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A B S T R A C T

Forensic scientists are currently investigating how to transition from capillary electrophoresis (CE) to

massive parallel sequencing (MPS) for analysis of forensic DNA profiles. MPS offers several advantages

over CE such as virtually unlimited multiplexy of loci, combining both short tandem repeat (STR) and

single nucleotide polymorphism (SNP) loci, small amplicons without constraints of size separation, more

discrimination power, deep mixture resolution and sample multiplexing. We present our bioinformatic

framework My-Forensic-Loci-queries (MyFLq) for analysis of MPS forensic data. For allele calling, the

framework uses a MySQL reference allele database with automatically determined regions of interest

(ROIs) by a generic maximal flanking algorithm which makes it possible to use any STR or SNP forensic

locus. Python scripts were designed to automatically make allele calls starting from raw MPS data. We

also present a method to assess the usefulness and overall performance of a forensic locus with respect to

MPS, as well as methods to estimate whether an unknown allele, which sequence is not present in the

MySQL database, is in fact a new allele or a sequencing error. The MyFLq framework was applied to an

Illumina MiSeq dataset of a forensic Illumina amplicon library, generated from multilocus STR

polymerase chain reaction (PCR) on both single contributor samples and multiple person DNA mixtures.

Although the multilocus PCR was not yet optimized for MPS in terms of amplicon length or locus

selection, the results show excellent results for most loci. The results show a high signal-to-noise ratio,

correct allele calls, and a low limit of detection for minor DNA contributors in mixed DNA samples.

Technically, forensic MPS affords great promise for routine implementation in forensic genomics. The

method is also applicable to adjacent disciplines such as molecular autopsy in legal medicine and in

mitochondrial DNA research.

� 2013 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-

SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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1. Introduction

Forensic DNA profiles of short tandem repeat loci are currently
obtained using PCR followed by capillary electrophoresis (CE). CE
separates fluorescently labeled PCR products based on their length
[1]. Because of this, in order to produce unambiguous allele calls, the
size ranges of STR loci with the same fluorescent tag must not
overlap. This limits the number of loci that can be investigated in a
single PCR and in a single capillary injection. Massive parallel
sequencing (MPS) technologies, also known as second or next
generation sequencing, do not rely on size separation and thus
§ This is an open-access article distributed under the terms of the Creative
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permits non-commercial use, distribution, and reproduction in any medium,

provided the original author and source are credited.
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sa/3.0/).
relieve the limitation on locus multiplexy [2,3]. Additionally,
multiple samples can be multiplexed at the same time in a single
run. MPS allows for analysis of millions of individual DNA strands
(reads) in a DNA mixture, which in theory would allow for high
resolution mixture analysis. Sequencing also makes it possible to
detect single nucleotide polymorphisms (SNPs) and STR sequence
variants in addition to the gross STR repeat number [4]. This allows
analysts to tell the difference between equilength alleles in a DNA
mixture. Certain mass spectrometry techniques also make it possible
to differentiate equilength alleles, but complete characterization of
polymorphism can only be accomplished by sequencing [5].

Forensic scientists are currently investigating how to transition
from CE to MPS. Several bioinformatic tools are being developed
to that end [2,6–8]. Previously, we reported that sequencing
of multiplexed STR amplicons using Roche GS FLX titanium
technology was technically feasible both in single contributor
samples and in multiple person DNA mixtures, notwithstanding a
article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-
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poor performance for some frequently used forensic loci [6]. For
those loci, the GS FLX reads needed to be transformed by a
homopolymer-compression algorithm to obtain results consistent
enough for mixture analysis. In the GS FLX STR analysis, the reads
needed to be clustered around a consensus sequence. The region of
interest (ROI) was set using fixed flanking based on the specific PCR
primers for each locus. A signal threshold was used to determine
which read clusters are considered a signal and which clusters are
considered noise.

