

Pt-Ga catalyst formation studied with *in situ* XAS using Fourier and wavelet transformed analysis.

<u>M. Filez</u>, H. Poelman, E. Redekop, V.V. Galvita, C. Detavernier, G.B. Marin

Laboratory for Chemical Technology, Ghent University http://www.lct.UGent.be

GdRC(RS)₂, Lille, France, 09/10/2013

Introduction & Motivation

- Supported Pt-Ga catalysts: alkane dehydrogenation
 - Improved selectivity and stability
 - Major improvements possible
 - \rightarrow Elucidate formation mechanisms: improve performance
- Novel catalyst formation process: intimate Pt-Ga contact
 - − Ga in Mg(Al)O_x → Mg(Ga)(Al)O_x
 - Pt[acac]₂ on calcined Mg(Ga)(Al)O_x
 - − Oxidation & reduction \rightarrow Pt-Ga catalyst

Experiments

- Isothermal in situ XAS experiments @ DUBBLE, ESRF
 - Catalyst: Pt[acac]_n/Mg(Ga)(Al)O_x (5 wt% Pt, 3.75 wt% Ga)
 - Capillary quartz tubular reactor (OD = 2 mm)
 - Pt L_{III} edge (11564 eV, transmission)

Experiments

- Isothermal in situ XAS experiments @ DUBBLE, ESRF
 - Catalyst: Pt[acac]_n/Mg(Ga)(Al)O_x (5 wt% Pt, 3.75 wt% Ga)
 - Capillary quartz tubular reactor (OD = 2 mm)
 - Pt L_{III} edge (11564 eV, transmission)

XAS wavelet transforms

- Pt-Ga formation process:
 - variety of Pt neighbors (Pt-C, Pt-O, Pt-Ga, Pt-Pt)
 - Discrimination and localization of different atomic species necessary
- Fourier transformed (FT) signals
 - k-region of backscattering ~ atomic mass: C < O < Ga < Pt
 - $2 \neq$ species , $2 \neq$ locations vs 2 = species , $2 \neq$ locations

 \rightarrow invoke wavelet transformated (WT) XAS analysis

XAS wavelet transforms

 \rightarrow simultaneous R and k space resolution^[1,2]: appoint k-space backscattering region to each R-space peak

[1] C. Antoniak, *Beilstein J. Nanotechnol.* 2011, *2*, 237–251
[2] Muñoz M., Argoul P. and Farges F. (2003) American Mineralogist vol. 88, pp. 694-700

Results: Region 1

Region 1: $25^{\circ}C - 350^{\circ}C$ in O₂/He

Region 2: 350° C – 650° C – 250° C in O₂/He Region 3: 250° C – 350° C – 450° C in H₂/He Region 4: 450° C – 650° C in H₂/He

$25^{\circ}\text{C} - 350^{\circ}\text{C} \text{ in O}_2/\text{He}$

$25^{\circ}C - 350^{\circ}C \text{ in } O_2/\text{He}$

WT EXAFS

- R: radial distribution function around Pt
- k-space resolution for R-space peaks
- C backscatterer (25°C) → O backscatterer (350°C) during oxidation

25°C – 350°C, O₂: Pt[acac]₂ decomposition + dispersed PtO₂ phase formation

[2] Software: Muñoz M., Argoul P. and Farges F. (2003) American Mineralogist vol. 88, pp. 694-700

Results: Region 2

Region 1: 25° C – 350° C in O₂/He Region 2: 350° C – 650° C – 250° C in O₂/He Region 3: 250° C – 350° C – 450° C in H₂/He Region 4: 450° C – 650° C in H₂/He

$350^{\circ}\text{C} - 650^{\circ}\text{C} - 250^{\circ}\text{C} \text{ in O}_2/\text{He}$

<u>XANES</u>

- Further oxidation up to 650°C: decrease oxidation state
- Cool down to 250°C: no effect

FT EXAFS

 Pt fcc metal structure + Pt-O shell: metal core + oxidized shell

 \rightarrow sintering of dispersed PtO₂

$350^{\circ}\text{C} - 650^{\circ}\text{C} - 250^{\circ}\text{C} \text{ in O}_2/\text{He}$

WT EXAFS

 O backscatterer (350°C) → oxidation 650°C → Pt backscatterer (250°C) after oxidation

350°C − 650°C − 250°C, O₂: sintering dispersed $PtO_2 \rightarrow Pt^0$ cluster core with oxidized outer shell

Results: Region 3

Region 1: 25° C – 350° C in O₂/He Region 2: 350° C – 650° C – 250° C in O₂/He Region 3: 250° C – 350° C – 450° C in H₂/He Region 4: 450° C – 650° C in H₂/He

$250^{\circ}\text{C} - 350^{\circ}\text{C} - 450^{\circ}\text{C} \text{ in H}_2/\text{He}$

XANES

- WL decrease
- Evolution to Pt metal

FT EXAFS

- Cluster structure remains stable
- Pt-O/Pt-Pt decreases: reduction

Condition	Pt-O/Pt-Pt amplitude		
O ₂ /He 250°C	1,44		
H ₂ /He 350°C	1,01		
H ₂ /He 450°C	0,76		

$250^{\circ}\text{C} - 350^{\circ}\text{C} - 450^{\circ}\text{C} \text{ in H}_2/\text{He}$

WT EXAFS

Decreased O intensity relative to Pt intensity upon heating in H₂/He

250°C – 450°C, H₂: gradual reduction of Pt clusters

Results: Region 4

Region 1: 25° C – 350° C in O₂/He Region 2: 350° C – 650° C – 250° C in O₂/He Region 3: 250° C – 350° C – 450° C in H₂/He Region 4: 450° C – 650° C in H₂/He

$450 - 650^{\circ}$ C in H₂/He

XANES

- Shift of edge energy to higher energy
- WL intensity decreases.
 - \rightarrow alloying ^[3] (confirmed by EDX)

Pt ²⁺ [acac] _n		Pt ²⁺ [acac] _n		Pt ²⁺ [acac] _n		
• • •	• •	•••	••••	•	• •	•••

25°C

- Pt[acac]₂ decomposition
- Dispersed PtO₂ phase formation

Acknowledgements

The authors acknowledge

- support from S. Nikitenko and D. Banerjee (DUBBLE) at the ESRF synchrotron facility
- the Fund for Scientific Research Flanders (FWO)
- the 'Long Term Structural Methusalem Funding by the Flemish Government'
- Marie Curie IIF Fellowship of the European Commission.

- XAS: X-ray Absorption Spectroscopy
- XANES: X-ray Absorption Near Edge Structure
- EXAFS: Extended X-ray Absorption Fine Structure
- FT: Fourier Transformation
- WT: Wavelet Transformation
- EDX: Energy Dispersive X-ray spectroscopy
- WL: White Line (first maximum at the absorption edge)
- fcc: face centered cubic structure
- absorber: atomic species absorbing X-ray fotons leading to the excitation their core-electrons.
- backscatterer: atomic species surrounding the absorber which scatter back the excited photo-electron to the absorber in the continuum.