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Abstract

Imprecise choices can be described using either a
probabilistic or a fuzzy formalism. No relation be-
tween them has been studied so far. In this con-
tribution we present a connection between the two
formalisms that strongly makes use of fuzzy impli-
cation operators and t-norms. In this framework,
Luce’s Choice Axiom turns out to be a special case
when the product t-norm is considered and other
similar choice axioms can be stated, according to
the t-norm in use. Also a new family of operators
for transforming bipolar relations into unipolar ones
is presented.

Keywords: Fuzzy choice function, probabilis-
tic choice function, fuzzy implication operator,
fuzzy revealed preference, reciprocal relation, bipo-
lar/unipolar scale.

1. Introduction

According to Fishburn [6], there exist at least three
ways of representing choices in a mathematical way:
binary relations, choice functions or choice probabil-
ities. All of them are legitimate and prove to be ap-
propriate in certain circumstances and the relations
between them have been studied in the literature.
In particular, the connections between binary re-
lations and choice functions have been analyzed in
depth, giving birth to an extensive literature that
goes under the name of choice theory with revealed
preferences (see [1, 15, 16, 17, 18, 19]). Fishburn
[6] already addressed the lack of results on the con-
nections between choice functions and probabilistic
choice functions and hence he proved a set of propo-
sitions on the conditions that should be satisfied by
the probabilistic choice function in order for the as-
sociated choice function to be rational.
The same situation appears in the framework of

fuzzy choice and fuzzy preferences. In the last years
the results of classical (crisp) revealed choice theory
have been extended to the fuzzy framework, laying
bare the connections between fuzzy preference rela-
tions and fuzzy choice functions (see, amongst oth-
ers, [2, 3, 7, 10, 11, 12, 14, 20, 21]). Surprisingly,
while the connection between fuzzy preference re-
lations and fuzzy choice functions has been studied
in depth, there appears to be no literature on the

comparison of fuzzy choice functions and probabilis-
tic choice functions. Recently, we approached this
problem and in [13] we proved some preliminary re-
sults under the assumption that the t-norm used
is the product. An interesting connection between
the probabilistic and the fuzzy formalisms was es-
tablished, in which Luce’s Choice Axiom played a
key role.

In the present contribution we show new connec-
tions between the probabilistic and fuzzy choice for-
malisms, which are valid for every left-continuous
t-norm. We exhibit a set of rationality conditions
to be imposed on the probabilistic choice func-
tion, which have been inspired by Luce’s Axiom of
Choice. Furthermore, we propose a new family of
operators that can transform a preference relation
expressed on a bipolar scale into another one with
unipolar behavior.

In order to connect both approaches, we make use
of implication operators, trying to maintain the se-
mantics of uncertainty associated to the formalism
of probabilistic choice functions and the semantics
of fuzziness associated to the fuzzy choice functions.

2. Preliminary concepts

This section is devoted to the basic definitions that
will be used in the rest of the work: firstly, proba-
bilistic choice functions and reciprocal relations are
introduced, then a brief reminder on fuzzy logic con-
nectives and finally the elementary notions on fuzzy
choice are presented.

