
On the impact of replacing a low-speed memory
bus on the Maxeler platform, using the FPGA’s

configuration infrastructure

Karel Heyse1? ??, Dirk Stroobandt1??, Oliver Kadlcek2??, and Oliver Pell2??

1 Ghent University, ELIS Department
Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium
{Karel.Heyse,Dirk.Stroobandt}@UGent.be

2 Maxeler Technologies Ltd.
1 Down Place, London W6 9JH, UK
{okadlcek,oliver}@Maxeler.com

Abstract. It is common for large hardware designs to have a number
of registers or memories of which the contents have to be changed very
seldom, e.g. only at startup. The conventional way of accessing these
memories is using a low-speed memory bus. This bus uses valuable hard-
ware resources, introduces long, global connections and contributes to
routing congestion. Hence, it has an impact on the overall design even
though it is only rarely used.
A Field-Programmable Gate Array (FPGA) already contains a global
communication mechanism in the form of its configuration infrastructure.
In this paper we evaluate the use of the configuration infrastructure as a
replacement for a low-speed memory bus on the Maxeler HPC platform.
We find that by removing the conventional low-speed memory bus the
maximum clock frequency of some applications can be improved by 8%.
Improvements by 25% and more are also attainable, but constraints of
the Xilinx reconfiguration infrastructure prevent fully exploiting these
benefits at the moment. We present a number of possible changes to the
Xilinx reconfiguration infrastructure and tools that would solve this and
make these results more widely applicable.

Keywords: FPGA, HPC, partial reconfiguration, block RAM

1 Introduction

Large hardware designs often have a number of configuration registers or mem-
ories of which the contents are changed only sporadically, e.g. at startup. The
conventional way of modifying the contents of these memories is using a low-
speed memory bus. Although a low-speed memory bus uses less hardware re-
sources than a high-speed version, it will still introduce long, global connections,

? Supported by a Ph.D. grant of the Flemish Fund for Scientific Research (FWO).
?? This work was partly supported by the European Commission in the context of the

FP7 FASTER project (#287804).

2 Replacing a memory bus using the FPGA’s configuration infrastructure

contribute to routing congestion and affect the performance of the rest of the
design.

A Field-Programmable Gate Array (FPGA) already contains a global com-
munication mechanism in the form of its configuration infrastructure. Although
it does not have the same flexibility as a custom bus, it may serve as an excellent
alternative for a low-speed bus without the previously listed disadvantages.

This paper focuses on the Maxeler platform [1], a high performance comput-
ing (HPC) system consisting of a host CPU and Dataflow Engines (DFE) utilis-
ing FPGAs (Section 2). Many of the applications implemented on the Maxeler
platform use mapped memories or small ROMs and RAMs that can be accessed
locally from hardware and globally from the host CPU. Mapped memories are
implemented on the FPGA using block RAM (BRAM) primitives so that local
access is fast. Global access happens via a low-speed mapped memory controller
connecting the host CPU to the mapped memories. In common use, this happens
at most every few hundred milliseconds.

In this paper, we investigate the use of partial reconfiguration of block RAMs
to replace this low-speed memory bus for global mapped memory access (Sec-
tion 3). Partial reconfiguration means that the configuration infrastructure of
the FPGA is used to change the configuration of a part of the FPGA while the
remainder continues to operate without interruption.

Partial reconfiguration is typically used to improve the functional density of
designs. This is for instance done by loading and unloading modules as needed
[2, 3] or by performing dynamic circuit specialisation [4]. This makes it possible
to use smaller and cheaper FPGAs to do the same amount of computation as
larger FPGAs that do not use partial reconfiguration.

Partial reconfiguration of block RAMs has been proposed in [5] as a way to
implement Network-on-Chips on FPGAs with reduced hardware resource cost.
In this work, partial reconfiguration is used to transfer data from sender to re-
ceiver by temporarily storing the data in a sender block RAM and relocating the
configuration bitstream of this block RAM to a receiver block RAM. However,
no previous research has ever investigated how partial reconfiguration of block
RAMs can be used to improve the routability and maximum clock frequency of
applications.

