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This article presents a newly developed procedure for the classification of airborne laser scanning 
(ALS) point clouds, based on binomial logistic regression analysis. By using a feature space 
containing a large number of adaptable geometrical parameters, this new procedure can be applied to 
point clouds covering different types of topography and variable point densities. Besides, the 
procedure can be adapted to different user requirements. A binomial logistic model is estimated for all 
a priori defined classes, using a training set of manually classified points. For each point, a value is 
calculated defining the probability that this point belongs to a certain class. The class with the highest 
probability will be used for the final point classification. Besides, the use of statistical methods enables 
a thorough model evaluation by the implementation of well-founded inference criteria. If necessary, 
the interpretation of these inference analyses also enables the possible definition of more sub-classes. 
The use of a large number of geometrical parameters is an important advantage of this procedure in 
comparison with current classification algorithms. It allows more user modifications for the large 
variety of types of ALS point clouds, while still achieving comparable classification results. It is 
indeed possible to evaluate parameters as degrees of freedom and remove or add parameters as a 
function of the type of study area. The performance of this procedure is successfully demonstrated by 
classifying two different ALS point sets from an urban and a rural area. Moreover, the potential of the 
proposed classification procedure is explored for terrestrial data. 

1. Introduction 

Airborne laser scanning (ALS) is a popular 3D data acquisition technique for urban and rural 
environmental modelling (Doneus et al. 2008; Oude Elberink and Vosselman 2011; Stal et al. 2013). It 
allows the measurement of a 3D point cloud that represents the area of interest, by irradiating it with a 
laser beam from an airborne platform (Baltsavias 1999). One of the main requirements when dealing 
with an ALS point cloud is an accurate and efficient point classification or filtering (Briese 2010; 
Pfeifer and Mandlburger 2008). Classification, on the one hand, is the process where points are 
assigned to a certain class based on common properties. Filtering, on the other hand, also involves 
classification of a point cloud, but points that do not meet certain requirements are then removed. 
Using ALS sensors, the backscatter of the laser signal can occur on either ground or non-ground 
objects, resulting in a single point per transmitted signal. Moreover, due to the laser beam footprint 
size, several objects at different distances may contribute to the echo waveform (e.g. by the canopy of 
a tree and the underlying ground). In this case, it is useful to distinguish first, second, … echoes. Since 
point sets are frequently simply a large list of point coordinates without further attributes, most 
classification algorithms are typically based on geometrical properties. However, advanced full-



waveform ALS sensors offer the potential to analyse the digitized backscatter signal, taking into 
account the different backscatter echoes (Wagner et al. 2006). This allows the extraction of further 
parameters per echo detected. In many cases, only a bare-earth model is required for further analysis, 
which only requires the separation of terrain and non-terrain points (Kraus and Pfeifer, 1998). After 
classification of the point cloud into these two classes, the resulting terrain points can be used for 
construction of a digital terrain model (DTM). 

An overview and comparison of different ground point extraction algorithms is presented by Sithole 
and Vosselman (2004) and Chen et al. (2013). These authors suggest different types of point 
classification methods, for example based on either the assumptions about a point and its 
neighbourhood or the used segmentation or clustering procedure. According to the assumptions about 
a point and its neighbourhood, recent classification algorithms can apply mathematical morphology 
(Mongus and Žalik 2012; Li 2013), surface roughness analysis (Höfle et al. 2009), local slope analysis 
using distance thresholds (Meng et al. 2009), or surface-based robust interpolation (Briese, Pfeifer, 
and Dorninger 2002). Based on the segmentation used or clustering procedure, a distinction can be 
made between procedures using feature spaces and correspondence with best-fitting planes (Dorninger 
and Pfeifer 2008) and those using geometrical clustering analysis of neighbourhood properties (Bartels 
and Wei 2010). Sampath and Shan (2010) distinguish two other types of hierarchical segmentation or 
clustering, differing in the initial phase of the procedure. The first, agglomerative hierarchical 
clustering, assigns every point to a separate cluster, and different points or clusters are merged based 
on common properties. Divisive hierarchical clustering starts with one cluster containing all points and 
iteratively splits this cluster into smaller clusters. 

As mentioned above, most of the classification algorithms discussed here concern the distinction of 
ground points and non-ground points. Ten years after the publication of Sithole and Vosselman 
(2004), a large number of bare-earth extraction algorithms have been implemented in freely available 
software (Podobnikar and Vrečko 2012). Some of these classifiers are also expanded to the extraction 
of other features from the point cloud. A typical example where point cloud classification is 
indispensable is in building reconstruction for city modelling (Brenner 2005). For this type of 
application, the development of reliable classifiers and filtering techniques is an ongoing area of 
research, especially for the detection of multiple classes (Xu, Oude Elberink, and Vosselman 2012; 
Chen et al. 2013). 

