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Abstract (max 170 words) 

Action monitoring allows the swift detection of conflicts, errors, and the rapid evaluation 

of outcomes. These processes are crucial for learning, adaptive behavior, and for the regulation 

of cognitive control. Our review discusses neuroimaging and electrophysiological studies that 

have explored the contribution of emotional and social factors during action monitoring. Meta-

analytic brain activation maps demonstrate reliable overlap of error monitoring, emotional, and 

social processes in the dorsal mediofrontal cortex (dMFC), lateral prefrontal areas, and anterior 

insula (AI). Cumulating evidence suggests that action monitoring is modulated by trait anxiety 

and negative affect, and that activity of the dMFC and the amygdala during action monitoring 

might contribute to the ‘affective tagging’ of actions along a valence dimension. The role of AI 

in action monitoring may be the integration of outcome information with self-agency and social 

context factors, thereby generating more complex situation-specific and conscious emotional 

feeling states. Our review suggests that action-monitoring processes operate at multiple levels in 

the human brain, and are shaped by dynamic interactions with affective and social processes.    

 

 

 

Keywords: Anterior insula; dorsal cingulate cortex; mediofrontal cortex; amygdala; error 
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1 Overview and motivation   

In order to adapt their behavior, to detect and learn from errors, and ultimately to increase 

their chances of survival, humans and other animals have to monitor their actions (Rabbitt, 

1966). Flexible regulation of behavior requires its constant evaluation in terms of performance 

and outcomes, as well as in terms of costs and future consequences. Action and error monitoring 

have been studied for several decades in psychology and neuroscience (for previous reviews see 

e.g. Bush et al., 2000a; Falkenstein et al., 2000; Taylor et al., 2007; Ullsperger et al., 2010), 

mainly using relatively abstract interference paradigms (such as Stroop, Flanker, Simon or 

go/no-go tasks), and primarily from a cognitive perspective. The first part of this review provides 

a brief overview of the classical findings in this literature, outlining the main methods 

(electrophysiology and brain imaging), as well as the central brain systems involved in 

performance and error monitoring. In the main part, we review and discuss a growing literature 

that suggests close ties of action monitoring systems with emotional and social processes. In line 

with other recent accounts that suggest reciprocal interactions between cognitive control and 

emotion processing brain systems in dorsal mediofrontal cortex (dMFC) (Etkin et al., 2011; 

Moser et al., 2013; Pessoa, 2008; Proudfit et al., 2013; Shackman et al., 2011; Shenhav et al., 

2013), we propose that error and action monitoring is an intrinsically affective and social 

process. However, we show that meta-analytic activation maps support overlapping brain 

responses to error processing, emotional, and social information processing not only in dMFC, 

but also in several other brain regions, including anterior insula and lateral prefrontal cortex. 

Further, recent intracranial electrophysiological recordings showed error-related activity in the 

amygdala, suggesting this limbic region may contribute to affective responses to errors and 

negative action outcomes. In the closing part, we outline an integrative framework for 
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understanding the brain systems underlying affective and social interactions with action 

monitoring, which may be crucial to foster behavioral control in real life. 

 

2 Behavioral and neurophysiological correlates of action monitoring 

2.1 Basic concepts and behavioral findings 

Action monitoring has mainly been studied by investigating behavioral and neural 

correlates of conflict, response error, and feedback processing in various reaction time tasks (for 

recent comprehensive reviews, see e.g. Holroyd and Yeung, 2012; Shackman et al., 2011; 

Shenhav et al., 2013). In this context, conflict has been defined as crosstalk interference between 

different ongoing processes (Botvinick et al., 2001) and studied using interference or go/no-go 

tasks (for an overview on experimental paradigms see Nee et al., 2007; Shackman et al., 2011). 

Behaviorally, conflict is associated with longer reaction times and a greater number of errors 

than non-conflict trials (Botvinick et al., 1999; Gratton et al., 1992; Sheth et al., 2012). 

Errors are incorrect responses (in relation to the task instructions) and occur more 

frequently in incongruent (conflict) than in congruent trials (Carter, 1998; Gehring and Fencsik, 

2001; Gratton et al., 1992). They can be easily evoked as “false alarms” in no-go trials, 

especially when time pressure is high (e.g. Vocat et al., 2008) or when no-go trials are very 

infrequent (Simmonds et al., 2008). Errors are sometimes followed by post-error slowing, i.e. 

longer RTs on the (correct) trial following errors due to adjustments in response tendencies 

(Danielmeier et al., 2011; Danielmeier and Ullsperger, 2011; King et al., 2010) or as a reflection 

of attentional orienting to these deviant and worse than expected events (Notebaert et al., 2009; 
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Wessel et al., 2012). Errors can lead to increased post-error accuracy (Danielmeier and 

Ullsperger, 2011), indicating a potential shift in speed/accuracy trade-off. 

External feedback processing is studied with experimental tasks, in which participants are 

not able to infer the action outcome based on their response or based on an internal monitoring 

process exclusively (Gehring and Willoughby, 2002; Holroyd and Coles, 2002b; Miltner et al., 

1997), but have to rely on externally provided feedback. Examples include gambling tasks in 

which outcome is randomized or probabilistic in nature (Eppinger et al., 2008; Frank et al., 

2005), or time-estimation tasks (e.g. Hirsh and Inzlicht, 2008; Miltner et al., 1997). Feedback 

about the action outcome (e.g. win or loss, correct or incorrect) is usually presented as visual or 

auditory information (Walsh and Anderson, 2012). 

2.2 Investing the time-course of action monitoring with electrophysiology 

For several reasons, electrophysiology provides an important methodological approach to 

the study of action monitoring brain processes. First, techniques such as EEG and intracranial 

electrophysiological recordings allow inferences about the time course of neurophysiological 

processes underlying error and conflict processing (Pourtois et al., 2010) with millisecond 

temporal resolution that is unattainable by brain imaging methods based on more sluggish 

hemodynamic contrasts (such as fMRI or PET). Second, event-related potentials (ERPs) have 

revealed several phasic components of conflict, error, and outcome monitoring, which have 

specific temporal and topographical properties, such as the N2, error-related negativity (ERN), 

and feedback-related negativity (FRN). These ERP components may partially reflect a common 

underlying process (Van Veen and Carter, 2002; Wessel et al., 2012; Yeung et al., 2004) that is 

characterized by phasic bursts in theta band activity (Cavanagh et al., 2012; Cohen, 2011). 

Beyond this common functional role, they can be considered as characteristic physiological 
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markers of conflict, error, and outcome processing (for overviews see Falkenstein et al., 2000; 

Simons, 2010). Given the combination of these properties, i.e. high time resolution and the 

specificity of action monitoring ERP components, electrophysiology can inform us about the 

temporal sequence of psychological processes during action monitoring, as well as the timing of 

their modulation by various affective, social, or cognitive factors.  

Depending on the task characteristics, electrophysiological indices of action monitoring 

can be observed at different stages, during stimulus processing and motor preparation, response 

execution, or outcome evaluation (see Figure 1). When response conflict and errors can be 

detected before or during the onset of the motor response, monitoring is based on internal motor 

and task representations, as reflected in the stimulus-locked conflict N2 component, as well as 

the response-locked error-related negativity (ERN or Ne) and error positivity (Pe). On the other 

hand, performance monitoring has to rely on external feedback when there is no reliable internal 

information about the outcome at the time of action execution (Bediou et al., 2012; Heldmann et 

al., 2008; Holroyd and Coles, 2002b; Koban et al., 2012b), leading to the feedback-related 

negativity (FRN) that is locked to the presentation of visual feedback. The FRN is sometimes 

followed by a P300 to negative outcomes. These action monitoring ERP components (N2, ERN, 

Pe, and FRN) have been first described and studied for self-generated actions. Yet, an emerging 

literature suggests that similar components can be evoked for observed action outcomes, e.g. 

when watching the errors of another agent (see section 3.3 for an in-depth discussion). Figure 1 

summarizes the different stages of action monitoring and the corresponding electrophysiological 

components, for self-generated and observed actions.  

 

-- Please insert Figure 1 about here -- 
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2.3 Functional brain imaging results 

Functional brain imaging studies using fMRI and PET have shown that conflicts, as well 

as incorrect responses and negative performance feedback activate a widespread network of 

brain regions, comprising dACC/dMFC, anterior insula (AI) and frontal operculum, thalamus, 

and lateral prefrontal cortex (LPFC) (Carter et al., 1998; Kiehl et al., 2000; Menon et al., 2001; 

Shackman et al., 2011; Ullsperger et al., 2010). In contrast, positive performance feedback or 

monetary gains are associated with increased activity of the ventral striatum (de Bruijn et al., 

2009; Delgado et al., 2000; Koban et al., 2013a; Thut et al., 1997).  

A great amount of theoretical and empirical work has addressed the roles of medial and 

lateral prefrontal areas (for recent reviews on empirial and theoretical aspects, see Shackman et 

al., 2011; Shenhav et al., 2013) and their relationship to behavioral adjustments (King et al., 

2010; Sheth et al., 2012). For example, an fMRI study by Kerns et al (2004; see also MacDonald 

et al., 2000) demonstrated that the dACC/dMFC responds to errors more than to correct 

responses, but also to correct conflict trials more than to incorrect conflict trials (but see 

Ullsperger and von Cramon, 2001). Importantly, these conflict-related signal changes in dMFC 

predicted both dlPFC activation and behavioral adjustments in subsequent trials (in terms of 

faster reaction times, Gratton et al., 1992), in line with theoretical accounts suggesting that 

conflict detection in dMFC triggers adaptive changes in cognitive control, which are 

implemented by LPFC (Botvinick et al., 2001; Cohen et al., 2004; Kerns et al., 2004). 

Together with ERP results, brain imaging studies thus confirm the involvement of 

dACC/dMFC in conflict and action monitoring (Ridderinkhof et al., 2004). However, it remains 

an open question whether errors, conflicts, and outcomes elicit common activations on a smaller 
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spatial scale and whether they are related to differential connectivity patterns with other brain 

regions. For instance, recent research has demonstrated dissociable brain activations for these 

different events, with errors activating more anterior and ventral subregions, and conflicts more 

dorsal parts of the dMFC (e.g. Desmet et al., 2011; Garavan et al., 2003; Nee et al., 2011; 

Ullsperger and von Cramon, 2001). 

Whereas the roles of dMFC and LPFC in action monitoring and regulatory processes 

have been intensively researched and debated (for reviews and theoretical frameworks see 

Alexander and Brown, 2011; Botvinick, 2007; Rushworth et al., 2007; Shackman et al., 2011; 

Shenhav et al., 2013), the functions of other regions commonly activated by conflicts and errors 

are less clear. The anterior insula (AI), together with frontal operculum and inferior frontal gyrus 

(IFG), is one of the most consistently activated regions in response to errors, negative feedback, 

and conflict (for a recent review, see Chang et al., 2013; Koban et al., 2013a; Koban et al., 

2013b; Nee et al., 2007; Ullsperger et al., 2010), but its role remains unspecified in most models 

of action and conflict monitoring (for exceptions see Brass and Haggard 2010; Ullsperger et al., 

2010). Using an anti-saccade task, Klein et al. (2007) showed that the left AI is more activated 

for aware than unaware errors. This led to the hypothesis that AI is important for the conscious 

detection of errors (Klein et al., 2007; Ullsperger et al., 2010), in line with studies highlighting 

the role of this region in interoception and bodily awareness (Craig, 2009; Critchley et al., 2004). 

Given the involvement of AI in emotions and the representation of bodily states of self and 

others (Craig, 2009; Kober et al., 2008; Lamm et al., 2011; Singer et al., 2009), it may be 

implicated in the affective component of error and outcome processing (Brass and Haggard, 

2010), as outlined in the next sections. 
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3 Emotional and social effects on action monitoring 

In the next sections, we provide evidence for important affective and social influences on 

action and performance monitoring. Using term-based meta-analytic images, we first explore 

anatomical convergence between brain areas involved in action monitoring as well as in affective 

and social processes, and briefly discuss their role in those different domains. Then, we present 

recent empirical findings that suggest a close relationship between performance monitoring and 

affective processes. We argue that actions are automatically appraised along an affective valence 

dimension in the ACC and amygdala concurrently, whereas the AI may integrate action 

outcomes with agency and social context, thereby potentially eliciting more complex and 

situation-specific emotions such as shame or guilt. 

3. 1 Anatomical convergence between error monitoring, emotional, and social 

processing 

Several of the regions involved in action monitoring have also been associated with 

affective and social processes (for previous meta-analysis for social and affective processes see 

Bzdok et al., 2013; Kober et al., 2008; Lamm et al., 2011; Lindquist et al., 2012; Overwalle, 

2009; Wagner et al., 2012a). To characterize the overlap between brain regions consistently 

activated for error monitoring as well as for emotion and social cognition tasks, we employed 

term-based meta-analytic images of the NeuroSynth database (Yarkoni et al., 2011a; Yarkoni et 

al., 2011b). NeuroSynth is an ambitious project aimed at automatic identification, extraction, and 

synthesis of human functional brain imaging results and corresponding meta-data (Yarkoni et al., 

2011a). It uses text-mining techniques to detect frequently used terms (as proxies for concepts of 

interest) in the neuroimaging literature: terms that occur at a high frequency in a given study are 

then associated with activation coordinates in this publication, allowing for automated generation 
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of meta-analytic activation maps based on a very large number of studies (currently 5809 

published papers, as of August 2013). Despite the automaticity and the potential noise resulting 

from the association between term frequency and coordinate tables, this approach has been 

shown to be very robust and reliable for broad constructs (Yarkoni et al., 2011a). 

