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The seco-iridoid pathway from Catharanthus roseus
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The (seco)iridoids and their derivatives, the monoterpenoid indole alkaloids (MIAs), form two

large families of plant-derived bioactive compounds with a wide spectrum of high-value

pharmacological and insect-repellent activities. Vinblastine and vincristine, MIAs used as

anticancer drugs, are produced by Catharanthus roseus in extremely low levels, leading to high

market prices and poor availability. Their biotechnological production is hampered by the

fragmentary knowledge of their biosynthesis. Here we report the discovery of the last four

missing steps of the (seco)iridoid biosynthesis pathway. Expression of the eight genes

encoding this pathway, together with two genes boosting precursor formation and two

downstream alkaloid biosynthesis genes, in an alternative plant host, allows the heterologous

production of the complex MIA strictosidine. This confirms the functionality of all enzymes

of the pathway and highlights their utility for synthetic biology programmes towards a

sustainable biotechnological production of valuable (seco)iridoids and alkaloids with

pharmaceutical and agricultural applications.
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M
onoterpenoid indole alkaloids (MIAs) are a large
group of plant-derived natural products with a range
of pharmacological properties. Examples of MIAs are

camptothecin—used to treat cancer—and quinine—the antima-
larial drug of choice till the mid of the last century. Madagascar
periwinkle, Catharanthus roseus, the best-characterized
MIA-producing plant species, is the source of the valuable MIAs
vincristine and vinblastine, which are used directly or as
derivatives for the treatment of several cancer types. Owing to
the extremely low concentrations (0.0002% fresh weight),
production of vincristine and vinblastine is expensive and
availability of the drug is sensitive to environmental and political
instability in the production countries. Therefore, biotechnology-
based production of MIAs in microorganisms or alternative plant
hosts has been proposed as a sustainable substitute; however,
progress has been hampered by the lack of knowledge of the
enzymes responsible for MIA biosynthesis, particularly in the
secologanin pathway (Fig. 1). Secologanin is the monoterpenoid
(also called iridoid or secoiridoid) branch end point and is
coupled to tryptamine by strictosidine synthase (STR) to form
strictosidine, the universal MIA precursor in plants. The
secologanin pathway has broad importance as many plant species
accumulate iridoids and secoiridoids (including secologanin) as
end products without incorporating them into complex alkaloids.
Many (seco)iridoids are bioactive themselves, with among others
anticancer, antimicrobial and anti-inflammatory activities1–4.
Iridoids are also pheromones in some insect species, and as
such can be employed for pest management in agriculture and the
control of insect-related disease vectors5,6.

The (seco)iridoid pathway is still largely unresolved. It starts
with geraniol and is thought to comprise B10 enzymes catalysing
successive oxidation, reduction, glycosylation and methylation
reactions (Fig. 1). Although the pathway has been investigated for
decades7,8, only the first step (geraniol 10-hydroxylase/8-oxidase,
G8O)9 and the two last steps (loganic acid O-methyltransferase,
LAMT; and secologanin synthase, SLS)10,11 are well established.
Only recently, two additional enzymes were identified, iridoid
synthase (IS) responsible for the reductive cyclization step12 and
geraniol synthase (GES)13. A complicating factor for gene
discovery as well as biotechnological production is that the
MIA pathway in C. roseus is organized in a complex manner, with
the enzymes localized in different cell types and subcellular
compartments (Supplementary Fig. 1)14,15.

Here we report the characterization of the last missing steps of
the C. roseus secoiridoid pathway. We use an integrated
transcriptomics and proteomics approach for gene discovery,
followed by biochemical characterization of the isolated candi-
dates. Furthermore, we reconstitute the entire MIA pathway up to
strictosidine in the plant host Nicotiana benthamiana, by
heterologous expression of the newly identified genes in
combination with the previously known biosynthesis genes. This
work provides essential tools that will allow development of
synthetic biology platforms for the production of bioactive
iridoids, secoiridoids and complex MIAs with a wide range of
agricultural and pharmaceutical applications, including the
treatment of cancer.

Results
Iridoid gene discovery. We previously reported the assembly of
CathaCyc, a C. roseus metabolic pathway database based on
Illumina HiSeq2000 RNA sequencing data16. The data set was
derived from C. roseus suspension cells and shoots treated with
the plant hormone methyl jasmonate16. Here we complemented
this data set with RNA-Seq data from cell suspensions
overexpressing either ORCA2 or ORCA3, transcription factors

that regulate the expression of LAMT, SLS and several other genes
in the MIA biosynthesis pathway17, but not GES and G8O
(Fig. 2a). These four and all other known MIA genes are induced
by MeJA both in cell suspension cultures and whole C. roseus
plants, although GES/G8O and LAMT/SLS show different
induction characteristics (Fig. 2b). Furthermore, GES, G8O and
IS are expressed in the internal phloem-associated parenchyma
(IPAP) cells, whereas LAMT and SLS are expressed in the leaf
epidermis10–13,18,19. The differential induction and in situ
expression data suggested that the first part of the pathway
(possibly up to 7-deoxyloganic acid) corresponds to one
transcriptional regulon, whereas the subsequent steps up to the
synthesis of secologanin would comprise a second regulon.

