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The design of a service-oriented architecture for multisensor surveillance in smart homes is presented as an integrated solution
enabling automatic deployment, dynamic selection, and composition of sensors. Sensors are implemented as Web-connected
devices, with a uniform Web API. RESTdesc is used to describe the sensors and a novel solution is presented to automatically
composeWeb APIs that can be applied with existing SemanticWeb reasoners.We evaluated the solution by building a smart Kinect
sensor that is able to dynamically switch between IR and RGB and optimizing person detection by incorporating feedback from
pressure sensors, as such demonstrating the collaboration among sensors to enhance detection of complex events.The performance
results show that the platform scales for many Web APIs as composition time remains limited to a few hundred milliseconds in
almost all cases.

1. Introduction

As a result of the falling birthrate and the increased life
expectancy, the world’s population is aging [1]. This aging
population and a shift in the burden of illness from acute
(infections and injury) to chronic conditions (e.g., asthma,
epilepsy, and heart disease) drive up health costs and create
a generation of people living with long-term illness and
disability. In order to cope with the impact of chronic
diseases, disability, or aging, patients are discharged earlier
from hospitals, receiving care in their own homes. They have
to rely on surveillance services to monitor their health and
on assistance when needed. This patient-centered concept of
bringing care from the hospital to the patient at home aims
to significantly reduce healthcare expenses [2]. Furthermore,
the patient-centered concept of living longer independently at
home also fulfills the growing social desire for a better quality
of life. As “home” for the elderly is a place full of memories
where they like to spend their time, equipping this location
with advanced electronics and sensors allows them to live
independently in their preferred environment.

These so-called “smart homes” are especially equipped
for remote monitoring, care delivery, and early detection of

health problems, serving especially elderly and people with
disabilities. To achieve this, nonobtrusive embedded objects
and sensors surround the inhabitants of these smart homes
and recognize individual users and their situational context.
The sensors eithermeasure simple ambient conditions or cap-
ture video related to the environment surrounding the sensor.
Examples include temperature sensors, camera monitoring
sensors, light sensors, presence and weight sensors, toilet
flush sensors, automated switch-offs for dangerous devices
such as cookers and stoves, and visitor identification cameras.

Processing the signals from the different sensors reveals
some properties about objects located and/or events happen-
ing in their vicinity. However, sensors typically exert no effect
on each other, which is a suboptimalmode of operation. Each
sensor stands on its own, delivering information without
taking into account feedback from other neighbor sensors,
imposing a lot of restrictions to smart homes. Additionally,
optimizing the reliability of information retrieved from single
sensors has led to intensive research in the past few years,
yet has reached its limits [3]. Therefore, to further improve
the support people get from sensor systems in their everyday
lives, collaborative gathering and processing of sensor data
become necessary. This way, the available information and
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intelligence of all sensors can be fed back to each of them
in order to optimize their functionality. For example, when a
visitor needs to be identified, or a demented patient must be
monitored, the smart home platform can dynamically switch
to infrared video sensors under bad illumination conditions
or use another video processing algorithm in response to
changes in movement, temperature, or lighting.

The combination of sensor information within a smart
home platform is a promising approach in order to enhance
the detection and interpretation of advanced events, and also
the topic of this paper. Unfortunately, it also comes with
a number of problems [4]: by combining sensor data, the
amount of available data rapidly increases. Therefore, the
following challenges need to be tackled in order to cope with
such an amount of data:

(i) representation of the sensor data: different sensors
communicate their results through different protocols
and represent their data in different formats, resulting
in a huge heterogeneity in terms of sensor data
representation;

(ii) finding relevant sensor data: not all sensors can be
combinedwith each other, which implies thatwe need
to investigate which sensor combinations make sense
and how this can be expressed;

(iii) performance issues: since smart homes have to deal
with a large amount of sensor data, possible per-
formance issues need to be anticipated during the
detection and interpretation of events.

