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Abstract. Near the end of the XIXth century part of mathematical re-
search was focused on unification: the goal was to find ”one sort of thing” that
mathematics is (or could be taken to be) about. Quite quickly sets became
the main candidate for this position. While the enterpize hit a rough patch
with Frege’s failure and set-theoretic paradoxes, by the 1920s mathematicians
(roughly speaking) settled on a promising axiomatization of set theory and
considered it foundational. Quite parallel to this development was the work
of Stanislaw Leśniewski (1886-1939), a Polish logician who did not accept the
existence of abstract (aspatial, atemporal and acausal) objects such as sets.
Leśniewski attempted to find a nominalistically acceptable replacement for set
theory in the foundations of mathematics. His candidate was Mereology — a
theory which instead of sets and elements spoke of wholes and parts. The goal of
my talk will be to present Mereology in this context, to evaluate the feasibility
of Leśniewski’s project and to briefly comment on its contemporary relevance.

1 “Arithmetization” of mathematics

Near the end of the XIXth century part of mathematical research was focused
on unification: the goal was to find ”one sort of thing” that mathematics is
(or could be taken to be) about. The stage that most mathematicians agreed
to have achieved was the so-called arithmetization of mathematics: with some
näıve set theory in the background, nearly all mathematical objects could be
thought of as objects “constructed” from natural numbers.1

For instance, Cantor provided a definition of real numbers in terms of Cauchy
sequences and Dedekind defined real numbers in terms of Dedekind cuts. Let’s
take a quick look at the constructions before we draw a moral.

A Cauchy sequence of rational numbers is a sequence whose members get
arbitrarily close to each other as it proceeds.2 Two Cauchy sequences are equiv-
alent iff the difference between their respective elements tends to zero. Now,
take the sets of Cauchy sequences of rational numbers modulo this equivalence.
This domain will satisfy the standard axioms of real number theory.3

A Dedekind cut is a pair 〈A,B〉 of sets of rational numbers, such that A,B 6=
∅, A is closed downwards, B is closed upwards and A contains no greatest
element. Each cut is uniquely represented by either of its two elements, so it
is customary to identify real numbers with non-universal and downward closed

1“In the late nineteenth century, it was a widespread idea that pure mathematics is nothing
but an elaborate form of arithmetic. Thus it was usual to talk about the arithmetisation of
mathematics, and how it had brought about the highest standards of rigor.” (Ferreirós, 2012,
sec. 3)

2That is, a sequence x1, x2, . . . such that for every rational number ε > 0 there is an integer
n such that for all integers numbers j, i, | xi − xj |< ε.

3See appendix A to remind yourself what these axioms are.
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sets of rational numbers which contain no greatest elements. The set of all
Dedekind cuts also satisfies the axioms of real number theory.

A few observations are due:

• Assuming, as it was normal, that rational numbers can be in an analo-
gous manner reduced to natural numbers4, these strategies were taken to
provide reductions of real numbers to natural numbers.

• Such constructions had two ingredients: natural numbers and a set-the-
oretic component. After all, Cauchy sequences were sequences, Dedekind
cuts were pairs of sets, and integers and rationals were equivalence classes,
all of which seem to be set-theoretic items.

• Yet, at that stage, there was no axiomatization of set theory and math-
ematicians just used set-theoretic notions intuitively (one of the reasons
why we call such set theory näıve).

• Such reductions were not unique, at all stages of the construction. People
didn’t worry about this then, but later on this led some mathematicians
and philosophers to believe that mathematical theories are not about some
selected objects (like natural numbers) but rather about whole bunches of
structures satisfying the same formal constraints.

Thus, to further the arithmetization of mathematics, a more precise mathe-
matical theory of sets was needed, telling us exactly which sets exist and what
their properties are. This need became even more perspicuous with the arrival
of set-theoretic paradoxes.

