This 

should incorporate the study on susceptibility of maize varieties to lipid oxidation 

because we suspect that different maize varieties will have different amounts and 

activities of enzymes  

 

iii. In our study we have not reported on the influence of different storage conditions on 

the packaging. Although not reported, our preliminary observations showed that 

storage conditions created physical changes in the appearance of the packaging 

material used, particularly, polypropylene 

 

iv. In our study, apart from the sunlight exposure experiment, the rest of the experiments 

were based on fixing constant storage conditions (temperature and relative humidity).  
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There is need to study the maize stability under cyclic storage conditions as this will 

be closer to real storage conditions which fluctuate even within one given day 

 

v. Although we have not adequately reported on the microbiological stability of the 

maize meal, it is evident from the data given in this research that this aspect plays a 

significant role in the stability of maize meal. Particularly, it will be important to 

study the role of yeast and moulds in contributing to exogenous amylases, proteases, 

lipoxygenases and lipases which are significant in accelerating the deterioration of 

maize meal in storage.    
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Nomenclature 

 

ANOVA  Analysis of Variances 

wA    Water activity 

BD   Breakdown index (Pa.s) 

BET  Brunauer-Emmett-Teller 

C:H   Cold-paste: Hot-paste viscosity ratio 

CIMMYT  International Maize and Wheat Improvement Centre 

db  Dry basis 

δ   Phase angle (o) 

G∆   Free energy at βT (kJ/mol) 

dh∆   Net isosteric heat of sorption, or net differential enthalpy (kJ/mol) 

( )dh∆   Average enthalpy (kJ/mol) 

∆H   Gelatinization enthalpy change (J/g) 

dS∆   Differential entropy of sorption (kJ mol-1 K-1) 

( )dS∆   Average entropy (kJ mol-1 K-1) 

DSC   Differential Scanning Calorimetry 

ciE   Model predicted values 

eiE   Experimental values 

EDTA   Ethylenediamine tetraacetic acid 

EMC   Equilibrium moisture content (g H2O/g, dry basis) 

ERH   Equilibrium relative humidity 

FA   Fatty acids 

FFA   Free fatty acids 

G*   Complex modulus (Pa) 

G′   Elastic modulus (Pa) 

G′p   Peak elastic modulus (Pa) 

G″   Viscous modulus (Pa) 

G″p   Peak viscous modulus (Pa) 

GAB   Guggenheim-Andersen-de Boer 

GMO   Genetically modified organisms 

HMF   Hydroxyl-methylfurfural 
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K    Consistency index (Pa.sn) 

m   Number of ( )dd Sh ∆∆ ,  data pairs 

gmM   Monolayer moisture content (g H2O/g, dry basis) 

MOST  The USAID Micronutrient program 

Max   Maximum 

MR   Maillard reaction 

MRE    Mean relative error 

N    Number of experimental data 

n   Flow behaviour index 

NEB    Non-enzymatic browning 

NMR   Nuclear Magnetic Resonance  

NSTL   Non-starch total lipids 

PE   Polyethylene 

PP   Polypropylene 

PV   Peak viscosity (Pa.s) 

R   Universal gas constant 0.008314 (kJ mol-1 K-1) 

RH  Relative humidity (%) 

2r   Determination coefficient 

T   Temperature (K) 

βT   Isokinetic temperature (K) 

hmT   Harmonic mean temperature (K) 

RH   Relative humidity 

SANS   Small Angle Neutron Scattering 

SAXS   Small Angle X-ray Scattering 

SB   Setback (Pa.s) 

SBt   Total setback (Pa.s) 

SEM   Scanning electron microscopy 

SR   Swelling rate (Pa.s/min) 

TE   Gelatinization end temperature (oC) 

TEM   Transmission electron microscopy 

To   Gelatinization onset temperature (oC) 

Tp   Gelatinization peak temperature (oC) 
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USAID  United States Agency for International Development 

V50   Cold-paste viscosity (Pa.s) 

V95f   Final Hot-paste viscosity (Pa.s) 

V95i   Initial Hot-paste viscosity (Pa.s) 

WAXS  Wide Angle X-ray Scattering 

WVTR   Water Vapor Transmission Rate (g m-2day-1) at specified temperature and relative 

humidity) 

Wb  Wet basis 
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