Current smart home solutions use different, proprietary,
or noncompatible technologies that hinder mass-market
development [5–7]. To overcome this issue, the service-
oriented architecture for multisensor surveillance in smart
homes (SAMuS), presented in this paper, adopts the Inter-
net of Things vision and implements the sensors as Web-
connected devices having a uniform Web API. This way, all
“things,” that is, sensors, are connected with similar technol-
ogy, serving as “gold standard” solving current barriers in
mass-market adoption of smart homes. Moreover, advanced
reasoning and interpretation strategies can be applied to the
fusion of the sensor data, allowing combining information
between video sensors (cameras) and other nonvideo sensors
(such as temperature, sound, and heart rate). This in turn
enables an enhanced functionality of the sensors by allowing
them to detect complex events that currently remain unde-
tected. As a result, the surveillance and care delivery services
within a smart home platform can be significantly improved.
For example, for demented patients having difficulties in
remembering the steps in doing everyday activities such as
washing their hands, the smart home platform will monitor
their movements and if the patient does not pick up the
soap, it gives instructions or shows video demonstrations.
Additionally, the platform can identify visitors, automatically
switch off dangerous devices when needed, and log every-
thing in order to reassure the patient and help him recall
memorieswhichwill lead to long-term retention ofmemories
in the end. The smart home platform also allows the patients

to be monitored and supported by caregivers and family
remotely.

The remainder of this paper is structured as follows.
Section 2 gives an overview of the related work on smart
homes. In Section 3, the SAMuS platform is presented,
more specifically the architecture overview, internal design
issues, and broker components. In Section 4, the SAMuS
platform is evaluated by creating a smart Kinect sensor able
to dynamically switch between IR and RGB and optimizing
person detection by incorporating feedback from other sen-
sors. Performance results on scalability are presented as well.
Finally, we highlight the main conclusions of this work in
Section 5.

2. Related Work

Smart homes are a long way from maturity. Although under
development for decades now, smart homes have barely
made it out of the research labs [6–8]. The idea of smart
homes comes from the earlier work on home automation
focusing on, for example, indoor climate monitoring [9]
or minimizing energy consumption [10]. The MavHome
project [11] defines the smart home as an intelligent agent
supervising and trying to improve the users’ life quality,
while keeping in mind ecological factors such as decreasing
water consumption. MavHome uses CORBA as underlying
technology to connect all the software services and data
mining to reduce the database size. The Amigo Project [12]
and the Service Centric Home [13] aim at the development
of middleware that integrates heterogeneous systems and
appliances to achieve interoperability between services and
devices [8].

Due to the opportunities of combining sensor informa-
tion within a smart home platform, multisensor surveillance
in smart homes has also been the subject of many researches.
The ACHE smart house architecture [10] uses basic sensors,
limited to switching on/off, temperature readings, and door
open/closed values. All sensor values are processed centrally
to define occupancy patterns and adapt the environment to
improve the inhabitants’ comfort. Neural networks are used
to predict future states of the home. Also in [14], simple state
sensors are used in combinationwith pattern recognition and
classification algorithms based on naive Bayesian network to
detect simple activities like toileting and bathing. Regardless
of the suboptimal training method used for the activity
recognition, it is shown that it is possible to recognize
complex actions with simple sensors.

Finally, the Gator Tech Smart House project [15] uses
a service-oriented architecture approach to connect all the
sensors and actuators in the smart home. The layered archi-
tecture is based on OSGi, where the OSGi bundles contain
the definitions of services a particular sensor or actuator
can offer. The services can be composed into new, more
complex services, and an ontology describes every device in
the house, ensuring the services use compatible values while
communicating.

These solutions illustrate the potential of smart homes
and multisensor surveillance. Not surprisingly, numerous
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Figure 1: High-level architecture of the SAMuS multisensor surveillance platform.

companies compete and cooperate to produce devices and
sensors that will help consumers achieve longer living inde-
pendently. However, despite the complexity of the market, a
clear concern is emerging that the market will not grow to
its full potential if current barriers, as a result of the different
and noncompatible technologies used, remain [5].Therefore,
the sensors within the SAMuS architecture are implemented
as Web APIs; a general approach, not limited to OSGi
or any other (proprietary) technology, allowing combining
information between sensors and detecting complex events
that currently remain undetected.

