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Abstract—Many complex, real world phenomena are difficult
to study directly using controlled experiments. Instead, the use
of computer simulations has become commonplace as a feasible
alternative. Due to the computational cost of these high fidelity
simulations, surrogate models are often employed as a drop-
in replacement for the original simulator, in order to reduce
evaluation times. In this context, neural networks, kernel meth-
ods, and other modeling techniques have become indispensable.
Surrogate models have proven to be very useful for tasks such as
optimization, design space exploration, visualization, prototyping
and sensitivity analysis. We present a fully automated machine
learning tool for generating accurate surrogate models, using
active learning techniques to minimize the number of simulations
and to maximize efficiency.

I. INTRODUCTION

For many problems from science and engineering, it is im-
practical or impossible to perform experiments in the physical
world directly (e.g. airfoil design, earthquake propagation, car
crash worthiness). Instead, complex, physics-based simulation
codes are used to run experiments on computer hardware.
While allowing scientists more flexibility to study phenomena
under controlled conditions, computer experiments require a
substantial investment of computation time (one simulation
may take many minutes, hours, days or even weeks) [1].

As a result, the use of various approximation methods that
mimic the behavior of the simulation model as closely as
possible has become standard practice. This work concentrates
on the use of data-driven, global approximations using compact
surrogate models (also known as metamodels or response sur-
face models). Neural networks, Kriging models, and Support
Vector Machines (SVM) are often used in this context. Global
surrogate modeling is illustrated in Figure 1.

Please note that we are concerned only with global surro-
gate modeling as opposed to local surrogate modeling. Global
surrogate modeling tries to create a model that accurately
mimics the original system over the entire design space, with
the goal of creating a model that can be safely used as a
replacement for the original simulation code. Local surrogate
models are often used in optimization to help the optimizer
locate an optimum; however, the local surrogate modeling is
discarded afterwards, and is not the final goal.

Mathematically, the simulator can be defined as an un-
known function f : <d → C, mapping a vector of real
inputs to a real or complex output. This function can be
highly nonlinear and possibly even discontinuous. This un-
known function has been sampled at a set of scattered data

points P = {p1,p2, . . . ,pn}, for which the function values
{f(p1), f(p2), . . . , f(pn)} are known. In order to approxi-
mate the function f̃ , a function f : <d → C is chosen from
the (possibly) infinite set of candidate approximation functions
F .

The quality of this approximation depends on both the
choice and exploration of the function space F and the data
points P . Ideally, the function f itself would be in the search
space F , in which case it is possible to achieve an exact
approximation. However, this is rarely the case, due to the
complexity of the underlying system. In practice the function
f̃ is chosen according to a search strategy through the space
F , in order to find the function that most closely resembles
the original function, based on some error metric for the data
points P [2], [3].

II. MOTIVATION

Creating a sufficiently accurate surrogate model is no
easy process, and there are several important design choices
that need to be made and problems to overcome in order
to develop a robust algorithm. Examples of problems often
encountered are choosing the data sampling strategy (active
learning), choosing the right model for the problem at hand
(model selection), tuning the model parameters (hyperparam-
eter optimization) and balancing between model accuracy and
computational cost. Particularly important is the sampling
strategy. Since data is computationally expensive to obtain,
it can be infeasible to use traditional, one-shot space filling
experimental designs such as Latin hypercubes or factorial
designs. Data points should be selected iteratively and intel-
ligently at locations where the information gain will be the
greatest. This process is called active learning, but is also
known as sequential design or adaptive sampling [4].

All these problems result in an overwhelming number of
options available to the designer. In practice, it turns out
that the designer rarely tries out more than one subset of
options, because the search space is just too large to explore
manually. All too often, surrogate model construction is done
in a one-shot manner. Iterative and adaptive methods, on
the other hand, have the potential to produce much more
accurate surrogate models at a considerably lower cost (less
data points). We present a state-of-the-art machine learning
platform that provides an automatic, flexible and extensible
framework to tackle such problems: the SUrrogate MOdeling
(SUMO) Toolbox.



Figure 1. A set of data points is evaluated by the simulator, which outputs a response for every data point. An approximation model (global surrogate model)
is fit to the data points.

III. THE SUMO TOOLBOX

The SUMO Toolbox is an adaptive tool that integrates dif-
ferent modeling approaches and implements a fully automated,
adaptive global surrogate model construction algorithm. Given
a data source (a simulator or a dataset), the toolbox automati-
cally generates a surrogate model within the predefined accu-
racy and time limits set by the user. Robustness is a primary
concern, as different problems require different approaches to
achieve optimal results. The toolbox aims to automate as much
of the modeling process as possible by tweaking model param-
eters and selecting samples on the fly to optimize the models
for the problem that is being tackled. The latest version of the
SUMO Toolbox (v7.0.2) has been released as open software
(including all the algorithms mentioned in this paper) and can
be downloaded from http://www.sumo.intec.ugent.be, allowing
for a full reproduction of all the experiments conducted and
published by the authors.