Using the NeuroSynth web interface (www.neurosynth.org), we extracted forward 

inference brain images for the terms ‘Errors’, ‘Emotion’, and ‘Social’ (downloaded on July 18, 

2013, see supplementary materials for a listing of included studies). These images were overlaid 

on a standard anatomical template and shown at a FDR-corrected threshold of p < 0.05 (see 

Figure 2A for ‘Errors’ and ‘Emotion’, Figure 2B for ‘Errors’ and ‘Social’). In line with the 

literature reviewed above, ‘Error’-related activity was found in dMFC (including cingulate and 

medial frontal gyri), LPFC (middle and inferior frontal gyri), AI, nucleus caudatus, and parietal 

cortex (inferior and superior parietal lobule). ‘Emotion’ activated bilateral amygdala, AI, dMFC 

(medial and superior frontal gyri), inferior frontal gyrus, fusiform gyrus, and inferior temporal 

gyrus. Widespread brain activations were further found for ‘Social’, including medial prefrontal 

cortex (subgenual cingulate, medial frontal gyrus), dMFC, LPFC (inferior frontal and middle 

frontal gyri), AI, amygdala, thalamus, inferior and superior parietal lobule, precuneus, fusiform 

and inferior occipital gyri, as well as middle and superior temporal gyri. 

  For the conjunction analysis, we used a conservative minimum statistics approach 

(Nichols et al., 2005). Very similar results were found for the conjunction [‘Errors’ AND 

‘Emotion’], as well as for [‘Errors’ AND ‘Social’] (see clusters depicted in yellow, Figure 2), 

indicating overlapping activations in dMFC, AI, LPFC, and basal ganglia for all of these three 

domains. These brain areas may therefore be involved in the integrative processing of action 

monitoring with affective and social factors. 

http://www.neurosynth.org/
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-- please insert Figure 2 about here -- 

 

Anterior cingulate cortex has been traditionally viewed as an important hub for emotional 

processing (Papez, 1937; Tow and Whitty, 1953), and considerable debate has evolved around 

the question of how emotional and cognitive information processing are organized and integrated 

in cingulate cortex (Drevets and Raichle, 1998). Earlier accounts have proposed separate 

emotional and cognitive subdivisions of ACC (Bush et al., 2000b; Devinsky et al., 1995), with 

the more anterior part being assigned a role in affective processing and the dorsal section in 

cognitive processing. However, this view has been challenged by accumulating evidence 

indicating that dorsal ACC, or more broadly dorsal mediofrontal cortex (dMFC), is involved in 

both cognitive and emotional processing (see meta-analyses by Etkin et al., 2011; Shackman et 

al., 2011), and could therefore constitute an important hub for emotion-cognition interactions 

(Pessoa, 2008). The functional model by Etkin et al puts forward that the dMFC is involved in 

affective appraisal and the expression of emotions, whereas more ventral parts of ACC and 

medial prefrontal cortex are important for their regulation. Similarly, Shackman et al. (2011) 

posit a central role of dMFC in negative emotion, pain, and cognitive control processes. The 

“adaptive control hypothesis” (Shackman et al., 2011) suggests that the anterior midcingulate 

cortex / dMFC is engaged when there is uncertainty about actions and their potentially aversive 

outcomes, and that this mediofrontal region integrates events such as errors, pain, or conflict, 

which require adjustments in adaptive control (see also Botvinick et al., 2001; Seeley et al., 

2007). 

However, our meta-analytic conjunction analysis indicates that dMFC might not be the 

only candidate for cognitive-affective integration during action monitoring (see also Pessoa, 
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2008). Other regions, especially AI and lateral prefrontal cortex are activated by emotional, 

social, and error monitoring processes as well, and might therefore also constitute important hubs 

between different systems (Pessoa, 2008; Sridharan et al., 2008) and for convergence between 

action monitoring and socio-affective information (Brass and Haggard, 2010; Koban et al., 

2013a; Ullsperger et al., 2010). In the following sections, we describe behavioral and 

neurophysiological evidence for affective and social influences on action monitoring, and 

interactions of these processes in dMFC and AI. 

3.1 Interactions between affective processes and error monitoring 

Conflicts or response errors have often been seen in the literature as distinctive or special 

events (in the sense of being unexpected, surprising and deviant, sometimes even considered to 

be “noisy”). They inform therefore about the regulation of behavioral control – i.e. how specific 

brain processes are engaged following these adverse outcomes in order to enhance cognitive 

control (through putative top-down attention control mechanisms), and eventually restore the 

normal mode of processing, or homeostasis (Weissman et al., 2006; Wessel et al., 2012).  

Although these processes have mainly been studied from a cognitive framework, growing 

evidence suggests that they are not immune to emotions, but interact with motivational and 

affective factors. Psychophysiological and behavioral studies showed that response errors (and 

conflicts) activate a defensive motivational system (recently reviewed by Dreisbach and Fischer, 

2012; Proudfit et al., 2013). For example, response errors during a flanker task yield larger skin 

conductance responses and greater heart rate deceleration than correct decisions (Hajcak et al., 

2003b), as well as a larger potentiation of the startle reflex (Foti and Hajcak, 2009). These 

findings suggest that response errors may be perceived as aversive and distressing events (Spunt 
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et al., 2012), which are associated with enhanced arousal and increased activation of the 

autonomic nervous system (Hajcak et al., 2003b).  

3.1.1 Involvement of the amygdala in action monitoring 

Direct hints regarding the involvement of emotion-related brain areas were obtained 

recently by means of intracranial recordings in humans (Pourtois et al., 2010). In this 

neurophysiological study, two pharmacoresistant patients, implanted invasively with intracranial 

depth electrodes in the dorsal ACC and amygdala prior to surgery for refractory epilepsy, 

performed a go/no-go task (Aarts and Pourtois, 2010; Koban et al., 2010; Vocat et al., 2008). 

Results showed that response errors in this task were associated with a distinctive increase of 

phasic theta bursts in the dorsal ACC rapidly following the onset of these adverse events, 

consistent with scalp ERP results and the generation of the ERN component (see Cavanagh et al., 

2012). Further, intracranial local field potentials (iLFPs) recorded in the amygdala revealed that 

this mesio-temporal lobe structure showed increased electrophysiological activity following 

errors compared to correct actions (Pourtois et al., 2010). Moreover, a selective coupling in the 

theta band between dorsal ACC iLFPs and amygdala iLFPs suggested a dynamic cross-talk 

between these two brain regions during error detection, and action monitoring more broadly. The 

involvement of the amygdala in action and error monitoring has been confirmed by functional 

brain imaging (Pourtois et al., 2010), including in healthy adult participants (Polli et al., 2008; 

Polli et al., 2009; Sagaspe et al., 2011).  

Although compelling, the evidence for autonomic responses and for the involvement of 

the amygdala (or other emotion control brain systems besides or beyond the dorsal ACC) in 

action monitoring and error detection remains largely correlational in nature, and not all imaging 

studies have reported amygdala activation to response errors or negative feedback (see meta-
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analysis, Figure 2). Recent neurophysiological evidence suggests however that the amygdala, 

and more specifically the basolateral nucleus, may play an important role in error but not conflict 

monitoring (Kashtelyan et al., 2012). These findings suggest that the amygdala might be 

implicated in error monitoring mostly when errors imply learning. More generally, they are 

compatible with earlier neurophysiological findings showing that the amygdala, together with 

other sub cortical structures, might be involved in “prediction error" or "surprise", i.e. detection 

of discrepancy between expected and obtained outcome (see Holland and Gallagher, 2006).  

3.1.2 Evidence from affective priming studies 

Enhanced amygdala and autonomic nervous system activity accompanying response 

errors does not inform about whether valence-specific effects can be obtained as a function of the 

perceived goal conduciveness (Scherer, 1984, 1988) of simple self-generated actions. In this 

alternative framework, specific appraisal monitoring processes are assumed to be involved in the 

processing of the valence (opposed to arousal value) of simple actions, such as to mark incorrect 

actions as bad/negative and correct ones as good/positive (Aarts et al., 2012). In essence, this 

online evaluative process would promote adaptive behavior not only by increasing arousal and 

defense systems in response to errors, but by “tagging” motivational or affective meaning to each 

and every action.  

Recently, some advancement has been made at the methodological level in order to 

corroborate the assumption that the monitoring of simple actions made during standard 

interference tasks is not devoid of emotion. Aarts and colleagues (2012) sought to test whether 

actions made during a simple go/no-go task might be processed rapidly along a genuine affective 

valence dimension. Their hypothesis was that incorrect actions (errors) should be associated with 

negative affective valence (“bad”), while conversely correct actions should be tagged as positive 
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(“good”). For this purpose, Aarts et al. made use of the evaluative priming paradigm (Fazio et 

al., 1986), in which each action made during the primary go/no-go task served as a prime for a 

secondary word discrimination task, unbeknown to the participants. This secondary task required 

participants to discriminate the valence (positive versus negative) of an emotional word that was 

presented for a few milliseconds on the screen directly following every response made in the 

primary task. Aarts et al. reasoned that if specific emotion systems are engaged rapidly during 

action monitoring, then a significant priming effect between the action (prime) and the written 

word (target) might arise. More specifically, they conjectured that errors made during the 

primary task would automatically prime negative affect and therefore speed up the detection of 

subsequent negative compared to positive words. Conversely, correct responses in the primary 

task may prime positive affect and lead to faster discrimination of positive than negative words. 

The results of this study confirmed their predictions (Aarts et al., 2012). As such, these findings 

go beyond earlier results that showed that response errors enhance autonomic arousal and 

activate a defensive motivational system (Hajcak and Foti, 2008). Additionally, they demonstrate 

that simple actions are constantly monitored in terms of their valence. This means not only 

marking response errors as bad, but also identifying correct actions as good events. This dynamic 

process, directly linking actions and outcomes to positive and negative affective states (see also 

Brass and Haggard, 2010; Craig, 2009; Ullsperger et al., 2010) appears especially important to 

promote learning and to enable adaptive behavior in an ever-changing and complex environment.  

Interestingly, these priming results were observed when the time interval between the 

action and the word was set to 300 or 600 ms, but not for intervals of 1000 ms, suggesting that 

the association of actions with affective valence is rapid and automatic. This timing is in line 

with the early amygdala responses to errors and correct actions evidenced in intracranial 
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recordings, as reviewed here above (Pourtois et al., 2010). Given the important role of the 

amygdala in the detection of emotionally salient external stimuli (Anderson and Phelps, 2000; 

LaBar et al., 1998; Phelps, 2006; Sander et al., 2003; Vuilleumier, 2005; Whalen et al., 2001), 

this structure could be similarly involved in the rapid affective monitoring of internally generated 

action events (Barbas et al., 2011). Similar behavioral priming effects have been observed for 

incongruent compared to congruent trials in the flanker task (Dreisbach and Fischer, 2012), 

suggesting that not only errors, but also conflict and the need for increased cognitive control are  

automatically perceived as aversive and associated with negative valence (Botvinick, 2007; 

Dreisbach and Fischer, 2012). Interestingly, behavioral results also suggest that although 

conflicts and interference may be perceived as aversive, they can acquire positive valence, if 

participants are able to resolve conflict, i.e. to overcome task interference (Schouppe et al., in 

revision). Hence, conflicts may be perceived as negative or as positive depending on their 

processing stage and on the potential for resolution (i.e., coping potential), suggesting that 

interaction effects between action monitoring and affective processes are flexible and dynamic 

(Gentsch et al., 2013).    

Aarts and colleagues (2013) extended their earlier findings by using ERPs to investigate 

the electrophysiological time-course of this affective priming by simple actions. They found that 

the amplitude difference between the ERN for errors minus the CRN for correct responses in the 

go/no-go task was correlated with the magnitude of the evaluative priming effect in the 

secondary word discrimination task. This suggests that the ERN-CRN amplitude difference 

might actually reflect the differential affective values of incorrect versus correct actions, in line 

with evidence that the ERN is correlated to the significance of errors (see also Luu et al., 2000; 

Olvet and Hajcak, 2008; Simons, 2010). Another distinctive property of these priming effects 
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was that high levels of negative affect and trait anxiety/apprehension were associated with 

weaker affective priming effects elicited by errors versus correct responses (Aarts et al., 2012). 

This indicates that personality traits and individual differences in negative affect and 

internalizing disorders may modulate key processes during action monitoring, as it will be 

discussed in the next section.  

3.1.3 Evidence from individual differences and psychopathology 

One of the most robust findings in the error monitoring literature is an enhanced ERN/Ne 

component in participants with high trait negative affect (see Moser et al., 2013; Olvet and 

Hajcak, 2008; Simons, 2010; Vaidyanathan et al., 2012). Using standard interference tasks, 

several ERP studies have reported greater ERN/Ne (and often CRN) components in patients with 

anxiety or internalizing disorders (Krueger et al., 2001), including obsessive compulsive 

disorders (Carrasco et al., 2006; Endrass et al., 2008; Endrass et al., 2010; Gehring et al., 2000; 

Hajcak and Simons, 2002; Johannes et al., 2001; Stern et al., 2010), depression (Aarts et al., in 

press), and generalized anxiety disorders (Weinberg et al., 2010). Likewise, even healthy 

participants with higher levels of subclinical trait anxiety were shown to have increased ERN and 

CRN components (Aarts and Pourtois, 2010; Hajcak et al., 2003a; Moser et al., 2013). Further, 

the amplitude of these components has been related to sensitivity to punishment, a trait that 

strongly correlates with anxiety, harm avoidance, neuroticism, and negative affect (Boksem et 

al., 2006). 

Interestingly, in all these previous action-monitoring studies, the effects of negative affect 

were selective for the ERN component, while leaving the subsequent Pe component unaffected. 

The component-specific modulation of action monitoring by negative affect is compatible with 

evidence that the ERN and Pe components are likely generated by different brain systems and 
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functionally dissociable (Dhar et al., 2011; Koban et al., 2012a; Overbeek et al., 2005b; 

Ridderinkhof et al., 2009; Wessel, 2012). This suggests that modulatory effects exerted by 

dispositional negative affect and anxiety disorders may selectively enhance very early action 

monitoring and error detection brain processes, whereas later—potentially regulatory—processes 

may be preserved (but see Aarts et al., in press, for an amplitude modulation of the Pe 

component in major depression).  