Addressing this need for multiple class detection, this article presents a new classification procedure 
for ALS data, based on binomial logistic regression (BLR) analysis. Rather than implementing a 
binary classifier, the probability of a point belonging to different classes is calculated. For each point 
an extensive feature space is determined, containing a large number of geometrical parameters. 
Additionally, a training set is defined containing a certain number of manually classified points. This 
training set is used as a ground truth for the regression analysis, resulting in a logistic model for each 
class. The estimated regression parameters are thus based on feature space parameters and will 
determine the probability of a point belonging to a certain class. The procedure can be summarized in 
the following steps. 

(1) Determine the feature space for each point. 
(2) Generate a training data set for model learning and ground truth. 
(3) Evaluate the multicollinearity of the parameters. 
(4) Estimate the model parameters by using BLR. 

(a) Are the separate parameters significant? 
(b) Is the model significant as a whole? 



(5) Use the parameters in a logistic model to evaluate the different class probabilities and to 
classify the points. 

The large number of features in the feature space is an important advantage of this classification 
procedure, since the most distinctive parameters can be selected based on statistical inference. The 
number of classes and the way these classes are defined depend on the definition of the training set 
and are therefore user controlled. The size of the feature space is not a significant restriction, bearing 
in mind the increasing level of performance of processing computers. 

The main concepts of BLR, parameter estimation, and prior assumptions for using this statistic 
analysis are discussed in Section 2. The concepts presented are then applied to two different data sets, 
as explained in Section 3. Thereafter, the results are illustrated and discussed in Section 4, with a 
special focus on statistical inference and quality parameters. A performance analysis and comparison 
between our results and the results of the classifier of LAStools (Isenburg and Shewchuk 2013) and 
the Multiscale Curvature Classification (MCC (Evans and Hudak 2007)) is also presented here. 

2. Binomial logistic regression 

2.1. Principles of binomial logistic regression 

The classification of ALS-based point clouds should result in the assignment of a class label for each 
individual point. Current classification techniques make use of one or a limited number of geometrical 
neighbourhood parameters and are often limited to a fixed number of defined classes, as with 
LAStools and MCC. Frequently, ground and non- ground point filtering is performed, followed by 
further classification of more specific point classes. As a Boolean decision, a point is typically 
assigned to a specific class if this point fulfils one or more predefined geometrical criteria. This article 
however, is built upon the idea of the calculation of the probability of membership of a point for all 
possible classes. Given a point set P with each point pi in 3D space, with pi = (xi, yi, zi) ∈ R3

, i = 1, …, 

n, Yij is the probability that each point i belongs to class j, with j = 1, …, m classes. If this probability, 
or class membership, can be calculated for each point and every available class, a point will be 
assigned to a certain class based on the largest significant probability. This classification process is 
based on and evaluated by the use of statistical inference methods. 

The probability that a point belongs to a certain class suggests that the response variable Yij is binary, 
following a binomial distribution. The outcome of this variable is an independent Bernoulli random 
variable with Yij = E{Yij} + εj = πij. Here, πij is the logit of the estimated posterior probability and εj is 
an error term for a given class j. The relation between a point and its parameters to this probability can 
be described by a multiple logistic response function (Flury 1997): 
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Equation 1: Multiple logistic response function 

Xi is a known predictor vector for point i, and βj is the regression coefficient vector of class j. The 
vector βj contains p elements βp, defining the feature space of class j. πij is thus calculated by a linear 
function of the regression coefficient vector βj. Each parameter in this vector corresponds to a feature 
in the feature space, which is calculated for each point based on the large number of geometrical 
parameters. Variables in bold type represent vectors, and scalar values are presented in non-bold type. 



2.2. Feature space definition 

As discussed above, the main principle for the use of logistic regression in point classification is the 
construction of a feature space. For each point in the point set, a feature space is calculated using 
OPALS (Orientation and Processing of Airborne Laser Scanning, http://www.ipf.tuwien.ac.at/opals). 
OPALS is a software package providing a complete processing chain for large ALS data sets. It is a 
series of modules with clearly defined functions using an efficient point manager (ODM, OPALS Data 
Manager (Mandlburger et al. 2009; Otepka, Mandlburger, and Karel 2012)). Modules that enable the 
calculation of normal vectors and local neighbourhood descriptors are used. Moreover, manual 
functions are defined and also echo ratio functions are used. The feature space contains the following 
parameters: 

pi = (X,Y,Z, Class, nσ0, n#ptsG , n#ptsU, ʎ1, ʎ2, ʎ3, φ, θ, ʎn, Range, Mean, Var, RMS, PCount, 

Rank, EchoRatio}i 

• X, Y, Z = 3D position of a single point. 