Our experiments on three real-world designs, one financial application and
two geoscience applications, have shown that the low-speed memory bus as cur-
rently implemented causes routability issues and limits the clock frequency in
some designs. In those cases, the use of partial reconfiguration instead of this
bus results in higher clock frequencies – up to 8% in our experiments – and thus
better quality designs (Section 5). Improvements of 25% and more were also
attained, but constraints of the Xilinx configuration infrastructure prevent us to
fully exploit these benefits at the moment. In Section 6, we present a number
of small improvements to the Xilinx configuration infrastructure and tools that
would solve this problem and make these results more widely applicable.

Replacing a memory bus using the FPGA’s configuration infrastructure 3

2 Maxeler Platform Background

The Maxeler platform, developed by Maxeler Technologies, is a system for high
performance computing consisting of a host CPU and hardware accelerators
called Dataflow Engines (DFE) [1]. This section provides an overview of the
Maxeler platform and toolchain. It also describes the mapped memory compo-
nent and the low-speed memory bus by which they are connected.

2.1 Hardware Platform

Maxeler produces several variants of its hardware platform optimised for different
computing needs. In general, the platform consists of one or more conventional
host CPUs and one or more DFE coprocessors (DFEs) (Figure 1). In the system
we study, the DFEs are connected to the CPUs using PCI Express and to each
other directly over a custom high-bandwidth MaxRing network.

The host CPUs are used for managing the DFEs, by triggering configuration
of the required bitstreams and streaming data to and from the DFEs using DMA
streams, and for computations that do not need to be executed in hardware.

The MAX3 DFE used in this work has a large Xilinx Virtex 6 FPGA,
called the Compute-FPGA (CFPGA), and a smaller auxiliary Xilinx Virtex 6
FPGA, called Interface-FPGA (IFPGA). This IFPGA is used for managing the
PCIe communication between the host and CFPGA and for configuration of the
CFPGA via its SelectMap interface. The IFPGA itself is configured from flash
memory at startup, while the CFPGA is (re)configured with an application-
specific bitstream provided by the host CPU every time a new application is
started. The MAX3 also contains 24 GB of DRAM directly accessible from the
CFPGA.

2.2 Toolchain

The Maxeler toolchain raises the implementation level for the application devel-
oper above the hardware level and thus reduces the development effort for DFE
applications.

The part of an application that is accelerated in hardware is called a kernel.
To implement a kernel on a DFE, the developer has to create a dataflow model
of it. This is a description of the logic and arithmetic datapath through which
streams of data flow and by which new streams of data are produced.

The description of a complete application for the Maxeler platform consists
of three parts: a dataflow model of the kernel(s) in MaxJ (Maxeler’s extension
of the Java language), a description (also as a dataflow model in MaxJ) of the
manager describing how the kernel(s) communicate with the CPU, other DFEs
and memory, and the host application that is run on the CPU.

Using the Maxeler toolchain the dataflow model and manager description are
compiled into an FPGA configuration bitstream for the hardware accelerator.
The host code, in C or any of the other supported languages, is compiled and
linked with Maxeler’s SLiC and MaxelerOS run-time libraries, which enable it
to communicate with the DFEs.

4 Replacing a memory bus using the FPGA’s configuration infrastructure

IFPGA

Kernel

Manager

Kernel

Host application

Host CPU DataFlow Engine

SLiC

MaxelerOS

Memory

M
e
m

o
ry

CFPGA

SelectMap

Fig. 1. Maxeler platform with one host CPU and one DFE. The user-defined parts are
marked in dark grey.

IFPGA

CFPGA

= Mapped

 memory

Host CPU

Mapped

memory

controller

= Kernel

Fig. 2. Mapped memories and the mapped memory controller.

