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There is a complex relationship between hyperthyroidism and kidney function in cats. 

Feline hyperthyroidism is currently the most diagnosed endocrine disorder in geriatric cats, 

with a prevalence of 2 % in cats older than 7 years.
1
  Chronic kidney disease (CKD) affects 

almost 8 % of cats over 10 years of age, and this number is doubled in cats over 15 years of 

age.
2,3

 It is therefore not unexpected to find concurrent CKD and hyperthyroidism in a 

geriatric cat, and indeed CKD is found in up to 40 % of hyperthyroid cats.
4
 Further, a decline 

in kidney function has been reported after treatment of hyperthyroidism in cats.
4-8

 This is a 

serious complication of treatment and early detection of CKD is essential. Indeed, a decrease 

in glomerular filtration rate (GFR) and an increase in serum creatinine concentration and 

blood urea nitrogen (BUN) has been reported already 6 days after treatment,
4
 although long 

term effects have not been investigated. 

 

There is a strong need to be able to predict which hyperthyroid cats will develop CKD 

after treatment, and to detect a declining kidney function early after treatment. An early 

detection of CKD is essential for an optimal management of these patients. Kidney damage 

consists of a cascade of events, and each step in the cascade leads to changes in urinary 

biomarkers of kidney function. These changes can represent disturbances in different 

functions as well as different locations of the kidney.  

 

Thyroid physiology and feline hyperthyroidism are described in Chapter 1 sections 

1.1-1.3. The linkage between thyroid and kidney function in general, in geriatric cats in 

particular and ways to evaluate kidney function in cats will be described in Chapter 1 sections 

1.4 and 1.5. 

 

GFR is an indication of glomerular function. GFR represents the magnitude of 

ultrafiltration of plasma in the first steps of urine formation and is therefore considered to be 

the best overall index of kidney function.
9
 GFR can be measured directly using clearance of a 

filtration marker or indirectly and less sensitive by evaluating serum creatinine 

concentration.
10

 Renal clearance of inulin is regarded the gold standard method, but is highly 

cumbersome, stressful and potentially harmful for the animal. Other methods using plasma 

clearance of different markers have been evaluated intensively in dogs and cats, although a 

feasible method suitable for practice has not yet been found. In Chapter 2, we will investigate 

possible easily applicable clearance measurement methods in cats. 
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Besides glomerular function, tubular function can also be affected in kidney disease. 

Moreover, hyperthyroidism has been described to have an influence on several parts of 

tubular function in humans, rodents and dogs.
11-19

 Urinary concentration of the biomarker 

retinol binding protein (RBP) is a highly sensitive index of tubular damage in humans, 

because a minor decrease in tubular function may lead to excretion of RBP in urine.
20,21

 

Evaluation of urinary RBP as a putative marker of kidney dysfunction in cats will be 

investigated in Chapter 3. 

  

Several studies have investigated follow up of kidney function after treatment of 

hyperthyroid cats, although these focused on the glomerular part of kidney function, and were 

performed over a short term period.
 4-8

 There is a need for long term assessment of glomerular 

as well as tubular function in hyperthyroid cats after treatment to gain insight into the 

pathogenesis of declining kidney function in these cats. In Chapter 4, we will perform a long 

term follow up study of glomerular as well as tubular kidney function in hyperthyroid cats 

after treatment with radioactive iodine (
131

I). In this study, we will also evaluate differences 

between cats maintaining a healthy kidney function and cats developing post-treatment renal 

azotemia, as a first step towards prediction of CKD after treatment. 

 

A diagnostic challenge can occur in cats with hyperthyroidism and CKD, but also in 

cats developing post-treatment renal azotemia combined with serum total T4 (TT4) below 

reference range. These diagnostic challenges will be described in Chapter 1 section 1.6. On 

one hand, iatrogenic hypothyroidism can occur in up to 30 % of cats treated with 
131

I 
22

 and 

hypothyroidism could contribute to a decline in kidney function. On the other hand, CKD is a 

non-thyroidal illness (NTI), which can suppress serum TT4 concentrations.
23

 Thyroid 

function can be assessed with serum free T4 (fT4) after equilibrium dialysis, which has a low 

specificity,
24

 or endogenous serum TSH concentration, however feline TSH measurement is 

not available for cats. Another possibility is stimulation with recombinant human TSH 

(rhTSH). The application of rhTSH in veterinary medicine will be described in Chapter 1 part 

1.6.2. In Chapter 5, we will evaluate stimulation with rhTSH in cats as a tool in the diagnostic 

challenge represented by cats developing post-treatment renal azotemia and serum TT4 below 

reference range.  
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The final aim of the thesis was to gain insights into declining kidney function of 

hyperthyroid cats treated with radioiodine. We evaluated several aspects which could lead to 

an improved understanding of kidney function in hyperthyroid cats, before as well as after 

treatment with 
131

I. This included evaluation of methods for measuring glomerular as well as 

tubular kidney function, the follow up of kidney function after treatment in hyperthyroid cats 

with possible prediction of development of post-treatment renal azotemia, and finally the 

diagnostic challenge which can occur after treatment in cats developing post-treatment renal 

azotemia and low serum TT4 concentration. 

 

The scientific aims of the thesis are: 

 

I. To compare the plasma clearance of exogenous creatinine, exo-iohexol and endo-

iohexol for GFR measurement  

o in healthy cats (including reproducibility of plasma clearance),  

o in hyperthyroid cats before and after treatment with 
131

I to evaluate GFR over a 

period in which GFR is expected to change  

o in hyperthyroid cats, healthy cats and cats with CKD to evaluate the complete 

range of GFR values expected in cats  

II. To evaluate the potential of urinary retinol binding protein (RBP) measurement as an 

early marker of tubular damage, by validation of urinary RBP measurements in 

hyperthyroid cats, healthy cats and cats with CKD 

III. To assess the long term effects of 
131

I treatment on kidney function, and to investigate 

whether post-treatment GFR and the development of post-treatment renal azotemia can 

be predicted from variables measured before treatment  

IV. To evaluate thyroid function with rhTSH stimulation followed by thyroid scintigraphy, 

in cats with post-treatment renal azotemia and serum TT4 below reference range 
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1.1. Thyroid physiology  

The feline thyroid gland consists of two lobes located on the lateral surfaces of the 

trachea (Figure 1).  

 

 

Figure 1. Thyroid lobes located bilaterally of the trachea in the cat.  

Picture: I. van Hoek. 

  

The histological structure of the gland consists of follicles that contain colloid 

produced by the follicular cells or thyrocytes. Thyroid hormones are synthesized in the 

thyrocytes and the final assembly occurs extracellular in the lumen of the follicle (Figure 2). 

 

 

 

 

 

 

Thyroid lobes 

Trachea 
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Figure 2. Synthesis of thyroid hormones. 

Adapted from: van Hoek et al.
1
 TGB: Thyroglobulin, TPO: thyroid peroxidase, MIT: mono-

iodotyrosine, DIT: di-iodotyrosine, T3: tri-iodothyronine, T4: thyroxine. 

 

First, Iodide (I
-
) ions are actively trapped by follicular cells through the Na

+
/I

-
 

Symporter (NIS) from the plasma and transported to the follicular lumen. The follicular 

lumen generally consists of a pool of glycoproteins called thyroglobulin (TGB) that carry 

tyrosyl residues. Thyroid peroxidase (TPO) catalyzes iodine to bind to the tyrosyl residues 

and form mono- and di-iodotyrosines (MIT and DIT respectively).
2
 These are coupled 

together again under the influence of TPO to form T4 and T3, which are then secreted by the 

thyroid gland into the plasma. Both T4 and T3 are metabolically active, although T3 is much 

more potent than T4. All T4 is secreted by the thyroid gland, but a considerable amount of T3 

is derived from extrathyroidal deiodination of T4. Therefore, T4 has been called a 

prohormone.
3,4
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Thyroid stimulating hormone (TSH) 

Thyroid hormone synthesis is regulated by TSH in the thyroidal feedback axis. This 

axis is shown in Figure 3.  

 

Figure 3. Thyroidal feedback axis.
 

Adapted from: Cohen and Wondisford.
5
  TRH: thyrotropin releasing hormone, TSH: thyroid 

stimulating hormone, T4: thyroxine, T3: tri-iodothyronine. 

 

Synthesis and secretion of TSH from the thyrotropes in the pituitary pars distalis is 

stimulated by thyrotropin releasing hormone (TRH), a small tripeptide released from the 

hypothalamus into the hypothalamo-hypophyseal capillaries. TSH has a molecular weight of 

about 30 kDa and consists of an  subunit, identical to the  subunit of other glycoprotein 

pituitary hormones, and a  subunit, which is specific to the TSH molecule. Despite 

differences in TSH at the molecular level, TSH of different species share similar biological 

activity. Response to bovine TSH (bTSH) has been reported in mice,
6
 rats,

7,8
 dogs,

9-11
 cats,

12-

14
 and humans.

15
 TSH binds to a TSH-specific G-protein coupled receptor on the surface of 

follicular cells, which leads to stimulation of adenylate cyclase and subsequent secretion and 
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increased production level of thyroid hormones. The thyroid hormones (free and unbound 

form) are regulated by a homeostatic negative feedback mechanism. The pituitary thyrotrope 

cell deiodinates T4 derived from the plasma to T3 which inhibits TSH synthesis and secretion 

by alteration of nuclear receptor binding, mRNA transcription, and protein synthesis.
16,17

 

 

1.2. Feline hyperthyroidism 

Thyrotoxicosis with excessive production and secretion of thyroid hormones in feline 

hyperthyroidism is caused in 98 % of the cases by benign adenomatous hyperplasia of the 

thyroid gland.
18

 Single or multiple hyperplastic nodules ranging in size from less than 1 mm 

to 3 cm (Figure 4) can be found in thyroid glands of hyperthyroid cats in one lobe (unilateral 

affection) or in both lobes (bilateral affection) in 30 and 70 % of the cases, respectively.
19

  

 

 

Figure 4. Histologic section across a nodular goiter of a thyrotoxic cat. Four nodules (1-4) 

consisting of follicles lined by cuboidal epithelial cells with large nuclei (see inset) and filled with 

pale, barely stained colloid are shown.  

Adapted from: Peter et al.
20

 

 

Malignant tumors are observed occasionally in 2 % of the cases. The etiology of feline 

hyperthyroidism is likely to be multifactorial. Environmental factors such as feeding of 
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canned food or the use of cat litter,
21,22

 overexpression of oncogenes such as c-ras,
23

 and 

altered G protein expression
24

 have been associated with the disease. Clinical signs that are 

commonly observed include polyphagia, polyuria, polydipsia, weight loss, behavioral changes 

such as hyperactivity, an unkempt haircoat and gastrointestinal signs. Clinical signs can be 

less pronounced when the disease is diagnosed early. Diagnosis is confirmed by measurement 

of increased serum TT4 concentration. Tachycardia and a systolic heart murmur are present in 

60 and 30 %, respectively, of hyperthyroid cats.
25

  

 

An atypical presentation with the presence of anorexia and lethargy is possible as well, 

and can often be related to the chronicity and severity of the disease or an underlying disorder 

complicating the hyperthyroidism.
26,27

 Physical examination reveals a palpable cervical 

nodule(s) in more than 90 % of the cases (Figure 5).
25,28

  

 

 

Figure 5. Enlarged thyroid nodule in a hyperthyroid cat. 

Picture: I. van Hoek. 

 

1.3. Treatment of feline hyperthyroidism 

Feline hyperthyroidism is a debilitating disease and is potentially life-threatening if not 

treated appropriately. Therapeutic options include administration of radioiodine (
131

I) or 

antithyroid drugs such as methimazole, and thyroidectomy. The latter treatment method 

should no longer be recommended routinely because it is invasive and has no advantages to 
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the 
131

I treatment which is available at an increasing level over the world. The administration 

of 
131

I and thyroidectomy are in principle irreversible methods. On the other hand, the use of 

antithyroid drugs is reversible. Several factors can influence the choice of therapy. Indeed, 

preference of the owner, availability of 
131

I therapy, and the physical condition of the patient 

are all important considerations. Furthermore, the age of the patient and, more importantly, 

the presence of concomitant disease such as cardiovascular or renal dysfunction must be taken 

into account when a therapy is chosen.
29

  

Both treatment with antithyroid medication as well as 
131

I have specific advantages 

and disadvantages which are summarized in Table 1. 

 

Table 1. Advantages and disadvantages of treatment methods currently available for feline 

hyperthyroidism. 

Treatment Advantages Disadvantages 

Anti-thyroid drugs  inexpensive (at least 

short term) 

 no need for surgery, 

anesthesia or 

hospitalization 

 reversible 

 side effects are 

common 

 need for daily 

medication 

administration  

 close monitoring 

 not curative  

 life-long treatment 

Radioiodine treatment  one treatment is 

sufficient in majority 

of cases 

 rapid cure 

 no need for 

anesthesia 

 complications are 

uncommon 

 need for sophisticated 

facilities 

 hospitalization time 

dependent on 

excretion of 

radioactivity 

 possible risks from 

radioactivity 

Adapted from: van Hoek et al.
1
  

 

1.3.1. Anti-thyroid medication 

Thiourylenes are antithyroid drugs derived from a sulfur-containing parent compound 

called thiouracil. Thiourylenes are actively concentrated in the thyroid, where they exhibit 

their therapeutic effect by blocking the synthesis of thyroid hormones. More specifically, they 

block the thyroidperoxidase catalyzed reactions (oxidation of iodide and iodination of tyrosyl 

residues in thyroglobulin) and the coupling of iodotyrosines to iodothyronines. Thiourylenes 

also interfere with this coupling by binding to and altering the structure of thyroglobulin. 
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Thiourylenes have no influence on the iodide uptake mechanism of the thyroid cell (iodide 

pump) or the release of previously formed thyroid hormones.
30,31

  

The most commonly known thiourylenes are methimazole (MMI), a synonym for the 

pharmaceutical compound thiamazole, and propylthiouracil (PTU). Another agent is 

carbimazole (CBZ), a carbethoxy derivative of MMI which is not a true thiourylene itself, but 

an inactive pro-drug. However, CBZ is almost completely bio-activated to an equimolecular 

amount of MMI after administration. It was developed originally in the search for a drug with 

a longer duration of activity compared to MMI.
30,32

  On a molar basis, MMI and CBZ have 

the same potential, but CBZ has a greater molecular weight, which necessitates a higher dose 

in order to obtain an effect equivalent to MMI. A dose of 10 mg CBZ is approximately 

equivalent to 6.1 mg of MMI.  

Adverse reactions occur in approximately 10-15 % of cats treated with a moderate to 

high dose of MMI (10-15 mg/day) and in 5 % of cats treated with a relatively low dose of 

MMI.
33,34

 The most important clinical side effects during the first weeks of treatment are 

anorexia, vomiting and lethargy. These are usually transient and may resolve despite 

continued administration. When gastrointestinal signs persist, hepatic toxicity may be present 

which requires discontinuation of therapy.
29,33

 Another serious side effect is self induced 

excoriation of the skin of head and neck, which also requires discontinuation of therapy. 

Hematological side effects can be mild, including lymphopenia, eosinophilia and transient 

leucopenia, or more serious like severe thrombocytopenia, agranulocytosis or immune 

mediated hemolytic anemia.
33,35

 

In Belgium, only Felimazole
®
 (Thiamazole) tablets of 5 mg are registered for 

treatment of hyperthyroidism in cats. Methimazole has a bitter taste, but Felimazole
®
 is sugar-

coated to simplify administration. Propylthiouracil is very potent in blocking thyroid hormone 

synthesis but is no longer recommended for use in cats because of severe side effects. These 

include anorexia, vomiting, lethargy, immune mediated hemolytic anemia and 

thrombocytopenia.
36

  

 

1.3.2. Radioactive iodine (
131

I) 

Administration of 
131

I can be intravenous (IV), subcutaneous (SC) or oral.
31,37

 Thyroid 

cells actively take up stable or radioactive iodine and incorporate it into tyrosyl groups during 

thyroid hormone synthesis. Hyperplastic or tumoral thyrocytes are hyperactive and will take 

up more 
131

I as opposed to healthy cells. Uptake of 
131

I by normal cells is suppressed due to 
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the negative feedback system on the hypothalamic-pituitary-thyroid axis. Radioiodine 

undergoes  decay and emits -particles and -radiation. The -particles travel a maximum 

distance of approximately 2 mm, during which they cause local destruction of the surrounding 

follicle cells. Surrounding structures, such as the parathyroid and healthy suppressed thyroid 

cells, are spared.
31,35

 The -radiation penetrates the tissue, is less radiotoxic than the -

particles, and permits imaging with the -camera. Iodine not taken up by the thyroid is 

excreted in saliva and urine, and through the gastrointestinal system.  

Follow up after 
131

I therapy is very important. It is recommended to measure serum 

TT4, creatinine and BUN after 
131

I therapy. Healthy or atrophied thyrocytes must be activated 

again after treatment by the increased serum TSH concentration, and this can take several 

months. When cats have a low serum TT4 concentration 1 month after treatment, it is possible 

that healthy reactivated cells are not yet producing enough thyroid hormones. This production 

usually increases hereafter and euthyroidism is achieved 3 to 6 months after 
131

I 

administration.
37

 Optimal timing for assessment of renal function after treatment has not been 

investigated yet.    

Before treatment, a scintigraphic scan of the thyroid using pertechnetate (
99m

TcO4
-
) is 

often performed to investigate whether there is uni- or bilateral involvement of the thyroid 

lobes, and whether there is a presence of ectopic thyroid tissue or signs of malignancy. 

Pertechnetate is trapped by the thyroid gland in the same way as iodide but is not organified 

by the thyroid gland. It decays with -radiation, enabling visualization with a -camera. 

In rare cases the thyroid pathology can be malignant (adenocarcinoma). 

Adenocarcinoma gives non-homogenous uptake on the pertechnetate scan, however it can 

only be confirmed by histology. To treat a suspected adenocarcinoma, a higher dose of 
131

I of 

10 to 30 mCi is recommended.
38

   

 

1.4. Direct and indirect effects of thyroid hormones on kidney function 

The nephron is the functional unit of the kidney. It consists of the renal corpuscle and 

the tubule. The glomerulus is a dense network of capillaries and filtrates the blood. Filtered 

substances are re-absorbed from the tubular fluid in segments of the renal tubule. There is also 

secretion into the tubule of components from plasma like urea, electrolytes such as potassium 

and components produced by the tubular cell (Figure 6). Alterations of the tubular fluid take 

place in the formation of urine.
39 

The overall physiological effects of thyroid hormone are 

stimulatory: basal metabolic rate is increased, which demands for increased glycolysis, 
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gluconeogenesis, protein synthesis and lipid metabolism. The heart rate, cardiac output (CO) 

and blood flow are stimulated by thyroid hormones as well. 

 

 

Figure 6. The nephron in the kidney consists of the renal corpuscle and the tubule. 

Adapted from: www.recepticon.com/megalinreceptorimage. 

 

Both hyper- and hypothyroidism cause hemodynamic and vascular changes, which 

have an influence on kidney function through effects on renal blood flow. These changes are 

described schematically in Figure 7. 

 

1.4.1. Cardiac output 

Thyroid hormones have a positive chronotropic effect caused by changes in 

electrophysiological parameters, shortened atrio-ventricular conduction time and upregulated 

-receptors in cardiac tissue
40

 which results in tachycardia,
41

 and a positive inotropic effect 

caused by changes in several sodium, potassium and calcium channels and activity of myosin 

isoenzymes.
42,43

 CO is decreased in hypothyroidism
44 

which is caused by bradycardia, 

decreased ventricular filling and cardiac contractility.
45-47
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1.4.2. Systemic vascular resistance 

Systemic vascular resistance is decreased in the hyperthyroid state. Muscle tissue has a 

greater number of capillary vessels 
48,49

 and reduced contractility due to decreased response to 

norepinephrine and a direct effect of thyroid hormones on vascular smooth muscle cells.
50-52

  

 

 

Figure 7. Hemodynamic and vascular changes that have an effect on renal blood flow in 

hypothyroidism and hyperthyroidism. RAAS: renin-aldosterone-angiotensin-system. 

 

A higher number of vascular smooth muscle cells is relaxed due to an increased local 

release of vasodilators
53

 and responsiveness to the endothelium-dependent vasodilator 

acetylcholine (ACh)
54,55

 while activity of the endogenous renal vasoconstrictor endothelin is 

decreased.
56

 Activity of atrial natriuretic factor (ANF) is increased  in humans, rats, rabbits 

and dogs due to either a higher cardiac preload or a direct effect of T4 on gene expression.
57-61

 

Activity of nitric oxide synthase (NOS) and production of endothelium-derived relaxing 

factor nitric oxide (NO) is increased in the renal cortex and medulla.
55,62,63

 This can be 

regarded as a protective homeostatic effect in target organs of hypertensive disease and can be 

due to a direct effect of thyroid hormones on NOS activity. Indirect effects can be a response 

to high arterial pressure, hyperdynamic circulation with shear stress on the endothelium that 
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causes expression of NOS,
62,64

 or increased release of vaso-active substances.
62

 The decreased 

systemic vascular resistance combined with the changes in -adrenergic activity caused by an 

increased number of -adrenergic receptors in the renal cortex
65-67 

causes an increased activity 

of the renin-angiotensin-aldosterone system (RAAS). A direct effect of T3 on renin gene 

expression also enhances the RAAS activity. There is increased plasma renin concentration, 

synthesis of angiotensinogen in the liver, plasma angiotensin II, serum angiotensin converting 

enzyme (ACE) and angiotensin receptor density and renin release in humans, rats, rabbits an 

dogs.
58,60,68-73

 

 

1.4.3. Renal blood flow 

The increased CO caused by positive chronotropic and inotropic effects, decreased 

vascular resistance and increased blood volume by RAAS activation,
74

 leads to an increased 

renal blood flow (RBF) in hyperthyroid rats, humans and most likely in cats.
56,75,76

 

The decreased CO in hypothyroidism leads to a decreased RBF in rats, humans, and 

most likely in dogs.
77-79

 Glomerular lesions seen in hypothyroidism such as thickening of the 

basement membrane and increased mesangial matrix
44,80

 might contribute to the decreased 

RBF.  

Effects of hypo- or hyperthyroidism on RBF and on factors involved in RBF are 

described in Table 2. 

 

Table 2. Effects of hypo- and hyperthyroidism on RBF and on factors involved in RBF described 

in different species (superscript). 

 Hypothyroidism Hyperthyroidism 

RBF decreased 
rat, dog, human

 increased 
rat, cat, human

 

Chronotropic effect decreased 
human

 increased 
pig

 

Inotropic effect decreased 
human

 increased 
pig

 

Systemic vascular resistance increased decreased 

Vascular contractility increased 
rat

 decreased 
rat, rabbit, human

 

ANF decreased 
rat, dog, human

 increased 
rat, rabbit, dog, human

 

NOS decreased 
rat

 increased 
rat, human

 

 adrenergic receptor decreased 
rat, human

 increased 
rat, human

 

RAAS decreased 
rat, rabbit, dog, human

 increased 
rat, rabbit, human, dog

 

CO decreased 
rat

 increased 
rat, cat, human

 

RBF: renal blood flow, ANF: atrial natriuretic factor, NOS: nitric oxide synthase, RAAS: renin-

angiotensin-aldosterone system, CO: cardiac output. 
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1.4.4. Renal tubules 

Thyroid hormones have qualitative as well as quantitative effects on renal tubules. 

Renal tubules are hypertrophic and hyperplastic in hyperthyroidism, which leads to an 

increased tubular mass, kidney weight, mitotic index, DNA content with a constant 

protein/DNA ratio,
81

 renal expression of renin mRNA,
82

 metabolic level and increased tubular 

secretory and reabsorbtive capacity.
44,82,83

  

Hypothyroidism causes a decreased kidney-to-body weight ratio, though there is 

compensatory renal hypertrophy and increased protein/DNA ratio without changes in DNA 

content of renal cells.
81

 Thyroid supplementation and subsequent doubling of the kidney 

mass
84

 shows reversibility of the decreased kidney mass. Changes in characteristics of tubular 

function in hypo-and hyperthyroidism are described in Table 3. 

 
Table 3. Changes in characteristics of tubular function in hypo- and hyperthyroidism, described 

in different species (superscript). 

Tubular characteristics Hypothyroidism Hyperthyroidism 

All-over characteristics atrophic 
rat

 
hypertrophic and 

hyperplastic 
rat

 

DNA content unchanged 
rat

 increased 
rat

 

Protein/DNA ratio increased 
rat

 unchanged 
rat

 

Kidney weight decreased 
rat

 increased 
rat

 

Na
+
-K

+
-ATPase activity across 

basolateral membrane 

decreased 
rat, rabbit

 

 

activated 
rat

 

 

Na
+
 reabsorbtion through 

Na
+
/H

+
 exchanger (NHE) 

decreased 
rat

 

 

increased 
rat

 

 

Urine concentrating ability 

impaired 
rat

 

due to: 

 decreased osmotic driving force 
rat

 

 decreased response of vasopressin 

to osmotic stimuli 
rat

 

 impaired water handling 
human

 

decreased 
human

 

due to: 

 disturbed  

metabolisation or 

sensitivity of distal 

tubuli to vasopressin 

 reduced sodium 

concentration 
human

 

 osmotic diuresis 
human
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Tubular transport processes 

Thyroid hormones stimulate active, carrier-mediated tubular transport processes by an 

increased gene expression, synthesis and activity of carrier proteins,
85,86

 such as Na
+
-K

+
-

ATPase across the basolateral membrane, and Na
+
/H

+
 exchanger (NHE) activity in brush 

border membrane vesicles which leads to an increased uptake of Na
+
 in exchange for H

+
.
87

 

More specifically, NHE-2 and NHE-3 isoforms mRNA levels increase after transition from 

the hypothyroid to the hyperthyroid state.
88

 The increased tubular reabsorption of sodium 

combined with a decreased load of filtered sodium causes a decreased pressure-diuresis-

natriuresis response
89,90 

and enhanced Na
+
Ca

2+
 exchange activity and  Ca

2+
 reabsorbtion

91 
in 

the basolateral membrane through modulation of the uptake of Ca
2+

 in brush border 

membrane vesicles.  

The influence of short term hypothyroidism on tubular function is only modest,
92

 

however tubular transport capacity is below normal
77

 and phosphate reabsorption is reduced 

in the proximal tubule.
93

 Urinary acidification is impaired with increased sodium and 

bicarbonate excretion rates.
94

   

 

Ability to concentrate urine 

Human patients with thyrotoxicosis can have a decreased ability to concentrate urine
95 

though without clinical importance.
44

 A low urine specific gravity (USG) has also been 

described in hyperthyroid cats compared to healthy cats.
96,97

 Suggested reasons for the 

impairment of urine concentration are disturbances in the metabolism or sensitivity to 

vasopressin in the distal nephrons,
77

 reduced sodium concentration secondary to increased 

RBF
95 

or osmotic diuresis caused by an increased filtered solute.
98

 

Ability to concentrate urine is impaired in hypothyroidism.
99,100

 This is reversible with 

thyroid hormone replacement and is not associated with a decreased GFR, serum urea, solute 

excretion or plasma arginine-vasopressine (AVP) concentration.  

 

1.4.5. Glomerular filtration rate 

The ultrafiltrate is formed by the glomerulus into the capsule of Bowman by filtration 

through the glomerular capillary wall (Figure 8).  
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Figure 8. Schematic presentation of the afferent and efferent arterioles forming the glomerulus 

in the Bowman’s Capsule of a nephron. 

Adapted from: Weir.
101 

 

The rate of this filtration, the glomerular filtration rate (GFR), is the result of the mean 

net filtration pressure, the permeability of the filtration barrier and the surface available for 

filtration. The permeability is dependent on the structural and chemical characteristics of the 

glomerular capillary wall.
39

 GFR represents the magnitude of ultrafiltration of plasma in the 

first steps of urine formation. It is therefore regarded to be the best overall index of kidney 

function.
102

 Hyperthyroidism and hypothyroidism have a respectively increasing and 

decreasing effect on GFR through several mechanisms, which are described in Figure 9 and 

summarized in Table 4. 

 

Table 4. Effects of hypo- and hyperthyroidism on GFR and on aspects of kidney function with a 

direct or indirect effect on GFR described in different species (superscript). 

 Hypothyroidism Hyperthyroidism 

GFR decreased 
rat, dog, human

 increased 
rat, cat, human

 

Glomerular vasoconstriction increased 
efferent arterioles dog

 decreased 
afferent arterioles rat

 

Chloride channels decreased 
rat

 increased 
rat, human

 

Tubulo-glomerular feedback decreased 
rat

 increased 
cat

 

GFR: glomerular filtration rate. 
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Figure 9. Schematic overview of the major changes in the kidney leading to an effect on GFR in 

hyperthyroidism and hypothyroidism. GFR: Glomerular filtration rate.  

  

 Glomerular filtration rate in hyperthyroidism 

Hyperthyroidism increases GFR up to 18 % in hyperthyroid rats
103,104

 and humans
105

 

by several mechanisms.  It leads to a decreased resistance of afferent arterioles in the kidney 

which increases the glomerular hydrostatic pressure and subsequently GFR
106

 though it also 

increases the risk of hypoperfusion of the proximal tubule. The intrarenal feedback 

mechanism increases GFR to cope with the threatening hypoperfusion and the escape of urine 

entering the distal tubule which has to be replaced by delivery of proximal tubule fluid.
107

 

Thyroid hormones increase mRNA expression of chloride channels (ClC) in a dose-dependent 

way
108,109

 and increase activity of ClC and Cl absorption in the proximal tubule and Henle’s 

loop. Tubulo-glomerular feedback adjusts GFR after a decreased chloride load is sensed 

within the distal tubule by the macula densa.
96

 The increased GFR is reversed after treatment 

of hyperthyroidism in humans and cats.
96,97,105 

Glomerular filtration rate can be reduced up to 40 % in hypothyroid humans
92,104,105,110

 

and 30 % in hypothyroid rats.
103

 GFR has been reported to be decreased in dogs after 

thyroidectomy,
77

 and is significantly decreased in dogs diagnosed with thyroid 
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deficiency.
77,111

 The decreased GFR is corrected after treatment with thyroid hormone in 

humans with a normal renal function
79,92,105,112

 which is suggestive of only functional renal 

changes that do not cause permanent cellular damage.
112

  

 

Serum creatinine concentration 

Serum creatinine concentration is an indirect estimate of GFR and is often 

significantly decreased in humans with hyperthyroidism due to the increased GFR, increased 

clearance and tubular secretion of creatinine but also to decreased muscle mass.
113-116

 Serum 

creatinine concentration increases after therapy of hyperthyroidism.
105,113

 Serum concentration 

of cystatin C (CysC) is another estimator of GFR
117

 because it is freely filtered by the 

glomerulus, and catabolised by the tubuli.
118

 Serum CysC is independent of age, sex, 

malignancy or inflammation.
119

 However, intra-individual variability is high
120 

and thyroid 

hormones influence the general metabolism thereby increasing the production rate of CysC in 

humans
115,121,122

 and rats.
123

  

Serum creatinine is increased in hypothyroid humans caused by the reduced 

glomerular function and creatinine generation from possible myopathy and 

rhabdomyolysis.
80,124

 The increased serum creatinine is not caused by an impaired creatinine 

metabolism.
92

 It is reversible after treatment with thyroid hormone supplementation.
105,125

 

 

1.4.6. Proteinuria 

Proteinuria with an increased total urinary protein/creatinine ratio (UPC) and urinary 

albumin/creatinine ratio is often present in hyperthyroid humans and rats.
106,110,113

 It is not 

related to activity of the RAAS, blood pressure or oxidative stress
126,127

 though it can be a 

reflection of glomerular hypertension and hyperfiltration, changes in tubular protein handling, 

or a change in the structure of the glomerular barrier.
90

 Proteinuria resolves quickly after 

treatment of hyperthyroidism in humans.
113

 

Hypothyroid humans and rats can have an increased transcapillary leaking of the 

plasma proteins such as albumin which leads to mild proteinuria and albuminuria.
79,128,129

 The 

albuminuria is considered to be present before the decrease in GFR in hypothyroid patients.
110
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1.5. Evaluation of kidney function in hyperthyroid cats 

 

1.5.1. Measurement of glomerular filtration rate  

Routinely, kidney function is assessed through evaluation of BUN and creatinine 

measurements in serum.  However, these parameters only give a rough estimate of kidney 

function.  Indeed, 75 % of the kidney mass needs to be lost before these blood values 

increase. Measurement of GFR is a more efficient and accurate method for assessment of 

kidney function because it allows detection of a decreased glomerular function in an early 

stage of renal disease, before renal azotemia develops.
130

  

Clearance is defined as the volume of plasma cleared of a substance during a given 

interval of time (mL/min).
131

 GFR can be measured directly by measuring clearance of a 

filtration marker or indirectly and less sensitive with serum creatinine concentration. GFR can 

be measured with urine clearance of a substance which is not metabolized by the body, 

completely filtrated and not secreted nor reabsorbed by the tubules after filtration. When GFR 

is measured with plasma clearance, the substance can only be filtrated by the kidney.  

Renal clearance is calculated from the classical formula CLrenal = (U x Cu)/Cp, where U 

= urine flow (mL/min), Cu = marker concentration in urine (mg/mL), and Cp = marker 

concentration in plasma (mg/mL).
131

 Renal clearance of inulin is regarded the gold standard 

method, however only a few studies on urinary clearance of inulin in cats have been 

performed.
132-134

 Indeed, urinary clearance is highly cumbersome, is difficult to propose for 

client-owned cats, is tedious and time consuming for the staff, is stressful (e.g., anesthesia 

may be required) and potentially harmful (e.g., urinary tract infection) for the animal, and an 

accurate measurement of urine volume is often difficult. Another marker accepted for 

measuring renal clearance in cats is urinary clearance of exogenous creatinine.
132,135-138

 Other 

methods using different markers have been evaluated intensively in dogs and cats over the 

recent years, although an easy to apply method suitable for practice has not yet been found.  

Plasma clearance of an intravenous administered marker reflects total body clearance 

and is calculated by the formula CLplasma = D/AUC where D = dose of marker and AUC = 

area under plasma concentration versus time curve. The AUC is calculated with specific 

formulas according the appropriate pharmacokinetic model.
131

 To correct for the wide variety 

in body composition, plasma clearance must be standardized. In cats, normalization by body 

surface area, BW or extracellular fluid volume (ECFV) are all considered satisfactory.
139

 It is 

important to respect the number of samples and sampling time when plasma clearance is 
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measured. If renal function is normal or slightly reduced, elimination of the marker is 

generally achieved within 4-6 hours. However, most of the marker will still be in the body 

after 6 hours if renal function is severely reduced and it may be necessary to prolong the 

sampling period. Also, frequent sampling during the first half hour is necessary to avoid 

overestimation of clearance due to an erroneously small AUC. Markers for plasma clearance 

investigated for use in cats are inulin,
132,134,137,140-142

 iohexol,
136,138,139,141,143-145

 exogenous 

creatinine,
140,142,146 

and radiolabelled substances like 
99m

Tc-DTPA (diethylene triamine penta-

acetic acid), 
99m

Tc-mercaptoacetyl triglycine, 
131

I-IOH (orthoiodohippuric acid) and 
51

Cr-

EDTA (ethylene diamine tetraacetic acid).
134,147-150  

Studies comparing different methods of 

GFR measurement with regard to reproducibility and age in cats are lacking. Moreover, no 

studies investigating different GFR techniques over a period in which GFR is expected to 

change, nor studies investigating different GFR techniques over the complete range of GFR 

values expected in cats, have been performed. 

 

1.5.2. Retinol binding protein as an urinary marker 

The nephrons in the kidney consist of different regions with structural and functional 

specialization. Damage to a specific region would result in characteristic changes in the 

profile of biomarkers in the urine (urinary markers). Urinary biomarkers for diagnosis of 

acute renal failure in humans were recently reported.
151

 Further, urinary biomarkers prove to 

be an important tool for early assessment of therapeutic efficacy in clinical settings in human 

medicine.
152

 Damage to the kidney consists of a cascade of events, which will lead to kidney 

failure if not stopped. It is important to detect changes already early in the cascade. 

Depending on their origin in the kidney, biomarkers can be site-specific or reflect regional 

function.
153

 An overview of urinary tests for initial screening for nephrotoxicity is described 

in Table 5. There is a need in veterinary medicine for a simple urinary marker to detect early 

renal damage in hyperthyroid cats. New promising urinary markers are urinary N-acetyl--

glucosaminidase (NAG) and urinary retinol binding protein (RBP). Hyperthyroid cats had an 

increased urinary NAG concentration compared to healthy controls, though this did not 

change after treatment.
154
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Table 5. Overview of urinary markers with their corresponding unit of the nephron. 

Test Functional unit tested 

Albumin Glomerulus 

N-acetyl--glucosaminidase (NAG) Proximal tubule 

Retinol binding protein Proximal tubule (lysosomes) 

Alanine aminopeptidase Proximal tubule (brush border) 

Adapted from: Price.
153

 

 

Urinary NAG was higher before treatment in cats developing post-treatment renal 

azotemia compared to cats maintaining a healthy kidney function. Nevertheless, the 

usefulness of NAG in hyperthyroid cats for detection of tubular damage remains unclear from 

these preliminary data, moreover because hyperthyroid cats have an increased prevalence of 

urinary tract infection.
155

 Active infection of the urinary system also increases urinary 

NAG.
156

 

Urinary RBP is a tubular type of proteinuria. It is a highly sensitive index of renal 

tubular damage in humans because a minor decrease in tubular function may lead to RBP 

excretion in urine.
157,158

 RBP is a low molecular weight (MW) carrier protein of 21 kilodalton 

(kDa). RBP is a specific carrier for the lipophilic vitamin A (retinol) in blood, transporting the 

retinol ligand as a holo-RBP complex. Holo-RBP binds physiologically to transthyretin 

(TTR), the thyroid hormone transport protein in plasma, and this prevents the loss of both 

RBP and its bound retinol through glomerular filtration.
159

 Upon release of its ligand, the 

uncomplexed apo-RBP no longer has affinity for TTR and can be freely filtered in the 

glomerular ultrafiltrate and is normally reabsorbed through a megalin-receptor dependent 

endocytosis mechanism in the proximal tubules, where RBP is degraded.
160

 However, when 

tubular function fails, elimination of RBP shifts from intra-tubular catabolisation to urinary 

excretion.
161

 Although previous studies have investigated RBP in veterinary medicine, it was 

not yet detected in cat urine and its potential use as an early renal marker of renal damage 

needs to be investigated.
162-164 

 

1.5.3. Hyperthyroidism and kidney failure 

As mentioned earlier, hyperthyroidism is the most diagnosed endocrine disorder in 

geriatric cats with a median age at diagnosis of 13 years
165

 and is reported to affect 0.3 % of 
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all cats with no apparent sex or breed predilection.
166

 CKD affects 7.7 % of cats over 10 years 

of age and 15.3 % of cats over 15 years of age.
167,168

 Therefore it is not surprising that the 

prevalence of pre-existing CKD in hyperthyroid cats in different studies has been reported to 

be 14 % (n=167)
169

, 23 % (n=202)
26

, 27 % (n=22)
27 

and 40 % (n=22).
170

 It is important to 

mention that pre-existing renal disease is associated with shorter survival after treatment of 

hyperthyroidism.
169

 A summary of the literature concerning kidney function after treatment of 

hyperthyroid cats is outlined in Table 6.  

 

Table 6. Effect of treatment of hyperthyroid cats on kidney function.  

Ref. 