• Class = the predefined class assigned to this point, possibly assigned at training set definition 
stage, otherwise ignored. 

• nσ0 = standard deviation of the least square fitted local plane. 

• n#ptsG = number of points within the neighbourhood. 

• n#ptsU = number of points within the neighbourhood used for feature space calculation. 

• ʎ1, ʎ2, ʎ3 = eigenvalues of the covariance matrix subscribing the set of points in a 
neighborhood. 

• φ = acos(nz) = arccosine of the z-direction of the normal vector. 

• θ = atan(nx / ny) = arctangent of the ratio of the planimetric component of the normal vector 
(Filin, 2002). 

• ʎn = ʎ1 / (ʎ1 + ʎ2 + ʎ3) = normalized eigenvalue or surface curvature. 

• Range = zmax – zmin = difference between minimal and maximal elevation within a 
neighbourhood. 

• Mean = 1/n Σn,i=1(zi) = averaged elevation within a neighbourhood. 

• Var = 1/n Σn,i=1(zi-mean)² = variance of the elevation within a neighbourhood. 

• RMS = sqrt(1/n Σn,i=1(zi-mean)²) = root mean square of the elevation within a neighbourhood. 

• PCount = number of valid points within a cell. 

• Rank = quartile rank. 

• Slope adapted echo ratio (Höfle et al. 2009). 

The advantage of the use of the parameters φ, θ, and ʎn is that it enables the delineation of a local 
surface in 3D (Filin 2002). Many parameters are calculated as a function of a particular neighbourhood 
definition. The size of this neighbourhood can be defined by a number of points, or an Euclidean 
metric. In both cases, the point density of the point cloud plays an important role. For most 
parameters, the neighbourhood is defined as a sphere of radius equal to twice the squared point 
density. In some cases, the distance to an estimated local tangent plane is taken, rather than the 
Euclidian distance to a central point. The slope-adaptive neighbourhood definition is important for 
inter alia normal calculation of rough surfaces with abrupt elevation shifts (Filin and Pfeifer 2005), 
which is subsequently essential for slope-based building segmentation (Dorninger and Pfeifer 2008). 

2.3. Underlying assumptions of logistic regression 

Before implementing logistic regression analysis for the estimation of class membership probabilities, 
two assumptions should be considered, namely multivariate normal distribution and multicollinearity 



of the data. The assumption of a multivariate normal distribution suggests that all separate predictors 
used for the logistic regression analysis are normally distributed. However, this is not confirmed by 
the multivariate central limit theorem, since the variables are derived from a point cloud and are not 
necessarily independent. Although the sample size is fairly large, the distributions of the different 
predictors are not identical. This is mainly caused by the nature of the predictors, as demonstrated later 
in this article. The assumption of multivariate normal distribution is therefore not met and the results 
of the regression will have to be evaluated carefully using the multicollinearity criteria. 

In order to meet the assumption of data multicollinearity, a certain predictor should not be a function 
of one or more other predictors. The assumption deals with variable independence and this could be 
detected by calculating the ‘Variance Inflation Factor’ (VIF) for each regression coefficient. The VIF 
provides a measure for the relation between the variance of an estimated regression coefficient and the 
degree of collinearity (Stine 1995), and can be calculated by: 

��� = 1
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Equation 2: VIF for the evaluation of the degree of collinearity 

R
2p is the coefficient of determination of parameter p as response variable; all other variables are 

predictors of the parameter p in a linear regression model. A threshold of 10 or 5 is frequently used to 
determine whether a certain coefficient is causing problematic collinearity in the model, and thus if the 
coefficient and accompanying parameter will be retained in the analysis. However, dropping a 
predictor from the model with a high VIF is only possible if it can be theoretically motivated (e.g. 
removing the variable ‘standard deviation’ when the variable ‘variance’ is also present in the data 
(O’Brien 2007)). In order to minimize the collinearity effect of the parameters in the model, a stepwise 
coefficient removal is suggested. In each step, a VIF is calculated for each coefficient. 

2.4. Regression coefficient vector 

In contrast with linear regression, the coefficient vector of a logistic response model cannot be found 
by a closed-form expression that maximizes the likelihood function. The log- likelihood function for 
logistic regression has the following form (Kutner et al. 2005): 
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Equation 3: Log-likelihood function for logistic regression 

This function can be calculated for each class j over all points i in the point cloud. Different methods 
are available to iteratively derive the coefficient vector. At every iteration step, the vector is estimated 
by adding a new parameter to the model and by accepting or rejecting this parameter by the statistical 
evaluation of the model improvement. The degree of model improvement with this extra parameter is 
then evaluated by the likelihood ratio test. For this test, the following hypothesis, H0 is tested, 
assuming that the coefficient vector is equal to zero and that the data cannot be described by a logistic 
model. On the contrary, HA assumes that at least one parameter β describes the probability of a point 
belonging to a certain class: 

H0: β1 = β 2 = … = β p = ββββj  = 0 

HA: at least one of the β parameters is not equal to 0 



In order to perform the classification, H0 must be rejected. Thus, the evaluation of these hypotheses is 
iteratively performed using a test statistic on the likelihood ratio test, as discussed in the following 
section. 