Based on this evidence, some authors have put forward the proposal that the ERN could 

be considered as a reliable endophenotype or biomarker for internalizing disorders (Olvet and 

Hajcak, 2008; Proudfit et al., 2013). Yet, it remains currently unclear why internalizing disorders 

would be associated with overactive early error monitoring processes at the level of the ERN-

CRN component exclusively. Interestingly, the observation of an overactive ERN is not 

paralleled by any behavioral deficits or other changes in task performance in patients compared 

to controls. In other words, high-anxious individuals usually respond as fast and as accurately as 

low-anxious individuals, yet their electrophysiological response to errors is increased compared 

to low-anxious participants (see meta-analysis by Moser et al., 2013). Further, this enhanced 

electrophysiological response is not only observed for the ERN, but in some studies also for the 

CRN, i.e. in the electrophysiological response to correct responses (Aarts and Pourtois, 2010). 

Although this CRN effect is not found consistently across all studies and therefore might be 

specific for speeded go/no-go paradigms, this point casts doubts on the interpretation that 

negative affect influences the processing of response errors selectively. Instead, a more 

parsimonious account posits that high anxiety (apprehension, as opposed to anxious arousal) and 

more generally internalizing disorders may be associated with increased dMFC responses to both 

incorrect and correct but risky actions.  
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While mounting evidence suggests altered action monitoring at the level of the response, 

the literature exploring potential effects of anxiety and negative affect on the monitoring of 

external performance feedback and the FRN is rather scarce. One study (De Pascalis et al., 2010) 

found that individuals who were more sensitive to punishment (as evidenced using the BIS-BAS 

scale, see Carver and White, 1994) had a larger FRN to monetary losses in a go/no-go task. By 

contrast, two other ERP studies reported reduced FRN amplitudes for high, compared to low 

anxious individuals (Gu et al., 2010; Simons, 2010). Similarly, Aarts & Pourtois (2012) found 

that sub-clinical high trait anxiety was associated with blunted FRN components to evaluative 

feedback. By contrast, depression does not seem to reduce the FRN component (Mies et al., 

2011). Together, these findings suggest that modulatory effects of negative affect on action 

monitoring may not be restricted to internally driven (i.e., response-related) monitoring 

processes, but extend to externally driven (i.e., feedback related) processes, but with potentially 

opposite effects. To the best of our knowledge, no ERP study to date has reported an enhanced 

FRN component in anxiety or negative affect. This observation challenges the assumption that 

this ERP component reflects the counterpart of the ERN when action monitoring is primarily 

achieved based on external evaluative feedback (as opposed to internal motor or cognitive effects 

for the ERN, see Gehring and Willoughby, 2002; Heldmann et al., 2008; Holroyd and Coles, 

2002a; Miltner et al., 1997) and that both components can be related to a common theta band 

oscillatory process (Cavanagh et al., 2012; Cohen, 2011).  

 

3.2 Social effects on action monitoring 

Beyond the evidence of emotion effects on action monitoring, a rapidly growing 

literature suggests important social influences on error and outcome processing. In general, these 
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studies can be organized into two main questions: The first is how people monitor others’ actions 

and learn from observation. The second main research question is how social context modulates 

the monitoring of our own actions. The answers to these questions will inform us on the brain 

mechanisms underlying action monitoring in interpersonal and group settings, as well as how 

human behavior may be adjusted to the requirements of social life in more general ways.  

3.2.1 Monitoring and evaluating the actions of others 

In line with the general idea of motor simulation and mirror neuron systems (Gallese et 

al., 2004; Keysers and Gazzola, 2006), monitoring of others’ errors and action outcomes might 

be based on similar mechanisms than the processing of self-generated actions, and involve the 

motor cortex and interconnected cingulate areas (Fadiga et al., 2005; van Schie et al., 2004). 

When watching a confederate or another participant performing an interference or go/no-go task, 

observation of their response errors leads to a specific ERP component, the observer ERN 

(oERN, see also Figure 1). The oERN resembles the ERN in its frontocentral topography and 

sources in the dMFC (Miltner et al., 2004; van Schie et al., 2004). Interestingly, the timing of the 

oERN seems to depend on the type of experimental task, as well as on the social relationship 

between observer and agent. Whereas the oERN in flanker tasks peaks around 250-300ms after 

observed motor errors (de Bruijn and von Rhein, 2012; Miltner et al., 2004; van Schie et al., 

2004), it has been found much earlier (~30ms and ~140ms) in go/no-go task (Bates et al., 2005), 

but only when the relationship between participants was cooperative, as opposed to competitive 

(Koban et al., 2010). This has led to the suggestion that cooperation might enable the monitoring 

of observed actions based on shared simulated motor and task/goal representations (Sebanz et al., 

2006a; Sebanz et al., 2006b), whereas participants may rely on purely visual and conceptual 

information during competition (Koban et al., 2010). In flanker tasks, vicarious errors might be 
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harder to monitor, as they require detecting a mismatch between required response and actual 

response (e.g. left versus right key press), compared to go/no-go tasks where they could be 

detected much more easily (any response in a no-go trial is an error). Our observation that the 

amplitude of the early oERN was highly correlated with an observer N2 component (Koban et 

al., unpublished data) corroborates this interpretation.  

The oERN is followed by a frontocentral positivity, the observer Pe (oPe, Carp et al., 

2009) around 300-600ms after another person’s error. Likewise, when visual performance 

feedback is presented following others’ actions or gambling decisions, an observer FRN (oFRN) 

effect can be seen, with a very similar latency (around 200-350ms) and topographical pattern 

(although slightly smaller in amplitude) to the player FRN (Fukushima and Hiraki, 2009; Leng 

and Zhou, 2010; Yu and Zhou, 2006). Given their topographical and temporal similarities, the 

oERN, which is locked to another person’s motor response, and the feedback-locked oFRN 

might potentially reflect the same or a very similar monitoring process.  

In line with these electrophysiological results, fMRI studies have shown increased BOLD 

activity in dMFC for observed errors compared to observed correct trials (de Bruijn et al., 2009; 

Newman-Norlund et al., 2009; Shane et al., 2008), as well as in other regions such as AI, IFG, 

together with parietal and occipital areas (Koban et al., 2013a; Shane et al., 2008), indicating that 

activations for vicarious and self-generated errors may only partially overlap (Koban et al., 

2013a; Shane et al., 2008).  

The findings of parallel brain responses to self-generated and observed action errors have 

recently been confirmed using single-cell recordings in macaque mediofrontal cortex (Yoshida et 

al., 2012). This study showed enhanced firing in a large number of MFC neurons during 

observed errors compared to observed correct actions of another monkey, as well as during 
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reward delivery to the other monkey (Yoshida et al., 2012). Interestingly however, most of these 

neurons did not respond to self-generated errors, indicating parallel but separate neural 

populations for the monitoring of self- and other-generated actions (Yoshida et al., 2012). 

Error and feedback observation is modulated by several relationship factors between 

observer and agent. de Bruijn et al. (2009) investigated brain responses to observed performance 

feedback in cooperation vs. competition (see also Koban et al., 2012). These authors 

demonstrated activation of dMFC for errors compared to hits independent of context, whereas 

the ventral striatum responded as a function of the subjective reward value of errors vs. hits 

(higher striatum activation for hits in cooperation, and for errors in competition). Similarly, it has 

been shown that other persons’ positive outcomes activate the ventral striatum more when they 

are perceived as more similar to the self (Mobbs et al., 2009), in line with the assumption that 

affective responses to observed outcomes depend on the relationship between self and other (see 

also Carp et al., 2009; Itagaki, 2008; Kang and Hirsh, 2010; Koban et al., 2010; Marco-Pallares 

et al., 2010). Additionally, individual differences in personality may influence the processing of 

observed actions and errors, especially perspective taking and empathy (Koban et al., 2012b; Rak 

et al., 2013; Thoma and Bellebaum, 2012). This is consistent with evidence from studies on error 

monitoring in conditions such as psychopathy or antisocial personality disorder, which are 

characterized by abnormally low empathy. Individuals with psychopathy have been 

demonstrated to show normal ERP responses to self-generated, but reduced ERP amplitudes to 

observed errors and correct responses (Brazil et al., 2011). Thus, as much as one’s own, self-

generated actions are evaluated on an affective dimension, being able to understand the emotions 

of others might be an important prerequisite for monitoring and understanding observed actions. 
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3.2.2 Social influences on the monitoring of self-generated actions 

Evidence of interaction effects between the monitoring of self- with other-generated 

actions comes from behavioral studies investigating post-error adaptation effects in social 

context. Several experiments have shown that post-error slowing does not only occur following 

one’s own errors, but also when observing another person inadvertently committing an incorrect 

response (de Bruijn et al., 2011; Núñez Castellar et al., 2011; Schuch and Tipper, 2007). 

Interestingly, this effect has been found to be greater in cooperative compared to competitive 

interpersonal settings (de Bruijn et al., 2011; Núñez Castellar et al., 2011), which could be 

explained either by larger shared (motor) representation in the cooperative context, or 

alternatively by differential affective valence of observed errors in the two settings (Núñez 

Castellar et al., 2011).  

Surprisingly, only recently ERP or fMRI studies have been conducted to investigate how 

brain responses to one’s own action outcomes are modulated by social factors. For instance, a 

recent study (Van Meel and Van Heijningen, 2010) found an FRN for negative as compared to 

positive feedback during a learning task only when participants performed the task in a 

competitive setting, but not in an individual control condition. This result could indicate that the 

mere presence of other persons may enhance the processing of feedback, potentially as an effect 

of social comparison (Boksem et al., 2011a). Further, the emotional appraisal of others may 

affect performance monitoring: for instance, when presenting facial expressions of disgust as 

task cues, one study found increased ERN amplitudes compared to other facial expressions 

(Boksem et al., 2011b).  

Indeed, actions in real life can have important consequences for other people, and it is 

thus not surprising that the social relationship between agent and observer, as well as other 
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context factors can have profound influences on their monitoring and appraisal. FMRI results 

indicate that the dorsomedial prefrontal cortex shows higher activation during error monitoring 

in social relative to individual settings (Radke et al., 2011). In a recent ERP study, Koban et al. 

(2012) showed that the FRN was increased in cooperative compared to competitive context, with 

underlying sources in the dorsomedial PFC, LPFC, and temporoparietal junction (TPJ), all these 

regions being typically involved in social cognition (see Figure 2, and cf. Kelley et al., 2002; 

Mitchell et al., 2005; Saxe and Wexler, 2005). This increase in FRN amplitude was followed by 

a feedback-P300 effect that was specific for self-generated action outcomes in cooperative 

context. Moreover, the P300 was generated by sources in dMFC and AI and correlated with 

individual differences in trait empathy. Given the increased social relevance of negative 

performance when playing as a team, this effect could therefore reflect an increased affective 

response to negative feedback in cooperative context (Koban et al., 2012b).  

To test more directly how humans integrate information about the potentially detrimental 

consequences of their actions for others, Koban et al. (2013) recently developed a new fMRI 

task, in which half of the error trials would lead to painful heat stimulation to a friend outside the 

scanner. Behaviorally, errors that caused pain to the friend were associated with increased 

feelings of guilt, shame, and higher ratings of empathic pain. These effects were paralleled by 

increased activations in dMFC, AI and dlPFC. Importantly, left AI and dlPFC showed 

interactions between action agency and empathic pain, indicating that these regions may 

integrate the processing of self-generated errors with the social consequences of actions (Koban 

et al., 2013a). This integration process should be crucial for the generation of moral emotions 

such as guilt and shame that are associated with self-generated actions that have socially negative 
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consequences (Chang et al., 2011; Koban et al., 2013a; Wagner et al., 2012b; Wagner et al., 

2011; Yu et al., 2013). 

How outcomes of our decisions are evaluated also depends on what results alternative 

counterfactual actions would have had. For instance, if we pick one of two alternative bets and 

we lose, we may experience the feeling of regret, especially when we see that the other option 

would have been a winning one (Coricelli et al., 2005). The impact of such counterfactual 

choices is even more pronounced in social settings, indicating that these may provide additional 

information for learning (Coricelli and Rustichini, 2010). One ERP study indicates that the FRN 

to one’s own outcomes might be modulated as a function of whether a co-player wins or loses at 

the same time (Qiu et al., 2010). In an fMRI study on social comparison, dACC activation was 

related to envying others’ success, whereas schadenfreude was associated with ventral striatum 

activity when gloating over the misfortune of a previously envied person (Takahashi et al., 

2009). Other investigations (Bault et al., 2008; Bault et al., 2011) used a lottery choice task that 

enabled the comparison of actual outcome to the (counterfactual) outcome of the non-chosen 

lottery. In half of the trials, the participants could additionally observe the outcome of choices 

made by another player. These authors found greater emotional responses to outcomes and 

counterfactual choices in the social different-outcomes condition, i.e. when the gains did not only 

lead to relief, but to gloating, and losses were not only associated with regret, but with envy 

(Bault et al., 2008; Bault et al., 2011). These behavioral findings were paralleled by higher 

BOLD activation of medial prefrontal cortex, striatum, TPJ, and DLPFC for gains in social 

context that were paired with losses for the other player, indicating a highly competitive 

component of outcome evaluation (Bault et al., 2011).  
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Together with other previous behavioral and brain imaging studies, these results highlight 

the importance of social factors in action outcome evaluation and for behavioral adjustments, as 

well as the interplay between brain regions involved in social cognition on the one hand and 

reward and error processing mechanisms on the other hand. Further, studying the effects of 

social context on action monitoring may not only help understanding the interplay of the 

different functional networks in adaptive behavioral control, but also allow eliciting and studying 

complex emotions such as regret, envy, guilt, pride, and gloating in experimentally well-

controlled settings (Chang and Koban, 2013). Ultimately, it may also contribute to a better 

understanding of psychiatric conditions such as psychopathy, autism, or alexithymia, which may 

be shaped by impaired processing of social-affective aspects of action monitoring in different 

prefrontal and limbic regions.   