On the basis of the hypothetical pathway and predicted enzyme
activities catalysing the hitherto missing steps (Fig. 1), we
screened our data set for genes encoding NAD(P)-binding
Rossmann fold domain-type oxidoreductases, cytochrome P450
monooxygenases (P450s) and UDP-glycosyltransferases (UGTs)
that display co-expression with GES/G8O, and for P450s that
show co-expression with LAMT/SLS. Three genes encoding
putative oxidoreductases showed a high degree of co-expression
with GES/G8O (Fig. 2a). The first (accession number
Caros008267 in the ORCAE database: http://bioinformatics.psb.
ugent.be/orcae16) was annotated as a progesterone reductase, the
second (Caros003452) as an aldehyde dehydrogenase and the
third (Caros009903) as a 12-oxophytodienoate reductase. We also
identified four P450s (Caros020058, Caros001222, Caros018961
and Caros005234) and one UGT (Caros009839) that showed
close co-expression with GES/G8O (Fig. 2a). The first
oxidoreductase (Caros008267) was found to encode the recently
described iridoid synthase12, thus confirming the validity of our
screening strategy. The others were selected for further functional
analysis. We also verified the co-expression of these candidate
genes in the publicly available data set from the Medicinal Plant
Genomics Resource consortium (http://medicinalplantgenomics.
msu.edu), which has been integrated into the ORCAE website
(http://bioinformatics.psb.ugent.be/orcae16). This analysis strongly
supported our selection of candidate genes (Fig. 2b).

The tissue localization of the enzymes in the leaf was used
as a second criterion to pinpoint the most promising candidate
genes. This was investigated using proteomics on epidermal
and mesophyll protoplasts isolated from C. roseus leaves.
The proteomics analysis resulted in the identification of
2,200 proteins. Three P450s (Caros005234, Caros006766 and
Caros020058) and one UGT (Caros020739) were enriched in the
mesophyll fraction, whereas one P450 (Caros007986), one
UGT (Caros004449) and nine oxidoreductases (Caros022489,
Caros002459, Caros017236, Caros002170, Caros012730,
Caros006689, Caros007544, Caros021570 and Caros003491) were
enriched in the epidermal fraction. One P450 (Caros003164) was
present in both tissues (Fig. 2c and Supplementary Table 1).

Caros003452 is the missing 8-hydroxygeraniol oxidoreductase.
The three oxidoreductases (Caros008267, Caros003452 and
Caros009903) were produced in Escherichia coli and purified for
in vitro enzyme assays. Confirming a previous report12, the
putative progesterone reductase (Caros008267) was shown to
possess IS activity in the presence of 8-oxogeranial, yielding
a mixture of cis-trans-iridodial and cis-trans-nepetalactol.
Caros003452 was active with the substrates 8-OH-geraniol,
8-OH-geranial and 8-oxogeraniol in the presence of NADþ ,
yielding mixtures of the three compounds and 8-oxogeranial in
varying relative amounts depending on the combination and the
incubation time (Fig. 3). The enzyme was therefore coined
8-hydroxygeraniol oxidoreductase (8-HGO). With the cofactor
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NADþ it did not convert 8-oxogeranial (Fig. 3), and it was not
active with any of the substrates listed above in the presence of
NADPþ /NADPH. Relatively high activity was observed with
some other primary alcohols such as geraniol (Supplementary

Table 2). Given the complex kinetics, with four interconvertible
compounds and eight possible reactions, the reaction constants
could not be determined.

CYP76A26 is the missing iridoid oxidase. Six candidate
P450 genes (CYP76A26, CYP81Z1, CYP81Q32, CYP72A224,
CYP71AY1 and CYP71AY2) were transferred to a yeast expres-
sion vector and co-expressed in Saccharomyces cerevisiae together
with the P450 reductase ATR1 from Arabidopsis thaliana20

(Supplementary Fig. 2). Functional screening was carried out as
described21 with geraniol, 8-hydroxygeraniol, 8-hydroxygeranial,
8-oxogeraniol, 8-oxogeranial, iridodial, iridotrial, 7-deoxyloganic
acid and 7-deoxyloganetic acid as potential substrates. CYP76A26
converted both iridodial and iridotrial into 7-deoxyloganetic acid.
The cis-iridodial and trans-iridodial freely interconverted with
cis-trans-nepetalactol12, and although CYP76A26 seemed to use
the bicyclic nepetalactol as the preferred substrate, the
monocyclic cis- and trans-iridodials were also utilized, possibly
after spontaneous conversion into nepetalactol (Fig. 4). The
interconversion and sequential metabolism of nepetalactol and
the iridodials in aqueous solution prevented reliable evaluation
of the catalytic parameters with these substrates. Iridotrial
was previously proposed as an intermediate of the secologanin
pathway8. Whereas we never detected iridotrial as an
intermediate in the iridodial to 7-deoxyloganetic acid
conversion under conditions more likely to capture early
reaction products such as low substrate concentrations, short
incubations or low temperature, the latter was very efficiently
converted into 7-deoxyloganetic acid with a Kmapp of 25 mM
and kcat of 5.2 s� 1 (Supplementary Fig. 3). This suggests that
CYP76A26 is a multifunctional P450 enzyme catalysing
successive hydroxylation/dehydration steps via a mechanism
similar to that recently described for CYP701A3, which catalyses
the conversion of kaurene to kaurenoic acid in the biosynthesis of
gibberellins22.