Number 

of cats per 

treatment 

method 

Period 

(days) 

USG 

 

 

 

pre 

USG 

 

 

 

post 

GFR 

 

 

 

pre 

GFR 

 

 

 

post 

Creatinine 

(mol/L) 

 

 

pre 

Creatinine 

(mol/L) 

 

 

post 

Azotemia 

Number 

(%) 

 

post 

96 

Tx: 

n = 13 
30 1.038 1.030 

2.51 

±0.69 

1.4 

±0.41 
111 ± 3 181 ± 53 n = 5 (39) 

Controls: 

n = 11 
- 1.058 1.058 

2.02 

±0.27 

2.18 

±0.5 
128 ± 18 136 ± 24 - 

171 

131
I: 

n = 27 
90 1.046 1.043 - - 115 ± 35 177 ± 53 - 

MMI: 

n = 9 
90 1.042 1.037 - - 150 ± 80 239 ± 221 - 

Tx: 

n = 22 
90 1.033 1.033 - - 150 ± 53 212 ± 71 - 

170 
131

I: 

n = 22 

6 

30 
1.032 

1.031 

1.028 
2.25 

2.1 

- 
115 ± 53 

106 ± 44 

168 ± 62 
- 

97 

MMI: 

n = 12 
42 1.041 1.033 

3.83 

±1.82 

2.02 

±0.81 
117 ± 18 159 ± 85 n = 2 (17) 

Controls: 

n = 10 
- 1.057 1.056 

1.83 

±0.56 

2.05 

±0.3 
144 ± 11 146 ± 14 - 

Adapted from: Daminet.
172

 MMI: Methimazole, Tx: thyroidectomy, USG: urine specific gravity, 

GFR: glomerular filtration rate mL/min/kg, pre: before treatment, post: after treatment. 

 

 Evaluation of kidney function in a cat with thyroid dysfunction is important but 

difficult at the same time, because clinical signs of hyperthyroidism and CKD overlap, and 

hyperthyroidism can mask and might even worsen CKD. A geriatric cat presented with 

weight loss, vomiting and polyuria and polydipsia can present clinical signs of both 

hyperthyroidism and co-existing CKD.
173

  

Systemic hypertension was previously assumed to be highly common in hyperthyroid 

cats.
174

 Systemic hypertension can be transmitted onto the glomeruli when there is failure of 

autoregulation.
171

 However, due to the more accurate and precise methods that are used for 

measuring blood pressure nowadays, systemic hypertension appears to be less common in 
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hyperthyroid cats than previously presumed and is not expected to be the most important 

mediator of progressive renal injury.
175,176

 Proteinuria is frequently present in hyperthyroid 

cats either developing azotemia or maintaining a healthy kidney function after treatment,
177

 

therefore a change in glomerular barrier is less likely.
178

  

USG is lower in cats with hyperthyroidism compared to healthy cats
96,97

 and 

decreases
96,170

 or remains equal
97,171 

after treatment, hence USG after treatment stays lower 

compared to USG in healthy cats.
96,97 

  

1.5.4. Hyperthyroidism masking co-existing CKD 

CKD can become apparent after treatment of hyperthyroidism. GFR and plasma 

creatinine have an inverse relationship in hyperthyroid cats before and after treatment. Plasma 

creatinine concentration is decreased in hyperthyroid cats and healthy cats supplemented with 

thyroxine,
75,96

 but values increase after treatment of hyperthyroidism.
96,170,171

 Glomerular 

filtration rate is increased in cats with hyperthyroidism, and decreases after treatment.
96,97,170

 

A proposed cause for the increased GFR is renal hypertrophy caused by hyperthyroidism. The 

hypertrophy reverses after treatment and might cause normalization of GFR per gram of renal 

tissue.
178

 This is however less likely because GFR is already decreased 6 days after 

treatment.
170

 Unmasking of renal failure with development of post-treatment renal azotemia is 

present in 39 % (n = 13)
96

, 17 % (n = 12)
97

, 37 % (n = 67)
169

 and ± 30 % of cats.
173

 

Cats with hyperthyroidism and pre-existing renal disease should first preferably 

undergo a reversible treatment of hyperthyroidism. This will allow to assess renal changes 

caused by the treatment of hyperthyroidism.
27

 The effects of methimazole treatment on renal 

function are reversible because discontinuation of methimazole in hyperthyroid cats 

developing post-treatment renal azotemia increases GFR and decreases serum creatinine 

concentration.
97

  

It would be ideal if pre-existing, though masked renal failure, could be detected in 

hyperthyroid cats, in order to predict post-treatment renal azotemia. An early detection of 

CKD before the onset of CKD and azotemia is crucial for good management of these 

patients.
179

 Several studies have showed that only pre-treatment assessment of GFR was 

predictive for development of CKD.
97,170

 Further, pre-treatment baseline values of serum 

creatinine, BUN and urinary protein or USG were not proven to be predictive for the 

development of CKD.
170,177,180 
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1.6. Diagnostic challenges with non-thyroidal illness 

 

1.6.1. Concurrent hyperthyroidism and CKD 

Diagnosing mild hyperthyroidism in cats with CKD can pose difficulties, because 

CKD can lower serum TT4 concentration into reference range values.
181,182

 CKD can act as a 

non-thyroidal illness (NTI) causing the euthyroid sick syndrome. The decrease in thyroid 

hormones is caused by changes in peripheral hormone metabolism, thyroid hormone binding 

proteins and central effects.
183-185

 Extrathyroidal conversion of T4 to T3 is decreased due to 

decreased delivery of T4 to intracellular deiodinases and activity of these deiodinases. At 

tissue level there is decreased uptake of T4 and T3, impaired activity of nuclear receptors to 

T3 and post-receptor actions of T3. Production of thyroid hormone-binding proteins 

(thyroxine binding globulin, transthyretin and albumin) and their affinity for thyroid 

hormones is decreased. Thyrotropin (TSH) secretion is decreased which causes a decreased 

thyroidal secretion of T3 and decreased availability of T4 for peripheral conversion to T3. The 

hypothalamic-pituitary axis is intact in human patients with CKD, because TSH can elevate in 

patients with CKD and primary hypothyroidism, and TSH is suppressed in patients with CKD 

and hyperthyroidism.
183-185

 The decreased TSH secretion despite the low level of circulating 

thyroid hormone explains the euthyroid sick syndrome as a host’s mechanism of defense 

against protein wasting and therefore treatment with thyroid hormone supplementation 

remains debatable in human medicine.
186,187

  

Other methods with less diagnostic value are analysis of fT4 which in these cats is 

only of limited value due to false positive concentrations in systemic illness,
188

 T3 

suppression test which has not yet been evaluated in cats with concurrent hyperthyroidism and 

CKD,
189

 or the TRH stimulation test which could not confirm hyperthyroidism in sick cats 

that were believed to be hyperthyroid.
190

 A recent study described TSH measurement in 

hyperthyroid cats with CKD.
182

 Results of the study seemed promising because there was a 

significant difference between cats with hyperthyroidism and concurrent CKD and cats with 

CKD or healthy cats. However, the assay used was a canine TSH assay and it was therefore 

not species specific. Moreover, it is a 1
st
 generation assay with low sensitivity. In human 

medicine, 3
rd

 and 4
th

 generation assays with higher sensitivity are used nowadays.
191

 Also, it 

was not validated in the higher range of TSH concentration expected in hypothyroid cats. 

Combined measurement of serum TSH with fT4 might be of merit in diagnosing 

hyperthyroidism in any cat with mild or previously diagnosed CKD.
182

 The diagnostic value 
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of TSH stimulation and/or thyroid scintigraphy in cats with CKD and suspected 

hyperthyroidism has not yet been investigated in cats.  

 

1.6.2. Post-treatment renal azotemia and low serum TT4 concentration 

Besides in cats with mild hyperthyroidism and CKD, a diagnostic challenge can also 

occur in cats developing a serum TT4 concentration below reference range and azotemia after 

irreversible treatment of hyperthyroidism. These cats could have iatrogenic hypothyroidism 

which occurs in 6  to 30 % of the cats treated with 
131

I and which could contribute to 

azotemia.
92,192-194

 However, these cats could also have CKD suppressing serum TT4 below 

reference ranges,
181,182

 or both. The differentiation between these two pathological conditions 

has not yet been investigated in cats, in contrast to dogs. Historically, most investigators 

regard the TSH response test as the best single test for evaluating canine thyroid function. 

This dynamic test has the advantage of better differentiating between a hypothyroid dog and 

one suffering from NTI.
195,196

  A recent study showed that quantitative measurement of 

thyroidal 
99m

TcO
-
 uptake had the highest discriminatory power in one study with regard to the 

differentiation between primary hypothyroidism and non-thyroidal illness.
11

 This diagnostic 

challenge has not yet received much attention in cats, as spontaneous hypothyroidism is 

extremely rare. 

 

Application of recombinant human thyrotropin (rhTSH) 

Recombinant human thyrotropin or thyrotropin  is a heterodimeric glycoprotein 

produced by recombinant DNA technology in a Chinese hamster ovary cell line.
197

 The 

principal clinical utility of rhTSH which has been approved is the  diagnostic monitoring in 

human patients with differentiated thyroid cancer. Recent investigations have also proven the 

use of rhTSH to enhance uptake of 
131

I (RAIU) in treatment of differentiated thyroid cancer 

with thyroid ablation by 
131

I 
198

 or in treatment of toxic and nontoxic nodular goiter.
199,200

 This 

results in therapeutic doses which are lower and therefore irradiation to extra-thyroidal tissue 

is decreased.
201-204

 Because reliable TSH assays have been developed in human medicine, 

there is no need for dynamic function testing with TSH stimulation in hypothyroid humans.
191

 

Limiting factors for the use of rhTSH in veterinary practice are the cost and the limited 

storage time after reconstitution of a vial. However, there was no proof of loss in biological 

activity in euthyroid dogs after storage of rhTSH at 4 °C for 4 weeks or at -20 °C for 8 weeks, 

which makes the clinical application of rhTSH in veterinary practice realistic.
205
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Administration of rhTSH in dogs causes significant elevation of serum thyroid hormones and 

rhTSH has comparable biological activity as bTSH in dogs.
206-210

 Also in cats, administration 

of rhTSH causes increased thyroid hormones in the serum.
211

 The  and  subunits of feline 

TSH show 68 %  and 88 % homology with human TSH respectively.
212

 This however does 

not seem to be of significant importance, because homologues glycohormones do not 

necessarily have the highest affinity for the receptor in the same species. For example, bovine 

and porcine TSH have higher affinities for the human TSH receptor than human TSH itself.
213

  

Hypothyroidism is considered one of the most difficult to diagnose canine endocrine 

disorders. Historically, the bovine TSH (and now rhTSH) response test was regarded as the 

best single test for evaluating canine thyroid function because it had the advantage of better 

differentiating between a hypothyroid dog and one receiving certain medications or suffering 

from a NTI.
209,210

 This has not yet been investigated in cats. 

Another area in which rhTSH could proof valuable, is administration of rhTSH 

previous to therapeutic 
131

I for treatment of hyperthyroidism. A recent study showed that 25 

g of rhTSH caused an increase in RAIU of 7 %.
214

  

 

1.7. Conclusion 

 

The influence of hyperthyroidism on kidney function is extensive. There is evidence 

that besides the glomerular changes described in hyperthyroid cats, tubular changes also 

occur. Radioactive iodine is the treatment of choice for feline hyperthyroidism, however an 

important aspect that must be considered is the declining kidney function after treatment. 

Kidney function could be evaluated in hyperthyroid cats by measurement of GFR or 

evaluation of urinary markers which appear when there is tubular damage. These could be an 

aid in the early detection of kidney dysfunction. The declining kidney function can also lead 

to challenges in the accurate diagnosis of iatrogenic hypothyroidism. 
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Introduction to Chapter 2 

 

Glomerular filtration rate (GFR) is regarded as the best overall index of kidney 

function. GFR can be measured directly by measuring clearance of a filtration marker. Renal 

clearance of inulin is considered the gold standard method, however it is cumbersome and 

rarely performed. In order to evaluate GFR in a feasible and reliable way in our further 

studies, we first had to compare and validate different techniques to measure GFR. 

In the first section (§ 2.1) we compared the plasma exogenous creatinine clearance test 

(PECCT), plasma exo-iohexol clearance test (PexICT) and plasma endo-iohexol clearance test 

(PenICT) in healthy cats, and investigated reproducibility and the ability to distinguish 

between GFR values caused by age differences.  

Another important point for GFR measurement is the ability to distinguish between 

GFR values measured over a time period in which the GFR is expected to change. A decrease 

in GFR is expected in hyperthyroid cats after treatment. In the following section (§ 2.2) we 

compared PECCT, PexICT and PenICT in hyperthyroid cats after treatment with radioiodine, 

as well as the distinguishment between GFR values measured at different time points after 

treatment. 

In the final section (§ 2.3), we evaluated the ability of these methods to detect 

differences in GFR between groups that represent the whole range of GFR which can be 

expected in cats: low in cats with CKD, normal in healthy cats and high in untreated 

hyperthyroid cats. 
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Summary 

 

Important characteristics determining the usefulness of a method for GFR 

measurement are convenience, availability, and reproducibility. The use of different plasma 

clearance methods could lead to different results and differences in reproducibility. 

Twelve healthy cats: 6 young adult cats (age 7-12 months) and 6 aged cats (age 9-12 

years) were included in this study. A cross-over design was used to compare the plasma 

clearance of exogenous creatinine (PECCT), exo-iohexol (PexICT), endo-iohexol (PenICT) 

and Chromium-51 ethylenediaminetetraacetic acid (
51

Cr-EDTA), and to investigate 

reproducibility of these methods. Cats of different ages were included to determine if 

differences in GFR in young adult versus aged cats would be detected with these methods. 

The PECCT, PexICT and PenICT were performed in a combined manner. Plasma data were 

subjected to non-compartmental (creatinine, exo-iohexol and endo-iohexol) or 

bicompartmental (
51

Cr-EDTA) analysis with a statistical moment approach. Area under the 

concentration-time curve was calculated using the trapezoidal rule with extrapolation to 

infinity. Statistical analyses were carried out using a random effects model.  

Globally, the 4 methods differed significantly in GFR assessment. Clearance of exo-

iohexol and 
51

Cr-EDTA showed the highest and lowest reproducibility, respectively. Only 

plasma clearance of creatinine differed significantly between young adult and aged cats. 

These findings should be taken into account not only in practice but also in future studies 

involving GFR measurement. 
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Introduction 

 

Kidney function can be crudely estimated by assessing blood urea nitrogen (BUN) and 

creatinine concentrations in serum, or more precisely evaluated by estimating glomerular 

filtration rate (GFR). Indeed, measurement of GFR allows detection of decreased kidney 

function in an early stage of kidney disease (International Renal Interest Society [IRIS] stage 

I), before insufficiency develops (IRIS stage II or higher).
1,2

 Important characteristics 

determining the usefulness of a method for GFR measurement are not only convenience and 

availability but also accuracy and reproducibility. Many methods have several disadvantages 

including labor intense nature, risks caused by anesthesia, cost of the test substance, assay of 

the substance used, or need for specialized licensing and equipment.  

 

The traditional gold standard for GFR measurement is urinary clearance of inulin. 

Urinary clearance of creatinine during exogenous creatinine administration is comparable 

with urinary clearance of inulin in cats.
3
 However, urinary clearance techniques have the 

disadvantage of being laborious and difficult to apply in a clinical setting.  

 

Studies have shown that GFR measurement using plasma clearance of iohexol (plasma 

iohexol clearance test, PICT) is comparable with urinary clearance of exogenous creatinine in 

healthy cats and dogs,
4,5

 and is useful for detection of renal dysfunction in cats.
6 

The PICT has 

good reproducibility in humans with normal or compromised renal function,
7-10

 as well as in 

dogs and in cats with normal renal function.
11,12

 Iohexol is best analysed by high performance 

liquid chromatography (HPLC) which has good specificity, sensitivity, accuracy, and 

reproducibility, and measures both stereoisomers exo- and endo-iohexol.
13

 Thus, PICT can be 

specified to plasma clearance of exo-iohexol and endo-iohexol (PexICT and PenICT, 

respectively). However, this method is expensive and not readily available in practice.  

 

In human medicine, radiolabelled markers that use chelating agents such as 

ethylenediaminetetraacetic acid (EDTA) or diethylenetriaminepentaacetic acid (DTPA) also 

have been introduced as alternatives to inulin clearance.
14

 Clearance of chromium-51 EDTA 

(
51

Cr-EDTA) shows excellent correlation to iohexol clearance in humans and is reproducible 

in humans with normal or compromised renal function and in dogs with normal renal 
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function.
15-19 

This method has not yet been investigated in cats. Disadvantages are the need for 

specialized licensing and equipment.  

 

A promising alternative for GFR measurement in cats is the plasma exogenous 

creatinine clearance test (PECCT)
20

 as it does not require specialized equipment, use of 

radionuclides, or anesthesia.
21

 PECCT could be an alternative to more complicated methods 

to assess GFR in a research setting and could even be used in referral practice. It is important 

however to assess accuracy and reproducibility of any clearance method before it can be used 

routinely in monitoring renal function in cats that are at risk for developing renal disease, in 

follow-up of treatment of kidney failure, or in a research setting. Combined use of creatinine 

and iohexol in a plasma exogenous creatinine-iohexol clearance test (PEC-ICT) has been 

described in cats
20

 and allows determination of 2 GFR methods with minimal stress for the 

animals and minimal variation between the 2 methods.  

 

Aging has a degenerative effect on the kidney, thereby decreasing glomerular function 

and decreasing GFR with increasing age. This inverse relationship has been described in 

humans and rats.
22,23 

Chronic kidney failure in cats increases in prevalence with increasing 

age. When kidney function is monitored in an aging cat, it is interesting to know whether 

GFR can be decreased due to physiological circumstances.  

Studies comparing different methods of GFR measurement with regard to 

reproducibility and age in cats are lacking. The objectives of this study were to compare and 

investigate the reproducibility of clearance of exogenous creatinine, exo-iohexol and endo-

iohexol, and 
51

Cr-EDTA. Cats of different ages were included to investigate whether these 

methods are capable of detecting differences in GFR between young adult and aged cats.  
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Materials and Methods 

 

Cats 

This study was conducted according to guidelines for animal care, with consent of the 

Ethical Committee of the Faculty of Veterinary Medicine from Ghent University, Belgium.  

Twelve healthy domestic shorthair cats were obtained from the population of laboratory 

animals of Ghent University. They were divided according to age in group 1 (n = 6; age 

range, 7-12 months; body weight (BW) range, 4.3-5.5 kg [mean ± standard deviation (SD), 

4.7 ± 0.5 kg]), and in group 2 (n = 6; age range, 9-12 years; BW range, 2.2-5.9 kg [mean ± 

SD, 4.9 ± 0.7 kg]). To assess the health of the cats, initial screening was performed, which 

included physical and routine laboratory examinations (CBC, biochemistry and measurement 

of total T4 [TT4], evaluation of feline immunodeficiency virus [FIV] and feline leukemia 

virus [FeLV] status), and systolic blood pressure measurement (Doppler method). Cats 

underwent abdominal ultrasonography and cystocentesis. Urinalysis (dip-strip tests, 

microscopic analysis, protein/creatinine ratio, urine specific gravity, and bacteriologic culture) 

also was performed. Cats were included in the study if these examinations showed no 

abnormalities. Cats were placed on a commercial diet (Hill’s Science Diet Adult Original Cat 

Food, Etten-Leur, The Netherlands) throughout the study. The cats were acclimated to the 

experimental conditions (food and investigator) for 2 weeks before the start of the study. Cats 

were fasted for at least 10 hours before the start of the clearance test and fed immediately after 

the end of the sampling period. Water was offered ad libitum.  

 

Experimental design  

A cross-over design was used to compare clearance and to investigate reproducibility 

for the PECCT, PexICT and PenICT. The study comprised a period of 8 weeks. The study 

design is shown in Table 1. To limit the number of cats undergoing the complete protocol of 

iohexol-creatinine clearance and 
51

Cr-EDTA clearance, and because the target population was 

aged cats, the complete protocol was only performed in 3 aged cats.  

Twelve healthy cats were divided into group I (n = 6) with young adult cats and group II (n = 

6) with aged cats. Cats in groups I were randomly assigned to subgroup I-A (n = 3) or I-B (n 

= 3); cats in group II were randomly assigned to subgroup II-A (n = 3) or II-B (n = 3). All cats 

in groups I and II underwent PEC-ICT on day 1 or 2 of week 1. All cats in subgroup II-A 

underwent 
51

Cr-EDTA clearance on day 1 of week 2. In week 3, tests performed during week 
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1 were repeated in all cats from group I and II. After a resting period of 3 weeks, the 
51

Cr-

EDTA clearance (as in week 2) was repeated in week 7 in all cats from subgroup II-A. 

Finally, in week 8, the same 3 cats from subgroup II-A underwent PEC-ICT on day 1 and 

51
Cr-EDTA clearance on day 2.  

 

Plasma exogenous creatinine-iohexol clearance test 

The PEC-ICT protocol was slightly modified from a method previously reported.
20

 

Animals received 40 mg/kg creatinine and 64.7 mg/kg iohexol (Omnipaque 300 (300 mg 

I/mL), Nycomed Imaging AS, Oslo, Norway). Creatinine was dissolved in 0.9 % sodium 

chloride (NaCl) (Natrii Chloridum 0.9 %, B.Braun Melsungen AG, Deutschland). First 

iohexol, then creatinine was administered IV in the cephalic vein. The dead space in the 

catheter was rinsed with 2 mL of 0.9 % NaCl and the timer was started. Blood samples (2 

mL) were taken by jugular venipuncture before iohexol-creatinine administration, after 5, 15 

and 30 minutes, and after 1, 2, 3, 6, 8 and 10 hours, and then placed in EDTA tubes and 

centrifuged. Aliquots of plasma were stored at -20 ºC until assayed.  

 

51
Cr-EDTA clearance test 

For every new day of 
51

Cr-EDTA clearance testing, a new stock of 
51

Cr-EDTA was 

made and aliquoted into parts for injection and parts to serve as standard for that particular 

day. A standard dose of approximately 1 g 
51

Cr-EDTA (equivalent to approximately 3.7 mCi) 

was injected IV. The catheter was flushed with 2 mL 0.9 % NaCl and the timer started. Blood 

samples (1 mL) were taken by jugular venipuncture after 5, 15 and 30 minutes, and after 1, 2, 

3, and 4 hours, placed in EDTA tubes and centrifuged. Plasma was stored at 4 ºC until 

assayed. The precise dose of injected 
51

Cr-EDTA was calculated by weighing the syringe 

before and after administration with comparison to the previously prepared standard.  

 

Assays 

Plasma creatinine was assayed by an enzymatic method (Vettest analyzer, Idexx 

Laboratories Europe B.V., Amsterdam, The Netherlands). This technique was validated in-

house by measuring samples with increasing creatinine concentration 4 times per day, on each 

of 3 consecutive days. Samples from the same animal of 2 separate GFR measurements were 

assayed on the same day. Quality control samples were measured on each day that a run of 

assays was performed. The limit of quantification was 13.6 mg/dL. Within- and between-day 
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coefficients of variation were < 3 % in the lower, upper-middle and higher range of 

concentration (1.6, 9.0 and 12.4 mg/dL, respectively), and there was linear correlation 

between theoretical and measured concentration within quantification limits. Accuracy varied 

from -0.7 % to 8.8 % for the different concentrations. The basal plasma creatinine 

concentration measured on the day of PECCT testing was subtracted from the creatinine 

concentrations measured in the samples from that cat. The basal plasma creatinine 

concentrations in groups 1 and 2 were 1.6 ± 0.2 mg/dL and 1.7 ± 0.2 mg/dL.  

Plasma concentrations of iohexol stereo-isomers exo-iohexol and endo-iohexol were 

determined by an HPLC method with ultraviolet (UV) detection, slightly modified from a 

method previously reported.
24

 A Varian Product (Varian, Walnut Creek, CA, USA) HPLC 

system equipped with a ternary gradient pump type 9012, an autosampler type Prostar 410 

and an UV-photo diode array (PDA) detector type Prostar set at 254 nm were used for the 

quantitation of both exo- and endo-iohexol. Chromatographic separation was achieved on a 

250 x 4.6 mm inner diameter (ID) polymer laboratories reversed phase-S polymeric column 

(Polymer Laboratories Ltd., Shropshire, UK) (8 m), attached to a guard column of the same 

type (5 x 3 mm ID). The mobile phase consisted of HPLC grade water and acetonitrile, run 

with a gradient solvent program. The flow rate was 1.0 mL/min. Samples were prepared by 

pipetting 100 L of plasma into a 1-mL Eppendorf tube (Novolab, Geraardsbergen, Belgium), 

followed by the addition of 100 L of HPLC grade water, 25 L of an internal standard 

solution of 5 mg/mL of iohexol impurity J: 5-amino-N,N’-bis(2,3-dihydroxypropyl)-2,4,6-tri-

iodobenzene-1,3-dicarboxamide (chemical reference substance [CRS] European 

Pharmacopoeia, Strasbourg, France) and 15 L of trifluoroacetic acid. After vortex mixing 

briefly and centrifugation (13.000 x g for 10 min at room temperature), the upper layer was 

transferred to a HPLC-vial and 50 L was injected on the HPLC instrument. For the 

preparation of the calibrators, the same procedure was followed with the exception that 100 

µL of appropriate solutions of iohexol (CRS) were added to 100 µl of blank cat plasma 

instead of 100 µl of HPLC grade water. The method was validated for exo-iohexol and endo-

iohexol before the start of the analysis. Calibration parameters were determined in accordance 

with the recommendations as defined by the European Union and with criteria based on the 

literature.
25-28

 Linear calibration curves (r  0.9965) were obtained at a low concentration 

range (1.2-11.9 g/mL for endo-iohexol and 8.8-88.1 µg/mL for exo-iohexol) and a high 

concentration range (11.9-595.0 µg/mL for endo-iohexol and 88.1-6607.5 g/mL for exo-

iohexol). The goodness-of-fit coefficient was < 10 % for both calibration curves. The within- 
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and between-day precision fell within the ranges specified by Heitzman at 4 different 

concentrations (1.2-11.9-59.5-595.0 µg/mL for endo-iohexol and 8.8-88.1-440.5-4405 g/mL 

for exo-iohexol); i.e. coefficient of variation (CV)  5 %.
27

 The trueness fell within ranges of  

-20 % to +10 % at the same concentrations and varied between -9.5 % and + 6.5 %. The limit 

of detection (LOD) was defined as the lowest concentration of iohexol that could be 

recognized by the detector with a signal-to-noise ratio of  3 and was calculated to be 0.97 

and 4.7 µg/mL for endo-iohexol and exo-iohexol, respectively. The limit of quantification 

(LOQ) was defined as the lowest concentration for which the method was validated with a 

trueness and precision that fall within the recommended ranges and was set at 1.2 and 8.8 

g/mL for endo-iohexol and exo-iohexol, respectively. Retention times for both isomers were 

6.23 and 6.73 min for endo-iohexol and exo-iohexol, respectively. The ratios of exo- and 

endo-iohexol stereo-isomers were quantified in the analytical standard (88.1 % exo-iohexol 

and 11.9 % endo-iohexol) and in the Omnipaque solution administered (81.9 % exo-iohexol 

and 18.1 % endo-iohexol). 

The counts from radioactivity of 
51

Cr-EDTA in each plasma sample were measured 

for 3 minutes in a gamma counter (COBRA II Auto Gamma Counter Packard, model 05003 

S/N 41110, Canberra Group, Zellik, Belgium). Each time a run of measurements was 

performed, the method was validated by measuring the counts of the standard made from the 

same stock as the solution injected, and each time a zero sample was measured to correct for 

background signal. 

 

Pharmacokinetic analysis   

All analyses were performed using WinNonlin (WinNonlin Version 4.0.1, Scientific 

Consulting Inc. Apex, NC). Plasma data were subjected to non-compartmental analysis 

(creatinine, exo-iohexol and endo-iohexol) or bicompartmental analysis (
51

Cr-EDTA) with a 

statistical moment approach. The area under the plasma concentration versus time curve 

(AUC) was calculated using the trapezoidal rule with extrapolation to infinity, as described by 

Watson et al.
21

 Plasma clearance of creatinine, exo-iohexol and endo-iohexol and 
51

Cr-EDTA 

was determined by dividing dose administered by AUC, and indexed to BW (mL/min/kg).  

 

Statistical analysis 

A mixed model with cat as random effect was fitted to the GFR data (SAS Version 

9.1, SAS Institute. Inc., Cary, IN). First, the different techniques were compared with one 
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other by a mixed model with cat as random effect and technique, week and age (young adult 

or aged) as categorical fixed effects at a global significance level of 0.05. The 4 techniques 

were compared pairwise at a Bonferroni-adjusted comparison-wise significance level of 0.008 

(= 0.05/6). Both a global analysis and separate analyses for young and aged cats were 

performed. The Bland-Altman approach was used to measure bias over the range of values. 

The graph generated from this approach displays a scatter diagram of the differences between 

creatinine and exo-iohexol clearance and endo-iohexol clearance, and between exo-iohexol 

and endo-iohexol clearance on the y-axis plotted against the averages of the 2 measured 

clearances on repeated occasions on the x-axis. The correlation among exo-iohexol, endo-

iohexol and creatinine was quantified by the Spearman rank correlation coefficient. Secondly, 

reproducibility was investigated. The residual variance (RV) describes the variability between 

the repeated measures of the same cat with the same technique, and its estimate therefore is a 

measure of test reproducibility. Reproducibility was expressed as the between-day CV and 

given by the square root of the residual error divided by the overall mean. The maximum 

difference (MD) was the absolute difference between the highest and lowest GFR 

measurement. GFR measurements were compared between young adult and aged cats to 

assess whether there was an age effect when a specific method was used. All results are 

expressed as mean ± SD. 

 

Table 1. Study design. 

Week 1 2 3 4-5-6 7 8 

Day 1 2 1 1 2 

Resting 

period 

1 1 2 

Clearance 

method 

PECCT 

PenICT 

PexICT 

PECCT 

PenICT 

PexICT 

51
Cr-

EDTA 

PECCT 

PenICT 

PexICT 

PECCT 

PenICT 

PexICT 

51
Cr-

EDTA 

PECCT 

PenICT 

PexICT 

51
Cr-

EDTA 

Group
a
 

I-A 

II-A 

I-B 

II-B 
II-A 

I-A 

II-A 

I-B 

II-B 
II-A II-A II-A 

PECCT, plasma exogenous creatinine clearance test; PexICT, plasma exo-iohexol clearance test; 

PenICT, plasma endo-iohexol clearance test; 
51

Cr-EDTA, chromium-51 

ethylenediaminetetraacetic acid.  

a
 Group I comprised young adult cats (n = 6), divided into 2 subgroups I-A (n = 3) and I-B (n = 

3). Group II comprised aged cats (n = 6), divided into 2 subgroups II-A (n = 3) and II-B (n = 3). 
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Results  

 

Pharmacokinetic analysis 

Figure 1 represents the plasma concentration versus time curves of plasma creatinine 

clearance, exo-iohexol and endo-iohexol clearance in the repeated weeks. The proportions of 

the AUC extrapolated to infinity for creatinine, exo- and endo-iohexol in the total group and 

the young adult and aged cats separately are presented in Table 2. The AUC was not 

calculated for 
51

Cr-EDTA. The plasma curves for exo-iohexol have the largest AUC thereby 

expressing the lower GFR. 

 

GFR measurements 

The mean, standard deviation, and range for the plasma clearance of creatinine, exo-

iohexol and endo-iohexol, and 
51

Cr-EDTA are presented in Table 3. The correlation among 

creatinine, exo-iohexol and endo-iohexol was good. The correlation between creatinine and 

exo-iohexol was highest, where Spearman rank was 0.866 (P < 0.001). Globally, the 4 

methods differed significantly (P < 0.001) in GFR assessment. The largest difference was 

between endo-iohexol and exo-iohexol (1.2 mL/min/kg, P < 0.001) and the smallest 

difference was between 
51

Cr-EDTA and exo-iohexol (-0.2 mL/min/kg, P < 0.001). Also, in 

young adult cats there were significant (P < 0.001) differences among creatinine, exo-iohexol 

and endo-iohexol clearance. In aged cats, there were significant (P < 0.0001) differences 

among the 4 methods, except when exo-iohexol was compared with 
51

Cr-EDTA (P = 0.012) 

or with creatinine (P = 0.074). Figure 2 describes the Bland-Altman approach. A clear bias is 

visible for comparison between creatinine and exo-iohexol (graph A) and between exo-

iohexol and endo-iohexol (graph C), as with increasing average of GFR, the difference 

between GFR measurements is increasing.  

 

Reproducibility 

Residual variance, between-day CV and maximum difference are given in Table 4. 

Reproducibility was the highest for exo-iohexol clearance, followed by creatinine clearance, 

endo-iohexol clearance and 
51

Cr-EDTA clearance. Reproducibility is demonstrated in Figure 

1, where curves of different methods agree among different weeks. RV differs significantly 

between creatinine and exo-iohexol clearance (P = 0.021) and between exo- and endo-iohexol 
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clearance (P = 0.003). When different methods were compared within young adult or aged 

cats, reproducibility of endo-iohexol in aged cats was the lowest.  

 

Age effect 

There was a significant difference between young adult and aged cats for creatinine clearance 

(P = 0.039), but no significant age effect for clearance of exo-iohexol (P = 0.41) or endo-

iohexol (P = 0.75). 
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Figure 1. Plasma concentration versus time curves from repeated measurements for plasma 

creatinine clearance (o), exo-iohexol (+) and endo-iohexol (∆) of 12 healthy young adult (A-F) 

and aged (G-L) cats. 
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Figure 2. Bland-Altmann plots of plasma creatinine and exo-iohexol clearance (A), creatinine 

and endo-iohexol clearance (B), and exo-iohexol and endo-iohexol clearance (C). The middle 

horizontal line corresponds to the average difference; the upper and lower horizontal lines 

correspond to the 95% limits of agreement. All cats (n = 12) were assessed at week 1 (+), week 3 

(o) and week 8 (∆). 

 

Table 2. Proportion of the AUC extrapolated to infinity in plasma concentration versus time 

curves of creatinine, exo-iohexol and endo-iohexol in 12 healthy cats. 

 
Complete group 

(n = 12) 

Young adult cats 

(n = 6) 

Aged cats 

(n = 6) 

PECCT 9 % 6  % 12 % 

PexICT 9 % 11 % 8 % 

PenICT 11 % 10 % 12% 

AUC, area under the curve; PECCT, plasma exogenous creatinine clearance test; PexICT, 

plasma exo-iohexol clearance test; PenICT, plasma endo-iohexol clearance test. 
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Table 3. Mean ± standard deviation (range) of GFR measurements (mL/min/kg) with creatinine, 

exo-iohexol and endo-iohexol, and 
51

Cr-EDTA clearance in healthy cats. 

  
Complete group 

(n = 12) 

Young adult 

cats (n = 6) 

Aged cats 

(n = 6) 

PECCT Total period 2.3 ± 0.66 2.7 ± 0.52 2.0 ± 0.57 

  (1.2 - 3.6) (1.7 - 3.6) (1.2 - 3.3) 

 week 1 2.5 ± 0.63 2.8 ± 0.52 2.2 ± 0.64 

  (1.6 - 3.6) (2.2 - 3.6) (1.6 - 3.3) 

 week 3 2.4 ± 0.62 2.7 ± 0.58 2.0 ± 0.50 

  (1.5 - 3.4) (1.7 - 3.4) (1.5 - 2.7) 

 week 8   1.4 ± 0.21 

    (1.2 - 1.6) 

PexICT Total period 1.7 ± 0.29 1.8 ± 0.27 1.7 ± 0.28 

  (1.2 - 2.1) (1.4 - 2.2) (1.2 - 2.1) 

 week 1 1.8 ± 0.27 1.8 ± 0.28 1.8 ± 0.29 

  (1.3 - 2.1) (1.4 - 2.1) (1.3 - 2.1) 

 week 3 1.7 ± 0.31 1.8 ± 0.30 1.6 ± 0.29 

  (1.3 - 2.2) (1.4 - 2.2) (1.3 - 2.0) 

 week 8   1.5 ± 0.26 

    (1.2 - 1.7) 

PenICT Total period 3.0 ± 0.64 3.1 ± 0.54 2.9 ± 0.71 

  (2.0-4.6) (2.0 - 3.7) (2.1 - 4.6) 

 week 1 3.1 ± 0.73 3.1 ± 0.61 3.2 ± 0.88 

  (2.0-4.6) (2.0 - 3.6) (2.1 - 4.6) 

 week 3 2.9 ± 0.53 3.1 ± 0.52 2.7 ± 0.52 

  (2.1 - 3.7) (2.2 - 3.7) (2.1 - 3.6) 

 week 8   2.5 ± 0.55 

    (2.0 - 3.1) 
51

Cr-EDTA
a
 Total period   1.34 ± 0.59 

    (0.8 - 2.5) 

 week 2   0.87 ± 0.07 

    (0.8 - 0.9) 

 week 7   1.1 ± 0.27 

    (0.9 - 1.4) 

 week 8   2.0 ± 0.43 

    (1.7 - 2.5) 

GFR, glomerular filtration rate; PECCT, plasma exogenous creatinine clearance test; PexICT, 

plasma exo-iohexol clearance test; PenICT, plasma endo-iohexol clearance test; 
51

Cr-EDTA, 

chromium-51 ethylenediaminetetraacetic acid. 

a
 Only three cats underwent 

51
Cr-EDTA test. 
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Table 4. Reproducibility of GFR measurements using creatinine, exo-iohexol and endo-iohexol, 

and 
51

Cr-EDTA clearance in 12 healthy cats globally and young adult and aged cats separately. 

  
Complete 

group (n = 12) 

Young adult 

cats (n = 6) 

Aged cats    

(n = 6) 

PECCT RV 0.165 0.139 0.183 

 CV 17.31 % 13.69 % 21.58 % 

 MD 1.0 1.0 0.7 

PexICT RV 0.0153 0.009 0.019 

 CV 7.05 % 5.25 % 8.28 % 

 MD 0.4 0.2 0.4 

PenICT RV 0.175 0.033 0.266 

 CV 14.16 % 5.97 % 19.07 % 

 MD 1.4 0.5 1.4 
51

Cr-EDTA
a
 RV   0.344 

 CV   43.72 % 

 MD   1.60 

GFR, glomerular filtration rate; PECCT, plasma exogenous creatinine clearance test; PexICT, 

plasma exo-iohexol clearance test; PenICT, plasma endo-iohexol clearance test; 
51

Cr-EDTA, 

chromium-51 ethylenediaminetetraacetic acid. 

RV, residual variance; CV, between-day coefficient of variation; MD, maximum difference. 

a
 Only three cats underwent 

51
Cr-EDTA test. 
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Discussion 

 

In the present study, we investigated GFR measurements, reproducibility and age 

effect for clearance of exogenous creatinine, exo-iohexol and endo-iohexol, and 
51

Cr-EDTA 

in healthy young adult and aged cats. Clearance of 
51

Cr-EDTA has never been studied in the 

cat, and plasma clearance of exogenous creatinine has been investigated only minimally in 

cats.
20 

Therefore, this study is the first to report GFR results using these methods. Plasma 

clearance with exo-iohexol reported in this study was lower compared to values described in 

the literature,
5,6,12,29,30

 but in agreement with studies using the same analysis method.
20

 Plasma 

clearance using iohexol has been investigated thoroughly in cats, but frequently colorimetric 

methods,
5,6

 atomic emission spectroscopy,
12

 or most commonly x-ray fluorescence 

methods
29,30

 are used. The latter has a high detection limit and requires a higher dose of 

iohexol to be administered with increased risk for toxicity.
31

 The colorimetric method is 

nonlinear above 120 mg/L.
32

 These 3 methods measure the amount of iodine in the sample, 

which agrees with the total amount of iohexol instead of exo-iohexol or endo-iohexol 

specifically. Conversely, HPLC measures the amount of exo-iohexol and endo-iohexol in the 

sample. When HPLC is used for iohexol analysis in plasma clearance of dogs, exo-iohexol 

frequently is selected as a GFR marker.
11,13

 However, discrepancies have been described 

between GFR calculation using exo- and endo-iohexol in dogs
13

 and cats,
20

 although not in 

humans.
15

 In this study, there was a significant difference in the clearance of exo-iohexol and 

endo-iohexol. The ratio between exo-iohexol and endo-iohexol is constant, so the reason for 

this difference is unclear.  

 

Correlation among clearances of creatinine, exo-iohexol and endo-iohexol was high. 