In the current study we created a general bioinformatic
framework, that we call My-Forensic-Loci-queries (MyFLq), for
analyzing MPS-generated forensic data. It is designed to handle
multiple locus types, including STR length polymorphisms and
SNPs. The framework uses a MySQL reference allele database with
automatically determined ROIs and python scripts to compare MPS
sequences against the known allele database. We also present a
method to asses the usefulness and overall performance of a
forensic locus when used in an MPS analysis, and a method to
estimate whether an allele which is not present in the database is
in fact a newly typed allele or a PCR/sequencing error.

The MyFLq framework was used on an Illumina MiSeq dataset of
an Illumina forensic amplicon library generated from STR multilocus
PCR on both single contributor samples and multiple person
mixtures. The multilocus PCR was not specifically optimized for
MPS in terms of criteria such as locus selection or amplicon length.
The results are promising, showing excellent results on most but not
all loci. The raw read accuracy was high enough so that the reads did
not need to be clustered around a consensus accuracy as with the GS
FLX reads [6]. The frequency of homopolymer errors in the MiSeq
data is insignificant compared to the GS FLX technology. Neverthe-
less, the homopolymer compression algorithm still proved useful to
group some reads containing errors, whether from PCR or from
sequencing, with those that were completely error-free in respect to
a contributor’s reference sequence.

The MyFLq framework has a Creative Commons open source
license (CC BY-SA 3.0). The source code is available as supplementary
material or for the latest version at http://MyFLq.UGent.van-
neste.be. Currently we are implementing it as an Illumina BaseSpace
application, which should be available by the beginning of 2014.

2. Materials and methods

2.1. Sample preparation and processing using Illumina chemistry

DNA mixtures were prepared according to Table 1 from the
following purified genomic DNA sources: K562 (Promega), 9947A
(Promega), 2800M (Promega) and two National Institute of
Standards and Technology (NIST) standard reference materials
(SRM 2391c: DNA A, DNA B). DNA concentration of each sample
was measured using the Qubit1 dsDNA HS Assay and Qubit
Fluorimeter following manufacturer’s instructions. A mixture of
four source DNAs and a mixture of five source DNAs, along with
9947A and K562 single source samples, were used in multilocus
PCR (Table 1).
Table 1
DNA composition of samples.

DNA standard Sample 1 (%) Sample 2

(%)

Sample 3

(%)

Sample 4

(%)

K562 100 0.10

9947A 40 0.50 100

NIST SRM 2391c

DNA A

30 1

NIST SRM 2391c

DNA B

20 5

2800M 10 93.40
Primer sequences were ordered without fluorescent tags
(Integrated DNA Technologies) for loci: Amelogenin, CSF1PO,
D13S317, D16S539, D18S51, D21S11, D3S1358, D5S818, D7S820,
D8S1179, FGA, PentaD, PentaE, TH01, TPOX, and vWA [9]. This
multiplex has yet to undergo optimization (e.g., for intra- and
inter-locus balance, polymerase stutter (slippage) and other
artifacts) for use in MPS. Primers were used at a concentration
of 2 mM each in PCR with 1 ng of DNA or DNA mixture in 1� Gold
STR buffer (Promega) and 0.16 U AmpliTaq GOLD (Invitrogen). The
samples were amplified using a BioRad Tetrad instrument as
follows: 95 8C for 11 min, 96 8C for 1 min; 10 cycles of 94 8C for
30 s, ramp 0.5 8C/s to 60 8C and then 30 s at 60 8C, ramp 0.2 8C/s to
70 8C and then 45 s at 70 8C; 22 cycles of 90 8C for 30 s, ramp 0.5 8C/
s to 60 8C and then 30 s at 60 8C, ramp 0.2 8C/s to 70 8C and then
45 s at 70 8C; hold at 60 8C for 30 min; 4 8C soak.

PCR products were quantified using Qubit1 (Invitrogen)
without purification. Libraries were generated by ligating TruSeq
DNA adapters to the PCR products from 50 ng of unpurified PCR
product (Illumina). Samples were subjected to 5 cycles of PCR and
purified with SPRI (TruSeq DNA Sample Preparation Guide). The
completed libraries were quantified using a qPCR assay as
recommended by Illumina.