As the related G8O (CYP76B6) was previously shown to
oxidize several (other) monoterpene alcohols in addition to
geraniol9, these compounds were also tested as potential
substrates for CYP76A26. The enzyme converted 8-oxogeraniol
into an unidentified product (Supplementary Fig. 4), albeit with a
low efficiency, and catalysed the hydroxylation of linalool, nerol,
citronellol and lavandulol, but not geraniol (Supplementary
Fig. 4; Supplementary Table 3). CYP76A26 thus catalyses the
conversion of iridodial into 7-deoxyloganetic acid and was
consequently named iridoid oxidase (IO; Fig. 1).

UGT709C2 is 7-deoxyloganetic acid glucosyl transferase. The
UGT (Caros009839 or UGT709C2), produced in E. coli, catalysed
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the glucosylation of 7-deoxyloganetic acid to form 7-deoxyloganic
acid using UDP-glucose as the sugar donor (Fig. 5). The enzyme
had a Kmapp of 9.8 mM and a kcat of 1.25 s� 1 (Supplementary
Fig. 5). The enzyme was inactive with loganetic acid, loganetin,
iridodial, iridotrial, 8-OH-geraniol, jasmonic acid, gibberellic
acid, indole acetic acid, salicylic acid, abscisic acid, zeatin and
luteolin. It thus behaved as a selective 7-deoxyloganetic acid
glucosyl transferase (7-DLGT; Fig. 1).

CYP72A224 is the 7-deoxyloganic acid hydroxylase. Despite its
poor expression in yeast, CYP72A224 catalysed the conversion of
7-deoxyloganic acid into loganic acid in yeast microsomes (Fig. 6)
with a Kmapp of 400 mM and a Vmax of 0.01 pmol s� 1 per mg
microsomal protein (Supplementary Fig. 6). kcat could not be
determined due to low expression in yeast preventing precise
quantification of the enzyme concentration. Owing to the low
expression of CYP72A224 in yeast, a N. benthamiana leaf-disc
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assay was also carried out to further confirm its role in loganic
acid formation (Supplementary Fig. 7). The aglycone derivative of
7-deoxyloganic acid (7-deoxyloganetic acid) was not a substrate
for CYP72A224, confirming that glycosylation precedes hydro-
xylation of the cyclopentane ring. CYP72A224 was thus named
7-deoxyloganic acid hydroxylase (7-DLH).

CYP72A224 belongs to the same P450 subfamily as secologa-
nin synthase (SLS; CYP72A1), which catalyses the conversion of
loganin into secologanin10. Both of these P450s use glycosylated
substrates and have similar regiospecificities, suggesting that SLS
evolved from 7-DLH thus extending the iridoid pathway to the

secoiridoids. The overlap in their substrate specificities was
therefore investigated (Supplementary Fig. 8). As SLS showed no
7-DLH activity and vice versa, our proposed evolutionary process
appears to have yielded specific and mutually exclusive catalytic
activities for each enzyme.

Tissue-specific and subcellular localization of the pathway.
Efficient pathway engineering requires precise knowledge of
the cellular and subcellular organization of different pathway
components. IO, 7-DLH, 8-HGO and 7-DLGT were therefore
expressed as green fluorescent protein fusions in C. roseus cells
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together with mCherry markers for nucleus, cytosol, endoplasmic
reticulum (ER), plastids, mitochondria or peroxisomes. This
revealed that IO and 7-DLH are ER-associated as predicted,
whereas 8-HGO and 7-DLGT are soluble proteins found in the
cytosol and the nucleus (Supplementary Fig. 9). Previous in situ
transcript analysis18,19,23 suggested that a pathway intermediate is
translocated from IPAP cells (the site of the early biosynthetic
steps) to the epidermis, where the final steps of the pathway
occur. In situ hybridization showed that 8-HGO, IO, 7-DLGT and
7-DLH are expressed in the same tissue as G8O (Fig. 7). The
separate clustering of the expression of these genes (Fig. 2a) and
the similar tissue-specific transcript localization suggest that these
genes constitute a transcriptional regulon for the production of
loganic acid in IPAP cells. The epidermis-specific positive control
SGD confirms the localization of the next transcriptional regulon,
consisting of LAMT, SLS, STR and TDC, in the epidermis. The
existence of this regulon is supported by the highly similar
co-expression profiles of these genes as shown in Fig. 2a.

