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WAVE REFLECTION ON DISSIPATIVE QUAY WALLS: AN
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Abstract

The paper discusses the influence of slope porosity and model scale for a low reflective
vertical quay. Physical model tests were carried out in the small and large scale facilities at
Universitat Politecnica de Catalunya, in Barcelona, with regular waves. Matteotti (1991)
conducted experiments for similar kind of quay. The results for small scale agree with the
Matteotti’s ones, but the large scale tests lead to smaller reflection. This is due to the presence
of scale effect at small scales. The authors applied the Burcharth et al (1999) approach to treat
scale effects, as shown in the paper.

1. Introduction

Several technical solutions can be adopted to build berthing structures in harbor basins;
among them a pile wharf and a vertical quay represent ones of the most widespread: the
former is a low reflective structure because of the rubble mound at the toe of the piles that
dissipates a huge part of the incoming wave energy even though those structures can occupy
huge areas in the port basin; the latter reduces the occupancy in the basins but can present
severe problems related to the operating conditions, the structural strength and the safety due
to the high reflection of the wall. Often a compromise must be found to keep the use of the
harbor areas as better as possible and reduce the wave agitation inside the basins.
No-conventional vertical structures can represent an alternative. Antireflective quays and dikes
are featured as porous or open structures, and have been experimentally studied over the years
(Jarlan 1961,1965; Ijima et al. 1976; Matteotti 1991; Fugazza and Natale 1994; Tanimoto and
Takahasi 1994; Suh et al. 2006; Garrido et al. 2010). This paper deals with the reflection
response of low reflective vertical quays, whose upper wall, exposed to the incoming waves, is
replaced by dissipative cells with rubble mound inside (Figure 1).

The study aimed to well characterize the relationship between the reflection coefficient
and the main hydraulic and structural parameters involved in the phenomena. An exhaustive
literature is not yet available for such kind of structure: Matteotti (1991) carried out physical
tests with monochromatic waves; Faraci et al. (2012) studied how the changes in rubble mound
inside the chamber can affect the reflection coefficient. In both cases the experiments have been
carried out in small scale facilities. Interest of the authors is also a preliminary analysis of the
scale effects by means of large scale tests.



Large and small scale tests have been carried out in the Laboratori d’Enginyeria Maritima
of the Universitat Politecnica de Catalunya, in Barcelona (Spain) to study the response of the
quay in a wide range of wave heights and periods. Results of small and large scale tests have
been compared to analyze the influence of scale effects.
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Figure 1. Scheme of the quay as in Matteotti (1991)

2. Laboratory experiment setup

The studied quay can be considered as a mixed structural type between a completely
impermeable vertical face and a rock sloping breakwater. Figure 2 shows the cross section of
the tested quay in prototype scale.
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Figure 2. Cross section of the quay tested at LIM/ UPC (prototype scale)




Small scale tests (1:33) have been conducted in the so-named CIEMito flume. CIEMito is 18
long, 0.38 m wide and 0.56 m high and is equipped with a piston paddle capable to generate
waves up to 0.28m wave heights and wave periods up to 2 sec (Figure 3).

Figure 3. CIEMito wave flume lateral view (a) and piston wave generator (b)

Large scale experiments (1:4) have been carried out in the CIEM flume (Canal
d’'Investigacié I Experimentacié6 Maritima), 100 m long, 3 m wide and 5 m height (Figure 4).
The CIEM flume has a wedge type paddle, that allows to generate waves up to 1.5 m wave
heights. Figure 5 shows a snapshot of the models in both flumes.

Figure 4. CIEM wave flume: wedge wave generator (a) and overview of the flume (b)



Each regular wave attacks were 20 wave periods long. Wave motions were measured in
both scales by means of resistive wave gauges, with accuracy of 1mm: an array of three sensors
has been positioned in front of the caisson in order to get incident and reflected waves
components; two wave gauges more have been also displaced closed to the wave paddle to
measure and check the wave generation. Depending on the scale, more sensors have been
installed along flumes for further controls.

Two different values for the rubble mound porosity at each model scale were tested, to
investigate the influence of this parameter on the reflection. The chosen values for the small
scale are in the same range of the values at large scale to assess the presence of scale effects. In
fact, even if the porosity is similar in small and large scale, the fluid viscosity is not scaled and
could affect in a different way the flows inside the rubble mound, leading to a different
response of the structure as is expected.

Figure 5. Snapshot of the physical tests in the small scale flume (a) and large scale flume (b) at LIM/UPC

Table 1 shows the prototype characteristics of the regular waves and the values of porosity
that have been considered for each model scale.

Table 1. Experimental test setup.

