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General introduction 

1.1 The Salmonella pandemic 

Salmonellosis is a worldwide occurring disease caused by bacteria belonging to the genus 

Salmonella. The genus consists of 2 species, Salmonella bongori and enterica, of which the 

latter is further subdivided in 6 subspecies (enterica, salamae, arizonae, diarizonae, houtenae 

and indica). Nowadays, approximately 2500 serotypes have been described, based on flagellar 

(H), capsular (Vi) and somatic (O) antigens. Additionally, some serotypes like Salmonella 

Enteritidis and Salmonella Typhimurium are further divided into phagetypes. A distinction 

between host-restricted, host-adapted and broad host-range serotypes can be made, according 

to their host specificity and pathogenesis. The former causes a severe systemic disease in a very 

limited number of related species, while infections with broad host-range Salmonella strains 

can occur in multiple hosts where they cause a self-limiting infection mostly characterized by 

mild gastro-intestinal symptoms. Depending on the health status of the individual, also these 

infections can become life-threatening. Human infections with these broad host-range serotypes 

are often the result of consumption of contaminated food, as these serotypes may reside 

subclinical inside a wide range of wild and domestic animals. By the end of the 20th century, an 

increase in human salmonellosis cases has been observed due the rise of Salmonella enterica 

subsp. enterica serovar Enteritidis (Salmonella Enteritidis). Analysis of the World Health 

Organization (WHO) Salmonella surveillance data showed that by 1987 the number of 

Salmonella Enteritidis infections had increased in 24 out of the 35 countries investigated 

(Rodrigue et al., 1990). Also in Belgium an increase in human Salmonella Enteritidis cases was 

observed since 1988 with a peak in 1999 (Collard et al., 2008). Epidemiological research of the 

Salmonella Enteritidis infections and outbreaks led to the identification of grade A shell eggs 

as the major source for this pandemic in many countries (Rodrigue et al., 1990, Patrick Mary 

E., 2004, St Louis et al., 1988, Coyle et al., 1988). As a result, Salmonella control programs 

were implemented by the European union, starting with a first directive in 1992 (92/117/EEC) 

(Anonymous, 1992) to monitor and control Salmonella in parent breeding flocks. As this 

directive was insufficient to control Salmonella at the level of the laying hen farm Regulation 

No. 2160/2003 (Anonymous, 2003), aiming to detect and control Salmonella at all relevant 

stages of the production cycle, was issued. Additionally, member states needed to set up 

national Salmonella control programs (NCP’s) for which minimal requirements for commercial 

laying hen flocks were laid down in regulation No. 1091/2005 (Anonymous, 2005). These 
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included a) that antimicrobials cannot be used to control Salmonella b) that member states with 

a prevalence of Salmonella Enteritidis in commercial laying hens higher than 10% are 

mandatory to vaccinate and c) that live vaccines can only be used during rearing. Finally, 

Regulation No. 1168/2006 (Anonymous, 2006), which is repealed by Regulation No. 517/2011 

(Anonymous, 2011) contains information on the sampling programs for laying hen flocks, while 

Regulation No. 1237/2007 (Anonymous, 2007) laid down restrictions for the trade of table eggs 

from flocks infected with Salmonella Enteritidis or Typhimurium. The latter states that eggs 

from Salmonella Enteritidis or Typhimurium positive flocks must be banned from the market, 

unless they are treated in a manner that guarantees that all Salmonella bacteria are destroyed. 

Consequently, a drop in the number of Salmonella Enteritidis positive laying hen flocks and in 

numbers of contaminated eggs was observed. This led to a continuous decline in the number of 

confirmed human salmonellosis cases since 2004 (EFSA, 2009, EFSA, 2013). The same trend 

was seen in Belgium, where a drastic decline in the number of salmonellosis cases was observed 

since 2005 (Collard et al., 2008).  

Despite this decline in human cases, salmonellosis still is the second most commonly reported 

zoonotic disease, following campylobacteriosis. Although eggs are no longer the primary food 

vehicle causing salmonellosis, it appears that when one considers the risk related to the different 

sources weighted according to the tonnage of food available for consumption, the risk of 

Salmonella infection still remains the highest when consuming table eggs (EFSA, 2013). 

1.2 How Salmonella Enteritidis conquered the egg 

In order to explain the pandemic caused by Salmonella Enteritidis contaminated eggs, it has 

been suggested that the endemic presence of the avian host-restricted serotype Salmonella 

Gallinarum in poultry has inhibited the colonization of these animals by Salmonella Enteritidis. 

As Salmonella Gallinarum was responsible for economic losses in the poultry industry it was 

eradicated from commercial poultry flocks by the 1970s, while Salmonella Enteritidis emerged 

as a major concern for the food safety by the 1980s. This inverse relationship between the 

incidence of Salmonella Gallinarum infections in chickens and egg contamination by 

Salmonella Enteritidis led to the hypothesis that Salmonella Enteritidis filled the ecological 

niche vacated by the eradication of the avian host-restricted serotype Salmonella Gallinarum 

from poultry (Rabsch et al., 2000).   

Since the discovery that Salmonella Enteritidis causes human foodborne disease through the 

consumption of contaminated eggs, several hypotheses have been put forward to explain how 
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the bacteria might be transmitted to the egg. First of all, it was thought that the external surface 

of the egg became contaminated during (when the egg passed through an infected cloaca) or 

after oviposition (after being laid in a contaminated hen house). Nevertheless, extensive 

cleaning and disinfection measures of un-cracked grade A shell eggs in the United States were 

unable to stop the Salmonella Enteritidis pandemic, suggesting that the bacteria must 

contaminate the intact egg internally (Braden, 2006, St Louis et al., 1988). This internal 

contamination could result either from penetration through the egg shell after oviposition 

(horizontal transmission) or due to incorporation into the forming egg inside the chicken 

reproductive tract (vertical transmission).  

1.2.1 Horizontal transmission 

With horizontal transmission the internal egg contents of the completely formed egg becomes 

contaminated after lay when bacteria penetrate through the egg shell. The potential of 

Salmonella Enteritidis to migrate through the egg shell was demonstrated by several research 

groups (Miyamoto et al., 1998, Schoeni et al., 1995, De Reu et al., 2006, Messens et al., 2005) 

and thought to be most efficient immediately after lay when the cuticle is still immature and 

when a temperature differential is generated (Miyamoto et al., 1998). This would mean that, in 

order for shell penetration to occur efficiently, the shell must become contaminated during 

passage through an infected cloaca. Nevertheless, a correlation between fecal carriage of 

Salmonella Enteritidis and contamination of the egg content could not be demonstrated in 

multiple studies (Gast and Beard, 1990a, Humphrey et al., 1991a, Humphrey, 1994, Gast and 

Beard, 1990b).  

In normal circumstances the chicken reproductive tract is a relatively sterile environment, with 

the exception of the vagina as Lactobacillus and Bacteroidaceae spp. were frequently isolated 

from this part of the reproductive tract (Miyamoto et al., 1998). Despite the fact that the 

lactobacilli  could inhibit the growth of Salmonella Enteritidis in vitro (Miyamoto et al., 2000, 

Collie et al., 2006), it has been suggested that a Salmonella Enteritidis infection of the cloaca 

could ascend to the vagina and even the uterus, which in turn may lead to egg surface or egg 

shell contamination and thus penetration of the egg shell after lay (Miyamoto et al., 1997, Keller 

et al., 1995). Studies involving intra-vaginal inoculation of laying hens with Salmonella 

Enteritidis resulted in a high proportion of positive eggs without causing a drop in the egg 

production rate (Miyamoto et al., 1997). Moreover, when different serotypes were 

intravaginally inoculated and compared, Salmonella Enteritidis exhibited a higher potential to 
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colonize the vaginal tissue (Okamura et al., 2001b, Mizumoto et al., 2005) and to produce 

Salmonella positive eggs (Okamura et al., 2001b). Nevertheless, Okamura et al. (2001a) could 

not link vaginal colonization to contamination on the egg shell. It appears that shell penetration 

is not a unique trait for the serotype Enteritidis, as other serotypes (Miyamoto et al., 1998, 

Schoeni et al., 1995) and even unrelated bacteria (De Reu et al., 2006) are able to cross this 

barrier. Although other Salmonella serotypes are present on the egg surface, moslty the serotype 

Enteritidis can be isolated from the internal content (Humphrey et al., 1991b). This would mean 

that either egg shell penetration does not take place in practice and that eggs are contaminated 

during their formation in the reproductive tract or that Salmonella Enteritidis has developed 

survival mechanisms to withstand the antimicrobial components present in the egg shell 

membranes and egg albumen.  

1.2.2 Vertical transmission 

Formation of the egg takes place in the chicken reproductive tract, which consists of an ovary 

and oviduct, the latter made up of 5 segments each fulfilling one specific function. The ovary 

supports the maturation of the pre-ovulatory follicles, containing the egg yolk. After ovulation 

the completely maturated follicle is captured by the infundibulum of the oviduct, where after 

albumen and shell membranes are deposited by the magnum and isthmus part of the oviduct, 

respectively. Finally, the shell is deposited by the uterus followed by oviposition through the 

vagina and cloaca. Consequently, depending on the site of reproductive tract colonization, 

Salmonella Enteritidis can be incorporated at different positions in the egg. Colonization of the 

ovary would lead to incorporation of the bacteria into the yolk, while contamination of the egg 

white, egg shell membranes or the shell is caused by infection of the magnum, isthmus or uterus 

respectively (Figure 1.2.2.1).   
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Figure 1.2.2.1: formation of the egg in the reproductive tract and side of egg contamination (adapted from Gantois et 
al. 2009. Mechanisms of egg contamination. FEMS microbiology review: 33, 718-38) 

 

The hypothesis that egg contamination takes place during the formation of the egg in the ovary 

or oviduct is further strengthened by several observations. Salmonella Enteritidis could be 

detected immunohistochemically (Keller et al., 1995, Hoop and Pospischil, 1993, De Buck et 

al., 2004a) and isolated postmortem (Hoop and Pospischil, 1993) from the chicken reproductive 

tract tissues. In addition, bacteria could also be isolated from the reproductive tissue in the 

absence of intestinal colonization, indicating persistent reproductive tract colonization 

(Humphrey, 1994, Lister, 1988).  

1.2.2.1 Colonization of the ovary 

Reports claim that the yolk is the main egg compartment that is positive for Salmonella 

Enteritidis, indicating that the ovary is the main colonization site (Gast and Holt, 2000a, Gast 

et al., 2002), and this as a consequence of systemic spread from the intestine (Gantois et al., 

2009a). It has been reported that Salmonella Enteritidis has a higher potential to colonize the 

ovary in comparison with other serovars, although some studies have demonstrated an equal 

colonization for Salmonella Enteritidis and Salmonella Typhimurium (Okamura et al., 2001a, 

Okamura et al., 2001b, Gantois et al., 2008b, Howard et al., 2005). This is most likely because 

different strains and different inoculation doses or methods were used in the different studies. 

Inside the ovary, Salmonella Enteritidis appears to be more frequently isolated from the 

interstitial tissue rather than the yolk itself (Barrow and Lovell, 1991, Gast and Beard, 1990b). 

It has been demonstrated that Salmonella Enteritidis can invade and multiply in the granulosa 
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cells surrounding the pre-ovulatory follicles (Thiagarajan et al., 1994, Thiagarajan et al., 1996) 

and that immature follicles are more susceptible (Howard et al., 2005, Methner et al., 1995). 

On the one hand Methner et al. (1995) suggested that invasion of the immature follicle might 

block their development. On the other hand, others propose that some contaminated granulosa 

cells might be released together with the yolk mass during ovulation or that Salmonella 

Enteritdis might invade the egg yolk by crossing the perivitelline membrane surrounding the 

yolk (Thiagarajan et al., 1996). Migration through the perivitelline membrane before ovulation 

would result in yolk contamination and this would lead to aberrant egg formation. Indeed, the 

yolk is rich in nutrients, stimulating bacterial growth eventually causing degeneration of the 

follicle and thus a drop in egg production, which is not observed in laying hens suffering from 

Salmonella Enteritidis infection. Additionally, Gast and Beard (1990b) could not isolate 

Salmonella Enteritidis from yolk contents although whole yolks, containing the perivitelline 

membrane and some adhering albumen, were contaminated. Consequently, it can be assumed 

that contamination of the yolk itself occurs only rarely during egg formation, although 

subsequent penetration through the vitelline membrane might occur after lay (see below).  

1.2.2.2 Colonization of the oviduct 

In contrast to yolk colonization, multiple studies argue that the upper oviduct (magnum and 

isthmus) is the main colonization site for Salmonella Enteritidis inside the reproductive tract, 

resulting in contamination of the albumen or egg shell membranes (Shivaprasad et al., 1990, 

Hoop and Pospischil, 1993, Humphrey et al., 1991b). Colonization of the upper oviduct could 

result from systemic spread although a descending infection from the ovary might also be 

possible (Gantois et al., 2009a). Salmonella Enteritidis was found on the surface of and within 

single epithelial cells in the lumen and tubular gland cells of the oviduct (Hoop and Pospischil, 

1993, Keller et al., 1995, De Buck et al., 2004a). De Buck et al. (2004a) proposed that the 

isthmus was the main colonization site, while Gast et al. (2007b) reported that the 

infundibulum-magnum junction experienced a higher colonization in comparison to the 

isthmus-uterus junction. It is possible that Salmonella Enteritidis bacteria are persistently 

carried within the epithelial cells of the magnum and/or isthmus and released from these cells 

in the lumen at certain time points resulting in contamination of the forming egg. Overall, 

previously performed in vivo studies (Okamura et al., 2001a, Okamura et al., 2001b, Gantois 

et al., 2008b) comparing the oviduct colonization potential between serotypes, indicate that 

Salmonella Enteritidis is the predominant serotype colonizing this organ. Nevertheless, some 

contradictory results exist for the serotypes Typhimurium and Heidelberg which, in some 
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studies, were able to colonize the colonize the oviduct to the same extent as Salmonella 

Enteritidis (Gast et al., 2004, Keller et al., 1997). The discrepancies between the different 

studies, might be attributed to the strains and inoculation doses or methods used.  

1.3 The interaction between Salmonella Enteritidis 

and the reproductive tract 

1.3.1 Antimicrobial defenses of the reproductive tract 

It is well known that the local immune system of the reproductive tract plays a major role in the 

protection of this organ against microbes, including Salmonella. Recent studies investigated the 

organization and function of the innate and adaptive immune system in both the ovary and 

oviduct. 

1.3.1.1 Toll-like receptors and cytokine responses 

The innate immunity constitutes the first line of defense and contains cells carrying pattern 

recognition receptors (PRRs), which recognize the so called pathogen-associated molecular 

patterns (PAMPs) such as lipopolysaccharides (LPS) or flagellin. Of these PRRs, Toll-like 

receptors (TLRs) are the best characterized and activation leads to the induction of signaling 

pathways with subsequent production of cyto- and chemokines to direct and start the innate and 

adaptive immunity (Kaiser, 2010).  

In the chicken TLRs recognizing PAMPs (TLR1-1, 1-2, 2-1, 2-2, 4, 5, and 15) and pathogen 

nucleic acids (TLR3, 7 and 21) have been identified. To study their role in the local immunity 

of the reproductive tract, their distribution in the ovary and oviduct together with their 

expression profile following LPS or Salmonella administration has been investigated.  

Michailidis et al. (2010) reported that mRNA transcripts of all TLR members, except 1-1 and 

2-2, could be detected in the ovary of 52 weeks old laying hens. Expression of TLR2, 4 and 15 

was also observed in both differentiated and undifferentiated ovarion granulosa cells (Woods 

et al., 2009), while Subedi et al. (2007b) could not detect TLR1-1, 1-2 and 3 in neither the theca 

or granulosa layer of the ovary. In the vagina, TLR1-1 was the only TLR for which no mRNA 

could be detected (Michailidis et al., 2011). Additionally, Ozoe et al. (Ozoe et al., 2009) 

demonstrated the presence of 6 TLR mRNA transcripts (TLR1-2, 2, 3, 4, 5 and 7), except TLR1-
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1, in all parts of the oviduct. In this study the expression of TLR15 and 21 was not measured 

and no distinction between TLR2-1 and 2-2 was made.  

The influence of Salmonella Enteritidis on the expression of these TLRs in the ovary and vagina 

was investigated in 28- and 104-weeks old birds. In 28-weeks old birds,  oral administration of 

Salmonella Enteritidis resulted in the up-regulation of TLR4 and 15, and TLR5 and 15 in 

respectively the ovary and vagina. In the vagina also a down-regulation of TLR7 was observed. 

When 104 weeks old birds were used TLR15 and TLR2-1, 4 and 15 were upregulated in the 

ovary and vagina, respectively. Additionally, in the aged birds a down-regulation of TLR-3 was 

seen in the ovary (Michailidis et al., 2010, Michailidis et al., 2011). Consequently, these results 

indicate the importance of LPS and flagellin in bacterial recognition in the reproductive tract as 

they are recognized by TLR2, 4 (LPS) and TLR5 (flagellin) (Iqbal et al., 2005).  

Effect of LPS on TLR expression in the reproductive tract was demonstrated in several studies. 

To our knowledge no data regarding the influence of flagellin in the reproductive tract are 

available. Intravenous injection of LPS resulted in the up-regulation of TLR4 mRNA in both 

the theca and granulosa cells of F3 follicles of laying hens with temporal differences, while no 

changes in the expression level of TLR2 could be observed (Subedi et al., 2007b). Woods et al. 

(2009) demonstrated that expression of TLR2 and TLR4 in granulosa cells is dependent upon 

the maturation status of the follicle, ranging from an accelerated response in the follicle which 

is next to ovulate to an LPS tolerance response in the prechierarchal follicles in order to prevent 

excessive inflammation. A role for TLR4 in the oviduct immunity was also demonstrated by 

Ozoe et al. (2009), who showed an increase in the expression of this receptor in the vagina after 

both intravenous and intravaginal LPS injection in 350 days old hens.  

The stimulation of TLR4 by LPS probably also induced the expression of IL-1β and IL-6 in 

both the ovary, uterus and vagina (Ozoe et al., 2009, Subedi et al., 2007b, Nii et al., 2011, 

Abdelsalam et al., 2012). In the uterus and vagina also the chemokine CXCLi2 (IL-8) was 

increased after intravenous administration of LPS (Nii et al., 2011), but this molecule was not 

studied in the ovary. Finally, a study performed by Li et al. (2009a) demonstrated that 

Salmonella Enteritidis elicited the expression of chemokines CXCLi1 (K60), CXCLi2 (IL-8), 

CCLi3 (K203) and CCLi4 (MIP-1β) together with that of the pro-inflammatory mediator 

inducible nitric oxide synthase (iNOS) in chicken oviduct epithelial cells. Also the transcription 

of the anti-inflammatory cytokine IL-10 was induced, while that of the transforming growth 

factor (TGF)-β3 was repressed. Activation of TLRs and subsequent production of cyto- and 
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chemokines by Salmonella or LPS in the reproductive tract may lead to the influx of 

granulocytes, macrophages and lymphocytes (Ozoe et al., 2009, Withanage et al., 2003). 

Additionally, also an increased expression of antimicrobial components might be induced by 

these TLRs as IL-1β caused an increase in the expression of avian beta-defensin 12 (AvBD12) 

(Abdelsalam et al., 2012).  

Taking everything into consideration, it can be hypothesized that when Salmonella Enteritidis 

colonizes the reproductive tissue, several TLRs are triggered. The recognition of Salmonella 

Enteritidis by these receptors might stimulate the expression of several cytokines, chemokines, 

cationic antimicrobial peptides (CAMPs) and finally the influx of immune cells. 

1.3.1.2 Antimicrobial agents  

As chicken heterophilic granulocytes (avian counterpart of neutrophils) lack myeloperoxidase 

and have minimal ability to generate an oxidative burst during phagocytosis, cationic 

antimicrobials are probably the principal antimicrobial effectors of these cells (Evans et al., 

1995). In addition, numerous antimicrobial peptides are secreted by the epithelial cells lining 

the oviduct.  

1.3.1.2.1 Avian beta-defensins  

Among the antimicrobial agents produced by the reproductive tract, the defensin family has 

been recognized as one of the key mediators of the innate immunity. Defensins constitute a 

large family of small, cationic peptides characterized by the presence of 6-8 cysteine residues. 

Based on the spacing pattern of the cysteins, the defensins can be divided into five groups; plant, 

invertebrate, α-, β-, and θ-defensins, but only the family of β-defensins or gallinacins is found 

in chickens (Kaiser, 2010, Anastasiadou et al., 2013). The availability of the chicken genome 

led to the identification of new β-defensins/gallinacins by two different research groups that 

used a different numbering system (Lynn et al., 2004, Xiao et al., 2004). To avoid confusion a 

new standard nomenclature was proposed by Lynn et al. (2007) and their name was changed to 

avian beta-defensins (AvBD) of which 14 (AvBD1-14) have been identified in the chicken 

(Table 1.3.1.2.1.1).  



General introduction  

22 

 

Table 1.3.1.2.1.1: avian β-defensin numbering system (adapted from Lynn et a;. 2007. Avian beta-defensin 
nomenclature: A community proposed update: 100, 86-89. 

New gene/protein name Nomenclature by Lynn et al. (2004) Nomenclature by Xiao et al. 

(2004) 

Avian beta-defensin 1 (AvBD1) Gallinacin 1 (GAL1) Gallinacin 1 (GAL1) 

Avian beta-defensin 2 (AvBD2) Gallinacin 2 (GAL2) Gallinacin 2 (GAL2) 

Avian beta-defensin 3 (AvBD3) Gallinacin 3 (GAL3) Gallinacin 3 (GAL3) 

Avian beta-defensin 4 (AvBD4) Gallinacin 7 prepropeptide (GAL7) Beta defensin 4 (GAL4) 

Avian beta-defensin 5 (AvBD5) Gallinacin 9 prepropeptide (GAL9) Beta defensin 5 (GAL5) 

Avian beta-defensin 6 (AvBD6) Gallinacin 4 prepropeptide (GAL4) Beta defensin 6 (GAL6) 

Avian beta-defensin 7 (AvBD7) Gallinacin 5 prepropeptide (GAL5) Beta defensin 7 (GAL7) 

Avian beta-defensin 8 (AvBD8) Gallinacin 12 prepropeptide (GAL12) Beta defensin 8 (GAL8) 

Avian beta-defensin 9 (AvBD9) Gallinacin 6 prepropeptide (GAL6) Beta defensin 9 (GAL9) 
Avian beta-defensin 10 (AvBD10) Gallinacin 8 prepropeptide (GAL8) Beta defensin 10 (GAL10) 

Avian beta-defensin 11 (AvBD11)  Beta defensin 11 (GAL11) 

/Gallicin 11 

Avian beta-defensin 12 (AvBD12) Gallinacin 10 prepropeptide (GAL10) Beta defensin 12 (GAL12) 

Avian beta-defensin 13 (AvBD13) Gallinacin 11 prepropeptide (GAL11) Beta defensin 13 (GAL13) 

Avian beta-defensin 14 (AvBD14)   

 

Recently, a new family of AvBD, the ovodefensins, was introduced. The proteins belonging to 

this family own the conserved cysteine arrangement of the AvBD, although the space between 

the cysteine residues is different. In chickens, only 1 member of this family, gallin, has been 

identified so far but three forms are encoded on chromosome 3 (Gong et al., 2010).  

Although the exact mechanism of action of the AvBD is not completely known, it is proposed 

that these cationic peptides interact electrostatically with the negative charges on the bacterial 

membrane. Consequently, these interactions might lead to disruption of the membrane potential 

followed by an increased membrane permeability and eventually bacterial cell death. Moreover, 

it is thought that these peptides can be transported to intracellular sites where they might 

interfere with DNA, RNA and protein synthesis. Additionally, AvBDs can also act as 

chemoattractants for other immune cells (Sugiarto and Yu, 2004, van Dijk et al., 2008).  

Antimicrobial activities of AvBD have been demonstrated against both Gram-positive and 

Gram-negative bacteria, including Salmonella Enteritidis. Chicken heterophil peptide 1 (CHP1) 

or AvBD1 was effective against Salmonella Enteritidis and Typhimurium (Evans et al., 1995). 

A lethal effect against Salmonella Typhimurium was achieved by AvBD13 (GAL11) at a 

concentration of 500 µg/ml (Higgs et al., 2005), while a concentration of 128 µg/ml of AvBD9 

(GAL6) was insufficient to completely kill Salmonella Typhimurium. A 49% growth inhibition 

could be observed for the latter when a high salt concentration was added (van Dijk et al., 2007). 

Also AvBD4, 5 and 6 (GAL7, 9 and 4) exhibited antimicrobial activity against both Salmonella 

Enteritidis and Typhimurium. Salmonella spp. are known to resist cationic peptides by reducing 
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the anionic charges on their membrane. Consequently, a higher activity was observed for 

AvBD5 (GAL9) probably because this defensin has a reduced cationic charge making it more 

capable to interact with the modified membrane of Salmonella (Milona et al., 2007). Both 

Salmonella Enteritidis and Typhimurium were also susceptible to the antimicrobial activity of 

AvBD11 (Hervé-Grepinet et al., 2010). A strong antimicrobial activity was demonstrated for 

AvBD 5 and 10 (GAL9 and 8) against Escherichia coli (E. coli) but their potential to kill 

Salmonella was not investigated in this study (Ma et al., 2008). Finally, the ovodefensin, gallin, 

was capable of inhibiting E. coli, although no antibacterial activity could be detected against 

Salmonella Enteritidis or Typhimurium (Gong et al., 2010, Hervé-Grepinet et al. 2014).   

Recent studies also focused on the expression of defensins in the reproductive tract. In the ovary 

the expression of 11 of these AvBD, namely AvBD1, 3, 4, 5, 7, 8, 9, 10, 11, 12 and 14 was 

detected. No mRNA transcripts could be detected for AvBD6 and 13, while AvBD2 was 

expressed at almost undetectable levels (Michailidis et al., 2012). The absence of AvBD2 and 

6 are in contrast with a previous study (Subedi et al., 2007a) in which expression of AvBD2 

and 6 (GAL2 and 6) was demonstrated in the ovarian stroma. Additionally these authors also 

reported the expression of  AvBD 1, 2, 7, 8, 10 and 12 (GAL1, 2, 7, 8, 10 and 12) in the theca 

layer and AvBD1, 8, 10 and 12 (GAL1, 8, 10 and 12) in the granulosa layer of F3 follicles. 

Another study located the expression of AvBD6 and 5 (GAL4 and 9) in the ovary but failed to 

detect AvBD4 (GAL7) (Milona et al., 2007). The protein product of AvBD8, 10 and 12 was 

later demonstrated by Western blot and immunohistochemistry in both the theca and granulosa 

layer (Abdelsalam et al., 2010).  

10 AvBD were shown to be expressed in all parts of the oviduct (AvBD1, 2, 3, 4, 5, 8, 9, 10, 

11 and 12), while AvBD7 showed only faint bands in the isthmus, uterus and vagina. As in the 

ovary, transcripts of AvBD6 and 13 were not observed and AvBD14 was not studied (Mageed 

et al., 2008). The expression of AvBD3 and 4 and the absence of AvBD6 in the vagina were in 

contrast with Anastasiadou et al. (2013) who demonstrated that AvBD6 was expressed in the 

vagina of 52 week old birds, while AvBD4 mRNA was not detected and expression of AvBD3 

occurred at almost undetectable levels. A discrepancy for the expression of AvBD6, 8 and 13 

was also seen in the primary tubular gland cells of the oviduct, as it appeared that in these cells 

transcription of AvBD6 and 13 occurred. Nevertheless, the expression of AvBD6 and 8 was 

inconsistent in these cells (Ebers et al., 2009). Additionally, transcription of AvBD14 was 

observed in the vagina and in primary epithelial cells of the isthmus (Ebers et al., 2009, 

Anastasiadou et al., 2013). Protein products of AvBD3, 11 and 12 could be demonstrated in the 
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surface epithelium all over the oviduct and AvBD3 was also found inside the tubular gland cells 

of the isthmus and magnum (Abdel Mageed et al., 2009). Gong et al. (2010) demonstrated that 

all three forms of the ovodefensin, gallin, were expressed in the magnum, while form 2 and 3 

were also transcribed in the isthmus and uterus.  

All together, it can be assumed that AvBD are transcribed in the reproductive tract and that their 

expression level influenced by LPS or Salmonella Enteritidis. Consequently, several studies, 

listed below, focused on the expression of these defensins in both the ovary and oviduct. 

Although some minor differences between the studies exist, they are most likely caused by 

differences in RNA source (tissue versus cells) and the use of different breeds of laying hens.  

Furthermore, a role for AvBDs in the local reproductive tract immunity could also be suggested 

by the up-regulation of their expression after LPS or Salmonella Enteritidis administration. 

Intravenous (iv) injection of 1 mg LPS/kg body weight (BW) led to an increase in the expression 

of AvBD1, 7 and 12 (GAL1, 7 and 12) in the theca layer of the ovary after 3 hours, which 

remained high during the course of the experiment. However, when the LPS dose was doubled 

(2 mg/BW) only an up-regulation of AvBD8 (GAL8) was observed. At the same time AvBD1 

and 12 (GAL1 and 12) had the tendency to decline in the granulosa layer (Subedi et al., 2007a). 