Reconstitution of strictosidine synthesis in N. benthamiana.
The identification of the four enzymes described above allowed us
to propose a complete secologanin pathway (Fig. 1), which we
tested by stepwise combinatorial transient expression of the
corresponding genes in N. benthamiana (Fig. 8). To boost sub-
strate availability for the pathway, a geranyl diphosphate
synthase from Picea abies (PaGPPS)24 and a geraniol synthase
from Valeriana officinalis (VoGES)25 were used because
the C. roseus orthologues were not available at the onset of
these studies. The transient expression of PaGPPSþVoGES in
N. benthamiana resulted in the formation of geraniol, but also
several additional oxidized and glycosylated derivatives were
detected, presumably produced by endogenous N. benthamiana
enzymes as previously reported25. The stepwise addition of G8O
and IS resulted in the generation of new compounds, including
new derivatives of the anticipated pathway intermediates
(combinations 1, 2 and 4 in Fig. 8a,b; Supplementary Fig. 10).
In contrast, the addition of 8-HGO to the combination
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PaGPPSþVoGESþG8O only modified the existing product
profile quantitatively but did not generate any new compounds
(combination 3 in Fig. 8a,b; Supplementary Fig. 10). This is
probably due to the fact that endogenous N. benthamiana
enzymes have similar activity as 8-HGO (Supplementary Fig. 11).
When IO was co-expressed with PaGPPSþVoGESþG8Oþ 8-
HGOþ IS (combination 5), the metabolic profile did not change,
and 7-deoxyloganetic acid and its derivatives were not detected
(Fig. 8a,b). However, reconstitution of the pathway up to 7-DLGT
(combination 6) was successful and resulted in the production of

7-deoxyloganic acid and putative acetylated 7-deoxyloganic acid
(Fig 8a,c). Without IO, these products were not detected
(Supplementary Fig. 12), indicating that IO is functional in
N. benthamiana and is an essential part of the biosynthesis
pathway. These findings also illustrate the importance of full
pathway coverage for functional analysis of individual enzymes.

Subsequently, the entire postulated secologanin pathway
(PaGPPS to SLS) was introduced by agroinfiltration; however,
this only yielded products up to 7-deoxyloganic acid. Therefore,
we increased the input halfway into the pathway by infiltrating
the intermediates iridodial, iridotrial or 7-deoxyloganic acid in
combination with the pathway genes. In all cases this resulted in
the production of secologanin, indicating that the second half of
the pathway is also functional (Fig. 8d). When 7-DLH, LAMT or
SLS were omitted from combination 9—with infiltration of the
intermediates iridodial, iridotrial or 7-deoxyloganic acid—no
secologanin was detected showing that all conversions require the
infiltrated C. roseus genes (Supplementary Fig. 13). Finally, we
tested whether the biosynthesis pathway up to secologanin can be
functionally combined with the tryptamine branch of the MIA
pathway. When the secologanin biosynthesis pathway genes were
co-infiltrated with the tryptophan decarboxylase (TDC) and
STR genes, and the flux through the pathway was boosted by
co-infiltration of the intermediates iridodial, iridotrial or
7-deoxyloganic acid, strictosidine was indeed produced (combi-
nation 10 in Fig. 8d).

Discussion
Whereas feeding experiments clearly indicated that secologanin is
derived from geraniol26, the exact sequence of intermediates and
enzymes leading to the formation of its penultimate precursor
loganic acid was still obscure. We report here four novel enzymes
that together with two previously reported enzymes12,13 fill the
existing gaps and thereby provide a full description of the core
(seco)iridoid pathway. Geraniol is converted to secologanin by
the sequential action of four different cytochrome P450 enzymes,
two different oxidoreductases, one glucosyltransferase and one
methyltransferase. The missing enzymes and corresponding
genes were identified by a combination of transcriptomic and
proteomic approaches exploiting the current knowledge of the
spatiotemporal regulation of the secoiridoid pathway.

Our results also address longstanding questions in the field.
First, as previously proposed for oxidoreductase proteins purified
from Rauwolfia serpentina and Nepeta racemosa27,28, 8-HGO
catalyses two successive and reversible oxidation steps for
the formation of 8-oxogeranial. Therefore, two enzymes can
contribute to the formation of the intermediate 8-oxogeraniol.
G8O was recently shown to also produce 8-oxogeraniol from
geraniol21, thus G8O and 8-HGO appear to catalyse partially
overlapping (and in the case of G8O, monodirectional) oxidation
reactions that result in the production of 8-oxogeraniol from
8-hydroxygeraniol (Fig. 1). Second, a single cytochrome P450
enzyme IO/CYP76A26 can convert cis-trans-iridodial and
cis-trans-nepetalactol into 7-deoxyloganetic acid without the
release of an iridotrial intermediate. Third, our data
demonstrate that 7-deoxyloganetic acid glycosylation precedes
its further oxygenation by 7-DLH. This answers the longstanding
question which intermediate is transferred from IPAP cells to the
epidermis. The expression of 7-DLH in IPAP cells indicates that
loganic acid is the mobile intermediate transferred to the
epidermis, and hence that glycosylation by 7-DLGT is not
sufficient for mobility but that further hydroxylation by 7-DLH is
also required. The tissue-specific expression of pathway sections
may increase the flux through the pathway by alleviating feedback
inhibition by intermediates and products, and/or it may segregate
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the iridoid and secoiridoid/MIA pathways, allowing them to fulfill
tissue-specific functions.

