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Objective: Although left dorsolateral prefrontal cortical (DLPFC) repetitive Transcranial Magnetic 

Stimulation (rTMS) is used to treat major depression, its underlying neurophysiological working 

mechanism remains to be determined. Prior research suggested that the clinical effects could be 

mediated by affecting the hypothalamic-pituitary-adrenal (HPA) system, but experimental studies in 

healthy individuals did not yield clear results. However, in healthy individuals, the influence of HF-

rTMS on the HPA-system may only be detected when it is challenged. 

Methods: In 30 rTMS naïve healthy females we evaluated the effect of one sham-controlled high 

frequency (HF)-rTMS session applied to the left DLPFC on the stress hormone cortisol by collecting 

salivary cortisol samples. In order to increase stress levels, five minutes after stimulation, all 

participants performed the Critical Feedback Task (CFT), during which they were criticized on their 

performance. To take possible mood influences into account, all participants were also assessed with 

Visual Analogue Scales (VAS).  

Results: The experimental procedure did not affect mood differently in the real or sham stimulation. 

Area under the curve (AUCi) analysis showed that one real HF-rTMS session significantly influenced 

HPA-system sensitivity, as demonstrated by a decrease in cortisol concentrations. The sham 

procedure yielded no effects.  

Conclusions: In line with former observations in major depression, one real left DLPFC HF-rTMS 

session significantly influenced HPA-system sensitivity in experimentally stressed females, resulting in 

decreases in cortisol levels. 
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1.1.1.1. IntroductionIntroductionIntroductionIntroduction    

 Repetitive transcranial magnetic stimulation (rTMS) is a neuromodulation technique used in 

experimental neurophysiological research as well as in clinical paradigms to treat mental disorders, 

such as major depressive disorder (MDD) (Padberg and George, 2009). rTMS can either activate or 

suppress motor, sensory, or cognitive functions, depending on the brain location and parameters of 

its delivery (George and Belmaker, 2007): low-frequency (LF)-rTMS (≤1Hz) is considered to ‘inhibit’ 

cortical regional activity, while high-frequency (HF)-rTMS (>1Hz) ‘activates’ cortical areas (Chen et 

al., 1997; Maeda et al., 2000). Although LF-rTMS of the right and HF-rTMS of the left dorsolateral 

prefrontal cortex (DLPFC) seem to both have beneficial effect in MDD patients, the strongest 

evidence on clinical efficacy have been reported when stimulating the left DLPFC with HF-rTMS 

(Schutter, 2009). However, how this application alters mood and improves symptoms remains poorly 

understood. Animal models suggest that an important aspect of the physiology of rTMS could be 

related to the endocrinological response of the hypothalamic-pituitary-adrenal (HPA) system, such as 

cortisol secretion (Post and Keck, 2001; Hedges et al., 2003).  

The stress/mood system is mediated by neurocircuitries connecting the prefrontal cortex 

(PFC) and amygdala / hippocampus, and normal homeostasis is established by a negative feedback 

system (see figure 4 A). Here, it has been assumed that rTMS treatment results in increased 

neuronal activity in the (dorsolateral) prefrontal cortex, which through cortico-subcortical trans-

synaptic connections suppresses (paraventricular) hypothalamic activity, resulting in corticotropin-

releasing hormone (CRH) decreases and ultimately in decreased salivary cortisol concentrations 

(Keck, 2003). However, these prefrontal cortico-subcortical connections are likely to affect the 

hypothalamus through multi-synaptic indirect pathways (Rempel-Clower and Barbas, 1998; Barbas 

et al., 2003). Furthermore, the synaptic connections between the DLPFC and the amygdala, as 

depicted in Figures 4A, 4B and 5, are not assumed to represent strong direct neuronal connections 

able to regulate amygdala activity (for a recent overview see Ray and Zald, 2012). Given that the 

amygdalae have strong connections with the ventromedial prefrontal cortex, including the 

orbitofrontal cortex (OFC) and the subgenual parts of the anterior cingulate cortex (sgACC) (Ray and 
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Zald, 2012) and the amygdala’s extensive connections with the hippocampus and the hypothalamus, 

(Jankord and Herman, 2008; Dedovic et al., 2009), the amygdalae are more functionally connected 

with the ventromedial parts of the forebrain than with the more dorsal parts of the prefrontal cortex. 

Nevertheless, HF-rTMS applied to the DLPFC may influence amygdala’s functioning. For instance, in 

a similar but different sample of healthy females, we observed decreased neuronal amygdala activity 

while processing withdrawal-related visual stimuli after real HF-rTMS over the DLPFC, and not after 

sham (Baeken et al., 2010a). 

 Some studies in MDD indicated that this application is able to reduce cortisol levels, but in 

non-psychiatric samples these neuroendocrinological effects are far from clear (Baeken et al., 2009a, 

2011a). Because the effects on the HPA-system observed in MDD could be unrelated to the 

underlying working mechanisms of rTMS and could be a secondary effect of treatment, it is important 

to gain more insight in these biological processes in non-depressed individuals. Although the 

relationship between negative affect and cortisol activity has been well documented (Buchanan et al., 

1999), few experimental studies have examined the endocrinological effects of rTMS on the HPA-

system in healthy volunteers. Using left-sided high frequency HF-rTMS, George et al (1996) found a 

slight increase of serum cortisol levels post left-sided prefrontal stimulation, whereas Evers et al 

(2001) observed a decrease of serum cortisol concentrations. However, in both studies carry-over 

effects could not be excluded. We reported negative results on salivary cortisol changes after one 

sham-controlled session of left and right-sided HF-rTMS in healthy female subjects (Baeken et al., 