2 Russell’s paradox

One of the first and most important attempts at axiomatizing set theory was
that of Friedrich Ludwig Gottlob Frege (1848-1925).5 Frege not only constructed
a formal system which constituted the first formulation of second-order logic,6

but also attempted to give an axiomatization of set-theory. This axiomatization
would not only provide the arithmetization of mathematics with a precise tool,
but also allow one to actually reduce numbers to sets, showing that the essential
mathematical component of foundations of mathematics was set-theoretic.7

The reduction of natural numbers to sets within Frege’s framework identified
each number n with the extension whose members are all and only those con-

4See appendix B for details.
5For a good anthology of Frege’s basic writings see (Beaney, 1997).
6Very roughly speaking, this is a logic which handles reasoning employing not only quan-

tification over objects (“for all objects x”) but also over properties of objects (e.g. “for no x
there is a P such that Px and not-Px.”).

7Well, Frege thought that sets, which he called extensions, were logical objects, whatever
that might mean, so his aim was even more ambitious: to show that mathematics is ultimately
just logic.
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cepts,8 which applied to exactly n objects. (In fact, there is no circularity here:
you can define “applying to the same number of objects” without reference to
numbers, in terms of there being a 1-1 mapping, and use this notion in further
definitions.)

The sole really set-theoretic axiom in Frege’s system was his Basic Law V,
which said that the extension of a concept F is identical to the extension of a
concept G just in case concepts F and G apply to the same objects:

{x | Fx} = {x | Gx} ≡ ∀x (Fx ≡ Gx)(BLV)

From (BLV), together with his definition of numbers, Frege managed to
derive the so-called Hume’s Principle, which reads ‘the number of F s is the
same as the number of Gs iff F and G are equinumerous’:9

N(F ) = N(G) ≡ F ≈ G(Hume)

From (Hume), with his logic in the background, Frege managed to derive
the standard axioms of second-order Peano Arithmetic, a fairly standard ax-
iomatization of the natural number arithmetic.

Alas, within this framework a problem arises, observed independently by
Zermelo and Russell (and yet, usually called Russell’s paradox ). Once we notice
that ∀x[φx ≡ φx] is a logical truth for any formula φ, (BLV) allows us to derive
{x | φx} = {x | φx}, it is only one step to reaching a principle called full
comprehension: ∃x x = {x | φx}. Roughly speaking, the principle states that
for any property there is a set of all and only those objects, which have this
property.

Full comprehension, however, leads to problems. Take the property of not
being its own element, apparently shared by chairs, human beings and power
drills. By full comprehension, the set of objects which are not their own elements
exists, let’s call it R. Thus, any object belongs to R iff it doesn’t belong to itself:

x ∈ R ≡ x 6∈ x(Russell 1)

But extensions are supposed to be objects and therefore by (Russell 1) should
apply to them. In particular, it should apply to R as well. R should be its own
element just in case it is not its own element:

R ∈ R ≡ R 6∈ R(Russell 2)

We’re getting close to the point where Leśniewski kicks in. Here’s one more
piece of the puzzle that we need.

8Frege made a distinction between objectively understood concepts, being higher-order
items and not lying in the range of first-order quantifiers, and their extensions, which could
be treated like objects.

9Equinumerosity can be defined without reference to numbers: F and G are equinumerous
iff there is a 1-1 mapping between objects which are F s and objects which are Gs.
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3 Cantor’s theorem and paradox

In 1890s Georg Cantor (1845-1918) has proven a theorem according to which
for any set A, its powerset (P(A)) — that is, the set of all subsets of A — has
more elements than A itself.

It is easy to see how this holds for particular finite cases. Take a small set,
say {a, b}. There are more than two subsets of this set: ∅, {a}, {b}, {a, b}. For
a full argument for the general claim, see appendix D.

Now, together with fairly widely accepted assumptions that the set of natural
numbers exists and that for any set its powerset exists, Cantor’s theorem has
the consequence that there is not one but many (a lot, really) infinite sizes. The
smallest infinite set is the set of natural numbers. Take its powerset — you get
a set that has more elements, even though the initial set was infinite already.
Take the powerset of that set, you get another, yet greater set, and so on. . .

With näıve, unaxiomatized set theory in the background, Cantor’s theorem
also leads to trouble. Näıvely speaking, the set of all sets should exist. Call it
U . Now consider its powerset, P(U). Each element of P(U) is a set. So P(U)
is a subset of U . But subsets don’t have more elements than sets whose subsets
they are. So P(U) shouldn’t have more elements than U itself. Yet, by Cantor’s
theorem, it has to!

