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Preface

Detecting and quantifying cause-effect relations forms the basis for pol-

icy decisions and interventions in many fields of research. For this purpose,

large amounts of data are gathered through experimental or observational

studies and statistical techniques are used to analyze these data and to

infer the effects of interest. However, standard statistical techniques are

not directly aimed at inferring cause-effect relations. Instead, they are con-

cerned with finding associations between measurements. Such associations

may exist, even in the absence of a causal effect, and vice versa, when

there exist prognostic variables for the outcome that also influence the ex-

posure. Such variables are called confounders and they may complicate the

estimation of a causal effect.

During the past three decades, important new insights have been ob-

tained on how to infer causal effects, with seminal works by Don Rubin,

James Robins and Judea Pearl. The main stimulus for many of these devel-

opments has been the introduction of potential outcome notation for causal

effects (Rubin, 1978; Robins, 1986) and the development of causal diagrams

for ‘visualizing’ causal effects (Pearl, 1995, 2000). The use of causal infer-

ence techniques has lead to important developments in statistics, such as

on how to adjust for time-varying confounders in longitudinal studies. In

Chapter 1, we give a brief introduction to causal inference with a main

emphasis on causal diagrams and potential outcomes.

In this thesis, we will apply and develop causal inference methods for

addressing substantive problems that were motivated through our collabo-

rations with researchers at the Department of Obstetrics and Gynecology

at the Ghent University Hospital, concerning twin data, infertility and peri-
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2 Preface

natal outcomes.

In Chapter 2, we focus on twin data. Such data play an important

role in medical research because they offer a unique source of information

about the impact of genetic and environmental factors on human wellbe-

ing. We first review structural equation models (SEM), which are com-

monly used for analyzing twin data and for estimating the impact of ge-

netic factors (e.g. heritability) on phenotypes of interest. Estimation of

heritability brings along the question whether heritability estimates may

be confounded. To the best of our knowledge, this problem has only been

tangentially addressed in the literature. At the end of Chapter 2, we there-

fore gain insight in this research question and offer a simple, novel way to

obtain unconfounded heritability estimates.

Twin data are not only useful for estimation of genetic effects, they

also have a rich structure for inferring causal effects because the compa-

rability of twin children can be exploited to obtain effect estimates that

are consistent in the presence of unmeasured confounders that are constant

within twins, e.g. parental characteristics, environmental factors,... This

principle is applicable for general clustered data. It is well known in the

statistical literature, but is ignored by many frequently adopted methods

(e.g. GEE with independence correlation structure). In Chapter 3, we de-

velop a general methodology for clustered data with arbitrary correlation

structure based on this principle. In particular, we develop semi-parametric

efficient estimators for the parameters indexing marginal linear and loglin-

ear models which include unmeasured confounders that are constant within

clusters. On the basis of the resulting ‘conditional generalized estimating

equations’, we study the validity of a simple adjustment procedure pro-

posed by Neuhaus and Kalbfleisch (1998), which has been recommended

for the analysis of twin data (Carlin et al., 2005).

Motivated by studies on the relative effect of subfertility treatments

on perinatal health, from Chapter 4 onwards, we study the problem of

separating an overall causal effect of an exposure on an outcome into an

indirect effect through a given intermediate variable, and the remaining

direct effect. In Chapter 4, we show that estimation of direct effects is a

complex problem, although many of the complexities are ignored in stan-
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dard practice. We argue that even the definition of a direct effect is very

subtle. In addition, we consider structural equation models for inferring

direct effects and motivate theoretically as well as through simulation that,

in many realistic settings, such methods may yield severely biased direct

effect estimates.

In Chapter 5, we develop direct effect estimators which are valid under

weaker assumptions than traditional regression-based direct effect estima-

tors. Simulation studies and application to a family-based genetic associ-

ation study illustrate the dramatic improvements that can be realized by

using this estimator for the direct effects instead of standard linear models.

In Chapter 6, we show that these estimators are special cases of a general

class of direct effect estimators which involve inverse probability weighting

by a conditional distribution of the intermediate variable. We show that

some of the estimators in our class can be very unstable when the interme-

diate variable is continuous. To obtain more stable and accurate inferences,

we propose doubly robust estimators for direct effects. These estimators

are asymptotically unbiased if either the model for a conditional density of

the intermediate variable (i.e. the weights) is correctly specified or a model

for a conditional expectation of the outcome. In addition, a number of dou-

bly robust estimators are developed which are designed to behave relatively

well in the presence of extreme weights. The different estimators are com-

pared through extensive simulation studies and the analysis of perinatal

data on singletons born after single or double embryo transfer.

Chapters 3, 5 and 6 were originally written as stand-alone articles. As

a result, there exists a minor bit of overlap between these chapters. The

notation is introduced per chapter and may therefore also differ throughout

the complete thesis. Chapter 3 was published in Biometrics (Goetgeluk and

Vansteelandt, 2008). Chapter 5 is under review for publication in the Amer-

ican Journal of Human Genetics (Vansteelandt, Goetgeluk et al., 2008) and

thus, has a more applied focus. Chapter 6 is accepted for publication in

the Journal of the Royal Statistical Society - Series B (Goetgeluk, Vanstee-

landt and Goetghebeur, 2008). The results have been presented at several

international conferences.
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Chapter 1

Introduction to causal inference

Detecting and quantifying cause-effect relations is the basis for policy

decisions and interventions in many fields of research. In the medical and

pharmaceutical sciences, for example, one is interested in the causal effect

of a specific drug on a primary health outcome. In economics one wishes

to investigate the effect of marketing campaigns on customer behaviour. In

sociology one searches for causes of poverty and crime. Engineers question

causes of failing of instruments in a satellite,... For this purpose, large

amounts of data are gathered through experimental or observational studies

and statistical techniques are used to analyse these data and to infer the

effects of interest.

However, standard statistical techniques are not directly aimed at in-

ferring cause-effect relations but are instead concerned with finding associ-

ations, correlations and dependency between an exposure and an outcome.

Such associations and correlations may differ greatly from the causal effect

of exposure on outcome. In fact, from data alone (i.e., in the absence of ad-

ditional background knowledge about, for instance, the design of the study),

one cannot infer whether an exposure affects an outcome, even when both

are correlated. The following examples illustrate this.

(Example 1 ) Doll and Hill (1954) observed a high positive association

between having tar-stained fingers and lung cancer mortality. Clearly hav-

ing tar stains on one’s fingers does not by itself cause lung cancer, but could

be associated with lung cancer risk because smokers, who are at greater risk

5



6 Introduction to causal inference

of lung cancer, are also more likely to have tar-stained fingers.