 

4 Towards an integrative framework of action monitoring 

Taken together, our review of the literature suggests that action monitoring is strongly 

influenced by a number of affective and social factors. This is in line with the idea that adaptive 

control of behavior in real life requires the constant integration of various processing streams and 

sources of information. 

Demonstrating integration of several processes requires showing that a given region 

responds to all of those processes, and that this region shows interaction effects between them 

(Gray et al., 2002; Gu et al., 2012). Using term-based meta-analytic images, we found evidence 

for the first premise and demonstrated extensive overlap between action monitoring, emotion 

processes, and social cognition in dACC/dMFC and bilateral AI, plus lateral prefrontal areas. 

Previous anatomical and connectivity studies have shown that dMFC and AI are highly 
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interconnected and constitute a cingulo-opercular functional network (Modha and Singh, 2010), 

which has been suggested to play an important role in the detection of salient events and the need 

for changes in cognitive control (Nee et al., 2007; Seeley et al., 2007; Sridharan et al., 2008). In 

parallel, hyperactivity of the cingulo-opercular network has been linked to anxiety and anxiety 

disorders (Etkin, 2010; Etkin and Wager, 2007; Kim et al., 2011; Sylvester et al., 2012).  

In line with the idea of integrative processing of affective factors and action monitoring, 

EEG studies have revealed important influences of negative affect and anxiety on early action 

monitoring components. Most of these empirical results suggest highly correlated activity in the 

dMFC and AI during action monitoring, as well as during other tasks and processes (Craig, 

2009; Ullsperger et al., 2010). Yet, most theoretical accounts have focused on either one of these 

two regions (and ignored the other) or treated both as an entity (e.g. as a cingulo-opercular 

network). Few attempts have been made to dissociate and contrast the contributions of dMFC 

and AI in error and action monitoring specifically, and in other domains more generally (but see 

Craig, 2009; Critchley et al., 2004; Ullsperger et al., 2010). In what follows, we propose that 

effects of emotional and social factors may be slightly different in these two regions and 

potentially reflect dissociable processes. The main assumption of this framework is that, within 

this cingulo-opercular functional network, emotional and social influences on action monitoring 

likely operate at different levels and latencies, and through different neuroanatomical routes.      

 

4.1 Automatic affective tagging of actions 

The results compiled in this review bolster the assumption that emotional and social 

influences on action monitoring may arise as a consequence of integrative processing of affect 

and action outcomes in dMFC and AI (see also Pessoa, 2008; Shackman et al., 2011), as outlined 
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in Figure 3. It has been demonstrated that error and conflict detection are accompanied by phasic 

responses in the limbic structures such as the amygdala (Kashtelyan et al., 2012; Pourtois et al., 

2010). Hypothetically, this structure responds to the specific affective or motivational value of 

action outcomes (Aarts et al., 2012). According to this framework, each simple action is not only 

deemed correct (goal conducive) or incorrect (goal obstructive) by means of phasic dACC 

activity rapidly following its onset, but also likely tagged ‘automatically’ as good or bad rapidly 

following the onset of the action. This ‘affective tagging’ might explain the enhanced synchrony 

(in the theta band, selectively) seen between dACC and amygdala during action monitoring and 

error detection (Pourtois et al., 2010). Given the role of the amygdala in vigilance (Davis and 

Whalen, 2001) and in the detection of relevant events (Sander et al., 2003), one possibility 

accounting for these neurophysiological effects during action monitoring is that this mesio-

temporal lobe structure directly receives information from the dACC to process the motivational 

significance of actions, and eventually mediates the differential autonomic arousal to response 

errors, as opposed to correct responses (Hajcak et al., 2003b; Proudfit et al., 2013). Ultimately, 

this evaluative process could foster adaptive behavior by helping the organism to quickly 

identify salient or threatening actions that are associated to positive vs. negative affective states. 

Presumably, these affective processes during action monitoring are captured by systematic 

amplitude variations at the level of the ERN (Aarts et al., 2013; Compton et al., 2013; Luu et al., 

2000; Moser et al., 2013; Proudfit et al., 2013).  

 

4.2 Perception of social agency during action monitoring  

Our review further suggests that observed errors and action outcomes evoke similar 

electrophysiological components and partially overlapping brain activation than self-generated 



 29 

errors and actions (de Bruijn et al., 2009; Koban et al., 2013a; Koban et al., 2012b; Miltner et al., 

2004; Shane et al., 2008; van Schie et al., 2004), although they might be based on separate 

neuron populations (Yoshida et al., 2012). Monitoring others’ actions may enable us to interact 

efficiently during joint action (Sebanz et al., 2006a; Vesper et al., 2010) and to learn by 

observation (Bellebaum et al., 2010; van Schie et al., 2004). Yet, an unresolved question 

concerns the processes that allow the attribution of error agency. An integrative framework of 

action monitoring has to incorporate a mechanism that indicates whether it is the ‘self’ or another 

agent that is responsible for a specific action outcome (Brass et al., 2009; Gallagher, 2000; 

Georgieff and Jeannerod, 1998). 

A plausible solution is that the brain compares action predictions (i.e. a motor reference 

copy) with the actual sensorimotor consequences of these actions (Blakemore et al., 1998; 

Chambon et al., 2012; Farrer and Frith, 2002; Sato and Yasuda, 2005). Discrepancy between 

predicted and actual motor behavior is associated with activation of the angular gyrus in the 

parietal lobe (Chambon et al., 2012; Farrer et al., 2008; Farrer and Frith, 2002; Miele et al., 

2011), which could thereby reversely encode the amount of perceived self-agency (Chambon et 

al., 2012). This is consistent with a role of this inferior parietal region in the attribution of motor 

control to other agents (Ruby and Decety, 2001).  

Conversely, when investigating positive brain correlates of self- versus other-agency, 

Farrer & Frith (2002) reported activation in the left AI in addition to motor control-related 

regions such as supplementary motor area, sensorimotor cortex, and cerebellum (see also David 

et al., 2006). Similarly, Brass & Haggard (2010) recently proposed that the AI has a crucial role 

in intentional self-generated action and suggested that this region could evaluate self-generated 

actions regarding their affective value, thereby guiding learning and future action selection.  
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We propose that the monitoring of action and error agency is not only crucial for 

learning, but it also critically determines emotional states associated with different action 

outcomes (cf. Koban et al., 2013a). In addition to action correctness and social relationship, the 

perception of agency may determine whether we feel guilty or angry following errors, and 

whether we experience pride or envy after positive action outcomes. Thus, the AI is well placed 

to integrate information about action outcomes not only with affective and social context factors, 

but also with the perception of self-agency (Brass and Haggard, 2010; Koban et al., 2013a). 

Integration of outcomes with agency and social context information may lead to error awareness 

(Ullsperger et al., 2010) and to the generation of more complex specific feeling states that are 

associated with different action outcomes (Craig, 2009; Koban et al., 2013a; Koban et al., 

2012b). 

 

4.3 Different levels of integration within the dMFC vs. AI 

 Although speculative at this stage, the different findings reviewed here above regarding 

interactions between action monitoring, affective processes, and social factors support the view 

that the dMFC and AI each contributes to bring together different and complementary sources of 

information during the monitoring of actions (see Figure 3). In this view, positive vs. negative 

affective value of actions are determined quickly and automatically by the dACC/dMFC in 

conjunction with specific striatal and limbic structures (Fiorillo et al., 2003; Holroyd and Coles, 

2002a). This is in line with theoretical accounts, which have suggested that the dACC/dMFC 

primarily operates as a monitor of conflicts, errors, and more generally, differences between 

actual and predicted or desired states, which require adjustments in cognitive control (Alexander 

and Brown, 2011; Botvinick et al., 2001; Holroyd and Coles, 2002a; Shackman et al., 2011; 
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Shenhav et al., 2013). Action monitoring in dACC/dMFC is sensitive to motivational factors 

such as perceived costs and reinforcement values (Shackman et al., 2011; Shenhav et al., 2013) 

and consequently an intrinsically affective evaluation (Aarts et al., 2012; Aarts et al., 2013; 

Proudfit et al., 2013), which may be enhanced in anxiety and other affective disorders (Aarts and 

Pourtois, 2010; Moser et al., 2013; Proudfit et al., 2013).  

By comparison, we propose that the AI uses this information in a second and parallel 

stage of action monitoring and integrates information about action correctness from the 

dMFC/dACC with action agency, and into a broader context of emotional and social factors 

(Frith et al., 2008; Koban et al., 2013a; Seth et al., 2011). This second integrative step may 

generate the Pe and feedback-P300 components and be associated with error awareness (see 

Craig, 2009; Dhar et al., 2011; Nieuwenhuis et al., 2001; Ullsperger et al., 2010). Given the 

important role of AI in emotions and in representing others’ feeling states (Engen and Singer, 

2013; Kober et al., 2008; Lindquist et al., 2012; Singer et al., 2009), activity of this region during 

action monitoring may reflect the generation of complex and situation-specific emotions (e.g. 

feelings of guilt when one’s errors cause pain to close others, Koban et al., 2013a). 

Recent findings on error monitoring in individuals with psychopathy and unemotional-

callous traits support this idea. Psychopathic personality is characterized by ongoing antisocial 

behavior, lack or empathy or remorse, and difficulties in inhibition and behavioral control, which 

are paralleled by widespread abnormalities in prefrontal cortex (Anderson and Kiehl, 2012; 

Koenigs, 2012). Recent studies demonstrated that in psychopathy, the AI is altered both 

structurally (Aoki et al., 2013) as well as functionally in response to others’ pain (Decety et al., 

2013). In parallel, ERP results showed that psychopathy reduces the size of the Pe component 

selectively, while leaving the ERN and post-error adjustment in behavior intact (Brazil et al., 
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2009). This indicates that psychopathy may be associated with a specific alteration of the 

integration processes with affective, social, and agency factors during action monitoring, for 

which the AI likely plays a predominant role (Brass and Haggard, 2010; Koban et al., 2013a; 

Ullsperger et al., 2010).  

Although preliminary and awaiting future empirical validation, our framework may help 

to delineate the respective functions of two major anatomical components of action monitoring. 

Both dMFC/dACC and AI may contribute to trigger changes in adaptive control through 

modulation of interconnected fronto-parietal areas (Chang et al., 2013) at different latencies 

following action onset. Speculatively, we propose that the dACC might be more important for 

automatic action monitoring, whereas the AI could be crucial for generating emotionally more 

complex states, which could serve as a basis for more deliberate and conscious efforts to adjust 

behavior in a more flexible way (Figure 3). Additional imaging and neurophysiological studies 

are needed to test this hypothesis and to confirm the complementary and dissociable functions of 

AI and dMFC/dACC during action monitoring.  

-- please insert Figure 3 about here -- 

 

4.4 Outstanding questions and future directions 

Although this review gives an overview of the potential roles of different brain regions 

involved in social-affective effects on action monitoring, several important questions remain 

unanswered at this stage. First, term-based meta-analysis provides information about common 

activations across a large number of studies (and by extension hundreds of individual subjects), 

but it is not clear, whether overlapping activations for error monitoring and social-affective 



 33 

processing would also be found at the individual level. More importantly, conjunction of activity 

does not equal functional convergence or involvement of the same neural populations, and more 

intracranial electrophysiological studies in patients and animals are needed to investigate the 

functional relationship of different processes in AI and dMFC.  

As a second limitation of the automated meta-analytic approach, it is not clear whether 

dMFC and AI/IFG activations reported in imaging studies on social cognition or emotion reflect 

specifically social or affective processes. More basic mechanisms or qualities such as effort or 

arousal could be common to emotion, social cognition, and action monitoring tasks (Kool et al., 

2010; McGuire and Botvinick, 2010). DMFC and AI/IFG are among the most frequently 

activated brain areas across a large number of experimental paradigms and research questions 

(cf. Behrens et al., 2013; Craig, 2009; Shackman et al., 2011). It appears therefore unlikely that 

they would be specific for emotions, social cognition, and/or error processing. Yet, this fact does 

not contradict the hypothesis that these areas could be critical (even if not necessarily selective) 

for interactions between error/conflict monitoring and affective or social factors. Given the 

costliness of neural computations, it is doubtful that brain areas just get activated as “by-

products”. On the contrary, frequently activated areas such as AI and dMFC often constitute 

important hubs within and between different functional networks, and could thereby link 

different processing domains or have functionally integrative properties (Achard et al., 2006; 

Buckner et al., 2009; Bullmore and Sporns, 2009). Again, lesion studies in patients and 

additional mechanistic work in nonhuman primates might help to illuminate the roles of AI and 

dMFC in the interplay between social-affective and action outcome processing. 

Third, little is known about the developmental trajectories of the contributions of AI and 

dMFC/dACC to action monitoring, especially their specialization during infancy and 
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adolescence (Modha and Singh, 2010). Gaining additional information about the development 

and maturation of these two regions will yield a better understanding of their roles and functions 

during action monitoring at the adult age. Further, specific developmental trajectories could also 

inform us about the origin of abnormal or pathological conditions (e.g. psychopathy) that may 

arise partially because of functional or structural alterations in this network (Anderson and Kiehl, 

2012; Bernhardt et al., 2013; Brazil et al., 2009; Brazil et al., 2011). In this respect, recent 

advancements in developmental cognitive neuroscience and neuroimaging promise to lead to 

significant breakthroughs in our understanding of the complex interplay between affect, social 

cognition, and action monitoring (Crone and Richard Ridderinkhof, 2011). 

Fourth, given the extensive repertoire and malleability of socially-bound emotions in 

humans and their links to core action monitoring processes, it is important to develop new 

experimental methods that will enable studying the emergence of specific social emotions in the 

laboratory (Chang and Koban, 2013), as well as characterizing their neurobiological 

underpinnings (Barrett et al., 2007). New EEG or fMRI studies investigating action monitoring 

in social settings would allow exploration of changes in action monitoring brain processes in the 

medial frontal cortex and AI and dMFC, as well as the potential impairments in those processes 

in different psychopathologies, including social and generalized anxiety, autism, and 

psychopathy.         