A recent study also demonstrated the up-regulation of AvBD10 in the theca layer (Abdelsalam 

et al., 2012). In the vagina this iv-injection caused an up-regulation of AvBD3, 5, 10, 11 and 

12 (GAL3, 5, 10, 11 and 12) with temporal difference, probably because they are produced by 

different cell types which differ in their recognition and response time (Abdel Mageed et al., 

2009). When LPS was administered on 24 hour pre-cultured vaginal epithelial cells an increased 

expression of AvBD1 and 2 (GAL1 and 2) was observed next to that of AvBD3 (GAL-3) 

(Yoshimura et al., 2006b). This discrepancy in AvBD1 and 2 (GAL1 and 2) expression between 

the in vitro and in vivo studies is probably due to a better LPS stimulation in the in vitro study. 

Additionally, iv-injection with LPS enhanced the density of AvBD3 and 11 immunoreactive 

products in the uterus (Mageed et al., 2011).  

In addition to LPS administration, also oral administration of Salmonella Enteritidis resulted in 

the up-regulation of a subset of AvBDs (AvBD4, 5, 7, 11 and 12) in the ovary of 28-weeks old 

laying hens. On the contrary, a down-regulation of AvBD14 was observed (Michailidis et al., 

2012). In the vagina, this oral administration led to an up-regulation of AvBD5, 7, 10, 11, 12 

and 14 (Anastasiadou et al., 2013). In primary epithelial cells of the isthmus an up-regulation 

of only AvBD2 and 6 was detected, while AvBD4, 9, 10 and 11 were suppressed (Ebers et al., 

2009).  
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1.3.1.2.2 Other antimicrobial agents 

In addition to the AvBDs the innate immune system utilizes a broad range of factors to protect 

itself against potential pathogens.  

Silphaduang et al. (2006) demonstrated the antimicrobial action of histones H1 and H2B in the 

chicken ovary (H1 and H2B) and oviduct (H1). Despite their antimicrobial activity against 

Bacillus subtilis (B. subtilis) and E. coli, they appear to be inactive against Salmonella 

Enteritidis. Although histones are principal structural proteins of eukaryotic chromosomes, a 

role in the innate defense against microorganisms could be suggested, as histones of other 

species, or their derivates, have shown the potential to induce membrane permeabilization (Koo 

et al., 2008) or nucleic acid binding (Park et al., 1998). 

Michailidis et al. (2010) demonstrated the expression of the chicken liver expressed 

antimicrobial peptide-2 (cLEAP-2) in the ovary, but not in the oviduct, of the chicken. These 

authors also revealed a significant up-regulation in the transcription of this gene in the ovary 

after oral gavage with Salmonella Enteritidis. Nevertheless, cLEAP-2 was ineffective against 

Salmonella Enteritidis while it could easily kill the Salmonella Typhimurium SL1344 wild type 

strain through permeabilization of the outer membrane (Townes et al., 2009, Townes et al., 

2004).  

Also peroxidase activity may participate in the host innate defense system, as the reaction 

products may cause oxidative stress and thus harbor antimicrobial activity. In the chicken 

reproductive tract peroxidase activity was found especially in the vaginal surface epithelium, 

but not in the other segments except for some positive cells in the isthmus. Peroxidase activity 

can be found in biological secretions such as milk and saliva due to the presence of 

lactoperoxidase in mammary glands and salivary glands in mammals. Although the peroxidase 

present in the chicken reproductive tract is not identified yet, it can be suggested that the 

peroxidase activity of the vaginal epithelial cells contributes to the killing of microbes 

ascending from the cloaca, while the peroxidase activity synthesized in the isthmus, might be 

transmitted to the eggshell membranes (Yoshimura et al., 2006a).  

More antimicrobial components are produced along the reproductive tract and incorporated at 

different compartments of the egg. These proteins are originally purified from and more 

extensively studied inside the egg and therefore discussed below.  
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1.3.1.3 Cells of the innate and adaptive immune system  

Next to antimicrobial agents, the number of immune cells present in an organ can be an 

indication of the immune potential of an organ. Consequently, different studies focused on the 

distribution of immune cells in the reproductive tissue and their role in Salmonella infection, 

which revealed that both a cell-mediated as a humoral response are induced after Salmonella 

Enteritidis administration. Immunohistochemical analysis of the oviduct showed the presence 

of macrophages, lymphocytes and immunoglobulins. Macrophages are observed in the mucosa 

of all segments of the postnatal oviduct (Khan et al., 1998) and are located in the mucosal 

epithelium and stroma in 175 days old laying hens (Zheng and Yoshimura, 1999). The influx 

of both B- and T-lymphocytes starts at 5 weeks of age and a peak is reached at 15 weeks in the 

glandular parts of the oviduct (magnum, isthmus and uterus) for both cell types. Also in the 

infundibulum, B-lymphocytes peaked at 15 weeks while in the vagina peaks are reached at 19 

and 21 weeks of age for T- and B-lymphocytes, respectively. Plasma cells are first seen at 11 

weeks and a peak is observed at 32 weeks where after they declined, except in the vagina (Khan 

et al., 1996, Khan et al., 1997). During the laying period, CD4+ and CD8+ T-cells predominate 

in the vagina and less in the isthmus and magnum (Withanage et al., 1997). On the contrary, 

Ig+ cells are found throughout the oviduct but mainly in the magnum, isthmus and uterus 

(Kimijima et al., 1990, Withanage et al., 1997). IgA, IgM and IgY are also detected in the 

mucosal epithelium (Zheng 1997), but IgYγ-chain mRNA can only be found in the plasma-like 

cells in the stroma and not in the mucosal epithelium. The authors suggest that IgY is produced 

by the plasma-like cells and released in the mucosal tissue where after it is taken up by epithelial 

cells and subsequently secreted in the lumen (Zheng et al., 2000).  

Infection with Salmonella Enteritidis causes a transient induction of the immune system in both 

the ovary and oviduct. Hoop and Pospischil (1993) observed a slight inflammatory response 

with heterophil infiltration in naturally infected hens. Intravenous infection results in an initial 

macrophage decline, which later on recovers to normal pre-inoculum levels. T-cells reach a 

peak 10 days post infection (pi), while B-cells peak at day 14 pi. Numerous CD4+ and CD8+ 

cell aggregates of various sizes are observed and Salmonella Enteritidis specific antibodies are 

secreted in both serum and oviduct luminal compartments. IgG and IgM peak at 2 weeks pi, 

while IgA declines rapidly. The increase of T and B-cells together with immunoglobulins 

correlates with a decline in the Salmonella Enteritidis recovery rate from the oviduct and ovary 

at day 14. Nevertheless, although the immune cells return to their normal levels by day 21 pi, 

there is no complete clearance of Salmonella Enteritidis from the ovary and oviduct. Once 
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reproductive organ infection is established, Salmonella persists for a long time with intermittent 

shedding (Withanage et al., 1999, Withanage et al., 1998).  

1.3.2 Virulence factors of Salmonella Enteritidis 

involved in colonization of the reproductive tract  

Spread of Salmonella Enteritidis to the reproductive tract most likely occurs by taking 

advantage of the macrophages, in which the bacteria survive easily through the use of the Type 

III Secretion System (T3SS) encoded on the Salmonella Pathogenicity Island (SPI) 2. The role 

of this island in the systemic spread of Salmonella Enteritidis to the reproductive tract has been 

demonstrated by the use of an ssrA mutant, which exhibits a lower potential to colonize the 

reproductive tract due a diminished systemic spread as a consequence of a reduced intra-

macrophage survival (Bohez et al., 2008). Once inside the reproductive tract, Salmonella 

Enteritidis might invade and reside within the epithelial cells of these organs. The potential to 

invade and reside within primary chicken oviduct epithelial cells (COEC) was demonstrated by 

Li et al. (2009b) and was depending on components of the T3SS encoded by both SPI1 

(invasion) and SPI2 (intracellular survival). Additionally, it has been suggested that the T3SS-

2 effector pipB might inhibit the expression of AvBD9, 10 and 11 in Salmonella infected COEC 

(Ebers et al., 2009). Salmonella Enteritidis does not seem to be superior in the invasion and 

proliferation within COEC when compared with other serovars (Gantois et al., 2008b), 

probably because functional SPIs1 and 2 are found within almost all serovars. A comparison 

between the genome of Salmonella Enteritidis, Typhimurium and Gallinarum led to the 

identification of so called Regions of Difference (ROD), which were only present in Salmonella 

Enteritidis and Gallinarum (Thomson et al., 2008). It could thus be that these gene clusters 

made it possible for Salmonella Enteritidis and Gallinarum to colonize the reproductive tract 

more efficiently as compared to other serovars. Consequently, Coward et al. (2012) investigated 

the role of 5 of these islands in reproductive tract colonization for Salmonella Enteritidis but 

could not confirm their involvement. In order to search for genes that are especially expressed 

during reproductive tract colonization an ‘in vivo’ expression technology (IVET) screening was 

performed. Most of the genes identified in this study are involved in the biosynthesis of amino 

and nucleic acids, the carbohydrate and energy metabolism and the cell membrane and cell wall 

integrity. Also stress-related, motility, regulatory, virulence plasmid and genes with unknown 

function were picked up (Gantois et al., 2008a). The best studied Salmonella Enteritidis 

virulence factor is LPS, as this outer membrane component might promote reproductive tract 
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colonization by two mechanisms. First of all, it appears that the LPS O-antigen chain length 

influences the reproductive tract colonization potential of Salmonella Enteritidis. The O-antigen 

chain is composed of O-antigen subunits (OAgs) and synthesized in a stepwise manner in which 

the O-antigen polymerase (wzy) catalyses the concatenation between the different 

polysaccharide subunits. Additionally, O-antigen chain length is determined by the wzz and 

febE genes, respectively leading to Long-OAgs (16-35 subunits) and very-long OAgs ( > 100 

subunits). Coward et al. (2013) demonstrated that both a wzy and febE deletion strain, exhibiting 

respectively only one O-antigen (OAg) repeat and no very long OAgs, are less efficient in the 

colonization of the ovary and oviduct. On the contrary, the wzz disruption, devoid of long OAgs, 

didn’t exhibit any defect and had colonization levels similar to that of the wild type. The latter 

was also observed by Parker et al. (2002) who showed that a wzz deletion strain was even more 

virulent than the wild type strain, as more heterophilic granulomas were produced in 

comparison with the wild type. The latter was probably caused by a higher concentration of 

very-long OAgs found on this mutant (Coward et al. 2013). Secondly, Salmonella spp. are 

known to resist cationic antimicrobial peptide activity by reducing the negative charge of their 

outer membranes including LPS (Townes et al., 2004). It could thus be hypothesized that a 

decreased immune response caused by the production of HMM LPS and the lack of 

antimicrobial peptide action might result in incomplete clearance of Salmonella Enteritidis from 

the reproductive tract. Finally, also fimbriae seem to play an important role in the colonization 

of the reproductive tract. Li et al. (2003) describe the presence of binding sites for SEF21 (type 

1) fimbriated Salmonella Enteritidis strains in the oviduct. It is also demonstrated that type 1 

fimbriae bind to isthmus secretions, which may lead to an efficient transport of the bacteria to 

the shell membranes of the forming egg (De Buck et al., 2003). These data were further 

strengthened by the observation that a type 1 fimbrial mutant (ΔfimD) has a reduced potential 

to contaminate eggs (De Buck et al., 2004c).  

Additionally, another fimbrial operon, SEF14 seems to be involved in the attachment of 

Salmonella Enteritidis to ovarian granulosa cells, as pre-incubation of these cells with purified 

SEF14 reduced the attachment of Salmonella Enteritidis to the cells (Thiagarajan et al., 1996). 

It was also shown that a low level expression of the SEF14 gene, sefD, by Salmonella Enteritidis 

might mitigate the host response and thus facilitate the infection pathway which leads to egg 

contamination (Morales et al., 2012).  

Finally, some Salmonella Enteritidis strains are resistant to oxidative stress induced by 

hydrogen peroxide (Shah et al., 2012a) 
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1.4 The interaction between Salmonella Enteritidis 

and the egg 

It is clear that the region of colonization in the reproductive tract determines the site of 

incorporation into the forming egg. Infection of the ovary would lead to incorporation of 

Salmonella Enteritidis into the yolk, while persistence in the magnum, isthmus or uterus gives 

rise to contamination of the egg white, shell membranes or egg shell respectively.  

1.4.1 Contamination of the forming egg 

Colonization of the ovary would lead to incorporation into the yolk, but studies report that 

Salmonella Enteritidis is more often associated with the vitelline membrane rather than with 

the interior yolk contents and that subsequent penetration through the vitelline membrane might 

occur (Gast and Beard, 1990b, Gast and Holt, 2001). Penetration through this membrane was 

however not observed at the chicken body temperature of 42°C, suggesting that transfer to the 

yolk before oviposition is unlikely to occur (Guan et al., 2006). Penetration is more frequently 

observed at 25 to 30°C (Gast et al., 2005, Gast et al., 2007a) and it is suggested that entry into 

the yolk is more likely to occur over time when albumen viscosity and vitelline membrane 

integrity decline, thus at later time points post-lay (Gast et al., 2005).  

In addition to transovarian transmission, it is also demonstrated that Salmonella Enteritidis can 

persist in the oviduct and that the bacteria are carried along with the albumen or the egg shell 

membranes into the forming egg (Humphrey et al., 1991b, Shivaprasad et al., 1990, Hoop and 

Pospischil, 1993). Interestingly, a higher percentage of forming eggs is positive for Salmonella 

Enteritidis in comparison with laid eggs (Keller et al., 1995, Barrow and Lovell, 1991). The 

ovum spends about 26 hours in the oviduct of which 5 hours in the magnum and isthmus and 

21 hours in the uterus at the chicken body temperature of 42°C. The importance of this high 

temperature was demonstrated by Guan et al. (2006) who showed that Salmonella Enteritidis 

could resist the antimicrobial properties of the albumen at 42°C for 24 hours but not for 96 

hours. In the meantime, the bacteria could easily be recovered from this matrix after 120 hours 

at 37°C. It could thus be hypothesized that the combination of heat stress and the presence of 

antimicrobial components, present especially in the egg white, control Salmonella 

contamination during further formation of the egg. The recovery of Salmonella Enteritidis from 

laid eggs might thus mean that the serotype has acquired the potential to resist the hostile 

environment of the egg albumen at the chicken body temperature. This was supported by the 
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fact that also Salmonella Typhimurium could be isolated from the forming eggs, although this 

serotype could no be recovered from laid eggs (Keller et al., 1997). These results are in line 

with a recently performed large scale egg white survival assay, demonstrating superior survival 

of Salmonella Enteritidis in egg white for 24 hours at 42°C compared to other serovars (De 

Vylder et al., 2013). An enhanced survival of Salmonella Enteritidis compared to Typhimurium 

in egg white was also observed at 37°C (Clavijo et al., 2006). These results were not confirmed 

by Gantois et al. (Gantois et al., 2008b), who demonstrated that although the serotypes Virchow 

and Hadar are much more susceptible to the egg albumen, Typhimurium and Heidelberg were 

also capable of surviving in egg white at 42°C. Also Guan et al. (2006) could not show a 

difference between Salmonella Enteritidis and Typhimurium at 42°C.  

1.4.2 Antimicrobial defenses of the chicken egg  

In addition to a high body temperature, the chicken provides the forming egg with a variety of 

antimicrobial components to protect the developing embryo from microbial aggressors. Recent 

proteomic research has revealed that antimicrobial agents are present in all compartments of 

the hen egg, while the use of bioinformatics led to the identification of an arsenal of potential 

antimicrobial proteins. Nevertheless, here we will focus on those molecules for which the 

antimicrobial activity has been demonstrated.  

1.4.2.1 Antimicrobial components and antibodies 

Although many of the AvBD are expressed in the chicken all over the chicken reproductive 

tract, only 5 have been demonstrated in the egg: AvBD3 (egg shell), AvBD9 (egg yolk and 

shell), AvBD10 (eggshell), AvBD11 (egg white and shell) and AvBD12 (eggshell) (Abdel 

Mageed et al., 2009, Jonchere et al., 2010, Mann, 2007, D'Ambrosio et al., 2008, Mann et al., 

2006, Mann, 2008). Additionally, also the chicken ovodefensin, gallin, was isolated from egg 

white (Gong et al., 2010). The innate antimicrobial activity inside the egg is further 

strengthened by the presence of histones in all compartments of the egg (D'Ambrosio et al., 

2008, Mann, 2007, Mann, 2008, Mann et al., 2006, Mann and Mann, 2008). Antimicrobial 

activity against B. subtilis, Staphylococcus aureus (S. aureus), E. coli and Pseudomonas 

aeruginosa (P.aeruginosa) has been demonstrated for the eggshell matrix protein ovocalyxin-

36 (OCX-36) (Gautron et al., 2011). The protein sequence of OCX-36 exhibits a significant 

similarity with the lipopolysaccharide binding (LBP)/Bacterial Permeability increasing (BPI) 

and the BPI-related palate, lung and nasal epithelium clone protein (Plunc) family proteins, who 

themselves belong to the superfamily of proteins known to be key components of the innate 
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immune system (Gautron et al., 2007). While BPI proteins bind to the lipid A component of 

LPS and transfer bacteria to the LPS receptor (Hailman et al., 1994), BPI proteins also bind 

LPS but permeabilize the cytoplasmic membrane causing a decrease in the electrochemical 

gradient (Dann and Eckmann, 2007). In the meantime, three additional BPI/LBP-like proteins 

have been demonstrated in the egg: TENP, BPI-like-2 and similar-to-BPI protein. Another 

component of the egg defense system which is related to the function of the immune system is 

ovocleidin-17 (OC-17). OC-17 shares significant identity with the C-type lectin-like proteins, 

that recognize specific carbohydrate structures on pathogens and thus aid in directing the 

adaptive immune response by inducing cytokine responses and T-cell polarization (den Dunnen 

et al., 2010). OC-17 has shown to bind bacterial polysaccharides and exhibits a bactericidal 

activity against B. subtilis and S. aureus but not E.coli. (Wellman-Labadie et al., 2008). 

Additionally, a glycopeptide derived from ovomucin was unable to bind Salmonella Enteritidis 

or Typhimurium although it could interact with E. coli O157:H7 and thus probably protects 

against infection with this foodborne pathogen (Kobayashi et al., 2004). Finally, all three types 

of immunoglobulins, have been identified in both the egg yolk and egg white. IgA, IgM and 

IgY are released into the oviduct from the infundibulum, magnum and uterus (Kimijima et al., 

1990), while IgY in the yolk is incorporated from the blood stream. Eggs from chickens infected 

with Salmonella have been shown to contain Salmonella specific antibodies, but these might 

have no influence on the replication of Salmonella in the yolk (Takase et al., 1999), although 

specific IgYs isolated from yolks of immunized laying hens were capable of interfering with 

the growth capacity of Salmonella Enteritidis and Typhimurium in liquid medium (Chalghoumi 

et al., 2009). 

1.4.2.2 Cell wall and nucleic acid degrading components  

Lysozyme is an N-acetyl-muramidase that hydrolyses the β-(1,4) glycosidic bond between N-

acetylmuramic acid and N-acetylglucosamine in the bacterial peptidoglycan layer. In Gram-

negative bacteria this layer is protected by the outer membrane and lysozyme mediated 

hydrolysis of peptidoglycan is inhibited by the binding of lysozyme to LPS (Ohno and Morrison, 

1989). Nonetheless, Pellegrini et al. (1997) demonstrated the bactericidal activity of lysozyme 

derived peptide 98-112 against both Gram-negative and Gram-positive bacteria independent 

from its muramidase activity. The peptide, organized as a helix-loop-helix structural motif, was 

able to penetrate the Gram-negative outer membrane by a self-promoted uptake pathway in 

order to form multimeric pores in the cytoplasmic membrane (Ibrahim et al., 2001). These 

results were later confirmed by Mine et al (2004), who isolated a peptide ranging from residues 
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98 to 108 from lysozyme capable of causing membrane damage in E. coli. Additionally, these 

authors also purified the 15-21 peptide exerting antimicrobial activity against S. aureus but not 

E. coli. Furthermore, both endo- and exonuclease activity were demonstrated in egg white. 

These nuclease activities are likely mediated by proteins and possibly gained access to the DNA 

through the pores formed by other antimicrobial components (Lu et al., 2003).  

1.4.2.3 Chelators  

Nutrients are essential for the developing embryo. Consequently, they are bound by chelators 

preventing them to be used for bacterial growth. The best known chelator interfering with 

bacterial growth is ovotransferrin. Ovotransferrin is capable of binding two Fe3+ ions per 

molecule and thus deprives the bacteria from iron that is necessary for their growth (Garibaldi, 

1960). The iron chelating antimicrobial activities of ovotransferrin have been demonstrated 

against a variety of bacteria, including Salmonella Enteritidis (Chart and Rowe, 1993). Baron 

et al. (1997) showed that iron deficiency was the major mechanism implicated in the inhibition 

of Salmonella Enteritidis growth in egg white. When Salmonella Enteritidis was incubated in 

egg white at 37°C the concentration of the bacteria steadily decreased, while iron 

supplementation resulted in extensive growth. Besides these iron chelating capacities, 

ovotransferrin seems to possess an antimicrobial activity not related to iron. At a high pH and 

under reducing conditions, ovotransferrin undergoes autocleavage allowing the release of 

functional domains (Ibrahim et al., 2006). One of the peptides generated by autocleavage is the 

ovotransferrin antimicrobial peptide 92 (OTAP-92). OTAP-92 was capable of killing both 

Gram-negative and positive bacteria and the former probably by crossing the outer membrane 

and damaging the biological function of the inner membrane.  

In addition to ovotransferrin the egg also contains avidin, the riboflavin-binding protein, the 

plasma retinol binding protein and the vitamin D binding protein to provide the embryo with 

biotin, riboflavin, retinol and vitamin D, respectively. The interaction of these chelators with 

Salmonella growth is unclear. 

1.4.2.4 Protease inhibitors  

Pathogenic bacteria secrete proteases to hydrolyse host proteins in order to inactivate them or 

to use them as nutrients. Subsequently, host organisms are equipped with several protease 

inhibitors to inactivate these bacterial secreted proteases to protect themselves.  The majority 

of these protease inhibitors in egg white belong to the serine protease inhibitor superfamily. 
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Although ovalbumin is structurally related to this family, it does not seem to possess any 

inhibitory activity on proteases, but proteolytic digestion of ovalbumin by trypsin and 

chymotrypsin yields several peptide fragments with antimicrobial activity against Gram-

positive and Gram-negative bacteria (Pellegrini et al., 2004). In addition, two ovalbumin 

paralogs hβe been identified; ovalbumin-related protein X (OVAX) and Y (OVAY). OVAX 

was able to inhibit Salmonella Enteritidis although it was not able to inhibit trypsin, plasmin or 

cathepsin G (Rehault-Godbert et al., 2013). Ovoinhibitor was capable of inhibiting trypsin, 

subtilisin and chymotrypsin while it displayed antimicrobial activity against Bacillus 

thuringiensis, a strain possessing 5 serine proteases (Bourin et al., 2011). Growth of Bacillus 

subtilis was inhibited by ovocalyxin-32, a carboxypeptidase inhibitor limiting bacterial 

colonization on the egg surface (Xing et al., 2007).  

In addition to serine protease inhibitors, also the cysteine protease inhibitor, cystatin, was 

capable of inhibiting both Gram-positive and negative bacteria, although a higher concentration 

was needed to inhibit Salmonella Enteritidis in comparison with E. coli (Wesierska et al., 2005).  

1.4.3 Virulence factors allowing Salmonella Enteritidis 

to survive inside the egg  

Genes encoding proteins involved in structure and function of the cell wall were frequently 

identified as involved in egg albumen resistance at 37°C (Clavijo et al., 2006). These results 

are in line with an IVET study in which genes involved in cell membrane and cell wall integrity 

were picked up as being highly expressed in the chicken reproductive tract and in eggs (Gantois 

et al., 2008a). It appears that the majority of the egg contaminating Salmonella Enteritidis 

strains are characterized by their ability to produce HMM LPS structures (Guard-Petter et al., 

1997). The importance of a well-defined LPS structure was demonstrated by Gantois et al. 

(2009b) who reported that a Salmonella Enteritidis putative dehydrogenase, rfbH, mutant could 

not survive the incubation in egg white at 42°C. Later Coward et al. (2013) demonstrated that 

both the wzy and febE genes are important for the persistence of Salmonella Enteritidis in egg 

white at the chicken body temperature. Moreover, the LPS-lysozyme interaction is more rapidly 

established and more complexes are formed at higher temperatures (Ohno et al., 1991). It could 

thus be hypothesized that the production of long O-antigen chains might increase the resistance 

of Salmonella Enteritidis to egg white antimicrobial factors. A striking feature of many 

antimicrobial components is that they are small cationic peptides binding the negative charges 

in the cell membrane eventually resulting in permeabilization of the bacterial membranes. It 
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could thus be hypothesized that Salmonella Enteritidis efficiently modifies its LPS structure by 

reducing its negative charge to prevent the binding of these cationic molecules. 

Permeabilization of the outer membrane would also lead to a higher accessibility to the outer 

membrane for lysozyme. Salmonella Enteritidis, however has developed a strategy to escape 

this threat by the synthesis of a lysozyme inhibitor (PliC) (Callewaert et al., 2008), but the 

relevance of this gene for the survival in forming eggs has not yet been defined. In addition to 

the membrane damage caused by egg white also the DNA damage is counteracted, the latter by 

the putative DNA repair enzyme yafD and the exonuclease III xthA at 37°C (Lu et al., 2003). 

Finally, iron chelation by ovotransferrin is a key antimicrobial activity of the egg. Salmonella 

Enteritidis is capable of growing in an iron-restricted environment due to the secretion of the 

siderophores enterobactin and salmochelin (Chart and Rowe, 1993, Crouch et al., 2008). The 

role of these siderophores in the persistence of Salmonella Enteritidis in egg albumen was 

confirmed by the fact that mutants in genes involved in synthesis and transport of enterobactin 

were no longer capable of surviving in this matrix at 37°C (Kang et al., 2006).  

1.5 Salmonella Enteritidis behavior in the egg post 

lay  

1.5.1 Behavior in eggs post-lay 

As discussed above eggs are most likely contaminated in the albumen or on the vitelline 

membrane. The fact that naturally contaminated eggs only contain a low number of bacteria 

(Humphrey et al., 1989) together with the observation that multiplication of Salmonella 

Enteritidis in eggs is delayed until a few days after lay, suggests that the albumen is more likely 

to be contaminated as deposition near the vitelline membrane might favor excessive 

proliferation (Gast and Holt, 2000b, Fleischman et al., 2003, Murase et al., 2006, Murase et al., 

2005) compared to the albumen (Chen et al., 2005, Gast and Holt, 2000b). Nevertheless, it 

appears that multiplication inside the egg is influenced by the age of the egg, as the number of 

Salmonella cells isolated from eggs of naturally infected hens increases with time after 

deposition (Humphrey et al., 1991b, Humphrey and Whitehead, 1993). It was also 

demonstrated that storage had little impact on the inhibiting activities of the albumen but rather 

on the integrity of the vitelline membrane (Humphrey and Whitehead, 1993, Chen et al., 2005). 

Consequently, it could be hypothesized that this loss of membrane integrity might lead to 

leakage of nutrients into the albumen which in turn would trigger chemotaxis of Salmonella 
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towards and penetration through the vitelline membrane eventually resulting in multiplication 

in the yolk (Cogan et al., 2004). These results could not be confirmed by Messens et al. (2004), 

who could not observe leakage of nutrients from the yolk after 3 weeks of storage. Addionally, 

this study also suggested that Salmonella Enteritidis could survive more easily in albumen of 

freshly laid eggs than in that of stored eggs. It was assumed that the enhanced growth in this 

fresh albumen is caused because its lower pH in comparison with albumen from stored eggs.  

1.5.2 Salmonella Enteritidis virulence factors in eggs 

post lay 

It is clear that factors necessary for the survival in the forming egg also determine the behavior 

of Salmonella Enteritidis in the albumen of the laid egg. For example, Gantois et al. (2009b) 

reported that after 8 days of incubation at 20°C a 105 fold growth difference was observed 

between the rfbH mutant and the wild type. The importance of LPS was later confirmed because 

a putative rhamnosyltransferase (rfbN) mutant was less capable of surviving in egg white when 

incubated at 25°C for 24 hours (Shah et al. 2012b). The transposon mutagenesis screening 

performed by Shah et al. (2012b) also identified the ribosomal protein methyltransferase ksgA, 

the SPI-4 siiE gene, the SPI-14 SEN0803 gene, three genes belonging to the RODs (SEN1152, 

SEN1393, SEN1966) and 2 genes involved in motility (fliH and fliB), as necessary for survival 

of Salmonella Enteritidis in egg white at 25°C. The role of flagella was already demonstrated 

as the non-flagellated serotypes Pullorum and Gallinarum and the aflagellated Salmonella 

Enteritidis mutant ΔfliC were incapable of growing in eggs (Cogan et al., 2004). Subsequently, 

in order to multiply and penetrate through the vitelline membrane, Salmonella Enteritidis must 

attach to this membrane. Curli fimbriae (SEF17) may be necessary for this interaction as a curli-

fimbria deficient strain (ΔagfA) is impaired in its potential to invade and multiply inside the 

yolk (Cogan et al., 2004).  