2.1. Probabilistic choice functions and
reciprocal relations

Let X be a finite set of alternatives and B be the
family of all non-empty subsets of X (B = 2X∖{∅}).
Imagine that a decision maker is asked to make his
choices in the set X, when different bundles of al-
ternatives are presented to him. The set X can
be a set of products on the shelf at a supermar-
ket. The decision maker is a consumer, whose pur-
chases are recorded. Not all the possible products in
X are always available (seasonal products, out-of-
stock, etc.). Hence the choices of the decision maker
are recorded also considering these restrictions on
the available products. A probability measure P on
B can be defined: for every pair A,B ∈ B, such that
A ⊆ B, P (A,B) is the probability that the choice
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from the set B lies in the subset A. The proba-
bility measure P is completely determined by its
values P (x,A) = P ({x},A) (probability of choos-
ing alternative x from the set A), in the sense that
P (A,B) = ∑x∈A P (x,B). This probability measure
is also called probabilistic choice function and asso-
ciates to every (x,A) in X ×B a value P (x,A) that
represents the probability that element x is chosen,
when A is available. The function P can be ap-
proximated using the frequency of observations in a
dataset. For convenience, we will denote the choice
over the pairs by p(x, y) = P ({x},{x, y}). This re-
lation p is usually called probabilistic relation or
reciprocal relation in the literature and obviously
satisfies the condition p(x, y) + p(y, x) = 1, for any
x, y in X. We understand that the value of p(x, y)
represents the preference of x over y in a pairwise
comparison. One interesting aspect of reciprocal re-
lations is that they show a bipolar semantics, in the
sense that depending on the value taken by p(x, y)
in the unit interval, we can talk about two different
situations:

i) if p(x, y) ∈ [ 1
2 ,1], then p is expressing prefer-

ence of alternative x over y,

ii) if p(x, y) ∈ [0, 1
2 ], then p is expressing prefer-

ence of alternative y over x.

Obviously, if p(x, y) = 1
2 , then we consider x and y

as indifferent. One advantage of the bipolar scale is
that the knowledge of the value p(x, y) is sufficient
for understanding the relation standing between the
alternatives x and y.

2.2. Binary operations

When working in the fuzzy framework it is essential
to define different operators that play the role of
classical Boolean operators. Triangular norms are
widely used in this sense and their definition and
properties are summarized in this section. We will
use the notation ∧ and ∨ for the minimum and max-
imum operators, respectively.

Definition 1 A triangular norm (t-norm for
short) is a binary operation ∗ on [0,1] such that
for any a, b, c ∈ [0,1] the following properties are
verified:

i) commutativity: a ∗ b = b ∗ a;

ii) associativity: a ∗ (b ∗ c) = (a ∗ b) ∗ c;

iii) monotonicity: if a ≤ b, then a ∗ c ≤ b ∗ c;

iv) neutral element 1: a ∗ 1 = a.

The three most important t-norms are the mini-
mum, a ∗M b = a ∧ b, the product, a ∗P b = a ⋅ b and
the Łukasiewicz operator, a ∗L b = (a + b − 1) ∨ 0. A
t-norm is continuous if it is a continuous two-place
function. A t-norm is called left-continuous if all
partial mappings are left-continuous.

To any t-norm ∗ we can associate another binary
operator called residuum or implication, denoted
→∗, defined by:

a→∗ b = sup{c ∈ [0,1] ∣ a ∗ c ≤ b},

for any a, b ∈ [0,1]. Given a t-norm ∗ and
its residuum operator →∗, another operator called
biresiduum can be defined: a ↔∗ b = (a →∗ b) ∧
(b →∗ a). The biresiduum operator between a and
b is often interpreted as a measure of how equal a
and b are. It turns out that a↔∗ b = 1 if and only
if a = b.
In Table 1 we list some well-known t-norms and

associated residuum and biresiduum operators.

a ∗ b a→ b a↔ b

a∗M b {
1 if a≤b,
b else {

1 if a=b,
a∧b else

a∗P b {
1 if a≤b,
b/a else

a∧b
a∨b

a∗Lb {
1 if a≤b,
1−a+b else 1− ∣a−b ∣

Table 1: Three well-known t-norms and associated
residuum and biresiduum operators

In this work we are supposing that the t-norm is
chosen first and then residuum and biresiduum op-
erators are derived from it according to the previous
definitions. In no case we will work with one t-norm
∗1 and a residuum operator derived from another t-
norm ∗2. For this reason, we can avoid the usual
notation of residuum and biresiduum operators (→∗
and↔∗) in which the dependence on the t-norm has
to be made explicit.