3. Design of the Multisensor
Surveillance Architecture

The aim of this research is to design a platform for multisen-
sory surveillance. A wide range of applications can benefit
from combining visual, audio, and other sensor information.
Examples are office or airport security and human tracking,
fire detection [16], traffic control systems, advanced health
care delivery and assistance to elderly (the use case of
this paper), and industrial process control and condition
monitoring. In these applications, multimedia support has
the potential of enhancing the level of information collected,
enlarging the range of coverage, and enablingmultiresolution
views.

In the subsections below, it is explained how the SAMuS
platform tackles the challenges that were listed in Section 1.
Furthermore, the SAMuS platform also takes into account the
following requirements.

(1) Human-platform interaction for deploying new sen-
sors should be straightforward, allowing for mass-
market adoption of smart homes.

(2) Because the systemmay be deployed in highly flexible
environments, on-the-fly addition and removal of
components and sensors are preferred.

(3) The platform needs to be generic in the sense that
it should be possible to plug in new components,
independent of implementation languages, operating
systems, and hardware.

(4) The platform needs to be scalable so it can handle
complex sensor collaborations.

3.1. Architecture Overview. Figure 1 presents the high level
architecture of the SAMuS multisensor surveillance platform
that enables integration of sensors (video and nonvideo
sensors) using a broker architecture (SAMuS broker) in order
to enhance the sensors’ functionality and detect advanced
events.

The complexity and heterogeneity of these multisensor
surveillance systems, where various kinds of sensors need
to cooperate while having widely diverse characteristics,
directly map onto the service-oriented architecture pattern.
These service-oriented architectures benefit from loosely
coupled modularity, interoperability, flexibility, and reusabil-
ity. Therefore, the SAMuS platform is designed based on
the principles of service-oriented architectures, wherein all
components, including sensors, are implemented as services.
More specifically, the SAMuS platform is built around a
broker that is able to discover available sensors and services
(service discovery component), select and compose sensors
(composer and reasoner component), and process the data
and sensor flows in order to facilitatemultisensor surveillance
(flow executor component).

By using the generic concepts of service-oriented com-
puting and brokering, the platform presented in this paper
is not restricted to healthcare monitoring in smart homes but
acts as a generic communication system in which sensors and
services can easily be plugged.

A SAMuS platform prototype as well as some prototype
sensors and processing services has been implemented in
the iLab.t HomeLab and is currently evaluated. Below is an
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overview of the main internal design details and the broker
components.

3.2. Choosing the Service Style. In view of the broad support
for Web services, they are perfect for implementing the
service-oriented architecture and the integration of hetero-
geneous software components since applications can easily
be distributed and they expose well-defined functionality as
a Web service. The Web service technology enables thus the
required integration for the SAMuS platform.

TwomainWeb service style architectures exist, SOAP and
REST.The implementation of services in the SAMuSplatform
is done using the REST style architecture for two reasons.
First, REST offers a lightweight communication compared to
SOAP [17] as there is no need to build, process, and send
long XML files; only the resource is transferred. Second,
implementing a Web service on a sensor hardware platform
cannot require much computing power. As implementing a
REST service only requires HTTP functionality, this is more
simpler than implementing a SOAP service on a device with
limited capabilities.

3.3. Describing the Services. It is impossible to make different
sensors and services interoperate if there are no agreements
or guidelines on how communication should happen. The
coordinating SAMuS platform can only select sensors and
services based on their capabilities in presence of a formal
description detailing their preconditions and postconditions.
Not only for selection, but also for support of dynamic
sensor and service composition, the services, its inputs and
outputs, and its functionality need to be described in an
unambiguously and machine-understandable way.

Different possibilities and standards exist that offer ser-
vice description. The verbose WSDL is one of the oldest
ways to describe services; version 2.0 supports describing
REST services. ReLL [18] XML File improves WSDL by
adding different representation possibilities to a resource and
allowing converting to RDF triples. Finally, RDF [19] also
allows describing resources and has a natural compatibility
with REST. RDF can also define the semantic value [19] of a
resource.

As WSDL does not provide the means to capture the
functionality of a service, it cannot offer automatic service
discovery at runtime. ReLL is an XML-based standard and
thus uses too many resources on the sensors. However, RDF
is a universal resource description framework and the best
choice for this platform. The RDF language can describe a
service in full detail with far less lines than would be needed
in an WSDL or ReLL document. Also, with RDF being a
framework, different other framework components (such as
support for semantics and ontologies) can be used.

