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Mediation Analysis - Goal

Goal:
Unravel causal pathways between exposure X and outcome Y :

X Y

• What is the effect of X on Y ?
= Total Effect
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Mediation Analysis - Goal

Goal:
Unravel causal pathways between exposure X and outcome Y :

X Y

M

• What part of the effect is mediated by M?
= Indirect Effect

• What is the remaining causal effect of X on Y ?
= Direct Effect
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Mediation Analysis - Example

• Threathening with punishment (X ) induces obedience (Y ) in
children
• No threat (X = 0) versus threatening with punishment

(X = 1)
• Possible mediator M:

• Fear of punishment

Threat Obedience

Fear of punishment
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Traditional Mediation Analysis - How?

X Y X Y

Ma b
c’c

The Baron and Kenny (1986) approach:

E [Yi | Xi ] = i0 + cXi Step 1: H0 : c = 0

E [Mi | Xi ] = i1 + aXi Step 2: H0 : a = 0

E [Yi | Xi ,Mi ] = i2 + c′Xi + bMi Step 3: H0 : b = 0

Step 4: H0 : c′ = 0

Total Effect = Direct Effect + Indirect Effect
c = c′ + a×b
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Traditional Mediation Analysis - When?
Modelling assumptions:

(M1) Linear relationships among X , M and Y

(M2) Normally distributed error terms, with constant variance

(M3) Independent error terms

M = ι1 + αX + εM , with εM ∼ N(0,σ2
M)

Y = ι2 + ζ ′X + βM + εY εY ∼ N(0,σ2
Y )
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Traditional Mediation Analysis - When?
Modelling assumptions:

(M1) Linear relationships among X , M and Y
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Greek - Data generation

Roman - Estimation
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Traditional Mediation Analysis - When?
Modelling assumptions:

(M1) Linear relationships among X , M and Y

(M2) Normally distributed error terms, with constant variance

(M3) Independent error terms

M = ι1 + αX + εM , with εM
i.i.d .∼ N(0,σ2

M)

Y = ι2 + ζ ′X + βM + εY εY
i.i.d .∼ N(0,σ2

Y )
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Traditional Mediation Analysis - When?
Confounding assumptions (to draw causal inference):

(A1) No unmeasured confounding of the X -M relationship

(A2) No unmeasured confounding of the X -Y relationship

(A3) No unmeasured confounding of the M-Y relationship

(A4) No confounders of the M-Y relationship, affected by X

X Y

M

C
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Traditional Mediation Analysis - When?
Confounding assumptions (to draw causal inference):
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(A3) No unmeasured confounding of the M-Y relationship
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The AB/BA Crossover Design
• Everyone is exposed to an experimental (A) and control (B) condition in

randomised order: order AB or BA
• This yields two scores for each individual (under A and B)

• Multilevel design with two levels:
• Upper level - individual
• Lower level - measurement moment

Example: tDCS
c’

self-reference

a

shift-score

b

• X = anodal transcranial Direct Current Stimulation (tDCS) over dorsolateral

pre-frontal cortex (X = 0, 1 for each subject)

• M = ability to shift from negative representations in the working memory

(M(x=0), M(x=1) for each subject)

• Y = occurrence of self-referent thoughts (Y (x=0), Y (x=1) for each subject)
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The AB/BA Crossover Design - Concerns

Expanding mediation to the AB/BA design proves challenging:

1. Data from AB/BA design shows dependency

• Modelling assumption of independent observations is violated
(M3) in multilevel designs

εM
��i.i.d .∼ N(0,σM ), εY

��i.i.d .∼ N(0,σY )

• Traditional analysis underestimates se’s

• Requires methods that incorporate/negate this (Judd et al., 2001; Kenny

et al., 2003; Bauer et al., 2006)

2. How will we define the direct and indirect effect in these settings?

• Define these effects through the Counterfactual Framework

• Identify these effects through the Mediation formula (Pearl, 2001)
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1. Dependency
Traditionally Judd et al. (2001)’s method is used:

• Removes dependency from AB/BA data by subtracting the two
individual scores

• Tests mediation in linear settings using 3 regressions:

E [Y Dif
i ] = E [Y x=1 − Y x=0] Step 1: H0 : c = 0

= i0 + c − i0 = c

E [MDif
i ] = E [Mx=1 −Mx=0] = a Step 2: H0 : a = 0

E [Y Dif
i | MDif

i ,MSum
i ] = c′ + bd MDif

i + bsMSum
i Step 3: H0 : bd = 0

with MSum = Mx=1 + Mx=0 Step 4: H0 : c′ = 0
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1. Dependency
Traditionally Judd et al. (2001)’s method is used:

• Removes dependency from AB/BA data by subtracting the two
individual scores

• Tests mediation in linear settings using 3 regressions:

E [Y Dif
i ] = E [Y x=1 − Y x=0] Step 1: H0 : c = 0

= i0 + c − i0 = c

E [MDif
i ] = E [Mx=1 −Mx=0] = a Step 2: H0 : a = 0

E [Y Dif
i | MDif

i ,MSum
i ] = c′ + bd MDif

i + bsMSum
i Step 3: H0 : bd = 0

with MSum = Mx=1 + Mx=0 Step 4: H0 : c′ = 0

• There is mediation when H0’s of Step1-3 are rejected

• Test for XM-moderation: H0 : bs = 0

• Indirect effect: ?
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Criticism on traditional approach

1. This method does not yield a clear identification of the indirect effect

2. Adaptation of Causal Steps Approach, also not without criticism:
• Low power
• Some steps are obsolete

3. The underlying assumptions w.r.t. causality (about measured and
unmeasured confounders) are not explicitly made

4. Limited to continuous M- en Y-variables

5. Allows but one type of moderation (XM-interaction)
• Other possibilities: X -Covariate, M-Covariate

6. Does not take possible period-effects into account, e.g. habituation
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2. Inference
2.1 The Counterfactual Approach (for single level data)

Counterfactual outcome Yi(x) = the outcome that we would (possibly contrary

to fact) have observe for individual i , had the exposure X been set to x .

Threat Obedience

Define counterfactuals Yi(x) for person i :

• Yi(0): obedience when no threat is given (X = 0)

• Yi(1): obedience when threats are given (X = 1)

⇒ Individual Total Effect: Yi(1)− Yi(0)
BUT Yi(1) and Yi(0) never observed jointly! (when exposure is measured

between subjects!)

⇒ Average Total Effect: E (Yi(1)− Yi(0))
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Similarly, define counterfactuals Mi(x)

Threat

Fear

• Mi(0): fear of punishment when no threat is given (X = 0)

• Mi(1): fear of punishment when threats are given (X = 1)
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And nested counterfactuals... Y (x ,M(x∗)), where x can differ from x∗

Threat Obedience

Fear

• Y (0,M(0)): Obedience when no threat is given (X = 0)
while fixing the mediator at its level when no threats are given

• Y (1,M(0)): Obedience when threats are given (X = 1)
while fixing the mediator at its level when no threats are given

⇒Natural direct effect: E [Y (1,M(0))− Y (0,M(0))]
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2. Inference
2.2. The Mediation formula

Under assumptions (A1)-(A4), the above defined natural effects can be
identified with the mediation formula (Pearl, 2001):

Direct effect = E [Y (1, M(0))− Y (0, M(0))]
=
∑

m P(M = m|X = 0)(E(Y |X = 1, M = m)− E(Y |X = 0, M = m))

Indirect effect = E [Y (1, M(1))− Y (1, M(0))]
=
∑

m E(Y |X = 1, M = m)(P(M = m|X = 1)− P(M = m|X = 0))
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2. Inference
2.2. The Mediation formula

Under assumptions (A1)-(A4), the above defined natural effects can be
identified with the mediation formula (Pearl, 2001):

APPLICATION 1 - Linear relations in single level data
For models: E [Mi | Xi ] = ι1 + αXi

E [Yi | Xi ,Mi ] = ι2 + ζ′Xi + βMi
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2. Inference
2.2. The Mediation formula

Under assumptions (A1)-(A4), the above defined natural effects can be
identified with the mediation formula (Pearl, 2001):

APPLICATION 1 - Linear relations in single level data
For models: E [Mi | Xi ] = ι1 + αXi

E [Yi | Xi ,Mi ] = ι2 + ζ′Xi + βMi

Application of the mediation formula yields:

Direct effect = ζ′

Indirect effect = α×β
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2. Inference
2.2. The Mediation formula

Under assumptions (A1)-(A4), the above defined natural effects can be
identified with the mediation formula (Pearl, 2001):