Pathway reconstitution experiments in a heterologous host
validated the enzyme sequence leading to the formation of
strictosidine (Fig. 1). We however observed a low flux through the
pathway in the leaves of N. benthamiana. Previous experiments
carried out with the upstream segment of the pathway indicated
substantial conversion of intermediate products to other oxidized,
acetylated, malonylated and glycosylated derivatives by endogen-
ous N. benthamiana enzymes21. Despite downstream channeling
of intermediates upon reconstruction of the full pathway,
competing conversions are still observed and are probably
responsible for the low flux. This would, for example, explain
why we cannot see the product of IO upon infiltration of pathway
combination 5 (Fig. 8; Supplementary Fig. 12). Nevertheless, we
know that IO is functional because infiltration of combination
9 or 10 with iridodial did result in production of secologanin or
strictosidine, respectively (Fig. 8d). Side reactions could possibly
be eliminated by further metabolic engineering. The side products
obtained in our experiments may also provide valuable
information on the enzyme networks naturally present in
N. benthamiana and could be leads for combinatorial
biochemistry programmes to produce chemical diversity and
novel bioactive compounds.

In conclusion, we have identified the four missing enzymes in
the secologanin pathway in C. roseus. In combination with the
genes previously identified, the genes encoding these four
enzymes are sufficient to engineer secologanin production and,
together with TDC and STR, biosynthesis of the complex alkaloid
strictosidine in the heterologous plant N. benthamiana. Although
different segments of the strictosidine pathway are localized
in different cell types in C. roseus, our results show that the
entire pathway can be successfully reconstituted in a single
N. benthamiana organ. This paves the way for the biotechnolo-
gical production of valuable (seco)iridoids and derived com-
pounds, such as the MIAs vincristine and vinblastine, making
these important anticancer drugs available to more people and at
a lower price.

Methods
Chemicals. The substrates 8-carboxygeranial, 8-carboxygeranic acid, 8-oxogeranic
acid and 8-hydroxygeranic acid were synthesized on order by Synthelor
(Vandoeuvre-Lès-Nancy, France), whereas 8-OH-geraniol, 8-oxogeraniol,
8-OH-geranial and 8-oxogeranial were synthesized by Chiralix B.V. (Nijmegen,
Netherlands). Iridodial-glucoside, iridotrial-glucoside and 7-deoxyloganic acid
were synthesized from aucubin extracted from Aucuba japonica leaves by Chiralix
B.V. as described29,30. The aglucone iridoid pathway intermediates were produced
by incubation with almond b-glucosidase (Sigma-Aldrich) in 50 mM acetate buffer
(pH 5). Loganetic acid and loganetin were produced by the deglucosylation of
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loganic acid and loganin (Extrasynthese). Aglycones were extracted with diethyl
ether, evaporated under N2 and quantified by 1H-NMR (1H-nuclear magnetic
resonance).

Transcriptomic analysis. Transgenic derivatives of C. roseus cell line MP183L
(overexpressing the ORCA transcription factors) were generated by particle
bombardment31 with derivatives of the pER8 plasmid32 carrying either the ORCA2
or ORCA3 open reading frames (ORFs). Selected transgenic lines were treated for
24 h with 10mM estradiol, and RNA was isolated as described16. Illumina
HiSeq2000 RNA sequencing, assembly, annotation and mapping of the RNA-Seq
reads on the reference transcriptome was carried out as described16. Complete
linkage hierarchical cluster analysis was achieved using the CLUSTER and
TREEVIEW software33 and the log10 transformed values of the normalized FPKM
values were used as input for CLUSTER.

Proteomic analysis. For the plant material of C. roseus var. little Bright Eyes seeds
were sown in sterilized soil and covered with transparent plastic until germination.
The soil was kept humid. The plants were fertilized weekly with 0.2% liquid Wuxal
(29 g l� 1 nitrate-N; 46 g l� 1 ammonium-N; 25 g l� 1 carbamide-N; 100 g l� 1 P2O5