4 Enter Leśniewski

Things have slightly changed by the time Leśniewski entered the battlefield. On
one hand, Cantor’s surprising theories about small stream of mathematicians
who thought actual infinity cannot exist and tried to do mathematics without
it, most of researchers accepted Cantor’s account of infinity.

On the other hand, the näıve and bold assumption that for each property
there is a corresponding set, has been abandoned. Instead, mathematicians (like
Zermelo and Fraenkel) took a more piecemeal approach to set theory, converting
paradoxes into non-existence theorems. What remained from full comprehension
was the axiom of separation, which only requires that once the domain you’re
looking at is a set, each property determines a subset of that set and existence
claims are handled by a variety of other axioms. Such axiom say, for instance,
that pairs of objects exist, or that once you have a set of sets, the union of
its members exists, or that once you have a set its powerset exists, or that an
infinite set exists. This modified set theory has been on the table since early
years of the XXth century, has been put to many uses, and no one so far has
been able to show it inconsistent.

For Leśniewski there were at least three reasons to worry about this state of
affairs:

• Instead of simple and intuitive axioms (like (BLV)), now set theory con-
sisted of a bunch of separate axioms, which did strike the balance between
usefulness and inconsistency, but did so without a clear intuitive motiva-
tion. It seemed as if the axioms were chosen just so that the paradoxes
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could be avoided and the essential mathematical strength preserved, in a
rather unprincipled manner. Also, no serious effort was made to explain
the initial intuitions leading to paradoxes.10

• The logic underlying such systems didn’t satisfy Leśniewski’s own stan-
dards of precision and clarity.

• The whole story about sets didn’t seem philosophically convincing to
Leśniewski, because he was a nominalist. On the standard interpretation,
sets are abstract mathematical objects. This means that they are sup-
posed to be atemporal, aspatial and causally inefficacious. For Leśniewski,
this hardly made sense. Many times he emphasized that he doesn’t even
understand what such objects would be like. He also had an argument
against the existence of such objects, but that’s a different story.

Accordingly, he devised his own logic and a theory alternative to set theory,
meant to do (more or less) the same job. Actually, historically speaking, it
was the other way round. First, in 1914 he used his mereological intuitions to
explain away the Russell’s paradox. Then, in 1916 he semi-formally axioma-
tized his alternative to set theory underlying his approach to Russell’s paradox.
Only later, in the 1920s, he spent more time thinking about formalization and
constructed a fully formalized language and logic to underly his approach.

The key difference between set theory and Leśniewski’s Mereology (the name
coming from Greek meros, meaning part ; in the beginning Leśniewski didn’t use
the name but rather explicitly called his theory a theory of sets) is that while set
theory uses sets and elementhood, Mereology used wholes and parthood. While
sets were supposed to be abstract objects, mereological wholes were meant to be
nominalistically acceptable. When I look at the heap of stones in my garden, the
set of these stones is supposed to be an abstract object, while the mereological
whole composed of these stones is just a heap of stones.

As for Leśniewski’s logic, he devised two systems: Protothetic, a generalized
version of propositional calculus in which quantification over propositional func-
tions, functions of propositional functions and so on was available, and Ontology,
which was his variant of higher-order logic.

While there are various factors which distinguish Leśniewski’s logical systems
from other logical systems, they are rather irrelevant for our current purpose. I
will say only a few words about how Leśniewski thought about formal systems
in general.

• While normally languages of formal systems are abstract sets of formulas,
for Leśniewski all that existed was written instructions as to how new
inscriptions should be constructed to count as formulas of the language
and those inscriptions, which have been already written down.

10The history of mathematics had to wait till Gödel’s work in 1933 for the birth of the
so-called iterative conception of set, according to which sets are built up in stages. This
approach is a bit more principled and provides justification for all axioms of standard set
theory. (Which doesn’t mean it’s philosophical status isn’t debated nowadays.)