However, the correlation coefficient does not measure agreement among methods but only the 

strength of relationship among the methods. Agreement can be shown graphically with the 

use of Bland-Altman plots (Figure 2), which visualize between-method differences in GFR as 

a function of the average GFR over the 2 methods.
33

 The difference between exo-iohexol 

clearance and creatinine clearance increased, as did the difference between exo-iohexol and 

endo-iohexol clearance with increasing mean GFR. This finding can be the result of an 

overestimation of creatinine and endo-iohexol clearance, an underestimation of exo-iohexol 

clearance, or both. Mean difference was the highest between exo-iohexol and endo-iohexol. 

The limits of agreement were wide for all between-method differences. Whether the observed 
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differences among the different methods in healthy cats are acceptable in clinical practice 

must be addressed by evaluating clearance of creatinine, exo-iohexol and endo-iohexol and 

51
Cr-EDTA in a clinical setting with healthy cats and cats expected to have either decreased or 

increased GFR.  

 

Differences can be due to systematic methodological errors or to biological differences 

in the renal handling of the substances.
34

 Methodological errors can result from laboratory 

variation, calculation of the dose of the test substance, or the degree of binding of the filtered 

substance to its tracer (iodine and 
51

chromium). GFR measurement by means of clearance of 

51
Cr-EDTA was assessed in only 3 of the aged cats, on different occasions as compared with 

the combined PEC-ICT. The small number of cases and time-related difference of 
51

Cr-EDTA 

clearance can result in methodological errors. In our study, all of the 3 substances used were 

assayed in different laboratories. The enzymatic method used for creatinine assay is not 

considered the gold standard method but is the most frequently used in routine clinical 

laboratories. However, the creatinine as well as the iohexol assay were validated previously 

and the 
51

chromium assay was validated with every run of assays. Storage time and 

temperature of samples were comparable for both iohexol and creatinine. Also, a non-

compartmental pharmacokinetic model was used to assess GFR using creatinine, exo-iohexol 

and endo-iohexol, as described in dogs.
13,21

 This method is different from the 

bicompartmental approach for GFR calculation with 
51

Cr-EDTA in this study, also described 

in dogs.
19

 Furthermore, because a combined PEC-ICT was used, factors related to the cats 

themselves cannot completely explain the difference in plasma clearance by means of  

creatinine, exo-iohexol and endo-iohexol.  

 

A method that is used to measure GFR must have high reproducibility in research 

settings. The CVs for reproducibility were < 22 % for all markers except 
51

Cr-EDTA. This 

variation is not excessively high and means that a change in GFR in 1 cat from 2.5 to 2 

mL/min/kg (ie a decrease of 0.5 mL/min/kg) can be due to between-day variability and not to 

a biological change. At least two thirds to three quarters of renal function must be impaired to 

induce changes in routine indirect parameters of renal function such as serum creatinine 

concentration. In the present study, a change greater than 7 to 17% for the whole tested 

population could be considered clinically relevant. Therefore, the reproducibility, except for 

51
Cr-EDTA, is sufficient for screening patients for early renal dysfunction (e.g. a decrease by 
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50% in GFR, from 2.5 to 1.25 mL/min/kg). Nevertheless, increased precision in GFR 

measurements could allow detection of subtle changes in renal function in different 

physiologic and disease states. 

 

We found good reproducibility for the clearance of exo-iohexol. This finding is in 

accordance with other studies. Becker et al. repeated plasma iohexol clearance in healthy cats 

and found there was no significant difference between the mean GFR on initial and repeat 

evaluation.
12 

Miyamoto found a CV of 5 ± 3% for 2 consecutive iohexol clearance studies in 4 

healthy cats.
5
 In this study, the clearance of creatinine had lower reproducibility compared to 

exo-iohexol and endo-iohexol, because variability among repeated measures of the same cat 

was larger. In dogs, several factors such as state of hydration, food intake, and adrenergic 

stimulation may cause fluctuation in GFR.
35

 However, clearances of creatinine, exo-iohexol 

and endo-iohexol were measured simultaneously, therefore if 1 or more of these factors were 

present, it would have influenced the reproducibility of all markers. Factors related to 

individual cats have more influence on the clearances of creatinine and endo-iohexol, because 

variance between repeated measures in the same cat is larger for these clearances compared to 

exo-iohexol clearance.  

 

This study suggests that the PECCT may be good as an alternative method for GFR 

measurement. Calculation of GFR from clearance of creatinine is in agreement with values of 

GFR described in the literature.
20,36-38

 There was no significant difference between clearance 

of creatinine and exo-iohexol in the aged cats, which is the major target population for GFR 

measurement. Reproducibility was acceptable and, more importantly, this study reported a 

significant difference in GFR measurement using creatinine clearance between young adult 

and aged cats. Possibly, clearance of creatinine has a higher sensitivity to detect changes in 

GFR, or the results are an artifact due to the lower reproducibility of creatinine clearance. 

Weaknesses of this study were the use of clearance of exo-iohexol and endo-iohexol for 

comparison instead of the gold standard method being urinary clearance of inulin. Additional 

studies are required to determine which technique is most accurate for assessment of GFR in 

young and aged cats. In these studies, the differences in reproducibility must be considered. 

However, only a few studies on urinary clearance of inulin in cats have been performed. 

These give comparable values for GFR (mL/min/kg): 2.71 ± 0.12 (mean ± SD),
36

 3.51 ± 0.6 

(mean ± SD),
37

 and 3.01 (median; range, 1.91-4.67).
39

 Nevertheless, differences in the 
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protocols, and differences in the number and age of animals could account for differences 

among these GFR values measured by inulin clearance and the results in the present study. 

 

The lower creatinine clearance with increasing age observed in the present study also 

has been described in humans and rats.
22,23

 Possible explanations for this lower value in cats 

could be the same as for humans and rats, being either structural or hemodynamic changes in 

the kidney or both. Histological studies in humans and rats describe focal and segmental 

glomerulosclerosis causing a decrease in functional glomeruli which decreases creatinine 

clearance and increases the prevalence of microalbuminuria.
23,40-42 

Hemodynamic causes are 

increased renal vasoconstriction, as well as loss of hydraulic permeability and reduction of 

filtration surface leading to decreased renal blood flow and GFR.
22,43

 To the authors’ 

knowledge this is the first study that included cats of different ages to investigate whether 

differences in GFR  in young adult versus aged cats would be detected using these methods. 

Our study suggests the possibility of lower GFR with increased age when creatinine clearance 

is used. Nevertheless, additional studies in larger populations still are needed to determine the 

potential effect of aging on GFR and concomitant histopathological changes in cats, and the 

best way to detect a true age effect is to perform longitudinal follow-up in the same 

individuals.  

 

Conclusion 

 

The considerable differences in reproducibility found in this study should be taken into 

account in practice and in future studies to determine which technique is most accurate for 

detecting the possible difference in GFR between young adult and aged cats.  
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Summary 

 

Glomerular filtration rate (GFR) can be measured by clearance methods of different 

markers showing discrepancies and different reproducibility in healthy cats. Studies 

comparing different methods of GFR measurement in hyperthyroid cats have not yet been 

performed. Plasma clearance of exogenous creatinine (PECCT), exo-iohexol (PexICT) and 

endo-iohexol (PenICT) could lead to differences in GFR measurement and the need to use the 

same clearance method when comparing GFR before and after radioiodine treatment in 

hyperthyroid cats. 

Fifteen client-owned hyperthyroid cats were included. GFR was measured 1 day 

before and 1, 4, 12 and 24 weeks after treatment. Intravenous injection of iohexol was 

followed immediately by IV injection of creatinine. Plasma creatinine was measured by an 

enzymatic method. Plasma endo- and exo-iohexol were measured using high performance 

liquid chromatography coupled to ultraviolet (UV) detection. 

Globally, the 3 GFR methods resulted in significantly different GFR results. GFR 

results among the different methods were the same at all time points. All 3 techniques showed 

decreasing GFR after 
131

I treatment. For each GFR technique, a significant decrease in GFR 

was observed between time point 0 and all other time points. This decrease stabilized 4 weeks 

after treatment, with very little decline afterwards. It is mandatory to use the same GFR 

technique in follow-up studies. GFR testing at 4 weeks post treatment allowed assessment of 

the final renal functional loss after treatment in hyperthyroid cats.  
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Introduction 

 

Glomerular function can be crudely estimated by assessing circulating blood urea 

nitrogen (BUN) and creatinine concentrations or more precisely evaluated by estimating 

glomerular filtration rate (GFR). Measurement of GFR allows detection of decreased kidney 

function at an early stage of kidney disease (International Renal Interest Society [IRIS] stage 

I), before insufficiency develops (IRIS stage II or higher).
1,2

 The traditional gold standard for 

GFR measurement is urinary clearance of inulin. However, only a few studies on urinary 

clearance of inulin in cats have been performed.
3-5

 In cats, the urinary clearance of exogenous 

creatinine is comparable to the urinary clearance of inulin.
6 

 

Plasma clearance techniques have the advantage of being less laborious and easier to 

apply in a clinical setting than urinary clearance techniques. GFR measurement using plasma 

clearance of iohexol (plasma iohexol clearance test, PICT) provides comparable results as 

urinary clearance of exogenous creatinine in healthy cats and dogs
7,8

 and is useful for 

detection of renal dysfunction in cats.
9
 With high performance liquid chromatography 

(HPLC), both stereoisomers of iohexol (i.e., exo-iohexol and endo-iohexol) can be measured. 

For this reason, use of HPLC allows determination of the plasma clearance of both exo-

iohexol and endo-iohexol (PexICT and PenICT, respectively), thereby providing 2 measures 

of GFR after iohexol administration.
10

 However, HPLC is expensive and not readily available 

in veterinary practice.  

 

The plasma clearance of exogenous creatinine (plasma exogenous creatinine clearance 

test, PECCT) seems to be a promising alternative for GFR measurement in cats. The PECCT 

is less complicated and does not require specialized equipment, use of radionuclides, or 

anesthesia,
11

 and therefore can be used in clinical practice.
12

 Combined use of creatinine and 

iohexol in a plasma exogenous creatinine-iohexol clearance test (PEC-ICT) also has been 

described in cats,
12,13

 and allows determination of different measures of GFR with minimal 

stress for the animals and minimal time- and space-related variation among the methods.  

 

Cardiac output (CO) is increased in thyrotoxicosis due to positive chronotropic and 

inotropic effects, decreased systemic vascular resistance, and activation of the renin-

angiotensin-aldoseterone-system (RAAS).
14

 Autoregulatory mechanisms in the kidney of 
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healthy animals would counteract these changes thereby maintaining normal GFR. In 

thyrotoxicosis, however, intrarenal vasodilatation occurs, which, combined with increased CO 

causes increased renal blood flow (RBF), glomerular hydrostatic pressure, and GFR.
15 

Autoregulatory mechanisms in the kidney that respond to the increased sodium and chloride 

reabsorption in the tubules caused by the thyrotoxicosis lead to an additional increase in 

GFR.
16-18

  

 

GFR will decrease after restoring euthyroidism in hyperthyroid cats, regardless of the 

treatment chosen.
18-20

 Increased pre-treatment GFR can mask underlying decreased kidney 

function that then is identified after treatment.
18,21

 The objective of this study was to evaluate 

3 different GFR assessment methods (PECCT, PexICT and PenICT) for follow-up of renal 

function in hyperthyroid cats before and after treatment with 
131

I. 
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Materials and Methods 

 

Cats 

Fifteen client-owned hyperthyroid cats were included in the study. Age at time of 

inclusion in the study was 12.7 ± 2.2 years. Cats were studied when diagnosed with 

hyperthyroidism, presented for treatment with radioiodine at the faculty of veterinary 

medicine of Ghent University (Belgium) and 24 weeks after treatment (i.e., decrease in serum 

total thyroxine [TT4] concentration and amelioration of clinical signs). Diagnosis of 

hyperthyroidism was based on clinical signs compatible with hyperthyroidism, increased TT4 

serum concentration and increased thyroidal uptake of 
99m

TcO4
-
. To assess the clinical 

condition of the cats, initial screening included physical and routine laboratory examinations 

(e.g., CBC, biochemistry).  GFR was measured 1 day before and 1, 4, 12 and 24 weeks after 

treatment with 
131

I. Biochemistry and measurement of TT4 were repeated 1, 4, 12 and 24 

weeks after treatment. Cats maintained their original diet throughout the study period.  

 

Plasma Exogenous Creatinine-Iohexol Clearance Test 

Cats were fasted for at least 10 hours before the start of the clearance test and fed 

immediately after the end of the sampling period. Water was offered ad libitum. GFR was 

measured by the combined clearance of exogenous creatinine, exo- and endo- iohexol (PEC-

ICT), as previously described.
12,13

 Briefly, animals received 40 mg/kg creatinine and 64.7 

mg/kg iohexol
 
(Omnipaque 300 [300 mg I/mL], Nycomed Imaging AS, Oslo, Norway). 

Creatinine was dissolved in 0.9 % sodium chloride (NaCl) (Natrii Chloridum 0.9 %, B.Braun 

Melsungen AG, Deutschland). First, iohexol then creatinine was administered IV via the 

cephalic vein. The dead space in the catheter was rinsed with 2 mL of 0.9 % NaCl and the 

timer was started. Blood samples (2 mL) were taken by jugular venipuncture immediately 

before iohexol-creatinine administration, and at 5, 15 and 30 minutes, and 1, 2, 3, 6, 8 and 10 

hours after administration, placed in EDTA tubes and centrifuged. Aliquots of plasma were 

stored at -20 ºC until assayed. Plasma creatinine concentration was measured using a 

validated enzymatic method (Vettest analyzer, Idexx Laboratories Europe B.V., Amsterdam, 

The Netherlands). The upper limit of quantification was 13.6 mg/dL, within- and between-day 

coefficients of variation (CV) were < 3 %, and there was linear correlation between 

theoretical and measured concentration within quantification limits. Plasma exo-iohexol and 

endo-iohexol concentration was measured using a validated high performance liquid 
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chromatographic (HPLC) method with ultraviolet (UV) detection.
13

 The lower limit of 

quantification was 1.2 and 8.8 g/ml for endo-iohexol and exo-iohexol, respectively. CV was 

< 5 % and calibration curves were linear at low and high concentration ranges. The ratios of 

exo-iohexol and endo-iohexol stereo-isomers in the Omnipaque solution were 81.9 and 18.1 

% respectively. 

 

Pharmocokinetic Analysis 

Pharmacokinetic analyses were performed using WinNonlin
 
(WinNonlin Version 

4.0.1, Scientific Consulting Inc. Apex, NC). Plasma data were subjected to non-

compartmental analysis with a statistical moment approach. The area under the plasma 

concentration versus time curve (AUC) was calculated by the trapezoidal rule with 

extrapolation to infinity.
11

 Plasma clearance of creatinine, exo- and endo-iohexol was 

determined by dividing dose administered by AUC and indexed to bodyweight (BW) 

(mL/min/kg).  

 

Statistical Analysis 

A general linear model
 
(Systat version 8.0, SPSS Inc. Chicago IL) was used to test for 

differences between GFR techniques before and 1, 4, 12 and 24 weeks after treatment at a 

global significance level of 0.05 and the 3 techniques were compared pairwise at a 

Bonferroni-adjusted comparison-wise significance level of 0.017 (= 0.05/3). The same model 

was used to test for differences in GFR techniques among the time-points (i.e. before and 1, 4, 

12 and 24 weeks after treatment) and for interactions between time-point and method at a 

global significance level of 0.05. Moreover, for each GFR marker, time points before (0) and 

1, 4, 12  and 24 weeks after treatment were compared pairwise at a significance level of 0.05.  

The correlation between GFR values calculated by PexICT and PECCT, PenICT and PECCT 

and PexICT and PenICT was expressed in scatter plots. The 95 % confidence intervals of the 

slopes and intercepts of these scatter plots were calculated to evaluate respective relative and 

absolute systematic errors in 1 or both of the clearance methods compared in the scatter plot. 

These errors lead to between-method differences which can be evaluated with a Bland-

Altman plot. A Bland-Altman plot was used to measure bias over the range of measured GFR 

values by comparison of PexICT and PECCT, PenICT and PECCT and PexICT and PenICT. 

The difference between 2 GFR values by 2 methods in a cat at a specific time point before or 

1, 4, 12, or 24 weeks after 
131

I treatment, was plotted on the y-axis.  The average of these 
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same GFR values of the 2 methods was plotted on the x-axis, which generates a scatter 

diagram.
22

  

Results are expressed as mean ± standard deviation (SD). 
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Results 

 

Animals 

BW before treatment was 4.1 ± 1.3 kg, and increased to 5.3 ± 1.5 kg at 24 weeks after 

treatment. One cat was lost for follow-up 12 weeks after treatment owing to euthanasia 

because of malignant neoplasia of the pleura. Two cats failed to receive follow-up because of 

aggressive behavior, 12 and 24 weeks after treatment, respectively. The basal plasma 

creatinine concentration increased from 85 ± 34 mol/L (1.0 ± 0.4 mg/dL) before treatment to 

144 ± 49 mol/L (1.6 ± 0.6 mg/dL) 24 weeks after treatment (reference values, 9-133 mol/L 

[0.1-1.5 mg/dL]). Before and 1 week after treatment, 2 cats were azotemic. At 4, 12 and 24 

weeks after treatment, the number of azotemic cats was 4, 8 and 9 respectively.  

The serum TT4 concentration decreased from 104 ± 56 nmol/L before treatment to 20 ± 20 

nmol/L 24 weeks after treatment (reference values, 14-45 nmol/L). 

 

Comparison of GFR methods 

Seventy-two GFR assessments (each of them including the 3 markers) were 

performed. The mean ± SD and range for the PECCT, PexICT and PenICT and the mean ± 

SD serum TT4 concentration at the different time points are presented in Table 1. The ratio 

between exo-iohexol and endo-iohexol concentration in the analysed samples was 3.5 ± 0.9. 

The part of the AUC extrapolated to infinity expressed as percent of the total AUC was higher 

than 25 % in 14/72 kinetics of creatinine clearance (range, 0.3-48 %), but was below 25 % in 

all kinetics of exo-iohexol and endo-iohexol clearance (range, 1-20 and 1-22 %, respectively). 

Globally, the 3 GFR methods resulted in significantly (P < 0.001) different GFR values. A 

statistically significant difference between mean values of PECCT and PexICT (-0.254 

mL/min/kg, P < 0.05), PECCT and PenICT (-0.716 mL/min/kg, P < 0.001), and PexICT and 

PenICT (0.463 mL/min/kg, P < 0.001), was observed before and 1, 4, 12 and 24 weeks after 

treatment. These differences in GFR among different methods were the same (P = 0.999) at 

all time points. The scatter plots of GFR values calculated by either PexICT or PenICT versus 

PECCT and of GFR values calculated by PenICT versus PexICT are shown in Figures 1A, 2A 

and 3A. A good correlation among the 3 methods is visible in Figures 1A, 2A and 3A. The  

95 % confidence intervals for the slope and intercept respectively of these correlation plots 

are [0.825; 0.954] and [-0.158; 0.187] for 1A, [0.656; 0.799] and [-0.251; 0.132] for 2A and 

[0.742; 0.867] and [-0.194; 0.109] for 3A. All correlation plots had no evidence of systematic 
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errors (value of 0 was included in all confidence intervals), however all 3 correlation plots 

showed a relative error (value of 1 not included in confidence intervals). This relative 

systematic error is indicated by bias in Bland-Altman plots. Bland-Altman comparisons of 

PECCT, PexICT and PenICT are shown in Figures 1B, 2B and 3B. Bias among clearance 

methods is clearly visible for comparison among PenICT and PECCT (2B) and PexICT (3B), 

with average GFR (along the x-axis) increasing difference among GFR measurements (along 

the y-axis). The bias is less clearly visible in comparison of PECCT and PexICT. Nonetheless, 

in all 3 plots the majority of the measurements are spread in the area of the y-axis above 0, 

proving that PECCT structurally generates higher GFR values than do PexICT (1B) and 

PenICT (2B), and PexICT generates higher GFR values than does PenICT (3B). The highest 

difference was between PECCT and PenICT, which is visible in the highest limits of 

agreement (mean difference ± 2*SD) and mean difference (Figure 2B).  

 

Evaluation of GFR after treatment 

All 3 techniques indicated decreased GFR after 
131

I treatment in all cats (Table 1). For 

each of the 3 techniques separately, there were significant differences (P < 0.001) in GFR 

value for all time points. 

There was a significant decrease in PexICT between timepoint 0 and 1 (-23%), 4 (-39 

%), 12 (-41 %) and 24 weeks (-47 %) after treatment (P < 0.01). There also was a significant -

23 % decrease in PexICT between 1 and 12 weeks  (P = 0.041) and a significant -33 % 

decrease between 1 and 24 weeks (P = 0.002). At 1, 4, 12 and 24 weeks after treatment, 

respectively, 12, 14, 14 and 13 cats showed a decrease in GFR higher than the between-day 

variability of 8.3 %, which has been described in aged healthy cats.
13

 Changes in PexICT are 

shown in Figure 4A. 

Similarly, PenICT decreased significantly between time point 0 and 1 (-28 %), 4 (-42 

%), 12 (-44 %) and 24 (-50 %) weeks after treatment (P < 0.01). It also decreased by 26 % 

between 1 and 12 weeks after treatment (P = 0.020), and by 31 % between 1 and 24 weeks 

after treatment (P = 0.001). At 1, 4, 12 and 24 weeks after treatment, respectively, 10, 13, 13 

and 12 cats showed a decrease in GFR higher than the between-day variability of 19.1 % 

which has been described in aged healthy cats.
13

 Changes in PenICT are shown in Figure 4B. 

There was also a significant decrease in PECCT between time point 0 and 1 (-22 %) (P 

= 0.002), 4 (-34 %), 12 (-34 %), and 24 (-40 %) weeks (P < 0.001) after 
131

I treatment. No 

other statistically significant differences however, were observed among other time points. At 
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1, 4, 12 and 24 weeks after treatment, respectively 8, 12, 9 and 11 cats indicated a decrease in 

GFR higher than the between-day variability of 21.6 %, which has been described in aged 

healthy cats.
13

 Changes in PECCT are shown in Figure 4C. 

 

 

Table 1. Mean ± standard deviation (range) of GFR measurements (mL/min/kg) with exo-

iohexol (PexICT), endo-iohexol (PenICT) and creatinine (PECCT) in 15 hyperthyroid cats 

before (time point 0) and 1, 4, 12 and 24 weeks after treatment with radioiodine. 

Time point Cats (n) 

Serum TT4 

concentration 

(nmol/L) 

PexICT PenICT PECCT 

0 15 104 ± 56 
3.1 ± 1.33 

a
 

(1.3 - 5.6) 

2.6 ± 1.20
 a
 

(0.9 - 4.5) 

3.4 ± 1.50
 a
 

(1.2 - 6.0) 

1 week 15 37 ± 30 
2.3 ± 0.95

 b
 

(1.1 - 3.8) 

1.9 ± 0.83
 b
 

(0.7 - 3.7) 

2.5 ± 0.96
 b
 

(1.1 - 4.0) 

4 weeks 15 15 ± 26 
1.9 ± 0.89

 b,c
 

(0.9 - 3.5) 

1.4 ± 0.61
 b,c

 

(0.6 - 2.5) 

2.1 ± 0.98
 b
 

(1.1 - 4.2) 

12 weeks 14 19 ± 25 
1.7 ± 0.75

 c
 

(0.7 - 3.2) 

1.3 ± 0.52
 c
 

(0.5 - 2.2) 

1.9 ± 0.89
 b
 

(0.8 - 3.8) 

24 weeks 13 20 ± 20 
1.7 ± 0.71

 c
 

(0.8 - 2.9) 

1.2 ± 0.49
 c
 

(0.5 - 2.1) 

2.0 ± 0.83
 b
 

(0.9 - 3.7) 

When the superscripts (
a, b, c

) are different between time points for a specific marker, a 

statistically significant difference is observed between the values. P values are provided in 

“Results”. 
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Figure 1A. Glomerular filtration rate (GFR) calculated by PexICT plotted against GFR values 

calculated by PECCT. The linear regression equation was y = 0.8894x + 0.0145 (r
2 
= 0.9152). 

 

Figure 1B. Bland-Altman plot of the differences between PECCT and PexICT against the 

average value of these clearances. The solid line represents the mean difference. The dotted lines 

represent the mean difference ± 2SD. x time point 0; ○1 week after treatment; ● 4 weeks after 

treatment; ∆ 12 weeks after treatment; ▲24 weeks after treatment. 

PECCT, plasma exogenous creatinine clearance test; PexICT, plasma exo-iohexol clearance test. 
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Figure 2A. Glomerular filtration rate (GFR) calculated by PenICT plotted against GFR values 

calculated by PECCT. The linear regression equation was y = 0.7274x - 0.0593 (r
2 
= 0.8540). 

 

Figure 2B. Bland-Altman plot of the differences between PECCT and PenICT against the 

average value of these clearances. The solid line represents the mean difference. The dotted lines 

represent the mean difference ± 2SD. x time point 0; ○1 week after treatment; ● 4 weeks after 

treatment; ∆ 12 weeks after treatment; ▲24 weeks after treatment.  

PECCT, plasma exogenous creatinine clearance test; PenICT, plasma endo-iohexol clearance 

test. 
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Figure 3A. Glomerular filtration rate (GFR) calculated by PenICT plotted against GFR values 

calculated by PexICT. The linear regression equation was y = 0.8045x - 0.0424 (r
2 
= 0.9029). 

 

 

Figure 3B. Bland-Altman plot of the differences between PenICT and PexICT against the 

average value of these clearances. The solid line represents the mean difference. The dotted lines 

represent the mean difference ± 2SD. x time point 0; ○1 week after treatment; ● 4 weeks after 

treatment; ∆ 12 weeks after treatment; ▲24 weeks after treatment. 

 

PexICT, plasma exo-iohexol clearance test; PenICT, plasma endo-iohexol clearance test. 
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Figure 4A. Changes in glomerular filtration rate (GFR) value, expressed as percent of GFR at 

time point 0, at  1 (○), 4 (●), 12 (∆) and 24 (▲) weeks after treatment measured with PexICT. 

Dotted lines represent between-day variability. 

 

 

Figure 4B. Changes in glomerular filtration rate (GFR) value, expressed as percent of GFR at 

time point 0, at  1 (○), 4 (●), 12 (∆) and 24 (▲) weeks after treatment measured with PenICT. 

Dotted lines represent between-day variability.  

 

PexICT, plasma exo-iohexol clearance test; PenICT, plasma endo-iohexol clearance test. 
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Figure 4C. Changes in glomerular filtration rate (GFR) value, expressed as percent of GFR at 

time point 0, at  1 (○), 4 (●), 12 (∆) and 24 (▲) weeks after treatment measured with PECCT. 

Dotted lines represent between-day variability. 

 

PECCT, plasma exogenous creatinine clearance test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2 

 

88 
 

Discussion 

 

One of the major finding of this study is that a statistically significant difference        

(P < 0.001) in GFR value was observed among the 3 GFR assessment techniques, whatever 

the time of GFR testing (i.e., before and after treatment). The difference in GFR assessment 

among the techniques is noted in the deviation of the slope from value 1 but the correlation 

among the 3 different clearance techniques, however, seems to be acceptable (Figure 1A, 2A 

and 3A). A more important factor when comparing different techniques is between-method 

differences as a measurement of agreement with each other. This can be shown graphically in 

Bland-Altman plots (Figure 1B, 2B and 3B). The difference among PenICT and PECCT and 

PexICT respectively increased with increasing mean GFR, thereby producing a bias. This can 

be caused by an underestimation of PenICT, an overestimation of PECCT and PexICT 

respectively, or both. PECCT generated systematically higher values of GFR compared to 

PexICT in hyperthyroid cats before and after treatment, which is comparable to findings in 

healthy cats.
13

 However, GFR values measured with PenICT are higher compared to PECCT 

and PexICT in healthy cats, in contrast to the lower PenICT compared to PECCT and PexICT 

in the hyperthyroid cats described in this study. There is no major bias visible in the Bland-

Altman graph showing the comparison between the PECCT and PexICT (Figure 1B). The 

mean difference between these techniques is low. In combination with the good 

reproducibility that is described for PECCT,
13

 the results of the present study suggest that the 

PECCT is a reasonable alternative for PexICT in hyperthyroid cats before and after treatment.  

 

The differences in GFR values according to the technique used can first be explained 

by laboratory variations. Creatinine and iohexol were measured in different laboratories using 

different assays. Nevertheless, creatinine as well as iohexol assays used in the present study 

had been validated previously.
13

 The gold standard assay method for creatinine in plasma is 

HPLC. However, the enzymatic method used here is most frequently used in routine clinical 

laboratories and is proven to be a reasonable alternative to the HPLC method.
12

 Other 

conditions (e.g., storage time and temperature of plasma samples) were similar for both 

iohexol and creatinine. Interestingly, a significant difference between GFR values obtained by 

PexICT and PenICT was observed in this study whereas both markers were assayed using the 

same HPLC method in the same laboratory. Colorimetric methods,
8,9

 atomic emission 

spectroscopy,
20

 or x-ray fluorescence methods,
23-25

 measuring the amount of iodine and 
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consequently indirectly iohexol, have been proposed also for plasma iohexol assay. Iohexol 

assay by HPLC has good specificity, sensitivity, accuracy and reproducibility, and moreover 

allows separate measurement of the 2 stereoisomers: endo-iohexol and exo-iohexol.
26

 In dogs, 

this latter compound, which represents the major stereoisomer, is frequently selected as a 

GFR marker.
10,26

 Discrepancies have been described between GFR calculation using exo- and 

endo-iohexol in dogs
10

 and cats,
12,27

 but not in humans.
28

 The reason for this difference 

remains unclear, but these results emphasize the fact that disposition of exo-iohexol and endo-

iohexol are not the same and consequently assay of total iohexol could lead to 

misinterpretation because it is an hybrid concentration reflecting the sum of 2 stereoisomers 

with different clearances. 

 

The combined use here of creatinine, exo-iohexol and endo-iohexol, as performed 

previously in dogs and cats,
7,8,12,13

 also raises the issue of a potential interference among the 

analytes. Such an interference however is unlikely. Creatinine is an endogenous compound 

and the peak concentration observed here (up to 1795 mol/L [20.3 mg/dL]) could be 

observed in severely azotemic patients. Disposition of exo-iohexol and endo-iohexol 

moreover does not seem to be affected by mild to moderate azotemia in cats.
12

  

 

In the present study, pharmacokinetic analysis also cannot explain the differences 

observed because a non-compartmental approach was used similarly for PECCT, PenICT and 

PexICT, as described in dogs.
10,11

 The non-compartmental and compartmental approaches 

moreover are comparable for clearance of iohexol
29,30

 and creatinine
11

 in dogs. Despite the 

wide ranges of the AUC parts extrapolated to infinity, 80 % of the pharmacokinetic analyses 

showed an AUC part extrapolated to infinity lower than 25 % of the complete AUC. 

Consequently, the sampling strategy (i.e. number of blood samples and time of last sampling) 

can be considered appropriate in healthy, hyperthyroid and moderately azotemic cats. In more 

severely azotemic cats, the last blood sample should be delayed, especially for PECCT. 

 

Discrepancies in GFR results also can be caused by physiologic differences in renal 

handling of the substances.
23

 Because a combined PEC-ICT was used, factors related to the 

cats themselves cannot explain the difference in PECCT, PexICT and PenICT. Moreover, 

creatinine
7
 and iohexol

8
 appear to be reliable GFR markers for cats. Use of urinary clearance 

of inulin, considered the gold standard method, would have been helpful to compare the 
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accuracy of each GFR marker in the follow-up of the animals. Urinary clearance testing, 

however, is difficult to propose to owners in our experience, because it is tedious and time-

consuming for the staff, it is stressful (e.g. anesthesia may be required) and potentially 

harmful (e.g., urinary tract infection) for the animal, and accurate measurement of urine 

volume often is difficult. Clearances of both creatinine and iohexol already have been 

proposed as alternatives for GFR measurements in cats.
7-9,12

 

 

Whatever the cause of the differences among PexICT, PenICT and PECCT, all 3 

techniques nevertheless indicated the same trend with decreasing GFR after 
131

I treatment. 

This finding indicates that if the same marker is used for repeated GFR testing, it will provide 

clinically relevant information similar to what would have been provided by the use of the 2 

other GFR markers. For each of the 3 techniques, a significant decrease in GFR value was 

observed between time point 0 and all other time points. This decrease stabilized 4 weeks 

after treatment, with very little decline afterwards, although GFR values determined by 

PECCT at time point 1 week were not statistically significant from those observed at time 

points 4 and 24 weeks. These results show that PECCT is a promising alternative for GFR 

measurement, although it might be less sensitive to small changes in GFR compared to 

PexICT and PenICT. The decrease in GFR from 0 to 24 weeks after treatment was relatively 

consistent whatever the marker used (47 %, 50 % and 40 % for PexICT, PenICT, and PECCT, 

respectively). This is much higher than the between-day CV of each method (8.3, 19.1, and 

21.6 %, respectively) in aged healthy cats
13

 and proves that the decrease in GFR is caused by 

a change in glomerular function, and not by intrinsic between-day variability. Several studies 

in the literature have investigated GFR in hyperthyroid cats before and after treatment and 

describe a decrease in GFR after treatment as shown in this study. However, the follow-up in 

these studies was measured only before and at 1 time point (6 days, 30 days or 6 weeks) after 

treatment. Hence, these follow up studies are shorter and less extensive compared with the 

study described here.
18-20
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Conclusion 

 

In conclusion, PexICT, PenICT, and PECCT, although providing different GFR 

values, can be used for follow-up of the decrease in GFR observed in hyperthyroid cats after 

treatment. Nevertheless, the same GFR marker should be used throughout the follow-up 

period. GFR testing at 4 weeks post-treatment could also be reasonably recommended to 

estimate the final loss in renal function in cats after 
131

I treatment. Nevertheless, further 

investigations in a larger population are needed. 
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Summary 

 

The study investigated plasma clearance of exogenous creatinine (PECCT), exo-

iohexol (PexICT) and endo-iohexol (PenICT) in 6 healthy (H) cats, 4 cats with chronic kidney 

disease (CKD) and 6 hyperthyroid (HT) cats to assess potential differences in GFR 

measurement over the low, normal and high range of GFR values possible in cats. 

The PECCT, PexICT and PenICT were performed in a combined manner. All pairwise 

comparisons between PexICT and PenICT and PECCT were significantly different in H cats. 

GFR values differed significantly only between CKD cats and HT cats for PexICT, PenICT 

and PECCT, between H and HT cats for PexICT, PECCT, and between CKD and H cats for 

PenICT and PECCT. 

The PexICT and PenICT observed larger differences between CKD and HT cats, 

although PECCT observed smaller differences between H, HT and CKD cats. Differences 

between clearance techniques seem to be correlated to range in GFR. 
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Introduction 

 

Glomerular filtration rate measurement is a precise and direct evaluation of glomerular 

function, in contrast to the indirectly and crudely estimating assay of circulating blood urea 

nitrogen (BUN) and serum creatinine concentration. Moreover, measurement of GFR is more 

sensitive in detecting a decreased kidney function before insufficiency or chronic kidney 

disease (CKD) develops.
1,2

 Plasma clearance methods are less laborious and easier to apply in 

a clinical setting compared to urinary clearance techniques. When applying plasma clearance 

of iohexol, plasma iohexol concentration can be assayed with high-performance liquid 

chromatography (HPLC), which measures both stereo-isomers exo- and endo-iohexol. This 

way, two measures of GFR are provided after iohexol administration: plasma clearance of 

exo-iohexol (PexICT) and of endo-iohexol (PenICT).
3-5

 The plasma clearance of exogenous 

creatinine test (PECCT) has been suggested to be a promising alternative for GFR 

measurement in cats.
4,5

 Combined use of creatinine and iohexol in a plasma exogenous 

creatinine-iohexol clearance test (PEC-ICT) has been described in healthy cats, moderately 

azotemic cats and hyperthyroid cats before and after treatment with radioiodine (
131

I).
4-6

 The 

combined use of different markers allows minimal time- and space related variation between 

the methods. 

 

Discrepancies within H cats, HT cats or cats with CKD exist when GFR is measured 

using 2 or 3 different clearance techniques due to external and internal factors.
4-10

 We 

hypothesized that discrepancies can arise due to the range of GFR in which the clearance 

method is applied. To date there is no study comparing different techniques in separate groups 

expected to have GFR values spread over the whole range possible in cats: low in cats with 

CKD, normal in H cats and high in HT cats. The objectives of this study were to compare 

PexICT, PenICT and PECCT within as well as between groups of H cats, HT cats and cats 

with CKD. 
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Materials and Methods 

 

Cats 

The study was conducted according to guidelines for animal care, with consent of the 

Ethical committee of the Faculty of Veterinary Medicine from Ghent University, Belgium and 

informed consent by the owners of the cats with CKD and HT cats. The study included 16 

cats divided into 3 groups: cats with CKD (n = 4), H cats (n = 6) and HT cats (n = 6). Healthy 

cats were obtained from the population of laboratory animals of Ghent university and 

included if there were no clinically significant abnormalities on initial screening (physical and 

routine laboratory examinations [CBC, biochemistry and measurement of total T4 (TT4)], 

evaluation of feline immunodeficiency virus [FIV] and feline leukemia virus [FIV] status),  

abdominal ultrasonography and cystocentesis followed by urinalysis (dip-strip tests, 

microscopic analysis, protein/creatinine ratio, urine specific gravity and bacteriologic culture). 

To assess the clinical condition of the HT cats and cats with CKD, initial screening included 

physical and routine laboratory examinations (CBC, biochemistry) and urinalysis after 

cystocentesis. HT cats were included when clinical signs compatible with hyperthyroidism 

were present, increased serum total thyroxine (TT4) concentration and increased thyroidal 

uptake of 
99m

TcO4
-
 on a scintigraphic scan were observed. Antithyroid drugs had to be 

discontinued at least 3 weeks prior to inclusion. Cats with CKD were included based on 

compatible clinical signs and azotemia  compatible with International Renal Interest Society 

[IRIS] stage II or III (www.IRIS-kidney.com). 

 

Plasma Exogenous Creatinine-Iohexol Clearance test 

The combined clearance of exogenous creatinine, exo- and endo-iohexol was 

performed as previously described.
4-6

 Pharmacokinetic analyses were performed using 

WinNonlin (Version 4.0.1, Scientific Consulting Inc. Apex, NC). Plasma data were subjected 

to non-compartmental analysis with a statistical moment approach. The area under the plasma 

concentration versus time curve (AUC) was calculated using the trapezoidal rule with 

extrapolation to infinity.
11

 Plasma clearance of creatinine, exo- and endo-iohexol was 

determined by dividing dose administered by AUC, and indexed to BW (mL/min/kg).  
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Statistical Analysis 

A mixed model with cat as random effect (Systat version 8.0, SPSS Inc. Chicago IL) 

was used to test for differences between GFR techniques in cats with CKD, HT cats and H 

cats and for differences between health status (cats with CKD, H and HT cats) within a GFR 

technique, at a global significance level of 0.05. The 3 techniques in cats with CKD, H or HT 

cats and the 3 different health statuses (CKD, H , HT) within a technique were compared pair 

wise at a Bonferroni-adjusted comparison-wise significance level of 0.017 (= 0.05/3) with 

ANOVA.  

The correlation between GFR values calculated by PexICT, PenICT and PECCT in 

cats with CKD, H and HT cats was expressed in scatter plots. The 95 % confidence intervals 

of the slopes and intercepts of these scatter plots were calculated, to evaluate respective 

relative and absolute errors in one or both of the clearance methods compared in the scatter 

plot. These errors lead to between-method differences which can be evaluated with a Bland-

Altman plot. A Bland-Altman plot was used to measure bias over the range of measured GFR 

values by comparison of PECCT and PexICT, PECCT and PenICT, and PexICT and PenICT 

in cats with CKD, H and HT cats. The difference between two GFR values using two methods 

in a cat with CKD, a H or HT cat was plotted on the y-axis.  The average of these same GFR 

values of the two methods was plotted on the x-axis, which generates a scatter diagram.
12

 

Limits of agreement are expressed by the mean difference ± 2 * standard deviation (SD). 