total phosphate; 75 g l� 1 K2O; 124 mg l� 1 B; 50 mg l� 1 Cu; 248 mg l� 1 Fe; Cu, Fe,
Mn and Zn as EDTA-chelate). The plants were re-potted twice during further
growth. For the isolation of epidermal protoplasts, young, light-green C. roseus
leaves (length 4–7 cm) from side branches (without buds or flowers) of 8- to
11-week-old plants were harvested for protoplast isolation. The mid-vein was
removed and the leaves were cut into 1- to 2-mm strips. Protoplasts were isolated
as described34. To collect epidermal protoplasts, a layer of 1-ml betaine solution
(0.5 M betaine, 1 mM CaCl2, 10 mM MES, pH 5.6 with KOH) was added on top
of the tubes containing the protoplast mix. After centrifugation for 7 min at
1,500 r.p.m. and 4 �C, epidermal protoplasts were collected from the upper
interphase. The suspension was mixed with 4-ml protoplast solution and 25%
Percoll (pH 6), and overlaid with 1.5 ml of betaine solution for a second
purification step. The tubes were centrifuged at 700 r.p.m. for 30 min and the
epidermal protoplasts were again collected from the upper interphase. Protoplasts
were pelleted in the betaine solution. Isolation of mesophyll protoplasts was
performed as described for the epidermal protoplasts with replacement of the MCP
solution with TEX solution (3.2 g l� 1 Gamborg’s B5 medium, 3.1 mM NH4NO3,
5.1 mM CaCl2, 2.6 mM MES, 0.4 M sucrose, pH 5.6–5.8 with 0.5 M KOH), and the
betaine solution was replaced with mannitol/W5 (1 mM D-glucose, 30 mM NaCl,
25 mM CaCl2, 1 mM KCl, 0.3 mM MES, 320 mM a-mannitol, pH 5.6–5.8 with
KOH). For the first gradient, 5–10% Percoll (pH 6) was added instead of 3–5%. The
protoplast pellet was resuspended in 2–4 ml buffer A (20 mM HEPES pH 7.2,
1 tablet per 10 ml Roche Protease Inhibitor, 1 mM PMSF). The mixture was pressed
10–20 times through a syringe with needle and centrifuged for 10 min at
3,000 r.p.m. and 4 �C. The samples were ultra-centrifuged for 1 h at 30,000 r.p.m.
The membrane pellets were dissolved in 1 ml washing solution (0.3 M NaCI,
20 mM HEPES-KOH pH 7.2, 1 tablet per 10 ml Roche Protease Inhibitor, 1 mM
PMSF) by stirring with a small brush, and then vortexed for 30 s. The microsomes
were frozen at –80 �C for at least 1 h, thawed and then centrifuged for 1 h at
30,000 r.p.m. and 4 �C. The pellets were dissolved in 50–100 ml buffer A for further
analysis. The protein concentration was determined using the Bio-Rad DC protein
assay according to the manufacturer’s instructions.

For mass spectrometry analysis, B50 mg of protein was separated by one-
dimensional gel electrophoresis35 in 10% polyacrylamide gels to reduce sample
complexity. The gels were stained with Coomassie Brilliant Blue, the lanes were cut
into 10 slices, the proteins were reduced with tris(carboxyethyl)phosphine
hydrochloride and sulhydryl groups were blocked with iodoacetamide. In-gel
digestion with sequencing-grade-modified trypsin (Promega V5111) was carried
out overnight at 37 �C36. The resulting peptides were recovered by adding 40 mM
Tris-HCl (pH 8.0) and 50% acetonitrile/1% formic acid. The peptide mixtures were
desalted by solid-phase extraction on C18 reversed-phase columns and analysed on
an LTQ Orbitrap mass spectrometer (Thermo Fischer Scientific, Bremen,
Germany) coupled to an Eksigent Nano HPLC system (Eksigent Technologies,
Dublin, CA, USA) as previously described37. For protein identification, databases
were searched using Mascot v2.3. Raw data were searched against a composite
database consisting of all entries in the NCBI Viridiplantae database (released in
November 2010), all publicly available C. roseus-expressed sequence tags
(downloaded from NCBI in November 2010) and the reference transcriptome
released on CathaCyc and ORCAE16 (database contained forward and reverse
protein entries, total number of protein entries 1,166,013). The parameters for
precursor and fragment ion mass tolerance were set to 5 p.p.m. and 0.8 Da,
respectively. One missed trypsin cleavage was allowed. Carboxyamidomethylation
of cysteine was specified as fixed modification, and oxidation of methionine and
pyroglutamate formation from glutamine were selected as variable modifications.
Scaffold v3.0 (Proteome Software, Portland, OR, USA) was used to validate and
quantify MS/MS-based peptide and protein identifications. Peptide identifications
were accepted if they were established at 495% probability as specified by the
Peptide Prophet algorithm38. Protein identifications were accepted if they were
established at 490% probability and at least one peptide was uniquely assigned to
a corresponding protein in a minimum of two of our samples. Protein probability
was assigned by the Protein Prophet algorithm39. Proteins that were identified with

the same set of peptides and could not be differentiated by the MS/MS analysis
were grouped to protein clusters to satisfy the principles of parsimony. Peptide and
protein false-discovery rates (FDR) were determined by the Scaffold software.
A peptide FDR of 0.01% and a protein FDR of 0.2% were computed. The Scaffold
software was also used to determine protein abundance in the mesophyll and
epidermal factions based on the number of spectra assigned to each protein.
An F-test was applied to assess significant differences in protein abundances.

Gene isolation. ORFs were amplified by PCR from a pACT2 cDNA library of a
C. roseus cell culture elicited with yeast extract40 using the primers listed in
Supplementary Table 4. For expression in plants, the ORFs were transferred to
vector pRT101 (ref. 41) to bring them under the control of the Cauliflower Mosaic
Virus 35S promoter, and the expression cassettes were then transferred to the
binary vector pCAMBIA1300 (Cambia). For expression in E. coli, the ORFs were
transferred to vector pASK-IBA45plus (IBA) and/or pET16-H (Novagen pET-16b
derivative). Probes for in situ hybridization were prepared from the same ORFs
cloned in pBluescript II SKþ . For localization analysis, the ORFs were transferred
to vector pTH2 (refs 42,43) and/or pTH2BN (a derivative of pTH2). The marker
for nucleocytosolic localization (pRT101-mCherry) was prepared by amplifying the
mCherry ORF from plasmid ER-rk44 (The Arabidopsis Information Resources,
TAIR, clone CD3-959).