Libraries were pooled with Phi X Universal Library and a Human
DNA library. Pooled libraries were denatured and diluted to 10 pM
following Illumina guidelines and sequenced on a MiSeq using a
MiSeq Reagent Kit v2, 500 cycles with a modified recipe. Samples
were demultiplexed using the index sequences, FASTQ files were
generated automatically using MiSeq Reporter (MSR).

2.2. MiSeq data analysis

2.2.1. The MyFLq framework

All necessary steps for an MPS forensic analysis were
incorporated into our open-source framework. MyFLq is not yet
a full application. The end results need to be statistically analyzed:
probabilities of allele calls, stutter filtering, hetero- and homo-
zygotic allele calling and visualization are not yet implemented.

The framework consists of two parts: (1) A MySQL database
backend that is populated by known reference alleles, and (2) a
Python frontend with functions for adding reference alleles to the
reference allele database, and analysis of MPS STR data from
forensic samples. The source code and documentation of all
functions can be found in supplementary materials. It also lists
specifically the functions used for this paper, and provides a short
description for each.

2.2.2. Building the reference allele database

The allele database is ideally populated with the sequences of
all known STR alleles that exist in the general population. Because
each of these sequences is currently not available, the database
was initially populated with the STR sequences from the DNA
sources in Table 1. These reference sequences were manually
inferred from the Illumina sequencing data and the STRBase allele
database [10]. They are not the best representation of population
alleles, but suffice for the current study. In the future, with MPS the
known diversity will be better determined.

After building the reference allele database, the function
processLociNames was used to determine the flanking region for
each locus. The function processLociAlleles produced a table
containing the ROI for each allele and its integer allele number (if
STR) according to standard nomenclature [11,12].

Flanking regions are the maximum right- and left-end
consensus between all alleles of a locus in the reference allele
database. Fig. 1 shows a simplified example. Each allele has two
primers, two flanks and the ROI. If the reference database alleles for
a locus only differ by the number of STR repeats and thus no SNPs,
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Fig. 1. Flanks and region of interest in the reference allele database. A generic locus with three alleles in the database is considered for two possible cases: with or without SNPs

within the STR region.
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non-consensus, or partial repeat patterns are present, one of the
alleles for that locus can have a ROI of zero length, as Fig. 1b
demonstrates. Because the ROI is calculated dynamically based on
the sequences present in the reference allele database, the ROI of
the loci can change when the reference allele database is updated.

2.2.3. STR data analysis

After building the database, all FASTQ files were analyzed with
the framework software as if they would have been from unknown
samples. Analysis consisted of following steps: (1) reads were
assigned to a locus based on the presence of both PCR primer
sequences for that locus; (2) primers and flanks were removed
from the reads, leaving only the read ROI; (3) reads were grouped
based on their exact sequence; (4) groups with an abundance
lower than 0.5% were discarded; (5) the ROI of each group was
compared to the allele database table and an allele call was made
when an exact match was found; and (6) groups within a locus
were compared to each other, a connection was flagged when two
ROIs differed by maximum two SNPs or STR size indels.

In step (2) the determination of the flanking regions was done
as follows: if a read-end matched exactly with the database flank,
the read-end was removed and flagged ‘clean’. Otherwise, the
database flank and read-end were homopolymer-compressed (two
same consecutive bases were already considered a homopolymer).
When this resulted in an exact match between those sequences,
the read-end was removed and flagged ‘compressed-clean’. If the
flank was still not removed, the read-end was flagged as ‘unclean’
and was removed by our flexible flanking algorithm (see below). In
step (4), for each group, counts were gathered on ‘clean’,
‘compressed-clean’, and ‘unclean’ read-ends. Step (6) indicates
how the ROIs in the results are interrelated. This helps forensic
researchers to decide on the likelihood of an allele call, e.g. a ROI
that is not in the database, has a low abundance in the results and
only differs by one SNP of another high abundant ROI, is probably
an error-containing ROI.