Results are expressed as range and mean ± SD. 
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Results 

 

Cats 

The study included 6 H cats with an age of 7-12 months and BW range of 4.3 - 5.6 kg 

(4.7 ± 0.5 kg), 6 HT cats with an age of 8-16 years and BW range of 2.6 - 6.2 kg (4.0 ± 1.2 

kg), and 4 cats with CKD (IRIS stage II, n = 3; IRIS stage III, n = 1) with an age of 10-13 

years and BW range of 4.5 - 6.6 kg (5.6 ± 0.9 kg).   

 

Comparison between GFR methods  

Sixteen GFR assessments (each of them including the 3 markers) were performed. The 

mean ± SD and range for the PECCT, PexICT and PenICT are presented in Table 1. The ratio 

between plasma exo- and endo-iohexol concentration in the analyzed samples was 5.8 ± 2.4. 

The part of the AUC extrapolated to infinity expressed as % of the total AUC, was higher 

than 25 % in 1/16 (1 cat with CKD) kinetics of creatinine clearance (range 1-57 %), but was 

below 25 % in all kinetics of exo-iohexol and endo-iohexol (range 1.5-20 % and 2.8-19 % 

respectively). The part of the AUC extrapolated to infinity for the three markers in cats with 

CKD, H and HT cats is described in Table 2. Plasma creatinine concentration did not return to 

pre-dosing level before the end of the sampling period in 7/16 cats (CKD n = 4, H n = 1, HT n 

= 2). Plasma exo- and endo-iohexol returned to pre-dosing level in 13/16 cats (CKD n = 1, H 

n = 6, HT n = 6) before the end of the sampling period. 

The GFR methods globally resulted in significant different GFR values (P < 0.001) but 

there was a statistically significant interaction between GFR method and the different groups 

(P = 0.004). A statistically significant difference between mean values of PECCT and PexICT 

(average difference 0.95 mL/min/kg, P < 0.001) and PexICT and PenICT (average difference 

1.3 mL/min/kg, P < 0.001), though not between PECCT and PenICT (average difference 0.3 

mL/min/kg, P = 0.21) was observed in H cats. There was no statistically significant difference 

between GFR values obtained with PexICT, PenICT or PECCT in cats with CKD (P = 0.386) 

or HT (P = 0.185) cats.  

The scatter plots of GFR values calculated by either PexICT or PenICT versus PECCT 

and of GFR values calculated by PenICT versus PexICT are shown in Figures 1A, 2A and 3A 

respectively. A good correlation is visible in figure 1A, but correlation is less good in figures 

2A and 3A. The 95% confidence intervals for the slope and intercept respectively of these 

correlation plots are [0.776;1.042] and [-0.783;0.133] for 1A, [0.687;1.063] and [-
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0.333;0.962] for 2A and [0.564;1.149] and [0.050;1.727] for 3A. Correlation plots of PECCT, 

PexICT and PenICT clearance had no evidence of absolute systematic errors except for 

correlation between PexICT and PenICT (value of 0 not included in confidence interval of the 

intercept).  

A small bias is visible in the Bland-Altman plots for comparison between PenICT and 

PECCT (2B) and PexICT (3B), as with increasing average of GFR (along the x-axis), the 

difference between GFR measurements is increasing (along the y-axis). The Bland-Altman 

plots also show the interaction between GFR method and group (P = 0.004), because the 

majority of measurements of cats with CKD are spread in the area below (Figure 1B) or 

above (Figures 2B and 3B) the mean difference, the majority of measurements of H cats are 

spread in the area above (1B) or below (2B and 3B) the mean difference and the majority of 

measurements of HT cats are spread around the mean difference (1B, 2B and 3B).  

The statistical significant difference between PexICT and PECCT clearance (1B) and 

PenICT (3B) in H cats is visible in the wide spread of differences between GFR 

measurements along the y-axis, and these differences clearly positively (1B) or negatively 

(3B) differing from 0. The systematic error between PexICT and PenICT (3B) is visible in 

these majority of values spread below 0, proving that PenICT generates higher clearance 

values than PexICT, though this is only significant in H cats. The highest difference is 

between PexICT and PenICT which is visible in the highest limits of agreement (mean ± 

2SD) combined with the high mean difference (3B). The mean difference is smallest in 2B, 

which is in accordance with the absence of significant difference between PECCT and 

PenICT in cats with CKD, H and HT cats. Only 1 mean value is located outside the limits of 

agreement in all three Bland-Altman comparisons. 

 

Comparison of GFR values between cats with CKD, H and HT cats 

There was a significant difference in GFR between cats with CKD, H cats and HT cats 

for PECCT, PexICT and PenICT (P < 0.001).  

There was a significant difference in PexICT between cats with CKD and HT cats 

(average difference 3.183 mL/min/kg, P < 0.001), and H cats and HT cats (average difference 

2.3 mL/min/kg, P < 0.001) but not between cats with CKD and H cats (average difference 0.9 

mL/min/kg, P = 0.280). PenICT also significantly differed between cats with CKD and HT 

cats (average difference 3.4 mL/min/kg, P < 0.001), and differed significantly between cats 

with CKD and H cats (average difference 2.2 mL/min/kg, P = 0.004) but not between H cats 
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and HT cats (average difference 1.2 mL/min/kg, P = 0.067). There was a significant 

difference between all groups for PECCT with a significant difference between cats with 

CKD and HT cats (average difference 3.6 mL/min/kg, P < 0.001), cats with CKD and H cats 

(average difference 1.7 mL/min/kg, P = 0.018) and H cats and HT cats (average difference 1.9 

mL/min/kg, P = 0.005). These results cannot be seen in the correlation plots, which show 

clear delineation between cats with CKD and H and HT cats without overlap between groups 

for PexICT (1A and 3A). There is however a small overlap between H and HT cats for 

PECCT and PenICT (2A and 3A). 
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Table 1. Mean ± SD (range) of plasma clearance (mL/min/kg) of exo-iohexol (PexICT), endo-

iohexol  (PenICT) and exogenous creatinine (PECCT) in cats with chronic kidney disease 

(CKD), healthy cats (H) and cats with hyperthyroidism (HT). 

Health status Cats (n) PexICT PenICT PECCT 

CKD 4 
0.9 ± 0.2

a
 

(0.7 - 1.1) 

0.9 ± 0.1
a
 

(0.8 - 1.1) 

1.0 ± 0.1
a
 

(0.9 - 1.1) 

H 6 
1.8 ± 0.3

a
 

(1.4 - 2.1) 

3.1 ± 0.6
b
 

(2.0 - 3.6) 

2.8 ± 0.5
b
 

(2.2 - 3.6) 

HT 6 
4.1 ± 1.2

b
 

(2.6 - 5.6) 

4.3 ± 1.2
b
 

(2.6 - 6.2) 

4.7 ± 1.2
c
 

(3.4 - 6.0) 

When the superscipts (a, b, c) are different between groups for a specific marker, a statistically 

significant difference is observed between the values. P values are provided in the results. 

 

 

 

Table 2. Mean ± SD (range) of  AUC extrapolated to infinity expressed as % of the total AUC 

for plasma clearance (mL/min/kg) of exo-iohexol (PexICT), endo-iohexol  (PenICT) and 

exogenous creatinine (PECCT) in cats with chronic kidney disease (CKD), healthy cats (H) and 

cats with hyperthyroidism (HT). 

Health status Cats (n) PexICT PenICT PECCT 

CKD 4 
8.0 ± 8.1 

(3.8 - 20.1) 

8.4 ± 7.3 

(2.8 - 19.0) 

26.9 ± 20.8 

(12.4 - 57.1) 

H 6 
10.7 ± 5.9 

(3.1 - 16.4) 

10.3 ± 5.0 

(5.6 - 18.2) 

5.0 ± 4.1 

(0.9 - 11.8) 

HT 6 
3.9 ± 2.2 

(1.5 - 6.8) 

5.7 ± 2.9 

(2.9 - 9.5) 

3.1 ± 2.9 

(1.0 - 8.7) 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2 

 

104 
 

 

Figure 1A. GFR calculated by PexICT plotted against GFR values calculated by PECCT. The 

linear regression equation was y = 0.908x - 0.325 (r
2 

= 0.938). Ranges of H cats for PECCT and 

PexICT are represented by vertical and horizontal dotted lines respectively.  

 

 

Figure 1B.  Bland-Altman plot of the differences between PECCT and PexICT against the 

average value of these clearances. The solid line represents the mean difference. The dotted lines 

represent the mean differences ± 2*SD.  

 

○ cats with CKD, ● H cats, ∆ HT cats. 

PECCT, plasma exogenous creatinine clearance test; PexICT, plasma exo-iohexol clearance test. 
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Figure 2A. GFR calculated by PenICT plotted against GFR values calculated by PECCT. The 

linear regression equation was y = 0.875x + 0.314 (r
2 

= 0.876). Ranges of H cats for PECCT and 

PenICT are represented by vertical and horizontal dotted lines respectively. 

 

 

Figure 2B.  Bland-Altman plot of the differences between PECCT and PenICT against the 

average value of these clearances. The solid line represents the mean difference. The dotted lines 

represent the mean differences ± 2*SD.  

 

○ cats with CKD, ● H cats, ∆ HT cats. 

PECCT, plasma exogenous creatinine clearance test; PenICT, plasma endo-iohexol clearance 

test. 
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Figure 3A. GFR calculated by PenICT clearance plotted against GFR values calculated by 

PexICT. The linear regression equation was y = 0.856x + 0.888 (r
2 

= 0.738). Ranges of H cats for 

PexICT and PenICT are represented by vertical and horizontal dotted lines respectively.  

 

 

Figure 3B. Bland-Altman plot of the differences between clearance of PenICT and PexICT 

against the average value of these clearances. The solid line represents the mean difference. The 

dotted lines represent the mean differences ± 2*SD.  

 

○ cats with CKD, ● H cats, ∆ HT cats. 

PexICT, plasma exo-iohexol clearance test; PenICT, plasma endo-iohexol clearance test. 
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Discussion 

 

The present study is the first to report the comparison of 3 different GFR techniques in 

3 separate groups of cats which are expected to have either low (cats with naturally occurring 

CKD), normal (H) or high (HT) GFR values, thereby evaluating the GFR techniques over the 

whole range of GFR expected in cats. Surprisingly, this study showed a significant difference 

in H cats between PexICT and PenICT and PECCT but not between PenICT and PECCT. 

Also, there were no differences between GFR methods in HT cats or cats with CKD. 

Differences between GFR methods in H cats are in accordance with studies described in the 

literature which compare different clearance techniques.
4,6-8

 The difference in GFR 

assessment between the techniques in only H cats though not in HT cats or cats with CKD can 

be the cause of the slope approaching the value 1 in the correlation plots. Several studies have 

compared two GFR techniques in cats with a declined kidney function and described 

significant differences, albeit other studies found no significant differences nor in H cats nor 

in cats with a decreased kidney function.
6-10

 Recently, our group described the comparison 

between PexICT, PenICT and PECCT in HT cats before and after radioiodine (
131

I) 

treatment.
5
 

 

Correlation between PECCT and PexICT (1A) and PenICT (2A) in the low, middle 

and high GFR values grouped together is acceptable and comparable to values described in 

the larger group of HT cats.
5
 The small bias visible in the Bland-Altman plots 2B and 3B can 

be caused by an underestimation of PenICT, an overestimation of PECCT and PexICT, or 

both. PECCT generated systematically higher GFR values compared to PexICT in H and HT 

cats. PenICT compared to PECCT and PexICT generated higher GFR values in H cats and 

lower values in HT cats respectively. This is comparable to the findings described earlier in H 

cats and HT cats before and after 
131

I treatment.
4,5

 

 

There is no clear bias visible in the Bland-Altman graph showing the comparison 

between the PECCT and PexICT (1B), and when bias is visible in comparison between 

PenICT and PECCT (2B) and PexICT (3B) it is not proven to be statistically significant by a 

relative systemic error (2A and 3A). The limits of agreement are narrow and mean difference 

is low, only 0 - 0.5 mL/min/kg. Almost all values are within limits of agreement. The mean 

difference is lower than the differences between H, HT cat and cats with CKD using PexICT, 
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PenICT or PECCT described here and therefore not expected to be clinically relevant. This 

suggests that PexICT, PenICT and PECCT methods can be used interchangeably. However, 

when GFR is used as part of follow-up of kidney function after treatment of hyperthyroidism, 

the same clearance technique must be used and preferably PexICT which has the best 

reproducibility.
4,5

 This possibly is caused by the decrease in GFR after treatment, which 

thereby approaches the range of GFR described in H cats where significant differences 

between GFR methods are present. 

 

The differences in GFR values according to the technique can be explained by external 

(marker and method related) and internal (cat and disease status related) factors. Storage time 

and temperature of plasma samples were similar for PECCT, PexICT and PenICT. Creatinine 

and iohexol were assayed in different laboratories using different assays, though both assays 

were validated previously.
4
 An interference between creatinine, exo- and endo-iohexol due to 

the combined use of these analytes as previously performed in dogs and cats
4,6,7,10

 is unlikely, 

because disposition of exo- and endo-iohexol does not seem to be affected by mild to 

moderate azotemia in cats.
6
 Moreover, creatinine is an endogenous compound and the peak 

concentration observed here in cats with CKD (up to 2077 mol/L [24 mg/dL]) could be 

observed in severe azotaemic patients. The AUC extrapolated to infinity has the widest range 

and highest mean ± SD for all three markers in cats with CKD. However, only in 1/48 

pharmacokinetic analyses (16 cats and 3 markers), in a cat with CKD using PECCT, the AUC 

extrapolated to infinity was higher than 25 % of the whole AUC which suggests the sampling 

strategy can be considered appropriate in H, HT and moderately azotemic cats. Possibly, in 

cats with CKD the sampling period has to be prolonged for PECCT as well as for PexICT and 

PenICT but this needs further research.  

 

Because a combined PEC-ICT was used, factors related to the cats themselves cannot 

explain the difference in plasma clearance using creatinine, exo- and endo-iohexol. The 

difference between clearance methods does seems to be related to differences between 

different physiological conditions and their corresponding different GFR values.  

 

Urinary clearance of inulin is considered the gold standard method,
8,13,14

 however it is 

tedious, time-consuming, stressful and potentially harmful due to the risk of urinary tract 

inflammation and infection, and are therefore not suitable for practice. Nonetheless, use of a 
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gold standard method would have been useful to compare the different GFR markers over the 

range of possible GFR values.  

 

Whatever the cause of the differences between PECCT, PexICT and PenICT, an 

important clinical aspect of the different markers is the ability to distinguish between the 

expected different ranges of GFR: low (in cats with CKD), middle (in H cats) and clinically 

less important high (in HT cats). PexICT is the only clearance method that does not show 

overlap between low, middle and high GFR values (1A and 3A). Despite the small overlap in 

GFR values between H and HT cats for PECCT (1A and 2A), this suggests a high sensitivity 

for small differences in GFR using PECCT. The difference in GFR measured with PECCT 

between H cats and cats with CKD can also partly be caused by an age-effect, which has been 

described in healthy cats.
4
 Combined with the good reproducibility described for PECCT,

4
 

this makes the PECCT therefore valuable as a screening test for early detection of renal 

dysfunction which is usable in practice.  

 

Comparable to results in our study using PECCT and PenICT, a statistically 

significant difference in GFR value of at least 50 % between the mean GFR values of H cats 

and cats with a declined kidney function (kidney failure or reduced kidney mass by partial 

nephrectomy) has been described.
7-10,15,16

 These preliminary results may suggest that 

differences between the lower and normal range of GFR have to be over 50 % to be detected 

whatever the clearance method used.  

 

Earlier described differences in GFR between H and HT are significant when              

> 30 %,
17

 however unsignificant when < 30 %
18

 which is comparable to the results in our 

study when PexICT, PECCT or PenICT respectively are used. These preliminary results may 

suggest that differences between the higher and normal range of GFR have to be over 30 % to 

be detected.  
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Conclusion  

 

PexICT, PenICT as well as PECCT can detect large differences in GFR between cats 

with CKD and HT cats, though only PECCT can detect smaller changes over a large range of 

GFR between H cats and either cats with CKD or HT cats. Differences between clearance 

techniques themselves also seem to be correlated to the range of GFR, because only values in 

the middle range of H cats and not in the lower and higher range of cats with CKD or HT cats 

respectively, differ between methods. 
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Introduction to Chapter 3 

 

There is a need in veterinary medicine for a urinary marker to detect early renal damage 

in hyperthyroid cats. Urinary RBP could be a candidate for this purpose. It is a highly sensitive 

index of renal tubular damage in humans, because a decrease in tubular function may lead to 

excretion of RBP in urine. In this chapter, we investigated urinary RBP as a putative marker of 

renal dysfunction in cats. 

In the first section (§ 3.1) we evaluated urinary RBP in healthy cats and cats expected to 

have tubular dysfunction. In the second section (§ 3.2), we wanted to further investigate urinary 

RBP in hyperthyroid cats, whether it remained present after treatment, and whether urinary 

RBP in hyperthyroid cats is possibly linked to serum RBP concentrations. 
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Summary 

 

The presence of low molecular weight (MW) retinol binding protein (RBP) in urine 

reflects tubular damage. Therefore, RBP has been used as a renal marker in humans and dogs. 

Using an anti-human RBP antibody (Ab), this study first demonstrated feline urinary RBP by 

Western blot analysis and then evaluated its potential as a renal marker in cats by enzyme-

linked immunosorbent assay (ELISA).  

Urine was taken by cystocentesis, centrifuged and stored at -80 ºC until analysis. 

Urinary RBP levels were compared in clinically healthy cats (H), chronic renal failure patients 

(CKD) and cats with hyperthyroidism (HT). The detection of a band at the same position as the 

human RBP standard with Western blot analysis, indicated that RBP was present in the urine of 

CKD and HT patients but minimally present in H cats. The data obtained with ELISA were in 

accordance with these observations. RBP levels were expressed as RBP/creatinine (RBP/c) 

ratios following normalisation with urinary creatinine. The functional assay sensitivity was 

1.37 μg/L RBP. Parallelism between the trend lines of the human RBP standard curve and the 

curves obtained from sequentially diluted urine samples indicated that feline RBP was 

recovered. The mean intra-assay coefficient of variance (CV) and the standardised agreement 

index (AI) regarding repeatability were satisfactory. The RBP/c ratio in all H cats (n = 10) was 

below the assay sensitivity. The groups of CKD and HT patients had increased mean RBP/c 

ratios, with large variation in the relative RBP concentrations of individual cats.  

In conclusion, RBP is demonstrated for the first time in urine from most CKD and HT 

patients and the validated ELISA allows its evaluation as a putative renal marker in cats.   
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Introduction 

 

In patients at risk of developing renal failure, it is important to apply corrective therapy at 

an early stage. It is a challenge to assess the onset of a decreased renal function by monitoring 

sensitive biomarkers.
1
 One such candidate biomarker is urinary RBP, which reflects renal 

damage at the tubular level. With its low molecular weight (MW) of 21 kilodalton (kDa), this 

protein is freely filtered in the glomerular ultrafiltrate and normally reabsorbed through a 

megalin-receptor dependent endocytosis mechanism in the proximal tubulus.
2
 In small animals, 

an immunoassay based on cross-reactivity with an anti-human RBP Ab has been successfully 

used by Raila et al. in plasma and urine of dogs and in cat plasma, but it failed to detect RBP in 

cat urine.
3-5

 The same group recently reported that canine RBP holds promise for the sensitive 

detection of renal damage.
5,6

 Our aim was to assess urinary RBP with Western blot analysis and 

with an enzyme linked immunosorbent assay (ELISA) validated for the analysis of urine from 

clinically healthy (H) cats and from cats with either diagnosed or increased risk for renal 

dysfunction, as a first step in the evaluation of its potential as a putative renal marker. 
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Materials and Methods 

 

Cats 

The current study was carried out after approval by the Local Ethical Committee of 

Ghent University. Thirty-three cats were included: 10 H cats, 10 cats with chronic kidney 

disease (CKD) and 13 cats with HT. For the H cats, 5 young adult (average age of 2 years) 

and 5 elderly (average age of 10 years) cats were selected. Cats with CKD (IRIS [www.IRIS-

kidney.com] stage II or higher) were included based on symptoms and azotemia (upper 

reference limit of serum creatinine concentration was 1.5 mg/dl). Cats were excluded when 

medication that might influence renal function had been recently administered. Inclusion 

criteria for the HT cats were signs compatible with hyperthyroidism (polyuria/polydipsia, 

polyfagia, weight loss and tachycardia), an increased serum total T4 (TT4) concentration and 

an increased uptake of 
99m

TcO4
-
 on a scintigraphic thyroid scan. Treatment with antithyroid 

drugs had to be discontinued at least 3 weeks prior to inclusion.  

 

Urine samples 

All urine samples were taken by cystocentesis. Briefly, animals were placed in a dorsal 

position and the skin of the abdomen was disinfected. Punction of the bladder was effectuated 

with a 5 ml syringe and a 22-gauge needle to aspirate the urine. Following centrifugation (3 

minutes at 447 x g), urine was divided in at least two aliquots of 300 l and frozen at -80 °C 

until analysis. The pH value of all urine samples was between 6 and 8, except for one CKD 

cat with an original urinary pH of 9, this was corrected to 8 with HCl. Blood urea nitrogen, 

serum creatinine concentration, urinary specific gravity and urinary protein/creatinine ratio 

were determined for all cats.  

 

Western blot analysis 

Sample volumes of 10 l urine were subjected to sodium dodecyl sulphate-

polyacrylamide gel electrophoresis (SDS-PAGE) using a 12 % gel. In addition to colorimetric 

and chemiluminescent markers, two urinary RBP standards (Sigma-Aldrich, Belgium and 

Immundiagnostik, Germany) were also run. After gel electrophoresis, the separated proteins 

were electroblotted onto a nitrocellulose membrane with a transfer buffer containing 20 % 

methanol. Prior to immunodetection, Tris-buffered saline with 0.1 % Tween-20 (TBS-T) 

containing either 5 % milk powder or 3 % bovine serum albumin (BSA) was used to block 
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non-specific binding sites on the blot. The membrane was then incubated with a 1:100 diluted 

polyclonal rabbit anti-human urinary RBP primary Ab (A0040, DakoCytomation, Denmark) 

at 4 ºC overnight. Following washing with TBS-T, the membrane was incubated with the 

secondary Abs i.e. 1:1000 diluted goat anti-rabbit IgG horseradish peroxidase (HRP) 

conjugate or 1:2500 diluted HRP labeled anti-biotine (Bio-Rad Laboratories, Belgium) for the 

chemiluminescent marker, and again washed with TBS-T. Chemiluminescence was measured 

on a Gel Doc 2000 system (Biorad) after addition of an in situ mixture of peroxide buffer with 

luminal enhancer (Supersignal West Dura substrate, Pierce Science, Belgium). The 

ChemiDoc software (Biorad) was used to analyse the bands. 

 

ELISA 

A commercial human RBP sandwich ELISA kit (Immundiagnostik AG, Germany) 

was used.  The microtiter plate, pre-coated with the same polyclonal rabbit anti-human RBP 

Ab as used for Western blot analysis, was washed 5 times with the washing buffer. Wells 

were filled with 100 L of 1/10 diluted urine samples or RBP standards (0 μg/L, 1.1 μg/L, 3.3 

μg/L, 11 μg/L and 33 μg/L) and the plate was incubated at room temperature for 1 hour on a 

horizontal mixer. After 5 wash steps, 100 μl of 1/100 diluted peroxidase-labelled rabbit anti-

human RBP Ab was added and the plate was incubated for 1 hour on a horizontal mixer, 

again followed by 5 washings. Every well was then filled with 100 μL of tetramethylbenzidin 

(TMB) substrate and the colorimetric reaction was stopped after 10 to 12 minutes with 50 μL 

of stop-solution (H2SO4) per well. Absorbance of each well was measured using an ELISA 

plate reader at 450 and also at 600 nm as a reference. The standard curve obtained was used to 

calculate the RBP concentration in the samples of that plate. Assay sensitivity was calculated 

based on the standard deviation (SD) between the absorption values of urine samples from H 

cats to define the lowest RBP concentration that can be reliably distinguished.
5
 Recovery of 

feline RBP was determined by sequential dilution of urine samples and assessment of 

parallelism with the trendlines of the human RBP standard curve. Samples were also analysed 

in duplicate on the same day and on different days. The intra-assay coefficient of variance 

(CV) indicates precision of the method and is defined as the standard deviation of parallel 

measurements divided by their mean.
7
 Day-to-day repeatability of the ELISA was evaluated 

by determining the standardised agreement index (AI) of parallel samples. The AI is defined 

as: AI = 1 - (2*SDdiff/meanAB) (SDdiff is the standard deviation of the differences between 
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parallel samples; meanAB is the mean of parallel samples). A positive AI supports agreement, 

and a value larger than 0.5 indicates good agreement.
8,9 
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Results 

 

Western blot analysis 

Preliminary experiments for the optimisation of the Western blot conditions showed 

that blocking with 5 % milk powder yielded better results with respect to background signal 

than blocking with 3 % BSA. In addition, two urinary RBP standards were evaluated. The 

RBP standard from Sigma displayed a much stronger signal in this immuno-assay, although it 

did not yield two pure bands i.e. the expected major band at about 20 kDa (Figure 1) and one 

at 40 kDa (not shown), likely to be a dimer. The Immundiagnostik urinary RBP standard 

could not be detected by Western blot analysis (data not shown), although this was not due to 

a lack of sensitivity because it was positive upon dot spot analysis. A clear band at the same 

position as that from the RBP standard was observed in urine samples from a CKD and a HT 

cat, and a weak band in the urine from a H cat (Figure 1). 

 

ELISA 

Urine samples were diluted 10-fold as advised for human urine to minimize the risk of 

matrix interference. The functional assay sensitivity was calculated based on the absorption 

values of urine samples from 5 young H cats (the negative control group with respect to renal 

damage). The average absorption for these negative control samples was 0.085 (n = 5). The 

corresponding assay sensitivity was 1.37 μg RBP/L urine, defined as the minimum 

concentration that can be reliably distinguished from the zero standard and that produces an 

absorbance >10 SD of the negative control samples.
5
 The recovery of feline RBP was 

determined by sequential dilution of feline urine. This approach was chosen because the 

demonstration of dilutional parallelism provides a valuable alternative if no RBP standard 

from the species studied is available, as shown by Raila et al.
5
 in dogs. The curves obtained 

by serial dilution of feline urine samples from a  HT cat and a CKD cat were parallel to the 

trendlines of the calibration curves set up with human RBP standards, indicating that the 

antigen measured in cat urine was indeed RBP and confirming the cross-reactivity with the 

primary antibody as observed by Western blotting (Figure 2). Samples were analysed in 

duplicate on the same day (4 H, 4 CKD and 10 HT cats) to determine mean intra-assay CV, 

and on different days (1 H , 4 CKD and 4 HT cats) to determine day-to-day repeatability 

expressed by the standardised AI. The mean intra-assay CV was 7 % and the standardised AI 

was 0.7. Urinary RBP concentrations were normalised by expressing them as RBP/creatinine 
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(RBP/c) ratios. Results of the RBP ELISA assay and routine biochemical renal function 

parameters analysed in serum and urine are shown in Table 1. The RBP/c ratio in all H cats  

(n = 10) was below the assay sensitivity. Patients with CKD and HT had increased mean 

RBP/c ratios of 1.6 ± 0.5 x10
-2

 μg/mg (n = 10) and 1.4 ± 0.4 x10
-2

 μg/mg (n = 13), 

respectively.  

 

 

Figure 1. Representative Western blot following chemiluminescent detection. Lane 

identification: urinary RBP standard (1), urine from a CKD cat (3), a HT cat (5) and a H cat (7) 

and empty lanes (2, 4, 6, 8). 

 

 

 Figure 2. Recovery of feline urinary RBP from a CKD cat (●, sample A) and a HT cat 

(○, sample B) demonstrated by the parallelism between the curves of serially diluted cat 

urine and trendlines from human RBP standards (solid and dotted lines). 
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Table 1. Blood urea nitrogen (BUN, mg/dL), serum creatinine concentration (mg/dL), urinary 

specific gravity (USG), urinary protein/creatinine (p/c) ratio, mean urinary concentration of 

RBP (µg/L, n = 2), creatinine (mg/dL) and RBP/c ratio (x10
-2

µg/mg) in 33 cats.   

Group BUN 
Serum 

creatinine 
USG p/c ratio 

urinary 

RBP 

Urinary 

creatinine 

Urinary 

RBP/c ratio 

H 

38.9 1.3 1.008 0.23 * 277 - 

56.9 1.3 1.012 0.00 * 259 - 

47.0 1.5 1.047 0.23 * 376 - 

41.0 1.2 1.045 0.18 * 250 - 

50.0 1.4 1.048 0.09 * 380 - 

43.0 1.0 1.042 0.14 * 106 - 

47.0 1.9 1.049 0.07 * 497 - 

41.9 1.9 1.050 0.06 * 580 - 

47.0 1.7 1.050 0.08 * 623 - 

50.0 2.1 1.049 0.08 * 518 - 

mean 46.3 1.5 1.040 0.13    

SEM 1.7 0.1 0.005 0.02    

CKD 

382.2 9.6 1.017 1.75 17.8 51 3.5 

370.8 15.6 1.020 0.91 19.6 80 2.5 

390.6 17.5 1.017 0.21 15.1 130 1.2 

220.8 7.6 1.010 0.88 1.9 90 0.2 

214.9 4.8 1.013 4.99 23.0 54 4.3 

231.8 4.8 1.010 0.36 1.9 48 0.4 

83.9 2.2 1.015 0.23 14.1 79 1.8 

73.9 3.0 1.009 0.00 * 88 - 

319.7 12.4 1.010 0.25 5.6 91 0.6 

179.4 4.9 1.012 3.00 12.3 70 1.8 

mean 246.8 8.2 1.013 1.40   1.6 

SEM 36.9 1.7 0.001 0.52   0.5 

HT 

71.9 1.0 1.041 1.29 23.1 204 1.1 

71.9 1.5 1.022 0.40 16.4 122 1.3 

35.9 0.8 1.050 0.60 21.6 147 1.5 

44.0 0.9 1.050 0.53 24.5 126 1.9 

41.0 0.6 1.050 0.46 * 219 - 

71.9 2.1 1.032 0.08 * 270 - 

38.0 0.7 1.050 0.57 2.5 158 0.2 

44.9 1.2 1.022 0.33 * 92 - 

41.0 0.8 1.022 0.77 17.2 95 1.8 

39.0 1.6 1.048 0.23 15.8 323 0.5 

47.9 0.8 1.048 0.57 29.3 78 3.8 

47.9 1.1 1.050 0.40 24.5 158 1.6 

47.0 0.9 1.028 0.39 8.1 19 4.2 

mean 49.4 1.1 1.039 0.51   1.4 

SEM 3.6 0.1 0.003 0.08   0.4 

H: healthy cats (n = 10), CKD: cats with chronic renal insufficiency (n = 10), HT: hyperthyroid 

cats (n = 13); µ: mean RBP/c ratio, SEM: standard error of the mean; *: RBP concentration 

below the assay sensitivity (i.e. 1.37 µg/L); -: ratio can not be calculated. 
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Discussion 

 

RBP is a low MW protein (21 kDa) that is synthetised in the liver and belongs to the 

superfamily of the lipocalines.
10

 It is a specific carrier for the lipophilic vitamin A (retinol) in 

blood, transporting the retinol ligand from its hepatic storage site to target cells as a holo-

RBP-complex. Upon release of its ligand, the uncomplexed RBP can be filtered and 

reabsorbed in the kidney. According to a comparative immunology study, this systemic 

transport system is analogous for all Mammalia, including Felidae.
11

 However, in the same 

paper significant immunological differences in RBP among the mammalian orders were 

described. Interestingly, canine but not feline RBP did display cross-reactivity with a human 

RBP Ab raised in rabbits. In contrast, another comparative study did observe partial cross-

reactivity between a rabbit anti-human Ab and RBP from felids while no cross-reactivity was 

seen for RBP from dogs.
12

 A recent study from Raila et al.
3
 showed immunological activity of 

carnivores with a commercial rabbit anti-human RBP Ab. We suggest that these conflicting 

literature data may be explained by the different Abs and immunological techniques used in 

the three studies i.e. radio-immunoassay, radial immunodiffusion and Western blot analysis, 

respectively. Although the presence of RBP in cat plasma, liver and kidney samples was 

confirmed in a subsequent paper by Raila et al.,
4
 the protein was again not detected by 

Western blot analysis in feline urine. In two more recent studies from the same group, the 

authors conclude that in dogs urinary RBP holds promise as a renal marker because increased 

urinary RBP levels were observed in CKD patients with ELISA and with the innovative 

protein microchip technology.
5,6

 The reported advantages of RBP as a biochemical marker in 

humans are its relatively constant synthesis rate and its stability, especially with variations in 

urinary pH.
13,14

 

 

In the current immuno-assay based study, urine from cats belonging to three groups 

was first analyzed by Western blotting with chemiluminescent detection. In the urine of 

healthy cats the RBP signal observed was very low in comparison to that in urine from both 

CKD and HT patients. The detection of RBP in urine from a healthy cat is analogues to the 

results in healthy humans, who can have detectable amounts of RBP in urine.
15

 Feline urinary 

RBP was present as a band at the same position as a RBP standard purified from human urine. 

Previous studies by Raila et al.
3,4

 have described the attempt to demonstrate RBP in urine of 

cats and other carnivores, using an antibody raised against human RBP purified from serum 
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and not from urine as used in the current study. This difference in Abs could be one 

explanation why RBP was not demonstrated in the urine of cats with Western blot analysis in 

these earlier studies. Nevertheless, to the best of our knowledge an anti-human serum RBP Ab 

is not commercially available. Therefore, a more likely explanation for the difference between 

our results and those from Raila et al. is therefore that the urine samples in their study were 

chosen at random from patients and did not originate from selected cats with either diagnosed 

or increased risk for renal damage.  

 

Second, a sandwich ELISA technique was validated to compare the normalized 

urinary RBP levels in 33 cats. As RBP standards purified from human urine were used for the 

calibration curve in this quantitative immunoassay and because of the partial cross-reactivity 

from feline RBP with anti-human RBP,
12

 the calculated values should be interpreted as 

relative concentrations. The ELISA data in the current study were in accordance with the 

observations made by Western blot analysis. Indeed, the relative RBP levels detected were 

below the assay sensitivity in all H cats, whereas increased urine concentrations were 

typically seen in the majority of CKD and HT patients. However, in both of the latter patient 

groups a large variation in the relative RBP concentration was observed between individual 

cat urine samples. The anti-human urinary RBP Ab used in the current study reacts with 

serum, plasma and urinary human RBP. Following additional validation of the immuno-assay 

for feline serum or plasma, it could therefore be of interest to evaluate whether a similar 

variation between cats is also present at the systemic level. 

In cats, several factors such as muscle mass, GFR and USG could influence urinary 

creatinine concentration. Further studies are needed to investigate the best way to index 

urinary RBP concentration taking into account the dilution factor. 
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Conclusion 

 

The current study first identified RBP in feline urine with Western blot analysis. 

Subsequent data obtained with a validated ELISA are in accordance with the Western 

immunoassay and with observations in other species. The presented findings indicate that 

feline RBP is released in urine upon renal damage and suggest that RBP might be valuable as 

a renal marker for cats in a clinical setting.  
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Summary 

 

Retinol binding protein (RBP) was previously suggested to be valuable as a renal 

marker for cats in a clinical setting. We hypothesized that serum and urinary RBP 

concentrations in hyperthyroid (HT) cats differ from those in healthy (H) cats, and there is 

influence of radioiodine (
131

I) treatment on serum and urinary RBP concentrations in HT cats.  

RBP was measured in urine and serum of 10 HT cats before and after treatment and in 

serum and urine of 8 H cats. A polyclonal rabbit anti-human RBP antibody was used in a 

commercial sandwich ELISA that we validated for RBP assessment in feline samples.  

There was a significant difference between H and untreated HT cats in urinary 

RBP/creatinine (uRBP/c) ratio. Serum TT4 concentration and uRBP/c decreased significantly 

in HT cats at all time points after treatment, and both variables correlated significantly. Serum 

RBP concentrations from HT cats did not differ significantly from those of H cats and did not 

change after treatment. 

We can conclude from this study that the presence of urinary RBP in HT cats is a 

potential marker of tubular dysfunction which is correlated to thyroidal status, although 

independent of circulating RBP concentrations. The decreasing uRBP/c combined with the 

absence of changes in serum RBP after treatment suggests that the observed tubular 

dysfunction is mainly reversible upon treatment with 
131

I. 
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Introduction 

 

Four main types of RBP (named RBP-1 to RBP-4) are described in humans.
1,2

 These 

carrier proteins can be divided into serum RBP and cellular RBPs (CRBPs). Serum RBP and  

cellular RBPs differ in their primary amino acid sequence, as well as in their secondary and 

tertiary protein structure.
3
 These structural differences affect the way retinol is bound to its 

specific RBP. The circulating form of RBP is called RBP-4 in humans, while in cats it is 

named simply serum RBP or urinary RBP [uRBP] because it is not clear which type of RBP is 

measured. Serum RBP forms with its retinol ligand a holo-RBP complex.
4
 Holo-RBP binds 

physiologically to transthyretin, and this prevents the loss of both serum RBP and its bound 

retinol through glomerular filtration.
5
 Only molecules with a molecular weight smaller than 

albumin (66 kDa) can be filtered through the glomerular barrier. RBP is a low molecular 

weight carrier protein of 21 kDa, and the tetrameric transthyretin (TTR) has a molecular 

weight of 55 kDa. Upon release of its ligand, the uncomplexed apo-RBP no longer has 

affinity for TTR and can be freely filtered in the glomerular ultrafiltrate and normally 

reabsorbed through a megalin-receptor dependent endocytosis mechanism in the proximal 

tubules.
6 

However, when tubular function fails, elimination of uRBP shifts from intra-tubular 

catabolism to urinary excretion.
7
 RBP found in urine is modified from RBP in serum by 

proteolysis at the carboxyl terminus. Urinary RBP can be shown using cross-reactivity with 

anti-human uRBP antibodies (Abs). This tubular type of proteinuria is a highly sensitive index 

of renal tubular damage in humans, because a minor decrease in tubular function may lead to 

RBP excretion in urine.
8,9   

 

Despite differences in amino acid composition between serum RBP and uRBP, radial 

immunodiffusion techniques have shown partial but substantial cross-reactivity between 

feline serum and rabbit anti-human uRBP Abs.
10

 Western-blot analysis based on cross-

reactivity with an anti-human uRBP antibody (Ab) has confirmed the presence of RBP in both 

plasma, liver and kidney samples
11

 as well as in urine of healthy (H) cats, untreated HT cats 

and cats with chronic kidney disease (CKD).
12

 In the latter study, the same anti-human uRBP 

Ab was used albeit in a commercially available sandwich ELISA kit
a
 to measure relative 

RBP. Our previous data demonstrate that H cats did not have RBP concentrations above the 

ELISA limit of quantification (LOQ), whereas increased urinary RBP concentrations were 

seen in the majority of cats with hyperthyroidism displaying large variations between 
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individual cats, and in cats with CKD.
12

 These data indicate that urinary RBP might be used 

as a urinary marker to study tubular localization of lesions occurring in kidney damage. 

Nevertheless, it remains unclear why RBP is present in urine of untreated HT cats.  

 

Plasma concentrations of RBP and transthyretin are decreased in humans with 

hyperthyroidism, although they remain unchanged during hypothyroidism.
13-15

 This former 

observation can be either explained by an increased plasma turnover of RBP combined with 

an unchanged RBP synthesis,
16

 or by a lower hepatic synthesis of RBP due to decreased 

serum zinc values.
15

 Urinary RBP/creatinine (uRBP/c) ratio’s declined in HT humans that 

became euthyroid, but concentrations varied widely and median values of both HT and 

euthyroid patients were within reference ranges of control euthyroid subjects.
17  

 

It can be hypothesized that HT cats have an increased clearance of circulating RBP 

and that this would lead or contribute to uRBP. Another hypothesis is that uRBP in HT cats is 

caused by an effect of the  hyperthyroid state on tubular function. Effects of hyperthyroidism 

on other functional parts of the tubules have been reported.
18-21 

A decrease in uRBP after 

treatment of hyperthyroidism can then be expected.  