(Example 2 Dallal (2001)) During the Second World War, it was curi-

ously noticed that bombers were less accurate when the weather was more

clear. The reason was that when the weather was clear there was also more

opposition from enemy fighter planes.

(Example 3 Oberle et al. (2003)) People who develop asthma tend

not to have cats because the presence of a cat aggravates their respiration.

The negative association between having cats and the occurrence of asthma

clearly does not indicate that cats have a protective effect on the risk of

asthma.

It is clear that the associations found in these examples, do not reflect

the causal effects of interest. We therefore call them spurious associations.

Vice versa, causation also does not imply association.

(Example 4 Delbaere et al. (2007a)) Maternal age at birth is negatively

associated with birth weight among mothers with the same socio-economic

status (the older the mother, the lower the birth weight of her child tends

to be). Furthermore, mothers with a high socio-economic status tend to be

more highly educated and therefore older when they get children. They also

tend to be more healthy and thus more likely not to have low birth weight

children. When these contrasting associations were of the same magnitude,

no association would be found between maternal age and birth weight.

It does not often occur in practice that contrasting associations be-

tween an exposure and an outcome have exactly the same magnitude. It

follows that when there is a causal effect of exposure on outcome, they will

usually also be associated. The difficult part is then to rule out all spurious

associations so that only the causal effect remains. How this can be done

will be explained later.

Technically, that statistical association does not imply causation and

vice versa, is because association between two events can be produced by

several causal structures:

• When two events share a common cause, they will generally be as-

sociated, even if neither is the cause of the other. We then call this

common cause a ‘confounder’ for the association between the two
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events. In Example 1, tar-stained fingers and lung cancer mortality

are both caused by smoking status, which is then a confounder for

the effect of tar stains on lung cancer mortality. In the study by Del-

baere et al. (2007a), socio-economic status affects both maternal age

at birth and birth weight. Thus, it is a confounder for the association

between them and may create a spurious association.

• When event 1 causes another event 3 which in turn causes event

2, event 1 and event 2 will generally be associated, even if event

1 does not directly cause event 2. In this case there is no direct

but an indirect causal effect. Event 3 is then called a mediator or

intermediate variable. In Example 2, clear weather has a causal effect

on the occurrence of enemy fighter planes, which in turn affects the

accuracy of the bombers. Thus, clear weather has an indirect effect

on the accuracy of the bombers, mediated by the occurrence of enemy

fighter planes.

• When event 2 is the cause of event 1, they will be associated, but event

1 is clearly not the cause of event 2. In Example 3, having asthma

affects having cats and not the other way around. When cause and

effect are interchanged, we talk about reverse causation.

• When two independent events have a common effect they will gener-

ally be associated within subgroups with the same occurrence of the

common effect. This will be illustrated later in Example 5.

These scenario’s/settings indicate an important difference between cau-

sation and association: that causation has a direction and association has

not. Examples 1, 2 and 3 illustrate obvious mistakes or confusions and

show how easy it is to make subtle errors when standard statistical analysis

is used to prove causality in the absence of background knowledge. Such

errors could have disastrous consequences if they form the basis of public

policies and interventions. For example, Barret-Connor and Grady (1998)

found that postmenopausal hormone therapy reduces the risk of coronary

heart disease (CHD) in an observational study. The Women’s Health Initia-

tive, however, launched in 1991 and consisting of several randomized trials,
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showed instead an increased risk of CHD (Manson et al. , 2003). Rossouw et

al. (2007) recently showed that women taking hormone therapy in the ran-

domized trial were older than those taking the therapy in the observational

study. They found that women who initiated hormone therapy closer to

menopause tended to have a reduced CHD risk compared with the increase

in CHD risk among women more distant from menopause, although this

trend did not meet their criterion for statistical significance. This example

illustrates that large differences in conclusions can be obtained depending

on the design of the study (e.g. observational or randomized) and on the

population studied (e.g. older or younger patients upon initiation of hor-

mone therapy). In the following sections, we elaborate on this difference

between randomized and observational studies.

1.1 Randomized trials

The most persuasive evidence for establishing a causal relationship

comes through experimental (randomized) studies in which investigators

control the exposure. In randomized clinical trials for example, the expo-

sure, such as a new medication, is allocated randomly to the study sample

in such a way that the treated and untreated groups are otherwise equiva-

lent, at least in expectation. It follows that, if this randomization process

has been successful, differences between the treated and untreated groups

must reflect the causal effect of treatment on outcome and not a spurious

association.

Although randomized trials are simple in concept, proper execution

in human populations is often quite challenging and complicated. Even

if randomization is successful in assuring comparability of exposed and

comparison groups, validity of results for causal inference is not assured. For

example, it is well known that powerful placebo effects operate in humans.

People might already feel better, just by thinking or believing they are

treated. This effect can be eliminated by concealing treatment status from

the study participants. In that case, both the people in the placebo group

and in the treatment group are unaware of their assigned treatment and

then, a fair comparison can be made. More subtle problems may arise
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when the physicians or others administering the treatment and collecting

the outcome data, know the treatment status. The resulting potential for

bias has prompted the use of ‘double-blind’ designs in which neither the

study participants nor the physician administering the treatment know the

treatment status.

Problems may also arise in randomized trials when the study partici-

pants do not comply with their assigned treatment. If, for example, many

patients in the experimental group do not take their treatment properly,

the treatment may appear less effective. Patients may also drop out of the

study before their outcome is ascertained. When these subjects are not

exchangeable or comparable with subjects who remained through the end

of the study, but form a selective subgroup, then the difference in outcome

between the treated and untreated may not reflect the causal effect of ex-

posure on outcome. For example, if a treatment is beneficial and healthier

patients are more likely to leave the study, the treatment will appear less

efficient from the observed data.

Finally, the usefulness of randomized studies is sometimes questioned

because, certainly in clinical studies, the health conditions of the study sub-

jects are more closely followed up than in real life, because compliance to

the treatment is more attentively controlled and because researchers may

choose to enroll the less severely affected subjects in the study. These con-

ditions make the sample of patients in clinical studies possibly not entirely

representative for the target population. An example for this is given by

the comparison of intrapartum and neonatal single-dose nevirapine with

zidovudine for prevention of mother-to-child transmission of HIV-1. The

clinical trial conducted by Guay et al. (1999) in Kampala, Uganda found

that nevirapine lowered the risk of HIV-1 transmission during the first 14-

16 weeks of life by nearly 50% in a breastfeeding population. Thus, it

was concluded that this simple and inexpensive regimen could decrease

mother-to-child HIV-1 transmission in less-developed countries. However,

a real life observational study conducted by Quaghebeur et al. (2004) in

Kenya showed that the perinatal HIV-1 mother-to-child transmission rate

at 14 weeks after use of nevirapine was 18.1%, similar to the 21.7% without

the intervention. Such data raise the question whether further evaluation
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of the simple nevirapine regimen in field conditions is necessary, and sug-

gest that the conditions and results in clinical trials may not always be

representative for conditions and results in real life.