2009a), suggesting that simply applying one HF-rTMS session does not influence the HPA-system in 

non-clinical samples displaying normal functioning feedback systems. However, given the low baseline 

cortisol levels in healthy individuals, it might be difficult to find further decreases. Therefore, to 

effectively measure the impact of rTMS on the HPA-system in relation to such top-down controlling 

mechanisms, it might be a more optimal research design to perform neurostimulation when the 

participants are experimentally being stressed. To our knowledge no such studies have been 

performed previously.   
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Consequently, in the current study we wanted to evaluate whether one sham-controlled HF-

rTMS session applied to the left DLPFC could influence the HPA-system when healthy female 

volunteers were experimentally stressed with the Critical Feedback Task (CFT). This is an oddball 

mental counting task where participants receive bogus negative feedback on their performance at the 

completion of each test-block (Rossi and Pourtois, 2012). Research has shown that this procedure is 

effective in inducing stress/anxiety (Nummenmaa and Niemi, 2004). It is a difficult and demanding 

task, with a high level of uncertainty on performance. Participants are told that, compared to peers 

their performance is below average, which induces stress. Furthermore, being told that task 

performance is related to intelligence; in particular for undergraduates this CFT can be considered as 

very stressful. 

To evaluate the HPA-system, salivary cortisol samples were collected. To evaluate subjective 

changes on mood, we also assessed mood throughout the experiment with Visual Analogue Scales 

(VAS; McCormack et al., 1988). As gender and age could be a possible confounder in HPA-system 

reactivity protocols (Seeman et al., 2001), and as the intra-individual stability of baseline salivary 

cortisol levels is reported to be more stable in women (Kirschbaum et al., 1992), we chose to use a 

‘uniform’ group of non-depressed young female subjects within the same age range. Furthermore, to 

obtain stable baseline measurements, we started stimulation after a 20 minute period of standard 

music relaxation. 

 In line with earlier research using the CFT for the induction of stress and negative affect (Rossi 

and Pourtois, 2012), we expected that our experimental procedure would increase negative and 

decrease positive mood states. However, we did not expect any differential effects on mood after real 

or sham stimulation. If the hypothesis is correct that left DLPFC HF-rTMS affects a stressed HPA-

system, we expect that real HF-rTMS, and not sham, will attenuate cortisol concentrations. 
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2.2.2.2. MethodsMethodsMethodsMethods    

    
2.1.  Subjects 

The ethics committee of the University Hospital (UZBrussel) approved the study and all 

subjects gave written informed consent. Subjects were financially compensated. The total sample 

consisted of 31 right-handed (criteria: van Strien and Van Beeck, 2000) healthy female participants 

(mean age= 21.53 years (SD= 2.85)) naïve to the rTMS procedure. No drugs were allowed, except 

birth-control pills. All participants used contraceptives at the time of the study. Psychiatric disorders 

were assessed by the Dutch version of the Mini-International Neuropsychiatric Interview (MINI) 

(Sheehan et al., 1998). A clinical psychiatric interview was performed before a subject’s inclusion in 

the study. Subjects with a psychiatric disorder and/or a score higher than ten on the Beck Depression 

Inventory (BDI-II; Beck et al., 1996) were excluded. Mean BDI score= 3.45 (SD= 3.47).  

Of note, in a separate pilot study we performed one sham-controlled right DLPFC stimulation 

session in a different but smaller group of healthy females. No effects on mood and the HPA-system 

were observed (unpublished results). 
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2.2. Assessment 

 On each of the salivary cortisol collections, subjects were asked to rate their mood on six 

horizontal 100 mm visual analogue scales (VAS; McCormack et al., 1988) in order to detect subtle 

changes in mood. Feelings of ‘tiredness’, ‘vigor’, ‘anger’ ‘tension’, ‘depression’ and ‘cheerfulness’ were 

rated “at this moment”. The minimum score on each VAS subscale is 0 and the maximum score is 

100.  

 As in Baeken et al. (2009a, b, 2011a), saliva samples were collected using a salivette 

(Sarstedt, Germany), with an insert containing a sterile polyester swab for collecting saliva, yielding a 

clear and particle-free sample. The salivettes were used according to the instructions provided by the 

manufacturer. Salivettes containing saliva were centrifuged at 2000 g for 10 min, and the filtrates were 

stored frozen (-20°C). Before analysis, the samples were thawed and mixed. Saliva cortisol levels 

were measured by RIA (Diasorin, Italy), using a modification of an unextracted RIA method for serum 

cortisol. Briefly, 200µL saliva was pipetted into the coated tube and incubated with 125I cortisol for 45 

minutes at 37°C. The modified cortisol assay had a measuring range from 0.5-30 µg/L and within-and 

between-run coefficients of variation of <5% and <10%, respectively. Salivary cortisol correlates highly 

with serum levels and represents the free, biologically active fraction of the hormone (Vining and 

McGinley, 1986). Salivary cortisol responses can be observed 5-20 min after stress induction, with 

peak levels after 10-30 minutes (Kudielka and Kirschbaum, 2005). It might be more indicative than 

serum total cortisol, because salivary cortisol, largely unbound, is independent of cortisol binding 

globulin variations (Lac, 2001).  
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2.3. Critical Feedback Task (CFT) 

The CFT is an oddball mental counting task where participants receive bogus negative 

feedback on their performance at the completion of each test-block (Rossi and Pourtois, 2012, see 

Fig. 1A). The CFT is divided into one practice block (20 stimuli) and three test blocks (100 stimuli 

each, 80 standards and 20 targets). In each block participants are presented with a stream of identical 

small white tilted lines (the standards, on black background, with a duration of 250ms, ISI randomized 

between 900 and 1250 ms, see Fig 1B)), and are asked to detect the appearance of rare lines with a 

different in-plane orientation (the deviants, i.e., targets). During the practice phase participants are 

familiarized with the orientation of the standard line (always 35°) and they are asked to try to learn it. 