We finally recall a short list of properties of left-
continuous t-norms and their associated residua:

Property 1: a ∗ b ≤ c⇔ a ≤ b→ c; (1)
Property 2: a ≤ b⇔ a→ b = 1; (2)
Property 3: 1→ a = a; (3)

2.3. Fuzzy choice functions and fuzzy
preference relations

A fuzzy choice function C in the sense of Banerjee
(see [2]) is defined over X ×B and associates to ev-
ery (x,A) a value C(x,A) in the unit interval that
represents the degree of preference of alternative x
when the set of alternatives A is available. The only
condition imposed on C is that, for every A ∈ B,
there exists at least one alternative x ∈ A such that
C(x,A) > 0. The value of the membership function
C(x,A) is interpreted as a numerical encoding of
the preference of alternative x among a set of fea-
sible alternatives A. There exist other possible in-
terpretations for the membership function C(⋅,A),
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as pointed out in [5]. The most tempting is the in-
terpretation of C(x,A) as the possibility of x being
the alternative chosen from the set A.

The fuzzy choice function C satisfies condition H1
if, for every A ∈ B, there exists one element x ∈ A,
such that C(x,A) = 1, i.e. the fuzzy set C(⋅,A)

is a normal fuzzy set. It satisfies condition H2 if
the family B of subsets of X is equal to 2X ∖ {∅}.
Condition H2 may sound too demanding, specially
in a practical context, where such a complete in-
formation is seldom available. In fact, the value of
C(⋅,A) may be known for few sets A’s only. Never-
theless, we will show in Section 3 that condition H2
can be satisfied by artificially filling the information
on the missing sets, starting from the knowledge on
the available ones.
A fuzzy preference relation on X is a mapping

Q ∶ X2 → [0,1] which associates to every pair of
elements x and y of X a real value Q(x, y) ∈ [0,1]
that represents the degree of preference of the first
element over the second. In this work we consider
the following properties of Q:
(i) reflexivity: Q(x,x) = 1, for every x ∈X;

(ii) strong completeness: Q(x, y)∨Q(y, x) = 1, for
every x, y ∈X;

Unlike reciprocal relations, fuzzy preference rela-
tions exhibit an unimodal semantics, in the sense
that the value of R(x, y) only represents the prefer-
ence of alternative x over y, giving no information
on the opposite relation. For a complete knowl-
edge of the relation standing between x and y, both
R(x, y) and R(y, x) need to be known.

Definition 2 [2] A fuzzy preference relation R can
be revealed from a fuzzy choice function C using the
following expression:

R(x, y) = ⋁
{S∈B∣x,y∈S}

C(x,S) . (4)

Definition 3 [2] A fuzzy choice function C is
called G-rational if there exists a fuzzy preference
relation Q such that:

C(x,S) = G(S,Q)(x) = ⋀
y∈S

Q(x, y) . (5)

The capital letter G stands for greatest, since the
function G(S,Q) is the fuzzy counterpart of the set
of greatest elements used in crisp choice theory.

Definition 4 A fuzzy choice function is called G-
normal if it is the G-rationalization of a fuzzy pref-
erence relation Q and its fuzzy revealed preference
relation R is equal to Q.

We recall here a result on fuzzy choice functions
and revealed preferences:
Proposition 1 [7] If H1 and H2 are verified by a
fuzzy choice function C, then the fuzzy revealed pref-
erence relation R from C is strongly complete and
reflexive.

3. From probabilistic to fuzzy choice
functions

This section contains the main results of the con-
tribution. After presenting our new set of axioms,
a transformation from probabilistic choice to fuzzy
choice is presented. Special concern is devoted to
the transformation of reciprocal relation into fuzzy
preference relation too. Theorem 1 concludes the
section.