Finally, because these two regions are likely influenced dynamically by several 

neurotransmitters systems during action monitoring (Cools, 2011; Cools et al., 2008; de Bruijn et 

al., 2004; Denk et al., 2005), neuroimaging studies combining pharmacological manipulations 

may provide a unique avenue for future research in order to delineate the nature and extent of 

interaction effects with social and emotional processes taking place in each of these two hubs. 
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Likewise, recent advancements in imaging genetics will provide important insights into how this 

complex performance monitoring brain machinery is shaped not only by situational factors 

related to the current affective state or social context, but also by genetic variations (Sallet and 

Rushworth, 2009).        

 

Acknowledgements 

     This work was supported by a post-doctoral fellowship from the Swiss National 

Science Foundation to LK (PBGEP1_142252), and by grants from the European Research 

Council (Starting Grant #200758) and by the Belgian Science Policy, Interuniversity Attraction 

Poles program (P7/11) to GP. We thank Patrik Vuilleumier for his continuous support, as well as 

Alex Shackman and a second, anonymous reviewer for their helpful comments.  

              



 36 

References 

Aarts, K., De Houwer, J., Pourtois, G., 2012. Evidence for the automatic evaluation of self-

generated actions. Cognition 124, 117-127. 

Aarts, K., De Houwer, J., Pourtois, G., 2013. Erroneous and Correct Actions Have a Different 

Affective Valence: Evidence From ERPs. Emotion (Washington, D.C.). 

Aarts, K., Pourtois, G., 2010. Anxiety not only increases, but also alters early error-monitoring 

functions. Cognitive, Affective & Behavioral Neuroscience 10, 479-492. 

Aarts, K., Pourtois, G., 2012. Anxiety disrupts the evaluative component of performance 

monitoring: An ERP study. Neuropsychologia 50, 1286-1296. 

Aarts, K., Vanderhasselt, M.A., Otte, G., Baeken, C., Pourtois, G., in press. Electrical brain 

imaging reveals the expression and timing of altered error monitoring functions in major 

depression. Journal of Abnormal Psychology. 

Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E., 2006. A Resilient, Low-

Frequency, Small-World Human Brain Functional Network with Highly Connected Association 

Cortical Hubs. The Journal of Neuroscience 26, 63-72. 

Alexander, W.H., Brown, J.W., 2011. Medial prefrontal cortex as an action-outcome predictor. 

Nature Neuroscience 14, 1338-1344. 

Anderson, A.K., Phelps, E.A., 2000. Expression without recognition: contributions of the human 

amygdala to emotional communication. Psychological Science 11, 106-111. 

Anderson, N.E., Kiehl, K.A., 2012. The psychopath magnetized: insights from brain imaging. 

Trends in cognitive sciences 16, 52-60. 

Aoki, Y., Inokuchi, R., Nakao, T., Yamasue, H., 2013. Neural bases of antisocial behavior: a 

voxel-based meta-analysis Running title: Antisocial brain: a meta-analysis of VBM. Social 

cognitive and affective neuroscience. 

Barbas, H., Zikopoulos, B., Timbie, C., 2011. Sensory Pathways and Emotional Context for 

Action in Primate Prefrontal Cortex. Biological Psychiatry 69, 1133-1139. 

Barrett, L.F., Mesquita, B., Ochsner, K.N., Gross, J.J., 2007. The experience of emotion. Annual 

review of psychology 58. 

Bates, A.T., Patel, T.P., Liddle, P.F., 2005. External behavior monitoring mirrors internal 

behavior monitoring - Error-related negativity for observed errors. Journal of Psychophysiology 

19, 281-288. 

Bault, N., Coricelli, G., Rustichini, A., 2008. Interdependent utilities: How social ranking affects 

choice behavior. PLoS ONE 3, e3477-e3477. 

Bault, N., Joffily, M., Rustichini, A., Coricelli, G., 2011. Medial prefrontal cortex and striatum 

mediate the influence of social comparison on the decision process. Proceedings of the National 

Academy of Sciences 108, 16044-16049. 

Bediou, B., Koban, L., Rosset, S., Pourtois, G., Sander, D., 2012. Delayed monitoring of 

accuracy errors compared to commission errors in ACC. NeuroImage 60, 1925-1936. 

Behrens, T.E.J., Fox, P., Laird, A., Smith, S.M., 2013. What is the most interesting part of the 

brain? Trends in cognitive sciences 17, 2-4. 

Bellebaum, C., Kobza, S., Thiele, S., Daum, I., 2010. It Was Not MY Fault: Event-Related Brain 

Potentials in Active and Observational Learning from Feedback. Cerebral Cortex 20, 2874-2883. 

Bernhardt, B.C., Valk, S.L., Silani, G., Bird, G., Frith, U., Singer, T., 2013. Selective Disruption 

of Sociocognitive Structural Brain Networks in Autism and Alexithymia. Cerebral Cortex. 



 37 

Blakemore, S.J., Wolpert, D.M., Frith, C.D., 1998. Central cancellation of self-produced tickle 

sensation. Nature Neuroscience 1, 635-640. 

Boksem, M.a.S., Kostermans, E., De Cremer, D., 2011a. Failing where others have succeeded: 

Medial Frontal Negativity tracks failure in a social context. Psychophysiology 48, 973-979. 

Boksem, M.A.S., Ruys, K.I., Aarts, H., 2011b. Facing disapproval : Performance monitoring in a 

social context Facing disapproval : Performance monitoring. 

Boksem, M.a.S., Tops, M., Wester, A.E., Meijman, T.F., Lorist, M.M., 2006. Error-related ERP 

components and individual differences in punishment and reward sensitivity. Brain research 

1101, 92-101. 

Botvinick, M., Nystrom, L.E., Fissell, K., Carter, C.S., Cohen, J.D., 1999. Conflict monitoring 

versus selection-for-action in anterior cingulate cortex. Nature 402, 179-181. 

Botvinick, M.M., 2007. Conflict monitoring and decision making: reconciling two perspectives 

on anterior cingulate function. Cognitive, Affective & Behavioral Neuroscience 7, 356-366. 

Botvinick, M.M., Braver, T.S., Barch, D.M., Carter, C.S., Cohen, J.D., 2001. Conflict 

monitoring and cognitive control. Psychological Review 108, 624-652. 

Brass, M., Haggard, P., 2010. The hidden side of intentional action: the role of the anterior 

insular cortex. Brain Structure & Function 214, 603-610. 

Brass, M., Ruby, P., Spengler, S., 2009. Inhibition of imitative behaviour and social cognition. 

Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 364, 

2359-2367. 

Brazil, I.A., de Bruijn, E.R.A., Bulten, B.H., von Borries, A.K.L., van Lankveld, J.J.D.M., 

Buitelaar, J.K., Verkes, R.J., 2009. Early and late components of error monitoring in violent 

offenders with psychopathy. Biological Psychiatry 65, 137-143. 

Brazil, I.A., Mars, R.B., Bulten, B.H., Buitelaar, J.K., Verkes, R.J., De Bruijn, E.R.A., 2011. A 

neurophysiological dissociation between monitoring one's own and others' actions in 

psychopathy. Biological Psychiatry 69, 693-699. 

Buckner, R.L., Sepulcre, J., Talukdar, T., Krienen, F.M., Liu, H., Hedden, T., Andrews-Hanna, 

J.R., Sperling, R.A., Johnson, K.A., 2009. Cortical Hubs Revealed by Intrinsic Functional 

Connectivity: Mapping, Assessment of Stability, and Relation to Alzheimer's Disease. The 

Journal of Neuroscience 29, 1860-1873. 

Bullmore, E., Sporns, O., 2009. Complex brain networks: graph theoretical analysis of structural 

and functional systems. Nature Reviews. Neuroscience 10, 186-198. 

Bush, Luu, Posner, 2000a. Cognitive and emotional influences in anterior cingulate cortex. 

Trends in Cognitive Sciences 4, 215-222. 

Bush, G., Luu, P., Posner, M.I., 2000b. Cognitive and emotional influences in anterior cingulate 

cortex. Trends in Cognitive Sciences 4, 215-222. 

Bzdok, D., Langner, R., Schilbach, L., Engemann, D.A., Laird, A.R., Fox, P.T., Eickhoff, S.B., 

2013. Segregation of the human medial prefrontal cortex in social cognition. Frontiers in human 

neuroscience 7. 

Carp, J., Halenar, M.J., Quandt, L.C., Sklar, A., Compton, R.J., 2009. Perceived similarity and 

neural mirroring: Evidence from vicarious error processing. Social Neuroscience 4, 85-96. 

Carrasco, M., Larosa, C., Hong, C., Gehring, W.J., Hanna, G., 2006. Error-related brain activity 

in unaffected siblings of children with obsessive-compulsive disorder. Methods, 2006-2006. 

Carter, C.S., 1998. Anterior Cingulate Cortex, Error Detection, and the Online Monitoring of 

Performance. Science 280, 747-749. 



 38 

Carter, C.S., Braver, T.S., Barch, D.M., Botvinick, M.M., Noll, D., Cohen, J.D., 1998. Anterior 

cingulate cortex, error detection, and the online monitoring of performance. Science 280, 747-

749. 

Carver, C.S., White, T.L., 1994. Behavioral inhibition, behavioral activation, and affective 

responses to impending reward and punishment: The BIS/BAS scales. Journal of personality and 

social psychology 67, 319-333. 

Cavanagh, J.F., Zambrano-Vazquez, L., Allen, J.J., 2012. Theta lingua franca: a common mid-

frontal substrate for action monitoring processes. Psychophysiology 49, 220-238. 

Chambon, V., Wenke, D., Fleming, S.M., Prinz, W., Haggard, P., 2012. An Online Neural 

Substrate for Sense of Agency. Cerebral cortex (New York, N.Y.: 1991). 

Chang, L.J., Koban, L., 2013. Modeling emotion and learning of norms in social interactions. 

The Journal of neuroscience: the official journal of the Society for Neuroscience 33, 7615-7617. 

Chang, L.J., Smith, A., Dufwenberg, M., Sanfey, A.G., 2011. Triangulating the neural, 

psychological, and economic bases of guilt aversion. Neuron 70, 560-572. 

Chang, L.J., Yarkoni, T., Khaw, M.W., Sanfey, A.G., 2013. Decoding the role of the insula in 

human cognition: functional parcellation and large-scale reverse inference. Cereb Cortex 23, 

739-749. 

Cohen, J.D., Aston-Jones, G., Gilzenrat, M.S., 2004. A systems-level perspective on attention 

and cognitive control: Guided activation, adaptive gating, conflict monitoring, and exploitation 

vs. exploration, in: Posner, M.I. (Ed.), Cognitive Neuroscience of Attention. Guilford Press, New 

York, pp. 71-90. 

Cohen, M.X., 2011. Error-related medial frontal theta activity predicts cingulate-related 

structural connectivity. NeuroImage 55, 1373-1383. 

Compton, R.J., Hofheimer, J., Kazinka, R., 2013. Stress regulation and cognitive control: 

evidence relating cortisol reactivity and neural responses to errors. Cognitive, affective & 

behavioral neuroscience 13, 152-163. 

Cools, R., 2011. Dopaminergic control of the striatum for high-level cognition. Current opinion 

in neurobiology 21, 402-407. 

Cools, R., Roberts, A.C., Robbins, T.W., 2008. Serotoninergic regulation of emotional and 

behavioural control processes. Trends in cognitive sciences 12, 31-40. 

Coricelli, G., Critchley, H.D., Joffily, M., O'Doherty, J.P., Sirigu, A., Dolan, R.J., 2005. Regret 

and its avoidance: a neuroimaging study of choice behavior. Nature Neuroscience 8, 1255-1262. 

Coricelli, G., Rustichini, A., 2010. Counterfactual thinking and emotions: regret and envy 

learning. Philosophical Transactions of the Royal Society of London. Series B, Biological 

Sciences 365, 241-247. 

Craig, A.D., 2009. How do you feel--now? The anterior insula and human awareness. Nat Rev 

Neurosci 10, 59-70. 

Critchley, H.D., Wiens, S., Rotshtein, P., Ohman, A., Dolan, R.J., 2004. Neural systems 

supporting interoceptive awareness. Nature Neuroscience 7, 189-195. 

Crone, E.A., Richard Ridderinkhof, K., 2011. The developing brain: from theory to 

neuroimaging and back. Developmental Cognitive Neuroscience 1, 101-109. 

Danielmeier, C., Eichele, T., Forstmann, B.U., Tittgemeyer, M., Ullsperger, M., 2011. Posterior 

medial frontal cortex activity predicts post-error adaptations in task-related visual and motor 

areas. Journal of Neuroscience 31, 1780-1789. 

Danielmeier, C., Ullsperger, M., 2011. Post-error adjustments. Frontiers in Cognition 2, 233-233. 



 39 

David, N., Bewernick, B.H., Cohen, M.X., Newen, A., Lux, S., Fink, G.R., Shah, N.J., Vogeley, 

K., 2006. Neural representations of self versus other: visual-spatial perspective taking and 

agency in a virtual ball-tossing game. Journal of Cognitive Neuroscience 18, 898-910. 

Davis, M., Whalen, P.J., 2001. The amygdala: vigilance and emotion. Molecular psychiatry 6, 

13-34. 

de Bruijn, E.R.A., de Lange, F.P., von Cramon, D.Y., Ullsperger, M., 2009. When Errors Are 

Rewarding. The Journal of Neuroscience 29, 12183-12186. 

de Bruijn, E.R.A., Hulstijn, W., Verkes, R.J., Ruigt, G.S.F., Sabbe, B.G.C., 2004. Drug-induced 

stimulation and suppression of action monitoring in healthy volunteers. Psychopharmacology 

177, 151-160. 

de Bruijn, E.R.A., Mars, R.B., Bekkering, H., Coles, M.G.H., 2011. Your mistake is my 

mistake . . . or is it? Behavioural adjustments following own and observed actions in cooperative 

and competitive contexts. Quarterly Journal of Experimental Psychology, 1-9. 

de Bruijn, E.R.A., von Rhein, D.T., 2012. Is Your Error My Concern? An Event-Related 

Potential Study on Own and Observed Error Detection in Cooperation and Competition. 