Moreover, in general, randomized trials involving humans are also eth-

ically limited in the range of questions to which they can be applied. Many

of the major questions of public health, concerning for example effects of

smoking behaviour on lung cancer1 or effects of water and air pollution,

cannot be addressed through randomized trials because it is not ethical to

expose humans experimentally to smoke or other harmful substances. For

such questions we are limited to and in need of passively observing the

health of people naturally exposed, that is, to observational studies.

1.2 Observational studies

In observational studies, the investigator does not control the exposure

of people in the study and does not intervene on the population under study,

other than to take measurements. In these studies, conclusions are based on

differences between exposed and unexposed groups of different individuals

which, unlike in randomized trials, may lack comparability. For example,

exposure status may be determined by where people live or work, what they

eat, what social group they belong to or by many other factors that can also

be associated with the outcome. Thus, these factors are common causes of

the exposure and the outcome and they may confound the causal effect of

exposure on outcome. For example, when estimating the effect of pollution

on health, the place of living must be taken into account. Indeed, not only

is the rate of pollution different between modern cities and countryside

villages, people living in modern cities may also differ from people living

in the countryside in terms of health for other reasons than differences in

pollution. If we assume for example, that countryside people eat more

1However, note that randomized encouragement designs are possible in this context

(and have been used (Mark and Robins, 1993, Permutt and Hebel, 1989)), whereby

subjects are randomized over encouragement to quit smoking or not. Those who did not

quit smoking after being encouraged to quit, are then viewed as non-compliers to the

assigned treatment.
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healthy and are more relaxed than city people, and that cities are more

polluted, then the effect of pollution on health would be overestimated.

As already pointed out, the presence of common causes between ex-

posure and outcome may render them associated even when the exposure

does not affect the outcome (Example 1). Conversely, no association may

be measured even when the exposure affects the outcome. This may hap-

pen when these common causes act to reduce the effect size. Observational

studies are nonetheless capable and often the only option of providing ev-

idence about the causal relationship between exposure and outcome. The

example at the end of the previous section furthermore shows that observa-

tional studies may sometimes give more relevant results for the population

than randomized trials since they are closer to real life situations.

How to resolve the problem of spurious associations?

In Example 1 on lung cancer and tar-stained fingers, one can intuitively

understand that the spurious association between tar-stained fingers and

lung cancer, induced by smoking, can be removed by doing the estima-

tion per group of people with the same smoking behaviour. If no other

confounders than smoking are present, then within these groups, the risk

of lung cancer will not differ between people with more or less tar stains

on their fingers, showing that tar stains do not cause lung cancer. This

strategy of comparing people with the same smoking behaviour is called

‘adjusting’ the analysis by smoking status. However, in Example 5 (see

further) we will show that adjusting for a variable may also cause biased

results in some situations. One of the most difficult problems in the causal

analysis of observational studies is to find the covariates for which to ad-

just in order to obtain the causal effect of exposure on outcome and to

determine whether it is valid to adjust for a covariate without biasing the

result.

The elusive nature of adjustment was recognized as early as 1899,

when Pearson and Yule discovered what is now called Simpson’s paradox:

that any statistical relationship between two variables may be reversed or

negated by including additional factors in the analysis. One of the best
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known real life examples of Simpson’s paradox occurred when the Univer-

sity of California, Berkeley was sued for bias against women applying to

graduate school. The admission figures for fall 1973 (see Table 1.1) showed

that overall, male applicants were more likely than female applicants to be

admitted, and the difference was so large that it was unlikely due to chance

(Bickel et al. , 1975). However when examining the individual departments,

it was found that no department was significantly biased against women; in

fact, most departments suggested a small bias against men. The explana-

tion turned out to be that women tended to apply to departments with low

rates of admission, while men tended to apply to departments with high

rates of admission. The conditions under which department-specific fre-

quency data constitute a proper defense against charges of discrimination

are formulated in Pearl (2000).

Major Men Women

# Applicants % admitted # Applicants % admitted

A 825 62% 108 82%

B 560 63% 25 68%

C 325 37% 593 34%

D 417 33% 375 35%

E 191 28% 393 24%

F 272 6% 341 7%

overall 8442 44% 4321 35%

Table 1.1: Admission percentages for different departments at the Unit of Cali-

fornia, Berkeley by gender. Numbers in bold show were the highest percentage was

found per department.

Despite a century of analysis, Simpson’s reversal phenomenon contin-

ues to ‘trap the unwary’ (Dawid, 1979, Pearl, 2000) and the main ques-

tion whether an adjustment for a given covariate is appropriate in any

given study, continues to be decided either informally, based on tradition

or intuition, or either through (among others) one of the following possible

strategies (Hernan et al. , 2002):

1) by building a regression model for the outcome given the exposure
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and deciding to include a certain covariate when the p-value of the

estimated effect of the covariate in the model is less than 5 or 10 %;

2) by building a regression model for the outcome given the exposure

and deciding to include a certain covariate when the relative change

in estimate of the exposure effect before versus after adjusting for

that covariate is greater than 10 %;

3) by deciding whether the covariate is a confounder according to the

following definition of a confounder: a confounder is associated with

exposure, it is associated with outcome conditional on exposure and

it is not in the causal pathway between exposure and outcome.

Although widely used, the above approaches fail, as I will show with

the following example, because they try to uncover causation merely from

statistical associations and, as already pointed out, associations are not

causations.

(Example 5 (Slone Epidemiology Unit Birth Defects Study) Hernan

et al. (2002)) Suppose that we wish to estimate the effect of taking daily

supplementation of folic acid during the first two months of pregnancy on

neural tube defects of the infant. We also have information of stillbirth

or therapeutic abortion and must decide whether the analysis should be

adjusted for this covariate. The artificial data can be found in Table 1.2.

C=1 C=0

D=1 D=0 D=1 D=0

E=1 19 8 24 231

E=0 100 46 94 658

Table 1.2: Slone Epidemiology unit Birth Defects Study, E=mother took/did not

take daily supplementation with folic acid during first 2 months of pregnancy (1/0),

C= stillbirth or therapeutic abortion (yes=1/no=0), D=infant with/without neural

tube defects (1/0).