APPLICATION 2 - Nonlinear relations in single level data
For models: E [Mi | Xi ] = ι1 + αXi

E [Yi | Xi ,Mi ] = ι2 + ζ′Xi + βMi + φXiMi
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2. Inference
2.2. The Mediation formula

Under assumptions (A1)-(A4), the above defined natural effects can be
identified with the mediation formula (Pearl, 2001):

APPLICATION 2 - Nonlinear relations in single level data
For models: E [Mi | Xi ] = ι1 + αXi

E [Yi | Xi ,Mi ] = ι2 + ζ′Xi + βMi + φXiMi

Application of the mediation formula yields:

Direct effect = ζ′ + φι1
Indirect effect = α(β + φ)
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Mediation analysis Traditional Mediation analysis Problem setting Modelling approaches Simulations tDCS data Conclusions References

2. Inference
2.2. The Mediation formula

To identify the direct and indirect effect in AB/BA data through use of the
Mediation formula, the traditional confounding assumptions ((A1)-(A4)) need
to be adjusted:

(A1)

(A2)

(A3) No unmeasured lower or upper level confounding of the M-Y
relationship

(A4) No upper or lower level confounders of the M-Y relationship,
affected by X

Problem setting 42 of 68
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2. Inference
2.2. The Mediation formula

Under the adjusted assumptions (A1)-(A4), the above defined natural effects
can be identified with the mediation formula (Pearl, 2001):

APPLICATION 3 - Linear relations in AB/BA data
For models:

E [Mit | Xit ,Ui ] = ι1 + αXit + Ui

E [Yit | Xit ,Mit ,Vi ] = ι2 + ζ′Xit + βMit + Vi

, with i = individual and t = period

, with Ui and Vi uncorrelated subject specific confounders
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2. Inference
2.2. The Mediation formula

Under the adjusted assumptions (A1)-(A4), the above defined natural effects
can be identified with the mediation formula (Pearl, 2001):

APPLICATION 3 - Linear relations in AB/BA data
For models:

E [Mit | Xit ,Ui ] = ι1 + αXit + Ui

E [Yit | Xit ,Mit ,Vi ] = ι2 + ζ′Xit + βMit + Vi

, with i = individual and t = period

, with Ui and Vi uncorrelated subject specific confounders

Application of the mediation formula yields: Direct effect = ζ′

Indirect effect = α× β
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The Difference Approach
= an adaptation of Judd et al. (2001)’s method, that tackles both the
challenge of data dependency, as correct inference.

For models:
E [Mit | Xit , Ui ] = ι1 + αXit + Ui

E [Yit | Xit , Mit , Vi ] = ι2 + ζ′Xit + βMit + Vi

, with i = individual and t = period

, Ui and Vi subject specific confounders (cor(Ui , Vi ) = 0)
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The Difference Approach
= an adaptation of Judd et al. (2001)’s method, that tackles both the
challenge of data dependency, as correct inference.

For models:
E [Mit | Xit , Ui ] = ι1 + αXit + Ui

E [Yit | Xit , Mit , Vi ] = ι2 + ζ′Xit + βMit + Vi

1. Definition - The Difference Approach is defined as:

E [MDif
i ] = E [Mx=1

i −Mx=0
i ]

= (ι1 + α + Ui )− (ι1 + Ui )

= α

E [Y Dif
i ] = E [Y x=1

i − Y x=0
i ]

= (ι2 + ζ′ + βMx=1
i + Vi )− (ι2 + βMx=0

i + Vi )

= ζ′ + βMDif
i
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The Difference Approach
= an adaptation of Judd et al. (2001)’s method, that tackles both the
challenge of data dependency, as correct inference.

For models:
E [Mit | Xit , Ui ] = ι1 + αXit + Ui

E [Yit | Xit , Mit , Vi ] = ι2 + ζ′Xit + βMit + Vi

1. Definition - The Difference Approach is defined as:

E [MDif
i ] = α

E [Y Dif
i ] = ζ′ + βMDif

i

2. Inference - The average direct and indirect effect are identified as:

Direct effect = ζ′

Indirect effect = α×β
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The Difference Approach
= an adaptation of Judd et al. (2001)’s method, that tackles both the
challenge of data dependency, as correct inference.