5



• While normally proofs and theorems of formal systems are taken to exist,
no matter whether they’ve been discovered or written down, for Leśniewski
only those proofs and theorems exist, which have been written down.

Thus, for Leśniewski the system is a concrete object which changes with
time as people write down formulas. They consists only of concrete objects: the
inscriptions that someone actually cared to write down following the instruc-
tions.

It’s time to look at what Mereology looked like and how Leśniewski used it
to approach the Russell’s paradox.

5 Mereology and Russell’s paradox

For now, let’s proceed intuitively and see what would happen, if classes were
thought of mereologically. (So from now on, when we talk about sets and
classes, please take those phrases to refer to mereological wholes.) We’ll look at
an axiomatization of Mereology in the next section.11

As phrased by Leśniewski, the paradox assumes that one of the following
sentences is true:

(Russell 1) The class of classes not subordinated to themselves is sub-
ordinated to itself.

(Russell 2) The class of classes not subordinated to themselves is not
subordinated to itself.

where by ‘subordinated to’ Leśniewski means ‘being an element of’.
Next, standard paradoxical reasoning indicates that each of the above sen-

tences implies the other, thus yielding a contradiction.
Leśniewski points out that if no object is the class of classes not subordinated

to themselves, then both (Russell 1) and (Russell 2) are false, without implying
a contradiction. Thus, his goal in handling the paradox is to show independently
of the paradox that there is no such a class.

To start with, if we think about mereological wholes rather than abstract
sets, we need to find a correlate of the elementhood relation. For Leśniewski, it
was being an ingredient, where each object is its own ingredient and each part
of an object is among its ingredients.12

Now, if being an element is being an ingredient and each object is by defi-
nition its own ingredient, each object is its own element. This has two conse-
quences, which are relevant to current considerations.

• First, there is no empty class. For a class to be empty, it would have
to have no elements. But we know it is impossible, because it is its own
element.

11This is a fairly natural way to go: Leśniewski first used mereological intuitions to handle
Russell’s paradox in 1914, and developed a semi-formalized axiomatization of Mereology in
1916.

12Nowadays, we rather call ingredients parts and what Leśniewski called parts we call proper
parts.
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• Second, there are no things which are not their own elements.

As a consequence, the Russell’s set would have to be empty. For it would
have to contain things which are not their own elements. But there are no such
things. Yet, we already know that the empty set doesn’t exist, and by the same
token the Russell’s set doesn’t exist either.

So if classes are the understood mereologically, we have independent reasons
to think that the Russell’s set doesn’t exist and if it doesn’t exist, no contradic-
tion arises. So, at least, we solved one problem: we avoided Russell’s paradox
in a principled manner. Do we get a mathematically interesting theory which
could do the job that the standard set theory is intended for, though?

6 Axioms of Mereology

Leśniewski provided a few axiomatizations of his Mereology. They are all equiv-
alent and we’ll take a look at the earliest one, coming from 1916. I will just give
the content of the axioms and definitions in a rather informal manner.

The 1916 formulation had two axioms not containing defined terms and two
axioms which involved previously defined terms.

(Axiom I) If a is a part of b, b is not a part of a.
(Axiom II) If a is a part of b and b is a part of c, then a is a part of c.

For the other two axioms, we need two definitions:

(Definition I) a is an ingredient of b if and only if either a and b are the
same object, or a is a part of b.

Two other important definitions are that of a set and that of a class. As it
will turn out, this has nothing to do with the standard set-theoretic distinction
between sets and classes.

(Definition II) An object a is a set of bs if and only if every one of a’s
ingredients has an ingredient which is an ingredient of an
object which is b.

This sounds a bit convoluted, but the idea is rather simple. For instance, the
mereological whole constituted, say, by all people in Canada is a set of people,
because every one of its ingredients has an ingredient which is an ingredient of
a person (in Canada).

To see why this rather complicated iteration of “ingredienthood” is needed,
consider what would happen if the definition required only that every ingredient
of a be an ingredient of an object which is b. Then, the mereological whole
constituted by all people in Canada (call it CAN) would not be a set of people,
because CAN would have ingredients, like the mereological fusion of one person’s
leg and another person’s right hand, which would not be ingredients of any
particular person.