Following the first approach above, we find that, in a logistic regression

model for the expectation of neural tube defects given folic acid use and

stillbirth/therapeutic abortion, the p-value of the association of stillbirth/
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therapeutic abortion with neural tube defects is less than 0.001. Thus,

following the above strategy 1, we report the adjusted association of folic

acid use and neural tube defects and find an odds ratio of neural tube

defects in women with versus without folic acid use equal to 0.8 (95% CI

[0.53;1.20]). Following the second approach, we note that the unadjusted

odds ratio is 0.65, which gives a relative change of 0.23 compared to the

adjusted odds ratio. We thus also report the adjusted odds ratio with

this approach. Following the third approach, we find the same result since

stillbirth/therapeutic abortion is associated with folic acid use (odds ratio is

0.55 with 95% CI [0.34;0.86]), is associated with neural tube defects within

the group of unexposed infants (mothers who did not take folic acid) with

an odds ratio of 15.22 (95% CI [10.09;22.95]) and is not on the causal

pathway between folic acid use and neural tube defects, since neural tube

defects can not appear after stillbirth or therapeutic abortion. We will

explain in the next section why the adjusted odds ratio does not represent

the causal effect of taking folic acid on neural tube defects, but (if there

are no (other) confounders) that the unadjusted odds ratio represents this

effect. Nonetheless, most studies restrict the analysis to liveborns.

Today, the statistical community is becoming increasingly aware that

the above ad-hoc approaches are inappropriate and that caution should be

taken. It is important that the concepts of cause and effect, and methods

to estimate causal effects receive appropriate attention in statistics courses

because statistics is commonly used for inferring cause-effect relationships.

Newspapers, radio, television, and the internet are filled with claims based

on some form of statistical analysis: ‘Calcium is good for strong bones’,

‘watching TV is a major cause of childhood and adolescent obesity’, ‘drink-

ing coffee during pregnancy causes babies to have a low birth weight’, ‘eat-

ing certain yogurts helps improving digestion’... To know which claims are

valid it is necessary to understand what it takes to establish causality in

order to be an intelligent consumer of the ‘truths’ the world throws at us.

One of the reasons why causality has for many years been ignored

in the statistical literature is that causality cannot be translated in the

vocabulary of probability theory, which is the mathematical language of

statistics. Two languages for causality have recently been proposed and
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offer a way to infer causal effects: a graphical representation based on so-

called causal directed acyclic graphs (Pearl, 1995) and Neyman-Rubin’s

potential response model (Rubin, 1974). A causal directed acyclic graph

is relatively easy to use and to understand. Roughly, it is a graphical

representation of all causal influences between all variables of interest in

the study. The potential outcome model is more complicated to use and to

understand, but it is more explicit in terms of how causal effects are defined

and offers a useful mathematical formalism for inferring causal effects. We

will introduce both formalisms in Section 1.3 and Section 1.4, respectively.

1.3 Causal directed acyclic graph (causal DAG)

1.3.1 Graphical notation and terminology

In this section, we discuss causal DAGs as introduced by Pearl (1995,

2000) (see also Greenland et al. (1999) and Robins (2001)). A graph consists

of a set V of nodes and a set E of edges that connect pairs of nodes. The

nodes correspond to variables and the edges denote a certain relationship

that holds in pairs of variables.

A graph is directed when all edges are directed, i.e. when the edges

are arrows starting in one node and pointing to another node. A path in a

directed graph G is a sequence of edges such that each edge starts with the

node ending the preceding edge. In other words, a path is any unbroken,

nonintersecting route traced out along the edges in a graph, which may go

either along or against the direction of the arrows. If every edge in a path

is an arrow that points from the first to the second node of the pair, we

have a directed or causal path.

A directed graph is acyclic (i.e. a directed acyclic graph) when it con-

tains no cycles. This means that it is not possible, starting from a certain

node, to end up in the same node by following a directed path. The dia-

gram thus excludes mutual causation or feedback processes where an arrow

starts in a node X and ends in a node Y and another arrow starts in node

Y and ends in node X. 2

2Note that this does not exclude longitudinal data where, for example, at different
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LE

YX

Z

Figure 1.1: Example of a DAG

Further terminology:

• If there is an arrow from a node X to another node Y in the DAG,

X is called a parent of Y and Y is called a child of X.

• If there is a directed path from X to Y , X is called an ancestor of

Y and Y is called a descendant of X.

• A path collides at a node L if the path enters and exits L through

arrowheads, in which case L is called a collider.

• Different types of paths between a node X and a node Y :

– A directed path from X to Y , as explained before.

– A back-door path from X to Y : a path whose first edge is an

arrow pointing to X and whose last edge is an arrow pointing to

Y .

time points t = 1, 2, ..., measurements on outcome Y (i.e. Y1, Y2,...) and exposure X

(i.e. X1, X2,...) are taken. The DAG then contains all variables Y1, Y2,... and X1, X2,...

and expresses that exposure at a given time may only affect outcome at later times.
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– A blocked path between X and Y : a path that has one or

more colliders; otherwise it is unblocked or open. Thus, a

back-door path and a directed path are open paths.

For example in Figure 1.1, X is not a parent of Y and Y is not a child

of X since there is no arrow from X to Y . However, there is a directed path

from X to Y through E, so X is an ancestor of Y and Y is a descendant

of X. There is a back-door path from X to Y through Z and a blocked

path between X and Y since L is a collider on the path from X to Y going

through E and L. Finally, there are 2 open paths between X and Y ; one

through Z (the back-door path) and one through E (the directed path).

A DAG is causal (Pearl, 1995, 2000; Robins, 2001)

1) when every arrow in the DAG represents a stable and autonomous

causal relation between the parent variable and the child variable,

and

2) when the variables represented by nodes on the graph include the

measured variables and additional unmeasured variables, such that if

any two variables on the graph have a cause in common, that common

cause is itself included as a variable on the graph, even if unmeasured.

In a causal DAG, a directed path represents a causal pathway, and an

X-to-Y arrow represents a direct effect of X on Y within the graph (an

effect not mediated through any other variable in the graph). The absence

of an arrow between two variables thus implies the assumption of no direct

effect of any of the two variables on the other variable.

By representing the causal mechanisms and relations between vari-

ables, a causal DAG helps to get insight in the data and to express a priori

background knowledge. Moreover, a simple tool, called d-separation, is

available to determine on the basis of a causal DAG for which variables to

adjust in an analysis in order to obtain the causal effect of an exposure on

an outcome. To understand this tool and the possibility it offers to detect

spurious associations between exposure and outcome, we first need to link

the causal structure of the DAG to the statistical language of probability,
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association and dependency. We will therefore introduce several definitions

based on Pearl (2000), and then explain how d-separation works.