2.5. Parameter contribution and model quality 

The contribution of a particular parameter to the model is evaluated by calculation of the maximum 
likelihood of the pre-existing parameters without the new parameter L(OLD), and by calculation of the 
maximum likelihood of those parameters including the new parameter L(NEW). The following test 
statistic is used: 

(� = −2 ln * �+,�-.�+/�0.1 
Equation 4: Measure for the evaluation of the contribution of a new parameter in comparison with the previous log-likelihood 

Since the log-likelihood ratio follows a χ2 distribution, a decision about the above hypothesis is 
reached as follows (Hosmer and Lemeshow 2004): 

2(� ≤ 4+!56,!.� : accept	<=
(� > 4+!56,!.� : reject	<= A 

If H0 does not hold, the new parameter is significant and is added to the model. A level of significance 
of 95% is generally used for the inference. The iterative addition of para- meters will consequently 
result in a model where all parameters are significant. The amount of variance that is explained by the 
model can be expressed by the coefficient of determination, R

2. This coefficient is calculated as a 
generalization of the well-known procedure in linear regression (Nagelkerke 1991): 

�� = 1− B �+0.����D
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Equation 5: Coefficient of determination for the explanation of the amount of variance 

where L(0) is the likelihood of the interception model, L(βj) is the estimated model, and n is the 
number of elements. The interpretation of this coefficient is equivalent to its linear regression 
counterpart. It may be interesting to evaluate the contribution of an individual parameter, βp to the 
final model. As with linear regression, where individual parameter inference is performed using a t-
test, the ratio of the parameter and its error is also used for logistic regression inference. The following 
H0 hypothesis is tested: 

H0: βp = 0 

HA: βp ≠ 0 

This hypothesis is tested using the Wald-statistic (Menard 2010): 

Wald�� = B H�
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Equation 6: Wald-statistic as a variant of the χ2 distribution 



The squared Wald-statistic will also follow a χ2 distribution. In both situations, a one-sided test is 
performed with α = 0.05. A decision about the hypothesis is then reached by: 

2Wald�� ≤ 4+!56,!.� : accept	<=
Wald�� > 4+!56,!.� : reject	<= A 

Once all parameters in the model are estimated, the general properties of the model and its parameters 
are significant, the probability being that a point belonging to a certain class can be derived. The logit 
of the model is equal to the natural logarithm of the odds, and thus to (Peng, Lee, and Ingersoll 2002): 

logit�M���N��O� = logit	��� = ln B ���1 − ���D = ���� 
Equation 7: Logit of the model in relation with the odds 

The odds are defined as the probability that a point belongs to a certain class, in relation to the 
probability that that point does not belong to a certain class. As a result, the odds ratio is a measure 
used to describe the effect of a certain parameter for the probability of a point belonging to a certain 
class (i.e. the strength of a parameter to the decision). This is the exponent of the regression parameter, 
βp. 

3. Model estimation and implementation 

3.1. Test sites and data 

The first test site is located in the city centre of Ghent, Belgium (Figure 1, left). A detailed description 
of the study area is presented in Stal et al. (2012). The ALS measurement campaign of the Ghent study 
area was commissioned by the city of Ghent and AGIV (Flemish Agency for Geographical 
Information) and was acquired by the company FUGRO (www.fugro.com). A FUGRO Fli-Map 1000 
airborne laser scanner was mounted on a helicopter platform and the entire campaign was executed at 
an average altitude of 290 m above ground. The low altitude, in combination with the agile platform 
and large strip overlaps, resulted in an average point density of 20 m2. 



Figure 1. Overview of the Ghent test site (left, source: NGI (c)) and the Ctiněves test site (right, source: ÇÚZK (c)). 

The second test site covers most of the area of the municipality of Ctiněves, Czech Republic, situated 
34 km north of Prague (Figure 1, right). The area is situated on the southeastern flank of the Řip 
Mountain and is mainly represented by farmland and some forest. The village of Ctiněves is situated 
in the centre of the area, and has approximately one hundred two-storey buildings with gable roofs. 
The area is traversed by a railway, which is built on an embankment with an elevation of up to 4 m. 
An IGI LiteMapper 6800 airborne laser scanner was mounted on an aeroplane and used at an altitude 
of 1200 m above ground, resulting in an average point density of 1.2 m2. The data were acquired 
within the context of a mapping project of the entire area of the Czech Republic. Further metadata 
from these two data sets are presented in Table 1 or are available at the Czech Office for Surveying, 
Mapping and Cadastre (www.cuzk.cz). 