Frontiers in Neuroscience 6, 8. 

De Pascalis, V., Varriale, V., D'Antuono, L., 2010. Event-related components of the punishment 

and reward sensitivity. Clinical Neurophysiology 121, 60-76. 

Debener, S., Ullsperger, M., Siegel, M., Fiehler, K., von Cramon, D.Y., Engel, A.K., 2005. Trial-

by-trial coupling of concurrent electroencephalogram and functional magnetic resonance 

imaging identifies the dynamics of performance monitoring. The Journal of Neuroscience 25, 

11730-11737. 

Decety, J., Skelly, L.R., Kiehl, K.A., 2013. Brain Response to Empathy-Eliciting Scenarios 

Involving Pain in Incarcerated Individuals With Psychopathy. JAMA Psychiatry, 1-8. 

Dehaene, S., Posner, M.I., Tucker, D.M., 1994. Localization of a Neural System for Error-

Detection and Compensation. Psychological Science 5, 303-305. 

Delgado, M.R., Nystrom, L.E., Fissell, C., Noll, D.C., Fiez, J.A., 2000. Tracking the 

hemodynamic responses to reward and punishment in the striatum. Journal of Neurophysiology 

84, 3072-3077. 

Denk, F., Walton, M.E., Jennings, K.A., Sharp, T., Rushworth, M.F.S., Bannerman, D.M., 2005. 

Differential involvement of serotonin and dopamine systems in cost-benefit decisions about 

delay or effort. Psychopharmacology 179, 587-596. 

Desmet, C., Fias, W., Hartstra, E., Brass, M., 2011. Errors and Conflict at the Task Level and the 

Response Level. The Journal of Neuroscience 31, 1366-1374. 

Devinsky, O., Morrell, M.J., Vogt, B.A., others, 1995. Contributions of anterior cingulate cortex 

to behaviour. BRAIN 118, 279-306. 

Dhar, M., Wiersema, J.R., Pourtois, G., 2011. Cascade of neural events leading from error 

commission to subsequent awareness revealed using EEG source imaging. PLoS ONE 6, 

e19578-e19578. 

Doñamayor, N., Heilbronner, U., Münte, T.F., 2011. Coupling electrophysiological and 

hemodynamic responses to errors. Human Brain Mapping. 

Dreisbach, G., Fischer, R., 2012. Conflicts as aversive signals. Brain and Cognition 78, 94-98. 

Drevets, W.C., Raichle, M.E., 1998. Reciprocal suppression of regional cerebral blood flow 

during emotional versus higher cognitive processes: Implications for interactions between 

emotion and cognition. Cognition and Emotion 12, 353-385. 



 40 

Endrass, T., Franke, C., Kathmann, N., 2005. Error Awareness in a Saccade Countermanding 

Task. Journal of Psychophysiology 19, 275-280. 

Endrass, T., Klawohn, J., Schuster, F., Kathmann, N., 2008. Overactive performance monitoring 

in obsessive-compulsive disorder: ERP evidence from correct and erroneous reactions. 

Neuropsychologia 46, 1877-1887. 

Endrass, T., Reuter, B., Kathmann, N., 2007. ERP correlates of conscious error recognition: 

aware and unaware errors in an antisaccade task. European Journal of Neuroscience 26, 1714-

1720. 

Endrass, T., Schuermann, B., Kaufmann, C., Spielberg, R., Kniesche, R., Kathmann, N., 2010. 

Performance monitoring and error significance in patients with obsessive-compulsive disorder. 

Biol Psychol 84, 257-263. 

Engen, H.G., Singer, T., 2013. Empathy circuits. Curr Opin Neurobiol 23, 275-282. 

Eppinger, B., Kray, J., Mock, B., Mecklinger, A., 2008. Better or worse than expected? Aging, 

learning, and the ERN. Neuropsychologia 46, 521-539. 

Etkin, A., 2010. Functional neuroanatomy of anxiety: a neural circuit perspective. Current 

Topics in Behavioral Neurosciences 2, 251-277. 

Etkin, A., Egner, T., Kalisch, R., 2011. Emotional processing in anterior cingulate and medial 

prefrontal cortex. Trends in Cognitive Sciences 15, 85-93. 

Etkin, A., Wager, T.D., 2007. Functional Neuroimaging of Anxiety: A Meta-Analysis of 

Emotional Processing in PTSD, Social Anxiety Disorder, and Specific Phobia. Am J Psychiatry 

164, 1476-1488. 

Fadiga, L., Craighero, L., Olivier, E., 2005. Human motor cortex excitability during the 

perception of others' action. Curr Opin Neurobiol 15, 213-218. 

Falkenstein, M., Hoormann, J., Christ, S., Hohnsbein, J., 2000. ERP components on reaction 

errors and their functional significance: a tutorial. Biological Psychology 51, 87-107. 

Farrer, C., Frey, S.H., Van Horn, J.D., Tunik, E., Turk, D., Inati, S., Grafton, S.T., 2008. The 

angular gyrus computes action awareness representations. Cerebral Cortex 18, 254-261. 

Farrer, C., Frith, C.D., 2002. Experiencing Oneself vs Another Person as Being the Cause of an 

Action: The Neural Correlates of the Experience of Agency. NeuroImage 15, 596-603. 

Fazio, R.H., Sanbonmatsu, D.M., Powell, M.C., Kardes, F.R., 1986. On the Automatic 

Activation of Attitudes. Journal of Personality and Social Psychology 50, 229-238. 

Fiorillo, C.D., Tobler, P.N., Schultz, W., 2003. Discrete Coding of Reward Probability and 

Uncertainty by Dopamine Neurons. Science 299, 1898-1902. 

Foti, D., Hajcak, G., 2009. Depression and reduced sensitivity to non-rewards versus rewards: 

Evidence from event-related potentials. Biological Psychology 81, 1-8. 

Frank, M.J., Woroch, B.S., Curran, T., 2005. Error-related negativity predicts reinforcement 

learning and conflict biases. Neuron 47, 495-501. 

Frith, C.D., Singer, T., B, P.T.R.S., 2008. The role of social cognition in decision making The 

role of social cognition in decision making. Society, 3875-3886. 

Fukushima, H., Hiraki, K., 2009. Whose loss is it? Human electrophysiological correlates of 

non-self reward processing. Social Neuroscience 4, 261-261. 

Gallagher, S., 2000. Philosophical conceptions of the self: implications for cognitive science. 

Trends in Cognitive Sciences 4, 14-21. 

Gallese, V., Keysers, C., Rizzolatti, G., 2004. A unifying view of the basis of social cognition. 

Trends in Cognitive Sciences 8, 396-403. 



 41 

Garavan, H., Ross, T.J., Kaufman, J., Stein, E.A., 2003. A midline dissociation between error-

processing and response-conflict monitoring RID B-7469-2008 RID C-7349-2008. NeuroImage 

20, 1132-1139. 

Gehring, W.J., Fencsik, D.E., 2001. Functions of the medial frontal cortex in the processing of 

conflict and errors. The Journal of neuroscience : the official journal of the Society for 

Neuroscience 21, 9430-9437. 

Gehring, W.J., Himle, J., Nisenson, L.G., 2000. Action-monitoring dysfunction in obsessive-

compulsive disorder. Psychological Science 11, 1-6. 

Gehring, W.J., Willoughby, A.R., 2002. The medial frontal cortex and the rapid processing of 

monetary gains and losses. Science 295, 2279-2282. 

Gentsch, A., Ullsperger, P., Ullsperger, M., 2009. Dissociable medial frontal negativities from a 

common monitoring system for self- and externally caused failure of goal achievement. 

NeuroImage 47, 2023-2030. 

Gentsch, K., Grandjean, D., Scherer, K.R., 2013. Temporal dynamics of event-related potentials 

related to goal conduciveness and power appraisals. Psychophysiology 50, 1010-1022. 

Georgieff, N., Jeannerod, M., 1998. Beyond consciousness of external reality: a "who" system 

for consciousness of action and self-consciousness. Consciousness and Cognition 7, 465-477. 

Gratton, G., Coles, M.G., Donchin, E., 1992. Optimizing the use of information: strategic control 

of activation of responses. Journal of Experimental Psychology: General 121, 480-480. 

Gray, J.R., Braver, T.S., Raichle, M.E., 2002. Integration of Emotion and Cognition in the 

Lateral Prefrontal Cortex. Proceedings of the National Academy of Sciences 99, 4115-4120. 

Gu, R., Huang, Y.-X., Luo, Y.-J., 2010. Anxiety and feedback negativity. Psychophysiology. 

Gu, X., Liu, X., Van Dam, N.T., Hof, P.R., Fan, J., 2012. Cognition-Emotion Integration in the 

Anterior Insular Cortex. Cerebral Cortex. 

Hajcak, G., Foti, D., 2008. Errors are aversive: defensive motivation and the error-related 

negativity. Psychological Science 19, 103-108. 

Hajcak, G., McDonald, N., Simons, R.F., 2003a. Anxiety and error-related brain activity. 

Biological Psychology 64, 77-90. 

Hajcak, G., McDonald, N., Simons, R.F., 2003b. To err is autonomic: Error-related brain 

potentials, ANS activity, and post-error compensatory behavior. Psychophysiology 40, 895-903. 

Hajcak, G., Simons, R.F., 2002. Error-related brain activity in obsessive-compulsive 

undergraduates. Psychiatry Research 110, 63-72. 

Heldmann, M., Rüsseler, J., Münte, T.F., 2008. Internal and external information in error 

processing. BMC Neuroscience 9, 33-33. 

Herrmann, M.J., Römmler, J., Ehlis, A.-C., Heidrich, A., Fallgatter, A.J., 2004. Source 

localization (LORETA) of the error-related-negativity (ERN/Ne) and positivity (Pe). Brain 

Research. Cognitive Brain Research 20, 294-299. 

Hirsh, J.B., Inzlicht, M., 2008. The Devil You Know Neuroticism Predicts Neural Response to 

Uncertainty. Psychological Science 19, 962-967. 

Holland, P.C., Gallagher, M., 2006. Different roles for amygdala central nucleus and substantia 

innominata in the surprise-induced enhancement of learning. The Journal of neuroscience: the 

official journal of the Society for Neuroscience 26, 3791-3797. 

Holroyd, C.B., Coles, M.G., 2002a. The neural basis of human error processing: reinforcement 

learning, dopamine, and the error-related negativity. Psychol Rev 109, 679-709. 

Holroyd, C.B., Coles, M.G.H., 2002b. The neural basis of human error processing: reinforcement 

learning, dopamine, and the error-related negativity. Psychological Review 109, 679-709. 



 42 

Holroyd, C.B., Yeung, N., 2012. Motivation of extended behaviors by anterior cingulate cortex. 

Trends in cognitive sciences 16, 122-128. 

Itagaki, S., 2008. Self-relevant criteria determine the evaluation of outcomes induced by others. 

General Systems 19, 383-387. 

Johannes, S., Wieringa, B.M., Nager, W., Rada, D., Dengler, R., Emrich, H.M., Munte, T.F., 

Dietrich, D.E., 2001. Discrepant target detection and action monitoring in obsessive-compulsive 

disorder. Psychiat Res-Neuroim 108, 101-110. 

Kang, S.K., Hirsh, J.B., 2010. Your mistakes are mine: Self-other overlap predicts neural 

response to observed errors. Journal of Experimental Social. 

Kashtelyan, V., Tobia, S.C., Burton, A.C., Bryden, D.W., Roesch, M.R., 2012. Basolateral 

amygdala encodes upcoming errors but not response conflict. The European journal of 

neuroscience 35, 952-959. 

Kelley, W.M., Macrae, C.N., Wyland, C.L., Caglar, S., Inati, S., Heatherton, T.F., 2002. Finding 

the self? An event-related fMRI study. Journal of Cognitive Neuroscience 14, 785-794. 

Kerns, J.G., Cohen, J.D., MacDonald, A.W., 3rd, Cho, R.Y., Stenger, V.A., Carter, C.S., 2004. 

Anterior cingulate conflict monitoring and adjustments in control. Science 303, 1023-1026. 

Keysers, C., Gazzola, V., 2006. Towards a unifying neural theory of social cognition. Progress in 

Brain Research 156, 379-401. 

Kiehl, K.A., Liddle, P.F., Hopfinger, J.B., 2000. Error processing and the rostral anterior 

cingulate: An event-related fMRI study. Psychophysiology 37, 216-223. 

Kim, M.J., Gee, D.G., Loucks, R.A., Davis, F.C., Whalen, P.J., 2011. Anxiety dissociates dorsal 

and ventral medial prefrontal cortex functional connectivity with the amygdala at rest. Cerebral 

cortex 21, 1667-1673. 

King, J.A., Korb, F.M., von Cramon, D.Y., Ullsperger, M., 2010. Post-error behavioral 

adjustments are facilitated by activation and suppression of task-relevant and task-irrelevant 

information processing. The Journal of Neuroscience: The Official Journal of the Society for 

Neuroscience 30, 12759-12769. 

Klein, T.A., Endrass, T., Kathmann, N., Neumann, J., von Cramon, D.Y., Ullsperger, M., 2007. 

Neural correlates of error awareness. NeuroImage 34, 1774-1781. 

Koban, L., Brass, M., Lynn, M.T., Pourtois, G., 2012a. Placebo Analgesia Affects Brain 

Correlates of Error Processing. PLoS ONE 7, e49784-e49784. 

Koban, L., Corradi-Dell Acqua, C., Vuilleumier, P., 2013a. Integration of Error Agency and 

Representation of Others' Pain in the Anterior Insula. Journal of Cognitive Neuroscience 25, 

258-272. 