1.6 Summary of Salmonella Enteritidis virulence 

factors needed to colonize the reproductive 

tract and contaminate the egg 

It is generally accepted that the Salmonella pathogenicity islands mediate the systemic spread 

of Salmonella Enteritidis to the reproductive tract. Once inside the reproductive tract it can be 

assumed that these islands establish the invasion and survival of the bacteria in the upper 
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oviduct epithelial cells. As soon as a stable colonization of the reproductive tract is reached, 

type 1 fimbriae enable the adhesion of Salmonella Enteritidis to the oviduct secretions leading 

to incorporation of the bacteria into the egg white of the forming egg. As egg white is 

synthesized to protect the developing embryo from infections, it contains a myriad of 

antimicrobial components such as, lysozyme, ovotransferrin, defensins and other CAMPs. 

After incorporation into the egg white of the forming egg it takes on average about 24 hours 

before the egg is laid. In other words, in order to contaminate the egg post lay, Salmonella 

Enteritidis has to survive the antimicrobial environment of the egg white at the chicken body 

temperature of 42°C for 24 hours. Consequently, previous research has shown that Salmonella 

Enteritidis activates several defense mechanisms to protect itself from this environment. A first 

line of defense is achieved by a structural rearrangement of the LPS moiety leading to a 

reduction of the overall negative LPS charge and the increase in the LPS OAgs chain length 

making the bacterial membrane unreachable for the antimicrobial peptides. Additionally, DNA 

actions of damaging components are balanced by a DNA repair mechanisms, while nutrient 

starvation and the lysozyme activity are counteracted by the secretion of siderophores and 

lysozyme inhibitors. Consequently, Salmonella Enteritidis can survive the hostile environment 

of the egg white of the forming egg leading to contamination of the egg after ovipostion and 

subsequent contagion of the human foodchain.  
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Scientific aims 

Egg contamination by Salmonella Enteritidis is one of the most important causes of human-

foodborne gastro-enteritis throughout the world. As Salmonella Enteritidis has an increased 

potential to persist inside the upper reproductive tract compared to most other serovars, it is 

now generally accepted that contamination of the egg by Salmonella Enteritidis occurs through 

colonization of the reproductive tract with subsequent incorporation into the forming egg. Until 

recently, only limited information regarding the Salmonella Enteritidis virulence factors 

involved in this process were available. Fortunately, several high throughput methods have been 

developed to simplify the quest to search for genes that are important for colonization and 

pathogenesis. One of these techniques, the in vivo expression technology or IVET screening, 

was previously used to identify genes that are activated inside the reproductive tract but not 

under standard laboratory conditions, which suggests a potential role for these genes in the 

colonization of this organ (Gantois et al., 2008a). As both the universal stress proteins (usp) A 

and B were identified during this screening, the first aim of this thesis was to confirm the role 

of these genes in reproductive tract colonization by the use of defined deletion mutants (chapter 

3.1). In order to further extend our knowledge on how Salmonella Enteritidis is able to persist 

inside the reproductive tract, a genome-wide microarray-based transposon library was used to 

identify mutants that are not capable to colonize the reproductive tract tissue (chapter 3.2).  

It is clear that once Salmonella Enteritidis has conquered the upper reproductive tract, it can be 

incorporated into the egg white of the forming egg. The observation that Salmonella Enteritidis 

could be isolated from both forming and laid eggs, while Salmonella Typhimurium could only 

be isolated from forming eggs (Keller et al., 1997), led to the hypothesis that Salmonella 

Enteritidis has developed an enhanced survival potential against the hostile environment of the 

egg white at the chicken body temperature of 42°C in comparison to other serotypes. The 

superiority of Salmonella Enteritidis to persist inside this matrix was recently confirmed in a 

large scale experiment with different Salmonella strains (De Vylder et al., 2013). As until now 

only limited information regarding the survival of Salmonella Enteritidis in egg white at 42°C 

is available, we aimed to identify genes that are up-regulated after contact with egg white 

(chapter 3.3) and genes that are necessary for the survival during incubation in egg white at 

42°C (chapter 3.4). 
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Objective chapter 3.1 

The universal stress proteins A and B were previously identified during an in vivo 

expression technology screening, in which their promoters were activated after contact 

with egg white but not under standard laboratory conditions. It could thus be suggested 

that both these genes might have a role in the establishment of oviduct colonization and 

egg contamination by Salmonella Enteritidis.   

Subsequently, the first chapter of this thesis was dedicated to confirm the role of these 

two genes in oviduct colonization and egg contamination.  

  



 

56 

 

 

  



 

57 

 

3.1 Salmonella Enteritidis universal stress protein 

(usp) gene expression is stimulated by egg 

white and supports oviduct colonization and 

egg contamination in laying hens 

 

 

 

Ruth Raspoet, Inne Gantois, Rosalie Devloo, An Martel, Freddy Haesebrouck, Frank Pasmans 

Richard Ducatelle and Filip van Immerseel 

 

 

Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, 

Ghent Univeristy, Salisburylaan 133, B-9820 Merelbeke, Belgium 

 

 

Adapted from: Veterinary Microbiology 2011, 153 (1-2): 186-190



 

58 

 



 

59 

 

Salmonella Enteritidis universal stress protein (usp) gene 

expression is stimulated by egg white and supports oviduct 

colonization and egg contamination in laying hens 

Abstract  

Salmonella enterica subspecies enterica serovar Enteritidis has caused a worldwide egg-

associated pandemic since the mid 1980s. The exact mechanisms causing this  egg tropism are 

still largely unknown, and only a few Salmonella genes have been implicated in the interaction 

with the oviduct or eggs. An in vivo expression technology screening performed previously, 

identified the uspA and uspB genes as being highly expressed in the chicken oviduct and in 

eggs. Here, we demonstrate that uspA and uspB gene expression is indeed induced after contact 

with egg white. Intra-oviduct inoculation of Salmonella Enteritidis uspB and uspBA mutant 

strains showed that the mutants had a decreased ability to colonize the magnum and isthmus of 

the oviduct, the organs that produce the egg white and eggshell membranes, respectively, at 7 

days post-inoculation. Intravenous challenge showed that a Salmonella Enteritidis uspBA 

mutant strain had a decreased ability to contaminate eggs. Analogous to the function of 

universal stress proteins A and B in other bacterial species, we hypothesize that  the Salmonella 

uspA and uspB genes are involved in long term persistence of Salmonella Enteritidis in harmful 

environments, such as in the oviduct and eggs, by conferring resistance against compounds that 

damage the bacterial cell membrane and DNA.  
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Introduction 

Hen eggs contaminated with Salmonella enterica subspecies enterica serovar Enteritidis 

(Salmonella Enteritidis) have been a major source of human food-borne salmonellosis over the 

last 25 years (Patrick Mary E., 2004, Braden, 2006, EFSA, 2007). Although eggs can be 

contaminated on the shell, it is increasingly accepted that Salmonella Enteritidis caused a 

pandemic as a result of internal egg contamination  (Gantois et al., 2009a). Indeed, it has been 

shown that Salmonella Enteritidis is capable of colonizing the oviduct tissue (Okamura et al., 

2001a, Okamura et al., 2001b, Gantois et al., 2008b) and is able to survive the antimicrobial 

action of egg white (Gantois et al., 2008b). Recently, data has been generated on the molecular 

mechanisms of oviduct colonization and egg white resistance. Using an in vivo expression 

technology (IVET) approach, genes involved in cell wall integrity, regulation of fimbrial 

operons, stress responses and motility were identified as highly expressed in the oviduct tissue 

(Gantois et al., 2008a). This expression screening method identified two universal stress protein 

genes (uspA and uspB) as being highly expressed in the oviduct tissue and in eggs. UspA is a 

cytoplasmic autophosphorylating serine/threonine phosphoprotein that can be found in a variety 

of organisms, including bacteria, archaea, fungi, protozoa and plants (Kvint et al., 2003). UspB, 

on the other hand, is anchored in the cytoplasmic membrane and is probably not as widely 

distributed as UspA (Farewell et al., 1998). Although it has been reported previously that these 

genes are expressed as a consequence of environmental stress conditions and seem to contribute 

to stress resistance (Kvint et al., 2003, Persson et al., 2007, Liu et al., 2007), very limited 

information is available on the functional role of Salmonella usp genes. Because the Salmonella 

Enteritidis uspA and uspB genes are highly expressed in the oviduct tissue, the current study 

was designed to evaluate the role of these genes in oviduct colonization and egg contamination.  

Materials and Methods 

Bacterial strains  

The isogenic streptomycin resistant variant of Salmonella enterica serotype Enteritidis phage 

type 4 strain 147 was used in this study (147str). This strain was originally isolated from egg 

contents. The virulence of this strain has been tested in laying hens and a strong capacity to 

colonize the reproductive organs has been demonstrated (Methner et al., 1995). Salmonella 

Enteritidis 147str uspA, uspB and uspBA deletion mutants were constructed using the one-step 

inactivation method, with a linear PCR product, as described by Datsenko and Wanner (2000). 
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A kanamycin resistance cassette, flanked by FRT-sites, was amplified from the pKD4 helper 

plasmid using P-primers (Table 3.1.1) that had a 50bp extension at the 5’ side of the pKD4 

specific primers, homologous with the flanking region of the target gene. The resulting PCR 

product was used for recombination on the Salmonella Enteritidis 147str chromosome using the 

pKD20 helper plasmid encoding the λ Red system, promoting recombination between the 

native and PCR adjusted antibiotic resistance cassette. Recombinant clones were selected on 

kanamycin containing plates and replacement of the target gene by the resistance cassette was 

confirmed by PCR. The deletion was P22-transduced into a new 147str background (Gemski 

and Stocker, 1967) and the antibiotic resistance cassette was eliminated using the pCP20 helper 

plasmid, encoding the FLP-recombinase mediating recombination between the FRT-sites 

flanking the kanamycin resistance cassette (Datsenko and Wanner, 2000). The targeted genes 

were completely deleted from start to stop codon, as confirmed by sequencing analysis. 

Table 3.1.1: Primers used to create deletion mutants 

Primer Sequence 

uspA-P1 5‘-AAACGCCAGTAGCTCAATGGTCATCGACAACTTATGGAAGGAGTAACACTTGTGTAGGCTGGAGCTGCTTC-3’ 

uspA-P2 5’-ATTGACTATAGACCAGACGCGGTCTTAGCCGCCAGCCGGCACGGCAAGTACATATGAATATCCTCCTTAG-3’ 

uspB-P1 5’-GGAGGCTTATCTAATACGAGCGGGTCAGGAAACTGGCCCGCTTTTTTTATTGTGTAGGCTGGAGCTGCTTC-3’ 

uspB-P2 5’-GCGGTAGTCCCGGAGAGGAACTCCGTGGGCGGGTCGCCGGGGAGGAGATCATATGAATATCCTCCTTAG-3’ 

Measuring uspA and uspB expression 

Measurement of uspA and uspB expression was achieved using Salmonella Enteritidis 147str 

carrying a plasmid (pCS26) containing a transcriptional fusion between the promoters of uspA 

or uspB and the reporter genes luxCDABE (Salmonella Enteritidis 147str uspA-luxCDABE and 

uspB-luxCDABE) (Van Immerseel et al., 2004). The pCS26 plasmid is a low copy number 

derivative from pZS. A FluoroScan Ascent luminometer (Labsystems, Helsinki, Finland) was 

used to quantify light production (luminescence) as a marker of uspA and uspB expression. 

Bacterial cultures of Salmonella Enteritidis 147str uspA-luxCDABE and uspB-luxCDABE were 

grown overnight in Luria Bertani (LB) broth (Sigma, St Louis, MO, USA) at 37°C and diluted 

1/100 in 200 µl phosphate buffered saline (PBS) or 200 µl PBS supplemented with 25% sterile 

stirred egg white (obtained from eggs derived from hens that were not vaccinated against 

Salmonella) in 96-well microplates. These 96-well plates were incubated at 37°C and light 

production was measured every 15 min for 22 h.  
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Intra-oviductal infection trial  

The experimental protocol was approved by the ethical committee of the Faculty of Veterinary 

Medicine, Ghent University. Twelve 21-week-old commercial Salmonella-free chickens (as 

demonstrated by serology and bacteriology) were premedicated intramuscularly with 

buprenorphine hydrochloride at 0.05 mg/kg (Temgesic, Schering-Plough, New Jersey, US) and 

atropine at 0.05 mg/kg. Anaesthesia was induced by the administration of isoflurane (Schering-

Plough, New Jersey, US) through a face mask. Following intubation with a 3.0 uncuffed 

tracheal tube (Hudson RCI, Temecula, California, US), a continuous oxygen flow of 1.5 to 2.0 

L/min was administered carrying 1.5 to 3 % isoflurane. The birds were covered with a sterile 

surgical blanket and defeathered on the abdominal surface. After disinfection of the incision 

area with a povidone iodine solution (Braunol, B. Braunol Medical, Prague, Czech Republic), 

the abdomen was opened through a midline incision and the oviduct segments were carefully 

exposed. Overnight cultures of Salmonella Enteritidis 147str wild type, uspA, uspB and 

uspBA were diluted in PBS to obtain bacterial suspensions of 1 x 108 cfu/ml. For each strain, 

3 birds were infected. The oviducts were inoculated with 2 mL of the bacterial suspension at 

the isthmus-magnum transition zone using a 27 gauge needle. After inoculation, the oviducts 

were reintroduced into the abdomen and the abdominal wall was sutured. After recovery from 

anaesthesia, the birds were placed in separate cages on wood shavings. The animals had 

unrestricted access to drinking water and feed. One week after infection, the hens were 

euthanized by intravenous injection of embutramid (T61, Intervet, Belgium). Samples of 

spleen, oviduct and ovary were taken for bacteriological analysis. 

Intravenous infection trial 

The experimental protocol was approved by the ethical committee of the Faculty of Veterinary 

Medicine, Ghent University. Forty White Leghorn Salmonella-free laying hens were housed on 

the floor (provided with wood shavings) from the age of 18 weeks until the end of the 

experiment. On the day of arrival, it was confirmed that the hens were Salmonella-negative 

using bacteriological culture of cloacal swabs and an ELISA for the detection of anti-

Salmonella antibodies in serum (Desmidt et al., 1996). The animals had unrestricted access to 

drinking water and feed. At the age of 24 weeks, 2 groups of 20 laying hens were intravenously 

inoculated with a 1 ml volume of culture containing 5 x 106 cfu of the Salmonella Enteritidis 

147str wild type or the corresponding uspBA deletion mutant strain. Three weeks after infection 

(pi) all birds were euthanized by intravenous injection with embutramid. Samples of spleen, 
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oviduct and ovary were taken for bacteriological culture. Throughout the experiment, eggs were 

collected and cultured for the detection of Salmonella. 

Bacteriological culture 

Samples of spleen, liver, oviduct and ovary were weighed. Spleen, liver and ovary samples 

were homogenized with a stomacher in a 10-fold volume of buffered peptone water (BPW) 

(Oxoid, Basingstoke, Hampshire, UK). The oviduct samples were sliced into very small pieces 

and subsequently homogenized with a stomacher. Ten-fold dilutions were inoculated onto 

brilliant green agar (BGA) (Lab M Limited, Bury, Lancashire, UK) containing 100 µg 

streptomycin/ml to determine the number of  Salmonella/g of tissue. Samples that were negative 

after direct plating were pre-enriched overnight in BPW at 37°C and afterwards enriched in 

tetrathionate brilliant green broth (1/10) (Merck, Darmstadt, Germany) by overnight incubation 

at 37°C. A loopful of this culture was then streaked onto BGA containing 100 µg 

streptomycin/ml, and the agar incubated overnight at 37°C. 

Upon collection, eggs were placed in a bath of iodine solution to decontaminate the shell. After 

5 min, the eggs were transferred to 70% ethanol. The eggs were then broken aseptically and the 

content of 1 egg was collected in a sterile plastic bag. The contents were homogenized with a 

stomacher for 2 min and 40 ml of BPW was added to the content of each egg. These suspensions 

were then incubated at 37°C for 48 h. Further enrichment in tetrathionate brilliant green broth 

was performed overnight at 37°C. To detect Salmonella, a loopful of this culture was plated 

onto BGA containing 100 µg streptomycin/ml.   

Results  

UspA and uspB expression is induced after contact with egg white 

Luminescence of Salmonella Enteritidis 147str carrying the pCS26 plasmid, containing a fusion 

of the promoter of uspA or uspB with luxCDABE, was increased after contact with 25% egg 

white in PBS, relative to unsupplemented PBS (Fig. 1). Maximal expression was seen at about 

12 h post-inoculation (Figure 3.1.1). Similar data were obtained using 10% and 50% solutions 

of egg white, while a 5% egg white solution induced a limited increase in both uspA and uspB 

expression (data not shown).  Addition of egg white to LB medium also induced an increase in 

uspA and uspB expression (data not shown), although the differences were smaller because of 

the higher level background expression of both genes in unsupplemented LB medium. 
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Figure 3.1.1: Luminescence of Salmonella Enteritidis 147str carrying a plasmid containing a fusion of the 

promoter of uspA or uspB with luxCDABE. Luminescence was recorded over 22 hours after inoculation of 

Salmonella Enteritidis uspA-luxCDABE (black) and Salmonella Enteritidis uspB-luxCDABE (grey) into 

PBS either containing (dashed) or not containing 25% egg white (solid). 

 

Reproductive tract colonization and egg contamination after intra-oviductal infection is 

decreased in usp mutants  

Seven days after inoculation of Salmonella Enteritidis 147str and uspA, uspB and uspBA 

mutants into the oviduct, the mutants had a decreased level of colonization compared to the 

wild type in all segments of the reproductive tract except the vagina and infundibulum. There 

were significantly lower concentrations of the uspB and uspBA mutants in the isthmus and 

the magnum (Table 3.1.2). No differences were detected between treatment groups in caecal or 

spleen colonization. 

Table 3.1.2: Concentration of Salmonella Enteritidis ΔuspA, ΔuspB, ΔuspBA and wild type in various 

organs 7 days after intra-oviductal infection. 

Tissue WT ΔuspA ΔuspB ΔuspBA 

Spleen 3.6 ± 1.3 3.7 ± 0.7 2.5 ± 0.5 3.9 ± 0.1 

Caeca 4.4 ± 2.3 5.3 ± 1.2 3.7 ± 2.2 4.5 ± 0.9 

Vagina 3.7 ± 1.2 4.5 ± 0.7 3.9 ± 0.9 3.4 ± 0.5 

Uterus 7.0 ± 0.8 5.7 ± 1.6 5.2 ± 1.1 5.3 ± 1.2 

Isthmus 7.9 ± 0.9 5.9 ± 0.8 5.0 ± 0.8* 4.5 ± 0.8* 

Magnum 6.7 ± 0.3 6.2 ± 0.4 4.7 ± 0.2* 5.0 ± 0.1* 

Infundibulum 4.3 ± 0.7 5.6 ± 0.6 4.2 ± 0.5 4.9 ± 0.3 

Ovary 7.4 ± 0.2 5.9 ± 1.4 5.5 ± 2.3 5.7 ± 1.3 

The mean log value (cfu/gr tissue) ± standard deviations are shown. 

* Significant difference (P<0.05) between birds inoculated with ΔuspA, ΔuspB, ΔuspBA strains and birds 

inoculated with wild type. 

Reproductive tract colonization and egg contamination after intravenous infection is 

decreased in usp mutants  

The proportion of hens laying was 36% and 32% in the first week after infection, 35% and 31% 

in the second week and 70% and 66% in the third week for the birds infected with the wild type 
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and the uspBA strain, respectively. Fifteen of the 197 eggs (7.76%) gathered throughout the 

experiment from the group infected with the wild type strain were positive, while only 3 of 170 

eggs (1.76%) from the uspBA inoculated group were Salmonella positive (Table 3.1.3). 

Colonization of the reproductive tract by the uspBA mutant was decreased compared to the 

wild type strain, but no differences were detected in spleen or liver colonization (Table 3). The 

number of Salmonella positive caecal samples was significantly lower for the uspBA strain 

compared to the wild type strain.  

Table 3.1.3: Proportion of Salmonella positive organ samples and eggs 3 weeks after intravenous 

inoculation of 24-week old laying hens with wild type Salmonella Enteritidis 147str strain or a uspBA 

deletion mutant. 

 Caeca Liver Spleen Oviduct Ovary Eggs 

WT 10/20 13/20 20/20 8/20 11/20 15/197 (7.8%) 

uspBA 4/20 9/20 18/20 3/20 4/20 3/170 (1.8%) 

P-value 0.047* 0.2 0.15 0.077 0.022* 0.010* 

* Values significantly different from each other within the same column (P<0.05)  

Discussion  

As Salmonella Enteritidis is able to colonize the chicken reproductive tract and to survive in 

egg white (Gantois et al., 2008b) , in vivo expression technology (IVET) screening was used to 

identify genes that are highly expressed in the oviduct and in eggs (Gantois et al., 2008a). The 

study demonstrated that promoters of the uspA and uspB genes were activated during 

colonization of the oviduct and in eggs, suggesting a role for these genes in oviduct colonization 

and egg contamination. In the study reported here, we showed that egg white activates 

transcription from the uspA and uspB promoters. Moreover, we showed that a uspBA mutant 

was less able to colonize the oviduct and to contaminate eggs. Transcription of universal stress 

proteins is induced during inhibition of growth by a variety of stress conditions, including 

nutrient starvation, heat, oxidative stress and osmotic shock (Nystrom and Neidhardt, 1992, 

Farewell et al., 1998). Thus it could be that the stressful environment of the reproductive tract 

and the egg white activates transcription of both genes. In addition to the chicken body 

temperature of 42°C, the limited availability of nutrients in the oviduct, and the high pH, limited 

iron availibility and antibacterial agents  encountered in the oviduct mucus and the egg white 

may be responsible for this activation.  
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Mutants in which uspB and both uspA and uspB are deleted have a decreased capacity to 

colonize the chicken reproductive tract and to contaminate eggs, although they grow normally 

in LB at 42°C. Indeed, after intra-oviductal infection, the uspB and uspBA mutants were 

significantly decreased in their ability to colonize the isthmus and magnum of the oviduct. A 

similar phenotype was observed after intravenous infection of chickens with the uspBA mutant, 

with the uspBA mutant less able to colonize the chicken reproductive tract compared to the wild 

type. In addition, eggs of chickens infected with the uspBA mutant were significantly less likely 

to be contaminated than those of chickens infected with the wild type.  

The universal stress proteins A and B are proposed to have a role in establishing a persistent 

colonization in stressful and harmful environments and are thought to play a role in bacterial 

virulence. Indeed, a Salmonella Typhimurium uspA mutant was less virulent when it was given 

orally to BALB/c mice at low doses (106cfu/ml) (Liu et al., 2007). Universal stress proteins 

have been shown to be necessary for the persistence of bacteria during periods in which growth 

is limited. Previous studies have shown that  E. coli (Nystrom and Neidhardt, 1994, Nystrom 

and Neidhardt, 1993, Nachin et al., 2005) and Salmonella Typhimurium (Liu et al., 2007) 

strains carrying a deletion of the uspA gene have an impaired ability to survive for prolonged 

periods of time during stasis caused by different stressors, including nutrient starvation, 

temperature changes and oxidative stress. Limited access to oxygen results in the upregulation 

of Rv2623, a conserved hypothetical protein containing 2 universal stress protein domains, in 

Mycobacterium bovis (Boon et al., 2001). A similar phenomenon has been observed in 

Pseudomonas aeruginosa, with Usp-like proteins (PA3309 and PA4352) upregulated during 

pyruvate fermentation (Schreiber et al., 2006). Mutations in these genes decrease the survival 

of the pathogen under anaerobic stress conditions (Schreiber et al., 2006, Boes et al., 2006). It 

can thus be hypothesized that prolonged persistence of Salmonella Enteritidis in the 

reproductive tract and the egg might require the induction of universal stress proteins, as the 

bacteria encounter a myriad of other stressors, including high temperature, high pH and many 

antimicrobial substances. Expression of these genes during colonization of the oviduct would 

facilitate the survival of the bacteria in these hostile environments. Consequently, after 

colonization of the oviduct, the bacteria could easily be incorporated into the forming egg, 

where expression of the genes might mediate survival during a  period of growth arrest in the 

egg white.  

Although the molecular mechanisms explaining the protective capacity of the UspA and UspB 

proteins under stress conditions are still largely unknown, a role in alteration of the membrane 
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composition during stationary phase, leading to increased resistance to environmental stressors, 

has been suggested. In E. coli uspA has been shown to be regulated by FadR, a global regulator 

of fatty acid synthesis and degradation. FadR is a mediator of cell membrane composition and 

integrity (Farewell et al., 1996). E. coli uspA mutants, have increased sensitivity to weak acids 

and exhibit increased permeability of the cell membrane (Farewell et al., 1996), and uspB 

mutants are more sensitive to 10% ethanol in the stationary phase, indicating that uspB might 

have a role in sensing and/or mediating alterations in membrane composition during the 

stationary phase (Farewell et al., 1998).  

It is also speculated that uspA in E. coli is involved in protection against DNA damage or in 

repair of the non-replicative chromosome during stasis, because uspA expression is in part 

controlled by RecA, part of the SOS response, which is activated upon DNA damage. 

Furthermore, uspA mutants are much more sensitive to UV irradiation and mitomycin C 

exposure (Diez et al., 2000). Sensitivity to mitomycin C is also seen in uspB mutants, which 

thus may be involved in recombination-dependent repair of  DNA in E. coli (Persson et al., 

2010). Thus, universal stress proteins may be highly expressed in the chicken’s oviduct and 

eggs as a consequence of stressors that cause DNA damage. The reproductive tract and eggs 

restrict bacterial growth and contain high concentrations of agents that can damage the 

membrane and DNA, including lysozyme (Board, 1969) and endo- and exonucleases (Lu et al., 

2003). Induction of these genes would thus be necessary to cope with these stressors and could 

enable the bacteria to survive in these stressful environments for a prolonged period of time. 

Conclusion 

In conclusion, it was demonstrated that expression of the universal stress proteins A and B of 

Salmonella Enteritidis is induced in the hostile environments of the reproductive tract and egg 

white. In addition we found that uspB and uspBA mutants have a decreased ability to colonize 

the chicken reproductive tract and contaminate eggs. This suggests that these genes confer 

resistance to the variety of membrane and DNA damaging components in the oviduct and the 

egg. Additionally, we hypothesize that the universal stress proteins might be required for the 

long term survival of Salmonella Enteritidis in the chicken reproductive tract and in eggs. 
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Objective chapter 3.2 

Althought the IVET-screening performed by Gantois et al. (2008) already identified some 

genes important for oviduct colonization, it must be mentioned that this approach doesn’t 

provide any information on whether the identified genes result in a virulence defect when 

mutated. Consequently, a transposon mutagenesis method was used during the second chapter 

of this thesis to identify genes involved in oviduct colonization.  
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Microarray-based detection of Salmonella Enteritidis genes 

involved in chicken reproductive tract colonization  

Abstract 

Salmonella Enteritidis has developed the potential to contaminate table eggs internally, by 

colonization of the chicken reproductive tract and internalization in the forming egg. The 

serotype Enteritidis has developed mechanisms to reside inside the oviduct more successfully 

than other serotypes. Until now, the strategy exploited by Salmonella Enteritidis to do so 

remains largely unknown. For that reason, a microarray-based transposon library screen was 

used to identify genes which are essential for the persistence of Salmonella Enteritidis inside 

primary chicken oviduct cells ‘in vitro’ and inside the reproductive tract ‘in vivo’. In total 81 

genes, with a potential role in persistence in both the oviduct cells and the oviduct tissue, were 

identified. Major groups of importance include the Salmonella Pathogenicity Islands 1 and 2, 

genes involved in stress responses, cell wall and LPS structure and the Region Of Difference 

(ROD) genomic islands 9, 21 and 40. 
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Introduction  

Table eggs and derived products were traced back as the primary food vehicle responsible for 

a Salmonella Enteritidis pandemic that started in the late 80’s (EFSA, 2012, Braden, 2006). It 

is still incompletely understood why this particular Salmonella serotype is more successful than 

other serotypes in colonizing the chicken egg. Indeed, many other serotypes can be present in 

the environment of the laying hen, but Salmonella Enteritidis is the main serotype associated 

with eggs (EFSA, 2007). Intensive cleaning and disinfection of the eggshell surface failed to 

eliminate the serotype from eggs, indicating that it must be present in the internal egg content 

(Braden, 2006). Most likely, the bacteria are incorporated in the egg during its formation in the 

chicken reproductive tract (Keller et al., 1995, Miyamoto et al., 1997, Okamura et al., 2001a, 

Gantois et al., 2009a). Reproductive tract colonization capacities of different serotypes have 

been compared in different studies and show that Salmonella Enteritidis is superior in 

reproductive organ colonization compared to other serotypes, with the exception of Salmonella 

Typhimurium (Gantois et al., 2008b, Keller et al., 1997, Raspoet et al., 2011).  