After the practice block, the instruction presents again the standard line, right next to an example of 

the two possible deviant lines. Participants are asked to covertly count the number of deviant lines, 

and to insert this number at the end of each test block. The angular difference between standards and 

targets is manipulated in order to create variation in task load: one block is difficult (standard-target 

difference = 3° of angle), one is intermediate (standard-target difference = 5° of angle) and one is easy 

(standard-target difference= 10° of angle). The participants always start with the difficult block 

(unknown to them) and are informed by a cover story that after each test-block they will receive a 

feedback on their performance. They are led to think that the difficulty of the subsequent block will 

depend on their performance on the current one (in a staircase design). However, the given feedback 

is in fact unrelated to performance (it’s always negative, see Fig 1A), and the following block is always 

easier, to maintain motivation despite the elicitation of failure feelings and state anxiety. Every 

feedback consists of a neutral face with a text balloon for 20 s, stating that they performed below 

average as compared to the other participants. Consistently, a pseudo-randomly generated scatter 

plot shows their own performance against the scores of the previous (alleged) participants. To 

maximize the stress response to the critical feedback (CF)s, initial instructions emphasized the 

important role played by learning processes in this task, and alleged links between learning, 

performance, and intelligence. Moreover, participants were told that they would be compared with 

other peers at the end of each block, and of feedbacks on relative performance would be provided. 
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2.4. HF-rTMS experiment  

A randomized sham-controlled, single blind, crossover design was used. To avoid carry-over 

effects from the previous stimulation, the second session was carried out after an interval of three 

days. See also Fig 2. The procedure of the second experiment day was exactly the same with the 

exception of the HF-rTMS session (real or sham) which was counterbalanced with random selection of 

order. We took especially care for a rigid time schedule: to avoid diurnal variations of cortisol (Hanson 

et al., 2000), all participants started the second experimental procedure at the same hour as the first 

experimental procedure. Because cortisol secretion remains reasonable steady in the late afternoon 

(Debono et al., 2009), all volunteers were stimulated in the afternoon within the same time frame 

between 16:00 and 18:00. In practice, if a given volunteer was stimulated at 17:00 at the first run, she 

was stimulated again at 17:00 on the second run. Subjects were kept unaware of the type of 

stimulation they received; they wore earplugs and were blindfolded. After finishing the final 

experimental day, all participants were fully debriefed.  

We used a Magstim high-speed magnetic stimulator (Magstim Company Limited, Wales, UK), 

connected to a figure-of-eight-formed double 70mm coil. As all participants were right-handed, before 

each application, the resting motor threshold (MT) of the right abductor pollicis brevis muscle of each 

individual was determined. MT was estimated before the first stimulation session, and checked again 

on the second visit. In order to accurately target the left DLPFC (Brodmann area 9/46), taking into 

account individual anatomical brain differences, the precise stimulation site and position of the coil was 

determined using MRI non-stereotactic guidance  (Peleman et al., 2010). Perpendicular to this point 

the precise stimulation site on the skull was marked and stimulated. In each high-frequency (20 Hz) 

stimulation session, at stimulation intensity of 110 % of the subject’s MT, subjects received 20 trains of 

1.9 s duration, separated by an intertrain interval of 12.1 s (1560 pulses per session). For the sham 

condition, the coil was held at an angle of 90°, only resting on the scalp with one edge. The study 

conform current safety guidelines (Rossi et al., 2009). 

At the start of the experiment all subjects relaxed for 20 minutes while listening to relaxing 

music in a quiet and comfortable room (See Fig 2). Hereafter, subjects were asked to deliver a first 
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salivette and VAS, this just before the start of HF-rTMS session (T1). All subjects then received sham 

or active HF-rTMS. Immediately after stimulation, subjects delivered another salivette together with the 

VAS questionnaire (T2). Next, approximately five to ten minutes after HF-rTMS, all were asked to 

complete the CFT task, followed by the third salivette and VAS (T3). These measurements were 

repeated after 15 minutes (T4) while participants waited alone in the experiment room, without relaxing 

music. We analysed salivary cortisol samples at the four different time points (T1, T2, T3 and T4) and, 

as proposed by Pruessner et al (2003), we calculated the area under the curve (AUC) with respect to 

ground (AUCg) and the AUC with respect to increase (AUCi). The AUCg measures, in 

endocrinological terms, the total ‘hormonal output’, whereas the AUCi measures the hormonal 

changes over time. Therefore, the AUCi index is especially suitable to evaluate HPA-system sensitivity 

(Fekedulegn et al., 2007).  

As advised by Pruessner and colleagues (2003), in the AUC formulas we took into account the 

exact timings for each individual participant between saliva sampling throughout the experiment. 
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3.3.3.3. Statistical analysis Statistical analysis Statistical analysis Statistical analysis     

All collected data were analyzed with SPSS 20 (Statistical Package for the Social Sciences). 

Where necessary, we applied the Greenhouse-Geisser correction to ensure the assumption of 

sphericity. The significance level was set at p≤ .05 for all analyses. 

First, to examine whether possible mood changes by the rTMS application could influence our 

results, mood changes were analyzed with a mixed 2X4 MANOVA. Within-subject factors were 

Stimulation (real vs. sham HF-rTMS) and Time (T1, T2, T3 and T4). The six VAS mood scales were the 

multiple dependent variables.  