RESTdesc [20] is an implementation of the RDF princi-
ples, allowing describing services and using semantics and
using Notation 3 (N3, [21]). An example RESTdesc service
description of a light sensor can be found in Listing 1,
using the N3 notation. A GET request to the /lightValue
path gives the light sensor’s value, representing the lighting
condition of the environment. The sensor platform provides

this description as a resource that can be discovered by
describedBy links.

3.4. Service Discovery. In order for the SAMuS platform to
be able to discover the available sensors and services, the
platform can (i) hardcode the URIs, which is of course not
very flexible and maintainable, (ii) use a dedicated service
registry that collects all information on the different services
but requires changes to be posted to the registry, or—themost
flexible and therefore chosen solution—(iii) use a discovery
mechanism such as Web linking [22].

A discovery mechanism based on Web linking is imple-
mented in the service discovery component, benefiting from
the REST service already being aHTTP server, so onlyHTTP
GET calls need to be performed in order to send the RDF
descriptions of the service in return. The drawback of this
method, however, is that some entry point to the service
need to be advertised to the consumers (such as the base
URL), which is not a part of the specification. The discovery
algorithm first configures the REST server on the sensor
platform by reading a configuration file (e.g., on microSD
card). The configuration file specifies the paths that need to
be available and the HTTP request types to accept. Once
the Web server is set up, the initial root discovery problem
is solved by letting the sensor broadcast a “Hello” message
containing a hash of the sensor platform’s MAC and IP
address. The broker’s service discovery component picks up
the broadcasted messages and does GET or HEAD requests
to the according IP address, returning the descriptions and
discovering all available options. If no request has been done
by the broker within a certain amount of time, the sensor
broadcasts the message again.

3.5. Service Semantics and Ontology. Semantics provide a
uniform way to describe what the data really represents. This
is done by referencing to namespaces containing a general
understanding of what the data represents and its properties,
this way making the data machine-readable without losing
the human-readable advantage. This way, data of one sensor
can be reused by other types of sensors, reasoning techniques
can be applied onto the aggregated sensor data, and advanced
semantic service matching and composing techniques can be
used to automatically combine different sensors.

Although the value of semantics in service-oriented
and broker architectures is recognized, the concept is still
challenging and a lot of research remains. Different pos-
sibilities and standards exist that offer service semantics.
SAWSDL [23] provides WSDL-based semantic annotations
and allows adding semantics to a REST service. The annota-
tion mechanism also supports integration of RDF and Web
Ontology Language (OWL) statements, providing a simple
implementation of ontologies. However, as short RDF-N3
descriptions are chosen to describe the services, SAWSDL
is not an option. Semantic Annotation for REST (SAREST)
is another annotation language to describe REST services
[17]. The problem, however, with SAREST is that semantic
descriptions need to be distributed to service consumers.
With REST services offering data as a resource, a client
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{

?sensor a sensor:LightSensor.

}

=>

{

:request http:methodName "GET";

http:requestURI "/lightValue/";

http:resp [http:body ?value].

?sensor environment:lightingCondition ?value.

}.

Listing 1: A RESTdesc description of a light sensor.

Camera

Reasoning module

Position (x, y, width, height)
Face (x, y, width, height)
Face (bitmap)
Eyes (x, y, width, height)
Eyes (bitmap)
· · ·

Pressure (Boolean)
Pressure (x, y)

Light intensity (“light”/“dark”)

Figure 2: Abstract schema of communication between broker’s
reasoning module and Kinect camera.

must specifically seek a description on a well-defined link,
before being able to consume the service properly. A third
option is the RDF framework, providing RDF semantics and
allowing semantic descriptions to be written in RDF-XML or
plain text RDF format. Finally, the OWL-S [24] specification
(based on the former DAML-S standard) defines two types of
possible expressions: descriptions of rules (defined in SWRL
[25]) and description of parameters (defined in either XML
or non-XML based markup). With OWL-S descriptions, a
lot of data is generated to describe a single simple service.
It allows describing complex services and structures in a
readable way, but it is hard to set up this description. The
RDF framework, on the other hand, allows descriptions to
be in non-XML based markup, making it the right choice
for our surveillance platform.The ontologies are expressed in
OWL. This allows ontological constructs to interact with the
semantic RDF descriptions of the services. For instance, the
fact that a thermocouple is a subclass of a temperature sensor
allows deciding that a thermocouple can be used whenever a
temperature sensor is required.