A previously performed ‘in vivo’ expression technology (IVET) screening identified genes 

involved in amino acid and nucleic acid metabolism, motility, cell wall integrity and stress 

responses as being expressed by Salmonella Enteritidis inside the reproductive tract (Gantois 

et al., 2008a). A role for type 1 fimbriae (De Buck et al., 2004c), the LPS structure (Coward et 

al., 2013) and stress responses (Raspoet et al., 2011) in reproductive tract colonization has 

already been confirmed by the use of defined deletion mutants. Knock-out strains can provide 

important information on the relevance of single genes in the pathogenesis of egg infections, 

but a whole genome approach that identifies all mutated genes that are important in this process 

is hitherto lacking. In this study, we identified genes that are required for persistence of 

Salmonella Enteritidis inside the reproductive tract using a genome-wide microarray-based 

transposon library that selects mutations that are causing decreased colonization of the oviduct. 

On the one hand our results confirm those found by other studies as genes encoding cell wall 

components and proteins involved in stress responses were identified. On the other hand, we 

demonstrate a potential role for the Salmonella pathogenicity islands (SPI), phage-associated 

proteins together with unique regions present in Salmonella Enteritidis but not in Salmonella 

Typhimurium, the so called regions of difference (ROD). 
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Materials and methods 

Bacterial strains, growth conditions and construction of transposon library 

For the construction of the transposon library, an isogenic streptomycin resistant variant of the 

Salmonella Enteritidis 147 strain (147str) was used. The library was made according to the 

method previously described (Badarinarayana et al., 2001, Lawley et al., 2006, Chan et al., 

2005). In a first step, the pJA1 plasmid was transferred to the Escherichia coli (E. coli) SM10 

λpir strain and maintained under ampicillin (100 µg/ml) (Sigma-Aldrich, St. Louis, MO, USA) 

selective pressure. The pJA1 suicide vector contains IS10 inverted repeats flanking a 

kanamycin resistance cassette with an adjacent, outward-directed T7 transcriptional promoter. 

In addition, the plasmid harbors a mini-Tn10 transposase under control of an isopropyl-β-D-

thiogalactopyranoside (IPTG)-inducible LacIq/Ptac promoter and RP4 mob region for 

conjugation. A standard overnight conjugation reaction, in the presence of IPTG (Sigma-

Aldrich, St. Louis, MO, USA) but without antibiotics, was performed between the E. coli SM10 

λpir and the Salmonella Enteritidis 147str strain. Under influence of IPTG the transposable 

element, containing a kanamycin resistance gene and T7 promoter, was excised from the pJA1 

plasmid and integrated randomly into the genome of Salmonella Enteritidis 147str. The next day, 

all colonies were scraped from the plate into 10mM MgSO4 (Sigma-Aldrich, St. Louis, MO, 

USA) and 10-fold dilutions were streaked onto LB agar plates containing 200 µg/ml 

streptomycin (Sigma-Aldrich, St. Louis, MO, USA) and 30 µg/ml kanamycin (Sigma-Aldrich, 

St. Louis, MO, USA) to select for successfully transposed Salmonella Enteritidis 147str mutants. 

A mixture of about 50.000 mutants were collected and stored in 15% glycerol (Sigma-Aldrich, 

St. Louis, MO, USA) solution at -80°C. 

Isolation of oviduct tubular gland cells  

Primary tubular gland cells of the chicken reproductive tract were isolated according to the 

protocol of Jung-Testas et al. (Jung-Testas et al., 1986), with slight modification. A daily 

subcutaneous injection of 1mg estradiol-benzoate (Sigma-Aldrich, St-Louis, USA) dissolved 

in sesame oil was given to seven days old chicks for 10 consecutive days. Three weeks later the 

chicks received a second round of injection for 7 days with the same amount of estradiol-

benzoate. The next day, chicks were euthanized with an intravenous embutramid injection (T61; 

Intervet, Belgium). Part of the oviduct, ranging from the beginning of the magnum till the end 

of the isthmus was aseptically removed, opened longitudinally and rinsed three times in Hank’s 
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balanced salt solution (HBSS; Gibco, Invitrogen, Auckland, New Zealand). The oviduct 

segment was cut into small pieces and allowed to dissociate for 30 min at 37 °C in minimal 

essential medium (DMEM; Gibco, Invitrogen, Auckland, New Zealand) containing collagenase 

(1 mg/ml) (Sigma-Aldrich, St-Louis, USA) supplemented with 50 µg/ml penicillin-

streptomycin (Gibco, Invitrogen, Auckland, New Zealand) The tissue suspension was 

centrifuged for 5 min at 1200 rpm at 37 °C, supernatant was removed and tissue was further 

trypsinized (0.25% trypsin-3 mM EDTA in DMEM) for 5 min under agitation at 37 °C. Fetal 

calf serum (FCS; Gibco, Invitrogen, Auckland, New Zealand), was added to neutralize the 

trypsin and cells were centrifuged at 1200rpm for 5 min at 37°C. Next, cells were treated with 

lysis buffer (0.87% NH4Cl and 0.1% NaHCO3 in HBSS) to eliminate red blood cells. The 

resulting cell suspension was filtered, using a Ø70 µm cell strainer, and then centrifuged at 

1200 rpm. Consequently, the cells were washed twice with DMEM containing 10% FCS. The 

cells were seeded at 1.106 cells/ml in cell culture flasks in DMEM supplemented with 15% FCS, 

insulin (0.12 IU/ml) (Sigma-Aldrich, St-Louis, USA), fibronectin (1µg/ml) (Sigma-Aldrich, St. 

Louis, MO, USA), β-estradiol (50 nM) (Sigma-Aldrich-St-Louis, USA), penicillin-

streptomycin (50µg/ml) and fungizone (amphotericin B, 250 ng/ml) (Gibco, Invitrogen, 

Auckland, New Zealand). Flasks were placed in a cell incubator at 37 °C with 5% CO2 for 2h. 

During this period fibroblasts attached to the cell culture flask while the oviduct cells remained 

in suspension. Non-adhering oviduct cells were removed and seeded in tissue culture 24-well 

plates at 1 x 106 cells/ml. Two days post-isolation, the wells were evaluated for confluent 

growth and used for in vitro experiments. The experimental protocol was approved by the 

ethical committee of the Faculty of Veterinary Medicine, Ghent University.  

Transposon library selection on oviduct cells ‘in vitro’ and oviduct loops ‘in vivo’.  

Identification of Salmonella Enteritidis genes important to persist inside primary 

tubular gland cells of the oviduct in vitro 

The Salmonella Enteritidis transposon library (initial library) was grown for 7h at 37 °C in Luria 

broth (LB; Sigma-Aldrich, St. Louis, MO, USA) with agitation in the presence of streptomycin 

(200 µg/ml) and kanamycin (30 µg/ml). The bacterial suspension was centrifuged, resuspended 

in cell medium without antibiotics, fungizone and FCS and added to the cells at a concentration 

of 1.107 cfu/ml (multiplicity of infection 10 (MOI10)). The plates were centrifuged for 10 min 

at 1500 rpm to obtain optimal contact of the bacteria with the cell layer. The cells were 
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incubated for 1h at 37 °C, rinsed 3 times with HBSS and cell medium containing gentamycin 

(100 µg/ml) (Gibco, Invitrogen, Auckland, New Zealand) was added. After 1h the gentamycin 

concentration was lowered to 30 µg/ml and cells were incubated further for another 14h. Plates 

were rinsed 3 times with HBSS and cells were lysed using triton 1% (Sigma-Aldrich, St-Louis, 

USA). Plates were placed on a MTS 2/4 digital microtiter plate shaker for 10 minutes at 

maximum speed. Afterwards, HBSS was added and intracellular bacteria were collected. 

Harvested intracellular bacteria (output library) were grown in LB-medium with streptomycin 

and kanamycin for 7 hours, used for a second round of invasion. By performing multiple 

passages important mutants are more properly selected as their absence in the output library 

compared to the initial library becomes more pronounced. In total, 3 subsequent passages were 

run and the experiment was performed with 5 independent replicates.  

Identification of Salmonella Enteritidis genes important for colonization of the 

oviduct in vivo 

For the in vivo identification of genes, an intra-oviduct inoculation approach was chosen, 

because in this way identified genes cause a defect in oviduct colonization, when deleted. When 

oral or intravenous inoculation methods are used, some genes might be detected because they 

cause a defect in gut colonization or in systemic spread when deleted.  

The experimental protocol for this procedure was approved by the ethical committee of the 

Faculty of Veterinary Medicine, Ghent University. Three, 21-week-old commercial laying hens 

were pre-medicated intramuscularly with buprenorphine hydrochloride at 0.05 mg/kg 

(Temgesic, Schering-Plough, New Jersey, US) and atropine at 0.05 mg/kg. Anaesthesia was 

induced by the administration of isoflurane (Schering-Plough, New Jersey, US) through a face 

mask. Following intubation with a 3.0 uncuffed tracheal tube (Hudson RCI, Temecula, 

California, US), a continuous oxygen flow of 1.5 to 2.0 L/min was administered carrying 1.5 to 

3% isoflurane. The birds were covered with a sterile surgical blanket and defeathered on the 

abdominal surface. After disinfection of the incision area with a povidone iodine solution 

(Braunol, B. Braunol Medical, Prague, Czech Republic), the abdomen was opened through a 

midline incision and the oviduct segments were carefully exposed. A 7h old culture of the 

Salmonella Enteritidis transposon library was centrifuged and diluted in HBSS until 107 cfu/ml 

were obtained. The oviducts were inoculated with 1 ml of the bacterial suspension at the 

isthmus-magnum transition zone using a 27 gauge needle. After inoculation, the oviduct was 

reintroduced into the abdomen and the abdominal wall was sutured. After recovery from 
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anaesthesia, the birds were placed in separate cages on wood shavings. The animals had 

unrestricted access to drinking water and feed. 2 days after infection, the hens were euthanized 

by intravenous injection of embutramid (T61, Intervet, Belgium). Magnum and isthmus were 

aseptically removed and opened longitudinally. Oviducts were rinsed 3 times in HBSS 

supplemented with 100 µg/ml gentamycin to kill extracellular bacteria. Tubular gland cells 

were isolated by the protocol of Jung-Testas et al. (Jung-Testas et al., 1986) as previously 

described but with an additional 50 µg/ml of gentamycin in all enzyme solutions and without 

penicillin and streptomycin until the cells were lysed with 1% triton for 10 min.  

DNA isolation and RNA transcription of transposon library  

In order to perform microarray hybridization, genomic DNA (gDNA) from the initial library 

and gDNA from the ‘in vitro’ and ‘in vivo’ selections were purified using the phenol/chloroform 

extraction method. 10 µg of the gDNA was digested with HinP1I (New England Biolabs, 

Ipswich, MA, USA) and 2 µg was ligated to the Y-linkers described by Tavazoie and Church 

(Tavazoie and Church, 1998). Using a PCR with a transposon and linker specific primer 

(Badarinarayana et al., 2001), the transposon containing fragments were amplified. 1 µg of PCR 

product was used in an ‘in vitro’ transcription reaction from the T7-promoter in the transposon 

adjacent region. The MEGAscript T7 transcription kit (Ambion, Austin, Texas, USA) was used 

for this purpose according to the manufacturer’s protocol, except that all reaction volumes and 

reagents were doubled. RNA was purified by lithium chloride precipitation as described within 

the MEGAscript kit manual.  

Microarray procedure  

RNA recovered from the initial and selected transposon libraries was reverse transcribed into 

cDNA and subsequently Cy5-labeled using random hexamer primers and a Klenow fragment. 

cDNA was hybridized on a whole-genome Salmonella Typhimurium/Enteritidis SALSA cDNA 

microarray, carrying 5877 coding sequences (CDS), together with Cy3-labeled Salmonella 

Enteritidis genomic reference DNA (Hautefort et al., 2008). Two microarray chips were 

hybridized for each biological replicate. Slides were scanned on an Axon 4000A scanner (Axon 

Instruments, Foster City, CA, USA). Spots showing a reference signal lower than the 

background plus 2 standard deviations or obvious blemishes were excluded from subsequent 

analysis. Local background was subtracted from spot signals and Cy fluorescence ratios were 

calculated using GenePix version 1.4 software (Agilent, Santa Clara, CA, USA). To 
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compensate for unequal dye incorporation or any effect of the amount of template, data 

centering was performed by bringing the median natural logarithm of the ratios for each group 

of spots printed by the same pin to zero. Data that passed the quality controls were analyzed 

using Genespring version GX7.3 software (Agilent, Santa Clara, CA, USA). Signal values of 

the output library were normalized against those of the initial library and used to identify 

mutants for which the gene value had at least a 2-fold decrease (fold difference < 0.5) after the 

selection procedure compared to the initial library grown in LB. Significance of the centered 

data, at p ≤ 0.001 for ‘in vitro’ tests and p ≤ 0.05 for ‘in vivo’ tests, was determined using a 

parametric-based statistical test adjusting the individual p-value with the Benjamini and 

Hochberg false discovery rate multiple test correction. Microarray protocols are described in 

detail at http://www.ifr.ac.uk/safety/microarrays/protocols.html. As the microarray is mainly 

annotated for Salmonella Typhimurium, gene sequences were used in a BLAST search to look 

for their Salmonella Enteritidis (SEN) homologue.  

Results and discussion 

To obtain information about the oviduct colonization mechanisms of Salmonella Enteritidis, a 

genome-wide microarray-based transposon library screening was performed. The idea behind 

this technique is that mutants harboring deletions in genes that are potentially important in 

oviduct colonization are no longer capable to persist or multiply inside the oviduct cells. 

Consequently, their numbers will be decreased compared to mutants in which genes that are 

not essential for oviduct colonization are mutated. Recovery of the mutants followed by DNA 

isolation and RNA synthesis from the T7-promoter (located on the inserted transposon) with 

subsequent microarray hybridization thus gives information about the mutants that are 

eliminated during the selection procedure, i.e. intracellularly in oviduct cells or in oviduct 

tissue. Using this technique the in vitro and in vivo screening respectively identified 241 and 

323 genes being potentially important for oviduct colonization. 81 of these genes were 

identified to be important in both the ‘in vitro’ screening as in the ‘in vivo’ trial and thus 

considered to be the most important ones (figure 3.2.1). These genes are categorized according 

to their function in table 3.2.1 and the potential role in oviduct colonization for the more relevant 

genes is discussed below.  
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Table 3.2.1: Genes important for persistence inside the reproductive tract, identified during both the ‘in 

vitro’ and ‘in vivo’ screening. 

Gene Group SEN Name/locus tag Gene product 

Salmonella Pathogenicity islands 

SPI-1    

 hilA invasion protein regulator 

 invI secretory protein  

 prgH pathogenicity 1 island effector protein 

 prgK pathogenicity 1 island effector protein 

SPI-2   

 ssaB putative pathogenicity island 2 secreted 
 ssaC putative outer membrane secretory protein 

 ssaJ putative pathogenicity island lipoprotein 

 ssaM putative pathogenicity island protein 

 ssaN putative type III secretion ATP synthase 

 ssaT putative type III secretion protein 

 ssaU putative type III secretion protein 

 sscB putative pathogenicity island protein 

 SEN1968 phage integrase (remnant) 

SPI-3   

 marT putative transcriptional regulator  

Regions of difference 
ROD9   

 SEN1013B Hypothetical protein 

 SEN1013A Hypothetical protein 

 SEN1009 Hypothetical protein 

 SEN1001 Putative DNA binding protein 

ROD21   

 SEN1993 Putative DNA binding protein (histone-like protein 

hlpII) 

 SEN1990 Putative DNA binding protein 

 SEN1988 Hypothetical protein 

 SEN1985 Hypothetical protein 
 SEN1984 Exported protein 

 SEN1981 Hypothetical protein 

 SEN1976 Putative type IV prepilin protein (remnant) 

 SEN1974 Hypothetical protein 

ROD40   

 SEN4291 Putative type I restricted-modification system 

 SEN4290 Putative type I restricted-modification system 

Phage-related   

 SEN0921(ϕSE10) prophage encoded virulence protein 

Genes identified in vivo Genes identified in vitro 

160 242 160 

Figure 3.2.1: Venndiagram of important genes for oviduct colonization, identified during the in vitro 

and in vivo screening 
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 SEN1144 (ϕSE12) Putative bacteriophage holin 

 SEN1165 (ϕSE12A) putative phage terminase (remnant) 

 SEN1167 (mig-3) (ϕSE12A) Phage tail fiber protein (remnant) 

  SEN1390 (ϕSE14) Putative membrane protein 

Virulence plasmid 

 repA2 DNA replication protein 

 pSENV_079 Hypothetical protein 

 traA Conjugational transfer pilin subunit traA 

LPS composition and fimbriae 

 rfaB lipopolysaccharide 1,6-galactosyltransferase 

 rfbI glycosyl transferase  

 rfbN putative rhamnosyltransferase 

 rfbP undecaprenyl-phosphate 
 rfbS Paratose synthase 

 rfbV O-antigen transporter 

 rfbX O-chain glycosyltransferase 

 Udg UDP-glucose 6-dehydrogenase 

 pegC Putative outer membrane usher protein 

 ampD Anhydro-N-acetylmuramyl-tripeptide 

 envF Lipoprotein 

SPI-17   

 SEN2380 Putative transposase 

DNA biosynthesis and stress reponses 

 pyrD dihydroorotate dehydrogenase 
 ogt O6-methylguanine-DNA-alkyltransferase 

 hslV heat shock protein 

 htrA protease DO precursor; heat shock protein  

 yciG Conserved hypothetical protein 

Other genes   

 btuF cobalamin periplasmic binding protein 

 cdaR carbohydrate diacid regulator 

 cspB cold shock protein 

 glnH glutamine-binding periplasmic protein precursor 

 SEN0168 4-hydroxythreonine-4-phosphate dehydrogenase 

 SEN0328 Hypothetical protein 

 SEN0708 LysR-family transcriptional regulator 
 SEN0744A Putative cytoplasmic protein 

 SEN0853B Conserved hypothetical protein 

 SEN1419 Putative amino acid transporter permease protein 

 SEN1418 ABC transporter ATP-binding subunit  

 SEN1335 Putative inner membrane protein 

 SEN1204 Putative membrane protein  

 SEN1916 Putative membrane protein 

 SEN2003 Putative DNA binding protein  

 SEN2190 Putative hydrolase 

 SEN2218 Putative membrane protein 

 SEN2256 Putative transmembrane transport protein 
 SEN2489 Putative transposase 

 SEN2601 Hypothetical protein 

 SEN4651 Putative fimbrial protein 

 sppA protease IV  

 stfA Major fimbrial subunit stfa (putative fimbrial subunit) 

 yaaU Putative metabolite transport protein 

 ydiM Putative MFS family transport protein 

 ydeE Putative membrane protein 

 ynaJ Putative membrane protein 

 ynfC Exported protein 
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Pathogenicity islands 

Genes belonging to the Salmonella pathogenicity islands (SPI) 1, 2 and 3 were identified as 

important for the persistence of Salmonella Enteritidis inside the reproductive tract. SPI-1 

encodes for a type three secretion system (T3SS) enabling the uptake of the bacteria inside non-

phagocytic cells. The importance of SPI-1 genes in the invasion and the survival of Salmonella 

Enteritidis in chicken oviduct epithelial cells was already demonstrated by Li et al. (Li et al., 

2009b). These authors showed that mutations in the effector proteins sipB, sipA, sopB and 

sopE2 led a decrease in the invasion of oviduct cells, while those in sipB and sipA also were 

less able to survive inside these cells. Intracellular survival/proliferation is a function mainly 

attributed to SPI-2 (Hautefort et al., 2008, Hensel et al., 1997). It was already demonstrated that 

a Salmonella Enteritidis mutant in ssrA, the key regulator of SPI-2, had a lower potential to 

colonize the reproductive tract and this probably due to a diminished systemic spread (Bohez 

et al., 2008). Here we show that in addition to systemic spread to the reproductive tract, SPI-2 

might also be involved in the persistence of Salmonella Enteritidis inside the reproductive tract 

and the oviduct epithelial cells. In addition to SPI-1 and SPI-2, also one gene, marT, belonging 

to SPI-3, was shown to be of importance for oviduct colonization. Tukel et al. (Tukel et al., 

2007) showed that marT is involved in the transcriptional activation of misL, a fibronectin 

binding protein increasing the invasiveness into epithelial cells.  

Regions Of Difference  

Genes belonging to regions of difference (ROD) 9, 21 and 40 were identified in our study to be 

involved in chicken reproductive tract colonization. RODs are genomic islands that were shown 

to be present in the genome of Salmonella Enteritidis but not in Typhimurium (Thomson et al., 

2008).   

ROD9 is a truncated form of SPI-19 found in Salmonella Gallinarum, where it encodes a type 

VI secretion system (T6SS) indispensable for efficient colonization of the gut, spleen and liver 

in young chickens (Blondel et al., 2010). SPI-19 is necessary for survival of Salmonella 

Gallinarum inside avian macrophages, without contributing to cytotoxicity and cell death 

(Blondel et al., 2013). As SPI-19 of Salmonella Enteritidis lost many of the T6SS essential 

components it was suggested that this system is not functional within this serotype (Blondel et 

al., 2009). Transfer of the complete Salmonella Gallinarum SPI-19 cluster to Enteritidis 

resulted in an increased ileum, liver and spleen colonization 1 day post-infection despite a 
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colonization defect after 3 days (Blondel et al., 2010). Others hypothesized that some genes of 

ROD9 might be retained in Salmonella Enteritidis to enhance its colonization potential, as the 

SEN1001 gene of the Salmonella Enteritidis ROD9 cluster, appeared to be essential for 

colonization of mice and survival inside murine macrophages (Silva et al., 2012). Finally, a 

Salmonella Enteritidis ROD9 deletion mutant was not defective in reproductive tract 

colonization (Coward et al., 2012).  

ROD21 is present in Salmonella Enteritidis, Gallinarum and Dublin but absent in Typhimurium 

(Porwollik et al., 2005, Thomson et al., 2008). The cluster contains a Toll/interleukin-1 receptor 

(TIR) domain containing protein SEN1975 or TlpA that might suppress NF-ĸB induction while 

it promotes host cell apoptosis (Silva et al., 2012, Quiroz et al., 2011, Newman et al., 2006). A 

tlpA mutant was defective in intracellular survival inside human THP1 macrophages and mice 

infected with the tlpA mutant survived the challenge better as compared to the wild type 

(Newman et al., 2006). ROD21 also comprises 2 putative type IV pilin proteins (SEN1976 and 

SEN1978), which might be linked to several functions including motility, adhesion, biofilm 

and bacterial aggregate formation, but also invasion (Quiroz et al., 2011, Silva et al., 2012). 

Also 2 conjugational transfer proteins (SEN1979 and SEN1980) and a histone-like nucleoid-

structuring (H-NS) regulator (SEN1993) are located on ROD21, of which the latter was shown 

to be a homologue of the uropathogenic E. coli hnsT gene, which promotes the expression of 

virulence genes (Quiroz et al., 2011). Nevertheless, a role for ROD21 in reproductive tract 

colonization could not be demonstrated as a ROD21 deletion mutant had the same colonization 

levels in this organ as the wild type after oral inoculation (Coward et al., 2012). 

The ROD40 locus encodes for a type I restriction/modification system, which degrades foreign 

DNA (Thomson et al., 2008), but the role of ROD40 in reproductive tract colonization still 

remains to be investigated. 

Phage-associated genes 

Five Salmonella Enteritidis genes belonging to ϕSE10, ϕSE12, ϕSE12A or ϕSE14 phages 

have been identified during our screening to be important for oviduct colonization. Shah et al. 

(Shah et al., 2012b) showed that the SEN1393 gene of ϕSE14 is involved in the invasion of 

Salmonella Enteritidis inside Caco-2 and LMH chicken liver cells. Additionally, this mutant 

was attenuated for survival inside chicken macrophages and showed a significantly reduced 

growth in egg albumen compared to the wild type. In contrast a ϕSE14 deletion strain colonized 
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the liver and spleen of BALB/c mice as well as the wild type strain 2 days post-infection 

(Santiviago et al., 2010). No studies have investigated the role of these phage-associated genes 

in oviduct colonization yet.  

Virulence plasmid  

Some serotypes of Salmonella, including Enteritidis, harbor serotype specific plasmids (SSP), 

encoding genes necessary for replication (repA and repA2) and conjugation (the often degraded 

tra operon), and carrying virulence genes such as the Salmonella plasmid virulence (spv) operon 

and the pef and fae fimbrial operons (Rotger and Casadesus, 1999, Feng et al., 2012). Our 

screening suggests that repA2, traA and the hypothetical protein (pSENV_079) are important 

for Salmonella Enteritidis colonization of the chicken reproductive tract.  

LPS composition and fimbriae  

A previously performed IVET-screening already showed that genes involved in cell membrane 

and cell wall integrity were highly expressed during colonization of the reproductive tract by 

Salmonella Enteritidis (Gantois et al., 2008a). Seven of the genes identified in our study are 

involved in the composition of the bacterial membrane. Of the cell wall structural proteins, 7 

are involved in LPS biosynthesis (rfaB, rfbI, rfbN rfbP, rfbS, rfbX and rfbV). The importance 

of LPS biosynthesis in oviduct colonization was already demonstrated by Coward et al. (2013). 

These authors showed that both the wzy (exhibiting only 1 O-antigen repeat) and the febE 

(defective in the production of very long O-antigen repeats with more than 100 subunits) 

deletion strains are less efficient in the colonization of the ovary and oviduct in comparison to 

a wild type strain. Also, one gene of SPI-17 was found to be involved in persistence of 

Salmonella Enteritidis inside the reproductive tract in our study. SPI-17 of Salmonella 

Enteritidis is a degenerate prophage encoding for gtrA and gtrB, which are involved in LPS O-

antigen modification in Shigella flexneri (Thomson et al., 2008, Vernikos and Parkhill, 2006, 

Guan et al., 1999). Additionally the UDP-glucose 6-dehydrogenase (ugd, udg, pagA or pmrE), 

shown to modify the lipid A component of LPS (Gunn et al., 1998), was identified in our study 

as involved in oviduct colonization. Finally, a gene of the peptidoglycan recycling system 

(ampD) and an envelope lipoprotein (envF) were identified but their role in reproductive tract 

colonization is not clear.  
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Although type 1 (SEF21) fimbriae are necessary for adhesion to the isthmus secretions (De 

Buck et al., 2003), we here demonstrate a potential role for the peg fimbrial operon (pegABCD) 

in oviduct colonization as a pegC mutant was identified during the transposon library screening. 

This operon is only found in Salmonella Enteritidis, Gallinarum and Paratyphi B. Transcription 

of this operon was induced during reproductive tract colonization (Gantois et al., 2008a) and a 

Salmonella Enteritidis pegD mutant had a decreased egg white survival capacity compared to 

the wild type (Shah et al., 2012b).  

DNA biosynthesis/repair and stress responses  

The importance of nucleic acid biosynthesis and stress responses for the colonization of the 

reproductive tract by Salmonella Enteritidis was already shown by Gantois et al. (2008a). They 

showed that the expression of many genes of the nucleic acid biosynthesis pathways were up-

regulated in the oviduct.  In addition, a deletion of the purA gene, involved in the pyrimidine 

metabolism, resulted in a reduced colonization potential of the chicken reproductive tract in 

comparison to spleen colonization(Gantois et al., 2008a). In the current study, another gene of 

the pyrimidine metabolism pathway (pyrD), and the O6-methylguanine-DNA-transferase (ogt), 

necessary for the repair of DNA alkylation damage, were identified. The ogt gene is regulated 

by the alternative sigma factor σS (RpoS) and is involved in the survival of bacteria under 

starvation or stress conditions (Ibanez-Ruiz et al., 2000) which can be encountered in the 

reproductive tract. One of the stress conditions encountered during colonization of the 

reproductive tract is the high chicken body temperature of 42°C. Consequently it is not 

surprising that in our study two heat inducible genes (hslV and htrA) were identified. HslV is 

the proteolytic subunit of the hslVU complex, while HtrA is a periplasmic serine protease. Both 

genes are involved in the elimination of unfolded and damaged proteins, typically present in 

bacteria that encounter unfavorable conditions. Finally, YciG of the yciGFE-katN operon is 

transcribed as a polycistronic message and harbors a putative RpoS-dependent promoter 

upstream of yciG, directing the transcription of genes essential for the general stress response 

(Robbe-Saule et al., 2001).  

Other genes  

In addition to the above mentioned genes, many other genes with various functions have been 

found, but their role in reproductive tract colonization needs further investigation.  
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Conclusion 

In order to identify genes that are necessary for the persistence of Salmonella Enteritidis inside 

the chicken reproductive tract, a genome-wide transposon screening was performed. Taken 

everything into consideration we could hypothesize that Salmonella Enteritidis might invade 

and survive inside the chicken oviduct epithelial cells by use of its pathogenicity islands. To 

further cope with the antimicrobial factors present inside these cells or the reproductive tract, 

the bacteria might alter its membrane composition, enhance its DNA repair strategies and 

activate some stress management strategies to cope with the high chicken body temperature. 