Second, the effects of HF-rTMS on the HPA-system (AUCg and AUCi) between real and sham 

stimulation were analyzed using paired t-tests. Analyses were performed for AUCg and the AUCi 

separately. The choice of AUC above repeated measures ANOVA’s has several advantages. The 

computation of AUC allows simplification of the statistical analysis and increases the power of testing 

without sacrificing the information contained in multiple measurements (Pruessner et al., 2003). As 

mentioned before, the AUCg measures, the total ‘hormonal output’, the AUCi the hormonal changes 

over time. Based on a repeated measures ANOVA it is impossible to differentiate between these two 

sorts of information comprised within each measure (Fekedulegn et al., 2007). Further, if time intervals 

between cortisol measurements are not identical between participants, as it is seldom minute sharp in 

experimental research, the within-design ANOVA has no proper method to correct for these 

differences (Pruessner et al., 2003). Importantly, the AUC formulas take into account the exact timings 

between saliva sampling throughout the experiment.  

To rule out that the timing of cortisol assessment did not differ across two experimental 

procedures, we performed paired t-tests between the time intervals on cortisol sampling in the real and 

the sham condition. Time intervals were calculated as the time difference in minutes between two 

sample points. 
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4.4.4.4. ResultsResultsResultsResults    

For unknown reasons one female participant did not show up again for her second session 

after receiving sham in the first. Therefore, data from this volunteer were removed for all analyses. 

VAS mood ratings and salivary cortisol data of the remaining 30 participants are summarized in Table 

1. Sixteen participants first received real HF-rTMS before sham and the fourteen other volunteers 

received sham HF-rTMS followed by the real condition.  

4.1. Mood effects 

For two female subjects VAS data sets were incomplete. Therefore, VAS analyses were 

performed on 28 volunteers.  

The MANOVA showed no significant main effect for Stimulation, F(6, 22)= 0.63, p= .70.  On 

the other hand, we found a significant main effect for Time, F(18, 234)= 2.24, p< .01. The interaction 

effect however between Stimulation and Time, F(18, 234)= 1.02, p= .44, did not reach significance.  

For an overview of the main Time effects per scale see Table 2. In essence, after stimulation 

(T1 vs.T2) participants felt significantly tenser, less fatigued and less cheerful, regardless of real or 

sham HF-rTMS. After having performed the CFT (T2 vs.T3) scores on vigor diminished significantly in 

both stimulation conditions. These observations indicate that both experimental days resulted in 

similar effects on mood measurements regardless of stimulation type.  
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4.2. Salivary cortisol  

See also Fig 3. For the AUCg analysis, the paired t-test did not show a significant difference 

between the real (mean AUCg= 227.99 (sd= 107.33)) and the sham (mean AUCg= 218.54 (sd= 

79.93)) HF-rTMS session, t(29)= .50, p= .63). This finding demonstrates that regardless of stimulation 

type the experimental procedure had no different effect on the global cortisol output. 

Concerning the AUCi analysis, the paired t-test showed that compared to sham (mean AUCi: 

sham= -1.10 (sd= 44.51)) one real HF-rTMS session (mean AUCi real= -22.03 (sd= 52.33)) resulted in 

a significant decrease in cortisol levels, t(29)= 2.20, p= .036. A paired t-test did not show baseline (T1) 

cortisol differences between one real (mean= 4.10 µg/L (sd= 1.81) and sham (mean= 3.64 µg/L (sd= 

1.41) HF-rTMS session (t(29)=1.40, p= .17). This implies that AUCi differences cannot be attributed to 

unequal baseline cortisol levels and indicates that during the experimental procedure one left-sided 

real session significantly influenced HPA-system sensitivity, resulting in decreased cortisol 

concentrations.  

The paired t-test between real (mean= 25.10 minutes, sd= 10.91) and sham (25.13, sd= 

10.66) for T1 to T2 showed no significant difference (t(29)= .01, p= .99). Also the paired t-test between 

real (16.07, sd= 2.89) and sham (17.47, sd= 5.82) for T2 after stimulation to T3 just after performing the 

CFT showed no significant difference (t(29)= 1.14, p= .26). Finally, the paired t-test between real 

(17.30, sd= 3.56) and sham (16.93, sd= 3.47) for T3 to T4 ca 15 minutes after performing the CFT also 

did not reach significance (t(29)= .41, p= .69). These results show that the timings of cortisol 

assessment were not significant different between the real and the sham procedure, and that the 

differences observed in our AUCi analyses cannot be attributed to confound in timing of salivary 

cortisol sampling.1 

                                                 
1 Finally, to exclude that the AUCi results cannot simply be explained by changes on the HPA-system 

prior to the CFT (due to the HF-rTMS procedure), we performed several ANCOVA analyses (controlling for 
inter-individual differences in time intervals) taking into account the separate salivary cortisol samplings 
before and after the different procedures (HF-rTMS/sham; CFT; 15 minutes waiting) within the 
experiment. These analyses were performed for the sham and real HF-rTMS separately, with Time (Tpre 
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vs Tpost for a given procedure within the experiment) as within-subjects variable, Order (first sham 
versus first rTMS) as the between-subjects factor, and the time Interval (the time difference in minutes 
between two sample points) as covariate. We used the same time Intervals as described in the 
paragraph above. See also Fig 2. In short, when taking into account the individual salivary cortisol 