There is a big difference between the point densities of the two test sites. As discussed earlier, this will 
have an influence on the neighbourhood size in the analysis. If the neighbourhood parameters, which 
have to be found experimentally, are set correctly, the point density will not have an impact on the 
classification results. However, as a result of the low point density at the rural test site of Ctiněves 
(Czech Republic), and by the fact that buildings in this area are limited in elevation to two storeys, no 
points on wall surfaces were positively identified. The difference between high and low vegetation, 
such as trees and bushes, respectively, is not based on statistics but by a clear visual distinction 
between various vegetation units in the point cloud. The construction of a BLR model requires a 
training data set, which is generated by the manual classification of points and is also used as a ground 
truth data set. For each test site, four classes were defined (Table 2), and a random classification of 
points was performed for both test sites. 

Table 1. Properties of the airborne laser scanner and the acquisition project. 

Study area Ghent (Belgium) Ctiněves (Czech Republic) 

Flight period Summer 2009 Summer 2010 
Measuring system FUGRO Fli-Map 1000 IGI LiteMapper 6800 

Altitude (above ground) [m] 290 1200 
Measuring frequency [Hz] 250 000 266 000 
Laser wavelength [nm] 1500 1550 



Pulse length [ns] 4 3 
Range accuracy [m] = 1 sigma 0.01 0.18 
Strip width [m] 320 715 
Strip overlap [%] 77 50 
Average point density [P/m²] 20.0 1.2 

 

Table 2. Construction of ground truth data set. 

Study area Ghent (Belgium) Ctiněves (Czech Republic) 

Number of points 10 085 792 5 155 651 

Classes 

Ground Ground 

Roof Roof 

Wall High vegetation 

Vegetation Low vegetation 

 

The training sets were finalized by generating an equal sample of 500 points for each class, using the 
open-source point and mesh-processing software, CloudCompare (www. danielgm.net/cc). This 
software has been developed by Daniel Girardeau-Montaut, and contains a powerful engine for 
visualizing, subsampling, and processing large point sets (Brodu and Lague 2012). The minimal 
sample size needed for the BLR training set is limited and can be calculated by taking 10 times the 
number of parameters in the feature space and the proportion of the smallest class to the entire point 
set (Peduzzi et al. 1996). After the construction of the training sets, each point in the point cloud 
contains the parameters of the feature space, as mentioned in Section 3.1. 

3.2. Model adjustment 

In order to improve the modelling results, some extra constraints were introduced. Based on 
neighbourhood functions, which are used for the determination of the feature space, a rule-based 
model adjustment can be performed. This technique is also applied on gridded ALS data (Matikainen 
et al. 2010), but in this case only a limited number of constraints were required. The adjustment is 
numerically illustrated for the urban study area, where for each point, a subset of 25 nearest points was 
selected. Thereafter, the following constraints and accompanying thresholds were found 
experimentally that yielded optimal results. 

• If a point has the class ‘Building’ and fewer than eight points in the subset are also classified 
as ‘Building’, then assign the class with the highest occurrence in this subset to this point. 

• If a point has the class ‘Vegetation’ and fewer than eight points in the subset are also classified 
as ‘Vegetation’, then assign the class with the highest occurrence in this subset to this point. 

• If a point has the class ‘Ground’ and fewer than eight points in the subset are also classified as 
‘Ground’ and the majority of all points in the subset are classified as ‘Roof’, then assign the 
class ‘Roof’ to this point. 

• Triangulation of all ‘Ground’ points is performed and all ‘Wall’ points closer than 0.10 m to 
this surface should be classified as ‘Ground’ points. 

The above-mentioned constraints are based on the typical characteristics of the test sites and are 
implemented in a Java application. It will be clear that the number of constraints can easily be adjusted 
depending on the type of dataset or user requirements, but that is beyond the scope of this work. The 
final results of this research are based on the combined use of BLR and these proposed adjustment 
constraints. 