Finally, this study also suggests a potential role for the virulence plasmid and RODs9, 21 and 

40. Although the role of these RODs could not be confirmed by other research groups, who 

used defined single island deletion mutants to study their function in reproductive tract 

colonization, further research is necessary to determine their specific function as redundancy 

between these islands may exist.  
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Objective chapters 3.3 and 3.4 

As Salmonella Enteritidis is not only superior in the colonization of the chicken reproductive 

tract, but also in the survival in egg white during egg formation, both the IVET and transposon 

mutagenesis screening were used to identify genes necessary for survival in this matrix. 
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The Salmonella Enteritidis TolC outer membrane channel is 

involved in egg white survival due to an essential role in 

counteracting ovotransferrin-mediated iron depletion 

Abstract 

Salmonella Enteritidis has developed the potential to contaminate eggs by surviving in the 

antimicrobial environment of the hen’s egg white. This has led to food-borne salmonellosis 

infections in humans due to the consumption of contaminated eggs and egg-derived products. 

The molecular mechanisms of Salmonella Enteritidis egg white survival are not fully 

understood. Using in vivo expression technology and promoter-reporter fusions we showed that 

the promoter of the tolC gene, encoding the TolC outer membrane channel, is activated by egg 

white at the chicken body temperature. A Salmonella Enteritidis tolC deletion strain was no 

longer capable of surviving in egg white. Using chromatographic separation techniques and 

subsequent testing of antimicrobial activities, ovotransferrin was identified as the egg white 

antimicrobial factor inhibiting the tolC deletion strain. We give evidence that the antimicrobial 

action is due to the iron depriving characteristics of ovotransferrin and not because of the 

ovotransferrin derived antimicrobial peptide OTAP-92. A Salmonella Enteritidis resistance-

nodulation-division pump mutant has an identical phenotype as the tolC deletion strain, 

indicating exported molecules, supposedly siderophores, to be involved in resistance against 

ovotransferrin mediated iron deprivation. 
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Introduction 

Eggs are crucial for the chicken reproductive cycle and must support the development of the 

chicken embryo for 21 days. Consequently, eggs are equiped with all the essential nutrients for 

this maturation process, on top of physical and chemical defense mechanisms that limit 

microbial invasion and multiplication (Jonchere et al., 2010). Nevertheless, Salmonella 

enterica serotype Enteritidis has developed the potential to efficiently contaminate eggs, and 

thus the ability to cause human foodborne infections due to the consumption of contaminated 

chicken eggs or egg products. It has been hypothesized that the main contamination route for 

Salmonella Enteritidis is through colonization of the chicken reproductive tract (Lister, 1988, 

Keller et al., 1995, Gast and Holt, 2000a). It is assumed that the upper oviduct is the main 

colonization site and that most Salmonella Enteritidis bacteria are deposited with the egg 

albumen or egg shell membranes (Gast and Beard, 1990b, Humphrey et al., 1991b, Keller et 

al., 1995, Miyamoto et al., 1997, De Buck et al., 2004b). Once deposited inside the egg white, 

the bacteria have to cope with numerous antimicrobial components, including lysozyme, 

ovotransferrin, defensins and cystatin (Qiu et al., 2012) for about 20 to 26 hours, during which 

time the shell is formed around the egg white in the uterus, and this at the hen’s body 

temperature of 42°C. Salmonella Enteritidis strains are superior to other Salmonella serotypes 

in tolerating these conditions (De Vylder et al., 2013, Keller et al., 1997). Survival mechanisms 

exploited by Salmonella Enteritidis are still not completely understood, but roles have been 

attributed to the lipopolysaccharides (LPS) (Gantois et al., 2009b), lysozyme inhibitors 

(Callewaert et al., 2008) and protein and DNA damage repair mechanisms (Lu et al., 2003, 

Clavijo et al., 2006). To elucidate the survival strategies of Salmonella Enteritidis in egg white, 

an ‘in vivo’ expression technology (IVET)-screening was  performed and the promoter of the 

tolC gene was found to be highly expressed in egg white, as opposed to standard ‘in vitro’ 

culture conditions, suggesting a potential role for this gene in egg white survival. TolC is an 

outer membrane channel, involved in siderophore export (Bleuel et al., 2005) and is part of the 

multidrug resistance (MDR) pumps. MDR-pumps confer antibiotic resistance but also have a 

role in bacterial pathogenicity as they export host-derived antimicrobial agents and thus allow 

the bacteria to colonize and survive in certain hostile host niches (Piddock, 2006). Until now, 9 

of these pumps have been identified in Salmonella. Two of these pumps belong to the major 

facilitator (MFS) (EmrAB and MdfA), 1 to the multidrug and toxic compound extrusion 

(MATE) (MdtK), 1 to the ATP-binding cassette efflux (ABC) (MacAB) and 5 to the resistance-

nodulation-division (RND) (AcrAB, AcrD, AcrEF, MdtABC, MdsABC) transporter family 
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(Nishino et al., 2006). Two pumps (MdfA and MdtK) simply span the cytoplasmic membrane, 

while the other 7 transporters are multicomponent systems spanning both the inner and outer 

membrane. Except for MdsAB, which is capable of using MdsC, all multicomponent system 

pumps require TolC as outer membrane channel for their function (Horiyama et al., 2010). 

Although TolC has been shown to be involved in survival in harmful environments (Baucheron 

et al., 2005), there is no information on whether TolC is either or not essential for survival in 

egg white, and if so, on the mechanism of TolC-mediated egg white survival. Therefore, we 

further investigated the role of TolC in egg white survival by Salmonella Enteritidis. We 

demonstrated that the tolC promoter is activated after contact with egg white and that a tolC 

deletion strain has decreased survival capacities in this matrix. We also showed that 

ovotransferrin is the antimicrobial factor activating the tolC promoter and inhibiting growth of 

the tolC deletion strain by iron restriction. TolC-dependent RND-pumps were shown to be 

involved in counteracting ovotransferrin-mediated antibacterial effects. Finally we provide 

evidence that the previously identified ovotransferrin derived antimicrobial peptide OTAP-92 

is not involved in the ovotransferrin mediated inhibition of a tolC mutant. 

Materials and methods 

In vivo expression technology (IVET)-selection in egg white at the chicken body temperature 

of 42°C 

To elucidate the egg white survival strategies of Salmonella Enteritidis at the chicken body 

temperature, a previously constructed ΔpurA/pIVET1 library was used (Gantois et al., 2008a, 

Gantois et al., 2009b). IVET is a so called promoter trap technology designed to monitor global 

transcriptional activation in a certain ecological niche. Briefly, random genomic fragments (1-

4kb) of the Salmonella Enteritidis 147 genome were cloned into the pIVET1 suicide vector, in 

front of the purA/lacZY fusion construct. These constructs were then transferred by conjugation 

into a Salmonella Enteritidis 147 purA deficient strain, were homologous recombination at the 

chromosomal fragment occurred. As the auxotrophe purA deletion strain is no longer capable 

of surviving in purine deficient environments e.g. egg white (Gantois et al., 2009b), bacteria 

harboring an active promoter in front of the purA/lacZY fusion construct are positively selected 

in this ecological niche due to transcription of the purA gen. As most virulence genes are only 

expressed under specific conditions and not standard laboratory circumstances, recovered 

bacteria are subjected to a second selection procedure based on lacZY expression on lactose 
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containing MacConkey agar plates. Consequently, this technology was used to identify 

Salmonella Enteritidis virulence factors necessary for the survival in egg white at the chicken 

body temperature. This library was grown for 4 hours in Luria broth (LB) (Sigma-Aldrich, St 

Louis, MO, USA) supplemented with streptomycin (100 µg/ml) (Sigma-Aldrich), carbenicillin 

(50µg/ml) (Sigma-Aldrich), 1.35% adenine (Sigma-Aldrich) and 0.337% thiamine (Sigma-

Aldrich). Bacterial cell counts were determined by serial dilutions on LB agar plates. The 

library was stored at 4°C until the next day and further diluted until 1 x 107 cfu/ml in Hank’s 

buffered salt solution (HBSS) (Life Technologies, Bleiswijk, The Netherlands). The shells 

surface of freshly (< 24 hours) laid eggs was decontaminated in lugol solution (Sigma-Aldrich), 

and immersed in disolol (Sigma-Aldrich). Egg albumen was aseptically separated from egg 

yolk, collected in a sterile recipient and mixed for 5 min using a magnetic stirrer. To obtain a 

final concentration of approximately 106 cfu/ml egg albumen 200µl of the library was diluted 

into 1800µl egg albumen. Suspensions were incubated at 42°C for 24 hours, diluted and plated 

onto lactose containing MacConkey agar plates supplemented with streptomycin, carbenicillin, 

adenine and thiamine. Recovered bacteria were scraped from the plates and pooled for a second 

round of egg white infections to enrich for bacterial cells with high purA expression and thus 

cells in which an egg white activated promoter was present upstream of the purA/lacZY fusion. 

After the second round of egg infections, colonies lacking lacZY expression on MacConkey 

agar plates were picked up and used for identification of the sequences cloned in front of the 

purA/lacZY fusion construct by the PCR-based method of Kwon and Ricke (Kwon and Ricke, 

2000). Finally, obtained sequences were used in a BLAST analysis against the Salmonella 

enterica serovar Enteritidis genome of strain P125109. Twelve independent experiments were 

performed in this way.  

Salmonella Enteritidis tolC and RND-4 deletion mutants and tolC complement construction 

Because the ΔpurA/pIVET1 library was constructed in an isogenic streptomycin resistant 

variant of the Salmonella enterica serotype Enteritidis phage type 4 strain 147 (147str), 

originally isolated from egg content (Methner et al., 1995), this strain was also used for the 

construction of Salmonella Enteritidis 147str ΔtolC and ΔRND-4 (acrAB, acrD, acrEF and 

mdtABC were deleted one by one) strains according to the one-step inactivation method 

previously described by Datsenko and Wanner (2000). A kanamycin resistance cassette, 

flanked by FRT-sites, was amplified from the pKD4 helper plasmid using P-primers (Table 

3.3.1) that had a 50bp extension at the 5’ side of the pKD4 specific primers, homologous with 
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the flanking region of the target gene. The resulting PCR product was used for recombination 

on the Salmonella Enteritidis 147str chromosome using the pKD20 helper plasmid encoding the 

λ Red system, promoting recombination between the native and PCR adjusted antibiotic 

resistance cassette. Recombinant clones were selected on kanamycin containing plates and 

replacement of the target gene by the resistance cassette was confirmed by PCR. The deletion 

was P22-transduced into a new 147str background (Gemski and Stocker, 1967) and the antibiotic 

resistance cassette was eliminated using the pCP20 helper plasmid, encoding the FLP-

recombinase mediating recombination between the FRT-sites flanking the kanamycin 

resistance cassette (Datsenko and Wanner, 2000). The targeted genes were completely deleted 

from start to stop codon, as confirmed by sequencing analysis. To complement the tolC gene, 

a BamHI-XbaI tolC fragment was amplified from the Salmonella Enteritidis 147str wild type 

genome and ligated into the BamHI-XbaI digested pBBR1MCS-2 plasmid, a broad-host-range 

cloning vector containing kanamycin resistance that allows constitutive gene expression of the 

complemented gene from the lacZ promoter (Kovach et al., 1995). The resulting recombinant 

plasmid was transferred into the Salmonella Enteritidis ΔtolC strain (ΔtolC/ptolC) with 

subsequent selection on LB plates containing kanamycin (100 µg/ml). Obtained colonies were 

validated by PCR using standard M13 primers for which sequences were present on the 

plasmid. To analyze effects of the complementation plasmid on the phenotype, the empty 

complementation plasmid was electroporated in the ΔtolC strain, constructing the Salmonella 

Enteritidis 147 strain ΔtolC /pBBR1MCS-2.  

Measuring tolC promoter expression 

The tolC promoter was amplified from the Salmonella Enteritidis 147str wild type genome using 

L-primers (Table 3.3.1) integrating BamHI and Xho restriction sites at the PCR fragment. The 

resulting promoter fragment was ligated into the pCS26 plasmid, creating a fusion construct 

between the tolC promoter and the luxCDABE genes. Plasmids were electroporated into the 

Salmonella Enteritidis 147str wild type strain and transformed colonies were selected on agar 

plates containing kanamycin (100µg/ml). Integration of the promoter into the pCS26 plasmid 

was verified by PCR and the obtained strain was designated as Salmonella Enteritidis 147str 

tolC-luxCDABE. The strain was grown overnight in LB medium, centrifuged and resuspended 

in sodium phosphate buffer (0.1 M; pH8) and then diluted 1/20 in either sodium phosphate 

buffer (0.1 M; pH8), sterile stirred egg white or 20 mg/ml ovotransferrin (Sigma-Aldrich) 

dissolved in the sodium phosphate buffer. 200 μl of these suspensions were brought into a 96-
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well microplate and incubated at 37°C in a FluoroScan Ascent luminometer (Labsystems, 

Helsinki, Finland) to measure light production, and thus tolC promoter expression, every 15 

min, for 24 h. Obtained values were reduced with the background noise as seen for the 

Salmonella Enteritidis 147 luxCDABE strain, harboring the empty pCS26 plasmid. Three 

independent experiments, with three repeats per test, were performed.  

Table 3.3.1. Primers used in this study 

Primer Sequence  

For gene deletion   

tolC-P1 5’-TTTTTACAAATTGATCAGCGCTAAATACTGCTTCACAACAAGGAATGCAATGTGTAGGCTGGAGCTGCTTC-3’ 

tolC-P2 5’-AGACCTACAAGGGCACAGGTCTGATAAGCGCAGCGCCAGCGAATAACTTACATATGAATATCCTCCTTAG-3’ 

acrAB P1 5’-ATTTTTGCGTAAAAAAGGCCGCTTGCGCGGCCTTATCAACAGTGAGCAAATGTGTAGGCTGGAGCTGCTTC-3’ 

acrAB P2 5’-AGGACCTTTGACCATTGACCAATTTGAAATCGGACACTCGAGGTTTACATCATATGAATATCCTCCTTAG-3’ 

acrD P1 5’-GAAGCAGTTCAAATCTATAACGATATGTAGAAACACGAGGTTCCCCTTTATGTGTAGGCTGGAGCTGCTTC-3’ 

acrD P2 5’-GAAAGTCGCCTTTTTTGTGCCCGACACCTCGTATCAGGCTGGCCGGGAGCCATATGAATATCCTCCTTAG-3’ 

acrEF-P1 5’-CTTACCGTTATCCGGTGAATAACGAGCTTTCGGTTTTTTAAGGAACAGTATGTGTAGGCTGGAGCTGCTTC-3’ 

acrEF-P2 5’-TAAAAGACGTACCGTTTAAAAAGGCGTCCGAAGACGCCTCTGTTTACCGGCATATGAATATCCTCCTTAG-3’ 

mdtABC-P1 5’-GAATAATCCCGACCGTGTTCCATAATTCCTAGGATGAGAAACTTATACCGTGTGTAGGCTGGAGCTGCTTC-3’ 

mdtABC-P2 5’-GCCAATTGCCACAATCCAGAGTTGCCAGCGGGTATTGTCAGGAAGTTCTGCATATGAATATCCTCCTTAG-3’ 

For complementation  

tolC-C1 5’-TAGCGGATCCAACAAGGAATGCAAATGAAGAA-3’ 

tolC-C2 5’-GTACTCTAGATCAATGCCGGAATGGATTGC-3’ 

For LuxCDABE-fusion  

tolC-L1 5’-ATGCCTCGAGTGTGCTGCCCTGCTAGCAAT-3’ 

tolC-L2 5’-TCAGGGATCCTTAGTGTGCTGTAACCCCGAC-3’ 

Egg white survival of Salmonella Enteritidis ΔtolC  

Egg white survival assay 

Bacterial cell counts of overnight cultures of the Salmonella Enteritidis 147str wild type, ΔtolC, 

ΔtolC/pBBR1MCS-2 and ΔtolC/ptolC strains were determined by serial dilutions on LB agar 

plates. Cultures were stored at 4°C until the next day and further diluted to 1 x 105 cfu/ml in 

sodium phosphate buffer (0.1 M; pH8). 100 µl of the bacterial suspensions were added to 900 

µl of egg albumen, prepared as previously described, to obtain a final concentration of 

approximately 104 cfu/ml egg albumen. Inoculated egg albumen suspensions were incubated at 

42°C for 24 hours, where after the number of surviving bacteria was determined by plating 200 

µl of serial dilutions on antibiotic supplemented LB agar plates. Four independent experiments 

with each three repeats were performed. To evaluate the viability of the mutants at 42°C without 

egg white all strains were incubated for 24 hours at 42°C in tryptic soy broth (TSB) (Oxoid, 

Basingstoke, UK).  
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Agar spot assay 

20 µl drops of sterile stirred egg white were spotted onto agar plates on which bacterial cultures 

of the Salmonella Enteritidis wild type 147str, ΔtolC, ΔtolC/pBBR1MCS-2, ΔtolC/ptolC and 

ΔRND-4 strains, with a density of 0.5 McFarland, were confluently streaked. Drops were 

allowed to dry and plates were incubated at 37°C so that growth or inhibition could be 

investigated the next day. 

Identification of egg white component with antimicrobial activity against Salmonella 

Enteritidis ΔtolC 

Mucin free egg white was prepared according to the method described by Guérin-Dubiard et 

al. (Guerin-Dubiard et al., 2005), with minor modifications. Briefly, egg white was aseptically 

separated from egg yolk and diluted ¼ in distilled water. The pH was adjusted to pH6 and the 

egg white was stirred overnight at 4°C. The precipitated mucins were removed the next day by 

centrifugation at 3000 g, at 4°C for 5 min. The supernatant was collected and diluted ½ with 

sodium phosphate buffer (0.1M; pH6). The mixture was brought onto a SP-sepharose cation 

exchanger (GE healthcare Biosciences AB, Uppsala, Sweden), on which stepwise elution was 

performed using increasing concentrations of NaCl (up to 1 M). All obtained fractions were 

concentrated using a vivaspin 6 centrifugal concentrator (3kDa; Sartorius Stedim Biotech 

GmbH, Göttingen, Germany) and used in the previously described agar spot assay. Fractions 

that had an inhibitory effect on the ΔtolC deletion strain were pooled and used for subsequent 

size exclusion chromatography on a SD75 column (GE healthcare Biosciences AB, Uppsala, 

Sweden). 1 ml fractions were collected, concentrated and tested for their inhibitory activity in 

the agar spot assay. Fractions with antimicrobial activity against the ΔtolC deletion strain were 

brought on SDS-PAGE 12% gels. Proteins were visualized using Coomassie Brilliant Blue 

staining (Sigma-Aldrich, St Louis, USA). Bands were cut out of the gel and subjected to in-gel 

protein digestion with trypsin (Devreese et al. 2002) followed by mass spectrometric 

characterization. After mixing of 1 µl of the digestion mixture with 10 µl a-cyano siniapinic 

acid (5 mg/ml), 1 µl  was spotted onto the target plate and analyzed with the 4800 plus MALDI 

TOF/TOF Analyzer (Applied Biosystems, Foster City, CA). A NCBI BLAST-search was done 

with the obtained amino acid sequences (http://blast.ncbi.nlm.nih.gov/Blast/). Identified 

proteins were purchased from Sigma-Aldrich and used in the agar spot assay at different 

concentrations (5, 10, 25, 50, 100 and 200mg/ml).  
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Mechanism of ovotransferrin-mediated antibacterial activity against Salmonella Enteritidis 

ΔtolC 

Iron restriction  

Ovotransferrin was identified to be the antimicrobial egg white component active against 

Salmonella Enteritidis ΔtolC. To study whether ovotransferrin-mediated iron deprivation was 

involved, the low-phosphate and low-iron 3-(N-morpholino)propanesulfonate 

(MOPS)/glucose/casamino acids/vitamins (MGCV) medium was prepared as described by 

Orchad et al. (Orchard et al., 2012). A concentration of ovotransferrin, similar to that found in 

egg white (20 mg/ml) (Sellier et al., 2007) was dissolved in this medium A) without FeCl3, B) 

with 2.4 µM FeCl3 for low-iron conditions, C) 500 µM FeCl3 for ovotransferrin saturating 

conditions and D) 1000 µM FeCl3 for very high iron conditions exceeding ovotransferrin 

saturation. 20 µl drops of these suspensions were used in the agar spot assay with the Salmonella 

Enteritidis wild type, ΔtolC, ΔtolC/pBBR1MCS-2 and ΔtolC/ptolC. To investigate the role of 

multidrug efflux pumps in this process, also the ΔRND-4 strain was tested in the agar spot assay.  

Antibacterial activity of OTAP-92 

It has been demonstrated already that OTAP-92 is an antibacterial peptide derived from 

ovotransferrin. Ovotransferrin antibacterial peptide (OTAP-92) was generated by specific 

cleavage at aspartyl residues in a diluted acid procedure and chromatographically purified as 

described earlier (Ibrahim et al., 2000). Briefly, the hydrolysate was injected into a fast-protein 

liquid chromatography system (BioLogic LP; Bio-Rad, Tokyo, Japan), with a prepacked 

Sephadex G-50 column, equilibrated and eluted with pyridine-acetate buffer (pH 5.5). The 

resultant fraction, containing the peptide, was subjected to reversed-phase HPLC, using 5C18-

AR-II column and a linear gradient elution of 1–50% acetonitrile over 100 min. Peptide elution 

was monitored at 215 nm. The peptide was vacuum-dried and resuspended in distilled water 

before analysis. The identity of OTAP-92 peptide was confirmed by MALDI–TOF–MS 

analysis (Voyager DE-PRO; PE-Applied Biosystems, Foster City, CA, USA) operated in 

positive ion mode. OTAP-92 was dissolved in water to a final concentration of 450 µg/ml and 

used in the agar spot assay with the Salmonella Enteritidis wild type, ΔtolC, ΔtolC/pBBR1MCS-

2, ΔtolC/ptolC and ΔRND-4 strains.  
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Statistical analysis 

Data were analyzed with GraphPad Prism, version 5, using a Mann Whitney Test to compare 

the means of the log10 values between wild type, ΔtolC ΔtolC/pBBR1MCS-2, and ΔtolC/ptolC 

in the egg white survival assays.  

Results 

IVET selection in egg white at the chicken body temperature 

To search for gene promoters that are activated in egg white at the chicken body temperature 

and thus potentially involved in the survival of Salmonella Enteritidis in egg white, an IVET-

screening was performed. This experiment showed that promoters of 62 different genes (table 

3.3.2) were activated after contact with egg white at 42°C, but not under standard ‘in vitro’ 

culture conditions. One of the promoters identified was the promoter of the tolC gene, which 

encodes for an outer membrane channel that is part of the multidrug efflux pump systems.  

Table 3.3.2: Genes induced by egg white at 42°C 

Gene Group Gene name Gene product  

Metabolic genes 

 bcsB Cellulose biosynthesis protein subunit B 

 dedA/truA DedA protein (dsg-1 protein)/ tRNA pseudouridine synthase A 

 deoA thymidine phosphorylase 

 dnaX DNA polymerase III subunits gamma and tau 

 frr Ribosome recycling factor 

 gcl glyoxylate carboligase 

 glyS glycine-tRNA synthetase, beta subunit 

 gyrA DNA gyrase subunit A 

 hisH/hisB/hisC His operon 

 hypA hydrogenase nickel incorporation protein 
 hypf hydrogenase maturation protein 

 leuS leucyl-tRNA synthetase 

 manY phosphotransferase enzyme II, C component 

 mreB rod shape-determining protein 

 nuoC NADH dehydrogenase I chain C; chain D 

 plsC 1-acyl-glycerol-3-phosphate acyltransferase 

 prpC methylcitrate synthase 

 ptsA phosphoenolpyruvate-protein phosphotransferase 

 pyrG CTP synthase 

 rnr Ribonuclease R 

 rpoZ DNA-directed RNA polymerase omega chain 

 selA L-seryl-tRNA(Ser) selenium transferase 
 thiJ 4-methyl-5(b-hydroxyethyl)-thiazole monophosphate biosynthesis protein 

 ubiE Biquinone/menaquinone biosynthesis methyltransferase 

 ung Uracil-DNA glycosylase 

 yfcX/yfcY Putative fatty acid oxidation complex alpha subunit/putative 3-ketoacyl-CoA 

thiolase 

Regulatory genes 

 baeR putative two-component system response regulator 
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 malT MalT regulatory protein 

 SEN2865 Probable amino acid transporter protein 

 tolC Outer membrane protein TolC precursor 

 tsx Nucleoside-specific channel-forming protein tsx precursor 

 ttk Putative TetR-family transcriptional regulator 

Cell membrane 

 bigA putative surface-exposed virulence protein 

 hflK HflK protein 

 murA UDP-N-acetylglucosamine 
 rfaD ADP-L-Glycero-D-mannoheptose-6-epimerase 

Transport 
 caiT probable carnitine transporter 

 citA citrate-proton symporter 

 gltP proton glutamate symport protein 

 mtr probable amino acid permease 

 ybdA Hypothetical membrane protein p43 

 yejF Putative ABC-transporter ATP-binding protein 

 yhhJ Putative ABC-2 type superfamily transport protein  

 yicJ Sodium:galactoside family symporter 

fimbriae 
 fimA type-1 fimbrial protein, a chain precursor 

Motility 

 fliG flagellar motor switch protein 

 motA/motB motility protein A/motility protein B 

Stress 
 yrfI Heat shock protein 

Pathogenicity islands 

 mgtC Mg(2+) transport ATPase protein C 

Plasmid related  
 parA Plasmid partition protein A 

 ppdB/ppdA prepilin peptidase dependent protein B/A precursor 

Unknown function 

 elaB conserved hypothetical protein 

 rmbA conserved hypothetical protein 

 yadQ/yadR Putative membrane protein/conserved hypothetical protein 

 ycbB Putative exported protein 

 ycbL Conserved hypothetical protein 

 yegU Putative hydrolase 

 ygdI Possible lipoprotein 

 ygdL Conserved hypothetical protein 

 yhcK Putative GntR-family transcriptional regulator 

 yihW Putative DeoR-family transcriptional regulator 

 yraL Conserved hypothetical protein 

tolC promoter expression is increased after contact with egg white.  

To confirm the activation of the promoter of the  tolC gene in egg white, a luminescence 

measurement of the Salmonella Enteritidis 147str tolC-luxCDABE strain was performed. This 

clearly showed that egg white indeed functions as a trigger for activation of the tolC promoter. 

The tolC promoter became activated almost immediately after contact with egg white. Maximal 

expression was reached after 1 h and decreased substantially from that moment until control 

levels (sodium phosphate buffer; 0.1 M; pH8) were reached at 10 h of incubation. Reported 

values represent 1 experiment, but replicas displayed similar results (Figure 3.3.1). 
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Figure 3.3.1: Luminescence measurement of Salmonella Enteritidis 147str tolC-luxCDABE in egg white 

(spheres) and sodium phosphate buffer (squares) at 37°C. The result represents the value of one of three 

independent experiments which each showed the same trend.   

 

A Salmonella Enteritidis tolC deletion mutant is no longer capable of surviving in egg white  

To study the role of the Salmonella Enteritidis tolC gene in survival in egg white, a deletion 

mutant and its complement were constructed and incubated for 24 hours in sterile stirred egg 

white at 42°C. Bacterial cell counts of the Salmonella Enteritidis 147str ΔtolC and 

ΔtolC/pBBR1MCS-2 were significantly decreased when compared to the bacterial cell counts 

of the wild type strain. The wild type phenotype was restored by complementation of the tolC 

gene, as the ΔtolC/pΔtolC strain exhibited a similar survival potential to that of the wild type 

strain (Figure 3.3.2A). These data indicate that a tolC deletion strain is much more sensitive to 

the antimicrobial action of egg white and show the importance of TolC for survival of 

Salmonella Enteritidis in egg white at 42°C. These data were also confirmed by the agar spot 

assay as a clear growth inhibition zone was detected at the zones where the egg white was 

spotted on a confluent layer of the Salmonella Enteritidis 147str ΔtolC strain, but not for the 

wild type or complemented strain (Figure 3.3.2B).  
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Ovotransferrin is the egg white antibacterial component that is antibacterial for a tolC 

deletion strain 

To identify the egg white component with antimicrobial activity  against a tolC deletion strain, 

chromatographic separation of egg white proteins was performed. Following cation exchange 

and size exclusion chromatography, testing of fractions in agar spot assays and analyzing the 

composition of the antibacterial fractions, two egg white proteins (ovalbumin and 

ovotransferrin) were identified using MALDI-TOF. Both proteins (Sigma-Aldrich) were used 

in the agar spot assay at different concentrations. After overnight incubation at 42°C a clear 

growth inhibition zone was observed at spots where ovotransferrin was spotted on the plate 

streaked with the tolC deletion strain, from a concentration of 10mg/ml onwards, while 

ovalbumin had no antibacterial activity. As for egg white, the phenotype was completely 

restored in the complemented mutant. Because the concentration of ovotransferrin in egg white 

is estimated to be 20mg/ml (Sellier et al., 2007),and because this concentration gave a clear 

inhibition zone in the agar spot assay against the tolC deletion strain, this concentration was 

used in all further experiments (Figure 4 (see 3.6)).  

tolC promoter expression is increased after contact with ovotransferrin 

To evaluate whether ovotransferrin was responsible for the increase in tolC promoter activation  

when Salmonella was incubated in egg white, tolC promoter activation was measured after 
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Figure 3.3.2: Survival of Salmonella Enteritidis wild type, ΔtolC and strain Δtol/ptolC at 42°C in egg 

white. A) The results represent the means of four independent experiments conducted in triplicate ± 

standard errors of the mean. * P < 0.05 of mutant compared to wild type or complement. B) 

Inhibition of ΔtolC due to egg white drops in the agar spot assay. 
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contact with ovotransferrin using the Salmonella Enteritidis tolC-luxCDABE strain. As shown 

in figure 1B, 20 mg/ml ovotransferrin induced tolC promoter activity immediately after contact 

with ovotransferrin. As these results are similar to those observed in egg white we could 

postulate that ovotransferrin is (one of) the egg white component(s) inducing tolC promoter 

activation in egg white. Reported values represent 1 experiment, but replicas displayed similar 

results (Figure 3.3.3)  

 

Figure 3.3.3: Luminescence measurement of Salmonella Enteritidis 147str tolC-luxCDABE in 

ovotransferrin (spheres) and sodium phosphate buffer (squares) at 37°C. The result represents the value of 

one of three independent experiments which each showed the same trend.   