samplings in the real HF-rTMS condition, only after performing the CFT (between T3 and T4) the ANCOVA 
showed a significant main effect of Time (F (1,27)= 4.05, p= .05). No main effects of Interval (F (1,27)= 
1.81, p= .19) was observed. The main effect of Order (F (1,27)= 3.59, p= .07) showed a significant 
trend. The mean cortisol levels appeared to be higher when participants received real HF-rTMS in the 
first session (T3: 3.87 (sd= 1.50) and T4: 4.19 (sd= 3.16) compared to those who received first the 
sham stimulation (T3: 3.39 (sd= .76) and T4: 2.98 (sd= .70). The interaction effects between Time and 
Order (F (1,27)= .78, p= .39) was not significant, the interaction effect between Time and Interval (F 
(1,27)= 3.33, p= .08) showed a trend towards significance. However, the Pearson correlation analysis 
between Interval and the change in cortisol concentrations between T3 and T4 was not significant (r= <-
.01, n=30, p= .96). Although only trend-like, these extra ANCOVA analyses may point to some effect of 
order: cortisol levels appeared to be higher when participants received real HF-rTMS in the first session, 
which might be caused by some habituation to the procedure in the second session. Importantly, the 

ANCOVA examining the effect of real HF-rTMS on cortisol concentrations (salivary cortisol sampling 
between T1 and T2) did not show a main effect of Time (F (1,27)= .04, p= .84), Order  (F (1,27)= 2.85, 
p= .10), or Interval (F (1,27)= .60, p= .45). Also the interaction effects between Time and Order (F 
(1,27)= .08, p= .78), and between Time and interval (F (1,27)= .21, p= .65) were not significant. No 
other significant main or interaction effects were observed for the other time points, not for the real HF-
session nor for sham (p’s> .05). These extra analyses show that the cortisol attenuation occurred just 
after the CFT in the real HF-rTMS condition. Together with the non-significant effects of HF-rTMS on 
cortisol levels just after stimulation, regardless of real or sham, the latter analyses in particular 
underscores that the positive effect on the HPA-system only occurs after healthy participants are being 
stressed, in our case with the CFT, and only after real stimulation. 
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5.5.5.5. DiscussionDiscussionDiscussionDiscussion        

In this study, part of a larger project investigating the influence of HF-rTMS on different 

neurocognitive markers, we evaluated the effect of one sham-controlled left DLPFC HF-rTMS session 

on subjective mood changes and salivary cortisol during an experimental stressful oddball mental 

counting task. Subjective mood was not found to be different for the sham and real HF-rTMS 

experimental procedure. This corroborates with previous sham-controlled findings in healthy subjects 

of no different mood effects after one session of HF-rTMS applied to the left DLPFC (Mosimann et al., 

2000; Baeken et al., 2006, 2008). Nevertheless, after both stimulation conditions participants felt 

tenser and less cheerful, indicating stress-related responses and increases in negative affect. In 

addition, also regardless of stimulation type, reduced scores on vigor were observed only after the 

CFT. This further increase in negative effect can be attributed to the critique of a bad cognitive 

performance (Rossi and Pourtois, 2012). However, subjectively experienced mood gives only limited 

insight into the neurophysiology of emotion and physiological responses might operate independently 

of verbal reports (Buck, 1999; Campbell & Ehlert, 2012). 

In terms of global cortisol secretion, one HF-rTMS session did not affect the HPA-system 

differently between stimulation types (AUCg). This finding is not unexpected in an unimpaired cortico-

limbic system with normal feedback (FB) mechanisms (see also Fig 4 A and B). During stress and/or 

increased negative affect, enhanced amygdala activity results in hypothalamic (paraventricular 

nucleus) release of corticotrope releasing hormone (CRH), which activates the release of 

adenocorticotrope hormone (ACTH) in the anterior pituitary gland. This activates the adrenal cortex to 

release the stress hormone cortisol into the blood stream (Gold and Chrousos, 2002; Erickson et al., 

2003). Indeed, it has already been demonstrated that stress and negative affect was associated with 

higher salivary cortisol levels (Smyth et al. 1998; Herman et al., 2005). Furthermore, the 

paraventricular nucleus of the hypothalamus receives neural inputs from many regions of the brain, 

including the hippocampus (Aihara et al., 2007). Under normal conditions, the hippocampus inhibits 

amygdala activity, and regulates the HPA-axis (Herman et al., 2003). In a normal functioning negative 



 16

feedback system, when emotional homeostasis is reached again, this negative FB loop down-

regulates activity via glucocorticoid (GR) receptors. Notwithstanding that global cortisol output was not 

different between a real and a sham HF-rTMS session, one real stimulation session only significantly 

influenced HPA-system sensitivity, resulting in decreases in cortisol levels (AUCi).  

Our current results lend support to our assumption that one left-sided HF-rTMS session is able to 

attenuate the HPA-system while experimentally being stressed. Because cortisol effects are frequently 

observed in stress induction paradigms (i.e. Dickerson and Kemeny, 2004), it could be argued that 

some kind ‘discomfort’ due to different sensations during the real session versus sham would have 

interfered with our endocrinological measurements. However, if this would be the case we would have 

detected an increase in tension or other mood changes only in the real condition and not after sham. 

Because we used a sham-controlled counterbalanced design and all of our volunteers were stimulated 

twice within the same time frame on separate days, the differences in HPA-system sensitivity cannot 

be attributed to the circadian variation of cortisol (Hanson et al., 2000). Furthermore, in order to obtain 

more valid baseline cortisol and mood measurements, all volunteers participated in a standard 

relaxation session before starting the experimental procedure. Importantly, salivary cortisol levels did 

not differ between the two stimulation days at T1. We used salivettes as this has certain advantages 

over blood samples: sampling is non-invasive, it can frequently be repeated, and it avoids stress 

induction (painless) (Castro et al., 2000). 