2.3 Mapped Memories

Mapped memories are small RAMs or ROMs inside kernels that are implemented
using BRAMs and can be accessed with low latency from local hardware. The
difference with respect to regular RAMs and ROMs is that mapped memories
can also be read and written globally from the host CPU. Mapped memories are
therefore often used for configuration data, like filter coefficients, that need to be
changed between runs of the application but usually not during the processing of
a datastream. Other use cases are ‘working memory’ that needs to be initialised
or of which the final state needs to be retrieved. In common use cases, global
access to these memories occurs at most every few hundred milliseconds.

Global access is enabled by a custom low-speed, low-overhead bus and is a lot
slower than local access. This 32-bit wide, low-speed bus consists of a mapped
memory controller running at 50MHz that is connected in star topology to all
the mapped memories (Figure 2). The controller is connected via the IFPGA to
the host CPU using Programmed Input/Output (PIO). The mapped memory
controller decodes read and write commands received from the host CPU and
controls the read and write signals of the different mapped memories.

Because the mapped memory controller is connected to all the mapped mem-
ories, which may be spread out over the complete CFPGA, it can become a rout-

Replacing a memory bus using the FPGA’s configuration infrastructure 5

B
R
A
M

3
6

s
it
e
 X

1
2
Y
4
0

B
R
A
M

3
6

s
it
e
 X

1
2
Y
4
6

 C
L
B
s

B
R
A
M

3
6

s
it
e
 X

1
2
Y
4
7

..
.

group of 128 configuration frames

..
.

4
0
 C

L
B
s

8
 B

R
A
M

3
6
 /

 1
6
 B

R
A
M

1
8

group of 36 configuration frames

Fig. 3. Groups of configuration frames and stacks of BRAMs and CLBs.

ing bottleneck. Also the long, device spanning connections from remote mapped
memories to the typically centrally located mapped memory controller can cause
timing issues that are hard or impossible to resolve.

3 Implementation of Mapped Memories Using Partial
Reconfiguration

The Xilinx Virtex 6, used in the MAX3, supports configuration readback and
partial reconfiguration of a small portion of the FPGA while the rest of the
FPGA remains operational. Because the contents of the BRAMs are also part of
the FPGA’s configuration, this feature can be used to read and write BRAMs.

By using partial reconfiguration of BRAMs to read and write the mapped
memories, the use of the mapped memory controller can be avoided and the
long, timing-sensitive connections can be removed.

In this section we will first provide more details about partial reconfigura-
tion of BRAMs, then describe the changes made to the hardware, compilation
toolchain and run-time libraries.

3.1 Partial Reconfiguration of BRAMs

Partial reconfiguration and configuration readback are done by sending special
bitstreams from the host CPU to one of the FPGA’s configuration interfaces:
JTAG, SelectMap or ICAP (Internal Configuration Access Port) [6]. This bit-
stream contains the commands to read or write a specific portion of the FPGA’s
configuration.

The minimum granularity by which the FPGA configuration can be accessed,
i.e. the smallest unit of data with its own address, is a configuration frame (2592
bits). Together, a group of frames describes the configuration of a section of the

6 Replacing a memory bus using the FPGA’s configuration infrastructure

FPGA’s resources (Figure 3) [7]. A group of 36 frames, for example, describes the
configuration of a partial column of CLBs. A group of 128 frames describes the
contents of a partial column or stack of 8 BRAM36s or 16 BRAM18s, since each
BRAM36 can also be split into two BRAM18s. The BRAMs that are described in
the same group of configuration frames, and therefore belong to the same stack,
have the same X coordinate and the same Y coordinate after integer division by
8 for a BRAM36 or by 16 for a BRAM18.

The configuration infrastructure of the BRAMs is implemented in hardware
by sharing read/write ports with the FPGA fabric. Because of this it is unsafe to
use a BRAM in the FPGA fabric – keeping the clock running and enable signal
active – while readback of its configuration frames is taking place. As a result, if
configuration readback of one BRAM is performed, the complete BRAM stack
containing it must be halted.