Also, note that the indefinite article in ‘is a set’ is there not without a pur-
pose. According to this definition, one countable noun may generate quite a
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few different sets. The intuition here is that every mereological whole consti-
tuted by some objects b (i.e. by some objects denoted by the countable noun
phrase ‘b’) is a set of b, although choosing different representatives (or groups
of representatives) of b we get different mereological wholes.

Take another example: any heap of stones is a set of stones in the sense
introduced by Definition II. Therefore, if a names more than one object, the
name set(a) names also more than one object: it names any mereological whole
constructed from some objects that fall under a.

Another notion defined by Leśniewski is the one that determines the ‘maxi-
mal’ set of objects a, that is the set of all as. This is the notion of a class:

(Definition III) an object a is a class of objects b if and only if every ob-
ject b is an ingredient of a, and any ingredient of a has an
ingredient which is also an ingredient of some object b.

The remaining two axioms employ the notion of a class:

(Axiom III) If there is at least one b, there is a class of bs. (Any non-
empty name generates its class.)

(Axiom IV) For any b, there is at most one class of bs. (A name gener-
ates at most one class.)

Leśniewski proceeded to prove various theorems in the system. For us, the
interesting question is: how much mathematics can be obtained within the
system?

7 Mereology and standard mathematics

First of all, it is clear that Leśniewski invented Mereology while thinking hard
about Russell’s paradox:

I occupied myself zealously with the ‘antinomies’. From the time
when in the year 1911 I began an acquaintance with them by meeting
with the ‘antinomies’ of Russell related to the ‘class of classes not
elements of themselves’, and problems concerning the antinomies
were the most demanding subject of my deliberations for over eleven
years. (Leśniewski, 1927, 199)

Second, it is equally clear that he thought Mereology should play founda-
tional role in mathematics:

The present work is the first link in an extended series of works,
which I intend to publish in the near or distant future, desiring
to contribute as much as possible to the justification of modern
mathematics . . . The arrangement of definitions and truths, which
I established in the present work dedicated to the most general
problems of the theory of sets, has for me, in comparison to other
previously known arrangements of definitions and truths (Zermelo,
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Russell, etc.) this advantage that it eliminates the ‘antinomies’ of
the general theory of sets without narrowing the original domain of
Cantor’s term ‘set’ . . . and on the other hand, it does not lead to
assertions which are in such startling conflict with intuitions of the
‘commonalty’. . . (Leśniewski, 1916, 129–130)

In the series of papers in which he described various axiomatizations of Mere-
ology Leśniewski also proved numerous theorems that are intended as analogues
of certain theorems of set theory, the strongest and the most mathematically
interesting of them being an analogue of Cantor’s theorem.

This analogue states that if a name a names more than one object, and the
objects it names do not overlap, then there are more sets of as than objects as.
So, for instance, if I have five (obviously, non overlapping) lizards, and I name
this little herd ‘Aldos’,13 then the theorem implies that there are more than five
sets of Aldos.

Interestingly, despite containing an analogue of Cantor’s theorem, Mereology
proves the existence of the universal class defined as the class of all objects. The
mereological analogue of Cantor’s theorem doesn’t apply, because subsets of the
universe overlap and so, Cantor’s paradox doesn’t arise.

However, this is as mathematically interesting as it gets. Leśniewski never
developed a “mereologization” of arithmetic in the manner analogous to Frege’s
treatment of arithmetic. He did axiomatize an arithmetic in the language of
Ontology, but that was a pretty much standard axiomatization with axioms
like “one is a natural number”, ”the successor of a natural number is a natural
number” and so on. No attempt at elimination of numbers in virtue of anything
else can be found in Leśniewski’s works.

Mereology was constructed by Leśniewski, as he explicitly stated, to pro-
vide an alternative form of the foundation of mathematics. This new system
indeed provides an interesting theory of classes, at least in one sense of this
word. Unfortunately, neither Leśniewski nor later developments have shown
that Mereology actually constitutes a foundation of mathematics in any sense
remotely similar to that in which classical set theory does.