Suppose we have a set of n variables X1, ..., Xn in a DAG. Then it

follows by the chain rule that the probability of the joint event (X1, ..., Xn)

can be written as a product of n conditional probabilities:

P (X1, X2, ..., Xn) = P (Xn|Xn−1, ..., X2, X1)...P (X2|X1)P (X1) (1.1)

As the following theorem shows, the causal DAG imposes restrictions on

this probability law.

Theorem 1 (The Causal Markov Assumption (CMA) (Pearl, 2000)). Any

distribution generated by a causal DAG can be factorized as

P (X1, X2, ..., Xn) =
n∏

i=1

P (Xi|PAi) (1.2)

with PAi denoting the set of variables containing all direct causes of Xi in

the causal DAG.

This assumption states that in a causal DAG, any variable that is not

caused by a given variable V will be independent of (i.e. unassociated with)

V conditional on the direct causes (i.e. the parents) of V . In other words,

the CMA is the assumption that V is independent of its nondescendants

after adjusting for its parents.

Definition 1. If a probability function P admits the factorization of (1.2)

relative to a DAG G, we say that G and P are compatible.

The connection between the causal DAG and standard statistical de-

pendence/association is made in the following theorem due to Verma and

Pearl (1988), using the tool d-separation.

Definition 2 (d-separation). Consider three disjoint sets of variables, X,

Y and A, which are represented as nodes in a causal directed acyclic graph.

X and Y are said to be d-separated by a set of nodes A if and only if each

path between X and Y contains one of the following paths
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• a directed path i→ m→ j or a back-door path i← m→ j such that

the middle node m is in A;

• a blocked path i → m ← j such that the middle node m is not in A

and such that no descendant of m is in A.

Theorem 2 (Verma and Pearl, 1988). If a set of variables X and another

set of variables Y are d-separated by a third set of variables A in a DAG

G, then X is independent of Y conditional on A in every distribution P

compatible with G. Conversely, if X and Y are not d-separated by A in

a DAG G, then X and Y are dependent conditional on A in at least one

distribution P compatible with G.

The converse of Theorem 2 is in fact much stronger (Pearl, 2000):

the absence of d-separation implies dependence in almost all distributions

compatible with G. The reason is that a precise tuning of parameters is

required to generate independency along a path, and such tuning is unlikely

to occur in practice. This was already pointed out intuitively in Section 1.2

with the example of the study conducted by Delbaere et al. (2007a).

slippery

wet pavement

rainsprinkler

season

Figure 1.2: Wet pavement example
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For example, examining the causal relationships among the five vari-

ables in the DAG in Figure 1.2, which is due to Pearl (2000), we see that

rain and use of the sprinkler are d-separated by the season, meaning that

after adjusting for season there remains no association between rain and

use of the sprinkler. Intuitively, we can understand that once we know the

season and assuming that the sprinklers are set in advance, according to the

season, rain and use of the sprinkler are independent. However, since there

is a closed path between rain and use of the sprinkler and wet pavement

is the collider, finding that the pavement is wet or slippery (i.e. condition-

ing on the collider or its descendant) renders the rain and the use of the

sprinkler dependent because refuting one of these explanations increases

the probability of the other.

1.3.2 d-separation in practice

smoking behaviour

lung cancertar stains on fingers

Figure 1.3: Causal DAG corresponding to Example 1

In practice, a causal DAG reflects and is based on expert knowledge

of researchers in the field of study. Ideally researchers gathering data and

statisticians analysing the data cooperate closely even before the data is
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gathered and design a causal DAG to represent the mechanism they be-

lieve is generating the data as well as to represent design characteristics

(e.g. ascertainment conditions). First, the effect of interest is displayed in

the graph by drawing an arrow from exposure X to outcome Y . Then,

measurements that may affect both X and Y are added to the DAG. This

is because all common causes of any two variables in the DAG should be

included, since otherwise the DAG is not causal and cannot be used to

infer the causal effect of exposure on outcome. We will see later, using

d-separation, that precise knowledge of all the common causes may not be

needed for inferring the effect of interest. When the analysis is restricted

to a subset of the population (e.g. liveborns), the variable representing the

different subsets should also be added to the DAG. Finally, proper attention

should be paid to thinking about all possible relations between all variables

in the DAG and the necessary arrows should be added.

socio-economic status

birth weightmaternal age

Figure 1.4: Causal DAG corresponding to Example 4

Assuming that there are no other variables affecting the variables in

Examples 1, 4 and 5, the common cause problem of Example 1 is rep-

resented by the causal DAG in Figure 1.3 with an arrow from smoking

behaviour to tar-stained fingers and to lung cancer, besides the arrow be-



22 Introduction to causal inference

tween smoking and lung cancer, which represents the effect of interest. The

common cause problem of Example 4 is represented by the causal DAG in

Figure 1.4 with an arrow from socio-economic status to birth weight and

to maternal age, besides the arrow between maternal age and birth weight,

which represents the effect of interest. The common effect in Example 5 is

represented by the DAG in Figure 1.5 with an arrow from ‘use of folic acid’

to ‘stillbirth/therapeutic abortion’ and an arrow from ‘neural tube defects’

to ‘stillbirth/therapeutic abortion’.

stillbirth/
therapeutic abortion

neural tube defectsfolic acid use

Figure 1.5: Causal DAG corresponding to Example 5

Once the DAG is considered complete (and thus, causal) it reveals

which variables are needed to adjust for in the analysis and which variables

should not be adjusted for in order to find the causal effect of the exposure

on the outcome. It thus also reveals which variables should ideally be

measured. This can be done by using the graphical tool called d-separation

which will now be explained in a practical manner.

To know for which set of variables A one should adjust to obtain the

causal effect of exposure X on outcome Y , we need to ascertain whether X

and Y are d-separated conditional onA after having removed the arrow ofX

to Y (i.e. the causal effect of interest). If they are d-separated conditional on
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A in the resulting DAG, it indicates that X and Y are no longer associated

conditional on A, after having removed the causal effect of X on Y , and

thus that association is equivalent with causation. It thus suggests that it

is necessary to adjust for A to obtain the causal effect of X on Y .

There are 3 practical rules to determine whether X and Y are d-

separated or d-connected (Pearl, 2000)

1) X and Y are d-connected when there is an open path between them.

Otherwise, they are d-separated.