2.2.4. Flexible flanking algorithm

This algorithm always removes a flank from a read, no matter
how dissimilar to the database flank. The starting hypothesis is
that the read-end to remove is as long as the database flank. K-mers
for the database flank with increasing length are searched around
their expected index in the read. The found index is scored
depending on how informative the k-mer is: more informative if
longer and if closer to the flank-end. The score is calculated as the
square root of the product of those two values (length of k-mer and
inverse distance to database flank end). Finally, the proposed index
with the highest summed score is considered to be the most likely
ending flank position. Based on that position, the read-end is
removed. For a more in depth explanation, documentation is
provided for this algorithm in the source file in supplementary
materials.

3. Results

3.1. Setting general threshold

In the analysis of MPS STR data, groups with an abundance
lower than 0.5% were discarded (see step 4 of 2.2.3). This threshold
was arbitrarily determined based on the results in Fig. 2. Fig. 2
shows a histogram of the abundances of all grouped identical reads
for the single contributor samples. To generate this figure, the
complete sequences were considered, except for the part outside of
the primers.

Erroneous reads are expected to have much smaller abundances
than error free reads, especially in single contributor samples.
There are around 105 groups of identical reads with abundances
smaller than 0.5%, which are in the context of the single
contributor samples definitely reads with errors. The threshold
for unique reads was set to 0.5%, to avoid cluttering the results with
noise. By doing so, minor contributors which contribute less than
0.5% to the DNA mixture will not be detected.

3.2. General properties of the Illumina dataset

Table 2 shows the total number of MiSeq reads for each sample,
the number of reads filtered based on the 0.5% abundance
threshold, and the number of error free ROI after filtering. Filtered
reads consist of both reads with and without errors. Error free ROI
are the number of reads of which the complete ROI is identical to a
reference database ROI and of which the ROI is expected to be
present in the relevant sample. These reads can still have errors in
the flanks around the ROI, but these flanks are not considered when
matching the reads to the reference allele database. This
percentage is influenced by many factors such as PCR accuracy,
amplicon length, ROI and flank length, stutter, sequencing
accuracy and the abundance filter cut-off.



Table 2
General Illumina samples characteristics.

Sample 1 Sample 2 Sample 3 Sample 4

Total MiSeq reads 246,347 1,176,806 1,261,848 961,236

Filtered reads 203,181 (82%) 981,935 (83%) 1,073,164 (85%) 771,723 (80%)

Error free ROI 173,692 (71%) 912,643 (72%) 996,466 (79%) 681,918 (71%)
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Fig. 2. Histogram of the full-sequence abundances. Groups with abundances higher than 0.1 not shown.
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3.3. STR allele calls in four and five person DNA mixtures

Figs. 3–6 show the allele calls for the different samples. In the
figures, blue bars denote the theoretical abundance of the allele
based on how the samples were prepared, green bars the detected
read abundance, and red bars erroneous reads (including
polymerase stutter). Pure samples (Figs. 3 and 6), contain, at
most, two blue bars per locus. Erroneous read bars have been
drawn narrower to make it possible to show all erroneous read
Fig. 3. Sample 1 profile. Blue bars = theoretical abundance, green bars 

Fig. 4. Sample 2 profile. Blue bars = theoretical abundance, green bars 
groups. The figures are automatically generated from the MyFLq
result files (in supplementary materials), with manual addition of
the blue bars.

3.4. Progressive abundance threshold

Fig. 7 shows, after full analysis, for each locus, the percentage of
error free sequences (Y-axis) for a given abundance threshold (X-
axis). Higher abundances for erroneous sequences are less likely.
= detected read abundance, red bars = erroneous read abundance.

= detected read abundance, red bars = erroneous read abundance.



Fig. 5. Sample 3 profile. Blue bars = theoretical abundance, green bars = detected read abundance, red bars = erroneous read abundance.

Fig. 6. Sample 4 profile. Blue bars = theoretical abundance, green bars = detected read abundance, red bars = erroneous read abundance.