Koban, L., Pichon, S., Vuilleumier, P., 2013b. Responses of medial and ventrolateral prefrontal 

cortex to interpersonal conflict for resources. Social Cognitive and Affective Neuroscience. 

Koban, L., Pourtois, G., Bediou, B., Vuilleumier, P., 2012b. Effects of social context and 

predictive relevance on action outcome monitoring. Cognitive, Affective & Behavioral 

Neuroscience 12, 460-478. 

Koban, L., Pourtois, G., Vocat, R., Vuilleumier, P., 2010. When your errors make me lose or 

win: event-related potentials to observed errors of cooperators and competitors. Social 

Neuroscience 5, 360-374. 

Kober, H., Barrett, L.F., Joseph, J., Bliss-Moreau, E., Lindquist, K., Wager, T.D., 2008. 

Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of 

neuroimaging studies. NeuroImage 42, 998-1031. 



 43 

Koenigs, M., 2012. The role of prefrontal cortex in psychopathy. Reviews in the neurosciences 

23, 253-262. 

Kool, W., McGuire, J.T., Rosen, Z.B., Botvinick, M.M., 2010. Decision making and the 

avoidance of cognitive demand. Journal of Experimental Psychology: General 139, 665-665. 

Krueger, R.F., McGue, M., Iacono, W.G., 2001. The higher-order structure of common DSM 

mental disorders: internalization, externalization, and their connections to personality. 

Personality and Individual Differences 30, 1245-1259. 

LaBar, K.S., Gatenby, J.C., Gore, J.C., LeDoux, J.E., Phelps, E.A., 1998. Human amygdala 

activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 

20, 937-945. 

Lamm, C., Decety, J., Singer, T., 2011. Meta-analytic evidence for common and distinct neural 

networks associated with directly experienced pain and empathy for pain. NeuroImage 54, 2492–

2502. 

Leng, Y., Zhou, X., 2010. Modulation of the brain activity in outcome evaluation by 

interpersonal relationship: an ERP study. Neuropsychologia 48, 448-455. 

Lindquist, K.a., Wager, T.D., Kober, H., Bliss-Moreau, E., Barrett, L.F., 2012. The brain basis of 

emotion: a meta-analytic review. The Behavioral and brain sciences 35, 121-143. 

Luu, P., Collins, P., Tucker, D.M., 2000. Mood, personality, and self-monitoring: Negative affect 

and emotionality in relation to frontal lobe mechanisms of error monitoring. J Exp Psychol Gen 

129, 43-60. 

MacDonald, A.W., Cohen, J.D., Stenger, V.A., Carter, C.S., 2000. Dissociating the role of the 

dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288, 1835-

1838. 

Marco-Pallares, J., Kramer, U., Strehl, S., Schroder, A., Munte, T., 2010. When decisions of 

others matter to me: an electrophysiological analysis. BMC Neuroscience 11, 86-86. 

McGuire, J.T., Botvinick, M.M., 2010. Prefrontal cortex, cognitive control, and the registration 

of decision costs. Proceedings of the National Academy of Sciences 107. 

Menon, V., Adleman, N.E., White, C.D., Glover, G.H., Reiss, A.L., 2001. Error-related brain 

activation during a Go/NoGo response inhibition task. Human Brain Mapping 12, 131-143. 

Miele, D.B., Wager, T.D., Mitchell, J.P., Metcalfe, J., 2011. Dissociating Neural Correlates of 

Action Monitoring and Metacognition of Agency. Journal of Cognitive Neuroscience. 

Mies, G.W., van der Veen, F.M., Tulen, J.H.M., Birkenhäger, T.K., Hengeveld, M.W., van der 

Molen, M.W., 2011. Drug-free patients with major depression show an increased 

electrophysiological response to valid and invalid feedback. Psychological medicine 41, 2515-

2525. 

Miltner, W.H.R., Brauer, J., Hecht, H., Trippe, R., Coles, M.G.H., 2004. Parallel brain activity 

for self-generated and observed errors., in: Ullsperger, M., Falkenstein, M. (Eds.), Errors, 

conflicts, and the Brain. Current Opinions on Performance Monitoring. MPI of Cognitive 

Neuroscience, Leipzig, pp. 124-129. 

Miltner, W.H.R., Braun, C.H., Coles, M.G.H., 1997. Event-Related Brain Potentials Following 

Incorrect Feedback in a Time-Estimation Task: Evidence for a “Generic” Neural System for 

Error Detection. Journal of Cognitive Neuroscience 9, 788-798. 

Mitchell, J.P., Banaji, M.R., Macrae, C.N., 2005. The link between social cognition and self-

referential thought in the medial prefrontal cortex. Journal of Cognitive Neuroscience 17, 1306-

1315. 



 44 

Mobbs, D., Yu, R., Meyer, M., Passamonti, L., Seymour, B., Calder, A.J., Schweizer, S., Frith, 

C.D., Dalgleish, T., 2009. A Key Role for Similarity in Vicarious Reward. Science 324, 900-900. 

Modha, D.S., Singh, R., 2010. Network architecture of the long-distance pathways in the 

macaque brain. Proc Natl Acad Sci U S A 107, 13485-13490. 

Moser, J.S., Moran, T.P., Schroder, H.S., Donnellan, M.B., Yeung, N., 2013. On the relationship 

between anxiety and error monitoring: a meta-analysis and conceptual framework. Frontiers in 

human neuroscience 7. 

Nee, D.E., Kastner, S., Brown, J.W., 2011. Functional heterogeneity of conflict, error, task-

switching, and unexpectedness effects within medial prefrontal cortex. Neuroimage 54, 528-540. 

Nee, D.E., Wager, T.D., Jonides, J., 2007. Interference resolution: insights from a meta-analysis 

of neuroimaging tasks. Cognitive, Affective & Behavioral Neuroscience 7, 1-17. 

Newman-Norlund, R.D., Ganesh, S., van Schie, H.T., De Bruijn, E.R.A., Bekkering, H., 2009. 

Self-identification and empathy modulate error-related brain activity during the observation of 

penalty shots between friend and foe. Social Cognitive and Affective Neuroscience 4, 10-22. 

Nichols, T., Brett, M., Andersson, J., Wager, T., Poline, J.-B., 2005. Valid conjunction inference 

with the minimum statistic. NeuroImage 25, 653-660. 

Nieuwenhuis, S., Ridderinkhof, K.R., Blom, J., Band, G.P., Kok, A., 2001. Error-related brain 

potentials are differentially related to awareness of response errors: evidence from an antisaccade 

task. Psychophysiology 38, 752-760. 

Notebaert, W., Houtman, F., Opstal, F.V., Gevers, W., Fias, W., Verguts, T., 2009. Post-error 

slowing: an orienting account. Cognition 111, 275-279. 

Núñez Castellar, E., Notebaert, W., Van den Bossche, L., Fias, W., 2011. How monitoring 

other's actions influences one's own performance. Experimental Psychology 58, 499-508. 

O'Connell, R.G., Dockree, P.M., Bellgrove, M.A., Kelly, S.P., Hester, R., Garavan, H., 

Robertson, I.H., Foxe, J.J., 2007. The role of cingulate cortex in the detection of errors with and 

without awareness: a high-density electrical mapping study. The European Journal of 

Neuroscience 25, 2571-2579. 

Olvet, D.M., Hajcak, G., 2008. The error-related negativity (ERN) and psychopathology: toward 

an endophenotype. Clinical psychology review 28, 1343-1354. 

Overbeek, T.J.M., Nieuwenhuis, S., Ridderinkhof, K.R., 2005a. Dissociable Components of 

Error Processing. Journal of Psychophysiology 19, 319-329. 

Overbeek, T.J.M., Nieuwenhuis, S., Ridderinkhof, K.R., 2005b. Dissociable Components of 

Error Processing On the Functional Significance of the Pe.  19, 319-329. 

Overwalle, F.V., 2009. Social cognition and the brain: A meta-analysis. Human Brain Mapping 

30, 829-858. 

Papez, J.W., 1937. A proposed mechanism of emotion. Archives of neurology and psychiatry 38, 

725-725. 

Pessoa, L., 2008. On the relationship between emotion and cognition. Nature Reviews 

Neuroscience 9, 148-158. 

Phelps, E.A., 2006. Emotion and cognition: insights from studies of the human amygdala. Annu. 

Rev. Psychol. 57, 27-53. 

Polli, F.E., Barton, J.J., Thakkar, K.N., Greve, D.N., Goff, D.C., Rauch, S.L., Manoach, D.S., 

2008. Reduced error-related activation in two anterior cingulate circuits is related to impaired 

performance in schizophrenia. Brain 131, 971-986. 



 45 

Polli, F.E., Wright, C.I., Milad, M.R., Dickerson, B.C., Vangel, M., Barton, J.J., Rauch, S.L., 

Manoach, D.S., 2009. Hemispheric differences in amygdala contributions to response 

monitoring. Neuroreport 20, 398-402. 

Pourtois, G., Vocat, R., N'Diaye, K., Spinelli, L., Seeck, M., Vuilleumier, P., 2010. Errors recruit 

both cognitive and emotional monitoring systems: simultaneous intracranial recordings in the 

dorsal anterior cingulate gyrus and amygdala combined with fMRI. Neuropsychologia 48, 1144-

1159. 

Proudfit, G.H., Inzlicht, M., Mennin, D.S., 2013. Anxiety and error monitoring: the importance 

of motivation and emotion. Frontiers in human neuroscience 7. 

Qiu, J., Yu, C., Li, H., Jou, J., Tu, S., Wang, T., Wei, D., Zhang, Q., 2010. The impact of social 

comparison on the neural substrates of reward processing: an event-related potential study. 

NeuroImage 49, 956-962. 

Rabbitt, P.M., 1966. Errors and error correction in choice-response tasks. Journal of 

Experimental Psychology 71, 264-272. 

Radke, S., de Lange, F.P., Ullsperger, M., de Bruijn, E.R.A., 2011. Mistakes that affect others: 

An fMRI study on processing of own errors in a social context. Experimental Brain Research 

211, 405-413. 

Rak, N., Bellebaum, C., Thoma, P., 2013. Empathy and feedback processing in active and 

observational learning. Cognitive, Affective, & Behavioral Neuroscience, 1-16. 

Ridderinkhof, K.R., 2004. The Role of the Medial Frontal Cortex in Cognitive Control. Thought 

A Review Of Culture And Idea 306, 443-447. 

Ridderinkhof, K.R., Ramautar, J.R., Wijnen, J.G., 2009. To PE or not to PE: A P3-like ERP 

component reflecting the processing of response errors. Psychophysiology 46, 531-538. 

Ridderinkhof, K.R., Ullsperger, M., Crone, E.A., Nieuwenhuis, S., 2004. The role of the medial 

frontal cortex in cognitive control. Science 306, 443-447. 

Ruby, P., Decety, J., 2001. Effect of subjective perspective taking during simulation of action: a 

PET investigation of agency. Nature Neuroscience 4, 546-550. 

Rushworth, M.F.S., Behrens, T.E.J., Rudebeck, P.H., Walton, M.E., 2007. Contrasting roles for 

cingulate and orbitofrontal cortex in decisions and social behaviour. Trends in Cognitive 

Sciences 11, 168-176. 

Sagaspe, P., Schwartz, S., Vuilleumier, P., 2011. Fear and stop: a role for the amygdala in motor 

inhibition by emotional signals. Neuroimage 55, 1825-1835. 

Sallet, J., Rushworth, M.F.S., 2009. Should I stay or should I go: genetic bases for uncertainty-

driven exploration. Nature neuroscience 12, 963-965. 

Sander, D., Grafman, J., Zalla, T., 2003. The human amygdala: an evolved system for relevance 

detection. Reviews in the Neurosciences 14, 303-316. 

Sato, A., Yasuda, A., 2005. Illusion of sense of self-agency: discrepancy between the predicted 

and actual sensory consequences of actions modulates the sense of self-agency, but not the sense 

of self-ownership. Cognition 94, 241-255. 

Saxe, R., Wexler, A., 2005. Making sense of another mind: the role of the right temporo-parietal 

junction. Neuropsychologia 43, 1391-1399. 

Scherer, K.R., 1984. On the nature and the function of emotions: A component process approach, 

in: Scherer, K.R., Ekman, P. (Eds.), Approaches to emotion. Erlbaum, Hillsdale, NJ, pp. 293-

317. 



 46 

Scherer, K.R., 1988. Criteria for emotion-antecedent appraisals: A review., in: Hamilton, G.H., 

Bower, G.H., Frijda, N.H. (Eds.), Cognitive perspectives on emotion and motivation. Kluwer, 

Dordrecht, pp. 89-126. 

Schouppe, N., Braem, S., De Houwer, J., Silvetti, M., Verguts, T., Notebaert, W., in revision. No 

pain, no gain: the bivalent affective nature of cognitive conflic. Cognition. 

Schuch, S., Tipper, S.P., 2007. On observing another person's actions: influences of observed 

inhibition and errors. Perception & Psychophysics 69, 828-837. 

Sebanz, N., Bekkering, H., Knoblich, G., 2006a. Joint action: bodies and minds moving together. 

Trends in Cognitive Sciences 10, 70-76. 

Sebanz, N., Knoblich, G., Prinz, W., Wascher, E., 2006b. Twin peaks: an ERP study of action 

planning and control in co-acting individuals. Journal of Cognitive Neuroscience 18, 859-870. 

Seeley, W.W., Menon, V., Schatzberg, A.F., Keller, J., Glover, G.H., Kenna, H., Reiss, A.L., 

Greicius, M.D., 2007. Dissociable Intrinsic Connectivity Networks for Salience Processing and 

Executive Control. The Journal of Neuroscience 27, 2349-2356. 

Seth, A.K., Suzuki, K., Critchley, H.D., 2011. An interoceptive predictive coding model of 

conscious presence. Front Psychol 2, 395. 

