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Abstract. Wireless sensor networks are used by an ever growing number of ap-

plications which have ever increasing Quality of Service requirements. The 

available unlicensed industrial scientific and medical bands – where wireless 

sensor networks typically operate – are crowded with a number of technologies 

interfering with each other. Delivering a sufficiently high QoS within these fre-

quency bands is therefore becoming more and more difficult. A theoretic con-

cept named Coexistence Aware Clear Channel Assessment (CACCA) promises 

more reliable QoS when different technologies utilize the same. Within this pa-

per we propose two methods to perform CACCA and create an SDR prototype 

to show that CACCA can achieve a high packet error rate reduction in an IEEE 

802.15.4 network when it coexists with IEEE 802.11.  

Keywords: Coexistence, Sensor Network, Wireless, Interference Avoidance, 

IEEE 802.11, IEEE 802.15.4, CCA, SDR, WARP, FPGA 

1 Introduction 

The exponential growth in wireless devices during the last decade has presented a 

new problem for wireless sensor networks. The increased number of wireless tech-

nologies as well as the higher requirements for wireless communication put a high 

strain on the limited unlicensed spectrum available to these devices. Being resource 

and energy limited, wireless sensor nodes often get the short end of the stick when 

confronted with other technologies, resulting in severely degraded communication 

capabilities as shown in several publications [1 - 4]. 

 

Specifications in most communication standards ensure that users of the same 

technology are capable of coexisting in the same frequency band. Between different 

technologies however, this coexistence is often limited or nonexistent. Different tech-

nologies might still be needed in identical environments to support diverse needs of 

different applications. Eg. A wireless sensor network using the IEEE 802.15.4 tech-

nology might be co-located with IEEE 802.11 stations. The first one is capable of 

supporting very long term battery powered operation, while the latter is capable of 



delivering higher bandwidth connectivity, be it at higher energy cost. Taking a look at 

the 2.4 GHz band and the interaction between some common digital wireless techno l-

ogies we see that some standards include support for coexistence (like Adaptive Fre-

quency Hopping for IEEE 802.15.1 – 2005 [5]), while no such provisions exist for the 

IEEE 802.11 [6] or 802.15.4 [7] standards. Indeed, several studies [1 - 4] have shown 

that severe throughput degradation can be observed when IEEE 802.11 and IEEE 

802.15.4 devices interfere. 

 

In [2] we introduce the concept of Coexistence Aware Clear Channel Assessment 

(CACCA), which is capable of reducing this interference, fostering cross-technology 

coexistence. CACCA can be applied on a single wireless technology or on multiple 

interfering technologies. In the case of IEEE 802.11 and IEEE 802.15.4 devices, the 

paper concludes that the highest reduction in packet error rate (PER) can be achieved 

by deploying the CACCA mechanism on IEEE 802.11 devices. Therefore this paper 

will focus on the implementation of CACCA on an IEEE 802.11 device and the ef-

fects on IEEE 802.15.4 communication. 

 

While the concept of CACCA is fully explained in the paper, several factors need 

to be considered before an actual implementation can be achieved. In this paper we 

implement CACCA as an extension to existing IEEE 802.11 systems while remaining 

standards compliant. We used the WARP [8] software defined radio (SDR) as our 

implementation platform. Keeping in mind the standard compliance and the relative 

simplicity of the proposed extensions it should be relatively easy to port this effort to 

existing or future IEEE 802.11 devices. In section II the requirements of this back-

wards compatible CACCA are considered and two possible implementations are pro-

posed. 

 

In section III a simulation of these solutions is discussed, while the actual imple-

mentation is handled in section IV. We experimentally analyze and verify both im-

plementations in section V. Section VI mentions future research and implementation 

possibilities, ending with a conclusion in part VII. In the scope of this paper, we will 

refer to the IEEE 802.15.4 standard as ZigBee and to the IEEE 802.11g standard as 

Wi-Fi. 

2  Requirements and solutions 

2.1 Coexistence Aware Clear Channel  Assessment 

In [2] the concept of Coexistence Aware Clear Channel Assessment is introduced as a 

means to improve coexistence between technologies. It comes down to complemen t-

ing the existing CCA mechanisms of a technology with additional CCA modules 

capable of detecting other technologies. 