Fig. 7. Percentage of error free ROI for a given abundance threshold.
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When the abundance threshold is increased, the percentage of
error free sequences increases and is expected to become 100%.
Loci for which less error sequences are produced, have a lower
threshold for which 100% error free reads are remaining. Based on
this criterion, Amelogenin and D16S539 are the best performing
loci while PentaE and PentaD perform at a decreased level.
3.5. Locus quality analysis

For each locus, Table 3 shows the percentage of the theoretical
abundance which is measured as MPS signal. The theoretical
abundance can be calculated from the proportion of each
contributor to the sample (see Table 1) and are shown as blue



Table 3
MPS signal percentage of theoretical abundance.

Locus MPS signal/theoretical abundance (%) Std-error (%)

Amelogenin 95 4

CSF1PO 79 5

D13S317 89 5

D16S539 88 6

D18S51 75 6

D21S11 78 5

D3S1358 86 5

D5S818 89 5

D7S820 84 6

D8S1179 95 6

FGA 73 6

PentaD 25 5

PentaE 27 7

TH01 92 5

TPOX 90 4

vWA 85 5
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bars in Figs. 3–6. The measured signals are shown as green bars in
the same figures. When there would be no PCR errors like stutter
and no sequencing errors, the MPS signal would be 100%. The
numbers in Table 3 were calculated by linear model for each locus
separately but for all locus specific alleles of all samples together.

Fig. 8 shows the average percentage of flanks which are ‘clean’
in reads with an error-free ROI and in reads with an error-
containing ROI. For all loci, except PentaD and D5S818, the
proportion of clean flanks is higher in reads which also contain an
error-free ROI. The proportion of clean flanks is also impacted by
the length of the flanks. The negative correlation between the
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length of the flanks and the proportion of clean flanks is expected
as longer sequences carry a higher probability of containing errors.

4. Discussion

4.1. Framework performance

The MyFLq framework was designed to incorporate all
algorithms necessary for an STR MPS analysis in one open
framework. It contains about a thousand lines of code and has
minimal dependencies: It only requires a working python2
environment and the common python packages numpy and
MySQLdb. Currently the target audience of the framework are
bioinformaticians that work in the field of MPS forensic analysis.
An Illumina BaseSpace application is being developed, which
should be available by the beginning of 2014. This way, users will
not have to interact with the framework, but will be able to analyze
their STR data files with the MyFLq application.

MyFLq can also handle other types of forensic data, such as SNP
or mitochondrial regions. However, it has not been extensively
tested to operate with such data. From the analyzed loci in this
study, only Amelogenin could be considered a SNP locus. STRait
Razor is another tool that has been recently developed for forensic
genomics and as the name indicates only deals with STR’s [8]. In
our opinion, future software packages should handle both STR and
SNP loci equally well, to provide a full solution to forensic
researchers.

MyFLq has currently not been designed to be computational
efficient. A full analysis of a MiSeq dataset takes approximately one
hour on a single CPU. The code contains many sections that could
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be parallelized to reduce the analysis time significantly. This will
also be implemented in the BaseSpace application.

4.2. Accuracy and detection of minor contributors

In general the Illumina MiSeq reads were of high quality, with
more than 70% of reads containing a complete error free ROI and
constitute the MPS signal. Several factors are influencing this
percentage. Stutters (around 10%) and the reads filtered by the
abundance threshold (around 20%) are a big part of the other 30%
of the reads. PCR and sequencing accuracy with a per base
sequencing accuracy of approximately 99.5% are other main
factors. Reducing the amplicon, and ROI length could further
improve the MPS signal. Reads can be used without clustering
them to produce a consensus sequence. This is of particular
importance, since clustering should be avoided when investigat-
ing forensic mixtures. An allele from a minor contributor
containing a SNP or an insertion/deletion could cluster with the
sequences from the corresponding allele of a major contributor
and go undetected. When the contributors are unknown, it is
impossible to categorize a priori between alleles and amplification
errors. Consequently, clustering should be avoided if possible, in
order to confront the forensic investigator at least with the
presence of these sequences.