According to [8, 5] it is possible to mask specific BRAM36s (but not BRAM18s)
during reconfiguration so that their configuration is not overwritten. Our exper-
iments seem to imply that if a BRAM is masked in this way, and only then, it
is safe to use it in the FPGA fabric while reconfiguration of its frames is hap-
pening. Unfortunately, no similar masking function is available for configuration
readback.

3.2 Configuration Interface

To enable communication between the host CPU and the FPGA’s configuration
port the ICAPStreamingBlock is implemented on the CFPGA. This block, op-
erating at 60MHz, connects the ICAP to two PCI Express streams, one in each
direction. The ICAPStreamingBlock receives a combined bitstream and com-
mand stream from the host CPU. The bitstream is passed to the data port of
the ICAP and the command stream sets the ICAP control signals and tells the
ICAPStreamingBlock whether data is expected on the output port of the ICAP.
This output data is then streamed back to the host CPU.

Alternatively, this functionality could be implemented on the IFPGA, which
is already connected to the SelectMap configuration interface. Previous work has
shown that the IFPGA can be used to partially reconfigure the CFPGA[9], but
it is currently only able to (re)configure the FPGA and not to perform configu-
ration readback. Adding readback support is straightforward engineering but we
have not implemented this as part of this work since it would require significant
development time and it is possible to assess the impact on the CFPGA without
this feature being operational.

3.3 Changes to the Compilation Toolchain

We adapt the compilation toolchain so that partial reconfiguration can be used
to perform global access of mapped memories. The underlying implementation
of the global access method is transparent to the developer of the DFE and
it is simple to switch between the original and new access method using the
UseMicroreconfigMem option in the MaxJ description of the kernel (Figure 4).

Replacing a memory bus using the FPGA’s configuration infrastructure 7

optimization.pushUseMicroreconfigMem(true);

Memory <DFEVar > ram = mem.alloc(type , size);

ram.mapToCPU("mapped_ram_name");

optimization.popUseMicroreconfigMem ();

DFEVar x = ram.read(addr);

Fig. 4. Instantiating a mapped memory with global access implemented using partial
reconfiguration.

The compilation toolchain disconnects these mapped memories from the
mapped memory controller and extracts the placement and port width of the
BRAMs so that this information can be used by the run-time libraries.

Instead of Xilinx Coregen, we have implemented our own mechanism for
composing large memories from BRAM primitives. This is done because the
exact way Coregen combines BRAMs to form larger memories is not documented
and this information is required to map the contents of the mapped memories to
the correct parts of the FPGA’s configuration. This information is also exported
for use by the run-time libraries.

3.4 Changes to the Run-Time Libraries

Instead of passing the read and write commands from the host code to the
mapped memory controller, the MaxelerOS run-time library must now inter-
pret these commands and translate them into the necessary reconfiguration and
readback actions.

First, it must find out in which physical BRAM(s) a memory element is stored
(Figure 5) and calculate the corresponding configuration frame addresses. This
is done using the information that was exported by the compilation toolchain.

To perform a read operation on a BRAM, a special readback bitstream is
sent to the FPGA’s configuration interface causing the contents of the BRAM’s
configuration to be sent back. The mapping of the contents of the BRAM to the
configuration bits is then reversed to extract the requested element. If a memory
element is spread out over multiple BRAMs this procedure is repeated for each
BRAM.

For a write operation we need to take into account that it is not possible
to update a single memory element because a reconfiguration always updates at
least a full BRAM36 (or 2 BRAM18s). Therefore, to correctly perform a write
operation the relevant portion of the current configuration of the BRAM must
be obtained, modified locally on the host CPU and then written back to the
FPGA.

Because the contents of a mapped ROM will only be written from the host
CPU and not locally on the FPGA, it is sufficient to keep a local mirror of the
BRAMs’ configurations on the host CPU to know their current configuration at
all times. This local mirror must be updated in sync with the configuration of
the FPGA.