Isolation of His-tagged recombinant proteins. Recombinant proteins carrying a
His6 tag were expressed using plasmid pASK-IBA45plus and/or pET16-H in E. coli
strain BL21 (DE3) pLysS and were purified using Ni-NTA agarose chromatography
(Qiagen). For quality analysis, the recombinant proteins were separated by 12.5%
(w/v) SDS–PAGE, transferred to Protran nitrocellulose membranes (Whatman) by
semidry electroblotting, and western blots were probed with mouse monoclonal
anti-His horseradish peroxidase-conjugated antibodies (5Prime). Antibody binding
was detected by incubation in 250mM sodium luminol, 0.1 M Tris–HCl (pH 8.6),
3 mM H2O2 and 67mM p-coumaric acid, followed by exposure to an X-ray film.

Enzymatic assays of UGT and oxidoreductases. UGT activity was detected in
0.1-ml reaction buffer containing 50 mM potassium phosphate (pH 7.5), 2 mM
UDP-glucose, 5–1,000 mM 7-deoxyloganetic acid or 2 mM of other tested
compounds and 50–1,000 ng of purified enzyme. Reactions were incubated at 32 �C
for 15 min and stopped by adding 1 volume of methanol, mixed by vortexing and
kept on ice for 10 min. The tubes were centrifuged at 4,000 g for 10 min, and the
supernatants were passed through 0.22-mm nylon filters.

Oxidoreductase activity was detected in 1-ml reaction buffer containing 50 mM
bis-tris propane (pH 9 for oxidation and pH 7.5 for reduction), 2–1,000 mM
8-OH-geraniol, 8-oxogeraniol, 8-OH-geranial, 8-oxogeranial or other tested
compounds, 2–2,000 mM NADþ or NADH and 50–1,000 ng of purified enzyme.
Reactions were incubated for 15 min at 32 �C, stopped by adding 0.2 volumes of
1 M sodium citrate (pH 3) and centrifuged and filtered as above. Quantitative
assays were carried out by measuring NADH production at 340 nm in a
Nanodrop2000c (Thermoscientific)

Chromatographic analysis of 8-HGO and 7-DLGT products. Identification of
8-HGO enzyme products was performed using capillary gas chromatography mass
spectrometry. The ethyl acetate extract of the reaction mixture was separated on a
Agilent GC 7890A series equipped with a 5975C MSD and DB-5 capillary column
(30 m� 0.25 mm, film thickness of 0.25 mm; JpW Scientific). Helium gas was used
as a carrier at a flow rate of 1.2 ml min� 1. The separation conditions were as
follows: split mode 1:5, injection volume 5 ml, injector temperature 230 �C, initial
oven temperature 60 �C, and then linear gradient to 100 �C at a rate of
20 �C min� 1 followed by a linear gradient to 160 �C at a rate of 2 �C min� 1

(run time 32 min). Analysis of 7-DLGT products was carried out using an Agilent
series 1200 HPLC with a diode array detector and a Polymer Laboratories PL-ELS
2100 ICE evaporative light scattering detector and a Phenomenex Luna 5 micron
150� 4.6-mm C18 column. The injection volume was 10 or 100 ml. The binary
solvent system consisted of acetonitrile and 0.1% trifluoroacetic acid in water. The
elution program was as follows: 5 min isocratic 10% acetonitrile and then 25 min
gradient until 95% acetonitrile. Peak areas were calculated using Agilent
ChemStation.

NMR. Structures of enzyme products were analysed by NMR spectroscopy in
750 ml of acetone-d6 or methanol-d4 in a 5-mm NMR glass tube45.

Subcellular localization studies. C. roseus MP183L cell suspension cultures were
maintained by weekly 10-fold dilution in 50 ml Linsmaier & Skoog (LS) medium
containing 88 mM sucrose, 2.7 mM 1-NAA and 0.23 mM kinetin (LS-13). The cells
were grown at 25 �C with an 18/6-h light–dark cycle. The cells were bombarded28

using the plasmids pTH2-IO, pTH2-7-DLH, pTH2-7-DLGT, pTH2BN-7-DLGT,
pTH2-8-HGO and pTH2BN-8-HGO. The first two were combined with equal
amounts of the ER marker ER-rk, and the others with the nucleocytosolic marker
mCherry44. Bombarded cells were placed on Petri dishes with LS-13 medium and
viewed after 24 h using a Zeiss Observer laser scanning microscope.
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In situ hybridization. pBluescript plasmid derivatives containing the cDNAs for
8-HGO, IO, 7-DLGT and 7-DLH were used for the synthesis of antisense and sense
digoxigenin-labelled riboprobes as previously described19. G8O antisense probes19

and SGD antisense probes46 were used as internal phloem-associated parenchyma
and epidermis markers, respectively. Paraffin-embedded serial longitudinal sections
of young developing leaves were hybridized with digoxigenin-labelled riboprobes
and localized with antidigoxigenin-alkaline phosphatase-conjugated antibodies47.