 

Ovotransferrin inhibits tolC and RND deletion mutants by restriction of iron 

Ovotransferrin is an iron chelator binding free iron and thus limiting bacterial cell growth. To 

investigate the role of iron deprivation in inhibition of a tolC mutant by ovotransferrin, an agar 

spot assay in the absence or presence of different iron concentrations was performed. For this 

purpose ovotransferrin was dissolved in low phosphate medium as phosphate may precipitate 

iron and thus interfere with the results (Orchard et al., 2012). The tolC mutant was capable of 

growing in the ovotransferrin drops once ovotransferrin was completely saturated by iron and 

excess free iron was present, indicating that ovotransferrin mediates Salmonella Enteritidis 

tolC inhibition through iron restriction (Figure 3.3.4).  

5 10 15 20 25

-0.1

0.0

0.1

0.2

0.3

time (h)

re
la

ti
v
e
 l

u
m

in
e
s
c
e
n

c
e



Chapter 3.3 

 

115 

 

  

Figure 3.3.4: inhibition of Salmonella Enteritidis wild type, ΔtolC and strain Δtol/ptolC by A) 

ovotransferrin without FeCl3 B) ovotransferrin with 2.4 µM FeCl3 C) ovotransferrin with 500 µM FeCl3 

and D) ovotransferrin with 1000 µM FeCl3. 

 

Also the ΔRND-4 was tested in this assay. Although the mutant was inhibited by ovotransferrin 

in the absence of iron or in the presence of a minimal amount, the ΔRND-4 strain could grow 

once iron concentrations were high enough to saturate ovotransferrin (data not shown).  

Survival in OTAP-92 

Although the best known antimicrobial function of ovotransferrin is the restriction of iron, also 

other antibacterial activities have already been demonstrated. It has been shown previously that 

ovotransferrin derived antimicrobial peptide OTAP-92 is capable of killing an Escherichia coli 

and a Staphylococcus aureus strain (Ibrahim et al., 1998). Nevertheless, OTAP-92 was not 

capable of inhibiting the Salmonella Enteritidis tolC deletion strains, nor was it able to suppress 

growth of the multidrug resistance pump mutant ΔRND-4 in an agar spot assay (data not 

shown).  

Discussion 

The outer membrane channel TolC is involved in egg white survival of Salmonella Enteritidis 

and counteracts ovotransferrin-mediated iron depletion. In the current study we demonstrated 

that the tolC promoter is activated after contact with egg white and that a tolC deletion strain is 

impaired for its survival in egg white. Additionally, chromatographic separation of egg white 

revealed that ovotransferrin was the responsible antimicrobial agent activating the tolC 

promoter and inhibiting a tolC deletion strain, based on its iron sequestering capacities. 
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Ovotransferrin is the second major egg white protein as it accounts for about 13% of the total 

protein content (Guerin-Dubiard et al., 2005). The protein consists of 2 similarly sized 

homologous lobes (N and C) each consisting of two subdomains with an inter-subdomain cleft 

capable of binding one Fe3+ ion together with two CO3
2- or HCO3

- ions (Ibrahim et al., 1998). 

Consequently, each ovotransferrin molecule is capable of binding two iron ions limiting the 

amount of free iron present in egg white and thus inhibiting bacterial growth. Iron chelating 

antimicrobial activities of ovotransferrin have been demonstrated against a variety of bacteria, 

including Salmonella Enteritidis (Chart and Rowe, 1993). Baron et al. (1997) showed that iron 

deficiency, resulting from iron binding to ovotransferrin, was the major mechanism implicated 

in the inhibition of the growth of Salmonella Enteritidis in egg white. Additionally, Chart and 

Rowe (1993) demonstrated a delay in growth rate of Salmonella Enteritidis when incubated in 

TSB with ovotransferrin in comparison to non-supplemented medium. The authors attributed 

the delay in growth rate to the adaptations necessary for growth in an iron restricted 

environment. It has been shown that in response to iron deficiency, Salmonella enterica secretes 

a variety of powerful and selective iron chelators, called siderophores. In Salmonella 2 

catecholate siderophores, enterobactin and its C-glycosylated derivate salmochelin are 

produced in response to iron limitation. Enterobactin is secreted through the inner membrane 

by both EntS and IroC, whereas salmochelin can only be exported by iroC (Crouch et al., 2008). 

While the outer membrane transporter for salmochelin still needs to be identified, Bleuel et al. 

(Bleuel et al., 2005) suggested that the TolC outer membrane channel is necessary for transport 

of enterobactin in E. coli. In the latter study, no enterobactin could be found in the supernatant 

of a tolC deletion strain. Additionally, the growth of tolC deletion strain was inhibited in the 

presence of the iron chelator 2,2’-dipyridyl. It seems plausible that under iron limiting 

conditions caused by ovotransferrin, a Salmonella Enteritidis tolC mutant could have 

difficulties to obtain iron and thus maintain growth. Bleuel et al. (Bleuel et al., 2005) also 

suggested a role of the resistance nodulation cell division (RND) pumps in enterobactin export 

from the periplasm to the surrounding environment of E.coli. Nevertheless, they could not 

provide evidence for the role of one single transporter in this process in E. coli. Here we show 

that a Salmonella Enteritidis strain lacking the 4 TolC-dependent RND-pumps is inhibited by 

ovotransferrin and that the phenotype is restored in the presence of an excess of iron, saturating 

the ovotransferrin. This points to a role of TolC dependent siderophores in egg white survival.  

Multidrug efflux pumps have also been shown to be involved in exporting antibacterial peptides 

from host environments and efflux of these compounds could be an additional mechanism of 
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TolC dependent survival in egg white, in synergy with counteracting iron-depletion. All 9 

multidrug efflux pumps of Salmonella have been implicated in drug resistance (Nishino et al., 

2006), but the efflux of antibiotics from the bacterial cell is most likely a side-effect of their 

physiological role (Piddock, 2006). It has been shown that efflux pumps export bile salts (Elkins 

and Mullis, 2006), steroid hormones (Thanassi et al., 1997) and other host derived antimicrobial 

agents in order to allow the bacteria to survive in a certain ecological niche. For example, the 

Mtr efflux pump of Neisseria gonorrhoeae and meningitidis modulates susceptibility to several 

antimicrobial peptides, including protegin-1 and human cathelicidin peptide LL-37 (Shafer et 

al., 1998, Tzeng et al., 2005). Bengoechea and Skurnik (Bengoechea and Skurnik, 2000) 

demonstrated that a Yersinia enterocolitica efflux pump/potassium antiporter mutant is more 

sensitive to the cationic antimicrobial peptides polymyxin B, cecropin P1 and melittin. In 

addition, a mexAB-oprM mutant of Pseudomonas aeruginosa is unable to develop tolerance 

against colistin (polymyxin E) in biofilms (Pamp et al., 2008). Also the acrB efflux pump 

mutant of Klebsiella pneumoniae is more susceptible to polymyxin B and human 

bronchoalveolar lavage fluid and its antimicrobial peptides (NHP-1, HBD-1 and HBD-2) 

(Padilla et al., 2010). Finally, Delgado et al (Delgado et al., 2005) demonstrated the importance 

of the E. coli TolC outer membrane channel in the resistance to exogenous microcin J25, an 

antibacterial peptide active against E.coli, Salmonella and Shigella. Considering the role of 

multidrug efflux pumps and the TolC outer membrane channel in antimicrobial peptide efflux 

it was thus tempting to speculate that these pumps might be involved in the efflux of 

ovotransferrin derived antimicrobial peptides. Ibrahim et al. (2006) demonstrated that 

ovotransferrin undergoes autocleavage at high pH as a consequence of thiol-based reduction, 

with the possible release of functional domains, such as a kringle between residues 115-211 

and 454-544. Due to the  high pH and maintenance of a thiol-linked steady reducing state, it 

could be hypothesized that autocleavage of ovotransferrin occurs within egg white, with release 

of antimicrobial peptides. Ibrahim et al. (Ibrahim et al., 1998) also identified an ovotransferrin 

derived bacterial peptide named OTAP-92 by cleaving ovotransferrin by diluted-acid 

hydrolysis. OTAP-92 consists of 92 residues located within the 108-200 sequence of the N-

lobe of ovotransferrin. It has been shown that OTAP-92 is capable of killing gram negative 

bacteria by crossing the outer membrane and damaging the biological function of the 

cytoplasmic membrane (Ibrahim et al., 2000). Nevertheless, the agar spot assay used in our 

study could not demonstrate any activity of OTAP-92 against the Salmonella Enterititis tolC or 

RND-4 deletion strains. It cannot be ruled out that other peptides derived from ovotransferrin 

might exhibit an antimicrobial function against these mutants. While egg white had a 
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bactericidal activity against the  Salmonella Enteritidis tolC deletion strain, the iron depletion 

effect caused by ovotransferrin is bacteriostatic rather than bactericidal. Therefore it could be 

hypothesized that a synergistic mechanism of ovotransferrin together with other egg white 

proteins must exist to induce the lethal effects of egg white on a tolC mutant. For example, 

synergistic effects of  lactoferrin and lysozyme have already been shown against Salmonella 

Typhimurium and E. coli (Ellison and Giehl, 1991). The identification of egg white proteins 

which mediate killing of a tolC deletion strain after contact with egg white, in synergy with 

ovotransferrin, requires further studies.  

Conclusion 

In summary, we provide evidence that the outer membrane channel TolC is necessary for the 

survival of Salmonella Enteritidis in egg white, most likely related to the function of RND 

multidrug efflux pump systems. We also demonstrate that TolC protects against ovotransferrin-

mediated iron depletion, presumably due to siderophore secretion.  
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A genome-wide screen identifies Salmonella Enteritidis LPS 

biosynthesis and the HtrA heat shock protein as crucial factors 

involved in egg white persistence at the chicken body 

temperature 

Abstract 

Eggs contaminated with Salmonella Enteritidis are an important source of human foodborne 

Salmonella infections. Salmonella Enteritidis is able to contaminate egg white during formation 

of the egg within the chicken oviduct and it has developed strategies to withstand the 

antimicrobial properties of egg white in order to survive in this hostile environment. The 

mechanisms involved in the persistence of Salmonella Enteritidis in egg white are likely to be 

complex. To address this issue, a microarray-based transposon library screen was performed to 

identify genes necessary for survival of Salmonella Enteritidis in egg white at chicken body 

temperature. The majority of identified genes belonged to the lipopolysaccharide (LPS) 

biosynthesis pathway. Additionally, we provide evidence that the serine protease/heat shock 

protein (HtrA) appears essential for the survival of Salmonella Enteritidis in egg white at 

chicken body temperature. 
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Introduction  

Salmonellosis is one of the most important foodborne threats to human health worldwide, with 

eggs and egg products being the main food vehicle for Salmonella Enteritidis (EFSA, 2012, 

Braden, 2006). Contamination of eggs with Salmonella Enteritidis most likely occurs in the 

reproductive tract during egg formation (Gantois et al., 2009a, Gast and Holt, 2000a, Keller et 

al., 1995). Whilst the serotype Typhimurium has also been shown to contaminate eggs during 

their formation in the reproductive tract, it is almost exclusively Salmonella Enteritidis strains 

that are found in eggs post lay (Keller et al., 1997). The prime contamination site for Salmonella 

Enteritidis in the eggs of naturally infected hens is the egg white (Humphrey et al., 1991b), a 

matrix equipped with multiple antimicrobial substances to prevent bacterial contamination. 

Although the survival of Salmonella Enteritidis in egg white is superior to other serotypes 

(Gantois et al., 2008b, Clavijo et al., 2006, De Vylder et al., 2013), the strategy used by this 

serotype to do so remains unclear. Nevertheless, several studies have been performed to identify 

Salmonella Enteritidis genes involved in this process. Genes that are expressed in whole eggs 

at room temperature have been identified using an ‘in vivo’ expression technology screening. 

This study showed transcriptional activation of the lipopolysaccharide (LPS) biosynthesis gene 

rfbH in whole eggs and demonstrated that a rfbH deletion mutant was growth restricted in egg 

white at room temperature, while growth in yolk was not affected (Gantois et al., 2009b). Lu et 

al. (Lu et al., 2003) demonstrated that DNA repair enzymes (YafD and XthA) are necessary for 

the survival of Salmonella Enteritidis in egg white at 37°C. Mutants that were more susceptible 

to egg white at 37°C were identified using a transposon mutant library (Clavijo et al., 2006). 

The majority of the mutants identified were in genes involved in cell wall structure and function 

or nucleic or amino acid metabolism. While survival at room temperature is of importance 

because of the storage conditions of eggs (refrigerator or room temperature), studies at 37°C 

are not practically relevant, because the chicken body temperature is 42°C. Data regarding 

survival strategies of Salmonella Enteritidis in egg white at 42°C are limited. Only recently, 

Coward et al. (2013) demonstrated the involvement of both long and very long LPS O-antigen 

chains. Identification of genes involved in egg white survival at chicken body temperature may 

contribute significantly to the understanding of the behavior of Salmonella Enteritidis in the 

albumen of forming eggs. For this reason, a genome-wide screen, using a microarray-based 

tracking strategy, identifying genes necessary for survival of Salmonella Enteritidis in egg 

white at chicken body temperature, was performed. In addition, two of the identified genes (rfaI 

and htrA) were deleted to confirm the phenotype in egg white survival assays.   
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Materials and methods 

Bacterial strains and growth conditions  

An isogenic streptomycin resistant variant of the Salmonella Enteritidis 147 strain (147str), 

originally isolated from egg content, was used (Methner et al., 1995). Bacteria were cultured 

aerobically at 37°C in Luria-Bertani broth (LB) (Sigma-Aldrich, St Louis, MO, USA) with 

agitation. When required, media were supplemented with antibiotics (Sigma-Aldrich, St Louis, 

MO, USA).  

Construction of transposon insertion library  

A Salmonella Enteritidis 147str transposon insertion library was constructed according to the 

method previously described (Badarinarayana et al., 2001, Lawley et al., 2006, Chan et al., 

2005). In a first step, the pJA1 plasmid was transferred to the Escherichia coli (E. coli) SM10 

λpir strain by electroporation and maintained under ampicillin (100 µg/ml) selective pressure. 

The pJA1 suicide vector contains IS10 inverted repeats flanking a kanamycin resistance cassette 

with an adjacent, outward-directed T7 transcriptional promoter. In addition the plasmid harbors 

a mini-Tn10 transposase under control of an isopropyl-β-D-thiogalactopyranoside (IPTG)-

inducible LacIq/Ptac promoter and a RP4 mob region for conjugation. A standard overnight 

conjugation reaction, in the presence of IPTG (Sigma-Aldrich, St Louis, MO, USA) but without 

antibiotics, was performed between the E. coli SM10 λpir and the Salmonella Enteritidis 147str 

strain. Under influence of IPTG the transposable element, containing a kanamycin resistance 

gene and T7 promoter, was excised from the pJA1 plasmid and integrated randomly into the 

genome of Salmonella Enteritidis 147str. The next day, all colonies were scraped from the plate 

into 10mM MgSO4 (Sigma-Aldrich, St Louis, MO, USA), and dilutions were plated onto LB 

agar plates containing 200 µg/ml streptomycin and 30 µg/ml kanamycin to select for 

successfully transposed Salmonella Enteritidis 147str mutants. About 50,000 mutants, all 

harboring an insertion of the transposable cassette at different positions in the genome, were 

collected and stored in 15% glycerol (Sigma-Aldrich, St Louis, MO, USA) solution at -80°C. 

Negative selection of transposon insertion library in egg white  

Shells of freshly laid eggs were rinsed in lugol solution (Sigma-Aldrich, St Louis, MO, USA), 

and decontaminated by immersion in disolol (Chem-Lab, Zedelgem, Belgium). Egg albumen 
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was aseptically separated from egg yolk, collected in a sterile receptacle recipient and mixed 

for 5 min using a magnetic stirrer. The transposon library, which had been growing for 7 hours 

at 37°C with agitation in LB broth supplemented with streptomycin (200 µg/ml) and kanamycin 

(30 µg/ml), was centrifuged and resuspended in Hanks Buffered Salt Solution (HBSS) (Life 

Technologies, Bleiswijk, The Netherlands). Bacterial cell counts were determined by serial 

dilutions on LB agar plates. The library was stored at 4°C until the next day and further diluted 

in HBSS to a concentration of 1 x 108 cfu/ml. 500 µl of the bacterial suspension was added to 

4.5 ml of egg albumen, to obtain a final concentration of approximately 1 x 107 cfu/ml egg 

albumen. Inoculated egg albumen was incubated at 42°C for 24 hours after which the surviving 

bacteria were recovered by addition of 45 ml LB broth and grown for 7 hours at 37°C with 

agitation. In this way, 5 independent experiments were performed.  

Microarray-based comparison of initial and egg white selected transposon library 

Genomic DNA (gDNA) of the input library (grown for 7 hours at 37°C in LB broth with 

streptomycin) and the egg white selected bacterial pool (output library) was isolated by phenol-

chloroform extraction. The gDNA (10 µg) was digested with HinP1I ( New England Biolabs, 

Ipswich, MA, USA) and 2 µg was ligated to the Y-linkers described by Tavazoie and Church 

(Tavazoie and Church, 1998). A PCR, with a linker and transposon specific primer, was 

performed as described by Badarinarayana et al. (2001). One µg of PCR product was used in 

an in vitro transcription reaction using a T7 polymerase megascript kit (Ambion, Austin, Texas, 

USA), and thus transcribing the region adjacent to the T7 promoter. RNA was purified by 

lithium chloride precipitation and Cy5-labeled in a reverse transcription reaction with random 

hexamer primers and Klenow fragment. Labelled cDNA together with Cy3-labelled genomic 

DNA of the wild type Salmonella Enteritidis strain as a reference were hybridized on the 

SALSA microarray containing PCR fragments of all the ORFs of Typhimurium and Enteritidis. 

Two microarrays were hybridized for each biological replicate of the input or output library. 

Microarray slides were scanned on an axon 4000A scanner (Axon. Instruments, Foster City, 

CA, USA). Spots showing a reference signal lower than the background plus 2 standard 

deviations or obvious blemishes were excluded from subsequent analysis. Local background 

was subtracted from spot signals and fluorescence ratios were calculated using GenePix version 

1.4 software (Agilent, Santa Clara, CA, USA). To compensate for unequal dye incorporation 

or any effect of the amount of template, data centering was performed by bringing the median 

natural logarithm of the ratios for each group of spots printed by the same pin to zero. Data that 
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passed the quality controls were analyzed using Genespring version GX7.3 software (Agilent, 

Santa Clara, CA, USA). Signal values of the output library were normalized against those of 

the input library and used to identify mutants for which the gene value had at least a 2-fold 

decrease (fold difference < 0,5) after egg white selection compared to the input library grown 

in LB. Significance of the centered data at p ≤ 0,05 was determined using a parametric-based 

statistical test adjusting the individual p-value with the Benjamini and Hochberg false discovery 

rate multiple test correction. Microarray protocols were performed as previously described 

(Hautefort et al., 2008) and are shown in detail at 

http://www.ifr.ac.uk/safety/microarrays/protocols.html) 

Construction of deletion mutants  

Deletion mutants of the rfaI and htrA genes were constructed in the Salmonella Enteritidis 147str 

strain using the one-step inactivation method of Datsenko and Wanner (2000). A kanamycin 

resistance cassette, flanked by FRT-sites, was amplified from the pKD4 helper plasmid using 

P-primers (Table 3.4.1) that had a 50bp extension at the 5’ side of the pKD4 specific primers, 

homologous with the flanking region of the target gene. The resulting PCR product was used 

for recombination on the Salmonella Enteritidis 147str chromosome using the pKD20 helper 

plasmid encoding the λ Red system, promoting recombination between the native and PCR 

adjusted antibiotic resistance cassette. Recombinant clones were selected on kanamycin 

containing plates and replacement of the target gene by the resistance cassette was confirmed 

by PCR. The htrA deletion was P22-transduced into a new 147str background (Gemski and 

Stocker, 1967).  This step was not performed for the rfaI mutant as this deletion mutant was no 

longer P22 sensitive. Later, the antibiotic resistance cassette was eliminated using the pCP20 

helper plasmid, encoding the FLP-recombinase mediating recombination between the FRT-

sites flanking the kanamycin resistance cassette. Finally, PCR and sequence analysis was 

performed to confirm complete gene deletion of the genes from start to stop codon without the 

occurrence of any polar events.  

Table 3.4.1: Primers used to create deletion mutants 

Primer Sequence 

rfaI-P1 5‘-TTCAGCTATTTCTATCTCAGGAAATGAATCCATTACATCACCTATGGGTTTGTGTAGGCTGGAGCTGCTTC-3 

rfaI-P2 5‘-TTTAAAAATTTTAATAATGCAATATTCTCGAAATTACAAAAGTGATCACTCATATGAATATCCTCCTTAG-3‘ 

htrA-P1 5‘-TCTGACGTACACAGCAATTTTGCGTTACCTGTTAATCGAGATTGAAACACTGTGTAGGCTGGAGCTGCTTC-

3‘ 

htrA-P2 5‘-TTCACAGAAAAGTGTTGCCCCCTTCCGTGGTGGAAGGGGGACAAAGGTGACATATGAATATCCTCCTTAG-

3‘ 

http://www.ifr.ac.uk/safety/microarrays/protocols.html
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Survival in egg white at 42°C  

To compare the egg white survival potential of the mutants with that of the wild type, all strains 

were grown overnight in the presence of streptomycin (100 µg/ml). Cultures were centrifuged 

for 10 min at 4000 rpm and bacterial pellets were resuspended in HBSS. Bacterial cell counts 

were determined by plating 10-fold serial dilutions onto LB agar plates. Cultures were stored 

at 4°C until the next day when they were diluted to 106 cfu/ml. Subsequently, 50 µl of these 

cultures were mixed with 450 µl egg white, prepared as previously described (De Vylder et al., 

2013). Suspensions were incubated for 24 hours at 42°C, where after 200 µl was plated on 

streptomycin (100 µg/ml) containing agar plates. Plating is necessary to obtain quantitative data 

on bacterial cell numbers. Three independent experiments were performed, with three repeats 

per experiment. Additionally, growth of the wild type and mutants in tryptic soy broth (TSB) 

(Oxoid, Basingstoke, UK) was evaluated at 37 and 42°C. On cultures were diluted to 105 cfu/ml 

and bacterial concentrations were determined by OD550 measurement and by serial dilutions on 

LB agar plates at different time points.  

Results 

Genes important for egg white survival identified by microarray-based negative selection 

strategy 

A transposon insertion library, comprising approximately 50,000 mutants, was used to identify 

Salmonella Enteritidis genes that are essential for the survival in egg white at 42°C. Mutants 

with a disruption in a gene necessary for egg white survival at 42°C can no longer survive in 

this environment and thus these genes will show reduced representation in the egg white 

selected bacterial pool as compared to the initial transposon library that was used for egg white 

inoculation. When comparing the egg-white selected transposon library with the initial library, 

23 genes were reduced significantly with at least a 2-fold (fold difference < 0.5) (Table 3.4.2). 

Sixteen of these genes are involved in LPS biosynthesis, including 11 genes of the rfb locus. 

This in addition to a penicillin binding protein (ampH), a biotin synthase (bioB), a DNA-binding 

transcriptional regulator involved in sugar metabolism (fruR), a protease Do precursor/heat 

shock protein (HtrA) and a Salmonella Enteritidis specific gene (SEN1974b) which is part of 

the region of difference (ROD) 21 cluster and only present in the genome of Salmonella 

Enteritidis and Salmonella Gallinarum but not Salmonella Typhimurium (Thomson et al., 2008). 
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Finally, two plasmid encoded genes (pSENV traK/pSELA5 traE and 

pSENV_080/SELA5_p0075/Vet gene) were picked up.  

Table 3.4.2: Overview of transposon inserted mutants that are defective in egg white survival after 24h at 

42°C. 

Gene name Function 
Fold difference (p-

value) 

rfbA Glucose-1-phosphate thymidylyltransferase 0.266 (1.93E-04) 

rfbB dTDP-glucose 4,6 dehydratase 0.255 (1.61E-05) 

rfbC dTDP-4, deoxyrhamnose 3,5 epimerase 0.130 (2.29E-05) 

rfbD Putative RBS for rfbD 0.332 (2.32E-04) 

rfbF Glucose-1-phosphate cytidylyltransferase 0.109 (2.14E-03) 

rfbI CDP-6-deoxy-delta 3,4 glucoseen reductase 0.371 (1.34E-04) 

rfbK Phosphomannomutase 0.189 (5.27E-05) 

rfbM Mannose-1-phosphate guanylyltransferase 0.276 (2.14E-03) 

rfbN Rhamnosyl transferase 0.171(1.63E-05) 

rfbP Undecaprenol-phosphate 0.365 (7.28E-03) 

rfbU Mannosyl transferase 0.200 (3.51E-04) 

rfaI Lipopolysaccharide 1,3 -galactosyltransferase 0.244 (8.40E-04) 

rfaJ Lipopolysaccharide 1,2-glucosyltransferase 0.232 (2.63E-04) 

rfaL O-antigen ligase 0.487 (3.01E-03) 

rfe Undecaprenyl-phosphate N-acetylglycosaminyltransferase 0.299 (9.48E-04) 

rfc Putative O-antigen polymerase  0.460 (5.08E-05) 

ampH Penicillin binding protein 0.223 (2.79E-06) 

bioB Biotin synthase  0.419 (8.53E-04) 

htrA Putative periplasmic serine protease Do 0.341 (1.57E-03) 

fruR Fructose repressor  0.461 (2.16E-02) 

pSENV_080 Putative DNA polymerase III epsilon subunit 0.440 (5.76E-04) 

traK Putative conjugative transfer 0.473 (2.96E-03) 

PT4-0182 Unknown function 0.474 (2.46E-03) 

Survival of rfaI and htrA mutants in egg white at chicken body temperature  

To confirm the role of a selection of genes in the survival of Salmonella Enteritidis in egg white, 

deletion mutants were constructed and evaluated for their potential to survive in egg white. In 

this study we chose to study LPS involvement by deletion of the rfaI gene, as the enzyme it 

encodes (lipopolysaccharides 1,3 galactosyltransferase) catalyzes an early step in LPS 

biosynthesis. Consequently, rfaI mutants most likely harbor a defective outer core and O-

antigen structure. Additionally, we also studied the role of the serine protease/heat shock protein 

gene htrA. Deletion mutants in these 2 genes were constructed. The mutants and the wild type 

strain were incubated for 24 hours at 42°C in egg white after which the remaining bacterial cell 

counts were determined. It was found that bacterial cell counts/ml for the wild type strain 

dropped from approximately log 5 to log 2.35 whilst neither of the two mutant strains could be 

recovered from egg white after the incubation period and this with a detection limit of 5 cfu/ml. 

In addition, none of the mutants exhibited a growth defect in TSB at 37 nor at 42°C (data not 

shown). The data thus show that both the rfaI and htrA genes are essential for the survival of 
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Salmonella Enteritidis in egg white at the chicken body temperature, and confirm the data from 

the microarray-based negative selection screening. 

Discussion  

For many years Salmonella Enteritidis has been the most predominant serotype linked to egg-

borne cases of human salmonellosis (Braden, 2006, EFSA, 2012). In principle, eggs can be 

contaminated with Salmonella Enteritidis on the outer shell surface or internally. Internal 

contamination can result from penetration through the eggshell (Messens, 2005, De Reu et al., 

2006) or by colonization of the reproductive tract, with subsequent incorporation into the 

forming egg (Keller et al., 1995, Miyamoto et al., 1997, Okamura et al., 2001a). In comparison 

to outer shell contamination and membrane penetration, high-level reproductive tract 

colonization seems to be a trait more or less specific for the serotype Enteritidis. Salmonella 

Typhimurium is also capable of colonizing the reproductive tract and contaminating eggs 

during their formation (Keller et al., 1997), but this serotype is rarely found in eggs post lay. It 

has been suggested that Salmonella Enteritidis migrates into the chicken egg through the upper 

oviduct in association with the egg white (Gast and Beard, 1990b, Hoop and Pospischil, 1993, 

Cogan et al., 2004, Keller et al., 1995), containing many antimicrobial components. 