8 Replacing a memory bus using the FPGA’s configuration infrastructure

0

1
⋮

2048
⋮

⋮

2047

⋮

4095

310 1 ⋯ 16 ⋯15

bit

e
n
tr

y

BRAM36 0,0

site X12Y64

3500

BRAM36 1,0

site X11Y69

BRAM36 1,1

site X10Y68

BRAM36 0,1

site X10Y67

Fig. 5. Large block memory combining 4 BRAM36s (port width: 16 bits). The first 16
bits of element 3500 are stored in element 1452 of the BRAM on site X10Y67, the last
16 bits in element 1452 of the BRAM on site X10Y68.

For a mapped RAM the only way to know the current configuration of the
BRAM is to perform a configuration readback. It is important that the con-
tents of the BRAM do not change between the readback and reconfiguration
operations because such an update would be lost.

Global access to mapped memories often happens in batches; a large part of
a mapped memory is read or written at the same time. To improve efficiency,
multiple accesses to the same mapped memory that affect the same configuration
frames are grouped together so that the number of configuration readback and
reconfiguration operations is reduced.

4 Challenges: Partial Reconfiguration Constraints

In this section we discuss how the constraints imposed by the configuration in-
frastructure, introduced in Section 3.1, affect applications on the Maxeler plat-
form. We recall that during configuration readback the complete stack of BRAMs
that is being read cannot be used and during reconfiguration only the BRAMs
that are masked can be used.

Write operations to ROM mapped memories, which do not require a config-
uration readback, can therefore be performed safely as long as only BRAM36
primitives are used for their implementation and the other BRAMs are masked
during reconfiguration.

In contrast to write operations on ROMs, read and read-modify-write op-
erations on RAM mapped memories require that the complete stack of BRAM
primitives containing the BRAM to be accessed is halted. For applications on the
Maxeler platform it may be safely assumed that BRAMs from the same kernel as
the mapped memory will be halted when the mapped memory is being accessed,
but no assumptions about other BRAMs can be made. This will be a common
case in many scenarios where part of a chip must continue running while another

Replacing a memory bus using the FPGA’s configuration infrastructure 9

part is paused for reconfiguration. Placement constraints must therefore be used
to prevent other BRAMs being placed in the read back stacks. In general, (au-
tomatic) floorplanning could be used to achieve this, previous experiments by
Maxeler have shown that overly aggressive floorplanning has significant detri-
mental effects on maximum clock frequency, so we do not believe this to be a
feasible option.

An alternative method using multiple iterations of Place & Route (P&R)
has also been tested. In this method each incremental P&R run adds constraints
(LOC and PROHIBIT) based on previous runs until the location constraints
for reconfigurable BRAMs are met. This also had an unacceptable impact on
the clock speed of anything but the smallest applications. This is not entirely
unexpected because, for the same reason as the problems with floorplanning in
general, large numbers of constraints are known to make it harder to find a
feasible P&R solution.

While ROM mapped memories using partial reconfiguration can be used
on the Maxeler platform, no feasible solution has been found for RAMs for
realistically sized applications. In Section 6 we propose a number of changes to
the configuration infrastructure and Xilinx tools that would make it possible to
use RAM mapped memories on the Maxeler platform and other platforms with
similar constraints. Note that on certain other platforms the location constraints
may be resolved using floorplanning or circumvented by stopping all BRAMs.

5 Evaluation: Clock frequency benefits

5.1 Evaluated Applications

We have evaluated the proposed method on one financial application related to
price prediction of financial derivatives and two geoscience applications related
to detecting underground oil and gas reserves based on acoustic reflections. We
will call them FINAN, GEO1 and GEO2. The evaluated designs are real-world
applications developed by Maxeler and its customers.

Table 1. Description of the applications

Logic DSP BRAM Mapped memories

FINAN 87% 81% 51% 36 x 624 elem. x 32 bit

GEO1 69% 22% 50% 27 x 50 elem. x 23 bit

GEO2 70% 59% 70% 6 x 2002 elem. x 17 bit + 3 x 1024 elem. x 18 bit
+ 33 x ≤128 elem. x 18 bit

Table 1 contains a summary of the resource utilisation and mapped memories
of each application. All three applications use only ROMs and these have values
which are loaded at the start of each compute job (once every few minutes to
hours).