Shackman, A.J., Salomons, T.V., Slagter, H.A., Fox, A.S., Winter, J.J., Davidson, R.J., 2011. 

The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature 

Reviews Neuroscience 12, 154-167. 

Shane, M.S., Stevens, M., Harenski, C.L., Kiehl, K.A., 2008. Neural correlates of the processing 

of another's mistakes: a possible underpinning for social and observational learning. NeuroImage 

42, 450-459. 

Shenhav, A., Botvinick, Matthew M., Cohen, Jonathan D., 2013. The Expected Value of 

Control: An Integrative Theory of Anterior Cingulate Cortex Function. Neuron 79, 217-240. 

Sheth, S.a., Mian, M.K., Patel, S.R., Asaad, W.F., Williams, Z.M., Dougherty, D.D., Bush, G., 

Eskandar, E.N., 2012. Human dorsal anterior cingulate cortex neurons mediate ongoing 

behavioural adaptation. Nature, 2-6. 

Simmonds, D.J., Pekar, J.J., Mostofsky, S.H., 2008. Meta-analysis of Go/No-go tasks 

demonstrating that fMRI activation associated with response inhibition is task-dependent. 

Neuropsychologia 46, 224-232. 

Simons, R.F., 2010. The way of our errors: Theme and variations. Psychophysiology 47, 1-14. 

Singer, T., Critchley, H.D., Preuschoff, K., 2009. A common role of insula in feelings, empathy 

and uncertainty. Trends in Cognitive Sciences 13, 334-340. 

Spunt, R.P., Lieberman, M.D., Cohen, J.R., Eisenberger, N.I., 2012. The phenomenology of 

error processing: the dorsal ACC response to stop-signal errors tracks reports of negative affect. 

Journal of Cognitive Neuroscience 24, 1753-1765. 

Sridharan, D., Levitin, D.J., Menon, V., 2008. A critical role for the right fronto-insular cortex in 

switching between central-executive and default-mode networks. Proceedings of the National 

Academy of Sciences of the United States of America 105, 12569-12574. 

Steinhauser, M., Yeung, N., 2010. Decision Processes in Human Performance Monitoring. The 

Journal of Neuroscience 30, 15643-15653. 

Stern, E.R., Liu, Y.N., Gehring, W.J., Lister, J.J., Yin, G., Zhang, J., Fitzgerald, K.D., Himle, 

J.A., Abelson, J.L., Taylor, S.F., 2010. Chronic medication does not affect hyperactive error 

responses in obsessive-compulsive disorder. Psychophysiology 47, 913-920. 



 47 

Sylvester, C.M., Corbetta, M., Raichle, M.E., Rodebaugh, T.L., Schlaggar, B.L., Sheline, Y.I., 

Zorumski, C.F., Lenz, E.J., 2012. Functional network dysfunction in anxiety and anxiety 

disorders. Trends in Neurosciences 35, 527-535. 

Takahashi, H., Kato, M., Matsuura, M., Mobbs, D., Suhara, T., Okubo, Y., 2009. When your 

gain is my pain and your pain is my gain: neural correlates of envy and schadenfreude. Science 

323, 937-939. 

Taylor, S.F., Stern, E.R., Gehring, W.J., 2007. Neural systems for error monitoring: recent 

findings and theoretical perspectives. The Neuroscientist 13, 160-172. 

Thoma, P., Bellebaum, C., 2012. Your Error's Got me Feeling - How Empathy Relates to the 

Electrophysiological Correlates of Performance Monitoring. Frontiers in Human Neuroscience 6, 

135-135. 

Thut, G., Schultz, W., Roelcke, U., Nienhusmeier, M., Missimer, J., Maguire, R.P., Leenders, 

K.L., 1997. Activation of the human brain by monetary reward. Neuroreport 8, 1225-1228. 

Tow, P.M., Whitty, C.W.M., 1953. Personality changes after operations on the cingulate gyrus in 

man. Journal of Neurology, Neurosurgery & Psychiatry 16, 186-193. 

Ullsperger, M., Harsay, H.A., Wessel, J.R., Ridderinkhof, K.R., 2010. Conscious perception of 

errors and its relation to the anterior insula. Brain Structure & Function 214, 629-643. 

Ullsperger, M., von Cramon, D.Y., 2001. Subprocesses of performance monitoring: a 

dissociation of error processing and response competition revealed by event-related fMRI and 

ERPs. NeuroImage 14, 1387-1401. 

Vaidyanathan, U., Nelson, L.D., Patrick, C.J., 2012. Clarifying domains of internalizing 

psychopathology using neurophysiology. Psychol Med 42, 447-459. 

Van Meel, C.S., Van Heijningen, C.A.A., 2010. The effect of interpersonal competition on 

monitoring internal and external error feedback. Psychophysiology 47, 213-222. 

van Schie, H.T., Mars, R.B., Coles, M.G.H., Bekkering, H., 2004. Modulation of activity in 

medial frontal and motor cortices during error observation. Nature Neuroscience 7, 549-554. 

Van Veen, V., Carter, C.S., 2002. The timing of action-monitoring processes in the anterior 

cingulate cortex. Journal of Cognitive Neuroscience 14, 593-602. 

Vesper, C., Butterfill, S., Knoblich, G., Sebanz, N., 2010. A minimal architecture for joint action. 

Neural Networks 23, 998-1003. 

Vocat, R., Pourtois, G., Vuilleumier, P., 2008. Unavoidable errors: a spatio-temporal analysis of 

time-course and neural sources of evoked potentials associated with error processing in a 

speeded task. Neuropsychologia 46, 2545-2555. 

Vuilleumier, P., 2005. How brains beware: neural mechanisms of emotional attention. Trends in 

Cognitive Sciences 9, 585-594. 

Wagner, D.D., Haxby, J.V., Heatherton, T.F., 2012a. The Representation of Self and Person 

Knowledge in the Medial Prefrontal Cortex. Wiley Interdiscip Rev Cogn Sci 3, 451-470. 

Wagner, U., Handke, L., Dörfel, D., Walter, H., 2012b. An Experimental Decision-Making 

Paradigm to Distinguish Guilt and Regret and Their Self-Regulating Function via Loss Averse 

Choice Behavior. Frontiers in psychology 3, 431-431. 

Wagner, U., N'Diaye, K., Ethofer, T., Vuilleumier, P., 2011. Guilt-specific processing in the 

prefrontal cortex. Cerebral Cortex 21, 2461-2470. 

Walsh, M.M., Anderson, J.R., 2012. Learning from experience: Event-related potential correlates 

of reward processing, neural adaptation, and behavioral choice. Neuroscience & Biobehavioral 

Reviews 36, 1870-1884. 



 48 

Weinberg, A., Olvet, D.M., Hajcak, G., 2010. Increased error-related brain activity in 

generalized anxiety disorder. Biological Psychology 85, 472-480. 

Weissman, D.H., Roberts, K.C., Visscher, K.M., Woldorff, M.G., 2006. The neural bases of 

momentary lapses in attention. Nature Neuroscience 9, 971-978. 

Wessel, J.R., 2012. Error awareness and the error-related negativity: evaluating the first decade 

of evidence. Front Hum Neurosci 6, 88. 

Wessel, J.R., Danielmeier, C., Morton, J.B., Ullsperger, M., 2012. Surprise and error: common 

neuronal architecture for the processing of errors and novelty. The Journal of Neuroscience 32, 

7528-7537. 

Wessel, J.R., Danielmeier, C., Ullsperger, M., 2011. Error awareness revisited: accumulation of 

multimodal evidence from central and autonomic nervous systems. Journal of Cognitive 

Neuroscience 23, 3021-3036. 

Whalen, P.J., Shin, L.M., McInerney, S.C., Fischer, H., Wright, C.I., Rauch, S.L., 2001. A 

functional MRI study of human amygdala responses to facial expressions of fear versus anger. 

Emotion (Washington, D.C.) 1, 70-83. 

Yarkoni, T., Poldrack, R.A., Nichols, T.E., Van Essen, D.C., Wager, T.D., 2011a. Large-scale 

automated synthesis of human functional neuroimaging data. Nature Methods 8, 665-670. 

Yarkoni, T., Poldrack, R.A., Van Essen, D.C., Wager, T.D., 2011b. Cognitive neuroscience 2.0: 

building a cumulative science of human brain function. Trends in Cognitive Sciences 14, 489-

496. 

Yeung, N., Botvinick, M.M., Cohen, J.D., 2004. The neural basis of error detection: conflict 

monitoring and the error-related negativity. Psychological Review 111, 931-959. 

Yoshida, K., Saito, N., Iriki, A., Isoda, M., 2012. Social error monitoring in macaque frontal 

cortex. Nature neuroscience. 

Yu, H., Hu, J., Hu, L., Zhou, X., 2013. The voice of conscience: Neural bases of interpersonal 

guilt and compensation. Social cognitive and affective neuroscience. 

Yu, R., Zhou, X., 2006. Brain responses to outcomes of one's own and other's performance in a 

gambling task. Neuroreport 17, 1747-1751. 

 

 

 

  



 49 

Figure captions 

Figure 1 – Event-related components generated at different stages of action 

monitoring for self-generated and observed actions. Conflict (e.g. interference with irrelevant 

stimulus dimensions or incongruent stimulus-response mapping) leads to the conflict-N2 peaking 

~300 ms following stimulus presentation. At the response level, errors are accompanied by a 

rapid negative deflection over fronto-central electrodes, the error-related negativity (ERN), that 

is paralleled by a much smaller correct-related negativity (CRN) for correct responses. Following 

the ERN, a large fronto-central positivity (the error positivity, Pe) can be measured around 100-

300ms following response onset. The ERN is generally thought to reflect a generic error or 

conflict detection mechanism, with sources typically located in the dACC (Debener et al., 2005; 

Dehaene et al., 1994; Doñamayor et al., 2011; Herrmann et al., 2004; Van Veen and Carter, 

2002). The functional characteristics of the Pe are still debated, but this positive deflection may 

relate to error awareness (Dhar et al., 2011; Endrass et al., 2005; Endrass et al., 2007; Klein et 

al., 2007; Nieuwenhuis et al., 2001; O'Connell et al., 2007; Steinhauser and Yeung, 2010; 

Ullsperger et al., 2010; Wessel et al., 2011), motivational aspects such as error salience 

(Ridderinkhof et al., 2009), and post-error adjustments in behavioral control (Falkenstein et al., 

2000; Nieuwenhuis et al., 2001; Overbeek et al., 2005a; Ridderinkhof et al., 2009; Vocat et al., 

2008). The Pe appears to be generated in either more rostral or rather posterior cingulate cortex 

regions (Herrmann et al., 2004; Van Veen and Carter, 2002; Vocat et al., 2008), alongside 

additional sources in insula and orbitofrontal cortex (Dhar et al., 2011). Similar response-locked 

components are evoked when observing another person’s errors (observer ERN and observer 

Pe), albeit with longer latencies (Carp et al., 2009; Koban et al., 2010; Miltner et al., 2004; van 

Schie et al., 2004). When external visual feedback is necessary to evaluate the outcome of an 
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action, the feedback-related negativity (FRN) can be measured around 250 ms following 

feedback presentation, The FRN has similar generators as the ERN in dACC/dMFC or, 

alternatively, in more anterior medial prefrontal cortex (Gehring and Willoughby, 2002; Gentsch 

et al., 2009; Miltner et al., 1997). The FRN is sometimes followed by a positive deflection, the 

feedback P300. Observing another person’s feedback leads to an observer FRN component 

(oFRN) that strongly resembles the FRN in latency and topography (Koban et al., 2012b; Yu and 

Zhou, 2006). 

 

Figure 2 – Neurosynth term-based meta-analytic activation maps. A) Significant 

activation for the terms ‘Error’ (red) and ‘Emotion’ (blue) with a significance threshold of p < 

0.05 (FDR corrected for multiple comparisons). Their conjunction (yellow) reveals common 

activation in anterior insula (AI), dorsal mediofrontal cortex (dMFC) and lateral prefrontal areas 

(LPFC), as well as basal ganglia. B) Significant activation (p < 0.05 FDR corrected) for ‘Error’ 

(red) and ‘Social’ (green), and their conjunction in AI, dMFC, and LPFC (yellow). Accordingly, 

these brain regions appear to be important for a dynamic integration of action monitoring 

processes with affective and social factors. 

 

Figure 3 – A framework for social and affective influences on action monitoring. 

Both dMFC/dACC and AI contribute to the monitoring of actions and to triggering adjustments 

in cognitive control that is implemented by lateral prefrontal areas and more generally the fronto-

parietal attention network. Yet, they have slightly different and complementary roles. 

DMFC/dACC might be responsible for the fast (e.g. pre-conscious) detection of errors, conflicts, 

and reward prediction errors (resulting in the ERN component), thereby monitoring actions along 
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a valence dimension using simple heuristics. This information could be used to thereby trigger 

automatic adjustments in cognitive control (Botvinick et al., 2001; Ridderinkhof, 2004; Shenhav 

et al., 2013). Functional connectivity with the amygdala and other limbic structures during error 

monitoring (Pourtois et al., 2010) may mediate autonomic responses to errors, and be associated 

with negative affective-motivational states that are automatically elicited by aversive action 

outcomes (Aarts et al., 2012). On the other hand, AI could be crucial for conscious aspects of 

error monitoring (Ullsperger et al., 2010), for integrating action outcomes with self-agency 

(Brass and Haggard, 2010; Farrer and Frith, 2002), and social context information (Koban et al., 

2013a), which may lead to the experience of more complex and situation-specific emotional 

feeling states (Brass and Haggard, 2010; Craig, 2009; Critchley et al., 2004; Koban et al., 

2013a). These situation-specific feeling states (e.g. the experience of guilt when errors have 

negative consequences for others, regret when having chosen the wrong option, or anger when 

another person makes an important mistake) may underlie a more deliberate and flexible mode of 

behavioral adjustments and cognitive control. 
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