So how can we interpret these results? First of all, the AUCg analyses showed that the salivary 

cortisol measurements at T1, T2, T3 and T4, were not related to real or sham stimulation. However, as 

the AUCi contains the important information whether any changes of the HPA-system as indexed by 

saliva cortisol occurred over time (examining changes in the events during the observation period over 

the entire experimental procedure over T1, T2, T3 and T4), our findings revealed that only real HF-rTMS 

significantly decreased cortisol concentrations. Our extra ANCOVA analyses showed that this 

attenuation of cortisol concentrations occurred directly after having performed the CFT in the real HF-

rTMS experimental procedure. Although only trend-like, these extra ANCOVA analyses may point to 

some effect of order. Cortisol levels appeared to be higher when participants received real HF-rTMS in 
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the first session, which might be caused by some habituation to the procedure in the second session. 

Because there were significant differences between T3 and T4 more ca 15 minutes after having 

performed the CFT, these findings indicate that the effects of one real HF-rTMS session are transient 

and have short term effects in healthy individuals. Although one would expect cortisol increases after 

having performed the CFT in the sham condition, we can only speculate that for all participants the 

entire experimental procedure was a stressful event and performing the CFT did not add significantly 

more stress to the procedure. Nevertheless, the crucial finding here is that real HF-rTMS attenuated 

cortisol concentrations after participants performed this critical feedback task. Despite that no 

subjective mood changes were detected, this attenuation after real stimulation suggests that on the 

endocrinological level healthy females may become less sensitive to stressful events or negative 

experiences.  

Further, our current AUCi results do agree with Kecks’ hypothesis that the (left) prefrontal cortex 

participates in the rTMS-induced blunted response of HPA-activity as found in individuals documented 

to have high cortisol concentrations over longer periods of time, such as depressed patients (Keck, 

2003) (see also Fig 5). In addition, it also indicates that in healthy individuals the HPA-system may 

need to be challenged in order to detect such influences (in the current experiment the negative 

feedback to the CFT after HF-rTMS). Indeed, our previous negative results investigating the effect of 

HF-rTMS on the HPA-system might be attributed to an already relatively low baseline level of cortisol 

in an ‘unchallenged’ healthy group of women (Baeken et al., 2009a, 2011a). Of course, the 

interpretation of our results is limited to relatively young healthy females and cannot be generalized to 

a broader or psychiatric population.  

Nevertheless, our endocrinological observations in experimentally stressed participants agree with 

the neurophysiological effects of this neurostimulation tool in stress-related disorders such as MDD: 

HF-rTMS initially disrupts neural processes in the stimulated area (Paus et al., 2001), thereafter 

resulting in higher neural activity in the DLPFC (Nahas et al., 2001). Through synaptic connections, 

metabolic changes in the connected subcortical structures influence the HPA-system (Paus & Barrett, 

2004). Keck (2003) proposed that the influence of rTMS over the DLPFC during depressed emotional 
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states indirectly affects the hypothalamus (paraventricular nucleus), resulting in blunted responses of 

HPA-axis activity (see Fig 5). Some studies have examined this hypothesis in depressed patients 

(Schutter and van Honk, 2010). Compared to negative mood states in non-psychiatric samples, in 

(melancholic) depression there is an even more pronounced shift in the homeostasis with diminished 

activity in the DLPFC, enhanced activity in the amygdala and activation of the core stress system. In 

depressed states this excitatory system results in dramatic CRH and ACTH increases and in cortisol 

elevations (Gold and Chrousos, 2002). In these kinds of patients, the failing negative feedback system 

may result in chronic hypercortisolemia. However, it has to be noted that in depressed patients HPA-

system abnormalities are not consistently observed (Schutter and van Honk, 2010). Nevertheless, in a 

sample of severely depressed patients, salivary cortisol concentrations decreased immediately after 

one active left DLPFC HF-rTMS session and not after sham (Baeken et al., 2009b). Pridmore (1999) 

observed normalization of the dexamethasone suppression test in a small sample of medicated 

depressed subjects after multiple sessions of left prefrontal HF-rTMS. Of interest, depressed patients 

who fail to respond to several pharmacological interventions show unchanged enhanced HPA-system 

activity (Wolkowitz & Reus, 2001) and HF-rTMS non-responders continue to display a more sensitive 

HPA-system (Baeken et al., 2010b).  

However, through which exact pathway left DLPFC HF-rTMS affects the HPA-axis remains to be 

clarified and without concomitant neuroimaging techniques the interpretation of our endocrinological 

results remains to some extent speculative. As shown in Fig 5, a possible working mechanism points 

to a DLPFC / anterior cingulate cortical (ACC) pathway. Indeed, besides the dorsolateral prefrontal 

regions, in brain imaging studies examining negative affect, the dorsal (d)ACC areas are often 

involved as well (Pizzagalli, 2011). Diminished connectivity between the DLPFC and dACC might also 

result in the failing of the ACC’s inhibitory role in amygdala regulation of emotional processing in major 

depression. Different brain imaging studies in MDD lend support to the assumption that left HF-rTMS 

affects and ‘normalizes’ DLPFC and ACC metabolic and functional neuronal activities (Baeken et al., 

2009; Kito et al., 2008, 2012; Fox et al., 2012 a). However, the subgenual (sg)ACC, part of the 

ventromedial prefrontal cortex, and strongly connected to the amygdalae (Barbas et al., 2003; Ray and 
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Zald, 2012) may be a critical region to be involved in the response to the rTMS application. The 

sgACC, implicated in “visceromotor” functions and in modulating affect, has consistently been shown 

to be metabolically hyperactive during depressive episodes and successful antidepressant treatment 

results in neuronal attenuation of this ventromedial prefrontal cortical area (Drevets et al., 2008). 