10 Replacing a memory bus using the FPGA’s configuration infrastructure

All applications additionally contain 2 small mapped memories that cannot
be implemented with partial reconfiguration so the mapped memory controller
has to be retained. Even though the mapped memory controller cannot be re-
moved, the routing bottleneck is resolved by disconnecting the majority of the
mapped memories from the controller.

5.2 Maximum Clock Frequency

Table 2. Maximum clock frequency (MHz). Items with * are currently not functional

Partial reconfiguration
Conventional ICAP SelectMap*

GEO1 (ROM) 100 90 (0.90) 100 (1)
GEO1 (RAM)* 80 90 (1.13) 100 (1.25)
GEO2 (ROM) 130 140 (1.08) 140 (1.08)
GEO2 (RAM)* < 80 130 (> 1.63) 130 (> 1.63)
FINAN (ROM) 180 180 (1) 180 (1)
FINAN (RAM)* 180 180 (1) 180 (1)

Table 2 contains the maximum clock frequencies for the three applications
in different configurations. The “Conventional” column contains the maximum
clock frequencies using the conventional implementation of mapped memories,
the “ICAP” and “SelectMap” columns show the maximum frequencies using
partial reconfiguration. For the values in the “SelectMap” column, the IFPGA
is used to perform partial reconfiguration via the external SelectMap configu-
ration port of the CFPGA (Section 3.2) instead of the “ICAP” interface and
ICAPStreamingBlock on the CFPGA itself. This is currently not functional but
it is straightforward to see how it would operate.

In the ROM cases, the use of partial reconfiguration improves the maximum
clock frequency of GEO2 by about 8% and leaves the other applications un-
changed (SelectMap). The introduction of the ICAPStreamingBlock, however,
causes a reduction of the maximum clock frequency of about 10% for GEO1.
The reason for this is that the ICAP and DDR memory controller both are con-
strained to the same, congested area of the FPGA. The use of the SelectMap
configuration interface would alleviate this problem.

In the RAM cases we assume, for the sake of the experiment, that the mapped
memories are RAMs instead of ROMs and that the placement constraints for
RAMs (Section 4) do not exist. In these applications the primary use of RAMs is
for providing debug visibility, however other applications would also use RAMs
in production mode. The conventional implementation of mapped RAMs causes
extra routability issues and increases the advantage of the proposed method.
For GEO1 we now see a frequency increase of 13-25% and for GEO2 we find
that while it was impossible to meet the minimal timing constraints using the
conventional method, a clock frequency of 130MHz can now be attained.

Replacing a memory bus using the FPGA’s configuration infrastructure 11

Because in this experiment we are ignoring the placement constraints for
partially reconfigurable RAMs, the result of this experiment can currently not
be used in practice, however this experiment illustrates the potential benefits of
this approach if modest improvements were made to the partial reconfiguration
mechanism of the FPGA (as we discuss in Section 6). We successfully ran all
the applications in ROM mode.

The relatively high clock frequency of the FINAN application is not affected
by the method used to implement the mapped memories. This shows that not in
every application the mapped memory controller is a routing bottleneck. There
is currently insufficient data to make conclusions about which type of appli-
cations will benefit the most from the proposed implementation method. Our
preliminary findings, however, show that applications that require a larger effort
to solve the original P&R problem with low-speed bus generally benefit more.

Experiments have shown that read and write speeds of mapped memories im-
plemented using partial reconfiguration (read: 2-14 Mbit/s, write: 1-10 Mbit/s)
remain in the same order of magnitude as with the conventional implementation
(read: 2-4 Mbit/s, write: 7-14 Mbit/s). The difference is of small importance
because the read and write times are very small compared to the total execution
time.

The solutions using partial reconfiguration used at most 1% more logic re-
sources and 2% more BRAM resources than the conventional implementations.
The additional resources were needed for the ICAPStreamingBlock and in some
cases because BRAM18 primitives had to be replaced by BRAM36 primitives.
We believe that this hardware cost is acceptable for an 8% speed improvement.