Because the minimal abundance threshold during data analysis
was set to 0.5%, theoretically it was still possible to detect alleles
from the 1% contributor in Sample 3. However, only for the 5%
contributor the alleles were detected consistently, showing a
correct allele call for all loci except D13S317. However, the
experiment was not set up to determine the allelic detection limit.
Many alleles of the minor contributors are the same as one of the
more abundant contributors. Future research will be needed to
establish a general detection limit in mixtures for each MPS
technology and PCR multiplex.

4.3. Loci performance

In capillary electrophoresis (CE), the allele specific signal is 85–
90%, as polymerase stutter products usually comprise approxi-
mately 10–15% of the parent allele’s signal. These stutter products
were also observed in MPS data. These stutter sequences
combined with sequencing errors results in an allele specific
MPS signal that is slightly lower than the absolute DNA input. For
most loci these values are very reasonable, as shown in Table 3,
except for PentaE and PentaD. Those two loci are obvious
underperformers in the current experimental setup, both with
allele specific signals around 25%. Compared to the other loci,
these 2 loci have long amplicons, long ROI and long flank lengths.
While these factors are partially contributing to a higher
proportion of reads containing errors in the ROI, they are not
completely explaining the low signal. It is unclear at which point
that the errors are introduced, but given the high abundance of
some of the errors, they are probably introduced at the PCR step.
Future research will show how useful they will be in MPS STR
analyses.

Fig. 8 shows a higher proportion of clean flanks in reads with
error-free ROIs. This data could be modeled to estimate the
likelihood of error in ROIs of an unknown sample. Fig. 8 shows that
the usefulness of this strategy will depend on the considered locus
because values for ‘clean’, ‘compressed-clean’ and ‘unclean’
depend on locus sequence characteristics such as average length
and homopolymer content.

For an MPS technology to become a valid alternative to CE it
must produce at least equivalent results for the commonly used
loci, and produce additional, valuable information for an expanded
set of loci. Most loci already performed very well with the Illumina
MiSeq, while some (PentaD, PentaE) need further optimization,
such as primer re-design, in order to eclipse CE. As MPS becomes a
valid alternative, our framework can be used to help identify an
additional set of ideal MPS loci.

4.4. Dynamic flank calculation

Using sequencing, only the ROI needs to be considered during
data analysis, i.e. the part of the sequence that differs between
different alleles for a locus. Any part outside that region can be
treated as flanking. As our framework is built to generically handle
all forensic loci, the ROI and the flanks around the ROI are not
predefined, but are dynamically determined. This dynamic
flanking tries to maximize the flanks and to minimize the ROI
for each locus based on the reference alleles present in the
reference allele database. Removing flanks from the reads
minimizes the impact of errors in the flanks on the analysis. This
aids detecting alleles of minor DNA contributors, as a significant
portion of the noise is eliminated.

Application of our method is currently limited by the size of
the reference allele database, which contains a small subset of all
of the possible alleles, i.c. only alleles present in the DNA from
Table 1. To determine the practical applicability of our
framework, more samples need to be analyzed to increase the
allele database size. However, for future applications it would
also be useful to automatically limit the database size by
subsetting it. Database alleles could, for example, be selected
based on the size of the sequences in a specific sample, because
the size of reads already reduces the set of possible alleles to
which they could be assigned. This subset of possible alleles
would then serve to calculate maximum flanks on the fly. Smaller
subsets will result in bigger flanks which in turn reduces the
impact of errors.

5. Conclusion

When MPS becomes routinely used to analyze forensic DNA
profiles, decisions will need to be made on how the data should be
processed. We present our bioinformatic framework, MyFLq, that
processes forensic MPS data prudently: without clustering,
extracting maximal information with automatically determined
regions of interest. The results show Illumina MiSeq is ready to
analyze STR profiles. For routine implementation in forensic
laboratories, a careful selection of loci, PCR multiplex optimization,
and an MPS-based STR allele reference database for alignment, are
needed.

Supplementary materials

MyFLq.py The main framework program.
InstallMyFLqTables.py Installs the MySQL tables necessary for
using MyFLq.
results.css Needed in the same directory as the sample result
files, for opening the result files in a browser. This file also
contains documentation to interpret the result files.
sample1–4.xml Sample result files.
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