For models:
E [Mit | Xit , Ui ] = ι1 + αXit + Ui

E [Yit | Xit , Mit , Vi ] = ι2 + ζ′Xit + βMit + Vi

1. Definition - The Difference Approach is defined as:

E [MDif
i ] = α

E [Y Dif
i ] = ζ′ + βMDif

i

2. Inference - The average direct and indirect effect are identified as:

Direct effect = ζ′

Indirect effect = α×β

→ Removes dependency by relying on differences scores (and therefore
effectively eliminates between-subject effects)
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The Difference Approach
= an adaptation of Judd et al. (2001)’s method, that tackles both the
challenge of data dependency, as correct inference.

For models:
E [Mit | Xit , Ui ] = ι1 + αXit + Ui

E [Yit | Xit , Mit , Vi ] = ι2 + ζ′Xit + βMit + Vi

1. Definition - The Difference Approach is defined as:

E [MDif
i ] = α

E [Y Dif
i ] = ζ′ + βMDif

i

2. Inference - The average direct and indirect effect are identified as:

Direct effect = ζ′

Indirect effect = α×β

}

→ Correct inference is established through the Counterfactual framework
and the Mediation formula.
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The Difference Approach
= an adaptation of Judd et al. (2001)’s method, that tackles both the
challenge of data dependency, as correct inference.

For models:
E [Mit | Xit , Ui ] = ι1 + αXit +κM ti + Ui

E [Yit | Xit , Mit , Vi ] = ι2 + ζ′Xit + βMit +κY ti + Vi

1. Definition - The Difference Approach is defined as:

E [MDif
i ] = α +κM tDif

i

E [Y Dif
i ] = ζ′ + βMDif

i +κY tDif
i , with tDif

i = tx=1
i − tx=0

i

2. Inference - The average direct and indirect effect are identified as:

Direct effect = ζ′

Indirect effect = α×β

→ Can incorporate period effects (estimates of DE & IE change!).
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The Difference Approach
= an adaptation of Judd et al. (2001)’s method, that tackles both the
challenge of data dependency, as correct inference.

For models:
E [Mit | Xit , Ui , Di ] = ι1 + αXit +νM Xit Di + Ui

E [Yit | Xit , Mit , Vi , Di ] = ι2 + ζ′Xit + βMit +νY Xit Di + ηY Mit Di + Vi

1. Definition - The Difference Approach is defined as:

E [MDif
i ] = α +νM Di

E [Y Dif
i ] = ζ′ + βMDif

i +νY Di + ηY MDif
i Di

2. Inference - The average direct and indirect effect are identified as:

Direct effect = ζ′ + νy D
Indirect effect = (α + νM D)(β + ηY D)

→ Is valid with all sorts of interactions (XM, XD, MD, ...).
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Other approaches for analyzing AB/BA data

1. The Naive modelling approach models M and Y separately:

Mit ∼ Xit
Yit ∼ Xit + Mit , with i=individual, t=period

2. The Joint modelling approach models M and Y jointly (Bauer et al., 2006):

• Allows for covariance between the random intercepts of M and Y
Mit ∼ Xit
Yit ∼ Xit + Mit , with i=individual, t=period

3. The Centered approaches model M and Y separately, with centered
M-scores:

• Can estimate between- and within- subject effect of M on Y
Mit ∼ Xit
Yit ∼ Xit + (Mit − M̄i ) + M̄i , with i=individual, t=period

• Or the within-subject effect of M on Y only
Mit ∼ Xit
Yit ∼ Xit + (Mit − M̄i ) , with i=individual, t=period
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Other approaches for analyzing AB/BA data

1. The Naive modelling approach models M and Y separately:

Mit ∼ Xit
Yit ∼ Xit + Mit , with i=individual, t=period

2. The Joint modelling approach models M and Y jointly (Bauer et al., 2006):

• Allows for covariance between the random intercepts of M and Y
Mit ∼ Xit
Yit ∼ Xit + Mit , with i=individual, t=period

3. The Centered approaches model M and Y separately, with centered
M-scores:

• Can estimate between- and within- subject effect of M on Y
Mit ∼ Xit
Yit ∼ Xit + (Mit − M̄i ) + M̄i , with i=individual, t=period

• Or the within-subject effect of M on Y only
Mit ∼ Xit
Yit ∼ Xit + (Mit − M̄i ) , with i=individual, t=period
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Other approaches for analyzing AB/BA data