  



In figure 1.A traditional sensing CCA operation is visualized: before transmitting, 

the radio will stay in receive mode for a short while and try to determine whether 

another user is using the channel. Depending on the used protocol, transmissions can 

be postponed (time based interference avoidance, figure 1.B) or moved to another 

channel (frequency based avoidance, figure 1.C). To sense the occupancy of the 

channel, both ZigBee and Wi-Fi support two CCA mechanisms, energy based CCA 

and preamble detection. For the first method the channel energy is compared to a 

predetermined threshold while the second method detects the presence of a technolo-

gy specific sequence. 

 

Fig. 1. Basic CCA operating principle (A) with time based avoidance (B) or frequency based 

avoidance (C) 

Without any modification these standard CCA methods will not allow ZigBee and 

Wi-Fi devices to coexist. Due to the technology specific nature of preamble detection 

this technique is inherently incapable of detecting other technologies. The simplicity 

of the energy based CCA means that it could possibly detect other technologies, but in 

the case of Wi-Fi and ZigBee the different bandwidths and transmission levels mean 

that ZigBee will be overly sensitive to Wi-Fi, while Wi-Fi will be less sensitive to 

ZigBee. Theoretical analysis and experiments [1] confirm that both technologies in-

deed suffer severe throughput degradation when interfering – up to 80% depending on 

the exact configuration – so this energy based CCA is clearly not sufficient. Therefore 

a new technique is required to improve coexistence. 

  

CACCA proposes extending a standard CCA with additional methods that are ca-

pable of detecting other technologies . This allows the sender to avoid colliding with 

packets from other technologies  as shown in figure 2. Focusing on a ZigBee - Wi-Fi 

scenario, [2] concludes that the biggest throughput gains can be achieved by adding a 



ZigBee CACCA to existing Wi-Fi devices. Additional gains can be achieved by mod-

ifying the ZigBee CCA but this was left as a future improvement. This paper will 

mainly focus on adding a ZigBee friendly CACCA to a Wi-Fi device. 

 

Fig. 2. Interaction between Wi-Fi and ZigBee without (A) and with (B) CACCA. 

As mentioned in the introduction, additional design decisions had to be taken to get 

from the conceptual CACCA presented in [2] to a working implementation. In figure 

3 a modified Wi-Fi system is outlined: in a traditional Wi-Fi setup the received signal 

is passed through an aliasing filter and digitized, after which CCA is performed. 

Thanks to the high bandwidth of a Wi-Fi receiver, the same digital signal can be used 

for the detection of ZigBee signals. As each Wi-Fi channel covers multiple ZigBee 

channels, CCA must be performed on all contained ZigBee channels. To achieve this, 

the high bandwidth Wi-Fi channel is mixed down to several low bandwidth ZigBee 

channels and CCA is performed on each channel. While not strictly necessary, we 

chose to implement this new CCA in a backwards compatible way, complying with 

the limits imposed on the standard Wi-Fi CCA. 

 

Fig. 3. Standard Wi-Fi CCA (top) and the extended CACCA version (bottom). 



2.2 Constraints 

Two types of constraints should be considered when a Wi-Fi station is to detect a 

ZigBee transmission while still conforming to the standard, namely timing and detec-

tion sensitivity. 

 

The Extended Rate PHY (ERP) Wi-Fi standard defines the slot time to be 9 µs  [6], 

consisting of 4 µs of actual channel sensing (CCA Time) and 5 µs for RX – TX turna-

round (RxTx_TurnaroundTime). While not strictly necessary, to obtain the highest 

throughput and limit the additional energy requirements of the CACCA, the imple-

mentation should be able to determine the channel state reliably within these 4 µs. 

Hence not only the CCA itself, but also the signal processing should be finished with-

in the CCA timeframe. 

 

The main purpose of CACCA is avoiding collisions between packets, independent 

of the technologies used by these packets. Higher level solutions exist to reduce colli-

sions (eg. RTS/CTS, scheduling … [9]) but the cross technology aspect of this prob-

lem excludes these solutions . They would require multi technology radios, completely 

defeating the relative simplicity of CACCA. The CCA sensitivity has as primary tar-

get the minimization of the hidden terminal problem with higher sensitivity leading to 

fewer collisions. CACCA should therefore be capable of detecting signals down to the 

lowest possible level.  

 

The timing and sensitivity requirements are in direct conflict with each other as in-

creasing the sensing time improves sensitivity [10]. However, the 4µs limit is a hard 

limit imposed by the standard and therefore we will strive to achieve the needed sen-

sitivity within the standard defined times. 

2.3  Detection methods 

The CACCA requires reliable detection of channel state within the available 4µs CCA 

time. Multiple methods to perform this detection exist. 