 

Fractional excretion (FE) of a solute is defined as the fraction of a filtered solute that is 

excreted in the urine. FE is calculated from the serum and urinary concentrations of this 

specific solute and creatinine. It is therefore a variable consisting of both systemic and renal 

components. Consequently, calculating FE for RBP might be helpful in elucidating the 

possible link between serum and urinary RBP.
22 

 

The anti-human uRBP Ab reacts with serum, plasma and urinary RBP in humans, and 

it has been applied in ELISA to measure RBP in both serum and urine.
23,24

 However, it has 

been only qualitatively detected with Western blotting in plasma
11 

or sera
10

 of cats, and 

quantitatively with ELISA in urine of cats.
12

 No data are available in cats on the influence of 

treatment for hyperthyroidism on systemic and urinary RBP concentrations. Therefore, the 

objectives of the current study were to compare serum and urinary RBP concentrations in HT 

cats and H cats, and to evaluate the influence of radioiodine (
131

I) treatment on these serum 

and urinary RBP concentrations in HT cats.  
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Materials and Methods 

 

This study was carried out after approval by the Local Ethical committee of Ghent 

University and the care and use of all animals complied with local animal welfare laws, 

guidelines and policies. Informed consent was obtained from the owners of included HT cats. 

 

Hyperthyroid cats 

Ten HT cats were included in the study and ranged in age from 8 to 16 years (median 

13 years) and weighed 2.6 - 5.0 kg (median 3.5 kg). There were 2 castrated male cats and 8 

spayed female cats, all domestic shorthair. Cats were included in the study when diagnosed 

with hyperthyroidism, presented for treatment with 
131

I at the faculty of veterinary medicine 

of Ghent University (Belgium) and successfully treated for hyperthyroidism 24 weeks after 

treatment, according to the observed decrease in serum TT4 concentration and amelioration of 

clinical symptoms.  

Diagnosis of hyperthyroidism was based on clinical signs compatible with 

hyperthyroidism, ie. increased serum TT4 concentration (reference range 1.1-3.5 g/dL)) and 

increased thyroidal uptake (ratio thyroid uptake/salivary gland uptake) of pertechnetate  

(
99m

TcO4
-
). Anti-thyroid drugs had to be discontinued at least 3 weeks prior to inclusion.  To 

assess the clinical condition, cats underwent physical and routine laboratory examinations 

(CBC, biochemistry, and measurement of serum TT4)  and cystocentesis  for urinalysis 1 day 

before and 4, 12 and 24 weeks after 
131

I treatment. At these re-evaluations, serum TT4, serum 

creatinine, serum RBP, urinary RBP, and urinary creatinine concentrations were measured. 

Before and after treatment urine specific gravity (USG) and glomerular filtration rate (GFR) 

were measured using plasma clearance of exo-iohexol (PexICT) as described earlier.
25

 

 

Healthy cats 

Eight healthy cats were included in the study and ranged in age from 2 to 10 years 

(median 9.5 years)  and weighed 2.3 - 5.8 kg (median 4.8 kg). There were 3 spayed male and 

5 female (3 spayed, 2 intact) cats, all domestic shorthair. Cats underwent physical and routine 

laboratory examinations (CBC, biochemistry, and measurement of serum TT4) and 

cystocentesis for urinalysis. Animals were included only if these examinations showed no 

clinically significant abnormalities. Serum TT4, serum creatinine, serum RBP, urinary RBP, 
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urinary creatinine concentration, USG and GFR (PexICT, n = 7) were measured to compare 

the results with hyperthyroid cats. 

 

Procedures and RBP analysis 

Blood was taken by jugular venipuncture and urine by cystocentesis, on the same day 

after the cat was fasted for at least 10 hours. No chemical restraints were used for sampling. 

Blood samples were allowed to clot for a maximum of 1 hour. Clotted serum and urine were 

stored at 4 ºC for a maximum of 2 hours. After centrifugation (5 min at 2431 x g for serum, 3 

min at 447 x g for urine), samples were aliquoted and stored at -20 ºC (serum) or  -80 ºC 

(urine). Serum TT4 was measured using a validated chemiluminescent immunoassay 

(Immulite 2000 Canine total T4 assay, Diagnostic Products Corporation, Los Angeles, 

USA).Creatinine was measured in serum and urine with a validated spectrofotometric Jaffé 

method (Modular, Roche Diagnostics, Mannheim, Germany). Within- and between-run 

coefficients of variation (CV %) are described in Table 1. 

A polyclonal rabbit anti-human uRBP Ab was used in a commercial sandwich ELISA
 

(Immundiagnostik AG, Germany) validated for RBP assessment in feline urine and 

previously described in detail.
12

 Wells were filled with 100 l of either 1/10 diluted urine 

samples or 1/200 diluted serum samples. The absorbance of each well was measured using an 

ELISA plate reader at 450 nm and also at 600 nm as a reference wavelength. Samples 

producing an absorbance <10 SD of negative control samples were considered as below LOQ 

(value 0) as described previously by van Hoek et al. (2008). The recovery of RBP was 

determined by sequential dilution of a serum sample taken in a HT cat before treatment. This 

approach was chosen because the demonstration of dilution parallelism provides a valuable 

alternative if no RBP standard from the species studied is available, as shown by Raila et al. 

in dogs.
26

 RBP concentrations were expressed as g/L in serum and as RBP/c (10
-2

 g/mg 

creatinine) ratio in urine. Fractional excretion (FE) of urinary RBP was calculated as the 

fraction of the amount of urinary RBP filtered through the glomeruli and excreted in the urine 

with the following formula: (urinary RBP concentration * serum creatinine concentration) / 

(serum RBP concentration * urinary creatinine concentration).
22

 

 

Statistical analysis 

 Results were analyzed using a linear mixed model (SAS version 9.1, SAS Institute Inc, 

Cary, IN, USA) with cat as random effect and treatment and time as categorical fixed effects.  
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The measurements of the HT cats at the different time points were compared with those in H 

cats at time zero using Dunnett’s multiple comparisons technique. Additionally, a multivariate 

analysis was performed using the same model and introducing BW, age and sex as covariates, 

in order to adjust for imbalance in these covariates between the HT and H cats. The 

measurements of the HT cats at the different time points were compared pair wise using 

Tukey’s multiple comparisons technique. All tests were done at a global significance level of 

5 % and adjusted P-values (adjusted for multiple comparisons) were reported. Pearson 

correlation coefficients were obtained for different pairs of variables. Results are expressed as 

mean ± standard deviation (SD) unless stated otherwise. 

 

Table 1. Within- and between-run CV for low and high range concentrations of serum 

creatinine, urine creatinine and serum TT4. 

  Within-run Between-run 

  

# samples 

(mean 

concentration) 

CV(%) 

# samples 

(mean 

concentration) 

CV(%) days 

Serum 

creatinine 

Low range 

 

High range 

10 

(1.3 mg/dL) 

10 

(4.2 mg/dL) 

2.2 

 

1.9 

2 - 5 

(1.2 mg/dL) 

2 - 5 

(4.0 mg/dL) 

3.0 

 

2.3 

13 

 

13 

Urine 

creatinine 

Low range 

 

High range 

10 

(98 mg/dL) 

10 

(243 mg/dL) 

1.1 

 

0.7 

2 

(86 mg/dL) 

2 

(256 mg/dL) 

2.4 

 

2.2 

13 

 

13 

Serum TT4 

Low range 

 

High range 

10 

(2.1 g/dL) 

10 

(5.0 g/dL) 

4.3 

 

6.0 

1 

(2.2 g/dL) 

1 

(5.1 g/dL) 

7.6 

 

7.0 

12 

 

7 

CV: coefficient of variation. 
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Results 

 

First, recovery of feline RBP was demonstrated by the parallelism between the curves 

of serially diluted HT cat serum before 
131

I treatment and of human RBP standards. This 

indicates that the antigen measured in feline serum was RBP and confirms the cross-reactivity 

with the primary anti-human antibody as previously shown for cat urine (Figure 1).
12

 

Second, serum RBP and TT4 concentrations, urinary RBP and creatinine 

concentrations and the uRBP/c ratio, as well as USG and GFR in H cats and in HT cats before 

and after treatment are described in Table 2. Serum TT4 concentration differed between H 

and HT cats before treatment (P < 0.001), but not 4 weeks (P = 0.999), 12 weeks (P = 1.000) 

or 24 weeks (P = 0.998) after treatment. Serum RBP did not differ significantly between H 

cats and HT cats before (P = 0.984) or 4 weeks (P = 0.625), 12 weeks (P = 0.857) or 24 weeks 

(P = 0.999) after treatment. Urinary RBP differed significantly between H and HT cats before 

treatment (P = 0.001) but not at 4 weeks (P = 0.491), 12 weeks (P = 0.385) or 24 weeks (P = 

0.241) after treatment. There was a significant difference between H and HT cats in urinary 

creatinine concentration before treatment (P = 0.001), at 4 weeks (P = 0.016), 12 weeks (P = 

0.020) and 24 weeks (P = 0.008) after treatment. There was a significant difference between 

H and HT cats in uRBP/c ratio before treatment (P = 0.003), but not at 4 weeks (P = 0.945), 

12 weeks (P = 0.796) or 24 weeks (P = 0.302) after treatment. FE was on average higher in 

HT cats at all time points compared to H cats, however FE did not differ significantly between 

H cats and HT cats before (P = 0.131) or 4 weeks (P = 0.997), 12 weeks (P = 0.895) or 24 

weeks (P = 0.092) after treatment. USG did not differ between H and HT cats before (P = 

0.834), nor 4 (P = 0.580), 12 (P = 0.288) or 24 (P = 0.939) weeks after treatment. GFR 

differed between H and HT cats at time point 0 (P = 0.002), but not at 4 (P = 0.467), 12 (P = 

0.310) or 24 (P = 0.340) weeks after treatment.  

There was no significant difference between the H cats and HT cats for age, BW or 

sex. These results were re-analysed with multivariate analysis with age, BW and sex as fixed 

effects. There were no different results and hence no influence of differences in age, BW or 

sex between the 2 groups was present. 

In HT cats there was a strongly significant decrease in serum TT4 concentration at all 

time points after 
131

I treatment compared to before 
131

I treatment (P < 0.001). No statistically 

significant differences in serum TT4 concentration were observed between 4 and 12 weeks (P 

= 1), 4 and 24 weeks (P = 0.986) or 12 and 24 weeks (P = 0.996). Serum RBP concentration 
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did not change significantly after 
131

I treatment (P = 0.799). Compared to pre-treatment 

values, there was a significant decrease in absolute uRBP concentration 4 weeks (P = 0.004), 

12 weeks (P = 0.006) and 24 weeks (P = 0.016) after 
131

I treatment. No statistically significant 

differences were observed between 4 and 12 weeks (P = 0.995), 4 and 24 weeks (P = 0.916) 

and 12 and 24 weeks (P = 0.977). Urinary RBP remained present in 50 % of the HT cats until 

24 weeks after treatment, although 4 of these 5 cats had uRBP/c ratio lower than pre-

treatment values. Compared to pre-treatment values, there was a significant increase in 

urinary creatinine concentration 4 weeks (P = 0.016), 12 weeks (P = 0.008), but not at 24 

weeks (P = 0.079) after 
131

I treatment. No statistically significant differences were observed 

between 4 and 12 weeks (P = 0.993), 4 and 24 weeks (P = 0.888) and 12 and 24 weeks (P = 

0.754). Compared to pre-treatment values, there was a significant decrease in uRBP/c ratio 4 

weeks (P = 0.004), 12 weeks (P = 0.001) but not at 24 weeks (P = 0.084) after 
131

I treatment. 

No statistically significant differences were observed between 4 and 12 weeks (P = 0.986), 4 

and 24 weeks (P = 0.580) and 12 and 24 weeks (P = 0.781). No significant change in FE 

could be detected 4, 12 or 24 weeks after 
131

I treatment (P = 0.061). There was no significant 

difference in USG at 4, 12 or 24 weeks after treatment (P = 0.426). Compared to pre-

treatment values, GFR decreased significantly in HT cats at 4 (P < 0.001), 12 (P < 0.001)  or 

24 (P < 0.001) weeks after treatment. No statistically significant differences in GFR were 

observed between 4 and 12 weeks (P = 0.158), 4 and 24 weeks (P = 0.203) or 12 and 24 

weeks (P = 0.999) after treatment.  

The Pearson correlation coefficient (r) was calculated for the HT for all time points 

and the time points separately. The r, as well as the P-value for significant difference from 0 

are described in Table 3. The correlation in HT cats between serum TT4 concentration and 

uRBP/c is visualized in Figure 2 for the 4 different time points separately.  

 Finally, 2 HT cats developed CKD (IRIS stage II, serum creatinine 1.6 - 2.8 mg/dL), 

low urine specific gravity (1.012 and 1.015 respectively) and clinical symptoms. Serum 

creatinine increased from 0.94 to 2.68 mg/dL and from 0.58 to 1.80 mg/dL, respectively in 

these cats. Urinary RBP was present in 1 of these cats 24 weeks after treatment. Both cats 

were also diagnosed with hypothyroidism, i.e. serum TT4 concentration below reference 

range and no response after rhTSH stimulation.
27
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Figure  1. Recovery of feline RBP from serum of a HT cat before (○) 
131

I treatment 

demonstrated by the parallelism between the curves of serially diluted cat serum (dotted line) 

and of human RBP standards (*, solid line, with the corresponding trendline  as dotted line). 

The serum sample was diluted 1:100, 1:200, 1:500 and 1:1000. Assay sensitivity (1.37 g/L) is 

expressed by the vertical dotted line. 

 

 

Figure 2. Correlation between serum TT4 (g/dL) and uRBP/c (10
-2

 g/mg) in hyperthyroid cats 

before (time point 0, ●) and 1 (○), 3 (▲) and 6 (x) months after 
131

I treatment. Values were 

measured in one serum and one urine sample per time point. Corresponding r and P values for 

significant difference from 0 are presented in Table 3 (bottom row). 
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Table 2. Concentrations (mean and SD (range)) of serum RBP (g/L), serum TT4 (g/dL), 

serum creatinine (mg/dL), urinary RBP (g/L), urinary creatinine (mg/dL); urinary RBP/c ratio 

(10
-2

 g/mg), USG and GFR (mL/min/kg) in H cats (n = 8) and HT cats (n = 10) before (0) and 4, 

12 and 24 weeks after 
131

I treatment. Median is given in italics for serum TT4, urinary RBP and 

uRBP/c. 

Cats 
HT 

0 

HT 

+4 weeks 

HT 

+12 weeks 

HT 

+24 weeks 
H 

Serum 

TT4 

11.6 ± 4.0
a 

13.6 

(6.9 - 15.5) 

2.1 ± 2.5
b
 

1.7 

(0 - 8.4) 

2.0 ± 2.4
b
 

1.7 

(0 - 8.2) 

1.8 ± 1.9
b
 

1.6 

(0 - 6.7) 

2.0 ± 0.3
b
 

2.1 

(1.5 - 2.4) 

Serum 

RBP 

199 ± 86
a
 

(115 - 365) 

244 ± 197
a
 

(111 - 760) 

223 ± 148
a
 

(94 - 533) 

182 ± 124
a
 

(127 - 510) 

174 ± 60
a
 

(70 - 252) 

Serum 

creatinine 

0.68 ± 0.14 

(0.56 - 0.94) 

1.05 ± 0.29 

(0.56 - 1.49) 

1.38 ± 0.41 

(0.58 - 2.13) 

1.45 ± 0.54 

(0.79 - 2.68) 

1.40 ± 0.16 

(1.22 - 1.71) 

Urinary 

RBP 

10.6 ± 8.2
a
 

8.45 

(0 - 23.5) 

3.0 ± 6.4
b
 

0 

(0 - 19.5) 

3.5 ± 5.7
b
 

1.5 

(0 - 18.3) 

4.4 ± 5.4
b
 

2.3 

(0 - 14.9) 

* 

 

Urinary 

creatinine 

117 ± 58
a
 

(19 - 209) 

186 ± 82
b
 

(68 - 335) 

192 ± 94
b
 

(80 - 339) 

171 ± 101
a,b

 

(25 - 308) 

341 ± 150
c
 

(106 - 580) 

Urinary 

RBP/c 

1.4 ± 1.5
a
 

0.9 

(0 - 4.3) 

0.2 ± 0.4
b
 

0 

(0 - 1.1) 

0.3 ± 0.5
b
 

0.1 

(0 - 1.6) 

0.6 ± 1.0
a,b

 

0.1 

(0 - 3.0) 

- 

 

USG 

1.036 ± 

0.013
a
 

(1.014-1.060) 

1.034 ± 

0.013
a
 

(1.015-1.051) 

1.030 ± 

0.13
a
 

(1.015-1.051) 

1.038 ± 

19.3
a
 

(1.012-1.060) 

1.038 ± 

0.017
a
 

(1.008-1.050) 

GFR 
3.3 ± 1.0

a
 

(2 - 5.3) 

2.1 ± 0.7
b
 

(1.2 - 5.3) 

1.6 ± 0.6
b
 

(0.9 - 3.2) 

1.6 ± 0.6
b
 

(0.9 - 2.9) 

1.9 ± 0.2
b
 

(1.6 - 2.1) 

*: RBP concentration below assay sensitivity (1.37 g RBP/L urine), - : ratio can not be 

calculated. When the superscripts (
a, b, c

) are different between time points for a specific variable, 

a statistically significant difference is observed between the values. P values are provided in the 

results section.  

RBP: retinol binding protein, USG: urine specific gravity, GFR: glomerular filtration rate. 
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Table 3. Pearson correlation coefficients (r) and corresponding P values for difference from 0, 

for the comparison of serum RBP with serum TT4 and uRBP/c and the comparison of serum 

TT4 with uRBP/c. Correlation coefficients were calculated for all time points together, as well as 

before, 4, 12 and 24 weeks after treatment. 

 

All time 

points 

together 

0 +4 weeks +12 weeks +24 weeks 

Serum RBP - 

serum TT4 

r = 0.03 

P = 0.836 

r = -0.29 

P = 0.417 

r = 0.83 

P = 0.003* 

r = -0.12 

P = 0.751 

r = -0.17 

P = 0.67 

Serum RBP - 

uRBP/c 

r = -0.16 

P = 0.341 

r = -0.48 

P = 0.155 

r = 0.68 

P = 0.030* 

r = -0.33 

P = 0.380 

r = -0.28 

P = 0.464 

Serum TT4 - 

uRBP/c 

r = 0.42 

P = 0.007* 

r = -0.19 

P = 0.594 

r = 0.77 

P = 0.009* 

r = 0.76 

P = 0.010 

r = 0.25 

P = 0.485 

* : r significantly different from 0, RBP: Retinol binding protein, uRBP/c: urinary 

RBP/creatinine ratio, TT4: total thyroxine. 
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Discussion 

 

In this study, we found that untreated HT cats had a significant urinary RBP 

concentration, and that urinary RBP was globally correlated with serum TT4 concentration. 

Urinary RBP decreased after 
131

I treatment. However, these uRBP/c values were not 

significantly correlated to serum RBP concentrations either before or after treatment. 

Moreover, serum RBP concentrations did not significantly differ from concentrations in H 

cats and were highly variable between HT cats. The observation that uRBP in HT cats is not 

significantly correlated to the systemic RBP concentration, suggests that it likely reflects 

dysfunction at the local tubular level. Reversibility of this renal dysfunction is indicated by 

the decrease in uRBP/c ratios after 
131

I treatment. In HT patients, the alteration of tubular 

function is not unexpected. Indeed, thyroid hormones stimulate active carrier-mediated 

tubular processes by an increased gene expression, synthesis and activity of carrier proteins 

like Na
+
-K

+
-ATPase and Na

+
/H

+
 exchanger activity in brush border membrane vesicles.

18-20
 

The metabolic level and reabsorbtive capacity of tubular cells is increased in 

hyperthyroidism.
21

  

 

In HT cats, several factors such as decreased muscle mass, increased renal blood flow 

and decreased USG could influence urinary creatinine concentrations. Therefore, these factors 

could have indirectly contributed to differences observed in uRBP/c ratio. However, the 

absolute urinary RBP concentration also decreased significantly after treatment. Moreover, 

there was no difference in USG in the hyperthyroid cats before and after treatment, which 

strengthens our findings.  

 

The FE of RBP was higher in HT cats before and after treatment compared to H cats, 

though results did not reach statistical significance. The FE can be increased upon renal 

dysfunction and more specifically upon tubular impairment. However, normal FE values may 

be observed in animals with an impaired renal function.
28,29

 To the author’s knowledge, this is 

the first study in either human or veterinary medicine investigating the influence of treatment 

on serum and urinary RBP concentrations in HT patients.  

 

The decrease in feline uRBP/c ratios after radioiodine treatment for hyperthyroidism 

corroborates the results described in humans.
17

 The uRBP/c ratio in humans is higher in 
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hyperthyroidism than in euthyroidism but varies widely and does not differ from values in 

control subjects. It is possible that HT humans have a less advanced stage of hyperthyroidism 

compared to HT cats with less substantial structural tubular damage. Nevertheless, the 

pathogenesis inducing this change remains unclear also in human endocrinology.  

 

Tubular dysfunction could have different causes in HT cats. First, renal tubules are 

hypertrophic and hyperplastic during hyperthyroidism, which leads to an increased tubular 

mass, kidney weight, mitotic index, metabolic level and increased tubular secretory and 

reabsorbtive capacity.
21,30

 This increased functional level could damage or transform tubular 

cells and affect several processes. Second, if there is a deficiency in the megalin-mediated 

endocytosis, RBP will not be taken up for recycling and will be lost in the urine.
31

 Third, 

disturbed lysosomal degradation of RBP, subsequent to endocytic uptake, or increased RBP 

synthesis in tubular cells as part of the stimulated functional level,
6
 may lead to increased 

urinary RBP excretion. Additionally, a higher renal blood flow in HT cats may lead to 

alterations in renal hemodynamics and may provoke reversible ischemic tubular damage.
32 

 

Besides local tubular dysfunction, several systemic factors can possibly induce the 

change in uRBP/c ratios in HT cats. Any change in the affinity between TTR and holo-RBP 

will lead to an increase in unbound RBP which is susceptible to glomerular filtration. 

Malnutrition decreases TTR concentrations and thereby increases the glomerular filtration of 

RBP.
33,34

 Undernutrition leading to a low body condition score is common in HT cats. 

Therefore, although no changes in total serum RBP were observed in our study, we cannot 

exclude that in untreated HT cats the unbound RBP fraction may be increased and lead to 

RBP excretion because of the renal threshold.
8,35

 To the author’s knowledge, such a 

phenomenon has not yet been described. 

 

Development of post-treatment renal azotemia in HT cats has been described in 

several independent studies.
36-38

 It would therefore be of interest to detect pre-existing though 

masked renal dysfunction in HT cats. The large individual variation - albeit smaller than in 

humans
17

 - in uRBP/c ratios in HT cats before and after treatment might indicate that this ratio 

could serve as a potential predictive marker for CKD developing after 
131

I treatment. 

Interestingly, 20 % of the HT patients in the current study developed CKD after treatment. 

Despite the fact that 2 cats had an increased uRBP/c before treatment, uRBP/c ratio remained 
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elevated in only one of these two cats until 24 weeks after treatment. A study in a larger 

number of cats and during a prolonged follow-up period is ongoing. The objective of this 

latter study is to evaluate the predictive value of different standard and candidate renal 

markers including uRBP/c for development of post-treatment renal azotemia after treatment.  

The current study is the first report on assessment of RBP in serum of cats. 

Nonetheless, it has to be kept in mind that the reported concentrations are only relative values. 

Indeed, although the systemic transport system of the holo-RBP-TTR complex is analogous 

for all Mammalians including Felidae, there are significant immunological differences among 

mammalian orders. According to one comparative immunology study feline serum RBP and a 

anti-human serum RBP Ab raised in rabbits failed to show cross-reactivity using a radio-

immunoassay.
39

  This observation is in contrast to a more recent comparative study using 

radial immunodiffusion where partial cross-reactivity was seen between a rabbit anti-human 

Ab and serum RBP from felids.
10

 In the latter study, feline serum RBP showed cross-

reactivity to both anti-human unbound uRBP Ab as well as anti-human serum TTR-RBP Ab. 

It is possible that the anti-human Ab not only binds to RBP-4 like in humans, but also to other 

forms of RBP present in serum of cats.  

 

Besides the described differences between Mammalia, factors related to the assay can 

also influence the crossreactivity between feline RBP and an anti-human RBP Ab. Affinity of 

the anti-human uRBP Ab for RBP in serum is lower than for RBP in urine because serum 

RBP is complexed to TTR while being unbound in urine.
40

 This TTR could influence RBP-

Ab binding in non-denaturing conditions like in ELISA.
41

 Moreover, uRBP is modified by 

proteolysis at its carboxyl terminus thereby inhibiting binding to TTR, and differences in 

amino acid composition influence the binding of Abs to the protein.
41

 Additional influences 

on serum RBP assessment are the collection methods for serum or plasma and the fasting 

versus fed state of the patient.
41

 In the current study serum tubes without clot-activator were 

used, as recommended, and cats were fasted overnight prior to blood collection. Burri et al. 

found little or no influence of overnight fasting on RBP concentration in humans and rats.
10

  

The presented longitudinal study is the first report on quantitative RBP values in 

serum and urine of H and HT cats before and after treatment of hyperthyroidism. A limitation 

of our study is the relatively small number of cats. Nonetheless, results of uRBP in HT cats 

before and after treatment and compared to H cats were significant.  
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Conclusion 

 

The presence of urinary RBP in HT patients is a potential marker of tubular 

dysfunction which is correlated to thyroidal status, although suggested to be independent of 

circulating RBP concentrations.  Our data suggest that the observed tubular dysfunction is 

mainly reversible in HT cats after treatment with 
131

I. Still, additional data are required to 

support this hypothesis and investigate the usefulness of RBP as a marker prediction of post-

treatment renal azotemia.  
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Introduction to Chapter 4 

 

Previous studies have evaluated the kidney function after treatment of hyperthyroid 

cats, but most have focused on glomerular function, over a short term period. We investigated 

kidney function through measurement of several variables before and after treatment. 

Regarding these variables, we also assessed the post-treatment time course in cats maintaining 

a healthy kidney function and cats developing post-treatment renal azotemia, as well as the 

possible predictive value of these variables for post-treatment GFR and the development of 

post-treatment renal azotemia. 
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Summary 

 

Hyperthyroidism can mask co-existing chronic kidney disease (CKD). Previous 

studies showed that post-treatment renal azotemia can be predicted by pre-treatment 

assessment of glomerular filtration rate (GFR). We hypothesized that treatment of 

hyperthyroidism may have different effects on glomerular and tubular function and these 

changes might be predicted by additional pre-treatment variables other than GFR. 

Serum total T4 (TT4), creatinine and blood urea nitrogen (BUN), blood pressure (BP), 

body weight (BW), GFR, urine specific gravity (USG), urinary protein/creatinine ratio (UPC) 

and retinol binding protein/creatinine ratio (uRBP/c) were evaluated before and 1, 4, 12 and 

24 weeks post-treatment with radioiodine (
131

I) in 21 non-azotemic hyperthyroid cats. Cats 

were divided 24 weeks post-treatment into group A (normal kidney function, n = 16) and 

group B (impaired kidney function, n = 5).  

Serum TT4, GFR, UPC and uRBP/c decreased significantly after treatment for the 

complete group and group A (P < 0.05), although GFR and uRBP/c did not change 

significantly in group B. Serum creatinine and BW increased significantly from 1 week after 

treatment (P < 0.05). There was no change in BUN, USG or BP.  Pre-treatment serum TT4, 

GFR and USG differed significantly between group A and B (P < 0.05). GFR at 4 weeks after 

treatment and maximum decrease in GFR could be partially predicted by a formula using pre-

treatment GFR, serum TT4, serum creatinine, BUN and/or USG. 

Significant changes in kidney function occur within 4 weeks post-treatment and none 

thereafter. Pre-treatment measurement of GFR, USG and serum TT4 can have possible 

predictive value regarding the development of post-treatment renal azotemia. 
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Introduction 

 

Hyperthyroidism is the most diagnosed endocrine disorder in geriatric cats and is 

reported to affect 0.3 % of all cats with no apparent gender or breed predilection.
1
 Chronic 

kidney disease (CKD) affects 7.7 % of cats over 10 years of age and 15.3 % of cats over 15 

years of age.
2,3

 Consequently, CKD and hyperthyroidism may occur concurrently in geriatric 

cats. Prevalence of pre-existing CKD in hyperthyroid cats has indeed been reported to be as 

high as 40 %.
4,5

 Furthermore, hyperthyroidism can mask pre-existing CKD. In up to 39 % 
6-9

 

of treated cats the impaired kidney function becomes only apparent after treatment of 

hyperthyroidism.  

 

Previous studies have investigated renal function including glomerular filtration rate 

(GFR) after treatment of hyperthyroid cats.
6,7,10

 Boag et al. showed that GFR decreases 

significantly 1 month after treatment, though remains stable between 1 and 6 months post-

treatment.
10

  

 

Reversible treatment with anti-thyroid medication is warranted when a hyperthyroid 

cat is suspected to have concurrent CKD.
11

 Prediction of changes in renal function before 

starting the treatment would be extremely useful, because early detection of CKD is essential 

for optimal management of these patients.
12 

It has been proposed that cats with normal serum 

urea (blood urea nitrogen, BUN) and creatinine concentrations combined with urine specific 

gravity (USG) higher than 1.035 have a reduced risk for development of CKD after 

treatment.
13

 However, BUN and creatinine are insensitive markers of early CKD. Recently, it 

was also shown that cats with moderately increased serum creatinine concentrations could 

have normal GFR values.
14

 This could be caused by differences in creatinine production rate 

inducing an increase in serum creatinine concentration while clearance of creatinine is 

unaffected. A low USG has been suggested to be more specific in predicting CKD, although 

results were not significant.
7
 Nonetheless, cats with USG higher than 1.035 can still develop 

azotemia after treatment and therefore no suitable cut-off value for USG can be given.
15

 

Studies which evaluated GFR, BUN and serum creatinine concentrations as well as 

proteinuria and USG as potential predictors of developing post-treatment CKD found only 

pre-treatment GFR a sensitive indicator for development of CKD.
5,7,15-17

 Nonetheless, pre-

treatment GFR was not regarded valuable in two recent studies investigating the predictive 
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value of GFR for development of CKD despite the finding that pre-treatment GFR was 

significantly lower in cats developing GFR below reference ranges 6 months after 

treatment.
10,15

  

 

New variables possibly predicting CKD after treatment in hyperthyroid cats are 

currently investigated. A new promising urinary marker is urinary retinol binding protein 

(uRBP). RBP appears in urine when there is a tubular dysfunction or damage. It is present in 

urine of cats with CKD and to a variable extent in urine of hyperthyroid cats.
18

 The uRBP in 

hyperthyroid cats is not related to serum RBP concentrations before and after treatment of 

hyperthyroidism.
19

 Tubular damage or dysfunction may occur in hyperthyroidism due to 

hypertrophy and hyperplasia of the tubular cells.
20 

 

The first objective of the present prospective study was to assess kidney function 

through measurement of several variables before and after treatment. The post-treatment time 

course of these variables was then studied in cats which maintained a normal glomerular 

function and cats developing post-treatment renal azotemia. The second objective was to test 

the pre-treatment predictive value of any of these variables for the development of renal 

dysfunction.  
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Materials and Methods 

 

Cats 

Twenty-one client-owned hyperthyroid cats treated with radioiodine (
131

I) at the 

Faculty of Veterinary Medicine of Ghent University (Belgium) were included in the study. 

Owners signed informed consent previous to inclusion. Age at time of inclusion in the study 

was 12.6 ± 2.4 years. 

Inclusion criteria were a diagnosis of hyperthyroidism (i.e. clinical signs compatible 

with hyperthyroidism, increased serum total thyroxine (TT4)  concentration above reference 

range values and increased thyroidal uptake of 
99m

TcO4
-
. Anti-thyroid medication was ceased 

at least 3 weeks prior to 
131

I treatment. Cats with concurrent disease, including CKD (IRIS 

stage II or higher) and neoplasia, were excluded. Cats were fasted for at least 10 hours before 

the start of the test-day and were fed immediately after the end of the sampling period. Water 

was offered ad libitum. Cats maintained their original diet throughout the study period, except 

when a renal diet was mandatory based on International Renal Interest Society (IRIS) 

recommendations (www.IRIS-kidney.com). Cats with serum TT4 below reference range 

values underwent a TSH stimulation test with 25 g recombinant human TSH (rhTSH) 

(Thyrogen®, Genzyme corporation, The Netherlands) IV to test for iatrogenic 

hypothyroidism. At the end of the study period 24 weeks post-treatment, cats were divided 

into two groups according to renal status: cats in group A with a normal kidney function 

based on either serum creatinine concentrations within the reference range (8 - 140 mol/L) 

or mild azotemia (< 249 mol/L, IRIS stage II) though a GFR > 1.2 mL/min/kg, and cats in 

group B that developed CKD (IRIS stage II or higher) based upon clinical signs (polyuria, 

polydipsia), development of azotemia (serum creatinine concentration > 140 mol/L) and 

GFR ≤ 1.1 mL/min/kg.
21,22

  One cat had mild azotemia, a GFR of 1.1 mL/min/kg at 24 weeks 

after treatment and serum TT4 concentration below reference range. This cat was diagnosed 

with iatrogenic hypothyroidism and assigned to group A because the azotemia disappeared 

after thyroxine supplementation. One cat in group B had a GFR of 1.2 mL/min/kg but was 

also diagnosed with iatrogenic hypothyroidism and after thyroxine supplementation this cat’s 

azotemia increased and GFR decreased to 1.0 mL/min/kg.  
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Study design 

The study design is outlined in Table 1. Cats were evaluated 1 - 2 days before 

treatment, and at 1, 4, 12 and 24 weeks after treatment on a follow-up test-day. Tested 

variables were body weight (BW), systolic blood pressure (BP), serum TT4, creatinine and 

urea concentration, GFR, USG (normal USG value defined as USG > 1.030), urinary protein 

to creatinine ratio (UPC) (proteinuria was defined as UPC > 0.4). and retinol binding 

protein/creatinine ratio (uRBP/c). Moreover, cardiac auscultation, electrocardiography (ECG), 

cardiac echography, abdominal ultrasonography, complete blood count (CBC) and urine 

culture were performed before treatment and at the end of the study (24 weeks). Two years 

after the study, owners were contacted by phone to document the mortality of the tested 

animals.  

 

Procedures 

Systolic blood pressure was measured by Doppler method at the beginning of the test-

day after acclimatization to the environment. An average was made of the last 3 values of 5 

consecutive measurements.  

GFR was measured with plasma exo-iohoxol clearance test (PexICT), as previously 

described.
21

 Briefly, pharmacokinetic analysis was performed using WinNonlin
 
(version 4.0.1, 

Scientific consulting Inc Apex, NC). Plasma clearance was determined by dividing the dose 

administered by area under the curve (AUC), and indexed to bodyweight (BW) (mL/min/kg). 

Range of GFR values found in healthy cats using PexICT is 1.2 - 2.1 mL/min/kg. 

 

Assays 

A polyclonal rabbit anti-human uRBP antibody was used in a commercial sandwich 

ELISA (RBP4 ELISA kit, Immundiagnostik AG, Bensheim, Germany) validated for RBP 

assessment in feline urine as described previously by our group.
18

 Urinary RBP 

concentrations were expressed as RBP/creatinine (10
-2

 g/mg) ratio. 

 

Statistical analysis 

A mixed model with cat as random effect (Systat version 8.0, SPSS Inc. Chicago IL, 

USA) was used to test for differences in tested variables among the time-points (i.e. before 

and 1, 4, 12 and 24 weeks after treatment) at a global significance level of 0.05. Moreover, for 

each variable, time points before (0) and 1 (not for urinary variables), 4, 12  and 24 weeks 
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after treatment were compared pair-wise at a Bonferroni-adjusted comparison-wise 

significance level of 0.05/5 = 0.01 (serum TT4, GFR, serum creatinine, serum  urea, BP and 

BW), or 0.05/4 = 0.0125 (urinary RBP, UPC, USG).  A student’s t-test was used to compare 

pre-treatment variables between group A and B to test for a significant effect of group at a 

significance level of 0.05. The effect of each pre-treatment variable at time point 0 (variable0) 

on the GFR value at 4 weeks after treatment (GFR4) and the maximum decrease in GFR 

(∆GFRmax, expressed in %) was tested using a general linear model at a significance level of 

0.05. Results are expressed as mean ± SD unless stated otherwise. 

 

Table 1. Study design for the follow up of 21 non-azotaemic hyperthyroid cats before and after 

treatment with radioiodine. 

  Post-treatment (weeks) 

Procedure 0 1 4 12 24 

BW x x x x x 

BP x  x x x 

Cardiac 

examination 
x    x 

Abdominal 

ultrasound 
x    x 

Serum 

analysis 
x x x x x 

CBC x    x 

GFR x x x x x 

Urinalysis x x x x x 

Urine culture x    x 

 0: 1 or 2 days pre-treatment. BW: bodyweight; BP: blood pressure; serum analysis: serum 

creatinine concentration, BUN; CBC: complete blood count; GFR: glomerular filtration rate; 

urinalysis: USG, UPC, uRBP/c. 
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Results 

 

Cats  

One cat was lost for follow up 20 weeks after treatment due to euthanasia because of 

malignant neoplasia of the pleura. One cat failed to have GFR measurement due to aggressive 

behavior 12 weeks after treatment. Nine of the 21 included cats received anti-thyroid 

medication previous to treatment. None of the included cats had significant abnormalities on 

abdominal ultrasound before or 24 weeks after treatment. Alterations seen on cardiac 

electrocardiography and cardiac ultrasonography compatible with hyperthyroidism improved 

(n = 10) or remained stable (n = 10) after treatment. None of the cats had an urinary infection 

(UTI) before treatment. One cat had a UTI 6 months after treatment, though other renal 

variables showed no abnormalities. Six cats (3 from group A and 3 from group B) had died 

within two years after treatment, 2 of them (group B) due to renal failure. One cat from group 

B started a renal diet 3 months after treatment. 

The age of the cats at time 0 in group A (11.9 ± 2.2 years) and group B (14.8 ± 1.3 

years) differed significantly (P < 0.05). There was a significant difference between group A 

and B in pre-treatment values of serum TT4 (P = 0.004), GFR (P = 0.032) and USG (P = 

0.001) but not for the other tested variables. 

 

Post-treatment time course of the tested variables  

Follow up of BW and BP in the complete group and in group A and B separately is 

shown in Figure 1. BW increased significantly after treatment in the complete group (P < 

0.001) and group A (P < 0.001) and group B (P = 0.009) (Figure 1A). BW increased 

significantly from 1 week after treatment until 24 weeks after treatment for the complete 

group and group A, though in group B it only increased until 4 weeks after treatment.  

 BP was > 160 mm Hg in 10/21 cats before treatment and in 2/20 cats at 24 weeks after 

treatment. Of the latter two cats, BP was measured afterwards in their home environment as 

normotensive. There was no significant change in BP for the complete group, group A and 

group B (Figure 1B). 

Time courses of serum TT4, GFR, serum creatinine and BUN concentration, before 

and 1, 4, 12 and 24 weeks after 
131

I treatment, for the whole group and groups A and B are 

shown in figure 2A, 2B, 2C and 2D, respectively. Mean ± SD, range and number of animals 
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(N) of serum TT4, GFR and uRBP/c for the complete group and group A and B is given in 

Table 2. 