6 Recommendations

In this section we make a number of recommendations for possible changes to
the FGPA configuration infrastructure and P&R tools that would make the
proposed method more widely applicable.

Configuration readback of a BRAM can currently only be done when all the
BRAMs in the stack containing it are halted or unused (Section 4). This can be
achieved by locking the BRAM to a specific location and prohibiting the other
BRAMs in the same stack from being used, by shutting down all the BRAMs on
the FPGA during configuration readback or, if floorplanning is used, by turning
off all the BRAMs in the region containing the BRAM to be read. For many
applications, including the ones implemented on the Maxeler platform, these are
infeasible solutions. We present three possible ways to solve this problem.

A first possible solution is to change the Placement & Routing algorithm so
that it does not place the BRAMs of which we want to read back the configu-
ration in the same stacks as BRAMs that we do not wish to halt during recon-
figuration. As has been shown, a work-around method using multiple passes of
the existing P&R tools is insufficient, but an integrated algorithm might achieve
better results. We present the option because it is the only solution that does
not require changes to the physical FPGA architecture.

12 Replacing a memory bus using the FPGA’s configuration infrastructure

A second option would be read masking – a straightforward extension of the
existing write masking. This would allow independent configuration readback of
BRAMs even if they are located in the same stack. Because the configuration in-
frastructure already supports write masking, we believe that it would be feasible
to implement the same for readback operations in future FPGA architectures.

Alternatively, the bits of the BRAMs in the configuration frames can be
rearranged so that data of only one BRAM is stored in each frame, as opposed
to the current situation where content from multiple BRAMs is striped across
multiple frames.

Finally, we recommend to provide more possible locations to place the ICAP
port than the currently available two options, which are located close together.
This would help to avoid the routing congestion caused by logic modules that
need to be constrained to the same region.

7 Conclusion

We have proposed a method to access block memories on FPGAs using partial
reconfiguration and configuration readback. The use of this method removes the
need for the low-speed memory bus that is conventionally used for this pur-
pose. Using three real-world applications, we have shown that a maximum clock
frequency improvement of up to 8% is possible because of this. The proposed
method can currently be applied to all applications of which the block memories
only need to be written. We have proposed a number of small improvements to
the Xilinx configuration infrastructure and tools that would make it possible to
achieve clock speed improvements of 25% and more when block memories need
to be read as well as written.

References

1. Pell, O., Mencer, O., Tsoi, K.H., Luk, W.: Maximum Performance Computing with
Dataflow Engines. High-Performance Computing Using FPGAs (2013) 747–774

2. Beckhoff, C., Koch, D., Torresen, J.: GoAhead: A Partial Reconfiguration Frame-
work. In: Field-Programmable Custom Computing Machines (FCCM), IEEE 20th
Annual International Symposium on. (2012) 37–44

3. Xilinx: Partial Reconfiguration User Guide. (2010)
4. Bruneel, K., Heirman, W., Stroobandt, D.: Dynamic Data Folding with Parameteri-

zable FPGA Configurations. ACM Transactions on Design Automation of Electronic
Systems (TODAES) 16(4) (2011) 43:1–43:29

5. Shelburne, M., Patterson, C., Athanas, P., Jones, M., Martin, B., Fong, R.:
MetaWire: Using FPGA Configuration Circuitry to Emulate a Network-on-Chip. In:
Field Programmable Logic and Applications, International Conf. on. (2008) 257–262

6. Xilinx: Virtex-6 FPGA Configuration User Guide. (2012)
7. Xilinx: Virtex-5 FPGA Configuration User Guide. (2012)
8. Xilinx: XAPP290 Difference-Based Partial Reconfiguration. (2007) 1–11
9. Cattaneo, R., Pilato, C., Mastinu, M., Kadlcek, O., Pell, O., Santambrogio, M.:

Runtime Adaptation on Dataflow HPC Platforms. In: Adaptive Hardware and
Systems (AHS), NASA/ESA Conference on. (2013) 84–91