 

Energy detection is achieved by averaging the energy within the channel, without  

filtering the incoming signal. The channel state is determined by comparing the meas-

ured energy level with a predetermined threshold as outlined in figure 4. An energy 

detector can detect a wide variety of signals with a minimal computational overhead 

due to the fact that no a priori knowledge about the signal is required. However, the 

detection sensitivity for a specific technology can be improved through the  addition of 

filtering.  



 

Fig. 4. Simple energy detection architecture 

Filtering the received signal with a matched filter before performing the detection 

(figure 5) will increase the sensitivity [10]. Given complete a priori knowledge of the 

modulation scheme, this filter corresponds to the receive filter used for demodulation 

and will provide the best possible detection rate. The modulation scheme used by 

ZigBee in the 2.4 GHz band is O-QPSK and as such this filter is easily calculated. 

Not only will the additional filtering increase the processing time, it will also reduce 

the sensitivity to other signals. While the former reduces the effective sampling time 

from 4 µs to 3 µs (using a 1 µs filter, figure 6), the latter poses no additional problem 

for this application. 

 

Fig. 5. Simple matched filtering architecture 

 

Fig. 6. Sampling and processing periods for energy detection and matched filtering. 
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3 Simulation 

The detection methods were simulated in Matlab to verify their performance before 

they were implemented in hardware. As shown in figure 7, the simulation is split into 

three parts: signal generation, propagation and the detection algorithms. 

 

 

Fig. 7. Simulation overview 

The signal generator generates a sample stream containing a ZigBee DSSS (Direct-

Sequence Spread Spectrum) signal when the transmitter is active. This stream is 

passed through an AWGN (Additive White Gaussian Noise) channel model that adds 

white noise to obtain a predefined SNR (Signal-to-Noise Ratio). Finally, the detection 

algorithm tries to estimate the original state of the channel state from this noisy signal. 

 

The implementation of the energy detector is fairly straightforward, but the 

matched filter detector requires the design of an additional filter. This filter is based 

on the transmit filter described in the IEEE 802.15.4 standard, section 6.5 [7]: 

, with  

To obtain the corresponding receive filter, the time reversed complex conjugate of 

this filter is taken, resulting in the filter shown in figure 8. 

 

 

Fig. 8. The matched filter and its frequency response 

 
 
 

 

 



Detection sensitivity is measured by varying the channel SNR and comparing the 

output of the detector with the actual channel state. Random 4 µs intervals were sam-

pled by the detector and used to determine channel state.  

 

The detection mechanisms should detect the presence of a ZigBee signal as reliably 

as possible, albeit keeping the false positive sufficiently low. Without this limit the 

Wi-Fi transmitter would always sense the channel as busy even though it is free. 

Therefore we chose the threshold for detection to keep the false positive rate (channel 

estimated as busy when it is free) below 5%.  

 

 

Fig. 9. Simulation results: false negative rate for MF (- -) and ED (▬) 

The results presented in figure 9 show that both methods are capable of detecting a 

ZigBee signal successfully. When keeping the false negative rate below 10%, 

matched filtering is reliable for SNR down to -10 dB, while energy detection is capa-

ble of detecting signals with an SNR of -5 dB. Overall, matched filtering provides a 

gain of approximately 5dB over energy detection, although both methods are suitable 

for detection.  

 

To verify the correctness of the Matlab implementation, the detection algorithms 

were also applied to raw data captured from a ZigBee transmission. The processing 

was done off-line, but we were able to verify that the implemented algorithms are 

indeed capable of detecting the presence of real signals. 

  



4 Implementation 

The very strict timing requirements (section 2.2) mandate a hardware platform that 

allows both low-level and low-latency access to the RF signal. Several research plat-

forms allow low-level access to the RF signal, but the low-latency requirement rules 

out host-based platforms like the USRP [11] or SORA [12]. Embedded solutions like 

the WARP [8] or the Sundance MIMO series [13] do not suffer this drawback and are 

therefore more suited for this task. 

 

For our implementation the WARP (figure 10) was chosen. This device combines a 

powerful Virtex-4 FPGA with an RF frontend supporting bandwidths up to 40 MHz 

in the 2.4 and 5 GHz bands. The reconfigurable logic of the FPGA allows for high 

speed, low-latency processing of RF signals, while the processor embedded in the 

FPGA can handle sequential control tasks. Thanks to the tight integration between the 

processing and control systems, any communication overhead is kept to a minimum 

and most timing constraints can be met. 