The serum TT4 concentration in the complete group and in groups A and B was 

significantly lower at all time points after treatment compared to pre-treatment serum TT4 

concentration (P < 0.001). For groups A and B, the interaction between the time and the group 

effect was statistically significant (P = 0.032). Serum TT4 decreased significantly until 4 

weeks after treatment for the complete group and group A (P < 0.001), but only until 1 week 

after treatment for group B (P < 0.001). One cat had persistently high serum TT4 of 116 

nmol/L, 108 nmol/L, 106 nmol/L and 86 nmol/L at 1, 4, 12 and 24 weeks after treatment, 

despite improvement of clinical signs.  This cat remained included in the study because there 

were no symptoms of hyperthyroidism 24 weeks after treatment and the cat substantially 

increased in BW. When the owners were contacted two years after the end of the study 

period, there were still no signs of recurring hyperthyroidism and the cat showed no clinical 

symptoms nor had the owners any remarks about the clinical condition of the cat. Serum TT4 

was below reference range at 24 weeks post-treatment in 1 cat from group A and 4 cats from 

group B. Iatrogenic hypothyroidism was diagnosed with a rhTSH stimulation test in the cat 

from group A and 3 cats from group B. 

Serum creatinine increased significantly after treatment in the complete group, group 

A and group B (P < 0.001), and the pattern in increasing serum creatinine differed 

significantly between group A and B (P < 0.001). Serum creatinine increased significantly 

from 1 week after treatment until 12 weeks after treatment for the complete group and group 

A, but only until 4 weeks after treatment for group B. At 12 and 24 weeks after treatment 2 

cats from group A and all cats in group B were azotemic. 

 BUN did not change significantly after treatment in the complete group (P = 0.284), 

nor in group A or B separately, and there was no difference in trend between group A and B. 

The decreasing pattern in serum TT4 after treatment was comparable to the decreasing 

pattern in GFR. There was a significant difference in GFR before 
131

I treatment compared to 

all time points after treatment in the complete group (P < 0.001) and in group A (P < 0.001) 

and B (P = 0.002). GFR decreased significantly until 4 weeks after treatment for the complete 

group and group A, but there was no clinical relevant change visible after treatment for group 

B.  

Pre-treatment GFR was comparable to values in healthy cats in 1 cat from group A and 

3 cats from group B, all other cats had GFR values higher than described in healthy cats. At 
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24 weeks post-treatment, GFR remained higher than values in healthy cats in 3 cats from 

group A, GFR was comparable to values in healthy cats in 11 cats in group A and 1 cat in 

group B, and GFR was below values in healthy cats in 1 cat from group A and 4 cats from 

group B.  

Time courses of uRBP/c, UPC and USG before and 4, 12 and 24 weeks after 
131

I 

treatment, for the complete group, groups A and B are shown in Figure 3A, 3B and 3C, 

respectively. 

uRBP/c decreased significantly after treatment for the complete group (P = 0.001) and 

group A (P < 0.001) but not for group B (P = 0.147), hence the pattern after treatment in 

uRBP/c differed significantly between group A and B (P < 0.001). uRBP/c decreased 

significantly until 4 weeks after treatment in the complete group and group A. RBP was 

present in urine of 15 out of 16 cats from group A and all 5 cats from group B before 

treatment. It remained present at 24 weeks post-treatment in 6 cats from group A and 2 cats 

from group B. 

 UPC decreased significantly until 4 weeks after treatment for the complete group (P < 

0.001), group A (P < 0.001) and group B (P = 0.010), and the decreasing pattern in UPC 

differed significantly between group A and B (P < 0.001). Pre-treatment proteinuria was 

present in 13 cats from group A and in all cats from group B. Proteinuria remained present at 

24 weeks post-treatment in only 1 cat from group A though in none of the cats in group B. 

 USG did not change significantly after treatment in the complete group, group A or 

group B. Pre-treatment USG < 1.030 was present in 2 cats from group A and all cats in group 

B. At 24 weeks after treatment, 2 cats from group A and 4 cats from group B had USG < 

1.030.  

 

Effect of pre-treatment variables on post-treatment GFR 

Statistically significant effect of pre-treatment variables (GFR, serum TT4, creatinine, 

BUN and USG) on GFR 4 weeks after treatment (GFR4) and ∆GFRmax and the equation of the 

corresponding general linear model is given in Table 3. Other pre-treatment variables (BW, 

BP, uRBP/c and UPC) did not have a significant effect on GFR4 and ∆GFRmax. Pre-treatment 

GFR (GFR0) (P = 0.001) explained 48 % of the change observed in GFR4 (Figure 4A), and a 

model including both serum creatinine0 (P = 0.003) and USG0 (P = 0.006) could explain 62 % 

of the variability in GFR4 (Figure 4B). GFR0 (P = 0.012) could explain 29 % of the ∆GFRmax 

(Figure 4C). 
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Table 2. Main variables evaluated before and 1, 4, 12 and 24 weeks after treatment: serum TT4, 

GFR and uRBP/c in the complete group (n = 21), group A ( n = 16) and group B (n = 5).  

Variable Time point Complete group Group A Group B 

Serum TT4 

(nmol/L) 
0 

124.2 ± 53.5 

(42.6 - 200) 

137.7 ± 53.4 

(42.6 - 200) 

81.0 ± 23.5 

(58.1 - 120.0) 

 1 
42.3 ± 29.5 

(10.3 - 116.1) 

48.5 ± 30.6 

(11.6 - 116.1) 

22.4 ± 11.7 

(10.3 - 40.0) 

 4 
18.8 ± 23.4 

(6 - 108.1) 

21.8 ± 26.2 

(6 - 108.4) 

9.3 ± 5.3 

(6.0 - 18.1) 

 12 
20.3 ± 21.2 

(6.0 - 105.8) 

23.6 ± 23.3 

(6.5 - 105.8) 

9.8 ± 5.5 

(6.0 - 18.1) 

 24 
20.4 ± 16.9 

(6.0 - 86.4) 

24.1 ± 18.0 

(9.0 - 86.4) 

9.4 ± 4.4 

(6.0 - 16.8) 

GFR 

(mL/min/kg) 
0 

3.3 ± 1.2 

(1.3 - 5.6) 

3.6 ± 1.1 

(2 - 5.6) 

2.3 ± 0.9 

(1.3 - 3.3) 

 1 
2.4 ± 0.9 

(1.1 - 3.8) 

2.7 ± 0.8 

(1.4 - 3.8) 

1.8 ± 0.8 

(1.1 - 3.1) 

 4 
2.0 ± 0.8 

(0.9 - 3.5) 

2.2 ± 0.7 

(1.1 - 3.5) 

1.2 ± 0.4 

(0.9 - 1.8) 

 12 
1.6 ± 0.6 

(0.7 - 3.2) 

1.8 ± 0.6 

(1.2 - 3.2) 

1.0 ± 0.3 

(0.7 - 1.4) 

 24 
1.6 ± 0.6 

(0.8 - 2.9) 

1.9 ± 0.5 

(1.1 - 2.9) 

1.0 ± 0.2 

(0.8 - 1.2) 

uRBP/c 

(10
-2

 g/mg) 
0 

2.1 ± 3.7 

(0 - 17.2) 

1.3 ± 1.1 

(0 - 3.8) 

4.7 ± 7.2 

(0.1 - 17.2) 

 4 
0.5 ± 1.2 

(0 - 3.6) 

0.2 ± 0.5 

(0 - 1.8) 

1.1 ± 2.3 

(0 - 3.6) 

 12 
0.4 ± 0.9 

(0 - 5.2) 

0.2 ± 0.5 

(0 - 1.6) 

0.9 ± 1.5 

(0 - 5.2) 

 24 
0.4 ± 0.8 

(0 - 3.2) 

0.3 ± 0.8 

(0 - 3.0) 

0.7 ± 1.0 

(0 - 2.2) 
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Table 3. Prediction of variability in GFR 4 weeks after treatment (GFR4) and in maximum 

decrease in GFR after treatment (∆GFRmax) with variables measured before treatment 

(variable0). P values are described in text. 

GFR Predicting formula R
2
 

GFR4 0.5 + (0.443*GFR0) 0.48
§
 

GFR4 3.606 - (0.023*creatinine0) 0.44 

GFR4 -30.492 + (0.031 * (USG0*1000)) 0.37 

GFR4 1.047 + (0.007 * TT40) 0.26 

GFR4 -21.763 - (0.019 * creatinine0) + (0.024 * (USG0*1000)) 0.62
§§

 

GFR4 -19.181 + (0.336 * GFR0) - (0.019 * (USG0*1000)) 0.59 

GFR4 1.919 + (0.313 * GFR0) - (0.014 * creatinine0) 0.58 

GFR4 -26.277 + (0.006 * TT40) + (0.027 * (USG0*1000)) 0.51 

∆GFRmax 26.849 + (6.988 * GFR0) 0.29
§
 

∆GFRmax 80.642 - (3.605 * BUN0) 0.20 

§,§§
: Highest R

2
 and prediction of variability using 1 (

§
) or 2 (

§§
) variables. 
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Figure 1A. Follow up of BW (kg) in the complete group (n = 21), and cats from group A (n = 16) 

and cats from group B (n = 5).  

 

Figure 1B. Follow up of BP (mm Hg) in the complete group (n = 21), and cats from group A (n = 

16) and cats from group B (n = 5). Dotted line in figure 1B (160 mmHg) represents 20 - 40 mm 

Hg above reference range which is associated with moderate risk of end organ damage 

according to IRIS guidelines.  

Blank box: complete group, diagonal line box: group A, dotted box: group B. Horizontal line: 

median, box: interquartile range, ○: outlier value larger than 1.5*(interquartile range), ٭: 

extreme value larger than 3*(interquartile range). 
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Figure 2A. Follow up of serum TT4 (nmol/L) in the complete group (n = 21), and divided in cats 

from group A (n = 16) and cats from group B (n = 5), dotted lines represent reference ranges (15 

- 45 nmol/L).  

 

Figure 2B. Follow up of  GFR (mL/min/kg) in the complete group (n = 21), and divided in cats 

from group A (n = 16) and cats from group B (n = 5), dotted lines represent values described in 

healthy cats (1.2 - 2.1 mL/min/kg).
21  

Blank box: complete group, diagonal line box: group A, dotted box: group B. Horizontal line: 

median, box: interquartile range, ○: outlier value larger than 1.5*(interquartile range), ٭: 

extreme value larger than 3*(interquartile range). 
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Figure 2C. Follow up of serum creatinine (mol/L) in the complete group (n = 21), and divided 

in cats from group A (n = 16) and cats from group B (n = 5). Dotted lines represent reference 

ranges (8 - 140 mol/L).  

 

Figure 2D. Follow up of BUN (mmol/L) in the complete group (n = 21), and divided in cats from 

group A (n = 16) and cats from group B (n = 5). Dotted lines represent reference ranges (7 - 12 

mmol/L). Blank box: complete group, diagonal line box: group A, dotted box: group B. 

Horizontal line: median, box: interquartile range, ○: outlier value larger than 1.5*(interquartile 

range), ٭: extreme value larger than 3*(interquartile range). 
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Figure 3A. Follow up of urinary RBP/c (10
-2

 g/mg) in the complete group (n = 21), and divided 

in cats from group A (n = 16) and cats from group B (n = 5).  

 

Figure 3B. Follow up of UPC in the complete group (n = 21), and divided in cats from group A 

(n = 16) and cats from group B (n = 5). Dotted lines represent ranges considered borderline 

proteinuria according to IRIS guidelines (0.2 - 0.4). 

Blank box: complete group, diagonal line box: group A, dotted box: group B. Horizontal line: 

median, box: interquartile range, ○: outlier value larger than 1.5*(interquartile range), ٭: 

extreme value larger than 3*(interquartile range). 
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Figure 3C. Follow up of USG in the complete group (n = 21), and divided in cats from group A 

(n = 16) and cats from group B (n = 5). Dotted line represents reference value of 1.030. 

Blank box: complete group, diagonal line box: group A, dotted box, group B. Horizontal line: 

median, box: interquartile range, ○: outlier value larger than 1.5*(interquartile range), ٭: 

extreme value larger than 3*(interquartile range). 
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Figure 4. Predicted values of GFR 4 weeks after treatment (GFR4) using GFR0 (Figure 4A) or 

creatinine0 and USG0 (Figure 4B) measured pre-treatment, plotted against actual values of 

GFR4, and predicted values of maximum decrease in GFR after treatment (∆GFRmax) using 

GFR0 (Figure 4C) plotted against actual values of ∆GFRmax. See Table 3 for predicting formula. 
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Discussion 

 

This is the first prospective study evaluating the short- and long-term follow up of 

routinely used serum and urinary renal variables (BUN, serum creatinine, UPC and USG) as 

well as of two less common used variables GFR and uRBP/c for glomerular and tubular 

function, respectively in hyperthyroid cats before and after 
131

I treatment. Almost one in five 

cats developed an impaired kidney function (group B) in contrast to cats maintaining a 

healthy kidney function (group A), and this percentage is comparable to previously published 

results.
6-9

 The difference in age between cats developing CKD after treatment and cats 

maintaining a normal glomerular function was described
15

 to be due to an increased incidence 

in CKD with increasing age. The impaired kidney function after treatment can be caused by 

pre-existing CKD which is masked by the hyperthyroidism, or it can be caused by a resolution 

of the hyperthyroidism and a fall in the stimulatory effects of hyperthyroidism on kidney 

function. CKD has a higher prevalence with increasing age.
3
 The difference in age between 

cats maintaining a normal kidney function and cats developing post-treatment renal azotemia 

suggests that pre-existing CKD could be at least part of the cause of the development of post-

treatment renal azotemia.  

 

In this study, 80 % of the cats had pre-treatment GFR values higher than values 

described earlier in healthy cats.
21

 Hyperthyroidism is associated with intrarenal 

vasodilatation, which combined with increased cardiac output due to positive chronotropic 

and inotropic effects and decreased systemic vascular resistance,
23

 increases renal blood flow, 

glomerular hydrostatic pressure and GFR.
24

 This is enhanced by autoregulatory mechanisms 

in the kidney that respond to the increased sodium and chloride reabsorption in the tubules 

leading to an additional increase in GFR.
6,25,26

 Our study showed no changes in BP after 

treatment, suggesting that other mechanisms than peripheral hemodynamic changes must be 

involved in stimulatory effects of hyperthyroidism on GFR. The hyperthyroidism induced 

increase in GFR is reversed after treatment in humans and cats.
5-7,27

 The present study 

confirmed the decrease in GFR until 4 weeks after treatment, although no further decrease 

occurred in the complete group nor in cats from group A. GFR had decreased in the complete 

group at 4 weeks after treatment by 39 ± 16 % which is comparable to results from other 

studies,
6,7,28

 The between-day coefficient of variation of 8.3 % using PexICT
21

 strongly 
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indicates that the observed decrease in GFR is caused by a change in glomerular function and 

not by between-day variability.  

 

BW and serum creatinine concentration started to change from 1 week after treatment. 

The delayed increase in BW appears logical, because metabolic processes have to adjust to 

the decrease in serum TT4. Nonetheless, serum creatinine concentration is inversely 

correlated with GFR and is often significantly decreased in humans with hyperthyroidism due 

to the increased GFR, increased clearance and tubular secretion of creatinine but also to 

decreased muscle mass.
29,30

 The delayed increase in serum creatinine compared to the rapid 

decrease in GFR after treatment, combined with the fact that renal tubules do not secrete 

creatinine in cats, suggests that the decreased serum creatinine concentration pre-treatment is 

more related to the decreased muscle mass than to GFR and enhanced clearance of creatinine. 

This is supported by the changes in BW which show a comparable trend after treatment as 

serum creatinine concentration. It was shown previously that a large decrease in GFR can be 

accompanied by only a small increase in serum creatinine concentration in dogs.
31

 Serum 

creatinine concentration should therefore not be considered as a reliable short-term indicator 

of deteriorating kidney function in hyperthyroid cats.
10 

 

There was no change in BUN concentration after treatment in any group which is in 

accordance with recent studies investigating kidney function after treatment of hyperthyroid 

cats.
7,10

 Nevertheless, an increasing BUN concentration after treatment in hyperthyroid cats 

has also been described.
5,6,32

 These results illustrate that discrepancies exist between BUN and 

serum creatinine and that the latter is a more appropriate indirect marker of GFR. 

 

Besides serum variables, several urinary variables were evaluated in this study. USG 

did not change after treatment of the hyperthyroid cats, which is comparable to results 

described in earlier studies.
7,10

 UPC decreased until 4 weeks after treatment in the cats, either 

developing CKD or not. The decrease in UPC is described in an abstract by Syme and Elliott, 

which evaluated UPC in cats treated with carbimazole therapy alone or combined with 

thyroidectomy. However, UPC was only measured before and 6 months after treatment and 

not earlier.
16

 Results from our study suggest reversibility of proteinuria already 4 weeks after 

treatment in hyperthyroid cats, although hyperthyroidism could be controlled differently with 

carbimazole or thyroidectomy thereby influencing results. Pre-treatment proteinuria which 
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reverses after treatment in cats could be a reflection of glomerular hypertension and 

hyperfiltration, changes in tubular protein handling or a change in the structure of the 

glomerular barrier.
33

 Proteinuria resolves after treatment in cats from group A and B, although 

BP, GFR and urinary markers of tubular function such as uRBP/c and USG did not change in 

cats from group B. It seems most likely that the pre-treatment proteinuria is caused by a 

functional change in the structure of the glomerular barrier regardless of the underlying 

kidney function, and that this change is reversed after treatment. Whatever the cause of the 

pre-treatment proteinuria, an important finding is the decrease in proteinuria after treatment 

and therefore no treatment is indicated.  

 

We have previously reported that the uRBP/c is correlated to serum TT4 concentration 

and not to serum RBP concentrations in hyperthyroid cats before and after radioiodine 

treatment.
19

 In hyperthyroid cats, it can be therefore hypothesized that uRBP/c is a marker of 

reversible tubular dysfunction in a healthy kidney (group A), but also a marker of irreversible 

damage in cats with pre-existing CKD, as uRBP/c levels did not change and remained 

elevated in group B cats. Hyperthyroidism may have caused an increased functional level of 

tubular cells together with hypertrophy and hyperplasia, resulting in cell damage and possibly 

combined with increased RBP synthesis in tubular cells.
20,34

  

 

A decrease in serum TT4 was already visible 1 week after treatment. This was also the 

case for GFR which supports the fact that TT4 directly and reversibly influences GFR. Eighty 

percent of the cats with post-treatment azotemia and low GFR had serum TT4 concentrations 

below reference range 24 weeks after treatment. GFR can be reduced in humans, rats and 

dogs with hypothyroidism
27,35,36

 due to systemic and local factors in the kidney, serum 

creatinine can be increased and ability to concentrate urine impaired. The decreased GFR and 

increased serum creatinine can be reversed with thyroid hormone replacement.
27,37-39

  

 

The question is raised whether there is a link between the development of post-

treatment renal azotemia and low serum TT4 in these cats. Several hypotheses can be 

proposed. 

First, the hypothyroidism could be related to 
131

I treatment. In our study, 20 % of the 

cats developed hypothyroidism (diagnosed with rhTSH stimulation test), which is higher 

compared to other studies using the same dose estimation of 
131

I.
40,41

 The administration of the 
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iodine-containing contrast agent iohexol for measuring GFR could possibly influence 

treatment outcome, but in a study by Peremans et al. no effects of iohexol on clinical 

treatment outcome could be found.
42

 The difference in pre-treatment serum TT4 concentration 

between cats from group A and B, with lower values in group B, could be regarded as an 

actual sign of underlying kidney disease. However, pre-treatment TT4 explained however 

only 26 % of variability in GFR 4 weeks after treatment by pre-treatment serum TT4 

concentration. It is possible that these cats were in a less advanced stage of hyperthyroidism, 

and that the dose of administered 
131

I was too high which caused hypothyroidism. Following 

this hypothesis, it is also possible that cats with an impaired kidney function previous to 
131

I 

treatment, which can be extrapolated from the decreased GFR pre-treatment in group B 

compared to group A, have a lower clearance of 
131

I. This causes a prolonged effect of 
131

I on 

the thyroid and increases the chance of developing hypothyroidism after treatment. Indeed, 

human patients with impaired renal function treated for thyroid cancer need a decreased 
131

I 

dose, to avoid hypothyroidism and reach an amount of radioactivity in the thyroid comparable 

to humans with a normal renal function and receiving a higher dose of 
131

I.
43 

 

Secondly, hypothyroidism, whatever its cause, could contribute to a declining kidney 

function. Hypothyroidism can cause glomerular lesions such as thickening of the basement 

membrane and increased mesangial matrix.
39,44

 Increased transcapillary leaking of  plasma 

proteins in hypothyroidism can lead to mild proteinuria.
45 

Proteinuria has been suggested to 

cause intrinsic renal toxicity and decreased survival time, although the precise role of 

proteinuria in the progression of renal disease is uncertain.
46

 However, none of the cats in our 

study from group B were proteinuric after 
131

I treatment, and therefore this cause is unlikely. 

Treatment of hypothyroidism in a human patient with progressive renal failure leads to 

significant improvement of renal function.
47

  

 

Besides the hypotheses described above, it is also possible that the declined kidney 

function has a causal effect on the low serum TT4 concentration. A large retrospective study 

in humans surprisingly found a reduced GFR, as in CKD, to be associated with an increased 

prevalence of hypothyroidism.
48

 The cause is unclear, but there could be a possible role for 

auto-immune disorders, iodine excess, or retained solutes in the kidney with a potential effect 

on thyroid function.
48

 It is possible that a comparable mechanism is present in cats after 
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treatment for hyperthyroidism, although the cause-effect relationship remains to be 

documented. 

Finally, CKD can decrease serum TT4 concentrations below reference range values in 

cats.
49

 Hypothetically, the development of CKD and hence euthyroid sick syndrome could 

decrease serum TT4 surplus to effects of 
131

I treatment and cause an earlier plateau in low 

serum TT4 after treatment in cats with CKD. CKD can suppress serum TT4 concentration 

(euthyroid sick syndrome) thereby mimicking hypothyroidism.
50

  

 

We can conclude from the hypotheses described above, that a possible causal link 

between hypothyroidism and CKD after treatment in hyperthyroid cats remains possible, but 

further research is necessary to elucidate this aspect. 

 

A diagnostic problem can occur in these cats developing post-treatment serum TT4 

concentration below reference range and azotemia. There can be iatrogenic hypothyroidism, 

CKD suppressing serum TT4 concentration, or both. This issue was raised earlier in two 

studies investigating post-treatment kidney function, although the effect of hypothyroidism on 

kidney function has not yet been investigated in cats.
5,7

 In the study described here, 3 of 5 cats 

from group B were diagnosed with iatrogenic hypothyroidism 7 to 10 months after treatment 

by using a rhTSH stimulation test as described by Daminet et al.
51

 After supplementation with 

thyroxine, azotemia and GFR did not improve and therefore the diagnosis of CKD was made 

in these cats. Serum TT4 concentration had normalized in the 4
th

 cat a few months after the 

end of the study. Evaluation of kidney function in cats with hypothyroidism has not yet been 

described.  

 

Another objective of the present study was to determine the relationship between pre-

treatment values of tested variables and the development of renal dysfunction. Pre-treatment 

measurement of GFR is helpful for predicting which cats have clinically significant declines 

in renal function 30 days after treatment.
5
 In our study we found significant differences in pre-

treatment values of GFR, USG and serum TT4 concentration between cats from group A and 

B. The difference in GFR is in accordance with previous findings.
5,10

 Also, in our study not 

only was there a difference in pre-treatment GFR value, pre-treatment GFR explained 48 % of 

the variability in GFR 4 weeks after treatment. Pre-treatment GFR combined with pre-
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treatment USG and serum creatinine explained 59 % and 58 % respectively of the variability 

in GFR 4 weeks after treatment.  

The difference in pre-treatment values of serum TT4 concentration and USG between 

group A and B described here have not been described earlier to the author’s knowledge. A 

difference in USG had been suggested by Becker et al. (2000) although not statistically 

significant. Because pre-treatment USG was lower before treatment in the cats that developed 

post-treatment renal azotemia and USG did not change after treatment in these cats, pre-

treatment USG can be considered a valuable predictor of post-treatment changes in kidney 

function. Variability in GFR 4 weeks after treatment is explained for 37 % by USG alone and 

for 62 %, 59 % and 51 % when combined with pre-treatment serum creatinine concentration, 

GFR and serum TT4 concentration, respectively. A cut-off value appropriate for clinical 

decision making remains however uncertain, because there is still some overlap in pre-

treatment values of USG between group A and B. 

 

The difference in pre-treatment value of GFR, serum TT4 and USG between cats from 

group A and B can be considered predictive for development of CKD, although further 

research is necessary to develop pre-treatment cut-off values. Nonetheless, it is an interesting 

finding that 62 % of the variability in GFR 4 weeks after treatment could also be explained by 

combined measurement of pre-treatment serum creatinine concentration and USG.  

 

Limitations of the present study are the small number of cats, especially in group B. 

Other studies described that 39 %, 17 % and 37 % of the hyperthyroid cats developed kidney 

disease.
6,7,10

 Nonetheless, results are statistically significant and the number of 5 cats out of 21 

developing CKD is comparable to numbers described in literature.
6-9

 The results provide 

information additional to those of previous studies, because glomerular as well as tubular 

functions were evaluated, in a short- as well as long-term follow up period after treatment. 

 

From the changes in serum TT4 and renal variables after treatment, it can be 

concluded that most significant changes appear within 4 weeks after treatment, and no 

important changes occur thereafter. This suggests that an accurate evaluation of kidney 

function can be made from 4 weeks after treatment onwards. The optimal time point for 

evaluation of post-treatment kidney function was raised earlier.
10,15,28

 In the study by Boag et 

al., no change in kidney function was seen after more than 1 month after treatment, but the 
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precise timing was uncertain. The present study is the first showing a difference in time 

related changes in kidney function between cats maintaining a normal glomerular function 

and cats developing CKD. Serum TT4 concentration, creatinine concentration, GFR, BW and 

uRBP/c changed over a longer period of time in the complete group and group A compared to 

group B. This is important for clinicians to keep in mind when evaluating a cat treated for 

hyperthyroidism shortly after treatment. If these parameters reach a plateau early after 

treatment, there seems to be an increased risk of development of CKD, although this needs 

further research in a larger group of cats. 
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Conclusion 

 

The originality of this study concerning renal function in hyperthyroid cats, lies in the 

combined evaluation of glomerular as well as tubular function before, but also short and long 

term after treatment. As a first conclusion, we show for the first time in an evidence based 

way, that significant changes in kidney function occur within 4 weeks post-treatment of 

hyperthyroidism and none thereafter, regardless of the degree in declining kidney function. 

However, treatment of hyperthyroidism had no influence on GFR and tubular function 

measured with uRBP/c in cats developing post-treatment renal azotemia.  

A second conclusion of this study is that pre-treatment measurement of GFR and/or 

USG as well as serum TT4 concentration can have possible predictive value regarding the 

development of post-treatment renal azotemia. 
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Introduction to Chapter 5 

 

A diagnostic challenge can occur in cats that develop post-treatment renal azotemia 

and serum TT4 below reference range after treatment of hyperthyroidism. A diagnosis of 

iatrogenic hypothyroidism or a lower serum TT4 due to NTI cannot be made based on a 

baseline serum TT4 concentration. A diagnostic aid could be stimulation with rhTSH to 

evaluate thyroid function, combined with thyroid scintigraphy. However, if thyroid 

scintigraphy is evaluated after rhTSH stimulation, it is necessary to take the effect of rhTSH 

on healthy thyroid glands into account. In the first section (§ 5.1) study we investigated the 

change in serum TT4 concentration and T/S uptake ratio in euthyroid cats, following 

administration of 25 g rhTSH intravenously. In the second section (§ 5.2), the usefulness of 

the rhTSH stimulation test as a diagnostic tool for iatrogenic hypothyroidism, in the context of 

post-treatment renal azotemia, was investigated. 
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Summary 

 

This study investigated the thyroidal response to administration of recombinant human 

thyroid stimulating hormone (rhTSH) by means of serum total thyroxine (TT4) concentration 

and pertechnetate uptake by the thyroid gland in six healthy euthyroid spayed female cats.  

A pertechnetate scan was performed on day 1 to calculate thyroid/salivary gland         

(T/S) uptake ratio. On day 3, 25 g rhTSH was injected IV. Six hours later the thyroid scan 

was repeated as on day 1. Blood was drawn for serum TT4 measurement prior to injection of 

rhTSH and performance of the pertechnetate scan.  

Statistically significant differences in mean serum TT4 concentration, T/S uptake ratio 

before and 6 hours after rhTSH administration and T/S uptake ratio between left and right 

lobes were noted. We can conclude that 25 g rhTSH increases pertechnetate uptake in the 

thyroid glands of cats, this should be taken into account when thyroid scintigraphy after 

rhTSH administration is interpreted. 
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Introduction 

 

Evaluation of thyroidal reserve with thyrotropin stimulation (thyroid stimulating 

hormone, TSH) in cats has gained interest in veterinary medicine, because development of 

iatrogenic hypothyroidism after treatment of hyperthyroidism with radioiodine (
131

I) can 

occur in 6 to 30 % of cases.
1-5

 The combination of  basal serum total T4 (TT4) and 

endogenous TSH concentration, possibly combined with free T4 (fT4) analysis, is 

recommended when diagnosing hypothyroidism. Measurement of fT4 is expensive and no 

feline specific TSH assay is available.
6
 Stimulation with recombinant human TSH (rhTSH) 

could be a simple way to diagnose iatrogenic hypothyroidism in cats. Hyperthyroidism is the 

most common endocrine disorder in cats and 
131

I treatment is the treatment of choice.
7-9

 

Another possible application of rhTSH in cats is administration prior to 
131

I treatment of 

hyperthyroidism to enhance uptake of 
131

I and allow a decrease in effective therapeutic dose. 

 

The diagnosis of hypothyroidism cannot be made solely based on a low serum TT4 

concentration alone, because a variety of non-thyroidal diseases can result in low serum TT4 

concentrations.
10

 A dynamic thyroid function test may be required when non-thyroidal illness 

cannot be eliminated. Several protocols for thyroid stimulation have been described in cats 

using bovine TSH (bTSH) which is no longer commercially available.
11-15 

 

Recombinant hTSH is a synthetic form of TSH obtained from a line of recombinant 

Chinese hamster ovary cells.
16

 Several studies have evaluated use of rhTSH in dogs.
17-20

 To 

date, only one in-vivo study has described the use of rhTSH in cats: administration of 25 g 

rhTSH to euthyroid cats was safe and led to an increase in serum TT4 concentration with a 

maximum value observed 6 hours after administration.
21  

 

Metabolic activity of the thyroid gland can be measured with technetium as 

pertechnetate (
99m

TcO4
-
) uptake. Pertechnetate is actively trapped by the sodium-iodide 

symporter (NIS) and concentrated in the thyroid in a similar way as iodine, but not 

incorporated in thyroid hormones. Pertechnetate has ideal imaging characteristics, is readily 

available, relatively inexpensive, and concentrated in the thyroid and salivary glands which 

are visible on the scintigraphic thyroid scan. With computer software, regions of interest 

(ROI) can be drawn around thyroid lobes and salivary glands. The calculated thyroid/salivary 
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gland (T/S) uptake ratio using pertechnetate is the most commonly used parameter to 

determine functional status of the thyroid and is significantly correlated with serum TT4 

concentration in hyperthyroid cats although not in euthyroid cats.
22,23 

 

When different methods of thyroid function assessment such as TSH stimulation and 

thyroid scintigraphy are being evaluated in cats, it is important to know the influence of 

rhTSH on thyroid scintigraphy. The influence of rhTSH on T/S uptake ratio as part of the 

evaluation of thyroid function has not yet been investigated in cats. These preliminary data 

can add value to the interpretation of thyroid scans after rhTSH administration in cats 

evaluated for thyroid function. Moreover, this would give information whether this parameter 

of functional status is correlated to serum TT4 concentration in euthyroid cats stimulated with 

rhTSH in a similar way as in hyperthyroid cats. The objective of this study was to investigate 

the change in serum TT4 concentration and T/S uptake ratio in euthyroid cats, following 

administration of 25 g rhTSH IV.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



§ 5.1 

 

189 
 

Materials and Methods 

 

Animals 

This study was conducted according to guidelines for animal care, with consent of the 

Ethical Committee of the Faculty of Veterinary Medicine from Ghent University, Belgium. 

Six healthy euthyroid female spayed cats, with an average age of 2 years and bodyweight 

(BW) range of 4.0 - 5.2 kg (mean ± standard deviation [SD] 4.7 ± 0.4), were included. To 

assess the health of the cats, initial screening included physical and routine laboratory 

examinations (complete blood count [CBC], biochemistry and serum TT4 concentration) and 

urinalysis (dipstick tests, microscopic analysis, protein/creatinine ratio and urine specific 

gravity). Cats were included in the study when these examinations showed no abnormalities.  

 

Experimental design 

  A prospective study design was used to investigate the influence of rhTSH 

administration on serum TT4 concentration and pertechnetate uptake. A pertechnetate scan 

was performed on day 1. A dose of 74 MBq (2 mCi) pertechnetate was injected IV and static 

images with a set number of 200.000 counts were acquired 30 minutes after injection, with a 

-camera
 
(Toshiba GCA 901A, Exalto SA/NV, Saintes, Belgium) equipped with a low energy 

high resolution (LEHR) collimator. Cats were fasted for at least 10 hours before the thyroid 

scan. Cats were held under light anesthesia with propofol (PropoVet
TM

, Propofol
 
10 mg/ml, 

Abbott Logistics B.V., Zwolle, The Netherlands) and placed in ventral recumbency over the 

camera. ROI were manually drawn over the left and right thyroid lobes and ipsilateral salivary 

glands by the same co-author (E. Vandermeulen) to calculate the thyroid / salivary gland 

(T/S) uptake ratio in both left and right thyroid lobes. On day 3, 25 g rhTSH (Thyrogen®, 

Genzyme corporation, Naarden, The Netherlands) was administered intravenously, which 

corresponds to a mean dose of 5 g rhTSH / kg BW in the six healthy cats. The rhTSH had 

been dissolved in sterile water, divided in aliquots containing 25 g rhTSH and frozen at -20 

ºC for a maximum of 8 weeks as described by De Roover et al.
24

 Aliquots were allowed to 

thaw at room temperature shortly before injection. Six hours later, the pertechnetate scan was 

repeated as on day 1.  

Two blood samples were taken by jugular venepuncture, before injection of the rhTSH 

and before the pertechnetate scan, respectively. Serum was collected after centrifugation, 
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aliquoted and frozen at -20º C until radioactivity had decayed for measurement of TT4 

(nmol/L).  

 

Statistical analysis 

Effect of rhTSH administration on serum TT4 concentration was evaluated by a fixed 

effects model with period (0 versus 6 h after rhTSH administration) as fixed effect. Effect of 

rhTSH administration on the T/S uptake ratio was evaluated by a mixed model with cat and 

lobe as random effects, and rhTSH administration, side (left versus right) and the interaction 

between rhTSH administration and side as fixed effects. Correlation between the difference in 

serum TT4 concentration and difference in T/S uptake ratio was quantified by the Pearson 

correlation coefficient. Results were expressed as mean ± SD. The statistical analysis was 

done with SAS version 9.1 (SAS Institute Inc., Cary, USA) at the 5 % significance level.  
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Results 

 

Serum TT4 concentration ranged from 12.90 - 25.80 nmol/L before to 49.02 - 65.79 

nmol/L (reference values 14.19 - 45.15 nmol/L) after rhTSH administration, and increased 

significantly (P < 0.0001) from 0 hours (19.14 ± 4.65 nmol/L) to 6 hours (54.40 ± 5.91 

nmol/L) after rhTSH administration. The ratio between serum TT4 concentration post TSH 

and baseline serum TT4 concentration was 3.0 ± 0.6. 

There was a marginal but significant effect of rhTSH administration (P = 0.013) and a 

significant effect of side (P = 0.039) on T/S uptake ratio. There was no significant interaction 

between the effect of rhTSH administration and the effect of side on T/S uptake ratio (P =  

0.925). In the left lobe, the T/S uptake ratio increased from 1.12 ± 0.21 nmol/L to 1.27 ± 0.22 

nmol/L from 0 to 6 hours after rhTSH administration. In the right lobe, the T/S uptake ratio 

increased from 0.97 ± 0.10 nmol/L to 1.13 ± 0.17 nmol/L from 0 to 6 hours after rhTSH 

administration. The increase in T/S uptake ratio for the left and right lobes separately in 6 

healthy cats is presented in Figures 1 and 2. 

The correlation between difference in serum TT4 concentration and T/S uptake ratio 

before and after rhTSH administration was -0.28 and did not differ significantly from zero (P 

= 0.59). The correlation between the difference in serum TT4 concentration and difference in 

T/S uptake ratio before and after rhTSH administration in 6 healthy cats is presented in Figure 

3. 
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Figure 1. T/S uptake ratio before (0 hours) and 6 hours after administration of 25 g rhTSH IV 

in 6 healthy cats in the left lobe.  

 

 

Figure 2. T/S uptake ratio before (0 hours) and 6 hours after administration of 25 g rhTSH IV 

in 6 healthy cats in the right lobe. 
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Figure 3. Correlation between difference in serum TT4 concentration and difference in T/S 

uptake ratio before (0 hours) and 6 hours after administration of 25 g rhTSH IV in 6 healthy 

cats for the left (x) and right (■) lobe in 6 healthy cats. 
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Discussion  

 

 We investigated the influence of 25 g rhTSH on serum TT4 concentration and 

pertechnetate uptake by the thyroid glands of 6 healthy euthyroid cats.  The effect of TSH on 

circulating thyroid hormones has been investigated using bTSH and rhTSH in cats.
11-15,21

 In 

this study, a dose of 25 g of rhTSH caused an increase in serum TT4 concentration 6 hours 

after administration, which is similar to the findings of Stegeman et al.
21

 The 6-hour period 

after rhTSH administration in the study by Stegeman et al. (2003) and our study is also 

comparable to TSH stimulation protocols in cats that use bTSH.
11,15 

 

 Follicular cells respond initially to binding of TSH to the TSH receptor by increased 

endocytosis of colloid and release of preformed thyroid hormone from the colloid in the 

blood.
25,26

 When TSH stimulation persists, there is an increase in expression and functionality 

of the NIS and an increased organification of iodine into thyroid hormone.
25,27

 The effect of 

rhTSH on the NIS can be measured by the NIS mRNA level correlating to the NIS protein 

level in the cell. In vitro stimulation of TSH on iodine transport activity in thyrocytes, 

previously starved from TSH, is partly due to a rapid increase in NIS gene expression after 3-

6 hours with a maximum after 24 hours. The gene expression is followed by a relatively slow 

NIS protein synthesis after 36 hours, which parallels the increased iodine uptake, reaching a 

maximum after 72 hours.
28

 The increased serum TT4 concentration after rhTSH 

administration can be caused by either an increased release of stored hormone or an 

upregulation in the production level of thyroid hormones.  The time-related effects of TSH on 

thyroid cells described above make the latter less likely. Moreover, the thyrocytes in the      

in-vitro study were starved from TSH which is not the case in the euthyroid healthy cats used 

in this study. Therefore the response in thyrocytes not starved from TSH can be expected to 

be related to an upregulation of newly formed thyroid hormones and therefore prolonged. 

 

 A previously used index of TSH stimulation is the post-TSH / pre-TSH TT4 

concentration ratio (post- / pre- TT4 ratio).
11,29

 The post- / pre- TT4 ratio had an approximate 

value of 3 for the dose of 25 g rhTSH in the study by Stegeman et al. (2003) which is 

comparable to the mean value of 3.0 ± 0.6 in this study.  
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 Several studies evaluating the use of rhTSH in euthyroid dogs or dogs suspected of 

hypothyroidism use doses of 50, 75 or 100 g rhTSH.
17-20

 However, when the dose per kg 

BW is calculated using the mean BW of the dogs, the doses of rhTSH range from 3 to 5 g/kg 

BW in these studies. The post- / pre- TT4 ratio in these studies had an approximate value 

higher than 1.5 (3 or 5 g/kg BW)
19

 or an approximate value of 2  (3 or 4 g/kg BW)
17,20

 or 

2.7 (5 g/kg BW).
20

 The cats in this study received a mean dose of 5 g/kg BW rhTSH which 

is comparable to doses/BW used in dogs, although the post- / pre- TT4 ratio had a mean value 

of 3 in this study and the study by Stegeman et al. (2003) which suggests a higher biological 

activity of rhTSH in cats compared to dogs. The species specific -subunit of TSH differs in 

exact amino acid sequence among species, however, biological cross-species reactivity allows 

TSH of a certain species to stimulate thyroid glands of other species, accompanied by species 

specific biological differences.
30

 The sequence homology of  and  subunits from feline 

TSH are 96 % and 94 % compared to canine TSH, and 68 % and 88 % compared to human 

TSH.
31

 However, a homologue glycohormone of a specific species can have lower receptor 

affinity compared to a heterologue glycohormone.
32

 This can be caused by differences in 

glycosylation which alter bioactivity of the hormone.
30,33

 The above mentioned reasons could 

explain the difference in biological effect of rhTSH in dogs and cats, however controlled 

studies with rhTSH dosed per BW in dogs and cats are needed to evaluate a difference in 

biological reactivity between these species. 