1. The Naive modelling approach models M and Y separately:

Mit ∼ Xit
Yit ∼ Xit + Mit , with i=individual, t=period

2. The Joint modelling approach models M and Y jointly (Bauer et al., 2006):

• Allows for covariance between the random intercepts of M and Y
Mit ∼ Xit
Yit ∼ Xit + Mit , with i=individual, t=period

3. The Centered approaches model M and Y separately, with centered
M-scores:

• Can estimate between- and within- subject effect of M on Y
Mit ∼ Xit
Yit ∼ Xit + (Mit − M̄i ) + M̄i , with i=individual, t=period

• Or the within-subject effect of M on Y only
Mit ∼ Xit
Yit ∼ Xit + (Mit − M̄i ) , with i=individual, t=period
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Simulation studies

Xi0

Xi1

Mi0 Yi0

Mi1 Yi1

Ui Vi

1. Simulation 1

• Adjusted assumptions (A1) to (A4) are met.
• Direct and indirect effect estimates are:

Naive unbiased
Joint unbiased

Centered unbiased
Difference unbiased

}
identical

Simulations 61 of 68



Mediation analysis Traditional Mediation analysis Problem setting Modelling approaches Simulations tDCS data Conclusions References

Simulation studies

Xi0

Xi1

Mi0 Yi0

Mi1 Yi1

Ui Vi

1. Simulation 2

• Violation of adjusted assumption (A3) - upper level M-Y confounding

• Direct and indirect effect estimates are:
Naive biased (14-24.5%)

Joint unbiased
Centrered unbiased
Difference unbiased

}
identical
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Simulation studies

Xi0

Xi1

Mi0 Yi0

Mi1 Yi1

Ui Vi

1. Simulation 3

• Further violation of adjusted assumption (A3) - upper level M-Y

confounding, moderated by exposure

• Direct and indirect effect estimates are:
Naive biased (14-25%)

Joint biased (1.5-3.5%)

Centered unbiased
Difference unbiased

}
identical
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A neurostimulation study - Mediation Analysis
Adjusted assumptions (A1)-(A2)-(A4) are met, (A3) is partially met

(no lower level M-Y confounding)

tDCS self-reference

shift-score
rumination

For models:

E [Mit | Xit ,Di ,Ui ] = ι1 + αXit + κM ti + ωMDi + νMXitDt + Ui

E [Yit | Xit ,Mit ,Di ,Vi ] = ι2 + ζ′Xit + βMit + κY ti + ωY Di + νY XitDj + ηY MitDi + Vi

, where cor(Ui , Vi ) is unspecified

Application of the mediation formula yields:

Direct effect = ζ′ + νY D
Indirect effect = (α+ νMD)(β + ηY D)
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A neurostimulation study - Mediation Analysis
Adjusted assumptions (A1)-(A2)-(A4) are met, (A3) is partially met

(no lower level M-Y confounding)

• For trait rumination = D ∈ (−11, 35) the direct and indirect effect, by means of

the Difference approach:

Trait rumination
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e
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−11.2 −5.6 0.0 5.6 11.2 16.8 22.4 28.0 33.6

−40
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−20

−10
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y = 0

• The effect of tDCS on self-referent thoughts is mediated by the working memory

for high levels of trait rumination (D) only.
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A neurostimulation study - Mediation Analysis
Adjusted assumptions (A1)-(A2)-(A4) are met, (A3) is partially met

(no lower level M-Y confounding)

Direct and indirect effect for the four different modelling approaches,
at D = 1 sd = 11.19

Approach

D
ire

ct
 e

ffe
ct

Naive Joint Centring Difference

−10

0

10

20

30

Approach

In
di

re
ct

 e
ffe

ct

Naive Joint Centring Difference

−20

−15

−10

−5

0

tDCS data 66 of 68



Mediation analysis Traditional Mediation analysis Problem setting Modelling approaches Simulations tDCS data Conclusions References

Conclusions

• We clarified the assumptions under which the direct and indirect effect
can be identified in the AB/BA design

• We proposed an elegant method to estimate these effects (the
Difference approach)

• Simulations showed that subject level confounding of the M-Y relation
can be accounted for by means of
• The Difference approach
• The two Centered approaches
• In a lesser extent by the Joint modelling approach
• NOT by the Naive modelling approach
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