  

Fig. 10. The Wireless open-Access Research Platform SDR with Virtex-4 FPGA 

We originally planned on modifying the CCA of an existing 802.11g implementation 

to perform CACCA. However, an adequate Wi-Fi MAC for the WARP is lacking so 

the effort was focused on developing independent detection cores. While a Wi-Fi-like 

PHY layer is available – the OFDM reference design – extensive modifications and a 

new MAC layer would be needed. While this would be an interesting topic in itself, 

we limited the implementation efforts to the CACCA detection cores. Compared to a 

complete wireless stack, the complexity of these detection cores will be very limited. 

 

  



The energy detection and matched filtering algorithms were implemented in the re-

configurable logic of the FPGA as separate cores using the System Generator provid-

ed by Xilinx and Simulink. A simple transmit core was also designed to replay prere-

corded sample streams. 

 

The final system consists of these cores along with several standard cores from 

Xilinx and the WARP project. This hardware is connected by the Processor Local Bus 

(PLB) and a Local Link (LL) connection and is controlled by the software running on 

the PowerPCs embedded in the FPGA to provide the required functionality: 

 Communication with a host PC to control experiments is handled by the serial and 

Ethernet cores. To support high throughputs the Ethernet core is also connected to 

the DDR2 memory installed on the WARP. 

 RF control is handled by the aforementioned detection and transmission cores. 

Communication with the actual RF frontend is provided by the WARP radio core 

that presents an abstracted interface to the other RF cores. 

 Additional direct feedback is supplied by several IO cores driving external LEDs. 

 

 

Fig. 11. Architectural overview of the system implemented on the WARP hardware 

The complete system (figure 11) is capable of both detecting ZigBee signals using 

energy detection and matched filtering and interfering with these signals by transmit-

ting pre-recorded samples. While it is capable to function as a stand-alone device, the 

software running on the PowerPC allows us to reconfigure the system at runtime and 

display measurement results when performing experiments  using an external PC. 

  



5 Experimental analysis 

5.1 Setup 

The IBCN research group has access to a controlled RF environment consisting of 

four shielded enclosures and a network of variable attenuators. Devices to be tested 

are placed inside these enclosures to minimize external interference and the variable 

attenuators control the coupling between the enclosures. This setup allows complete 

control of the RF environment and makes repeatable RF experiments possible. A 

WARP device was placed in one box and connected to 3 ZigBee nodes in the other 

boxes through the attenuator network (figure 12). Thanks to the flexible attenuation 

network this setup can be used to simulate most scenarios involving these devices 

without moving any hardware.  

 

 

Fig. 12. The wireless test setup at the IBCN research group 

5.2 Experiments 

Experiments were performed to determine the detection rate and measure the influ-

ence of an interferer using CACCA on a standard link. 

 

Sensitivity was measured by varying the attenuation between a transmitting ZigBee 

node and the WARP. Along with the RF signals, an additional IO signal was routed 

between the two nodes to indicate the radio state. This line was controlled by the 

transmitting node and provided the WARP with the state of the radio on the transmit-

ting node. To reduce the influence of timing differences between the radio chip and 

the microcontroller on the transmitting node, results in a 20 µs interval around a tran-

sition on the IO line were discarded. The threshold was again chosen so the false pos i-

tive rate was below 5%. The configuration of this experiment can be seen in figure 13. 



 

Fig. 13. Sensitivity experiment setup 

The effect of CACCA on the goodput of a ZigBee link was measured in a second 

experiment. Two ZigBee nodes and a WARP were configured in a triangle setup as 

seen in figure 14: the WARP and the transmitting node were connected directly to the 

receiving node while a variable attenuator controlled the strength of the signal from 

the transmitter to the WARP. Interference is generated by the WARP performing 

CACCA and transmitting short prerecorded Wi-Fi fragments.  

 

Fig. 14. Goodput experiment setup 



5.3 Results 

 

Fig. 15. Detection rate of a busy channel for energy detection (○) and matched filtering (□) 

In the first experiment the detection rate of the two CACCA methods was meas-

ured by comparing the channel state estimations  with the actual channel state. Postu-

lating a 90% reliability, energy detection is capable of reaching this goal for signals 

down to -79 dBm, while matched filtering can handle signals down to -83 dBm as 

shown in figure 15. While the differences between both methods are not as big as 

expected from the simulations, there is still an improvement of about 4 dB. 