The work-flow of SUMO is illustrated in Figure 2. First, an
initial design (typically a sparse Latin hypercube or a fractional
design) is generated and evaluated. Then, a set of surrogate
models is built, and the accuracy of these models is estimated
using a set of measures (for example: cross-validation or an
external validation test set). Each model type has several
hyperparameters which can be modified, such as the order
of numerator and denominator for rational models, number
and size of hidden layers in neural networks, smoothness
parameters for RBF models, and so on. These parameters are
adjusted using a hyperparameter optimization technique, and
more models are built until no further improvement can be
made by changing the hyperparameters. If the overall desired
accuracy has not yet been reached, a call is made to the
sequential design routine, which selects a new sample to be
evaluated, and the algorithm starts all over again.

To make SUMO even more widely applicable, the toolbox
was designed to be as modular and extensible as possible,
without becoming too cumbersome to use or configure. Many
different modules are readily available for use: model types
(neural networks, support vector machines, rational functions,

Figure 2. Flow-chart of the SUMO toolbox.

gaussian process models, ...), hyperparameter optimization
algorithms (Pattern Search, Genetic Algorithm (GA), Particle
Swarm Optimization (PSO), ...), active learning (density based,
error based, hybrid, ...) and data sources (datasets, local
simulator codes, simulator execution on a cluster or grid). The
behavior of each component is configurable through a central
XML file and new components can easily be added, removed
or replaced by custom, problem-specific implementations, if
none of the available implementations are suitable for the
problem at hand. Additionally, the toolbox supports ensemble
models and heterogeneous model selection, in which several
different model types are trained and compared against each
other automatically [5].

The difference with existing machine learning toolkits such
as Rapidminer (formerly Yale), Spider, Shogun, Weka, and
Plearn is that they are heavily biased towards classification and
data mining, while SUMO focuses entirely on regression with



expensive simulators (and therefore limited amounts of data)
with getting an accurate global surrogate model as the final
goal. Focusing on regression with expensive data allowed us
to develop advanced and specialized hyperparameter selection
and active learning methods. The other toolkits often assume
that data is freely (and abundantly) available and cheap, and
they lack advanced algorithms for the automatic selection of
the model type and model parameters.

Our approach has been successfully applied to fields
ranging from combustion modeling in chemistry and metal-
lurgy, semi-conductor modeling (electro-magnetism) and aero-
dynamic modeling (aerospace) to structural mechanics mod-
eling in the car industry [5], [6], [7], [8], [9], [10], [11],
[12]. Its success is primarily due to its flexibility, self-tuning
implementation, and its ease of integration into the larger
computational science and engineering pipeline.

IV. EXAMPLE

As a simple example of a problem that was successfully
modeled using the SUMO toolbox, we present the following
application from electro-magnetism (code courtesy of Robert
Lehmensiek [13]): a 3-dimensional simulation model that
computes the scattering parameters for a step discontinuity in
a rectangular waveguide [14]. The inputs consists of the input
frequency, the gap height and the gap length. The (complex)
outputs are the scattering parameters S11 and S21. The goal
is to generate an accurate surrogate model using as little data
points as possible. This surrogate can then be used by the
engineer for further analysis or integration into a larger circuit
simulation program.

The toolbox starts with an initial sparse Latin hypercube
sample distribution of 20 samples (in the 3-dimensional de-
sign space) and each adaptive sampling iteration adds 5 new
samples until a maximum of 500 or a cross validation error of
0.0001 is reached. Rational functions are used for the model
type, and its model parameters (degrees of freedom, number
of terms in the nominator and denominator, ...) are optimized
using a stochastic hill climber.

Figure 3 shows the evolution of the error for S11 on an
independent test set as the modeling progresses. We see that
after only 60 samples, the toolbox has found a model which a
generalization error less than 1%, which is already acceptable
for most applications. Adding another 40 extra adaptively
selected samples reduces the error even further to 0.1%. At this
point the surrogate model can confidently be used to replace
the simulation code in virtually all cases, thus avoiding any
future time intensive simulations.

V. CONCLUSION

The SUMO Toolbox is a flexible tool for adaptive surrogate
modeling which has been successfully applied to a large
number of real-life problems, as well as many popular bench-
mark test cases. It contains a wide variety of different model
types, active learning strategies, hyperparameter optimization
methods and data sources, making it a very powerful and
robust tool for automatically generating accurate surrogate
models.
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Figure 3. Evolution of the generalization error for S11.
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