4. Results 

4.1. Multicollinearity within the feature space 

Model estimation and logistic regression analysis can be performed by well-known statistical software 
such as R or PASW SPSS. As mentioned in Section 2.3, however, the assumption of multivariate 
normal distribution is not met by using this type of ALS data. It is well known that, for example, the 
local slope of a point neighbourhood will have a gamma distribution, while the standard deviation of 
the fitted plane should have a normal distribution. Besides, many parameters in the feature space are 
not independent. The assumption of normality is therefore taken for granted, in contrast to the 
assumption of multicollinearity, which will now be studied in detail. In order to minimize the 
collinearity effect of the parameters in the model, a stepwise predictor removal is suggested. In each 
step, the VIF is calculated for each predictor. If the VIF is greater than 10, corresponding to the 
threshold suggested by Chatterjee and Hadi (2006), this predictor will be removed. The factors are 
recalculated until there are no longer higher than the threshold. The results of this iterative removal 
process are presented in Table 3. For both test sites, the final factor values are presented for the 
accepted parameters. Parameters thus removed are shown, with their final VIF before removal as well 
as the step of removal. 

 

 

Table 3. Checking for multicollinearity using the Variance Inflation Factor (VIF). 

  Ghent Ctiněves  

  Rejected Accepted Rejected Accepted 

  VIF Iteration VIF VIF Iteration VIF 

nσ0 10.061 5 -  11.388 3  - 
n#ptsG 15.818 3 - - - 6.582 
n#ptsU 15.818 2 - 31.541 3 - 

ʎ1 - - 4.707 - - 4.645 

ʎ2 - - 2.737 - - 4.041 

ʎ3 - - 1.527 - - 2.575 

φ - - 2.377 - - 1.776 
θ - - 1.430 - - 1.082 

ʎn - - 4.015 - - 5.630 

Range 11.928 4 - 11.163 4 - 
Mean - - 1.943 - - 1.878 
Var - - 2.714 - - 1.626 
RMS 102.538 1 - 85.198 1 - 
PCount - - 3.118 - - 1.949 
Rank - - 1.907 - - 1.353 
EchoRatio - - 4.016  -  - 5.145 

 

4.2. Model evaluation 

The accepted predictors are used for the actual model estimation, as discussed above. The resulting 
parameters, β and Wald-statistics, will not be described here entirely, but Table 4 shows an example of 
these values for the ‘Ground’ class of the Ghent test site. With χ2

0.05,1 = 3.841, the Wald statistics 
indicate the significance of the parameters presented. Parameters not quantified in this table are 
removed by the multicollinearity test or have a non-significant parameter value (βi = 0). 

Table 4. Example of the estimated model parameters and Wald-statistics. 



  ββββi Wald 
   ββββi Wald 

nσ0 - - 
 

Range - - 

n#ptsG - - 
 Mean 0.663 29.085 

n#ptsU 
   

VAR -0.194 19.878 

ʎ1 -4.924 36.083 
 

RMS - - 

ʎ2 - - 
 

PCount 0.166 34.890 

ʎ3 - - 
 Rank -0.010 15.080 

φ -6.683 119.468 
 

EchoRatio 0.051 56.824 

θ - - 
 

Constant -7.595 70.957 

ʎn 6.873 55.477 
    

 

The overall model statistics allow the statistical acceptance of the models, as demonstrated in Table 5. 
With χ2

0.05,1 = 3.841, the likelihood ratios G
2 are significant for all classes with a 95% level of 

significance. The coefficients of determination, R
2, suggest that a sufficient amount of variance is 

explained by the model. However, the roof classifier of the Ghent study area and the low vegetation 
classifier of the Ctiněves study area have low R2 values. As explained below, visualization of these 
areas will clarify these low values. 

 

 

Table 5. Evaluation of the significance of the entire model. 

Ghent 

Iteration G² Nagelkerke R² 

Ground 8 972.075 0.699 
Roof 6 1608.674 0.406 
Vegetation 6 1132.240 0.634 
Wall 8 1184.435 0.611 

Ctiněves 

Step G² Nagelkerke R² 

Ground 9 759.717 0.778 
Roof 9 1489.857 0.468 
Low vegetation 6 2015.859 0.163 
High vegetation 9 921.049 0.719 

 

Table 6. Comparison between the errors of the BLR method and LASTools and MCC classification method. 

    Ghent Ctiněves 

Class Algorithm Type I (%) Type II (%) Type I (%) Type II (%) 

Ground 

BLR 0.42 0.52 7.72 3.82 

LASTOOLS 0.09 7.23 3.34 2.23 

MCC 0.66 0.99 4.04 4.55 

Unknown 

class 

BLR 3.22 1.72 7.33 5.25 

LASTOOLS 1.62 4.72 3.03 6.48 

Building 
BLR 3.91 2.39 2.01 6.41 

LASTOOLS 5.26 1.07 6.04 0.54 

Vegetation BLR 2.31 5.23 1.15 2.73 



LASTOOLS 1.22 1.97 0.58 3.75 

 

The errors in the final models are summarized in terms of both Type I errors (a point is incorrectly 
categorized as another class) and Type II (a class is incorrectly assigned to a point), as seen in Table 6. 
The same statistics are also presented for comparative filtering using LASTools and MCC. Both 
classifiers perform ground point and non-ground point filtering, respectively based on the local slope 
and curvature of a certain neighbourhood. After this filtering, LASTools also enables the classification 
of roofs and vegetation by the analysis of planarity or irregularity of non-ground points. By using 
LASTools, it is possible to automatically detect the classes ‘Ground’, ‘Roof’, ‘Vegetation’, and 
‘Unknown’. Since MCC detects only ground points, the technique is not described for other classes. 
These two techniques are selected for comparison because of their avail- ability on the Internet and the 
fact that they can be used directly using stand-alone applications. In contrast to the classification 
method presented in this article, detectable classes are fixed for both techniques. 