3.6. Sensor Collaboration. Semantics describe the measured
values of the sensors. When multiple sensors are available
in the network, it becomes really interesting when they can
cooperate. For example, as healthcare monitoring should
work day and night, in all kinds of lighting situations, the
value of the environment lighting condition can be used to
decide if RGB images or IR images should be used. Using the

data from the light sensor, the broker’s reasoning module can
warn the camera for bad lighting, making the camera change
to the IR stream and continue analyzing the images.

However, dynamic composition and integration of sen-
sors and services is challenging and the topic of many
research studies as it is still very difficult to put into practical
use [26]. Therefore, a novel solution to automated compo-
sition of Web APIs is developed and used that does not
require new algorithms and tools and can be applied with
existing Semantic Web reasoners. Those reasoners can easily
incorporate external sources of knowledge such as ontologies
or business rules.

To achieve a proper analysis of which services can be
composed, a reasoner component is implemented in the
broker that takes all the descriptions of the sensors as input
and provides a composition that matches a certain goal. In
order to do so, the composer module transfers all collected
resources (i.e., service descriptions) to the reasoner, along
with a goal to achieve. An example goal could be the
following:

?sensor environment : lightingCondition ?value.

When all the data is processed by the reasoner, the
reasoner outputs the path to follow in order to achieve
the goal. Since a composition is equivalent to a proof [27],
creating a composition that satisfies a goal comes down
to generating a proof that supports the goal. Inside this
proof, the necessary Web API calls will be incorporated as
instantiated rules, containing the various HTTP requests that
need to be done.

In our case, the Euler Yap Engine reasoner (EYE) is
used, a backward-chaining reasoner enhanced with Euler
path detection, as it allows for very fast processing of all
the descriptions and generates answers in a performant way.
EYE accepts input descriptions in the N3/Turtle format and
returns a proof in N3. As N3 contains constructs that are not
supported in Turtle, we developed a parser that changes the
proof notation so it fits existing Turtle parsers such as Jena
(the one used here). Note that the solution is not limited to the
EYE reasoner; any reasoner with proof support can be used.

More detailed information on this approach to Web API
composition can be found in [27].The evaluation in Section 4
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Figure 3: Comparison of hit rates for RGBand IR images in different
lighting situations.

indicates that proof-based composition is a feasible strategy
today.

3.7. Executing the Sensor Flows. As already stated, a custom
parser was developed to process the generated proof by
transforming the formulas so that the Jena parser is able to
read the output.TheHTTP flow is derived from the formulas
describing HTTP requests and the flow executor component
then executes the actual requests. To execute the composition,
the following algorithm is applied.

(1) Find the next Web API call whose required parame-
ters are available, that is, literal values or placeholders
that have been filled out in steps 2 and/or 3.

(a) If no calls are pending, the composition has
been executed and the goal is reached.Go to step
4.

(2) Execute the Web API call with the parameter values
and augment the state with the retrieved values.

(a) If the call fails, a new composition must be
generated, starting from the current state but
explicitly excluding the failed API as a possibil-
ity.

(3) Make inferences on the new state using available
background knowledge. These inferences can possi-
bly fill out placeholders in pending calls. Go to step
1.

(4) The composition has been executed and the goal has
been reached (event detected).

4. Evaluation

The SAMuS platform design supports a user-friendly sensor
deployment: whenever a new sensor needs to be deployed in
the SAMuS platform, the only configuration required is the
configuration file for the sensor platform as the remainder of

Table 1: Typical durations of configuration steps.