2) X and Y are d-connected conditional on A when there is a collider-

free path between them that traverses no member of A. If no such

path exists, then X and Y are d-separated by A. We also say then

that every open path between X and Y is blocked by A.

3) If a collider is a member of the conditioning set A, or has a descendant

in A, then it no longer blocks any path that traces this collider.

For example in Figure 1.1 we observe 3 paths between X and Y ; one

open back-door path through Z, one open directed path through E and one

closed path through E and L in which L is the collider. X and Y are not

d-separated by A if A is an empty set. If A contains the variables Z (node

on the open back-door path between X and Y ) and E (node on the open

directed path between X and Y ), then X and Y are d-separated by A. If

A includes the variable L, which is a collider in the closed path X-E-L-Y

between X and Y , then X and Y are not d-separated by A. Thus, in this

example, to obtain the direct effect of X on Y (which is no effect, according

to the DAG) we should adjust for Z and E and not for L.

In Example 1 (Figure 1.3) we can now see that the exposure and out-

come of interest are d-connected by another open path than the causal

effect that we wish to obtain. To find the causal effects of interest we

can block the open (spurious) path by conditioning on (i.e. adjusting for)

smoking. In Example 5 (Figure 1.5) there is a closed path between folic

acid use and neural tube defects and stillbirth/therapeutic abortion is the

collider. Thus, adjusting for stillbirth/therapeutic abortion renders folic

acid use and neural tube defects d-connected. Therefore, the adjusted odds
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ratio calculated in this example does not represent the causal effect of folic

acid use on neural tube defects. The unadjusted odds ratio, on the other

hand, does give the causal effect (under the assumption that there are no

confounders) because folic acid use and neural tube defects are d-separated.

Inferring direct causal effects

In some cases, researchers wish to investigate the causal effect of ex-

posure X on outcome Y which is not mediated through other variables K.

For instance, in Example 2 the interest lies in estimating the causal effect

of weather on the accuracy of bombers that is not mediated through the

occurrence of enemy fighter plains. We call this the direct causal effect (or

direct effect). We will discuss this type of effect in more detail in Chapter

4. A formal definition of a direct effect will be given in Chapter 5 and

6. The effect of X on Y mediated through other variables K is called an

indirect effect and is represented by a directed path from X to Y which

contains at least 2 edges. The variables K intermediate on such paths, are

called intermediate variables. When drawing the DAG in that case, the in-

termediate variables are also added to the DAG together with arrows from

X to K and from K to Y . Then, for each pair of variables, measurements

which affect both variables are added to the DAG since otherwise, the DAG

is not causal. Finally, necessary arrows representing all possible relations

between these variables are added. After removing the arrow from X to Y

representing the direct effect, the 3 practical rules in the previous section

can again be used to assess whether X and Y are d-separated conditional

on a set of variables A. The additional ‘spurious’ associations along the

open directed paths between the exposure and the outcome will be blocked

then, meaning that one node along such directed path will be included in

the set of variables A and thus, this variable will be adjusted for in the

analysis.

In Example 2, the indirect causal effect of ‘clear weather’ on ‘accuracy

of the bombers’ is represented by the causal DAG in Figure 1.6 with a

directed path starting with an arrow from ‘clear weather’ to ‘enemy fight-

ers’, followed by an arrow to ‘accuracy of the bombers’. To find the direct
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Number of 
enemy fighter planes

accuracy of bombersweather

Figure 1.6: Causal DAG corresponding to Example 2

causal effect of ‘clear weather’ on ‘accuracy of the bombers’, d-separation

indicates that we must block the open directed path through ‘enemy fight-

ers’ by conditioning on (i.e. adjusting for) it.

Problems that may occur

An unfortunate but realistic problem is that in many studies certain

variables are unmeasured which, according to the DAG and after applying

the d-separation rules, should be adjusted for in order to obtain the causal

effect of an exposure on an outcome. This may sometimes be avoided

if researchers first set up the causal DAG and examine which variables

are needed for the analysis before the start of the study. Unfortunately,

some of these variables are often difficult or expensive to measure, or some

confounders may be unknown.

In certain specific settings this problem can (partially) be overcome

by using special statistical methods which allow for the presence of (some)

unmeasured confounders. The instrumental variables (IV) methodology

(Heckman, 1979, Robins and Tsiatis, 1991; Robins, 1994; Goetghebeur and
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Lapp, 1997; Vansteelandt and Goetghebeur, 2003) is one example. Here,

prognostic variables (called instrumental variables) that have an uncon-

founded association with the outcome of interest and can only affect this

outcome indirectly by modifying the target exposure, are used to overcome

the necessity of knowing all confounders. Sometimes, these instrumental

variables are the result of the design. In a double blind randomized study,

for example, randomization is an instrumental variable because it affects

the exposure, but does not affect the outcome (other than through the ex-

posure). When estimating the effect of smoking on lung cancer, the price of

cigarettes can function as an instrumental variable since it influences smok-

ing behaviour, but has no direct effect on (getting) lung cancer. In Chapter

3 we will develop another class of methods which (partly) overcomes the

problem of unmeasured confounders by making within-cluster comparisons

of clustered data, e.g. twin data, family data, multicenter studies,....

When estimating the direct causal effect of an exposure on an outcome

(which is not mediated through a third measurement), it frequently occurs

that d-separation requires adjusting for a certain covariate to block a spuri-

ous association, but that by doing so a new spurious association is created.

For instance, in Example 4, to estimate the direct causal effect of maternal

age on birth weight that is not mediated through zygosity (monozygotic or

dizygotic), we need to add zygosity to the DAG in Figure 1.4. Because type

of conception (spontaneous or through artificial reproductive techniques) is

a common cause of zygosity and birth weight, it must additionally be in-

cluded. We thus draw the DAG in Figure 1.7 and find that it is necessary to

block the open path through socio-economic status and the open directed

path through zygosity. However, doing the latter opens the closed path

between maternal age and birth weight through zygosity and type of con-

ception since zygosity is a collider on that path. When type of conception

is a measured variable in the study, this forms no problems as additionally

adjusting for it besides zygosity resolves the problem. However, if type of

conception were not measured, the results could be biased. It is frequently

so that intermediate variables share common, possibly unmeasured, causes

with the outcome. In the family-based association study conducted by

Lyon et al. (2004) for example, the genetic association of certain SNPs in
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socio-economic status

birth weight maternal age

zygosity type of conception

Figure 1.7: Causal DAG for estimating direct causal effect of maternal age on

birth weight

the genome with asthma is investigated. It is found that certain SNPs that

are associated with asthma are also associated with body mass index, which

in turn affects asthma. To obtain the direct causal effect of each SNP on

asthma it is thus necessary to adjust for body mass index. Doing so may

be prohibiting because body mass index and asthma share common causes

like gender, age, doing sports,..., some of which may not be measured.