3.1. A new family of axioms

In probability theory, Luce’s Choice Axiom, formu-
lated by R. Duncan Luce [8, 9], states that the prob-
ability of selecting one alternative over another from
a set of available alternatives is not affected by the
presence or absence of other items in the set. Selec-
tion of this kind is said to be independent from ir-
relevant alternatives (IIA). Formally, it is composed
of two parts:

Part 1 If p(x, y) ≠ 0, for all x, y in X, x ≠ y, then
for all S ∈ B and all x in S

P (x,X) = P (x,S)P (S,X) . (6)

Part 2 If p(x, y) = 0, for some x, y in X, then for
all S ∈ B, we have

P (S,X) = P (S ∖ {x},X ∖ {x}) . (7)

One consequence of Luce’s Choice Axiom is that
the probabilistic choice function P satisfies the so-
called constant ratio rule: for any x, y in X, it holds
that

P (x,S)

P (y,S)
=
P (x,X)

P (y,X)
. (8)

This condition trivially implies that

p(x, y)

p(y, x)
=
P (x,S)

P (y,S)
, for any S ∈ B

and it has been extensively used in [13] for the study
of the connections between probabilistic and fuzzy
choice functions, in the case the t-norm is the prod-
uct. Inspired by its multiplicative nature and the
coincidence that it was working well with the prod-
uct t-norm, we try to generalize this condition to
other t-norms. For this reason, we propose the fol-
lowing set of axioms:

Definition 5 Let ∗ be a left-continuous t-norm, ↔
its associated biresiduum operator and P a proba-
bilistic choice function on X. For any S ⊆ T ∈ B

and x, y ∈ S, P satisfies

Condition 1 P (x,S) ≥ P (y,S) implies P (x,T ) ≥

P (y, T );

Condition 2 p(x, y) ↔ p(y, x) = P (x,S) ↔

P (y,S).
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The first condition says that if x is preferred to y
in S, then the same preference should persist when
more alternatives are added to the set S. It is in-
dependent from the choice of the t-norm. The sec-
ond condition says something more: it establishes
that also the degree to which p(x, y) and p(y, x) are
similar should be constant when considering a big-
ger set S that contains both x and y. We can say
that the first condition concerns the ordering be-
tween the alternatives induced by the probabilistic
choice function, while the second imposes numerical
constraints on the value of the choice function.
Back to the constant ratio rule, it turns out that

Eq. (8) is exactly Condition 2 when the t-norm is
the product. If we turn to other t-norms, then Con-
ditions 1 and 2 take the following form:

i) if ∗ is the minimum t-norm, then they express
that if p(x, y) > p(y, x), then P (y,S) = p(y, x),
for any S ∈ B such that x, y ∈ S;

ii) if ∗ is the Łukasiewicz t-norm, then they ex-
press that the difference between P (x,S) and
P (y,S) has to be equal to the difference be-
tween p(x, y) and p(y, x), for any S ∈ B such
that x, y ∈ S.

Conditions 1 and 2 can also be used in case of in-
complete knowledge. Suppose that the probabilistic
choice function is known only for some subsets of X:
conditions 1 and 2 can be used to compute the value
of the probabilistic choice function for the missing
subsets of X, according to some rational conditions.

3.2. Constructing a fuzzy choice function
from a probabilistic choice function

Following the ideas in [13], we consider the case of a
probabilistic choice function P defined over a finite
set of alternatives X and we want to construct a
fuzzy choice function from it, representing the un-
certainty of the probabilistic choice function with
the gradualness of a fuzzy choice function. To do
this, consider a left-continuous t-norm ∗ and its as-
sociated residuum and biresiduum operators. The
following equation

ρ(x,S) = ⋀
y∈S

P (y,S)→ P (x,S) (9)

represents a way of computing a fuzzy choice func-
tion ρ ∶ X × B Ð→ [0,1], for every x ∈ X and S ∈ B.
Furthermore, if B = 2X ∖ {∅}, then ρ satisfies con-
dition H2. Also, since in every S ∈ B there exists at
least one element x such that P (x,S) ≥ P (y,S), for
any y ∈ S, it immediately follows that ρ(x,S) = 1
and hence condition H1 is also satisfied.
A fuzzy preference relation R can be revealed

from ρ using Definition 2:

R(x, y) = ⋁
{S∈B∣x,y∈S}

ρ(x,S) (10)

= ⋁
{S∈B∣x,y∈S}

(⋀
z∈S

P (z, S)→ P (x,S))

and by Proposition 1 we can ensure that R is reflex-
ive and strongly complete.