 

 This study is the first report in veterinary medicine showing a marginal effect of 

rhTSH on T/S uptake ratio by the thyroid. Possibly, at first, the stored TT4 is released from 

the thyroid and pump mechanisms are only mildly affected, because the dose of rhTSH is 

possibly insufficient to reach a larger intracellular response. Also, the time interval between 

injection of rhTSH and image acquisition could be not optimal.  Use of the isotope  
123

I as a 

tracer would have allowed us to perform measurements of functional activity post-rhTSH 

administration for a longer period after administration of the radio-tracer, because 
123

I has a 

half life of 13 hours opposed to 6 hours for pertechnetate.  

 

  The time between the scan on day 1 and 3 was more than 60 hours (10 physical half-

lives of pertechnetate). Therefore, less than 0.01 % of radioactivity was left which is too small 

to be of influence. Thyroid imaging was performed 30 minutes after administration of 

pertechnetate. Nieckarz and Daniel
34

 showed that the time from injection to imaging is not 
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critical if performed within a period of 20 minutes to 2 hours after pertechnetate 

administration. The LEHR collimator allowed a low dose of 74 MBq pertechnetate with a 

good thyroid to background distinction, compared to higher doses of 111 - 148 MBq 

described in the literature where a low energy all purpose (LEAP) collimator is often used.
23,35

  

 

  Sodium-iodide symporters are also present in salivary glands. NIS gene expression 

and NIS protein is found in salivary glands.
36,37

 Cells in the salivary gland that express NIS 

can accumulate though not organify iodide, and TSH exerts no regulatory influence on non-

thyroid iodide accumulation.
38

 It is, therefore, not expected that TSH administration 

influences pertechnetate uptake in the salivary gland nor that this is a reason for the marginal 

increase in T/S uptake ratio. Moreover, Nieckarz and Daniel
34

 showed an increased T/S 

uptake ratio in euthyroid cats made hypothyroid with methimazole, expected to be caused by 

the increased serum TSH concentration.  

 

No correlation between the difference in serum TT4 correlation and the difference in  

T/S uptake ratio before and after rhTSH administration could be demonstrated. In the study by 

Daniel et al.
23

 there was a significant difference in T/S uptake ratio between euthyroid and 

severely hyperthyroid cats, but not between euthyroid and mild hyperthyroid cats. The 

euthyroid cats in the study reported here showed a mild increase in serum TT4 concentration, 

which could possibly explain the lack of correlation between the increase in T/S uptake ratio 

and the increase in serum TT4 concentration in this study.  

 

There was a significant effect of side on the T/S uptake ratio. This difference in T/S 

uptake ratio between the left and the right thyroid lobe is, however, of limited influence in this 

study, because the effect of rhTSH on T/S uptake ratio is the same in the left and right thyroid 

lobe. Asymmetric thyroid lobes on pertechnetate scintigraphy
39

 and differences in volume 

measured with ultrasonography have been described in euthyroid cats but not in euthyroid 

dogs.
40,41

 It is known that in euthyroid humans, the right thyroid lobe is usually larger and 

more vascularised
42

, and this is suggested to be associated with functional asymmetries 

related to the immune system, hypophysiotrophic neurohormones, neural pathways or a 

combination of the latter two factors.
43,44
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The study described here could open doors to further research. In humans with nodular 

goitre the administration of rhTSH has gained major application because administration of 

rhTSH increases the uptake of 
131

I in the thyroid and changes the regional distribution of 

131
I.

45,46
 This results in lower therapeutic doses needed and less irradiation to extra-thyroidal 

tissue.
47-49

 A lower efficacious dose of 
131

I in cats with hyperthyroidism will reduce the 

surface dose-emission rate, urine radioactivity and the duration of isolation for cats treated 

with 
131

I, thereby respecting the As Low As Reasonably Achievable  (ALARA) principle.
50,51 

 

Conclusion 

We can conclude from this study that the uptake of pertechnetate by the thyroid of 

euthyroid cats is marginally though significantly increased 6 hours after administration of 25 

g rhTSH, and that this increase is not correlated to the increase in serum TT4 concentration.  
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Summary  

 

This study investigated the recombinant human thyrotropin (rhTSH) stimulation test in 

healthy cats (group 1), cats with non-thyroidal illness (group 2) and cats with low serum total 

T4 (TT4) and renal azotemia after 
131

I treatment (group 3).  Serum TT4 concentration before 

and after, and thyroidal pertechnetate uptake after administration of 25 g rhTSH IV were 

measured. Baseline serum TT4 differed significantly between group 1 and 3 but not between 

group 1 and 2 or 2 and 3. Serum TT4 increased significantly in group 1 and 2 after rhTSH 

administration. Post-rhTSH serum TT4 differed significantly between group 1 and 3 and 

group 2 and 3, but not between group 1 and 2. There was no difference between the 3 groups 

in thyroid / salivary gland uptake ratio (T/S uptake ratio). 

We can conclude that stimulation with rhTSH is valuable to differentiate euthyroidism 

from iatrogenic hypothyroidism in cats. 
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Introduction 

 

Treatment with radioiodine (
131

I) is the treatment of choice for feline hyperthyroidism, 

however iatrogenic hypothyroidism can occur in 6 to 30 % of the cases.
1-3

 Another important 

complication is declining kidney function, because up to 39 % of treated cats develop chronic 

kidney disease (CKD) after treatment of hyperthyroidism.
4-7

 Therefore, it is not unexpected to 

find serum total T4 (TT4) concentration below reference range combined with renal azotemia 

in a cat after treatment of hyperthyroidism with 
131

I.  

 

When a low circulating serum TT4 concentration is measured in cats treated with 
131

I, 

non-thyroidal illness (NTI) must be considered, especially CKD, before a diagnosis of 

iatrogenic hypothyroidism can be confirmed.
8
 Several NTIs such as diabetes mellitus (DM), 

hepatic insufficiency and CKD can decrease serum TT4 concentrations.
9
 

Cats with serum TT4 below reference range and post-treatment renal azotemia 

represent a diagnostic challenge because it is not clear whether these cats have iatrogenic 

hypothyroidism or a low serum TT4 due to NTI. Also because of the interplay between 

thyroid status and renal function, definitive diagnosis of hypothyroidism is warranted. In 

hypothyroid humans, rats and dogs, glomerular filtration rate is decreased, and serum 

creatinine is increased, respectively.
10-13 

 

Thyroid function can be assessed with serum free T4 after equilibrium dialysis, which 

has a low specificity,
14

 or endogenous serum TSH concentration. Feline TSH measurement 

however, is not available in cats. A canine TSH assay was recently validated for use in 

healthy cats, hyperthyroid cats and cats with hyperthyroidism and chronic kidney disease.
15 

However, accuracy of this assay remains unclear in the higher range of TSH concentrations 

expected in hypothyroid cats. Moreover, only a 1
st
 generation assay is available.  

 

Another method which could proof valuable for measuring thyroid function, is 

stimulation of thyroid tissue with TSH. The possibility of prolonged storage of rhTSH
16

 and 

the biological activity described in cats
17

 opened doors to the use of rhTSH in feline medicine. 

Recent studies described the stimulatory effect of 25 g recombinant human TSH (rhTSH) on 

serum TT4 concentration and thyroid scintigraphy in healthy cats and uptake of radioiodine 

123
I in hyperthyroid cats.

17-19
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When TSH stimulation is performed, thyroid function can be measured with serum 

TT4 concentration as a representative of thyroid hormone synthesis and release of preformed 

hormones. Metabolic activity of the thyroid gland can be measured with technetium as 

pertechnetate (
99m

TcO4
-
) uptake. Pertechnetate is trapped by pump mechanisms in thyroid 

cells, the Sodium-Iodide symporters (NIS). It is concentrated in the thyroid but not 

incorporated in thyroid hormones. With computer software, regions of interest (ROI) can be 

drawn around thyroid lobes and salivary glands. The calculated thyroid/salivary gland (T/S) 

uptake ratio using pertechnetate is the most commonly used parameter to determine functional 

status of the thyroid in healthy and hyperthyroid cats.
20,21

 When thyroid scintigraphy is 

performed after TSH administration, a marginal but significant increase in T/S uptake ratio, 

which has been described in healthy euthyroid cats, must be taken into account.
18

  

 

The objectives of this study were to evaluate thyroid function with rhTSH stimulation 

followed by thyroid scintigraphy, in cats with a serum TT4 below reference range combined 

with renal azotemia after 
131

I treatment, compared with cats with non-thyroidal illness and a 

group of healthy control cats. 
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Materials and Methods 

 

Cats 

This study was conducted according to guidelines for animal care, with consent of the 

Ethical Committee of the Faculty of Veterinary Medicine from Ghent University, Belgium. 

Owners of the cats with NTI and treated hyperthyroid cats with serum TT4 below reference 

range combined with post-treatment renal azotemia signed an informed consent form. 

Six healthy euthyroid female spayed cats, with an average age of 4 years and 

bodyweight (BW) range of 4.0 - 5.2 kg (mean ± standard deviation [SD] 4.7 ± 0.4), were 

included (group 1, H cats). To assess the health of these cats, initial screening included 

physical and routine laboratory examinations (CBC, biochemistry and serum TT4 

concentration) and urinalysis (dipstick tests, microscopic analysis, protein/creatinine ratio and 

urine specific gravity). Cats were included in the study when these examinations showed no 

clinically significant abnormalities.  

Five cats with diseases reported as NTI
9
 (group 2, NTI cats), all patients from the 

Veterinary Clinic of Small Animal Medicine, Ghent University, were included. Abnormal  

findings on physical and routine laboratory examination had to be compatible with the 

established disease and no other significant abnormalities could be present. The diseases in 

the cats with NTI were CKD (IRIS [International Renal Interest Society, www.iris-

kidney.com/guidelines/en/staging_ckd.shtml] stage II, n = 1), DM (n = 1) and severe chronic 

gingivitis and stomatitis (n = 3). The cats had an average of 9 years and BW range of 2 - 6 kg 

(mean ± SD 4.2 ± 1.8).  

The group of cats with low serum TT4 concentration and renal azotemia were included 

from a larger group of hyperthyroid cats that were evaluated at 1, 3 and 6 months after 
131

I 

treatment. At evaluation, serum TT4 and creatinine concentration, as well as urinary specific 

gravity (USG) were measured. Glomerular filtration rate (GFR) was measured before and 1, 3 

and 6 months after treatment with the plasma exo-iohexol clearance test (PexICT) as 

described earlier.
22

 Four cats with a documented serum TT4 concentration below reference 

range and post-treatment renal azotemia at 3 and 6 months after treatment, and at 7 - 8.5 

months after 
131

I treatment when the study was performed, were included (group 3, low T4-

RA cats). Average age was 14.5 years and BW range of 3.0 - 8.0 kg (mean ± SD 5.8 ± 2.3).  

Renal azotemia was defined as serum creatinine concentration 140 - 249 mol/L (IRIS 

stage II) or 250 - 439 mol/L (IRIS stage III). 
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Experimental design 

A prospective study design was used to investigate the influence of rhTSH 

administration thyroid function measured with serum TT4 concentration and pertechnetate 

uptake on thyroid scintigraphy. Twenty five g rhTSH (Thyrogen®, Genzyme corporation, 

Naarden, The Netherlands) was administered intravenously. The rhTSH had been dissolved in 

sterile water, divided in aliquots containing 25 g rhTSH and frozen at -20 ºC for a maximum 

of 8 weeks as described by De Roover et al.
16

 Aliquots were allowed to thaw at room 

temperature shortly before injection. Six hours later, a pertechnetate scan was performed as 

described earlier.
18

 A dose of 74 MBq (2 mCi) pertechnetate was injected IV (5.5 hours after 

administration of rhTSH) and static images with a set number of 200.000 counts were 

acquired 30 minutes after injection, with a gamma camera
 
(Toshiba GCA 901A, Exalto 

SA/NV, Saintes, Belgium) equipped with a low energy high resolution (LEHR) collimator. 

Cats were fasted for at least 10 hours before the thyroid scan. Cats were held under light 

anesthesia with propofol (PropoVet
TM

, Propofol
 
10 mg/ml, Abbott Logistics B.V., Zwolle, 

The Netherlands) and placed in ventral recumbency over the camera. Regions of interest 

(ROI) were manually drawn over the left and right thyroid lobes and ipsilateral salivary 

glands by the same co-author (E. Vandermeulen) to calculate the T/S uptake ratio in thyroid 

lobes. 

Two blood samples were taken by jugular venipuncture, within 5 minutes prior to 

injection of the rhTSH and the pertechnetate scan respectively. Serum was collected after 

centrifugation, aliquoted and frozen at -20 ºC until radioactivity had decayed for measurement 

of TT4. The TT4 was measured with a validated chemiluminescent immunoassay 

(Chemiluminescent Immulite 2000, DPC, Los Angeles USA [nmol/L]). Intra- and inter-assay 

coefficient of variation were 4 and 8 % for the lower range (2 g/dL) and 6 and 7 % for the 

higher range (5 g/dL) of serum TT4, respectively. A serum sample with high TT4 

concentration was diluted with a serum sample with low TT4 concentration, which showed a 

linear dilution curve. 

 

Statistical Analysis 

Statistical analysis was performed with S-Plus version 8.0 (Insightful Corporation, 

Seattle, USA). The effect of rhTSH on serum T4 concentration was analysed using a paired 

sample T-test for each of the 3 groups. Differences in serum TT4 concentration pre- and post 

rhTSH administration, absolute and relative increase in serum TT4 concentration after rhTSH 
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administration and T/S ratio were analysed with analysis of variance (ANOVA). Global 

significance level was 5 %. Results were expressed as mean ± SD.  
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Results 

 

There was no significant difference between groups for BW or dose/kg BW. There 

was a significant difference in age between group 1 and 3, but not between groups 1 and 2 or 

2 and 3. All cats in group 3 had signs suggestive of hypothyroidism when the study was 

performed (increase in BW, scaly fur, lethargic). All cats from group 3 had renal azotemia 

stage II at 3 and 6 months after treatment with radioiodine. At the time of the study, cats from 

group 3 had renal azotemia IRIS stage II (n = 3) or III (n = 1). The cat with CKD from group 

2 had renal azotemia stage II. 

Serum TT4 (pre- and post-rhTSH administration, absolute increase and relative 

increase as well as post-rhTSH / pre-rhTSH serum TT4 ratio [post- / pre- TT4 ratio]) and T/S 

ratio, for the 3 groups, are described in Table 1. Serum TT4 concentration increased 

significantly in group 1 (P < 0.001) and group 2 (P = 0.014) but not in group 3 (P = 0.183) 

after rhTSH administration. There was a significant difference (P = 0.007) in pre-rhTSH 

serum TT4 concentration between group 1 and 3 but not between group 1 and 2 or group 2 

and 3. There was a significant difference between group 1 and 3 and between group 2 and 3 in 

post-rhTSH serum TT4 (P < 0.001), absolute increase in serum TT4 concentration (P = 0.001) 

and relative increase in serum TT4 concentration (P < 0.001), though there was no difference 

for these variables between group 1 and 2. There was no difference between the groups for 

T/S uptake ratio after rhTSH administration (P = 0.07). 

All significant results had a power > 90 %. Power was > 80 % for the non-significant 

difference in basal serum TT4 concentration between group 2 and 3, and for the non-

significant difference in T/S pertechnetate uptake ratio between group 1 and 3. 

Based on the marginal increase in serum TT4 concentration, compared to the healthy 

cats and cats with NTI, it was concluded that all 4 cats from group 3 had iatrogenic 

hypothyroidism. Treatment with levothyroxin 10 - 20 g/kg/day (Forthyron, Eurovet Animal 

Health B.V., Bladel, The Netherlands) was started. Cats were re-evaluated when euthyroidism 

was reached.  One owner denied more than 1 follow-up, and therefore this cat could not be re-

evaluated when euthyroid. Serum concentration of TT4, creatinine, GFR and USG of cats in 

group 3 before and 1, 3 and 6 months after radioiodine treatment, as well as after levothyroxin 

supplementation, is presented in Table 2. 
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Table 1. Serum TT4 concentration pre- and post-rhTSH administration, absolute and relative 

increase in serum TT4 concentration and T/S ratio after rhTSH administration in healthy cats 

(Group 1), cats with non-thyroidal illness (Group 2) and cats with serum TT4 below reference 

range and renal azotemia after 
131

I treatment (Group 3). 

 Group 1 Group 2 Group 3 

Serum TT4 pre-rhTSH 

(nmol/L) 

19.1 ± 4.6
a
 

(12.9 - 25.8) 

15.5 ± 3.0
a,b

 

(11.6 - 18.1) 

9.1 ± 3.7
b
 

(5.9 - 12.9) 

Serum TT4 post-rhTSH 

(nmol/L) 

54.4 ± 5.9
a
 

(49.0 - 65.8) 

55.0 ± 23.1
a
 

(33.5 - 92.9) 

9.7 ± 4.4
b
 

(5.9 - 14) 

Serum TT4 absolute 

increase (nmol/L) 

35.3 ± 5.1
a
 

(25.8 - 40) 

39.5 ± 21.2
a
 

(21.9 - 74.8) 

0.6 ± 0.7
b
 

(0 - 1.3) 

Serum TT4 relative 

increase (%) 

195.8 ± 64.1
a
 

(111 - 300) 

250.0 ± 103.9
a
 

(146 - 414) 

5.0 ± 5.8
b
 

(0 - 11) 

Post- / Pre- T4 ratio 
2.8 ± 1.3 

(2.1 - 4.0) 

3.6 ± 7.6 

(2.9 - 5.1) 

1.1 ± 1.2 

(1.0 - 1.1) 

T/S uptake ratio post-

rhTSH 

1.2 ± 0.2
a
 

(1.0 - 1.4) 

1.1 ± 0.3
a
 

(0.8 - 1.5) 

0.8 ± 0.1
a
 

(0.6 - 0.9) 

TT4: total T4, rhTSH: recombinant thyroid stimulating hormone, Post- / Pre- T4 ratio: post-

rhTSH stimulation / Pre-rhTSH stimulation serum TT4 concentration ratio, T/S uptake ratio: 

thyroid/ salivary gland uptake ratio. 

If superscripts (
a, b, c

) differ between columns for a variable, a significant difference was noted (P 

values are provided in the text). 
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Table 2. Mean ± standard deviation (range) of serum concentration of TT4 (nmol/L), creatinine 

(mol/L), GFR (mL/min/kg) and USG in cats from group 3 before (0), 1, 3 and 6 months after 

treatment with 
131

I, and after euthyroidism was re-established. 

Group 2 0 1 month 3 months 6 months 
Euthyroidism 

(n = 3) 

Serum TT4 
83.4 ± 26.4 

(58.1 - 120.0) 

8.4 ± 9.7 

(0 - 18.1) 

5.8 ± 6.8 

(0 - 12.9) 

4.5 ± 5.2 

(0 - 9.0) 

37.4 ± 9.7 

(28.4 - 47.7) 

Serum 

creatinine 

83 ± 22 

(51 - 101) 

136 ± 26 

(101 - 158) 

162 ± 18 

(151 - 188) 

183 ± 38 

(152 - 236) 

161 ± 32 

(126 - 187) 

GFR 
2.7 ± 0.6 

(2.1 - 3.3) 

1.3 ± 0.3 

(1.0 - 1.8) 

1.2 ± 0.2 

(0.9 -1.4) 

1.1 ± 0.1 

(0.9 - 1.2) 

1.1 ± 0.1 

(1.1 - 1.2) * 

USG 

1.030 ± 0.02 

(1.022 - 

1.060) 

1.030 ± 0.01 

(1.018 - 

1.047) 

1.040 ± 0.02 

(1.015 - 

1.048) 

1.030 ± 0.02 

(1.012 - 

1.060) 

1.040 ± 0.02 

(1.014 - 

1.060) 

TT4: total T4, GFR: glomerular filtration rate, USG: urine specific gravity, UPC: urinary 

protein/creatinine ratio. 

* n = 2 
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Discussion 

 

We investigated the rhTSH stimulation test for the evaluation of thyroid function in 

cats suspected of iatrogenic hypothyroidism and showing renal azotemia after treatment of 

hyperthyroidism with 
131

I (low T4-RA), by comparing them to H cats and cats with NTI 

without history of thyroid problems. The cats with NTI were included in the study to evaluate 

the effects of NTI on the results of the rhTSH stimulation test.  

 

There was no difference in serum TT4 concentration pre-rhTSH stimulation between 

H cats and NTI cats.
 
Although chronic gingivitis and periodontal disease have been described 

as NTI, it can be expected that these diseases are less severe NTI compared to CKD and DM 

in the other 2 cats.
9
 This could have lead to a smaller and therefore non-significant difference 

in serum TT4 between group 1 and 2. Indeed, ranges of serum TT4 concentration were 

comparable for group 1 and 2 (Table 1). On the other hand, group size might have been to low 

to detect a significant difference in serum TT4 concentration. 

 

There was no difference between the NTI cats and the low T4-RA cats in basal serum 

TT4 concentration, which is a more important finding. This underlines the need for further 

evaluation of thyroid function in cats suspected of iatrogenic hypothyroidism and renal 

azotemia after 
131

I treatment. A diagnosis of hypothyroidism cannot be made based solely on 

the basal serum TT4 concentration. 

 

In several species, hypothyroidism can affect kidney function.
10-13

 Although this has 

not yet been investigated in cats, the presence of kidney disease and potential deleterious 

effects of the previous hyperthyroidism on kidney function merit attention. An early diagnosis 

of hypothyroidism in these cats is important. Untreated hypothyroidism can have long term 

effects on kidney function and is associated with congestive heart failure in humans.
23,24

 

Stimulation with rhTSH has not yet been investigated as a diagnostic test in cats suspected of 

iatrogenic hypothyroidism.  A recent study evaluated rhTSH stimulation in healthy dogs, 

euthyroid sick dogs and hypothyroid dogs and established the following criteria: dogs were 

euthyroid if post-TSH serum TT4 concentration was equal or exceeded 40 nmol/L or if the 

increment of post-TSH serum TT4 concentration  was at least 20 nmol/L.
25

 All of the cats 

from group 1 and 4 cats from group 2, though none of the cats from group 3, met these 
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criteria. These criteria are arbitrary in cats and need further validation but the results in the 

study using these criteria are promising. 

 

Thyroid stimulation can be indexed by the post- / pre-TT4 ratio.
26,27

  In dogs with 

hypothyroidism this ratio has an approximate value of 1.
25,28

 This is comparable to the results 

in our study for the cats from group 3, but lower than the results for the cats from group 2.  

 

In the study described here, there was no difference in post-rhTSH T/S uptake ratio 

between the groups. This suggests that assessment of thyroid function with thyroid 

scintigraphy after rhTSH stimulation is not accurate in cats with low serum TT4  

concentration combined with renal azotemia. However, this does not exclude the possibility 

of a difference in T/S uptake ratio before stimulation with rhTSH between the groups. When 

different methods of thyroid function assessment such as TSH stimulation combined with 

serum TT4 concentration followed by thyroid scintigraphy are being evaluated in cats, the 

influence of rhTSH on thyroid scintigraphy must be taken into account. In a recent study by 

the same group, a marginal but significant effect of rhTSH on T/S uptake ratio by the thyroid 

gland was described in healthy cats.
18 

It remains possible that basal T/S uptake ratios differed 

between groups but that this difference was masked by possible effects of rhTSH on 

remaining functional thyroid tissue in the glands of the low T4-RA group. Indeed, in dogs 

thyroid scintigraphy had the highest discriminatory power with primary hypothyroidism and 

non-thyroidal illness in one study.
29

  

 

Follicular cells respond initially to binding of TSH to the TSH receptor and release of 

preformed thyroid hormone from the colloid in the blood.
30

 When TSH stimulation persists, 

there is an increase in expression and functionality of the Sodium/Iodide Symporter (NIS) and 

an increased organification of iodine into thyroid hormone.
31

 In cats with hypothyroidism, 

there can be no release of preformed hormones, because production level is too low. 

However, it remains possible that there is room for increase in production level because there 

are still remaining NIS taking up pertechnetate, as seen from the low but present T/S uptake 

ratio in the low T4-RA group. Theoretically, if stimulation with TSH persists, which is 

expected in primary hypothyroidism, this would qualitatively and quantitatively increase NIS. 

This suggests that not only there is insufficient amount of functional thyroid cells producing 

T4 which causes hypothyroidism, there is also a functional decrease in response to TSH of the 
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remaining NIS which thereby maintains the hypothyroid state. Further studies are needed to 

investigate the mechanisms of iatrogenic hypothyroidism in cats.  

 

After the study, treatment with levothyroxin was started in all four cats from group 3 

with iatrogenic hypothyroidism and renal azotemia (Table 2). After euthyroidism was 

reached, serum creatinine decreased and GFR increased in one cat. The other 2 cats showed 

increased serum creatinine levels, and the diagnosis of concurrent CKD in these cats was 

confused based on the worsening kidney function despite improvement of serum TT4 

concentration. Hypothyroidism can cause glomerular lesions such as thickening of the 

basement membrane and increased mesangial matrix.
32,33

 Indeed, treatment of hypothyroidism 

in a human patient with progressive renal failure can lead to significant improvement of renal 

function.
34

 Evaluation of kidney function in cats with iatrogenic hypothyroidism has not yet 

been described. The concurrent hypothyroidism and CKD can be a coincidence in this small 

number of cats but the question is raised whether there is a link between the development of 

CKD after treatment with radioiodine and hypothyroidism in these cats.  

 

Limitations of this study are the small number of cats investigated. However, results 

were significant and power of the statistical analysis sufficient.  

 

Cats with low serum TT4 concentration combined with renal azotemia after treatment 

of hyperthyroidism represent a diagnostic challenge. It can be unclear whether these cats have 

truly iatrogenic hypothyroidism or low serum TT4 concentration due to NTI, based on clinical 

symptoms and basal serum TT4 measurement alone. A reliable evaluation of thyroid function 

is essential, because iatrogenic hypothyroidism can potentially be deleterious on kidney 

function. We can conclude from this study that stimulation with a rhTSH stimulation test 

measured with serum TT4 concentration is able to differentiate euthyroidism from iatrogenic 

hypothyroidism in cats.  

 

 

 

 

 

 



CHAPTER 5 

 

214 
 

 
References 

 

 1. Peterson ME, Becker DV. Radioiodine treatment of 524 cats with hyperthyroidism. J Am Vet Med Assoc 

1995;207:1422-1428. 

 2. Chun R, Garrett LD, Sargeant J, Sherman A, Hoskinson JJ. Predictors of response to radioiodine therapy 

in hyperthyroid cats. Vet Radiol Ultrasound 2002;43:587-591. 

 3. Nykamp SG, Dykes NL, Zarfoss MK, Scarlett JM. Association of the risk of development of 

hypothyroidism after iodine 131 treatment with the pretreatment pattern of sodium pertechnetate Tc 99m 

uptake in the thyroid gland in cats with hyperthyroidism: 165 cases (1990-2002). J Am Vet Med Assoc 

2005;226:1671-1675. 

 4. Graves TK, Olivier NB, Nachreiner RF, Kruger JM, Walshaw R, Stickle RL. Changes in renal function 

associated with treatment of hyperthyroidism in cats. Am J Vet Res 1994;55:1745-1749. 

 5. Becker TJ, Graves TK, Kruger JM, Braselton WE, Nachreiner RF. Effects of methimazole on renal 

function in cats with hyperthyroidism. J Am Anim Hosp Assoc 2000;36:215-223. 

 6. Milner RJ, Channell CD, Levy JK, Schaer M. Survival times for cats with hyperthyroidism treated with 

iodine 131, methimazole, or both: 167 cases (1996-2003). J Am Vet Med Assoc 2006;228:559-563. 

 7. Langston CE, Reine NJ. Hyperthyroidism and the kidney. Clin Tech Small Anim Pract 2006;21:17-21. 

 8. Greco DS. Diagnosis of congenital and adult-onset hypothyroidism in cats. Clin Tech Small Anim Pract 

2006;21:40-44. 

 9. Peterson ME, Gamble DA. Effect of nonthyroidal illness on serum thyroxine concentrations in cats: 494 

cases (1988). J Am Vet Med Assoc 1990;197:1203-1208. 

 10. den Hollander JG, Wulkan RW, Mantel MJ, Berghout A. Correlation between severity of thyroid 

dysfunction and renal function. Clin Endocrinol (Oxf) 2005;62:423-427. 

 11. Katz AI, Lindheimer MD. Renal sodium- and potassium-activated adenosine triphosphatase and sodium 

reabsorption in the hypothyroid rat. J Clin Invest 1973;52:796-804. 

 12. White HL, Heinbecker P, Rolf D. Some endocrine influences on renal function and cardiac output. Am J 

Physiol 1947;149:404-417. 

 13. Gommeren K, Lefebvre HP, Benchekroun G, Daminet S. Effect of thyroxine supplementation on 

glomerular filtration rate in hypothyroid dogs. J Vet Intern Med 2008;22:734.  

 14. Peterson ME, Melian C, Nichols R. Measurement of serum concentrations of free thyroxine, total 

thyroxine, and total triiodothyronine in cats with hyperthyroidism and cats with nonthyroidal disease. J 

Am Vet Med Assoc 2001;218:529-536. 

 15. Wakeling J, Moore K, Elliott J, Syme H. Diagnosis of hyperthyroidism in cats with mild chronic kidney 

disease. J Small Anim Pract 2008;49:287-294. 

 16. De Roover K, Duchateau L, Carmichael N, van Geffen C, Daminet S. Effect of storage of reconstituted 

recombinant human thyroid-stimulating hormone (rhTSH) on thyroid-stimulating hormone (TSH) 

response testing in euthyroid dogs. J Vet Intern Med 2006;20:812-817. 

 17. Stegeman JR, Graham PA, Hauptman JG. Use of recombinant human thyroid-stimulating hormone for 

thyrotropin-stimulation testing of euthyroid cats. Am J Vet Res 2003;64:149-152. 

 18. van Hoek I, Peremans K, Vandermeulen E, Duchateau L, Gommeren K, Daminet S. Effect of 

recombinant human thyroid stimulating hormone on serum thyroxin and thyroid scintigraphy in euthyroid 

cats. J Feline Med Surg 2008. In Press. 

 19. van Hoek I, Daminet S, Vandermeulen E, Dobbeleir A, Duchateau L, Peremans K. Recombinant human 

thyrotropin administration enhances thyroid uptake of radio active iodine in hyperthyroid cats. J Vet 

Intern Med 2008;22:1340-1344.  

 20. Mooney CT, Thoday KL, Nicoll JJ, Doxey DJ. Qualitative and quantitative thyroid imaging in feline 

hyperthyroidism using technetium-99m as pertechnetate. Vet Radiol Ultrasound 1992;33:313-320. 

 21. Daniel GB, Sharp DS, Nieckarz JA, Adams W. Quantitative thyroid scintigraphy as a predictor of serum 

thyroxin concentration in normal and hyperthyroid cats. Vet Radiol Ultrasound 2002;43:374-382. 

 22. van Hoek I, Lefebvre H, Kooistra H, Croubels S, Binst D, Peremans K, Daminet S. Plasma clearance of 

exogenous creatinine, exo-iohexol and endo-iohexol in hyperthyroid cats before and after treatment with 

radioiodine. J Vet Intern Med 2008;22:879-885. 

 23. Rodondi N, Newman AB, Vittinghoff E, de RN, Satterfield S, Harris TB, Bauer DC. Subclinical 

hypothyroidism and the risk of heart failure, other cardiovascular events, and death. Arch Intern Med 

2005;165:2460-2466. 

 24. Elgadi A, Verbovszki P, Marcus C, Berg UB. Long-term effects of primary hypothyroidism on renal 

function in children. J Pediatr 2008;152:860-864. 



§ 5.2 

 

215 
 

 25. Daminet S, Fifle L, Paradis M, Duchateau L, Moreau M. Use of recombinant human thyroid-stimulating 

hormone for thyrotropin stimulation test in healthy, hypothyroid and euthyroid sick dogs. Can Vet J 

2007;48:1273-1279. 

 26. Lorenz MD, Stiff ME. Serum thyroxine content before and after thyrotropin stimulation in dogs with 

suspected hypothyroidism. J Am Vet Med Assoc 1980;177:78-81. 

 27. Hoenig M, Ferguson DC. Assessment of thyroid functional reserve in the cat by the thyrotropin-

stimulation test. Am J Vet Res 1983;44:1229-1232. 

 28. Boretti FS, Sieber-Ruckstuhl NS, Favrot C, Lutz H, Hofmann-Lehmann R, Reusch CE. Evaluation of 

recombinant human thyroid-stimulating hormone to test thyroid function in dogs suspected of having 

hypothyroidism. Am J Vet Res 2006;67:2012-2016. 

 29. Diaz Espineira MM, Mol JA, Peeters ME, Pollak YW, Iversen L, van Dijk JE, Rijnberk A, Kooistra HS. 

Assessment of thyroid function in dogs with low plasma thyroxine concentration. J Vet Intern Med 

2007;21:25-32. 

 30. Collins WT, Capen CC. Ultrastructural and functional alterations of the rat thyroid gland produced by 

polychlorinated biphenyls compared with iodide excess and deficiency, and thyrotropin and thyroxine 

administration. Virchows Arch B Cell Pathol Incl Mol Pathol 1980;33:213-231. 

 31. Nilsson M, Engstrom G, Ericson LE. Graded response in the individual thyroid follicle cell to increasing 

doses of TSH. Mol Cell Endocrinol 1986;44:165-169. 

 32. Katz AI, Emmanouel DS, Lindheimer MD. Thyroid hormone and the kidney. Nephron 1975;15:223-249. 

 33. Lafayette RA, Costa ME, King AJ. Increased serum creatinine in the absence of renal failure in profound 

hypothyroidism. Am J Med 1994;96:298-299. 

 34. van Welsem ME, Lobatto S. Treatment of severe hypothyroidism in a patient with progressive renal 

failure leads to significant improvement of renal function. Clin Nephrol 2007;67:391-393.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 5 

 

216 
 

 

 



 

217 
 

 
 

 

GENERAL 

DISCUSSION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



GENERAL DISCUSSION 

 

218 
 

 

 



GENERAL DISCUSSION 

 

219 
 

Declining kidney function is a common complication of 
131

I treatment and an early 

assessment of development of chronic kidney disease (CKD) is essential. It was important to 

first investigate methods which could give additional information about the status of kidney 

function in cats and to investigate whether these methods could aid in the early assessment of 

declining kidney function after 
131

I treatment. The extensive linkage between thyroid and 

kidney function is described in Chapter 1. 

 

The main objective of this thesis was to gain insights into kidney function of 

hyperthyroid cats, by evaluating several stepping stones that could help to understand the 

declining kidney function in hyperthyroid cats after 
131

I treatment.  

 

1. Evaluation of plasma clearance methods (Chapter 2) 

Because one of the aims of the thesis was to evaluate kidney function in hyperthyroid 

cats, we first investigated suitability of different plasma clearance methods for glomerular 

filtration rate (GFR) measurement. Important characteristics determining the usefulness of a 

method for GFR measurement are not only convenience and availability but also accuracy, 

precision and reproducibility, and ability to distinguish between a wide range of GFR values. 

The traditional gold standard is urinary clearance of inulin. However, urinary clearance 

techniques are highly cumbersome, stressful and potentially harmful for the patient. Urinary 

clearance of inulin is comparable to urinary clearance of exogenous creatinine and plasma 

clearance of iohexol in cats.
1-3

 In Chapter 2 (§2.1, §2.2 and §2.3), we evaluated plasma 

clearance of exo-iohexol (PexICT), endo-iohexol (PenICT) and exogenous creatinine 

(PECCT) for their potential application in research and practice conditions. 

 

Precision 

We investigated precision because this has important implications when GFR is used 

in the follow up of patients. Reproducibility of repeated measures was investigated in young 

adult and aged healthy cats (§ 2.1). The between-day coefficients of variation were < 22 % for 

all markers. This variation is not excessively high and means a change in GFR of 22 % (for 

instance a decrease from 2.5 to 2.0 mL/min/kg) can be due to between-day variability and not 

to a biologic change. However, any change higher than 22 % can be considered clinically 

relevant. This is more sensitive than the routine indirect parameters of renal function such as 

serum creatinine concentration, which change when at least two thirds to three quarters of 
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renal function is impaired. Therefore, the reproducibility for all markers was considered 

sufficient for screening patients for early renal dysfunction. However, PexICT had the best 

reproducibility and is therefore most suited in research conditions. Apparently, factors related 

to individual cats have more influence on the PECCT and PenICT because variance between 

repeated measures in the same cat was larger compared to PexICT. 

 

Similarity and distinguishment 

Besides precision, we also evaluated these methods for their similarity when evaluated 

concurrently in the animal. The ability to distinguish between different ranges of GFR 

expected in cats caused by pathological conditions or age was investigated in § 2.1 and § 2.3. 

This distinguishment was also investigated for different GFR values measured over a time 

period in which the GFR is expected to change after treatment of hyperthyroidism (§ 2.2). 

There was no difference between the different clearance methods in cats with CKD, but there 

were differences in GFR between healthy and hyperthyroid cats although differences between 

clearance methods differed between the groups. For instance PenICT generated GFR values 

higher than PexICT and PECCT in healthy cats, albeit lower than these methods in 

hyperthyroid cats. Also, the amount of difference between the methods was not consistent 

over the range of GFR measured. These findings suggest that the difference between 

clearance methods does not seem to be related to pathophysiological differences between cats 

per se, but more to differences between different pathophysiological conditions and their 

corresponding different GFR values. Moreover, these findings suggest that for a single GFR 

evaluation as part of evaluation of the complete clinical status of a geriatric cat, any of the 

three clearance methods can be used, especially in cats with CKD. However, this is not the 

case when cats are screened for kidney dysfunction, and evaluated repeatedly over a period of 

time in which the GFR is expected to change.  It is then important to be able to distinguish 

between clinically different GFR values. This distinguishment is associated with the 

precision. In theory, any of the three clearance methods can be used because all three methods 

indicated the same trend in hyperthyroid cats with decreasing GFR until 4 weeks after 
131

I 

treatment with very little decline thereafter (§ 2.2). Also, in the population consisting of cats 

expressing GFR over the complete range expected in cats, limits of agreement were narrow 

and mean difference was low when the three methods were compared (§ 2.3). However, the 

same method has to be used in monitoring kidney function because at all time points after 

treatment there was a significant difference between GFR values using the three methods.  
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PexICT showed the best reproducibility and there was no overlap between ranges of 

GFR values in cats with CKD, healthy cats and cats with hyperthyroidism, which makes it 

suitable for application in a research setting. PECCT was the only clearance method that 

could distinguish in GFR between cats with CKD, healthy cats and cats with hyperthyroidism, 

as well as between young adult and aged healthy cats. Reproducibility of PECCT was 

acceptable and creatinine analysis can be performed using routine devices for biochemical 

analysis, which makes it suitable for application in referral practice. However, PECCT was 

not able to distinguish between GFR values measured 1 week and 4 week after 
131

I treatment 

of hyperthyroid cats, which suggests it might be less sensitive to small changes in GFR 

compared with PexICT and PenICT.  