It is said that Leśniewski eventually became dissatisfied with Mereology as
a system of foundations of mathematics. He did not publish such a comment
anywhere, and the information seems to come from secondary sources. For
instance Kearns (1962, 35) says: “Leśniewski did not give up his claims that it
[Mereology] is intuitively acceptable, but he did realize that it cannot replace
set theory.”

Peter Simons points out:

Leśniewski’s alternative to set theory is based on the (justified) as-
sumption: If you follow me in what you mean by ‘member’ and ‘set’
you will not get into logical trouble. That is true, but the propo-
nents of inconsistent set theory were doing more than trying to stay

13Named so after a logician who informed my PhD supervisor that I named my cat after
him.
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out of trouble (which is why they got into it in the first place): they
were trying to provide a logical foundation for mathematics, some
of them with a view to showing at least part of mathematics to be
just logic. Leśniewski’s weaker system may, or, more likely, may not
be adequate to that purpose. (Simons, 1993, 7)

There is some work on enriching the framework with elements which would
be nominalistically acceptable and which would result in mathematically richer
theories (Professor Simons, and Yours truly, see also (Hellman, 2013)). But
these attempts move forward thanks to serious modifications to the original
systems and are still a bit far from being successful.

8 Unexpected usefulness of Mereology

All this does not mean that Mereology as a separate theory is useless. Quite
recently, mereology resurfaced as quite an important tool in various fields.

Some of the applications are in philosophy. Philosophers speak about exis-
tence in time, identity in space-time and so on and often employ a mereological
framework for their discussions.

Some recent applications are in linguistics (Link, 1998; Champollion, 2012),
in natural language processing (Indriunas et al., 2012) in the semantics of mass
terms (Bunt, 1985).

Another sort of uses is in AI, where mereological framework is used to encode
certain relations in ontological databases (Klinov and Mazlack, 2007) or spatial
reasoning (Polkowski and Skowron, 2000).
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Appendices
A Axioms of real number theory

A structure 〈R,+,×,≤〉 is a real number structure iff it is a complete ordered
field. For it to be a field, the following conditions have to be satisfied:

∀x, y ∈ R ∃z ∈ R z = x+ y(Closure)

∀x, y ∈ R ∃z ∈ R z = x× y
∀x, y, z ∈ R x+ (y + z) = (x+ y) + z(Associativity)

∀x, y, z ∈ R x× (y × z) = (x× y)× z
∀x, y ∈ R x+ y = y + x(Commutativity)

∀x, y ∈ R x× y = y × x
∃y ∈ R ∀x ∈ R x+ y = x(Identity)

∃y ∈ R ∀x ∈ R x× y = x

∀x ∈ R ∃y ∈ R x+ y = 0(Inverses)

∀x ∈ R ∃y ∈ R x× y = 1

∀x, y, z ∈ R x× (y + z) = (x× y) + (x× z)(Distributivity)

The first three types of conditions are straightforward. The third type re-
quires the existence of identity elements which are (respectively) called 0 and
1. The next type of conditions requires that addition and multiplication have
their inverses. The last requirement is straightforward.

For a field to be ordered, ≤ has to be total order on R. That is, it has to be
reflexive (∀x ∈ R x ≤ x), antisymmetric (∀x, y ∈ mr [x ≤ y ∧ y ≤ x→ x = y]),
transitive (∀x, y, z ∈ R [x ≤ y ∧ y ≤ z → x ≤ z]) and total (∀x, y ∈ R [x ≤
y ∨ y ≤ x]). Moreover, this order should have the following properties:

∀x, y, z ∈ R [x ≤ y → x+ z ≤ y + z](Preservation)

∀x, y ∈ R [0 ≤ x ∧ 0 ≤ y → 0 ≤ x× y]

For an ordered field to be (Dedekind) complete each non-empty subset of R
which has an upper bound in R should have a least upper bound.

The requirements described above determine the structure of real numbers
up to isomorphism.