Initial start-up and broadcast procedure 10 s
Read out and save sensor description 4.3 s
Composing the descriptions See Table 2
Flow execution overhead 50ms

deployment is automated, resulting in minimal required user
interaction and solving the first requirement. As deploying
a new sensor can be done in a dynamic way so that the
platform and current services can continue working, the
second requirement is also fulfilled. By using a service-
oriented architecture and Web APIs, the platform is generic,
independent of implementation languages, operating systems
and hardware, fulfilling the third requirement. Finally, to
test if also the fourth requirement (scalability) is fulfilled, a
SAMuS platform prototype as well as some prototype sensors
and processing services has been implemented.

The sensor hardware platform, used to connect the actual
sensor devices to the SAMuS platform, is based on Netduino
Plus devices, which are standard Netduino boards with
onchip .NET framework and on-board debugging capabili-
ties, extended with an on-board Ethernet port and an open-
source TCP/IP stack. Implemented sensors are (i) a light
sensor, using a simple photoconductive cell changing its
resistance according to the amount of light that is perceived
(ranging from 1 kOhm for bright light to 10 kOhm for
darkness), (ii) a pressure sensor, more specifically a flexiforce
pressure or piezoresistive force sensor, changing resistance
according to the amount of force applied to the sensor
(ranging from 300 kOhm when pressing hard to infinity for
no pressure, and (iii) a video sensor, more specifically a
Kinect camera providing RGB, IR and depth images. Kinect
uses projected speckle patterns in near-infrared light to
determine the depth of any given scene. For theKinect sensor,
different algorithms (e.g., for different environment lighting
conditions) were implemented to detect faces and eyes.

In order to test platform operation, a smart Kinect sensor
is created by coupling three simple sensors (light, pressure,
Kinect), this way being able to dynamically switch between IR
and RGB and optimizing person detection by incorporating
feedback from pressure sensors. The test case is as follows:

(i) Depending on the light intensity in the room, the
Kinect can use IR images instead of RGB images.

(ii) If the Kinect camera was not able to detect a user, the
reasoning module can still ask to check the presence
of a person for example, if a pressure sensor has
reacted. In that case, the camera will try to detect a
face or eye in the whole scene.

(iii) Depending on the position of the user and the data
from other sensors, the camera can switch between
two algorithms to perform a standard, quick detec-
tion algorithm or a more advanced algorithm. More
advanced algorithm takes too much time to be used
for every frame but have amuch higher detection rate.
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Table 2: The reasoner component manages to create even lengthy compositions in a timely manner (average times of 50 trials).

Number of APIs 𝑛 2 4 8 16 32 64 128 256 512 1,024
𝑑 = 1 dependency

Parsing 53ms 53ms 54ms 55ms 58ms 64ms 78ms 104ms 161ms 266ms
Reasoning 2ms 4ms 5ms 7ms 11ms 20ms 43ms 77ms 157ms 391ms
Total 55ms 57ms 58ms 62ms 70ms 84ms 121ms 181ms 318ms 657ms
𝑑 = 2 dependencies

Parsing 53ms 53ms 59ms 56ms 60ms 67ms 85ms 117ms 184ms 331ms
Reasoning 3ms 6ms 69ms 41ms 45ms 56ms 84ms 174ms 461ms 1,466ms
Total 56ms 59ms 128ms 97ms 104ms 123ms 169ms 292ms 645ms 1,797ms
𝑑 = 3 dependencies

Parsing 53ms 53ms 68ms 56ms 61ms 70ms 90ms 129ms 208ms 371ms
Reasoning 3ms 12ms 45ms 49ms 61ms 99ms 200ms 544ms 1,639ms 6,493ms
Total 57ms 66ms 114ms 105ms 122ms 169ms 290ms 673ms 1,847ms 6,864ms

This is just one example of the many possible situations
and functionalities that are supported. Figure 2 shows a
schematic overview of communication between the reason-
ing module of the broker and the Kinect camera for the
implemented test case. The reasoning module sends two
kinds of data:

(i) “Light” or “Dark” to allow the camera to switch
between IR and RGB;

(ii) The fact that the pressure sensor is pressed or not
(true or false) to force the camera to find a person
in the image if it is not tracking a user at that
time. The position of the pressure sensor (𝑥, 𝑦) when
it is pressed can also be of value to increase the
performance of the tracking and detection algorithms
by reducing the search area.