In the study conducted by De Sutter et al. (2006), the effect of single

embryo transfer (SET) versus double embryo transfer (DET) on perinatal

outcomes is examined. SET/DET also affects gestational age which in turn

affects birth weight. To obtain the direct causal effect of SET/DET on

perinatal outcomes that is not mediated through gestational age, it is thus

necessary to adjust for gestational age. Again, there are both measured and

unmeasured common causes of gestational age and birth weight (e.g. vaginal

blood loss during pregnancy, early contractions). Not being able to adjust

the analysis for all common causes, may render the results biased. This

example is explained in more detail in Chapter 6. Solutions to this problem

are developed in Chapters 5 and 6.
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Finally, note that a causal diagram merely gives insight for which vari-

ables it is necessary to adjust. Whether such adjustment is successful de-

pends on whether the adjustment is correctly done. For example, when a

confounder has a quadratic association with the outcome but enters linearly

in the considered regression model, the estimated effect may be biased.

1.4 Potential outcome model

Although graphs are a very simple, transparent and non-parametric

tool to discover confounders and spurious associations between an exposure

and an outcome, a more quantitative or mathematical approach is often

desired. For example, when developing statistical models with parameters

that carry a causal interpretation, we need to define precisely what a causal

effect is and ideally have notation for it. This is offered by the potential

outcome or counterfactual model.

To infer the causal effect of exposure on outcome, we need to establish

whether the outcome would have been different had the exposure been

different, all other conditions being the same. For example, suppose that

a child who lives near a chemical factory contracts a rare cancer. Suppose

that we seek to establish whether or not a chemical spill adjacent to the

child’s property was the cause of his particular cancer. By saying that the

chemical spill caused the disease on this individual level, we mean that

the cancer would not have occurred had, contrary to fact, the spill not

happened. When we investigate on a population level, the causal effect of

having tar-stained fingers on lung cancer, we need to establish for people

with tar stains, whether their lung cancer risk would have been different

had they worn gloves, for instance, to protect their fingers from tar stains,

all other things (like smoking behaviour) staying the same. It is clear from

these examples that the ideal setting to inferring the causal effects is to

examine the same people under different exposures, all other things staying

the same.

The potential outcome model or counterfactual model formalizes this

idea. In the following sections, we introduce this model, thereby making a

distinction between individual causal effects and population causal effects
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as in Hernan (2004) and Greenland and Brumback (2002).

1.4.1 Individual causal effect

Suppose that a person suffering from high blood pressure receives an

experimental medication (i.e. the exposureX) and that we wish to establish

its causal effect on blood pressure (i.e. the outcome Y ). We define Yx as the

outcome that person would have had if he/she received exposure X = x.

Suppose that X = 1 corresponds to receiving the experimental medica-

tion and X = 0 correspond to receiving a placebo. Then Y1 would have

been the outcome for that person if he/she had received the experimental

medication and Y0 would have been his/her outcome if he/she had received

the placebo. Since the person received the experimental medication, we can

reasonably assume that Y1 for that person equals his/her observed outcome

Y . This assumption is commonly referred to as the consistency assump-

tion. Y0 is unobserved for this person. The variables Y1 and Y0 are called

potential outcomes because one of them (namely Y0) describes the subject’s

outcome value that would have been observed under a potential exposure

value (i.e. X = 0) which differs from the actually observed exposure level.

Because one of these outcomes would have been observed in situations that

did not actually happen (that is, in counter to the fact situations), they are

also called counterfactual outcomes (Rubin, 1978; Robins, 1986; Hernan,

2004).

The individual causal effect for a given person of treatment (X = 1)

versus no treatment (X = 0) can now be defined as the difference

Y1 − Y0

between potential outcomes, corresponding to these different exposure lev-

els. If we would observe both potential outcomes Y1 and Y0, this effect

would be easy to calculate and causal inference would be simple. Unfortu-

nately, in reality, we observe either Y1 or Y0 but not both. This is even so in

cross-over studies where subjects receive both treatments but at different

times so that not all conditions are identically the same. Studying monozy-

gotic twins who have a different exposure at the same time only partly
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solves this problem. In view of genetics, these twins are identical, but they

do not experience the exact same environmental factors, which again in-

volves possible different conditions. It follows that individual causal effects

are never identified without very restrictive assumptions. In epidemiologic

and scientific contexts, the interest is usually not so much in individual

causal effects but the goal is to establish whether, in a population, certain

exposures result in a change in the frequency or expectation of an outcome.

The corresponding population causal effects can be identified under much

weaker assumptions.

1.4.2 Population causal effect

Throughout this section, we will adapt an example from Hernan (2004)

for illustration. Suppose we have a dichotomous exposure X (for example

X = 1 if a baby was born after a double embryo transfer (we will call

this a DET baby) and X = 0 if a baby was born after a single embryo

transfer (we will call this a SET baby) and a dichotomous outcome Y (for

example Y = 1 if a baby was born preterm and Y = 0 if a baby was born

aterm). We define the probability P(Yx = 1) as the proportion of babies

that would have been preterm had they received ‘treatment’ (exposure)

x. In this example, the exposure then has a population causal effect (or a

causal effect for short) if P(Y1 = 1) 6= P(Y0 = 1).

Suppose for instance that the population is comprised by the subjects

in Table 1.3 and that all potential outcomes are observed. Then P(Y1 =

1) = 10/20 = 0.5 and P(Y0 = 1) = 10/20 = 0.5. That is, 50% of the babies

would have been preterm had they all been DET and 50% would have been

preterm had they all been SET. In that case, the exposure has no causal

effect on the outcome at the population level. If a risk difference is chosen

to report the causal effect, it equals P(Y1 = 1)−P(Y0 = 1) = 0.5− 0.5 = 0.

In reality however, only one of both potential outcomes is observed.

Specifically, the observed data for the example are those in Table 1.4. The

question is then how to infer the causal effect of interest, despite the missing

data on either Y0 or Y1.