Further, also HF-rTMS treatment has been shown to affect deregulated sgACC neurocircuits in 

depressed patients (Fox et al, 2012b; Baeken et al., in press). 

Because the DLPFC and the hippocampus are synaptically connected via (glutaminergic) 

pyramidal neurons (Puig et al., 2003), from an electrophysiological point of view, HF-rTMS may also 

directly influence neuronal activity in hippocampal regions. Albeit several different signalling synapses 

may be involved (for an overview see the recent review of Marsden (2013)), animal models found that 

rTMS and electrical stimulation of (medio)frontal cortical areas influenced serotonergic 

neurotransmission in the hippocampus (Juckel et al., 1999; Ogiue-Ikeda et al., 2003). Serotonin (5-

HT) is an important excitatory transmitter involved in HPA-system regulation (Neumeister and 

Charney, 2002). Of interest, HF-rTMS applied to the left DLPFC leads to decreased serotonin 

synthesis in the parahippocampal areas in healthy subjects (Sibon et al., 2007). Serotonin receptors 

such as the post-synaptic 5-HT2A receptor located in the amygdala and hippocampus regulate the 

HPA-system during stress (Leonard, 2005). In a recent study, examining the effect of left DLPFC HF-

rTMS treatment on 5-HT2A receptor binding indices in medication-resistant depressed patients we 

found a significant hippocampal 5-HT2A receptor down-regulation only when treatment was clinically 

successful (Baeken et al., 2011b).  

 In conclusion, our results show that in experimentally stressed female participants one real 

left-sided HF-rTMS session attenuates HPA-system sensitivity, resulting in decreases in cortisol 

levels. The additional use of stressful experimental procedures might be especially critical to influence 

stress responses and negative affect in laboratory settings evaluating the effects of HF-rTMS on the 

HPA-system (Nummenmaa and Niemi, 2004). Our observations explain to some extent as to why 

successive left prefrontal HF-rTMS sessions could be beneficial in patients with deregulated HPA-



 20

systems, such as major depression. From a neurophysiological point of view, it might be interesting to 

examine whether LF-rTMS applied to the left DLPFC increases HPA-system sensitivity while healthy 

females are experimentally being stressed, as opposite neuro-endocrine effects can be anticipated. 

Albeit based on ethical grounds we do not advocate to perform multiple HF-rTMS sessions in healthy 

populations, one can speculate that successive sessions may influence the HPA-system to a larger 

extent than only one stimulation session. Future studies evaluating the HPA-system, in healthy 

participants as well in stress-related psychiatric disorders, might do well to combine experimental 

stress tasks with brain imaging techniques. 
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Table and figure legendsTable and figure legendsTable and figure legendsTable and figure legends    

 Real HF-rTMS  

 T1 T2 T3 T4 T1 

       

Salivary cortisol 

(µg/L) 

4.10 (1.81) 3.66 (1.23) 3.58 (1.24) 3.63 (2.40) 3.64 (1.41) 3.73 (1.55)

      

VAS Fatigue 

 

4.00 (2.66) 3.40 (2.62) 3.24 (2.36) 3.60 (2.54) 3.79 (2.66) 3.

VAS Vigor  5.42 (2.30) 5.45 (2.18) 5.12 (2.41) 5.15 (2.16) 5.11 (2.28) 5.

VAS Anger 

 

.86 (1.10) 1.08 (1.15) 1.31 (1.57) 1.04 (1.48) .73 (.69) 

VAS Tension 

 

1.46 (1.41) 1.95 (1.61) 1.75 (1.76) 1.56 (1.60) 1.44 (1.35) 1.

VAS Depression 

 

.66 (.69) .70 (.74) .78 (1.17) .61 (.77) .59 (.65) 

VAS Cheerfulness 6.33 (2.25) 5.69 (2.27) 5.64 (2.27) 5.80 (2.11) 6.08 (1.97) 6.

      

    

Table 1.Table 1.Table 1.Table 1. Mean ratings and standard deviations for the VAS subscales before (T1) and immediately 

after left-sided HF-rTMS (T2). Immediately after the Critical Feedback Task (CFT) (T3) and 15 min later 

(T4) on the left DLPFC. 
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 Experimental procedure 

 T1 T2 T3 T4 

     

VAS Fatigue  a 

 

3.90 (0.46) 3.33 (0.43) 3.25 (0.40) 3.55 (0.40) 

VAS Vigor  b 5.26 (0.40) 5.43 (0.38) 5.13 (0.42) 5.11 (0.40) 

VAS Anger  

 

0.79 (0.15) 0.90 (0.17) 1.03 (0.19) 0.90 (0.19) 

VAS Tension  a 

 

1.45 (0.15) 1.87 (0.20) 1.74 (0.21) 1.41 (0.16) 

VAS Depression 

 

0.62 (0.11) 0.72 (0.14) 0.66 (0.15) 0.56 (0.12) 

VAS Cheerfulness  a 6.21 (0.38) 5.87 (0.38) 5.85 (0.37) 5.79 (0.37) 

     

    

Table Table Table Table 2222.... Mean ratings and standard errors for the VAS subscales of the entire experimental procedure 

before (T1) and immediately after HF-rTMS (T2). Immediately after the Critical Feedback Task (CFT) 

(T3) and 15 min later (T4). Significant pairwise comparisons (p< .05):  a between T1 and T2, b between 

T2 and T3, c between T3 and T4. 
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Figure 1Figure 1Figure 1Figure 1::::    

    

    

(A)(A)(A)(A) Task design.Task design.Task design.Task design. Three blocks of descending load level (preceded by a practice block) were 

intermixed with bogus critical feedbacks (CF, always negative) on task performance. Inset: The critical 

feedbacks contained a neutral face, a message clearly stating that performance (learning index) was 

below average as compared to a group of previous participants, and a pseudo randomly generated 

scatterplot with the performance of all the (alleged) participants, in which the current one was clearly in 

the lower part of the distribution.  