P450 expression in yeast and enzyme assays. P450-coding sequences were
amplified from pRT101 source vectors using specific primers to introduce USER
sites at the ends of each sequence. The genes were subsequently transferred to the
plasmid pYeDP60 using the USER cloning technique (New England Biolabs,
Ipswich, UK)48. The resulting recombinant plasmids were introduced into
S. cerevisiae strain WAT11, cultivated at 28 �C and P450 expression was induced
as described21. Cells were harvested by centrifugation and manually broken with
0.45-mm glass beads in 50 mM Tris–HCl buffer (pH 7.5) containing 1 mM EDTA
and 600 mM sorbitol. The homogenate was centrifuged for 10 min at 10,000 g and
the supernatant was centrifuged for 1 h at 30,000 g. The pellet, comprising
microsomal membranes, was resuspended in 50 mM Tris–HCl (pH 7.4), 1 mM
EDTA and 30% (v/v) glycerol with a Potter-Elvehjem homogenizer and stored
at –20 �C. All procedures for microsomal preparation were carried out at 0–4 �C.
P450 expression was evaluated as described49 and enzymatic activities were
determined in a standard 0.1 ml assay comprising for IO 2.3 nmol cytochrome
P450, 0.6 mM NADPH and substrate in 20 mM sodium phosphate (pH 7.4). The
reaction was initiated by the addition of NADPH and was stopped after 5 min by
the addition of 10ml 1 M HCl. Iridoids were extracted in 1 ml ethyl acetate, and the
organic phase was concentrated to 200 ml before GC-FID analysis on a Varian 3900
gas chromatograph (Agilent Technologies) equipped with a flame ionization
detector and a DB-5 column (30 m, 0.25 mm, 0.25 mm; Agilent Technologies)
with splitless injection, at 250 �C injector temperature, and with a temperature
programme of 0.5 min at 50 �C, 10 �C min� 1 to 320 �C, and 5 min at 320 �C.
For 7-DLH, 10ml of yeast microsomes expressing 7-DLH (130 mg of microsomal
protein) were incubated for 20 min at 27 �C, in 0.1 ml of 20 mM Na-phosphate
(pH 7.4) containing 0.6 mM NADPH and substrate. The reaction was initiated by
the addition of NADPH and was stopped after 20 min on ice. After addition of
50ml of 50% acetic acid, tubes were vortexed and centrifuged. The supernatant was
run on reverse-phase HPLC (Alliance 2695 Waters system, NOVA-PAK C18
4.6� 250 mm column) with photo-diode array detection at 236.5 nm. Peak areas of
the product(s) were used to calculate the catalytic parameters of each enzyme.

Leaf disc assays. Five-week-old N. benthamiana leaves were infiltrated with
A. tumefaciens transformed with vector pCAMBIA1300 containing the relevant
candidate genes, plus the helper plasmid p19. Five days post infiltration, leaves
were used in a leaf disc assay as previously described21.

Pathway reconstruction in N. benthamiana. The pathway genes were transiently
expressed in the leaves of five-week-old N. benthamiana plants by agroinfiltration
as previously described25. Briefly, bacteria carrying the relevant expression
constructs (PaGPPS, VoGES, G8O, 8-HGO, IS, IO, 7-DLGT, 7-DLH, LAMT, SLS,
TDC, STR, empty vector or TBSV p19 (ref. 50)) were grown individually at 28 �C
for 24 h. Cells were harvested by centrifugation and then resuspended in infiltration
buffer containing 10 mM MES (Duchefa Biochemie), 10 mM MgCl2 and 100 mM
acetosyringone (40-hydroxy-30 ,50-dimethoxyacetophenone, Sigma) to a final OD600

of B0.5. For all gene combinations that compared subsequent steps in the
pathway, the amounts of cell suspension for each expression construct were kept
constant by adding the corresponding amount of A. tumefaciens carrying an empty
vector. All infiltrations were performed in three replicates. In several experiments,
pathway intermediates were injected into the same leaves 3 days after
agroinfiltration. Compounds used for infiltration were diluted to a final
concentration of 400 mM in methanol/water (1:19), with the same ratio of
methanol/water alone as a negative control and 400 mM 7-deoxyloganic acid,
8-carboxygeranic acid, secologanin or strictosidine as positive controls. Leaves were
harvested for metabolite analysis 5 days after agroinfiltration. Frozen, powdered
N. benthamiana leaves (200 mg aliquots) were extracted in 0.6 ml 99.867%
methanol, 0.133% formic acid and 5 ml of the extract was analysed using a Waters
Alliance 2795 HPLC connected to a QTOF Ultima V4.00.00 mass spectrometer
(Waters, MS Technologies, UK). Measurements were taken in negative ionization
mode. LC-MS data were acquired using MassLynx 4.0 (Waters) and processed
using MetAlign version 1.0. The normalized and log-transformed data matrix
was used for principal component analysis implemented in GeneMath XT v 2.1.
ANOVA was used to evaluate the statistical significance of differences in metabolite
levels between all treatments.
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