Consequently, it could be hypothesized that Salmonella Enteritidis developed the potential to 

withstand the antibacterial activities of egg white better than Salmonella Typhimurium at the 

chicken body temperature. The validity of this hypothesis has recently been supported by in 

vitro experiments (De Vylder et al., 2013). However, until now the exact mechanisms exploited 

by Salmonella Enteritidis to cope with this hostile antimicrobial environment at chicken body 

temperature are still not completely understood. In the present study, 23 genes with a potential 

role in egg albumen resistance at 42°C were identified (Table 2) using a genome-wide 

microarray-based transposon insertion library screening. Sixteen of these genes are involved in 

biosynthesis of the outer core or O-antigen part of the outer membrane lipopolysaccharide 

structure. It has been demonstrated that the amount of O-antigen polysaccharide is doubled in 

a virulent Salmonella Enteritidis strain, compared to an avirulent isolate (Rahman et al., 1997). 

LPS biosynthesis genes were also identified in previous studies searching for Salmonella 

Enteritidis genes needed for egg white survival at room temperature (Gantois et al., 2009b) or 

at 37°C (Clavijo et al., 2006). Coward et al. (2013) have recently shown that the lack of a very-

long O-antigen chain diminishes the ovary and oviduct colonization capacities of a Salmonella 

Enteritidis strain leading to Salmonella Enteritidis free eggs. These authors also demonstrated 
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that the lack of long and very long O-antigen side chains severely diminished the potential of 

Salmonella Enteritidis to survive in egg white at the chicken body temperature. Additionally, it 

has been shown that Salmonella Enteritidis strains isolated from eggs are characterized by their 

ability to produce high molecular weight LPS structures (HMW LPS) (Guard-Petter et al., 

1997). In contrast to Salmonella Enteritidis, Salmonella Typhimurium is less able to produce 

these HMW LPS structures (Guard-Bouldin et al., 2004). Consequently, it could be 

hypothesized that the production of HMW LPS increases the resistance of Salmonella 

Enteritidis to egg white antimicrobial factors. This could explain why, although both serotypes 

are found in the forming egg of infected hens during passage of the egg through the oviduct, 

mostly the serotype Enteritidis is detected in eggs post lay (Keller et al., 1997). LPS acts as a 

first line bacterial defense mechanism and is able to protect bacteria against harmful substances 

such as lysozyme, which mediates peptidoglycan hydrolysis. It is clear that an aberrant LPS 

production enhances the accessibility of the cytoplasmic membrane for antimicrobial 

substances.  

In addition to LPS biosynthesis genes, our study shows that the protease Do precursor protein/ 

heat shock protein gene htrA, is essential for the survival of Salmonella Enteritidis in egg white 

at 42°C. HtrA is a stress-induced protein involved in the clearance of damaged and misfolded 

proteins in the periplasm. Protein misfolding results from exposure to a myriad of stresses such 

as high temperatures, extreme pH values, nutrient starvation and oxidative stress (Basnak'ian et 

al., 2001). HtrA possesses chaperone activity at low temperatures, while the protease activity 

takes over at high temperatures (Spiess et al., 1999). It is essential for the survival of E. coli at 

temperatures above 42°C (Lipinska et al., 1989) and in conditions of oxidative stress (Skorko-

Glonek et al., 1999). For the Salmonella Typhimurium htrA mutant growth was only inhibited 

once the temperature reached 46°C (Lewis et al., 2009), but the mutant was sensitive to 

oxidizing agents and was less able to survive within macrophages (Baumler et al., 1994, 

Johnson et al., 1991, Humphreys et al., 1999), resulting in a decreased virulence potential in 

mice (Humphreys et al., 1999, Chatfield et al., 1992). Exposure to the stressful environment of 

the hen’s egg white at the chicken body temperature of 42°C combined with a high pH and a 

nutrient shortage might cause accumulation of misfolded proteins in the periplasm of the htrA 

deletion mutant, which eventually may lead to bacterial cell death.  

This study also revealed the involvement of the ROD21 PT4-0182 gene, in the survival of 

Salmonella Enteritidis in egg white. As the ROD21 gene cluster is absent in the genome of 

Salmonella Typhimurium, it could be hypothesized that this island can facilitate the survival of 
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Salmonella Enteritidis in egg white. Several studies demonstrated that a Salmonella Enteritidis 

ROD21 mutant strain was less efficient in liver and spleen colonization of mice, compared to 

the wild type (Quiroz et al., 2011, Silva et al., 2012). A decreased spleen colonization of a 

Salmonella Enteritidis ROD21 mutant was also observed in adult laying hens, while no 

difference in ovary or oviduct colonization could be observed (Coward et al., 2012). The role 

of the PT4-0182 gene in egg white survival at 42°C of Salmonella Enteritids needs further 

investigation.  

Other genes identified in our transposon screening as being potentially important for egg white 

survival include bioB which encodes a biotin synthase. Biotin is an essential cofactor for various 

enzymes and is necessary both for the developing chicken embryo and for bacterial growth. In 

the egg white biotin is bound to a carrier proteins such as avidin to reduce its availability for 

bacterial growth (White et al., 1992). In response, bacteria have developed their own biotin 

synthesis pathway and it seems logical that a deficiency in biotin synthesis would reduce 

bacterial fitness in an environment with low free biotin levels. Another gene identified in the 

transposon screen was, fruR, a regulator of the central carbon metabolism. It was previously 

shown that deletion of fruR in Salmonella Typhimurium reduced its virulence potential in mice.  

The ampicillin binding protein, ampH, was also picked up in this screening. In E. coli, ampH 

is a low molecular-mass penicillin binding protein (PBP), probably involved in peptidoglycan 

remodeling and recycling (Gonzalez-Leiza et al., 2011). Although individual and combined 

low molecular weight PBP mutants of E.coli didn’t seem to experience any growth defect in 

rich laboratory medium (Denome et al., 1999), a firm peptidoglycan structure might be 

necessary for the survival of Salmonella Enteritidis in egg white.  

Finally, two virulence plasmid encoded proteins (pSENV traK/pSELA5 traE and 

pSENV_080/SELA5_p0075/Vet gene) were identified to be important for egg white survival at 

42°C. The function of these genes in egg white survival is difficult to predict. 

This study could not confirm the involvement of DNA damage repair systems (yafD and xthA) 

which were previously identified by Lu et al. as being essential for the survival of Salmonella 

Enteritidis in egg white at 37°C.  
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Conclusion 

In conclusion, we identified 23 genes with a potential function in the survival of Salmonella 

Enteritidis in egg white of which most are genes involved in LPS biosynthesis. Additionally, 

using in vitro egg white survival assays, we provide evidence for the role of the LPS 

biosynthesis gene rfaI and the protease/heat shock protein gene htrA in survival of Salmonella 

Enteritidis in egg white at chicken body temperature of 42°C. It could thus be hypothesized that 

LPS structures and stress induced proteins might be necessary for Salmonella Enteritidis to 

cope with the antimicrobial environment of the egg white at the chicken body temperature of 

42°C.  
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General discussion 

An increase in the number of human Salmonella Enteritidis cases due to contamination of 

chicken eggs and egg products has been observed since the mid 1980s as this serotype had 

acquired the ability to colonize the chicken reproductive tract, from where it could be easily 

incorporated into the forming egg (Rodrigue et al., 1990). It is generally accepted that 

Salmonella Enteritidis colonizes the chicken reproductive tract more efficiently than most other 

serotypes (Okamura et al., 2001a, Okamura et al., 2001b, Gantois et al., 2008b) and that the 

serotype Entertidis has developed an enhanced potential to survive in the highly antimicrobial 

egg white of the forming egg (Keller et al., 1997, De Vylder et al., 2013). Until now, the 

molecular mechanisms underlying the Salmonella Enteritidis conquest of the chicken 

reproductive tract and egg contamination are still unknown, and could be related to gene content 

changes. However, no significant consistent differences in gene content were observed between 

60-year-old and more recent Salmonella Enteritidis strains (Porwollik et al., 2005). 

Alternatively, it must be mentioned that the Salmonella Enteritidis pandemic was preceded by 

the endemic presence of the avian adapted Salmonella enterica serotype Gallinarum in poultry, 

until its eradication by the 1970s. Consequently, some authors have speculated that presence of 

Salmonella Gallinarum might have inhibited Salmonella Enteritidis colonization in poultry by 

competitive exclusion and cross-immunity, while Salmonella Gallinarum eradication from 

these animals led to the availability of this ecological niche for Salmonella Enteritidis (Rabsch 

et al., 2000). Even then, strains from this serotype must have some special characteristics 

making them superior in oviduct colonization and egg contamination.  

Salmonella Enteritidis bacteria have been detected immunohistochemically inside the tubular 

gland cells of the magnum and isthmus of laying hens after natural and experimental infection 

(Hoop and Pospischil, 1993, Keller et al., 1995, De Buck et al., 2003). It might be suggested 

that the bacteria reside intracellularly in the reproductive tract to escape the local defense 

mechanisms. As Salmonella Enteritidis is present intracellulary inside the tubular gland cells 

of the oviduct, it could be hypothesized that bacteria are transported out of these cells in 

association with their secretory granules. Association of Salmonella Enteritidis with these 

granular secretions would indicate a long term exposure of the bacteria to the antimicrobial 

content of these granules, and thus the antimicrobial egg white components. Although 

Salmonella Enteritidis is superior in tolerating this matrix at the chicken body temperature 

during a limited period of time, it appears to experience difficulties when the exposure time at 
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this high temperature is prolonged. This was demonstrated by Guan et al. (2006) as Salmonella 

Enteritidis organisms could no longer be detected in egg white after a 96 hours incubation. 

Additionally, confocal laser scanning microscopy could not demonstrate the presence of 

Salmonella Enteritidis inside these granules (Appia–Ayme personal communication). Finally, 

the temporal clustering with which Salmonella positive eggs are found suggests that Salmonella 

Enteritidis might sense some specific environmental cues which in turn induce their secretion 

and incorporation into the forming egg. It was suggested that stress might be of relevance in 

this process (Humphrey et al., 1989, Humphrey, 2006) and this in accordance with several 

observations: pre-treatment of chickens with the stress hormone norepinephrine before 

Salmonella Enteritidis challenge caused a dramatic increase in caecal colonization and systemic 

spread to the liver (Methner et al., 2008). Introduction of new young chickens and water and 

feed withdrawal resulted in a short term increased shedding in chickens which were previously 

infected with Salmonella Enteritidis (Nakamura et al., 1994). It was also demonstrated that feed 

removal to induce molting decreases the resistance of hens to Salmonella infection, resulting in 

an increased severity of infection, an increased intestinal shedding and a higher risk for 

Salmonella Enteritidis positive eggs during the first week after molting (Moore and Holt, 2006, 

Rostagno, 2009).  

Whatever the environmental conditions that stimulate Salmonella Enteritidis colonization of 

the oviduct and contamination of eggs, and whatever the route taken by the bacteria to end up 

inside the egg, it is clear that the chicken reproductive tract and the environment of the forming 

egg are both highly stressful for bacteria. This is due to the high chicken body temperature but 

also because of the presence of the local innate and adaptive immunity. In this work we aimed 

to elucidate the molecular mechanisms exploited by Salmonella Enteritidis to colonize the 

reproductive tract and to contaminate the forming egg.  

4.1 Colonization of the reproductive tract by 

genetic variance 

As Salmonella Enteritidis might reside intracellularly, it is not surprising that the transposon 

insertion library, used to identify genes necessary for persistence inside the reproductive tract 

pointed to the major determinants of Salmonella virulence, SPI1 and 2. Despite the fact that 

effectors of these islands are known to modulate the chicken immune response (Li et al., 2009, 

Ebers et al., 2009), these islands are probably not of specific importance to explain the superior 
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ability of Salmonella Enteritidis to colonize the reproductive tract as they are present in all 

virulent Salmonella serotypes.  

A comparison between the complete genome sequences of Salmonella Enteritidis and 

Typhimurium has led to the identification of genes which are present in the genome of 

Salmonella Enteritidis but that are absent or degenerated in the genome of Salmonella 

Typhimurium and vice versa. The majority of these specific coding sequences (CDS) is 

clustered and therefore referred to as regions of difference (ROD) (Thomson et al., 2008). 

Genes belonging to ROD9, 21 and 40, which are present in Salmonella Enteritidis but absent 

in Typhimurium, were identified during our transposon library screening (chapter 3.2) as genes 

that are likely to be necessary for or involved in the persistence inside the reproductive tract. 

Genes belonging to these islands are also found in Salmonella Gallinarum (Thomson et al., 

2008). Salmonella Gallinarum is a host adapted serotype causing fowl typhoid which is 

generally presented as a systemic disease with a high mortality rate. Infection with  Salmonella 

Gallinarum may occur through the fecal-oral route or by vertical transmission as a consequence 

of egg contamination, indicating that this serotype is also able to colonize the reproductive tract 

and to contaminate eggs (Uzzau et al., 2000). Additionally, it must be mentioned that the 

serotype Gallinarum is most likely a direct evolutionary descendant of Salmonella Enteritidis 

(Thomson et al., 2008). One way to explain how these serotypes developed the potential to 

colonize the reproductive tract could be by the presence of unique sets of genes. The identified 

RODs might interfere with the potential of the serovar Enteritidis to colonize the reproductive 

tract and eventually contaminate eggs. As the majority of the genes identified belonged to the 

ROD21 gene cluster, a complete deletion mutant of this island was constructed in Salmonella 

Enteritidis and used in an intravenous and intra-oviduct infection trial to compare the 

reproductive tract colonization potential of this mutant with that of the wild type strain. A 

colonization defect for the ROD21 mutant could not be observed (own unpublished data). 

Additionally, individual deletion mutants of five genomic islands present in Salmonella 

Enteritidis but absent in Typhimurium (ROD9, ROD13, ROD17, ϕSE20 and ROD21) were 

constructed by Coward et al. (2012) and used in a chicken ‘in vivo’ trial by oral inoculation. 

None of these islands seemed to be involved in colonization of the reproductive tract, while all 

mutants were less recovered from the spleen after 14 days of infection. Although no difference 

in reproductive tract colonization could be observed during these trials, it could be that 

redundancy exists between these gene clusters and that strains with multiple deletions are 

necessary to study the functions of these RODs in oviduct colonization.  
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Additionally, it is possible that small changes in gene sequences (SNPs) are responsible for the 

reproductive tract tropism and/or the ability to survive in egg albumen (Guard-Bouldin, 2006). 

The importance of SNPs was recently demonstrated by Van Immerseel et al. (2013), as a few 

single-base-pair substitutions made the difference between the Salmonella Gallinarum SG9R 

vaccine and a systemic disease causing field strain. Additionally; pathogenicity might be altered 

as a consequence of gene deletion or a loss of gene function. For example, the genome sequence 

of Salmonella Enteritidis and Gallinarum are highly similar, though mutations in 5 of 50 

motility genes of Salmonella Gallinarum made the difference between a motile Salmonella 

Enteritidis strain and a non-motile Salmonella Gallinarum strain (Thomson et al., 2008). It is 

thus possible that mutations in genes exist that make the serotype Enteritidis more capable of 

colonizing the chicken reproductive tract and the egg. Ultimately, differences in gene 

expression profile between various Salmonella serotypes could lead to an enhanced interaction 

of Salmonella Enteritidis with the laying hen compared to other serotypes. Nevertheless, to our 

knowledge no information regarding the global gene expression in the reproductive tract or the 

forming egg are available for different Salmonella serotypes. 

4.2 Survival strategies in the reproductive tract 

and inside the forming egg  

During colonization of the reproductive tract and after contamination of the forming egg, 

Salmonella Enteritidis encounters an arsenal of environmental stresses, including oxidative and 

heat stress, DNA damaging mechanisms, nutrient starvation and numerous antimicrobial 

peptides. The genome wide IVET (chapter 3.1 and 3.3) and transposon library (chapter 3.2 and 

3.4) screening methods used in this thesis showed that Salmonella Enteritidis utilizes several 

survival strategies to protect itself from the harmful environment of the chicken reproductive 

tract and the forming egg white. Identified genes necessary for these survival mechanisms are 

discussed below. 

4.2.1 Protection against heat, oxidative stress and 

DNA damage 

The existence of peroxidase activity (Yoshimura et al., 2006) together with the presence of 

endo- and exo-nucleases (Lu et al., 2003) at the chicken body temperature of 42°C might pose 

a serious threat on Salmonella Enteritidis bacteria colonizing the oviduct tissue and 
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contaminating the forming egg. In order to survive in these environments Salmonella Enteritidis 

might activate several stress management responses.  

A previously performed IVET-screening identified the universal stress proteins (usp) A and B 

and the heat shock protein 33 (hsp33 or yrfI) as being highly expressed inside the reproductive 

tract and in forming eggs (Gantois et al., 2008a). The role for uspA and uspB in oviduct 

colonization and egg contamination was confirmed in this thesis (chapter 3.1), as promoters of 

both genes were activated after contact with egg white and a uspBA double mutant was less 

able to colonize the reproductive tissue and to contaminate eggs. This is probably because these 

proteins might modify the membrane composition and protect against DNA damage. The yrfI 

and the hsp60 promoters were also detected in our IVET-screening in egg white at 42°C 

(chapter 3.3). Nevertheless, the role of these heat shock proteins in oviduct colonization and 

egg white survival remains to be confirmed. Subsequently, we also identified several stress 

related genes of which 2 (ogt and yciG; chapter 3.2) are shown to be activated by the alternative 

sigma factor σS (RpoS), involved in the survival of bacteria under starvation or stress conditions 

(Ibanez-Ruiz et al., 2000). Although the role for yciG still remains a mystery it has been shown 

that ogt might be involved in oxidative stress repair as this O6-methylguanine-DNA transferase 

is responsible for the elimination of the O6-methyl group on guanine and thus prevents the 

mutagenesis of GC to AT (Yamada et al., 1995). A single mutation in the ogt gene however 

had no effect on bacterial virulence in an oral or intraperitoneal mouse model. Decreased 

virulence was only seen after oral inoculation with a mutant devoid of 5 genes (ogt, ada, tag, 

uvrA and mfd) that were all involved in the repair of alkylation damage (Alvarez et al., 2010). 

Additionally we identified the two genes known to be involved in the recovery of heat injured 

Salmonella Enteritidis, htrA and hslV (chapter 3.2) (Kobayashi et al., 2005). As the htrA gene 

was also identified as important for survival in  egg white in our transposon library screen 

(chapter 3.4), a deletion mutant of this gene was constructed and showed that this gene is indeed 

involved in survival of Salmonella Enteritidis during the formation of the egg.  

4.2.2 Protection against nutrient starvation 

In order to support the complete development of the embryo, the chicken egg must be provided 

with all essential nutrients. To prevent bacterial uptake and growth, many of these nutrients are 

bound to carrier proteins, such as avidin and the biotin binding protein (BBP) for biotin, and 

ovotransferrin for iron.  



General discussion 

150 

 

Biotin, also called vitamin H, vitamin B7 or coenzyme R, is a cofactor for different biotin-

dependent carboxylases involved in fatty acid synthesis, leucin degradation and the amino acid 

metabolism in both pro- and eukaryotic cells. It is an essential cofactor for the developing 

embryo and is present in both egg white and yolk where it is bound respectively to avidin and 

BBP (White et al., 1992). Nonetheless, bacteria have developed their own biotin synthesis 

pathway in which they produce the cofactor from pimeloyl-coA through four enzymatic steps. 

In the last step, dethiobiotin is converted to biotin by the biotin synthase encoded by bioB (Streit 

and Entcheva, 2003). The bioB gene had previously been demonstrated to be important for the 

replication of Salmonella Typhimurium inside macrophages (Shi et al., 2009) and was 

subsequently identified as important in survival in egg white in our transposon library screening 

(chapter 3.4). Although a defined bioB deletion strain did not seem to experience any 

diminished survival after a 24 hour incubation period in the antimicrobial egg white at 42°C, it 

must be mentioned that the mutant had some difficulties to grow through the egg white drops 

in our agar spot assay (own unpublished data). It could thus be hypothesized that the bioB gene 

of Salmonella Enteritidis may be involved in bacterial replication after the egg is laid and when 

the vitelline membrane starts to degrade with the release of nutrients in a biotin limited 

environment rather than during the formation of the egg.  

Additionally, we demonstrate that the outer membrane channel TolC and a combination of 

RND-pump inner membrane transporters are essential to overcome the iron deprivation caused 

by ovotransferrin (chapter 3.3). This is most likely a result of siderophore secretion through 

these channels, as Salmonella Typhimurium has been shown to react to iron restriction with the 

secretion of enterobactin and salmochelin (Crouch et al., 2008). Enterobactin is encoded by the 

ent operon and transported through the inner membrane using the EntS and IroC channel 

(Crouch et al., 2008), while passage through the outer membrane is mediated by the TolC 

channel (Bleuel et al., 2005). A proportion of enterobactin is C- glycosylated by IroB encoded 

within the iroA gene cluster to form salmochellin, a siderophore which is transported by the 

IroC inner membrane channel and a yet unidentified outer membrane transporter (Crouch et al., 

2008). Our agar spot assay with ovotransferrin showed a growth inhibition defect for the entB, 

entC and iroC Salmonella Typhimurium deletion mutant, while this could not be observed for 

the entS, iroB or deletion of the entire iroA gene cluster (own unpublished data). These results 

are in line with a study performed by Kang et al. (2006), who demonstrated that a deletion in 

the entF gene impaired the egg white survival capacities of Salmonella Enteritidis. It could thus 
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be hypothesized that siderophores are essential to cope with the iron limiting conditions in egg 

white.  

4.2.3 Protection against antimicrobial peptides  

A decreased siderophore secretion caused by the deletion of the tolC gene cannot explain why 

this mutant experiences an enhanced lethality in egg white at 42°C, as the iron sequestering 

capacities of ovotransferrin are rather bacteriostatic than bactericidal. This means that CAMPs 

present in egg white might function in addition to or even collaborate with ovotransferrin to kill 

the tolC deletion strain. TolC functions as an outer membrane channel for the majority of the 

Salmonella multidrug efflux pumps (Horiyama et al., 2010), which have been studied 

intensively for their role in antibiotic resistance, through efflux from the bacterial cell. It has 

been speculated that these pumps are mainly developed to allow the bacteria to survive in 

certain ecological niches and that antibiotic resistance is a by-product of their biological role 

(Piddock, 2006). It is thus tempting to speculate that the TolC outer membrane channel of 

Salmonella Enteritdis is necessary for the efflux of egg white antimicrobial components from 

the bacterial cell. Until now, no such egg white antimicrobial peptides could be demonstrated, 

but the hypothesis is further strengthened by the observation that the baeR promoter is activated 

after contact with egg white at the chicken body temperature (chapter 3.3). BaeR is part of the 

BaeSR two-component system which increases multidrug resistance by regulating efflux 

systems (Nishino et al., 2007).  

Additionally, it has been suggested that Salmonella might recognize CAMPs through the 

PhoPQ/PmrAB two-component regulatory systems (Bader et al., 2003, Bader et al., 2005, 

Richards et al., 2012), which may in turn initiate modification of the LPS lipid A and core 

component but also O-antigen length by the wzz and febE genes (Chen and Groisman, 2013) 

leading to the formation of long (16-35 subunits) and very long (> 100 subunits) O-antigen 

chains. The role of LPS modification for oviduct colonization was detected in our transposon 

library screening, as the UDP-glucose 6-dehydrogenase (ugd, udg, pagA or pmrE) gene was 

identified (chapter 3.2). Gunn et al. (1998) showed that this gene is involved in lipid A 

modification with 4-aminoarabinose masking the negative charges and thus reducing the 

affinity for antimicrobial peptides. Additionally we provided evidence for a role of the LPS 

structure in egg white survival as a rfaI deletion strain was no longer capable of surviving in 

egg white at the chicken body temperature (chapter 3.4). Furthermore, the need for very long 

O-antigen synthesis was demonstrated by Coward et al. (Coward et al., 2013), as a febE deletion 
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strain exhibited reduced colonization of the reproductive tissue. This phenotype could not be 

observed for the wzz deletion strain as removal of this gene even resulted in an increased 

frequency of egg contamination, a phenomenon which was also described by Parker et al. 

(2002). It was hypothesized that deletion of the wzz gene probably resulted in a higher 

production of very-long O-antigens, and that since these structures might have a higher 

contribution to the survival in egg white, their increased presence probably leads to a higher 

rate of egg contamination in the wzz deletion strain (Coward et al., 2013). Furthermore, it must 

be mentioned that Salmonella Enteritidis strains, in comparison to Salmonella Typhimurium, 

have an increased potential to produce high molecular weight (HMW) LPS and that egg white 

is an excellent source for Salmonella Enteritidis strains producing these structures (Parker et 

al., 2001).  

4.3 Vertical transmission of Salmonella Enteritidis: 

A unifying hypothesis 

Taking all the above into consideration, it is clear that Salmonella Enteritidis is a unique and 

intriguing serotype as it causes gastro-intestinal disease in a wide variety of animals and even 

humans, while it has adapted itself to persistently colonize the chicken reproductive tract and 

contaminates eggs. As the avian adapted Salmonella Gallinarum serotype is probably a 

descendent from Salmonella Enteritidis, it can be hypothesized that reproductive tract 

colonization by these serotypes arose before their divergence, while the development of their 

specific disease characteristics evolved afterwards. Consequently, the existence of RODs in 

Salmonella Enteritidis and Gallinarum but not Typhimurium might suggest a role for these 

genes in the adaptation of Salmonella Enteritidis and Gallinarum to the avian species. Although 

until now conflicting results regarding the function of these islands in reproductive tract 

colonization exist, further studies are needed to elucidate their exact role. Secondly, it can be 

assumed that Salmonella Enteritidis utilizes SPI1 and 2 to invade and survive inside the chicken 

oviduct epithelial cells and this probably to protect themselves from the hen’s local immune 

system. Consequently, during periods of immune suppression, such as stress, Salmonella 

Enteritidis might be excreted from these cells and incorporated into the forming egg. During 

their persistence inside the epithelial cells and their incorporation into the forming egg 

Salmonella Enteritidis might activate some stress responses to further withstand the hostile 

environment of this ecological niche. For example, the high chicken body temperature, the 

presence of reactive oxygen species and other DNA damaging components might induce stress 
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response systems leading to activation of heat shock proteins and DNA repair mechanisms. 

Additionally, a dual role for multidrug efflux pumps was demonstrated during this thesis as 

these pumps are probably necessary for the secretion of siderophores to cope with the iron 

depletion and, although speculative at this point, as they might enhance the export of host 

antimicrobial components out of the bacterial cells. It is clear that resistance against 

antimicrobial peptides is also achieved by the LPS structures and most likely HMM OAg chains 

which may cause a steric structure on the bacterial membrane masking it for antimicrobial 

factors. Subsequently, once the eggs is laid Salmonella Enteritidis is capable of surviving for a 

prolonged period of time inside the egg white by use of its LPS-structure and some genes 

belonging to the ROD gene clusters. After about 3 weeks the vitelline membrane starts to lose 

some of its integrity, leading to leakage of yolk nutrients in the albumen and mobilization of 

Salmonella Enteritidis to the yolk. Once the perivitelline membrane is reached, Salmonella 

Enteritidis probably uses its curli fimbriae to attach to the vitelline membrane and to invade the 

egg yolk were it can easily multiply. Additionally, numerous metabolic genes were identified 

during this screening. Although identification of these genes might be caused by a disruption 

of an important metabolic pathway, some metabolic genes might also be participating in 

pathogenesis. This was recently demonstrated by Flahou et al. (2011) who showed that the γ-

glutamyl transpeptidase of Helicobacter suis and pylori was involved in apoptosis and necrosis 

of gastric epithelial cells. A combination of differences in presence or function of all these 

virulence factors between Salmonella Enteritidis and other serotypes might enable the former 

to colonize the reproductive tract more efficiently than other serotypes. Additionally, further 

studies are necessary to determine whether these genes are restricted for colonization of the 

reproductive tract or rather if they are necessary for the overall pathogenesis of Salmonella 

Enteritidis in the chicken. An overview of the different confirmed virulence factors used by 

Salmonella Enteritidis is during the whole egg contaminating process is given in figure 4.3.1.  
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Figure 4.3.1: Summary of Salmonella Enteritidis pathogenesis to contaminate eggs 
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4.4 Salmonella control strategies 

4.4.1 Vaccination 

In order to constrain the Salmonella Enteritidis pandemic caused by contaminated eggs, several 

national control programs implemented vaccination of laying hens. The ideal vaccine should 

possess the following characteristics: a) reduce or prevent the intestinal colonization and thus 

fecal shedding and egg shell contamination and b) prevent systemic infection and decrease 

colonization of the reproductive tissues and thus reduce internal egg contamination. In Belgium, 

both killed inactivated and live attenuated vaccines are on the market. After intramuscular 

vaccination with the killed inactivated Nobilis® Salmonella ET vaccine, previously known as 

Nobilis® Salenvac or Nobilis® Salenvac T, a significant reduction in the positive tissue and 

faecal samples in addition to a decreased egg contamination after intravenous challenge with 

Salmonella Enteritidis was observed (Woodward et al., 2002). Nevertheless, there is 

accumulating evidence that attenuated live vaccines are more immunogenic as they have the 

potential to induce a cell-mediated immune response. Live attenuated vaccines available in 

Belgium are the Avipro Salmonella vac®E, Avipro Salmonella vac®T and the Avipro 

Salmonella Duo, which are metabolic drift mutants. Oral vaccination with these vaccines at day 

1, week 6 and 16 triggered the induction of specific antibody response and did not lead to egg 

contamination with these strains. Additionally, this vaccination protocol decreased internal 

organ colonization, including reproductive tract colonization and egg contamination by a 

challenge strain which was given intravenously at week 24 (Gantois et al., 2006).  