Proposition 2 If Conditions 1 and 2 are satisfied
by a probabilistic choice function P for a given t-
norm ∗, then Eq. (10) can be written as a function
of the reciprocal relation p:

R(x, y) = p(y, x)→ p(x, y) . (11)

Proof: Consider an arbitrary pair of different al-
ternatives x and y. Eq(. 10) can be written as:

R(x, y) = p(y, x)→ p(x, y) ∨ ⋁
{S∈B∣x,y∈S,∣S∣≥3}

ρ(x,S) .

(12)
If p(y, x)→p(x, y) = 1, then R(x, y)=p(y, x)→p(x, y).
If p(y, x) → p(x, y) < 1, then p(y, x) > p(x, y) and
by Condition 1, P (y,S)≥P (x,S), for every S that
contains both x and y. Consider the second part
of Eq. (12): ⋁{S∈B∣x,y∈S,∣S∣≥3} ρ(x,S). From condi-
tions 1 and 2 and the definition of the fuzzy choice
function ρ, we have:

⋁
{S∈B∣x,y∈S,∣S∣≥3}

ρ(x,S)

= ⋁
{S∈B∣x,y∈S,∣S∣≥3}

(⋀
z∈S

P (z, S)→ P (x,S))

≤ ⋁
{S∈B∣x,y∈S,∣S∣≥3}

P (y,S)→ P (x,S)

= ⋁
{S∈B∣x,y∈S,∣S∣≥3}

P (y,S)↔ P (x,S)

= p(y, x)↔ p(x, y)

= p(y, x)→ p(x, y) .

Hence the supremum in Eq. (12) is reached always
by p(y, x)→ p(x, y), proving the proposition. ∎

Remark 1 In [4] is presented another transforma-
tion of the probability distribution P . In that case,
the probability distribution is transformed into a
possibility distribution, that, as already pointed be-
fore, is just another possible interpretation of the
fuzzy choice function C. The main difference be-
tween the transformations presented in Eq. 9 and
in Proposition 2 with respect to the one contained
in [4] is that ours make strong use of implication
operators and the numerical result depends on the
initial choice of the t-norm.

On the other hand, it would be nice to
write the reciprocal relation p as a func-
tion of the fuzzy revealed preference R, i.e.
p(x, y) = F (R(x, y),R(y, x)), for some function
F ∶ [0,1]2 Ð→ [0,1]. For example, in [13] we proved
that if the t-norm is the product, then p can be
computed as follows:

p(x, y) =
R(x, y)

R(x, y) +R(y, x)
. (13)
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Other forms for F can easily be found for the min-
imum and Łukasiewicz t-norm, while it can be ex-
pected that there exists no general form for F , since
it strongly depends on the t-norm in use. Neverthe-
less, it can be proved that, provided the t-norm is
left-continuous and given R(x, y) and R(y, x), there
exists a unique pair p(x, y) and p(y, x), such that

i) p(x, y) + p(y, x) = 1;

ii) R(x, y) = p(y, x)→ p(x, y);

iii) R(y, x) = p(x, y)→ p(y, x).

due to the monotonicity of the t-norm. Hence, even
if the function F can not be expressed explicitly, we
can ensure that it exists and that it is unique.