For comparison among algorithms, the detected classes based on BLR are translated to standard LAS 
classes. So ‘Walls’ in the urban area are set to ‘Unknown class’. Notwithstanding the fact that ‘Low 
vegetation’ is a standard LAS class, it is not explicitly implemented in the LASTools algorithm. 
‘Building’ class in LAS is actually a classification of roof points of a point cloud, and therefore the 
wall points detected by the BLR technique do not fit in this class. This performance comparison with 
other techniques already indicates one of the main advantages of the newly developed point 
classification procedure, as it allows enlargement of or changing the range of classes that can 
potentially be detected. In general, the figures are in line with previously published comparisons of 
other classifiers (e.g. Chen et al. 2013). 

The overall success of the classification method described is obvious for both the urban study area of 
Ghent and the rural area of Ctiněves. Although the results are not the same for the different classes, the 
‘Ground’ classification of the urban area is very good. For all other classes, both the Type I and Type 
II error of BLR are lower than in the other classification algorithm. The ‘Building’ and ‘Vegetation’ 
classification of the rural area resulted in a better classified point cloud than the urban point cloud, 
taking into account both Type I and Type II errors. This classification error in the urban test site is 
mainly caused by the mixture of classes directly under the tree canopy. Type I error of ‘Ground’ and 
‘Other’ classes of the rural area is relatively high. For the rural area point cloud, a manual 
classification was performed as ground truth for the quality analysis, based on a user interpretation of 
the relatively low-density point cloud. As a result, this data set is not free from human errors and this 
has an influence on quality assessment. This becomes clear with the comparison of BLR classification 
results to an ortho image, as discussed below. 



Figure 2. Overview of the Ghent test site with orthoimage (top left, source: Microsoft®), BLR results (top right), MCC 
(bottom left) and LASTools (bottom right).

The values shown in Table 6 indicate that the results
classes and the type of terrain, and this can be illustrated by the samples in Figures 2 and 3. The grids 
presented in the figure below are generated at a size of 0.5 m for Ghent (Figure 2) and 1.5 m for 
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Figure 3. Detail of the Ctiněves test site with the reference (top left), BLR results (top middle), MCC (bottom left), LASTools 
(bottom middle), and orthoimage (right, source: ČÚZK (c)). 

Initially, most areas below trees are erroneously classified as wall points using the BLR technique. 
This error is reduced by the adjusted classifier, where the elevation of two points from different classes 
is considered. In the Ghent test site (Figure 2), the most obvious error in the classification result is in 
regard to flat roofs, but this issue is also seen in other classification algorithms and requires further 
research. Using the current para- meters, these areas will result in a mixture of roof and ground points. 
Misclassification of flat roofs generally indicates some terrain dependency of the algorithm. This also 
caused the classification of cars as ‘Building’, visible as small red areas around the building block. A 
new class can easily be defined and implemented for these points, using elevation thresholds. Besides, 
very good results occur for the backyards of buildings. The introduction of a new class for walls 
resulted in the allocation of garden fences to this class. LASTools will misclassify these points as trees 
or will not allocate any class at all to these points. 

In regard to the Ctiněves test site (Figure 3), a fence or hedge, which is the line-shaped structure on the 
south side, is clearly misclassified by LASTools as a roof. Besides, the occurrence of the class ‘Low 
vegetation’ is high around roofs, especially on their ridges. It is not possible to use this class in 
LASTools and most low-vegetation points are therefore classified as ‘Unknown class’. LASTools also 
seems to underestimate buildings, in contrast to the MCC and BLR algorithms. Although MCC does 
not classify buildings explicitly, their outlines are clearly visible, especially in combination with the 
orthoimage. The over- estimation of building points, vegetation points, and especially low-vegetation 
points by BLR in comparison with the manually classified data set can be explained by the ortho- 
image (Figure 3, right). This image shows a large number of complex structures in the backyards of 
buildings, such as sheds and fences. Much of the vegetation in these areas can indeed be classified as 
bushes, and thus as low vegetation. Apparently, the manually classified data set was not sufficiently 
classified to meet the high quality of the BLR classifier. This was probably caused by the relatively 
low resolution of this data set, and therefore the difficulty in manually determining low vegetation and 
very small built-up structures. Visual interpretation of the results indeed supports the statistical results, 
indicat- ing the high suitability and flexibility of the BLR classifier for rural areas. 