(B)(B)(B)(B) Trial sequence.Trial sequence.Trial sequence.Trial sequence. Standard (80%) and target (20%) lines were intermixed in a RSVP at fixation. 

Participants had to silently count the targets, and report their number at the end of each block. During 

the ISI, randomly jittered between 900 and 1250 ms, a peripheral texture of horizontal lines was 

presented in 50% of the trials (no predictive value for the central stimuli).  
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FigFigFigFigureureureure    2222: Visualization of the experimental sham: Visualization of the experimental sham: Visualization of the experimental sham: Visualization of the experimental sham----controlled HFcontrolled HFcontrolled HFcontrolled HF----rTMS crossrTMS crossrTMS crossrTMS cross----over design.over design.over design.over design.    

AB= a female subject who first receives real HF-rTMS then receives sham. BA= a subject that first 

receives sham then receives real HF-rTMS. The experiment starts with 20 minutes relaxation. Five to 

10 min after stimulation participants performed the Critical Feedback Task (CFT). At T1 = just before 

HF-rTMS, T2 = just after HF-rTMS, at T3= just after the CFT and 15 min hereafter (T4) all volunteers 

were assessed with 6 visual analogue scales and delivered a salivette at each of these time points. To 

avoid carry-over effects the second HF-rTMS sessions was performed three days later.  
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Figure 3:Figure 3:Figure 3:Figure 3:  Results of the area under the curve (AUC) with respect to ground (AUCg) and the AUC with 

respect to increase (AUCi) for the real and the sham left DLPFC HF-rTMS session (means with 

standard error) separately represented in bar graphs. *Significant differences between one left-sided 

real and sham HF-rTMS session at p< .05. 
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Figure Figure Figure Figure 4444: The Hypothalamus: The Hypothalamus: The Hypothalamus: The Hypothalamus----    PituitaryPituitaryPituitaryPituitary----Adrenal cortex (HPA) system Adrenal cortex (HPA) system Adrenal cortex (HPA) system Adrenal cortex (HPA) system and negative feedback system and negative feedback system and negative feedback system and negative feedback system in in in in 

normal moodnormal moodnormal moodnormal mood    statestatestatestate....    

A) Interrelation of the stress/mood system mediators and circuitries between the prefrontal cortex 

(PFC) and amygdala / hippocampus in normal homeostasis and negative feedback system. 

B) During stress or increased negative affect enhanced amygdala activity results in hypothalamic 

(paraventricular nucleus) release of corticotrope releasing hormone (CRH), which activates 

the release of adenocorticotrope hormone (ACTH) in the anterior pituitary gland. This 

activates the adrenal cortex to release the stress hormone cortisol into the blood stream.  

 

Smaller or larger circles and rectangles    indicate shifts in neuronal activities. Full lines represent strong 

functional connections between structures, dotted lines represent decreased functional connections. 

CAVE: The grey lines between the presented anatomical regions do not by definition imply direct 

synaptic connections. For instance, the neuronal connections between the DLPFC and amygdala are 

presumably indirect. The neuronal routes to the hypothalamus are multi-synaptic. 

H: Hypothalamus. P: Pituitary gland. A: Adrenal cortex. MR: mineralocorticoid receptor. GR: 

glucocorticoid receptor. (-) inhibitory. (+) excitatory.  
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FigFigFigFigureureureure    5555: : : : Theoretical Theoretical Theoretical Theoretical fffframework of ramework of ramework of ramework of HFHFHFHF----rTMSrTMSrTMSrTMS    applied to the left DLPFC on the Hypothalamusapplied to the left DLPFC on the Hypothalamusapplied to the left DLPFC on the Hypothalamusapplied to the left DLPFC on the Hypothalamus----    

PituitaryPituitaryPituitaryPituitary----Adrenal cortex (HPA) system in negative mood statesAdrenal cortex (HPA) system in negative mood statesAdrenal cortex (HPA) system in negative mood statesAdrenal cortex (HPA) system in negative mood states. . . .     

 

In the left hand corner a figure-of-eight shaped rTMS coil is depicted. The HF-rTMS application is 

thought to result in increased neuronal activity in the stimulated area (DLPFC), which through cortico-

subcortical transsynaptic connections suppresses hypothalamic and/or indirectly amygdala 

hyperactivity, resulting in CRH decreases and ultimately in decreased salivary cortisol concentrations, 

returning to the initial homeostasis. Although HF-rTMS effects on the HPA-system act presumably 

through fronto-cingulate networks, the direct connection between the DLPFC and hippocampus may 

add to this effect (full black arrows). A decreased functionality in the latter might contribute to a 

diminished inhibition of the amygdalae, resulting in continuous amygdala hyperactivity. 
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Full lines represent strong functional connections between structures, dotted lines represent 

decreased functional connections. Grey lines represent multi-synaptic neuronal connections, which 

are not by definition direct routes (for an overview see Ray and Zald, 2012). 

DLPFC: dorsolateral prefrontal cortex. ACC: anterior cingulate cortex. GR: glucocorticoid receptors 

MR: mineral-corticoid receptor. CRH: corticotrope releasing hormone. ACTH: adenocorticotrope 

hormone. H: Hypothalamus. P: Pituitary gland. A: Adrenal cortex. (-) inhibitory. (+) excitatory. 