 

Comparing these results to the thresholds specified in the Wi-Fi standard we see 

that both methods perform significantly better. According to the standard the Wi-Fi 

CCA requires 90% reliable detection of a signal at -76 dBm. For energy detection the 

improvement is limited to 3 dB, while matched filtering gives a more significant im-

provement of 7 dB. 

 

In the ZigBee standard the CCA threshold is  specified to be -85 dBm for a sam-

pling time of 128 µs. While reaching this target is not necessary for our case  (this 

implementation is targeted at Wi-Fi systems), comparing the results shows that ener-

gy detection is not capable of reaching this threshold in a 4 µs sampling window but 

matched filtering only falls short by 2 dB. 



 

Fig. 16. Goodput for energy detection (○) and matched filtering (□) 

In the second experiment the goodput between two standard ZigBee devices is meas-

ured while interference is generated by transmitting prerecorded Wi-Fi signals and 

using different CACCA methods. The results of this experiment are shown in figure 

16. When using no CCA, the ZigBee traffic is completely drowned out by the Wi-Fi 

signal. The goodput is improved by using both CACCA methods: packet error rates < 

10% can be achieved using the energy detection method when the signal strength at 

the interfering Wi-Fi station is above -78 dBm or above -86 dBm when using matched 

filtering. 

6 Future work 

Considering the work presented in this paper, two main areas of improvement can be 

identified: 

 

The first is extending the CACCA to other protocols: the current implementation is 

focused on the interaction between IEEE 802.15.4 and IEEE 802.11g, but given the 

plethora of wireless standards and devices, the addition of other technologies like 

IEEE 802.15.1 will improve coexistence even more. 

 

Secondly, integration of the detection cores: due to the low complexity of the de-

tection methods compared to a complete wireless system, it should be possible to 

include the CACCA in a complete wireless stack. This would allow for additional 

testing and could possibly lead to an implementation in commodity hardware, as the 

current hardware is fairly specialized and expensive. 



7 Conclusion 

Wireless Sensor Networks are increasingly co-located with Wi-Fi, resulting in a de-

crease of its performance due to an increase in packet loss. Coexistence Aware CCA 

promises to reduce this packet loss significantly by extending existing CCA methods 

with methods capable of detecting other technologies . Within this paper we proposed 

a possible implementation method, implemented a prototype of a Wi-Fi side ZigBee 

CACCA and experimentally verified its operation.  

 

The main goal of the implementation presented in this paper was remaining back-

wards compatible with the Wi-Fi standard and keeping the implementation as simple 

as possible. Therefore we chose the timeframe after which CACCA needs to deliver 

its channel assessment to be 4 μs , as specified in the Wi-Fi standard. Within this 

timeframe two possible CCA methods are viable, namely energy detection CCA and 

matched filtering CCA. With a Matlab simulation we concluded that the ED based 

approach can reliably detect ZigBee with an SNR down to -5 dB, while MF improves 

this down to -10 dB. 

 

Both approaches were implemented on the WARP SDR platform, using a combi-

nation of software running on the embedded processor and dedicated hardware cores 

to meet the timing requirements . The original goal of modifying a complete Wi-Fi 

implementation was abandoned due to the lack of an existing Wi-Fi MAC implemen-

tation. Instead Wi-Fi interference was simulated by replaying prerecorded Wi-Fi sam-

ples. While this is no optimal solution, it allowed us to perform relevant experiments. 

The final system is capable of performing ZigBee CACCA and interfering with 

ZigBee traffic in a Wi-Fi like way. 

 

In a first experiment we verified that the sensitivity of both CACCA methods is in-

deed better than the default sensitivity specified in the Wi-Fi standard. Compared to 

the -76 dBm standard, both energy detection (-79 dBm) and matched filtering (-84 

dBm) offer significant improvements. A second experiment showed that ZigBee is 

still able to deliver the maximum throughput when its signal is received stronger than 

-84 dBm at the Wi-Fi sender. Concluding we can say that this proof of concept clearly 

shows the benefits of CACCA for technologies operating in the crowded ISM band. 

 

As a final note we would like to address the business opportunities of CACCA. At 

first sight its business case might seem unclear, for we propose an enhancement to the 

popular Wi-Fi standard to obtain performance gains for ZigBee devices. However, in 

[14] we show that due to the relatively low implementation complexity and the more 

consolidated platform – where one chipset is used in a wide range of devices (ex. PC, 

laptop, table and phone) – viable business opportunities are feasible. 
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