B Construction of rational numbers

The construction of real numbers proceeds through integers and rational num-
bers. One way to go about this is to observe that every integer can be repre-
sented by m − n for m,n ∈ N. The representation is not unique, but we can
identify those results of subtraction which yield the same integers:

x− y = x′ − y′ ≡ x+ y′ = x′ + y(Difference)
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An integer, on this approach is taken be such an equivalence class of a pair of
natural numbers. The set of integers, Z, is identified with the set of all such
equivalence classes of pairs of natural numbers. It is countable, because the set
of pairs from a countable set is also countable.

Once integers are in place, we move on to rationals. The key observation
here is that assuming y, y′ 6= 0:

x

y
=
x′

y′
≡ x× y′ = x′ × y(Ratio I)

This, again, introduces an equivalence relation – only this time between pairs
of integers whose second elements differ from zero. Thus, the standard move is
to identify each rational number with an appropriate equivalence class of such
an equivalence relation.

C Set-theoretic construction of natural numbers

An ordered pair 〈x, y〉 is identified with the set {{x}, {x, y}} (this is by no
means the only way to do this). With this definition, it is possible to prove in
standard set theory:

〈x, y〉 = 〈x′, y′〉 ≡ x = x′ ∧ y = y′(Pairs)

One way to identify natural-number-like objects in set theory is to take:

0 = ∅(Natural)

1 = {0} = {∅}
2 = {0, 1} = {∅, {∅}}
3 = {0, 1, 2} = {∅, {∅}, {∅, {∅}}}
...

In general, the successor of a set x is x ∪ {x}. A set is called inductive if
it contains ∅ and is closed under the successor operator. The set of natural
numbers is identified with the smallest inductive set. Appropriate definitions
of addition and multiplication provide us with a set-theoretic model of natural
numbers. (Again, it is by no means the only way to construct a model of natural
number arithmetic in set theory.)

D Cantor’s theorem and diagonalization

The proof of a general claim, including infinite cases, requires ingenuity. First,
you need to explicate in more detail what you want to prove. To prove that
there are more elements of P(A) than elements of A, you need to prove that:

• There is a 1-1 mapping between A and a subset of P(A). This is rather
easy: associate each x ∈ A with {x} ∈ P(A).
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• For no subset A′ of A there is a 1-1-mapping from A′ to the powerset of
A. In fact, it is enough to show that there is no function from A′ onto this
powerset (if there is no such a function, there definitely is no 1-1 function).
This requires ingenuity.

The proof that there is no such a mapping is a reductio proof and it employs
a technique called diagonalization, which turned out to be very important in
XXth century logic and mathematics.

For a reductio proof, assume that there is a function with required properties
and show that from this assumption a contradiction follows.

So suppose A′ ⊆ A and f : A′ 7→onto P(A). Now, define C the be the set of
those elements of A′ which do not belong to sets assigned to them.

x ∈ C ≡ x ∈ A′ ∧ x 6∈ f(x)(Def C)

This means to that to check if some element of A′ is in C, we need to first see
which set is f(x). Then, we check if x is in that set. If not, we throw it in to C.
If yes, we don’t.

Now observe that C is a subset of A′ (and by the same token, a subset of A).
So, it also belongs to the powerset under consideration. This being the case, it
is assigned by f to some element of A′. Call this element c:

f(c) = C(Cantor 1)

Now, from (Def C) (and the fact that c ∈ A′) it follows:

c ∈ C ≡ c 6∈ f(c)(Cantor 2)

The problem now appears. (Cantor 1) and (Cantor 2) together entail the
contradictory claim:

c ∈ C ≡ c 6∈ C

So the function whose existence we tentatively assumed doesn’t exist, which
completes the proof.
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Leśniewski, S. (1916). Podstawy ogólnej teoryi mnogości I. Prace Polskiego
Ko la Naukowego w Moskwie, 2. [Foundations of the general theory of sets I,
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‘zbiór’. Przegla̧d Filozoficzny, 30:164–206. [On the foundations of mathemat-
ics. Introduction. Ch. I. On some questions regarding the sense of the ‘logistic’
theses. Ch. II. On Russel’s ‘antinomy’ concerning ‘the class of classes which
are not elements of themselves’. Ch. III. On various ways of understanding
the expression ‘class’ and ‘collection’ (Leśniewski, 1991, 174-226)].
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