Scale | H (m) T (s) Depth (m) | Porosity of rubble mound (-) | # of tests
1:33 127 | 6.17-10.72 9.08 0.319 21

15 9.70

18 0.441 21
14 1.27 5.17-9.19 9.28 0.357 24

15 9.44

18 0.451 24

3. Scale effects in wave reflection

The wave reflection is usually expressed by the reflection coefficient, defined as:
s —
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where H; and H; are the wave height of reflected and incident waves, respectively, and E: and
Ei are the related energies. The reflection coefficient can vary between 0 and 1, where 1 defines

total reflection. Generally vertical dikes or jetties present values closed to 1, breakwaters or



rubble mounds can show C, around 0.3, but it should be properly assessed for each structure
by means of physical model tests. The choice of the experimental setup can be crucial: small
scale models require to treat possible scale effects in those cases where the scale could be very
important and affect the results.

Porous structures dissipate wave energy within structure’s voids, where turbulent flows
are trigged. A geometrically scale physical model following the Froude law may lead to low
Reynolds number and large viscous forces (Burchart et al, 1999); the resulting flows can be
laminar instead of being fully turbulent within the structure’s void. As consequence the model
reflects more energy than the equivalent prototype (Wilson and Cross 1972, Hughes 1995).

In the present work the Burcharth’smethod has been applied to calculate a corrected and
increased value for the stone nominal diameter in small scale. Burcharth et al. (1999) started
from the knowledge of the wave induce pore pressure distribution: through this,the flow field
can be estimated that is necessary to choose realistic flow velocities to be used in the scaling
procedure. The characteristic pore velocity is calculated as the average value in the most
affected area of the rubble mound slope.

Starting from the value of 0.357 for the porosity of the rubble mound slope at large scale
model, the corrected nominal diameter in small scale led to a porosity of 0.441 at small scale. In
order to compare how similar values of porosity could lead to different results in small and
large scale models, the values of 0.451 and 0.319 for the rubble mound porosity were modelled,
respectively at large and small scale. In this way two values of porosity for each scale were
tested and compared (see Table 1).

4. Results

Due to the monochromatic nature of the wave trains for which just the spectral Mansard &
Funke method (1980) can result poorly reliable, the authors chose use and compare both
Mansard & Funke (1980) and Goda & Suzuki (1976) methods to calculate the reflection
coefficient C, for each test. Figure 6 shows the variability of the reflection coefficient C, with the
wave period T.
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Figure 6. Reflection coefficient vs wave period



Both small and large scale test results are shown in comparison with those given in the
Matteotti's work. The reflection depends strongly on the wave period, as expected, with
variation of up to 40% for the same wave height and different wave periods.

The mean value for the reflection coefficient varies from 0.43 (large scale, p=0.451) up to
0.55 (small scale, p=0.319) where Matteotti found 0.47.

The results of small scale tests agree well with the Matteotti’s measurements, carried out in
a small scale flume too; on the other hand, the large scale experiments lead to reflection values
smaller than those obtained at the reduced scale. Furthermore, a greater porosity leads to a
smaller reflection although its influence seems less important numerically than the model scale.
The small scale tests with larger porosity (green points in Fig. 6), where the scale effects have
been treated, show values for C; very close to large scale ones (blue points in Fig.6), confirming
the relevance of the model scale. The result of the small scale model tests with the lower
porosity (orange points in Fig. 6) show the highest values for the reflection coefficient. In that
case the laminar flows into the rubble mound are predominant respect to the turbulent ones
and the dissipation results lower than in the other three cases.
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The dependence on the wave height does not seem very important if compared with the
wave period, in agreement with the Faraci et al. (2012) results. Looking at Figure 7, it can be
seen that for the same wave period, differences in the wave high affected slightly the response,
leading to variations of Cr of about 8-10%.

5. Discussion of the results and conclusions

Pile structures or vertical walls are largely used as berthing structures or quays in harbor
basins. The former type present low reflection but very high occupancy of the basin; the latter
one is preferred because of its relatively low occupancy but can lead to very high oscillations
inside the harbor. Therefore the research of the last decades is addressed to find a trade-off, by
means of new kind of low reflective structure. The wave reflection of a low reflective vertical
quay has been analyzed in the present work. The quay is a vertical wall where the upper part,



exposed to the waves, is replaced by an open chamber with rubble mound inside. The
dissipation of the waves into the voids among the rubble mound units should assure low
reflection values.

In detail the work has been focused on the influence of slope porosity and hydraulic model
scale. Both small and large scale tests show that a larger porosity leads to a smaller reflection,
but the influence doesn’t seem so important as well as the choice of model scale. The small
scale tests agree with the Matteotti ones, but the results of the large scale tests show a different
behaviour, leading in general to smaller values of the reflection coefficient.

Once the scale effects are treated by a correction of the scale of the nominal diameter of the
armour stones by applying the Burcharth et al (1999) approach, the results get closer to the
ones at the large model scale.

The paper demonstrates that the model scale affects the response of the structure and
small scales generally overestimate the wave reflection of porous low reflective quays. It is thus
recommended to carry out some of the physical experiments in a large model, to avoid scale
effects that should lead to reflections larger at smaller scales than the real ones and simulate the
behaviour as well as in prototype.
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