4.3. Classification performance 

Obviously, LASTools is targeted towards production workflows and has been optimized after its first 
release 10 years ago. The efficiency of the current version of the BLR-based prototype is estimated at 
half that of LASTools. The calculation of feature spaces and accompanying probabilities per point is 
reasonably computational intensive. In this con- text, the processing time increased quadratically for 
feature space determination and linearly for the probability calculation. However, it is possible to 
optimize the efficiency of the procedure by implementation of iterative classifiers, tiled processing, or 
point cloud indexing, etc. It must be emphasized that despite increased processing time, many 
conventional point classifiers are unable to take generic classes into account. For point cloud 
classification using regular classes (ground, roofs, and vegetation), conventional classifiers may be 
more suitable, but for more complex scenes, BLR-based classification is a reliable alternative for user-
defined classes. It is also expected that subsequent reuse of the training sets for point cloud filtering of 
the same scene, or for the filtering of similar areas, would result in considerable time saving. 

Supervised classification techniques are well known in regard to image based processing, where the 
construction of training sets is performed in 2D. The generation of training sets for BLR-based 
classification is facilitated by 3D software, minimizing the amount of noise in the sets. Moreover, the 
quality of the training sets can be assessed by evaluating the uniformity of the distributions of all 
parameters in the feature space. For the classification of very complex features, it can be assumed that 
an unsupervised point cloud classification can be used. In this case, a cluster analysis on the feature 
space could enable the automated classification of point clouds, without explicitly assigning semantics 
to the resulting classes. 

5. Conclusion and further work 

In this article, the use of BLR analysis for ALS point set classification is discussed. In contrast to 
current classification techniques, using one or a limited number of geometric criteria for the 
assignment of a point to a class, the proposed method makes use of a large feature space, the 
parameters of which are also based on the geometry of the neighbour- hood. Rather than constructing a 
threshold-based decision tree, the entire feature space is used for the generation of a series of logistic 
models for each class. These models calculate the probability that a point belongs to a certain class. 
Since a probability is assigned to each point for each class, the class assignment will be based on the 
highest probability. The method also enables model evaluation by statistical inference. Nevertheless, 
using the above classification technique, the use of BLR for ALS point set classification appears 
promising. 

The procedure is explained by the classification of two different ALS data sets. The first is a dense 
point set of an urban area in the city of Ghent, Belgium. For this area, ground and non-ground filtering 
with a Type I error of 4% and an overall correctness of 95% was achieved. For the second test site, 
located around the rural village of Ctiněves (Czech Republic), a Type I error of 8% and an overall 
correctness of 96% were recorded. These values are in line with other state-of-the-art classification 
methods for ground point extraction. However, in contrast to most other classification methods, 
multiple classes can be extracted from an ALS point set. 

The potential of the new classification procedure has been demonstrated for ALS data. In contrast to 
LASTools, the method does not require that the data be acquired from an airborne platform, and it can 
also be extended to Static Terrestrial Laser Scanning (STLS) and Mobile Terrestrial Laser Scanning 
(MTLS). Care needs to be taken with respect to the different properties of ALS on the one hand and 
STLS and MTLS on the other. For terrestrial scanning, variation in point density (caused by data 



heterogeneity) and data holes (caused by shadows) must be taken into account. Furthermore, the 
feature space should not only contain parameters that are dependent of the elevation, such as local 
mean and standard deviation, but also parameters that take all dimensions into account, such as 
planimetric distribution descriptors or local eigenvalues. Besides, parameters related to the measured 
distance or intensity can be used for unprocessed STLS measurements, and colour information can be 
used for many MTLS point clouds. 

The ability to generate a wide range of classes is the greatest strength of the proposed method. This 
user adaptability of the algorithm, dependent on the type of measurement area and the user’s 
experience, allows a very wide range of applications in the field of point classification supported by a 
thorough statistical basis for interpretation of the performance of the results. Moreover, not only can 
the BLR procedure itself be optimized, but also the model adjustment constraints can be fine-tuned 
depending on the application. If the training sets are defined correctly, the ratio of misclassified points 
will be around 5–12%. It should be mentioned that parameters other than those mentioned in this 
article could be taken into account. Besides, the results obtained appear very promising in regard to 
further improvement in the classification procedure (e.g. by either taking the neighbourhood of the 
class assignment into account or the use of a rough DTM for the calculation of a preparatory 
normalized elevation model). 
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