The result of Proposition 2 is also interesting from
the point of view of the comparison of preference re-
lations with bipolar and unipolar semantics. In fact,
Eq. (11) gives a way of expressing a unipolar prefer-
ence relation (R) as a function of a bipolar one (p).
Other works by the same authors already treated
this aspect, focusing specifically on the transferabil-
ity of transitivity properties from one relation to the
other. The expression contained in Eq. (11) corre-
sponds to a new family of operators for translating
bipolar relations into unipolar relations.
One of the most important properties that a fuzzy

choice function can satisfy is G-normality, as proved
in [7, 12]. In fact, a version of the Arrow-Sen Theo-
rem can be proved for fuzzy choice functions, where
G-normality plays a crucial role. It would be inter-
esting to find some condition for the probabilistic
choice function P that can ensure the G-normality
of the derived fuzzy choice function ρ. Recall that,
according to Definition 4, a fuzzy choice function
ρ is G-normal if the G-rationalization of its fuzzy
revealed preference R coincides with ρ itself.

Theorem 1 If Conditions 1 and 2 are satisfied by
P for some left-continuous t-norm ∗, then the fuzzy
choice function ρ is G-normal.

Proof: The expression given by Eq. (5) is used to
compute the G-rationalization of the fuzzy revealed
preference R, that, taking into account the result of
Proposition 2, becomes:

G(S,R)(x) = ⋀
y∈S

R(x, y) = ⋀
y∈S

p(y, x)→ p(x, y) .

(14)
We want to prove that G(S,R)(x) coincides with
ρ(x,S), for every x ∈ X and S ∈ B. Consider an
arbitrary x ∈X and S ∈ B.
If the alternative x is such that p(x, y) ≥ p(y, x), for
all y ∈ S, then G(S,R)(x) = 1 and, by Condition 1,
we also know that P (x,S) ≥ P (y,S), for every y ∈
S, and hence ρ(x,S) = ⋀y∈S P (y,S) → P (x,S) = 1.
We can conclude that G(S,R)(x) = ρ(x,S).
If there exist alternatives {y1, . . . , yn} in S such that
p(yi, x) > p(x, yi), then let y0 be the alternative

such that p(y0, x) → p(x, y0) is the smallest. Then
G(S,R)(x) = p(y0, x) → p(x, y0) < 1. Due to Con-
dition 1, we have that P (yi, S) ≥ P (x,S) for all
i ∈ {1, . . . , n} and due to Condition 2 and the defini-
tion of the biresiduum operator we also have that:

p(yi, x)→ p(x, yi) = p(yi, x)↔ p(x, yi)

= P (yi, S)↔ P (x,S)

= P (yi, S)→ P (x,S) .
(15)

Substituting the values of Eq. (15) in the formu-
las for computing G(S,R)(x) and ρ(x,S), we can
conclude that G(S,R)(x) = p(y0, x) → p(x, y0) =

P (y0, S)→ P (x,S) = ρ(x,S). ∎

4. Conclusions and future work

In this work we proposed a novel way of connect-
ing two important representations of choice when
uncertainty is involved: probabilistic choice func-
tions and fuzzy choice functions. Being aware of
the semantic differences between the probabilistic
and fuzzy approaches, we have been able to de-
fine a clear way for passing from one to another,
which strongly involves the use of fuzzy implica-
tion operators derived from left-continuous t-norms.
This connection was still missing in the vast litera-
ture on fuzzy representations of choice. A new set
of conditions, inspired by Luce’s Axiom of Choice,
is presented and, depending on the t-norm in use,
it can take different forms. Imposing these condi-
tions on the probabilistic choice function ensures
that the fuzzy choice function generated from it is
G-normal, a property that has been proved to be
fundamental in the study of rationality conditions
in the fuzzy choice framework. Furthermore, we
found new ways of transforming a reciprocal rela-
tion into a fuzzy preference relation, making a little
step forward in the understanding of the translation
of bipolar scales into unipolar ones.

As pointed out in the contribution, the conditions
imposed on the probabilistic choice functions de-
pend on the t-norm used and perhaps an ordering
can be found, respecting the natural order between
t-norms, in such a way that a ranking of the sets of
axioms can be established.
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