4.4.2 Towards a more resistant chicken breed 

In addition to vaccination, additional measures to avoid the introduction of Salmonella and to 

reduce the infection pressure must be taken into account. The breeding and rearing of chickens 

which are more resistant to Salmonella infection might be an attractive option. Between-line 

differences have been demonstrated, as different lines of mature chickens infected with 

Salmonella Enteritidis exhibited different incidences of fecal shedding, organ colonization and 

egg contamination (Protais et al., 1996). To identify host genes involved in this process, several 

chicken lines have been studied and a number of candidate genes, mainly involved in the innate 

and adaptive immunity, have been identified so far (Calenge et al., 2010). Since Salmonella 

Enteritidis has developed a higher potential to survive in the forming egg at the chicken body 

temperature, difference in egg white proteins may be of particular interest. Avian embryonic 
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intestinal cell lines that exhibited a higher expression of the AvBD1 and 2 harbored less 

intracellular Salmonella Enteritidis bacteria after infection (Derache et al., 2009), while genetic 

variation in AvBD11, 12 and 13 seems to be associated with the bacterial burden in caecal 

content (Hasenstein and Lamont, 2007).Nevertheless, although studies regarding other 

antimicrobial egg white components are currently missing, it can be assumed that also 

variations in their content might make a difference in the reaction of a chicken to a Salmonella 

Enteritidis infection. Consequently, genetic selection might generate a chicken breed which is 

more resistant to intestinal and systemic colonization of Salmonella Enteritidis and in which a 

higher concentration of antimicrobial peptides in the forming egg may kill Salmonella 

Enteritidis more efficiently.  

4.5 In conclusion 

To colonize the chicken reproductive tract and to survive inside the forming egg, Salmonella 

Enteritidis probably relies on a unique set of genes. The bacteria adequately orchestrate a joint 

collaboration between genes involved in the protection against several stresses, nutrient 

starvation, and the defense against antimicrobial peptides. Although vaccination of laying hens 

has significantly reduced the number of Salmonella Enteritidis positive laying hen farms and 

subsequently the number of human cases, additional control measures must be taken to improve 

food safety. These should be based on knowledge of the pathogenesis of egg infections, and 

can include breeding towards resistant lines.  
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Summary 

Salmonella is one of the most important foodborne threats to human health worldwide. An 

important change in the epidemiology of Salmonella occurred since the mid-80s, when 

Salmonella enterica subspecies enterica serovar Enteritidis (Salmonella Enteritidis) became a 

major contaminant of eggs and egg products. Although many other serovars are present in the 

environment of the laying hen, Salmonella Enteritidis is the main serotype associated with eggs. 

Consequently, during the past few years several hypotheses have been put forward to explain 

the tropism of Salmonella Enteritidis for eggs. Although eggs can be contaminated on the outer 

shell, extensive washing and disinfection of the eggshell in the USA have not eliminated 

Salmonella Enteritidis from eggs, indicating that the bacteria might be present internally. In 

order to contaminate the egg internally, Salmonella Enteritidis might penetrate the egg shell or 

be incorporated directly into egg white of the forming egg through colonization of the upper 

reproductive tract. While the former is not a unique trait for Salmonella Enteritidis it has been 

demonstrated that Salmonella Enteritidis is superior in the colonization of the reproductive 

tissue in comparison with other serotypes. It is now increasingly accepted that the upper oviduct 

is the main colonization site for Salmonella Enteritidis and that the bacteria are most likely 

incorporated into the egg white of the forming egg. These observations suggest that strains from 

the Salmonella serotype Enteritidis harbor some intrinsic characteristics, leading to a unique 

interaction with the chicken reproductive tract. Nevertheless, until now only limited 

information regarding the Salmonella Enteritidis virulence factors mediating oviduct 

colonization and egg contamination are available. Fortunately, genome-wide screening 

methods have been developed to provide insights in our understanding of the bacterial 

pathogenesis. One of these techniques, the in vivo expression technology or IVET screening 

was previously used to identify genes that are activated inside the reproductive tract and in eggs 

but not under standard laboratory conditions. Seven promoters were induced in both the 

reproductive tract and in laid eggs, suggesting a potential role for these genes in the colonization 

of this organ and the contamination of eggs.  

As both the universal stress proteins (usp) A and B were identified during this screening, the 

first study in this thesis was performed to confirm the role of these genes in reproductive tract 

colonization (chapter 3.1). To verify that the expression of both genes was induced by egg 

white, their promoters were cloned in front of the luxCDABE genes which enabled us to monitor 

gene expression by light measurement. These results clearly showed that both promoters were 
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induced after contact with egg white. Additionally, defined single (uspA and uspB) and double 

(uspBA) deletion mutants were constructed and used in in vivo experiments. Intra-oviduct 

inoculations showed that the uspB and uspBA mutants had a decreased ability to colonize the 

magnum and isthmus of the oviduct 7 days post-inoculation. This phenotype was confirmed in 

an intravenous challenge model in which the uspBA deletion strain was less able to colonize the 

chicken reproductive tract and eggs of chickens infected with the uspBA knock out were 

significantly less contaminated than those of chickens infected with the wild type. Consequently, 

analogous to the function of universal stress proteins in other species, we hypothesize that these 

genes are involved in long term persistence of Salmonella Enteritidis in the harmful 

environment of the reproductive tract and the egg and this probably by altering the composition 

of the bacterial membrane and by repair or protection against DNA damage.   

To avoid the local immunity of the reproductive tract, Salmonella Enteritidis most likely resides 

intra-cellular inside the oviduct epithelial cells. No data were yet available on Salmonella 

Enteritidis genes that are of importance to colonize the oviduct. Consequently, a genome wide 

microarray based transposon library of 50.000 mutants was used in chapter 3.2 to extend our 

knowledge on how this bacterium persists inside these cells. The idea behind this technique is 

that mutants harboring deletions in essential genes are no longer capable to persist or multiply 

inside the oviduct cells and decrease in numbers compared to mutants in which genes that are 

not essential for oviduct colonization are mutated. Using this technique a total of 81 potential 

essential genes was identified. The results suggest that Salmonella Enteritidis invades and 

survives inside the chicken oviduct epithelial cells using its pathogenicity islands. To further 

cope with the antimicrobial factors present in these cells, the bacteria might alter the membrane 

composition, activate DNA repair and  stress management strategies to cope with the high 

chicken body temperature and antimicrobial stressors. Finally,  a potential role for the Region 

Of Difference Genomic islands 9, 21 and 40 was demonstrated.  

It is increasingly accepted that Salmonella Enteritidis colonization of the upper reproductive 

tract might lead to incorporation of the bacteria into the egg white or the egg shell membranes 

of the forming egg. Although egg white at the chicken body temperature of 42°C is a highly 

antimicrobial matrix, it has been demonstrated that Salmonella Enteritidis has developed an 

enhanced potential to survive in this hostile environment compared to other serotypes. 

Consequently, to obtain information about the underlying mechanisms exploited by Salmonella 

Enteritidis, the above mentioned IVET and transposon library were used to identify genes 

involved in egg white survival at 42°C.  



Summary 

167 

 

in chapter 3.3 the IVET-screening was used to identify genes which are induced after contact 

with egg white at the chicken body temperature of 42°C. During this screening the tolC gene 

was identified as highly expressed in egg white. This gene encodes an outer membrane channel 

involved in siderophore export and is part of the multidrug resistance pumps, conferring 

resistance against antibiotics and host-derived antimicrobial agents. It was shown that a tolC 

deletion strain exhibits a decreased survival in the chicken egg white at 42°C compared to the 

wild type. Using chromatographic separation techniques and subsequent testing of 

antimicrobial activities of purified egg white fractions by an agar spot assay, ovotransferrin was 

identified as the egg white antimicrobial factor inhibiting the tolC deletion strain, due to its iron 

depriving characteristics. To determine whether the multidrug efflux pumps themselves are 

involved in this process a strain harboring deletions in the inner membrane channels was 

constructed. It was shown that a mutant with deletions in 4 genes encoding different inner 

membrane channels was inhibited  in the presence of ovotransferrin. Although the iron 

restriction caused by ovotransferrin on its own probably can not explain the lethality of a tolC 

deletion strain in egg white, it could be that a disturbed efflux pump system in this mutant leads 

to accumulation of other antimicrobial peptides which in turn may cause bacterial cell death.  

Finally, chapter 3.4 describes the use of the transposon library to identify mutants that are no 

longer capable of surviving in egg white at 42°C. This screening identified a lot of genes 

involved in LPS biosynthesis and the heat shock protein HtrA as important for survival of 

Salmonella Enteritidis in egg white at the chicken body temperature of 42°C. Subsequently, 

deletion mutants in the rfaI and htrA gene were constructed and used in an egg white survival 

assay at 42°C for 24 hours. These mutants were no longer capable of surviving in egg white at 

42°C.  

In conclusion, this thesis offers new insights in the pathogenesis of Salmonella Enteritidis 

reproductive tract colonization and egg contamination. It was shown that Salmonella Enteritidis 

utilizes a set of unique genes for colonization and that colonization is further promoted by the 

use of stress response systems leading to the activation of heat shock proteins and DNA repair 

mechanisms. Furthermore, it was shown that Salmonella Enteritidis survival in egg white is 

mediated by siderophore secretion through multidrug efflux pumps and that LPS biosynthesis 

might increase the resistance against antimicrobial peptides present in egg white.
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Samenvatting 

Salmonella vormt wereldwijd een belangrijke bron van voedselintoxicatie bij de mens. Een 

stijging in het aantal humane salmonellose gevallen werd opgemerkt sinds de jaren tachtig  door 

de opkomst van het Salmonella enterica subspecies enterica serotype Enteritidis (Salmonella 

Enteritidis) in eieren en eiproducten. Hoewel meerdere Salmonella serotypes geïsoleerd kunnen 

worden uit de omgeving van de leghen, is Salmonella Enteritidis bijna het enige serotype dat 

geassocieerd kan worden met humane Salmonella besmetting via consumptie van eieren. Om 

dit tropisme van Salmonella Enteritidis voor eieren te verklaren werden dan ook enkele 

hypothesen naar voor gebracht. Eicontaminatie door Salmonella Enteritidis kan in principe het 

gevolg zijn van uitwendige schaalbesmetting, maar aangezien het wassen en desinfecteren van 

de eischaal geen invloed had op de prevalentie van het aantal salmonellose gevallen, kon 

worden aangenomen dat Salmonella Enteritidis de ei-inhoud contamineert. Inwendige ei-

contaminatie kan in principe veroorzaakt worden door penetratie van de bacterie doorheen de 

eischaal na uitwendige schaalbesmetting of door infectie van het ovarium of oviduct met 

incorporatie van de bacterie in het vormende ei tot gevolg. Terwijl eischaalpenetratie geen 

eigenschap blijkt te zijn die specifiek is voor het Salmonella serotype Enteritidis, werd 

aangetoond dat dit serotype de oviduct van de leghen beter koloniseert in vergelijking met 

andere serotypes. Het wordt dan ook meer en meer aanvaard dat Salmonella Enteritidis eieren 

besmet via kolonisatie van het oviduct waardoor de bacterie makkelijk in het eiwit of de 

eischaalmembranen van het vormende ei kan terecht komen. Deze data suggereren dan ook dat 

Salmonella Enteritidis over bepaalde eigenschappen beschikt die de bacterie in staat stellen om 

de oviduct van de leghen op een unieke wijze te koloniseren. Gezien tot voor kort nog maar 

weinig geweten was over de interactie van Salmonella Enteritidis met de oviduct, werd tijdens 

een voorgaand onderzoek gebruik gemaakt van genoom omvattende in vivo expressie 

technologie of IVET screening, om genen die geactiveerd worden in de oviduct omgeving te 

identificeren. Dit onderzoek leidde bijgevolg naar 7 promoters die zowel in de oviduct als in 

eieren geïnduceerd werden, wat vervolgens deed vermoeden dat ze een belangrijke rolspelen in 

de kolonisatie van de oviduct en eibesmetting.  

Daar zowel de promotor van het universal stress protein (usp) A als B werd opgepikt tijdens 

deze screening werd het eerste hoofdstuk van deze thesis gewijd aan het bevestigen van de rol 

van deze genen in oviductkolonisatie (hoofdstuk 3.1). Eerst en vooral werd nagegaan of de 

promotor van deze genen effectief geactiveerd werd door contact van Salmonella Enteritidis 
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met eiwit. Hiervoor werden de beide promotors voor de luxCDABE genen gekloneerd zodat 

promotor expressie kon gemeten worden aan de hand van licht productie. De resultaten van dit 

experiment toonden inderdaad aan dat de promotors geactiveerd werden na contact met eiwit. 

Daarnaast werd ook van beide genen een deletiemutant en een dubbel mutant aangemaakt die 

dan verder gebruikt werden in in vivo proeven bij de leghen. Hierbij toonde een intra-oviduct 

inoculatie experiment aan dat de uspB and uspBA deletiemutanten een verminderd vermogen 

hadden om de oviduct te koloniseren. Ook een intraveneus infectiemodel toonde het belang van 

deze genen in oviduct kolonisatie aan, daar de uspBA deletie mutant minder aanwezig was in 

de oviduct en in eieren in vergelijking met de wild type stam. Op basis van deze resultaten en 

door vergelijking van studies over deze genen in andere species kan vervolgens gesuggereerd 

worden dat de universal stress proteins nodig zijn voor de persistentie van Salmonella 

Enteritidis in de oviduct en in eieren en dit waarschijnlijk door hun rol in resistentie tegen 

membraan en DNA beschadigende componenten aanwezig in deze omgeving.  

Er wordt verondersteld dat Salmonella Enteritidis binnenin de epitheelcellen van de oviduct 

persisteert om locale immuunreacties te ontwijken. Om genen essentieel in oviductkolonisatie 

op te sporen werd gebruik gemaakt van een transposonbank met 50.000 mutanten die in de 

oviduct en op oviductcellen werd gebracht (hoofdstuk 3.2). Op basis van deze techniek werden 

81 mogelijk belangrijke genen geïdentificeerd. Er werd aangetoond dat Salmonella Enteritidis 

de epitheelcellen van de oviduct binnendringt en erin overleeft door gebruik te maken van zijn 

pathogeniciteits eilanden. Daarnaast kan ook aangenomen worden dat de bacterie de 

samenstelling van zijn membraan verandert en dat systemen verantwoordelijk voor herstel van 

DNA schade en voor responsen op stress belangrijk zijn. Een mogelijks belangrijk resultaat in 

deze studie was dat genen die behoren tot de zogenaamde regions of Difference 9, 21 en 40, die 

aanwezig zijn in Salmonella Enteritidis maar niet in Typhimurium, mogelijks belangrijk zijn 

voor oviductkolonisatie.  

Het is duidelijk dat infectie van de oviduct kan leiden tot incorporatie van de bacterie in het 

eiwit of de eischaalmembranen van het vormende ei. Hoewel eiwit op de lichaamstemperatuur 

van de kip (42°C) een heel antimicrobiële matrix is, werd reeds aangetoond dat Salmonella 

Enteritidis beter in staat is te overleven in deze antimicrobiële omgeving dan andere serotypes. 

Bijgevolg werd tijdens dit onderzoek gebruik gemaakt van de bovenstaande genoom 

omvattende methoden om informatie te verkrijgen over welke genen belangrijk zijn in dit 

proces.  
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Zo werd in hoofdstuk 3.3 gebruik gemaakt van de IVET-screening om genen te identificeren 

die tot expressie komen in eiwit op 42°C, de lichaamstemperatuur van de kip. Tijdens deze 

screening werd het tolC gen opgepikt als potentieel belangrijk. TolC is een proteïne in de 

buitenste membraan van de gram-negative bacteriële celwand, waar het een kanaal vormt voor 

de efflux van sideroforen maar ook deel uitmaakt van de zogenaamde multidrug efflux 

pompsystemen die verantwoordelijk zijn voor antibiotica resistentie en het naar buiten pompen 

van gastheer geproduceerde antimicrobiële componenten. Tijdens deze studie werd aangetoond 

dat een tolC deletiemutant niet langer in staat was te overleven in eiwit op 42°C en dat 

ovotransferrine de groei van deze mutant in agar spot assay inhibeerde. Om te bepalen of de 

multidrug efflux pompen een rol speelden in de groei van Salmonella Enteritidis in 

aanwezigheid van ovotransferrine werden mutaties aangebracht in de binnenste membraan 

kanalen van deze pompen. Hieruit bleek dat na deletie van 4 efflux pompen een mutant 

gecreëerd werd die niet langer in staat was te groeien in aanwezigheid van ovotransferrine. 

Hoewel de ijzer restrictie veroorzaakt door ovotransferrine wellicht niet verantwoordelijk is 

voor de afdoding van een tolC mutant in eiwit kan het zijn dat door de verstoorde efflux functie 

in deze mutant andere antimicrobiële componenten worden opgestapeld dewelke dan 

uiteindelijk kunnen leiden tot bacteriële celdood.  

Naast een IVET-screening werd de transposonmutantenbank gebruikt ter identificatie van 

Salmonella Enteritidis specifieke factoren betrokken in eicontaminatie (hoofdstuk 3.4). Deze 

screening leidde tot de identificatie van een aantal LPS biosynthese genen en ook het heat shock 

protein HtrA als potentieel noodzakelijk voor de overleving van Salmonella Enteritidis in eiwit 

op 42°C. Deletiemutanten werden aangemaakt in de rfaI en htrA genen waarna de mutanten 

getest werden op hun overleving in eiwit. De mutanten bleken niet langer in staat te overleven 

in eiwit.  

De resultaten uit dit proefschrift geven nieuwe inzichten in de pathogenese van eibesmetting 

door Salmonella Enteritidis. Er werd aangetoond dat Salmonella Enteritidis voor de kolonisatie 

van de oviduct mogelijks gebruik maakt van een unieke set genen. Deze kolonisatie wordt dan 

waarschijnlijk verder versterkt door de activatie van stress respons systemen bij dewelke heat 

shock proteïnen en DNA herstel mechanismen een centrale rol spelen. Eens geïncorpeerd in het 

eiwit van het vormende ei kan deze bacterie beter weerstaan aan de antimicrobiële 

eigenschappen met behulp van de multidrug effluxpompen door de excretie van sideroforen en 

eventueel andere antimicrobiële peptiden. Verder kan ook gesteld worden dat de LPS structuur 

een belangrijke rol speelt in de resistentie tegen deze antimicrobiële componenten.  
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Dankwoord 

Eindelijk is het dan zover, het moment waarop ik iedereen kan bedanken die me de voorbije 

jaren heeft gesteund en geholpen, want een doctoraat maak je natuurlijk nooit alleen.  

Eerst en vooral zou ik mijn beide promotoren Prof. Dr. Ir. Van Immerseel en Prof. Dr. Ducatelle 

willen bedanken. Filip, een dikke merci omdat je me enige tijd geleden de kans gaf om met dit 

doctoraatsonderzoek te starten. Jouw inspiratie leidde tot vele ideeën waarvan we er enkele tot 

een goed einde konden brengen en waarbij ik unieke buitenlandse ervaringen kon opdoen. 

Professor Ducatelle, je enthousiaste antwoorden op mijn vele vragen waren steeds een drijfveer 

voor mijn motivatie. Bedankt dat je deur iedere keer voor me open stond en voor de input bij 

mijn artikels en dit doctoraat.  

Professor Haesebrouck, hartelijk dank dat ik mijn onderzoek mocht uitvoeren in het labo 

bacteriologie en voor de uitstekende en zorgvuldige feedback op mijn manuscripten. Daarnaast 

wil ik u ook bedanken voor de kans die u mij gaf om de diagnostiek aan te leren.  

Verder wil ik ook alle leden van de begeleidings- en examencommissie bedanken voor de tijd 

en aandacht die zij geschonken hebben aan het kritisch nalezen van dit hele boekje: Prof. Dr. 

Pasmans, Prof. Dr. Favoreel, Prof. Dr. Michiels, Prof. Dr. Heyndrickx en Dr. Rehault.  

Dit werk was natuurlijk ook niet tot stand gekomen zonder de financiële steun van het IWT-

Vlaanderen die mij een specialisatiebeurs toekenden en van Lohmann Animal Health die ervoor 

zorgden dat ik wat extra tijd kreeg om dit onderzoek af te werken. 

Daar een klein deeltje van mijn onderzoek in samenwerking met andere onderzoeksgroepen 

verliep, zou ik graag Prof. Devreese en Dr. De Smet willen bedanken voor de hulp bij de eiwit 

opzuiveringen. I would like to thank Dr. Thompson, Dr. Shearer and Dr. Appia-Ayme for the 

warm welcome at the Institute of Food Research and for introducing me into the world of 

microarrays. Corinne, thank you very much for your quick answers to all my questions. Prof. 

Dr. Ibrahim and Dr. Nishino thanks for your help with the OTAP-92 purification, the 

construction of the MDR-pump mutants and RT-PCR. I am very grateful for your hospitality 

and I really enjoyed my stay in Japan.  

De vele uurtjes die gekropen zijn in dit doctoraat waren natuurlijk nooit zo leuk zonder de vele 

collegaatjes en helpende handjes, jullie verdienen dan ook allemaal een dikke merci.  
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Inne, een betere begeleiding kon ik mij bij de start van dit doctoraat niet voorstellen. Chapeau 

hoe je werk en sport op zo’n hoog niveau kan combineren, je bent echt een straffe madam! Ook 

merci om er samen met Jantina en Emma zo’n gezellige bureau van te maken! Samen met 

Anouk, Leen en Venessa zorgden jullie er ook voor dat ik mij meteen thuis voelde en dat ik als 

groentje steeds terecht kon, en bij sommige nog altijd, met al mijn vragen. Het zinnetje: “vraag 

het eens aan Venessa of Leen”, was nooit veraf!  

Tijdens de ganse periode van mijn doctoraat heb ik natuurlijk heel wat bureaugenootjes 

versleten. Vanessa en Rosalie ik wens jullie nog het allerbeste met jullie nieuwe job. Stefanie, 

je geduld en oog voor detail hebben gewaakt over posters, presentaties en zullen er voor zorgen 

dat je huis een pareltje wordt, met wie weet een plekje voor alpaca’s en honden shiatsu? Dorien, 

dankzij jou ben ik weer aan het lopen geslagen en heb ik de koersfiets ontdekt, op naar de 

MOnT Ventoux of de WILKOl du Galibier. Wolf, Evy, Celine, Karen en Lonneke, nog veel 

succes met jullie doctoraat en hou mijn oud bureautje een beetje in eer. Aan mijn huidige 

bureaucompagnon, Marjan, merci voor de leuke babbels en lekkere sapjes, op naar je eigen 

smoothiebar ! Sofie G. we hebben nooit echt op dezelfde bureau gezeten maar toch wel een 

beetje… Nog veel succes met alles wat je doet, maar dat is te veel om hier op te noemen.  

Sofie K, ik kan je niet genoeg bedanken om mijn proeven over te nemen en ik ben blij dat je 

verder doet met de Salmonella-eitjes. Karolien, je bent net een topsporter: altijd gedreven met 

een spurtje van de ene proef naar de andere. Christian, Delphine, Sarah L., Astra, Veronique, 

Beatrice, Leslie, Han, Leen, Cynthia en Marleen dankzij jullie was er steeds leven in de 

brouwerij op de patho. Delphine, merci dat ik altijd bij je terecht kon voor een goeie babbel en 

dat examen komt dik in orde. Christian probeer toch een beetje van je welverdiende pensioen 

te genieten! Johan en Michiel wordt het niet eens tijd om een sequel van de koetsentocht te 

organiseren? Astra, je bent een krak in de contracten papierwinkel, ik zou jou en natuurlijk ook 

Piet extra willen bedanken voor de hulp bij de laatste loodjes, zonder jullie had mijn boekje er 

nooit uitgezien zoals nu!  

Isabel, Jo, Gunter en Koen ook aan jullie een dikke merci voor de bestellingen, het oplossen 

van computerproblemen en niet te vergeten het vervangen van lekke fietsbanden….Frank en 

An heel erg bedankt voor het intra-oviductaal inoculeren van mijn kipjes. Verder wil ik ook 

nog de vaste kliek van het labo bedanken voor de leuke momenten. Marleen, je bent echt een 

zalige madam en hopelijk kunnen we ooit eens aan het zeetje met de paardjes gaan rijden. Serge, 
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Arlette, Sofie, Nathalie en Hanne merci voor de leuke sfeer in het labo, dankzij jullie was het 

steeds weer aangenaam om uren aan de flow te zitten.  

De legendarische rozen bureau mag natuurlijk niet vergeten worden: Elin, Alex en Bregje, ook 

al hadden jullie het meer voor de varkentjes dan voor kipjes, en voor Typhimurium ipv 

Enteritidis, Salmonella is Salmonella en creëert een speciale band. Elin, merci om me destijds 

wegwijs te maken in het cellabo en met je eeuwige glimlach en gezang is de pret in het labo 

verzekerd. Roel, je bent een expert in de routine en nog veel succes met de Salmonella duifjes. 

Bram en ook Tim, hoewel ik er al eentje heb moeten afgeven, ik ben jullie eeuwig dankbaar 

voor mijn 2 prachtige honden.  

Marc, nog een dikke merci om me op tijd naar het station te loodsen , nog veel succes met de 

laatste loodjes, je bent er bijna vanaf. Pascale, merci voor de tips en tricks tijdens het schrijven 

van dit doctoraat.  

Een speciaal woordje van dank aan alle mensen van de pluimvee: Katleen, Lieve, Mark, Tom, 

Ilse, Gunther en Lien, ik kan jullie niet genoeg bedanken voor de goede zorgen voor mijn zieke 

konijntjes, kippen en gerbils.  

Ook alle anderen: An, Julie, Annelies, Connie, Caroline, Iris, Filip, Evelien, Nele, Anneleen, 

Myrthe, Ellen, Jonah, Maxime, Hannah, Lieze, Annemieke, Maarten, Gwij, Lien, Sergio, 

Shaoji, Jungang, Guangzhi, Mojdeh, en Cheng bedankt om mee te zorgen voor de goede sfeer 

in het labo en nog veel succes.  

Magda en Sandra, dankzij jullie waren de stallen en mijn bureau (soms ook eerder een stal) 

altijd picobello in orde.  

Verder zijn er natuurlijk een aantal mensen die ik hier al een tijdje vertrokken zijn, maar zeker 

nog een woordje verdienen: Rebecca, we zijn hier samen begonnen en nu staat het eindelijk op 

papier, een dikke merci voor de vele uurtjes dat ik op je kon rekenen in het cellabo. Nog veel 

succes met je doctoraat en natuurlijk ook met de kleine miniversie van jou en Kristof. Sophie 

C. je was altijd bereid om te helpen, ik bewonder echt je manier van aanpakken. Hopelijk 

kunnen we nog eens gaan wandelen met de hondjes maar dan zonder incidenten… Lieven, 

merci om de weekends in het labo een beetje aangenamer te maken en zorg nog goed voor ons 

Sofie!!! David, het was goed om te weten dat er een bekend gezicht ging rondlopen tijdens mijn 

start hier, eerlijk de bacterio is nooit nog het zelfde geweest na je vertrek. Ook Smitha, Miet, 
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Lotte, Els, Jana, Iris, Kim, Anja R, Anja VDB, Melanie en Urszula; merci om er zo’n leuke tijd 

van te maken, het was fijn om met jullie samen te werken.  

We komen stilaan aan het einde van dit dankwoord, maar de belangrijkste mensen moeten nog 

komen. Alle familie en vrienden, jullie zou ik willen bedanken omdat ik steeds bij jullie terecht 

kon, hoezeer ik soms ook mopperde. Dikke merci voor alle afleiding, gezelligheid en voor 

steuntjes in de rug! Ma en Pa, het lijkt misschien alsof ik alles wat jullie gedaan hebben en nog 

steeds doen als normaal beschouw, maar dat doe ik zeker niet. ik ben jullie dan ook eeuwig 

dankbaar voor alle vrijheid en mogelijkheden die jullie mij gegeven hebben. Rebecca, mijn 

sissy, bedankt om steeds in mij te geloven en om mij te laten inzien dat ik soms een beetje moet 

relativeren.  

En dan last but certainly not least: Sam! Ik wil je bedanken voor je onvoorwaardelijke steun, 

liefde en vertrouwen in mij. Mijn doctoraat zorgde voor de nodige uitbreiding van onze 

beestenboel…het is namelijk niet makkelijk om nee te zeggen tegen een voormalig 

proefdier…maar we hebben er toch een paar gelukkig kunnen maken . En nu, op naar het 

volgende hoofdstuk…  
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