 

Accuracy 

Another important characteristic is accuracy which can be evaluated by comparison to 

the gold standard method: urinary clearance of inulin. However, clearance of iohexol as well 

as exogenous creatinine have been proposed as adequate alternatives for urinary clearance 

methods in cats.
1-5

 Use of a gold standard method would have been useful to compare 

different GFR markers over the range of possible GFR values and this is a limitation of the 

studies evaluating GFR methods described here. Indeed, precision may not be relevant for 

methods which have poor accuracy. On the other hand, an accurate method with a poor 

reproducibility or lacking ability to distinguish between different GFR values can not be 

acceptable for GFR assessment when monitoring kidney function. A compromise between a 

good accuracy and a correct reproducibility and ability to distinguish has still to be found. 

Because of the findings described in Chapter 2 (§ 2.1, § 2.2 and § 2.3), we decided to use the 

PexICT in the following chapter on the long-term follow up of kidney function in 

hyperthyroid cats. 

 

2. Evaluation of urinary retinol binding protein (RBP) as a marker of kidney 

function (Chapter 3) 

In patients at risk of developing kidney failure, such as cats treated for 

hyperthyroidism, it is important to apply corrective therapy at an early stage of kidney 

disease. Previous studies have shown that only GFR was predictive for development of 

CKD.
6,7

 The use of RBP as a putative urinary marker was investigated in Chapter 3 (§ 3.1 and 

§ 3.2). Renal tubules are hypertrophic and hyperplastic in hyperthyroidism.
8
 Tubular cells can 
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be damaged due to the hypertrophy and hyperplasia, or are debilitated due to the increased 

functional level. While other studies focused on glomerular changes in hyperthyroid cats, we 

also wanted to investigate tubular function in hyperthyroid cats as part of a total assessment of 

kidney function.  The onset of decreased kidney function can be assessed by monitoring 

sensitive biomarkers, such as urinary RBP which reflects renal damage at the tubular level. 

Our first aim in this area was to assess urinary RBP with Western blot analysis with an ELISA 

validated for the analysis of urine from clinically healthy cats and from cats with either 

diagnosed (cats with CKD) or increased risk of kidney dysfunction (hyperthyroid cats) (§ 

3.1). The detection of a band at the same position as the human RBP standard with Western 

blot analysis, indicated that RBP was present in the urine of cats with CKD or 

hyperthyroidism, but minimally present in healthy cats. In urine of healthy cats, the RBP 

signal observed was very low in comparison to that in urine from both cats with CKD or 

hyperthyroidism. Indeed, the relative RBP concentrations detected with ELISA were below 

the assay sensitivity in all healthy cats, whereas increased urinary RBP concentrations, with a 

large variation between individual cat samples, were typically seen in the majority of cats 

with CKD and hyperthyroid cats. The healthy cats consisted of young adult as well as aged 

cats, and therefore a physiologic decrease in tubular function due to increasing age could not 

be established. Serum creatinine, USG and UPC varied widely in cats with CKD. This could 

express different degrees of advanced kidney failure, and could account for the large variation 

in urinary RBP found in cats with CKD. Urinary RBP concentrations also vary widely in 

hyperthyroid humans before, as well as after, treatment. However, they do not differ from 

concentrations in healthy control subjects. This suggests that tubular damage is more severe in 

hyperthyroid cats than in humans. Another possible cause for the smaller difference in urinary 

RBP between hyperthyroid and healthy humans, could be the decreased plasma RBP 

concentrations described in hyperthyroid humans.
9,10

 

 

We found urinary RBP in hyperthyroid cats (§ 3.1), although the reason for this was 

unclear. Therefore, we evaluated whether the same variation as in urinary RBP was present in 

serum RBP in hyperthyroid cats and healthy cats. We also investigated influence of treatment 

of hyperthyroidism on serum and urinary RBP in hyperthyroid cats (§ 3.2). Nonetheless, 

when urinary and serum RBP are evaluated, it has to be kept in mind that the reported 

concentrations are relative values. Urinary RBP decreased after treatment. However, it was 

not correlated to serum RBP concentrations. From these results it is therefore suggested that 
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urinary RBP in hyperthyroid cats reflects dysfunction at the local tubular level and is not 

caused by changes in serum RBP concentrations. This dysfunction is also suggested to be 

reversible when euthyroidism is restored.  

 

3. Long term effects of 
131

I treatment on kidney function and possible prediction 

of post-treatment renal azotemia (Chapter 4) 

Evaluating renal function in a hyperthyroid cat is important but difficult at the same 

time. Measurement of GFR for instance, could be interesting to detect subclinical kidney 

disease before a definitive treatment of hyperthyroidism is performed and predict which cats 

may develop renal azotemia after treatment of hyperthyroidism. This early detection of an 

underlying kidney disease could influence the choice of therapy of hyperthyroidism. It would 

also allow early treatment of kidney disease and monitoring, and thus an increase in patient’s 

well being.  

A study investigating short as well long term effects of treatment of hyperthyroidism 

with 
131

I on the glomerular, as well as tubular function, in cats had not yet been performed. 

We investigated kidney function through measurement of several variables, including GFR 

and urinary RBP which were validated in the previous chapters, before and after treatment. 

Further, the post-treatment time course of these variables in cats which maintained a normal 

kidney function and cats developing renal azotemia was assessed. Finally, we tested possible 

pre-treatment predictive value of any of these variables for the development of post-treatment 

renal azotemia and GFR (Chapter 4). 

 

Renal differences between cats developing post-treatment renal azotemia and cats 

maintaining a healthy kidney function 

In our study, almost one in five cats developed post-treatment renal azotemia, and this 

percentage is comparable to previously published results.
7,11-13

 There was a significant 

decrease in GFR, UPC and uRBP/c for the complete group and cats maintaining a healthy 

kidney function already 1 week after treatment, until 4 weeks after treatment. In contrast, 

GFR and uRBP/c did not change in cats developing post-treatment renal azotemia. Pre-

treatment values of BW and serum creatinine did not differ with values measured 1 week after 

treatment. Serum creatinine did not increase statistically significant after 4 weeks post-

treatment in the cats developing post-treatment renal azotemia, however an increase remains 

visible (figure 2C, Chapter 4). It is possible that the number of cats was too small to generate 
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significant findings. If the increase in serum creatinine would be significant after 4 weeks in 

the cats developing post-treatment renal azotemia, there is still no significant decrease in GFR 

visible in these cats. These findings suggests that the decreased serum creatinine 

concentration pre-treatment is more related to the decreased muscle mass than to GFR and 

enhanced clearance of creatinine, and that the increased serum creatinine after treatment 

cannot completely be regarded as representative for a decreased kidney function. Therefore, 

as suggested in an earlier study,
14

 serum creatinine should not be considered a reliable short-

term indicator of deteriorating kidney function in hyperthyroid cats.  

Pre-treatment proteinuria decreased after treatment regardless the development of 

post-treatment renal azotemia or not and therefore treatment for proteinuria is not indicated in 

these cats. Pre-treatment proteinuria is suggested to be caused by a functional change in the 

structure of the glomerular barrier which is reversed after treatment.
15

 Indeed, BP, GFR and 

markers of tubular function did not change after treatment in cats developing post-treatment 

renal azotemia. Other suggested causes for proteinuria in hyperthyroidism, like glomerular 

hypertension and hyperfiltration or changes in tubular protein handling, are therefore less 

likely to cause pre-treatment proteinuria, although this was not investigated. 

We found significant differences in pre-treatment values of GFR, USG and serum TT4 

concentration, between cats maintaining a healthy kidney function and cats developing post-

treatment renal azotemia. These findings can be considered predictive for development of 

post-treatment renal azotemia. The difference in GFR is in accordance with previous 

findings.
6,14

 Besides the difference in pre-treatment GFR value, pre-treatment GFR explained 

48 % of the variability in GFR 4 weeks after treatment, and explained 59 % and 58 % 

respectively of the variability in GFR 4 weeks after treatment when combined with pre-

treatment USG or serum creatinine. 

In contrast to GFR, the findings regarding pre-treatment values of serum TT4 

concentration and USG have not yet been described. A difference in USG had been suggested 

by Becker et al.
7
 although not statistically significant. Also, variability in GFR 4 weeks after 

treatment is explained for 37 % by USG alone and for 62 %, 59 % and 51 % when combined 

with pre-treatment serum creatinine concentration, GFR and serum TT4, respectively. The 

lower pre-treatment serum TT4 concentration in cats developing post-treatment renal 

azotemia compared to cats maintaining a healthy kidney function, could be regarded as an 

actual sign of underlying kidney disease, because kidney disease can act as a non-thyroidal 

illness (NTI) and suppress serum TT4 concentration. Further research is necessary to develop 
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pre-treatment cut-off values for GFR, USG and possibly serum TT4 to be able to predict 

which cat has an increased risk for post-treatment renal azotemia.  

An overall limitation of the study was the small number of cats evaluated, especially 

the number of cats developing post-treatment renal azotemia. Other studies showed that 39 %, 

17 % and 37 % of treated hyperthyroid cats developed kidney disease.
7,11,14

 Nonetheless, 

results are statistically significant and the number of 5 cats out of 21 developing post-

treatment renal azotemia after treatment of hyperthyroidism is comparable to numbers 

described in the literature.
7,11-13

  

The originality of our studies concerning renal function in hyperthyroid cats, lies in the 

combined evaluation of glomerular as well as tubular function before, but also short- and 

long-term after treatment. Moreover, we evaluated routinely used serum and urinary renal 

variables (BUN, serum creatinine, urine protein/creatinine ratio (UPC) and urine specific 

gravity (USG)) as well as two less common used variables (GFR and uRBP/c) for glomerular 

and tubular function. Previous studies focused on glomerular function, and most of these only 

measured GFR at one time point (6 days, 30 days or 6 weeks) after treatment and are 

therefore less extensive compared to our study.
6,7,11

 In the study described in Chapter 4, we 

show for the first time in an evidence based way, that significant changes in kidney function 

occur within 4 weeks post-treatment and remain stable thereafter, regardless of the degree in 

declining kidney function. Therefore, we can recommend an accurate assessment of kidney 

function 1 month after treatment with 
131

I. 

 

4. Evaluation of rhTSH stimulation test to measure thyroid function in cats with 

post-treatment renal azotemia suspected of iatrogenic hypothyroidism 

(Chapter 5) 

At the end of the study described in Chapter 4, 4 out of 5 cats with post-treatment 

renal azotemia also had serum TT4 values below the reference range. This represented a 

diagnostic challenge as it was not clear whether these cats had iatrogenic hypothyroidism or a 

low serum TT4 due to NTI. Also because of the interplay between thyroid status and renal 

function, definitive diagnosis of hypothyroidism was warranted. Indeed, iatrogenic 

hypothyroidism occurs in 6 to 30 % of hyperthyroid cats treated with 
131

I and could contribute 

to a declining kidney function.
16-18,18,19

 On the other hand, CKD, which develops in up to 39 

% of hyperthyroid cats after treatment,
11

 can act as a NTI and can suppress serum TT4 below 

reference ranges in cats.
20,21

 Either one or both of these conditions can be present in these cats 
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with post-treatment renal azotemia and suspected of iatrogenic hypothyroidism and a 

definitive diagnosis is warranted. 

Thyroid function can be assessed with serum free T4 after equilibrium dialysis, which 

has a low specificity,
22

 or endogenous serum TSH, however feline TSH measurement is not 

available. Another method in cats which could proof valuable for measuring thyroid function, 

is stimulation of thyroid tissue with TSH. The possibility of prolonged storage of rhTSH
23

 and 

the biological activity described in cats
24

 opened doors to the use of rhTSH in feline medicine. 

When stimulation with TSH is performed, thyroidal response could be measured with serum 

TT4 concentration or thyroid scintigraphy. However, in the latter case the influence of TSH 

stimulation on thyroid/salivary gland uptake ratio (T/S uptake ratio) in thyroid scintigraphy in 

a normal functioning thyroid must be taken into account, though this had not yet been 

investigated. 

 

In Chapter 5, we first investigated the influence of rhTSH administration on serum 

TT4 concentration and on thyroid scintigraphy in healthy cats (§ 5.1), before we investigated 

the application of rhTSH for evaluation of thyroid function in cats developing serum TT4 

below reference range and azotemia after treatment of hyperthyroidism (§ 5.2).  

In the healthy cats, there was a significant increase in serum TT4 and a marginal but 

significant increase in T/S uptake ratio after rhTSH administration. The only small increase in 

T/S uptake ratio after rhTSH administration can be caused by an  insufficient dose to reach an 

effect on the pump mechanism that would strengthen the increase in T/S uptake ratio. Also, 

the time interval between rhTSH administration and image acquisition could have been to 

short to establish a profound increase in T/S uptake ratio. However, the small increase in T/S 

uptake ratio after TSH stimulation must be taken into account when thyroid function is 

evaluated with thyroid scintigraphy. 

There was no difference in baseline serum TT4 concentration between cats with NTI 

and cats with low serum TT4 concentration and renal azotemia. This confirms the need for an 

accurate thyroid evaluation test because the diagnosis of iatrogenic hypothyroidism could not 

be made based on baseline serum TT4 concentration. Serum TT4 increased significantly after 

rhTSH administration in the healthy cats and in the cats with NTI but not in the cats suspected 

of hypothyroidism. There was no difference in T/S uptake ratio after rhTSH stimulation 

between the 3 groups. This shows that the rhTSH stimulation test with measurement of serum 

TT4 can differentiate between euthyroid and hypothyroid cats.  From our study, it was not 
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possible to conclude whether scintigraphy alone  could be used for measurement of thyroid 

function in these cats.  

With the use of rhTSH stimulation, the cats with post-treatment renal azotemia and 

serum TT4 below reference range were diagnosed with iatrogenic hypothyroidism. The 

question could be raised whether there is a link between the development of post-treatment 

renal azotemia and iatrogenic hypothyroidism in these cats. On one hand, hypothyroidism 

could contribute to the development of declining kidney function or could just cause a 

reversible decreased GFR and hence renal azotemia. On the other hand, it is possible that cats 

with an impaired kidney function previous to 
131

I treatment, which can be extrapolated from 

the lower pre-treatment GFR, have a lower clearance of 
131

I. This could cause a prolonged 

effect of 
131

I on the thyroid and thereby increase the chance of developing iatrogenic 

hypothyroidism. A possible causal link between hypothyroidism and CKD after treatment in 

hyperthyroid cats remains possible, but further research is necessary to elucidate this aspect. 

Definitive diagnosis of hypothyroidism, especially in this context, seems warranted and our 

results suggest that rhTSH stimulation is an appropriate test. 

 

Conclusion 

 In this thesis, we have gained significant insight into the kidney function of 

hyperthyroid cats. We investigated suitable GFR methods as well as a method for direct 

evaluation of tubular function. Clearance of exo-iohexol revealed to be the most precise 

method, and this was therefore used in the further studies to measure GFR. Urinary RBP 

indicated tubular dysfunction in hyperthyroid cats, and this dysfunction was suggested to be 

reversible after 
131

I treatment.  

The declining kidney function after treatment stabilized within 4 weeks after 
131

I 

treatment, and therefore we can recommend that an accurate evaluation of kidney function 

can be made at that time. Prediction of development of post-treatment renal azotemia might 

be possible with pre-treatment measurement of GFR, USG and serum TT4. When there is 

development of post-treatment renal azotemia combined with low serum TT4, a definitive 

diagnosis of iatrogenic hypothyroidism can be made using the rhTSH stimulation test. 
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Hyperthyroidism and chronic kidney disease (CKD) are both frequently encountered 

diseases in geriatric cats. An important problem in hyperthyroid cats is the declining kidney 

function after treatment, whatever the treatment method used. There is a strong need to be 

able to predict which hyperthyroid cats develop CKD after treatment, and to be able to detect 

a declining kidney function early after treatment. The first chapter of this thesis reviews the 

literature on thyroid function and feline hyperthyroidism, the effect of thyroid hormones on 

kidney function, and the different methods available to evaluate kidney function. Further, 

diagnostic challenges encountered in cats with concurrent non-thyroidal illness are reviewed. 

 

In this thesis several aspects that could lead to improved insight into kidney function of 

hyperthyroid cats, before as well as after treatment, were evaluated. First, suitability of plasma 

clearance methods for measuring glomerular filtration rate (GFR) in cats was assessed 

(Chapter 2). The reproducibility of plasma clearance of exogenous creatinine, exo-iohexol and 

endo-iohexol, and differences in GFR using these methods between different ages, were 

investigated in healthy young adult and elderly cats (§ 2.1). Globally, the methods differed 

significantly in GFR assessment. Clearance of exo-iohexol showed the best reproducibility, 

and was used in our further study on the long term follow up of kidney function in treated 

hyperthyroid cats (Chapter 4). 

 

Besides reproducibility, the ability to distinguish between GFR over a period of time in 

which GFR is expected to change after 
131

I treatment of  hyperthyroid cats was investigated (§ 

2.2). Globally, the GFR methods resulted in different GFR results. However, GFR results 

were the same at all time points among the different methods and all three techniques  

indicated decreasing GFR after 
131

I treatment. The decrease in GFR stabilized 4 weeks after 

treatment, with very little decline afterwards. Our results showed it was mandatory to use the 

same GFR method in follow-up studies. 

 

This ability to distinguish between GFR values was also investigated between GFR 

ranges that can be expected: low, normal and high, respectively (§ 2.3). There was only a 

difference in GFR between the methods in healthy cats, and not in cats with CKD or 

hyperthyroidism. For all three methods, GFR differed between cats with CKD and cats with 

hyperthyroidism, although GFR values differed only for exo-iohexol and creatinine between 

healthy and hyperthyroid cats, and for endo-iohexol and creatinine between cats with CKD 
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and healthy cats. This showed that apparently only clearance of exogenous creatinine could 

detect the smaller differences between different ranges of GFR. Differences between 

clearance techniques seem to be correlated to the range of GFR in which it is used. 

 

In patients at risk for developing kidney disease, such as hyperthyroid cats, it is 

important to apply corrective therapy at an early stage. An early detection of decreased kidney 

function can be assessed by monitoring sensitive urinary biomarkers, such as urinary retinol 

binding protein (RBP) which reflects damage or dysfunction at the tubular level. Urinary RBP 

was first evaluated in healthy cats and cats expected to have tubular dysfunction (§ 3.1). 

Urinary RBP was undetectable in healthy cats, although it was present in variable amounts in 

cats with CKD or hyperthyroidism. 

 

In search of the cause of urinary RBP in hyperthyroid cats, we further investigated 

whether this remained after treatment with 
131

I, and whether urinary RBP was linked with 

serum RBP concentration (§ 3.2). In cats that did not develop post-treatment renal azotemia, 

the urinary RBP decreased after treatment. It was correlated to serum TT4 concentration, but 

not to serum RBP concentration. These results suggest that the urinary RBP found in 

hyperthyroid cats is indicative of a reversible tubular dysfunction when a healthy kidney 

function is maintained after treatment. 

 

While earlier studies focused on glomerular function after treatment of hyperthyroid 

cats, over only a short term period, this thesis investigated the influence of 
131

I treatment on 

glomerular as well as tubular kidney function over a long term period. Further, possible 

prediction of post-treatment renal azotemia  and GFR with several variables measured pre-

treatment was assessed (Chapter 4).  

There was a significant decrease in serum TT4, GFR, UPC, and urinary RBP in cats 

maintaining a healthy kidney function after treatment. However, GFR and urinary RBP did 

not change in cats developing post-treatment renal azotemia. After treatment, there was no 

change in BUN, USG or BP. The most important changes in variables occurred within 4 

weeks after treatment, regardless of the development of CKD. 

Pre-treatment serum TT4, GFR and USG differed significantly between cats 

maintaining a healthy kidney function and cats developing post-treatment renal azotemia. 
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GFR at 4 weeks after treatment and the maximum decrease in GFR could be predicted by a 

formula using pre-treatment GFR, serum TT4, serum creatinine, BUN and/or USG.  

 

At the end of the study described in Chapter 4, several cats had post-treatment renal 

azotemia, but also serum TT4 concentrations below reference range. This represented a 

diagnostic challenge, as it was not clear whether these cats had truly iatrogenic 

hypothyroidism or a lower serum TT4 concentration due to NTI. We investigated whether 

measurement of thyroid function after stimulation with rhTSH using serum TT4 and thyroid 

scintigraphy, could discriminate between cats with iatrogenic hypothyroidism and cats with 

NTI. First, the influence of rhTSH on thyroid scintigraphy was investigated in healthy cats (§ 

5.1). After this, serum TT4 and thyroid scintigraphy after rhTSH stimulation in healthy cats, 

cats with NTI and cats with post-treatment renal azotemia suspected of hypothyroidism was 

evaluated (§ 5.2). In the healthy cats, there was a significant increase in serum TT4 after 

stimulation with rhTSH. Also T/S uptake ratio increased after stimulation with rhTSH, and 

the increase was marginal but significant. This should be taken into account when these 

variables are evaluated after rhTSH stimulation in measurement of thyroid function. There 

was a significant increase in serum TT4 concentration after rhTSH stimulation, in healthy cats 

and cats with NTI, though not in cats suspected of hypothyroidism. Serum TT4 after rhTSH 

administration, though not T/S uptake ratio, differed between the cats suspected of 

hypothyroidism and the healthy cats and cats with NTI, respectively. These results showed 

that stimulation with rhTSH was valuable to differentiate euthyroidism from hypothyroidism 

in cats. 

 

In conclusion, the present thesis allowed to gain several new insights into kidney function 

in hyperthyroid cats.  

 Reproducibility and precision was the highest for plasma clearance of exo-iohexol which 

made it most suitable for research environments.  

 Reproducibility and distinguishment of plasma clearance of exogenous creatinine were 

sufficient. Because creatinine analysis can be performed using routine devices for 

biochemical analysis, it is an applicable clearance method in veterinary practice.  

 Any of the three evaluated plasma clearance methods could be used for measuring GFR. 

However, when GFR was measured repeatedly as part of follow up of kidney function, it 

was important to use the same GFR method every time. 
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 Urinary RBP was indicative of reversible tubular dysfunction in hyperthyroid cats. 

 An accurate evaluation of kidney function could be made 1 month after 
131

I treatment of 

hyperthyroid cats.  

 Post-treatment renal azotemia and GFR could possibly be predicted by pre-treatment GFR 

measurement as well as pre-treatment serum TT4, serum creatinine, BUN and/or USG.  

 Evaluation of thyroidal reserve in cats with post-treatment renal azotemia suspected of 

iatrogenic hypothyroidism can reliably be performed by rhTSH stimulation.
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Hyperthyroïdie en chronische nierziekte (CNZ) zijn beide frequent voorkomende 

ziektes bij oude katten. Bovendien zorgt elk type behandeling van hyperthyroïdie voor een 

daling van de nierfunctie en is het dus van groot belang dat voorspeld zou kunnen worden 

welke hyperthyroïde katten CNZ ontwikkelen na behandeling. Het is tevens belangrijk dat een 

dalende nierfunctie na behandeling vroeg wordt opgespoord. In het eerste hoofdstuk van deze 

thesis wordt een literatuur overzicht gegeven over schildklierfunctie en hyperthyroïdie bij de 

kat, de effecten van schildklierhormonen op de nierfunctie en de verschillende beschikbare 

methoden om nierfunctie te evalueren. Tevens worden de diagnostische uitdagingen 

besproken bij katten met een gelijktijdige niet-schildklier gerelateerde ziekte. 

 

In deze thesis werden verschillende aspecten geëvalueerd die zouden kunnen leiden tot 

inzichten in de nierfunctie van hyperthyroïde katten, voor maar ook na behandeling. Eerst 

werd de geschiktheid van plasma klaringsmethoden voor meting van glomerulaire filtratie 

snelheid (GFS) bij de kat geëvalueerd (Hoofdstuk 2). De reproduceerbaarheid van plasma 

klaring van exogeen creatinine, exo-iohexol en endo-iohexol, en verschillen in GFS tussen 

verschillende leeftijden door gebruik van deze methoden, werden onderzocht in gezonde jong 

volwassen en oude katten (§ 2.1). Globaal gezien was er een significant verschil in GFS 

meting. De klaring van exo-iohexol toonde de beste reproduceerbaarheid, en daarom werd 

deze methode verder gebruikt in de studie naar lange termijn opvolging van de nierfunctie bij 

hyperthyroïde katten na behandeling. 

 

Naast reproduceerbaarheid, werd ook het vermogen onderzocht om onderscheid te 

maken tussen waarden van GFS, gemeten over een tijdsperiode waarin werd verwacht dat de 

GFS verandert, namelijk bij hyperthyroïde katten voor en na behandeling met 
131

I (§ 2.2). De 

daling in GFS stabiliseerde 4 weken na behandeling, met slechts een zeer kleine daling na 

deze periode. Onze resultaten toonden aan dat het noodzakelijk was om dezelfde GFS 

methode te gebruiken voor opvolging van de nierfunctie. 

 

Dit vermogen om onderscheid te maken tussen GFS waarden werd ook onderzocht bij 

verschillende GFS waarden die verwacht kunnen worden: laag, normaal en hoog (§ 2.3). Er 

was enkel een verschil in GFS waarde tussen de 3 klaringsmethoden bij gezonde katten, en 

niet bij katten met CNZ of hyperthyroïdie. Voor alle drie de methoden was er een verschil in 

GFS tussen katten met CNZ en katten met hyperthyroïdie, maar er was enkel een verschil in 
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GFS voor exo-iohexol en creatinine tussen gezonde katten en hyperthyroïde katten, en voor 

endo-iohexol en creatinine tussen gezonde katten en katten met CNZ. Dit toonde aan dat 

blijkbaar alleen klaring van exogeen creatinine een klein verschil tussen verschillende GFS 

waarden kon detecteren. Verschillen tussen klaringsmethoden lijken gecorreleerd te zijn aan 

het bereik waarbinnen GFS wordt gemeten. 

 

Bij patiënten die een risico lopen op het ontwikkelen van nierfalen, zoals 

hyperthyroïde katten, is het belangrijk om corrigerende therapie toe te passen in een vroeg 

stadium. Vroege detectie van een gedaalde nierfunctie kan worden uitgevoerd door het 

opvolgen van gevoelige urinaire biomerkers, zoals urinair retinol bindend proteïne (RBP) dat 

schade of verminderde functie op het tubulaire niveau reflecteert. In Hoofdstuk 3 werd eerst 

het urinair RBP geëvalueerd bij gezonde katten en katten waarvan een verminderde tubulaire 

functie verwacht kan worden (§ 3.1). Urinair RBP was niet detecteerbaar bij gezonde katten, 

maar het was aanwezig in variërende mate bij katten met CNI of hyperthyroïdie. 

 

Om de oorzaak van de aanwezigheid van urinair RBP bij hyperthyroïde katten verder 

te onderzoeken, werd onderzocht of het urinair RBP detecteerbaar bleef na behandeling met 

131
I en of het gerelateerd was aan serum RBP (§ 3.2). Bij katten die geen renale azotemie 

ontwikkelden na behandeling, daalde het urinair RBP. Het was gerelateerd aan serum totaal 

T4 (TT4) concentratie, maar niet aan serum RBP concentratie. Deze resultaten suggereerden 

dat het urinair RBP bij hyperthyroïde katten indicatief was voor een reversibele vermindering 

van de tubulusfunctie mits een gezonde nierfunctie na behandeling behouden blijft. 

 

Terwijl vroegere studies zich toespitsten op glomerulaire functie na behandeling van 

hyperthyroïde katten, over een korte termijn, werd in dit proefschrift de invloed van 
131

I 

behandeling op de glomerulaire en tevens de tubulaire functie onderzocht en dit over lange 

termijn. Tevens werd de mogelijkheid om renale azotemie en GFS na behandeling te 

voorspellen onderzocht, aan de hand van verschillende variabelen, gemeten voorafgaand aan 

de behandeling  (Hoofdstuk 4). Er was een significante daling in serum TT4, GFS, urinaire 

proteïne / creatinine ratio (UPC) en urinair RBP bij katten die een gezonde nierfunctie 

behielden na behandeling. Niettemin was er geen verandering in GFS en urinair RBP bij 

katten die renale azotemie ontwikkelden na behandeling. Na behandeling was er geen 

verandering in BUN, USG of bloeddruk. Er was een significant verschil in serum TT4, GFS 
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en urinair soortelijk gewicht (USG) tussen katten die een gezonde nierfunctie behielden en 

katten die renale azotemie ontwikkelden na behandeling. De GFS op 4 weken na behandeling 

en de maximale daling in GFS kon mogelijk worden voorspeld door een formule die gebruik 

maakt van GFS, serum TT4, serum creatinine, BUN en/of USG, gemeten voor de 

behandeling.  

 

Aan het eind van de studie beschreven in Hoofdstuk 4, waren er verschillende katten 

met renale azotemie na behandeling, gecombineerd met een serum TT4 concentratie lager dan 

de referentiewaarde. Dit zorgde voor een diagnostische uitdaging, omdat het niet duidelijk 

was of deze katten werkelijk iatrogene hypothyroïdie hadden of dat de lagere serum TT4 

concentratie veroorzaakt werd door een ziekte niet gerelateerd aan de schildklier. We wilden 

onderzoeken of evaluatie van schildklierfunctie gemeten met serum TT4 en 

schildklierscintigrafie na stimulatie met recombinant humaan thyrotropine (rhTSH), een 

onderscheid kon maken tussen katten met iatrogene hypothyroïdie en katten met een niet-

schildklier gerelateerde ziekte. Omdat de invloed van rhTSH op schildklierscintigrafie nog 

niet was onderzocht, werd eerst de invloed van rhTSH stimulatie op schildklierscintigrafie 

onderzocht bij gezonde katten (§ 5.1). Hierna werd serum TT4 en schildklierscintigrafie 

geëvalueerd na rhTSH stimulatie bij gezonde katten, katten met een niet-schildklier 

gerelateerde ziekte, en katten met renale azotemie na behandeling die tevens verdacht werden 

van hypothyroïdie. Bij de gezonde katten was er een significante stijging van serum TT4 na 

stimulatie met rhTSH. Tevens was er een milde doch significante stijging van de 

thyroid/speekselklier (T/S) opname ratio. Dit moet in acht worden genomen als deze 

variabelen worden geëvalueerd na rhTSH stimulatie bij de meting van schildklier functie. Er 

was een significante stijging van de serum TT4 concentratie na rhTSH stimulatie bij de 

gezonde katten en katten met een niet-schildklier gerelateerde ziekte, maar niet bij de katten 

verdacht van hypothyroïdie. Serum TT4 maar niet de T/S opname ratio verschilde tussen de 

gezonde katten en katten verdacht van hypothyroïdie. Deze resultaten toonden aan dat 

stimulatie met rhTSH waardevol was om een normale schildklierfunctie te kunnen 

onderscheiden van hypothyroïdie bij de kat. 
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In conclusie, in deze thesis werden verschillende inzichten verkregen omtrent de 

nierfunctie bij hyperthyroïde katten, zowel voor als na 
131

I behandeling. 

 Reproduceerbaarheid of precisie was het hoogst voor plasma klaring van exo-iohexol wat 

het geschikt maakt voor onderzoeksdoeleinden.  

 Reproduceerbaarheid en onderscheidend vermogen van plasma klaring gemeten met 

exogeen creatinine waren voldoende. Omdat creatinine bepalingen gedaan kunnen worden 

met routine apparaten voor biochemische analyses, is dit een klaringsmethode die 

toepasbaar is in de veterinaire praktijk.  

 Elk van de 3 onderzochte klaringsmethoden kon gebruikt worden als onderdeel van de 

opvolging van nierfunctie, maar het was hierbij van belang om telkens dezelfde methode 

te gebruiken. 

 Urinair RBP was indicatief voor een reversiebele verminderde tubulaire functie in 

hyperthyroïde katten. 

 Een accurate evaluatie van de nierfunctie kon gebeuren vanaf 4 weken na behandeling met 

131
I. 

 Renale azotemie en GFS na behandeling konden mogelijk voorspeld worden door het 

meten van GFS, serum TT4, serum creatinine, BUN en/of USG voorafgaande 

behandeling. 

 Als er na behandeling ontwikkeling is van renale azotemie gecombineerd met een lage 

serum TT4 concentratie, kon een definitieve diagnose van iatrogene hypothyroïdie worden 

gesteld met de rhTSH stimulatie test.
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Al vroeg in mijn studie Diergeneeskunde vond ik Onderzoek het lekkerste gerecht op de 

kaart. Terwijl anderen gingen voor menu’s bestaande uit de gerechten van het  praktijk-menu, 

ging ik voor El Bulli: Hoe? Waarmee? Waarom?  

Onderstaand recept is voor 1 persoon. Dat wil echter niet zeggen dat dit ook door slechts 1 

persoon bereid kan worden. Het vergt veel onmisbare hulp van anderen, waarvoor ik zeer 

dankbaar ben. De totale bereidingstijd is lang maar het resultaat is onvergetelijk. Soms moet 

het zachtjes pruttelen, soms kookt het over, maar het ruikt altijd overheerlijk.  

 

Recept voor Doctoraat. 

Bereidingsduur: 4 jaar 

Aantal personen: 1 

 

Benodigdheden. 

Zoals elk gerecht staat of valt met de kwaliteit van de ingrediënten, wordt ook de basis van 

een doctoraat gevormd door de aandacht voor de benodigdheden. De katten zijn de basis van 

de studie en de dieren waarvoor je het uiteindelijk allemaal doet. Zij maken het werk 

waardevol.  

 12 gezonde katten, met dank aan Ingeborgh Polis en Departement Voeding en Genetica 

van de Faculteit Diergeneeskunde 

 katten met hyperthyroïdie die in ruil voor een regelmatige knuffel bereid zijn een bijdrage 

te willen leveren aan de Diergeneeskundige Wetenschap 

 eigenaren van hyperthyroïde katten die bereid zijn om hun kat te laten deelnemen aan een 

wetenschappelijke studie 

 onmisbare hulp van fantastische collega’s 

 financiering van de studies door het Bijzonder Onderzoeksfonds van de Universiteit Gent 

 ondersteuning van de studie beschreven in § 2.3 door Royal Canin, en Idexx Laboratories 

voor het beschikbaar stellen van de Vettest Analyzer. 

 ondersteuning van het drukwerk en distributie door Royal Canin, Janssen Animal Health, 

Intervet-Schering Plough Animal Health, Idexx Laboratories en Vetoquinol. 
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Belangrijke mensen in de keuken waar dit doctoraat werd bereid, zijn Dominique en 

Valerie van de dienst Cardiologie, de Residents van Medische Beeldvorming, de anesthesisten 

en de collega’s van de dienst Interne Geneeskunde op de Vakgroep Kleine Huisdieren.  

Als de mise en place klaar is, kan er gestart worden met de bereiding. Dit gebeurt in 

verschillende andere delen van de keuken. Allereerst op de dienst Nucleaire Geneeskunde, 

onder begeleiding van Kathelijne Peremans. Kathelijne, bedankt voor je begeleiding, input en 

gedeeld enthousiasme, en bovenal voor de kans om mijn doctoraat in samenwerking met de 

scintigrafie te laten plaatsvinden. Dit doctoraat had nooit de huidige omvang kunnen bereiken 

zonder de hulp van Eva, ondersteund door Simon en Sara. Niet alleen zorgde Eva voor de 

bediening van alle keukenrobots, we deelden af en toe een traan maar veel vaker een goede 

lach, wat de stemming in de keuken onvergetelijk maakte. Eva, ik zal jou en onze 

samenwerking op ‘Club Scinti’ verschrikkelijk missen. Heel veel succes met je doctoraat, je 

bent er bijna! 

Een ander belangrijke keukendeel is de Vakgroep Farmacologie, Toxicologie en 

Biochemie. Twee belangrijke chefs, Siska Croubels en Evelyne Meyer zwaaiden daar met de 

messen voor dit doctoraat. Siska en Pascal, bedankt voor jullie hulp bij de analyse van de 

iohexol stalen. Siska, ook heel erg bedankt voor je hulp en opbouwende commentaar als er 

weer een artikel met iohexol clearance bij was geschreven. Evelyne, ik heb genoten van onze 

samenwerking, soms hilarische vergaderingen en vaak intense brainstorming-sessies. Je hebt 

me zeer gesteund tijdens mijn doctoraat en ik kon altijd bij je terecht. Ik hoop dat we nog ooit 

samen mogen werken in onderzoek. Ook Kristel en Sofie ben ik zeer dankbaar voor hun hulp. 

Pascal en Bert, jullie zijn nog maar net begonnen aan jullie doctoraat maar de eerste 

topgerechten zijn geproefd en smaken naar meer. Veel succes met jullie verder onderzoek! 

Telkens als ik een nieuwe smaak wilde toevoegen aan het doctoraat, was er eerst de 

onmisbare mening van Luc Duchateau. Luc, bedankt voor alle hulp met een statistische blik 

en je hulp bij de analyses. We hebben vaak gezellig vergaderd, waarna ik buiten ging met een 

pak grijze cellen volgepropt met statistische beschouwingen, die ik allemaal begreep dankzij 

jou. 

During the cooking time of this PhD there was continu tasting, adjusting, salting and 

refinement of the recipe by Hervé Lefebvre. Hervé, thank you so much for all your help and 

input, this PhD wouldn’t have been the same without you.  



DANKWOORD 

 

243 
 

Keuken op locatie was de Faculteit Diergeneeskunde in Utrecht, waar Harry en Anton 

optraden als onmisbare koks. Hoofd van de keukenbrigade in Utrecht was Hans Kooistra, die 

mij toeliet een deel van de bereiding te laten doen op de Faculteit Diergeneeskunde in 

Utrecht. Hans, ik ben je uitermate dankbaar voor je kritische en immer optimistische 

begeleiding gecombineerd met je heldere blik. 

Iedere kok moet af en toe stoom afblazen als het vuur hoog staat. Mijn dank hiervoor gaat 

uit naar mijn bureaugenote Sofie. We hebben veel gezellige uurtjes gedeeld onder het genot 

van een kopje thee en een chocolaatje, en die uurtjes waren zeer welkom. Ook de gezellige 

gesprekjes en lunches met de collega’s van Inwendige en Scintigrafie waren ontzettend 

gezellig. In bijzonder collega Kris is de afgelopen jaren een zeer goede vriend geworden. 

Kris, we deelden veel leuke momenten en ik wens je veel succes met je carrière in Luik. 

Dit doctoraat kreeg zijn uiteindelijke goede smaak door de input van de leden van de 

examencommissie. Bedankt voor jullie complimenten en opbouwende kritieken. 

Mijn honger naar onderzoek werd 4 jaar geleden gestild door Sylvie, die mij dit doctoraat 

aanbood over de nierfunctie van hyperthyroïde katten. Ik zette mijn tanden gretig erin. Zij 

introduceerde me in de wetenschappelijke wereld, maakte me kritisch, liet me roeren, bakken 

en proeven. Ze luisterde naar mijn nieuwe ideeën en deelde mijn oneindige enthousiasme, 

maar zorgde ook dat ik niet teveel pannen tegelijk op het vuur had. Sylvie, heel erg bedankt 

voor al je begeleiding, een betere promotor kon ik me niet wensen. Ik hoop dat we onze 

samenwerking in onderzoek ooit kunnen voortzetten in de toekomst! 

Iedere kok vlucht soms uit de hectiek van het op volle toeren draaiende restaurant, en ik 

vluchtte naar de thuishaven. Graag wil ik mijn schoonouders Bert en Anneke bedanken voor 

het luisterend oor, de eetopvang op vrijdagavond, de ontstressbaden, en de mooie schilderijen 

die de kaft van dit doctoraat sieren.  

Een jarenlang toevluchtsoord was het huis van mijn ouders. Mijn ouders zagen al vroeg de 

onderzoeker in mij. Door hun jarenlange steun tijdens mijn studie en dit 

doctoraat heb ik mijn liefste doel bereikt: doctoreren. Pap en mam, zonder 

jullie was dit niet gelukt en ik dank jullie meer dan ik kan uitspreken. 

Allerliefste Lars. Je stond aan mijn zijde vanaf dat het gas aan ging en 

de keuken volop draaide. Je steun en geduld waren onmetelijk, zonder jou 

had ik het niet gered. Dit jaar zijn we getrouwd en we gaan het avontuur 

tegemoet in het Zuiden. Dankjewel voor alles, mijn schat, mijn 2
e
 auteur, 

mijn alles.     Ingrid 
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