The camera sends information to the reasoning module
on:

(i) the position of the person in the scene (𝑥, 𝑦, width,
height);

(ii) the detected face (bitmap) or the position of the
detected face (𝑥, 𝑦, width, height);

(iii) the detected eyes (bitmap) or the positions of the
detected eyes (𝑥, 𝑦, width, height).

Figure 3 shows the resulting recall in RGB and IR
for varying lighting situations. As can be seen, the switch
between algorithms is best done at an average light intensity
between 35 and 45. To be sure to switch on time and still keep
the RGB range as big as possible, it was decided to switch at a
light intensity value of 40.

This way, once the camera module is turned on, the
broadcast is sent and the Kinect waits for responses from
the broker. The broadcast listener on the broker accepts the
broadcast from the camera and sends a GET request to the
camera for more information. Once connected, the camera
switches algorithms to stream IR images instead of RGB
images (and vice versa) using the threshold of 40 for light
intensity. We tested this by (un) covering the light sensor.

As can be seen in Table 1, initial start-up and broadcast
procedure takes around ten seconds (i.e. initializing the
sensor platform, configuring the web server and sending
the broadcast message). The time to process an actual
request for sensor data (i.e. read description, dynamic
composition, flow execution overhead) is around five sec-
onds. So, operational sensors can be set up in seconds.
Video footage of the platform operation can be found at:
http://www.youtube.com/watch?v=jS 0YKgpwkU.

In order to prove the scalability of the SAMuS platform
(allowing more complex service compositions), we tested
the reasoner module’s performance when creating proofs
with varying length and complexity. The results, presented in
Table 2, are achieved for the broker running on a consumer
computer (2.66GHz Intel Core i7, 4GB RAM).The results in
the first column indicate that starting the reasoner introduces
an overhead of ≈50ms. This includes process starting costs,
which are highly machine-dependent. Inspecting Table 2
from left to right, we see the reasoning time increases linearly
with the composition length n and remains limited to a few
hundred milliseconds in almost all cases, fulfilling the fourth
requirement. The absolute increase in reasoning time for a
higher number of dependencies d never crosses 200ms for
small to medium values of n, but becomes larger for high
n.

5. Discussion and Conclusion

In this paper the design of a service-oriented architecture for
multi-sensor surveillance in smart homes is presented as an
integrated solution enabling automatic deployment, dynamic
selection and composition of sensors. Sensors can be added
with minimal administrator intervention.

The challenges for sensor integration were mentioned
in Section 1. These challenges were addressed in the design
process in the following way.

By adopting the Internet of Things vision and imple-
menting the sensors as web-connected devices, sensors have
a uniform Web API (solving the representation of sensor
data challenge). RESTdesc is used to describe the sensors
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and a novel solution is presented to automatically compose
Web APIs that can be applied with existing Semantic Web
reasoners (solving the challenge of finding relevant sensor
data).

The procedure used for sensor discovery (the broadcast
algorithm) allows for a platform independent implementa-
tion, independent of the choice of sensor platform (Netduino,
Arduino, embedded Linux, etc.). The modular approach of
the platform allows for easy alteration of functionality by
replacing services and/or modules.

By implementing sensors as web-connected devices with
a uniformWebAPI, barriers of current smart home solutions
are reduced. Moreover, thanks to advanced reasoning and
interpretation strategies, information between video sensors
(cameras) and other non-video sensors (such as temperature,
sound, heart rate, etc.) can be combined to detect complex
events that remain undetected in current smart home solu-
tions.

The presented solution is not limited to a design study:
all platform components are implemented and integrated,
allowing an operational multi-sensor surveillance architec-
ture providing sensors to be set up in seconds. We evaluated
the solution by building a smart Kinect sensor being able
to dynamically switch between IR and RGB and optimizing
person detection by incorporating feedback from pressure
sensors, illustrating the opportunities of the platform. Addi-
tionally, the performance results show that the platform scales
for many Web APIs (solving the performance challenge).

Although the proof-of-concept provides a fully opera-
tional platform, it is still merely the start. This platform is
meant to activate a new way of implementing smart sensor
networks in smart homes so scaling up the complexity
of sensor interactions is required, allowing more complex
service compositions.
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