When measuring the association between exposure X and outcome Y ,
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Subject Y0 Y1

Rheia 0 1

Kronos 1 0

Demeter 0 0

Hades 0 0

Hestia 0 0

Poseidon 1 0

Hera 0 0

Zeus 0 1

Artemis 1 1

Apollo 1 0

Circe 0 1

Ares 1 1

Athene 1 1

Eros 0 1

Aphrodite 0 1

Prometheus 0 1

Selene 1 1

Hermes 1 0

Eos 1 0

Helios 1 0

Table 1.3: Counterfactual outcomes of subjects in a study with dichotomous ex-

posure X and outcome Y (Hernan, 2004)

we calculate the proportion of babies that were preterm in the subgroup

that underwent treatment X = 1 (i.e. double embryo transfer) and compare

this with the proportion that was preterm in the subgroup that underwent

treatment X = 0 (i.e. single embryo transfer). Formally, one thus examines

whether P(Y = 1|X = 1) equals P(Y = 1|X = 0). Looking at Table 1.4 we

find that P(Y = 1|X = 1) = 7/13 differs from P(Y = 1|X = 0) = 3/7. It

follows that there is an association between exposure X and outcome Y . If

a risk difference is chosen to report the association, it equals P(Y = 1|X =

1) − P(Y = 1|X = 0) = 7/13 − 3/7 = 0.11 which differs from the causal

effect of zero.
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Subject X Y Y0 Y1

Rheia 0 0 0 ?

Kronos 0 1 1 ?

Demeter 0 0 0 ?

Hades 0 0 0 ?

Hestia 1 0 ? 0

Poseidon 1 0 ? 0

Hera 1 0 ? 0

Zeus 1 1 ? 1

Artemis 0 1 1 ?

Apollo 0 1 1 ?

Circe 0 0 0 ?

Ares 1 1 ? 1

Athene 1 1 ? 1

Eros 1 1 ? 1

Aphrodite 1 1 ? 1

Prometheus 1 1 ? 1

Selene 1 1 ? 1

Hermes 1 0 ? 0

Eos 1 0 ? 0

Helios 1 0 ? 0

Table 1.4: Data and observed counterfactual outcomes from a study with dichoto-

mous exposure X and outcome Y (Hernan, 2004)

Note that the risk P(Y = 1|X = 1) is computed using the subset

of subjects of the population that actually received the exposure X =

1 (that is, it is a conditional probability), whereas the risk P(Y1 = 1)

is computed using all subjects of the population had they received the

(possibly) counterfactual exposure X = 1 (that is, it is an unconditional or

marginal probability). Therefore, association is defined by a comparison of

risks in two disjoint subsets of the population determined by the subjects’

actual exposure value, whereas causation is defined by a comparison of risks

in the same subset (for example, the entire population) under two potential

exposure values. This different definition accounts for the well known adage
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‘association is not causation’ (Hernan, 2004).

It follows from the above reasoning that when P(Y1 = 1) equals P(Y =

1|X = 1), the causal effect of an exposure on an outcome can be obtained

as the association between them. Causal assumptions are therefore nat-

urally expressed in terms of independence assumptions between exposure

and counterfactual outcomes as we exemplify in the next paragraph.

Randomized trials

In randomized trials, the treated and untreated groups are comparable

(under the assumption of perfect compliance). This implies that if subjects

were randomly assigned to group A and B, the proportion of subjects with

outcome Y = 1 among the exposed will be the same whether these exposed

are the subjects in group A or the subjects in group B. Thus, which partic-

ular group got the exposure is irrelevant for the value of P(Y = 1|X = 1).

Formally, we say that both groups are exchangeable. That is, the chance

of Y = 1 in group A would have been the same as the chance of Y = 1 in

group B had subjects in group A received the exposure given to those in

group B. We may thus conclude that the risk under the potential exposure

value x among the exposed, P(Yx|X = 1), equals the risk under the po-

tential exposure value x among the unexposed, P(Yx|X = 0). Since these

conditional chances are equal in all subsets defined by exposure status in

the population, they must equal the marginal risk under exposure value x

in the whole population, i.e. P(Yx|X = 1) = P(Yx|X = 0) = P(Yx) and

thus, Yx is independent of X (notation Yx
∐
X) for all values of X. Since

we assume that Yx = Y for subjects actually receiving exposure X = x, we

find that, under ideal randomized experiments (i.e. double blind, no loss to

follow up, perfect compliance to treatment,...), P(Y |X = 1) = P(Y1) and

P(Y |X = 0) = P(Y0). Thus, we can calculate the causal effect of the expo-

sure on the outcome (e.g. the risk difference P(Y1)− P(Y0)) by calculating

the association between them (i.e. P(Y |X = 1)− P(Y |X = 0)).
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Observational studies

In observational studies, the treated and untreated groups are gener-

ally not comparable and thus, not exchangeable. We thus cannot estimate

causal effects merely by calculating associations without making additional

assumptions. Subjects who are treated may differ from the untreated sub-

jects in other things than just the treatment status. In that case, we expect

their potential respons Yx to the same treatment x to be different. This

lack of exchangeability in observational studies is exhibited in Yx not being

independent of X. The causal effect of exposure on outcome is then not

the same as the association between them, i.e. P(Y |X = 1) 6= P(Y1) and

P(Y |X = 0) 6= P(Y0). The association between exposure and outcome is

then confounded or spurious.

Remember that d-separation can be used to verify independence as-

sumptions. In particular, it can be used to verify whether the structure of a

causal diagram is compatible with the assumption that Yx
∐
X. However,

since the potential outcome Yx is not shown on a causal DAG we need a way

to make it explicit. Since Yx represents the outcome under a certain (fixed)

value of X, the exposure X itself cannot affect this potential outcome. This

suggests that we can replace the outcome Y by the potential outcome Yx

in the DAG, provided that we remove the arrow from X to Y . Now, we

can use d-separation to find whether Yx
∐
X. If Yx is not independent of

X then d-separation can be used to find for which covariates A one needs

to adjust so Yx
∐
X conditional on these covariates A, i.e. Yx

∐
X|A. If we

can find a set of covariates for which Yx
∐
X|A, then, following the same

reasoning as in the previous section, we find that P(Y |X = 1, A) = P(Y1|A)

and P(Y |X = 0, A) = P(Y0|A). Thus, again, the causal effect of exposure

X on outcome Y can be obtained by calculating the conditional association

between them.

We will illustrate this with an example. Suppose we wish to calculate

the causal effect of maternal age on birth weight (Example 4) represented

by the DAG in Figure 1.4. Note that there is a back-door path between

maternal age and birth weight through socio-economic status. This sug-

gests that socio-economic status is a confounder for the association between
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maternal age and birth weight. We can now replace outcome birth weight

Y by the corresponding potential outcome Yx in which X represents the

age of the mother, provided that we remove the arrow from maternal age

to potential outcome Y . We then get the DAG in Figure 1.8. Using d-

separation rules we now conclude that, in order for Yx to be d-separated,

and thus, independent, of X, we need to adjust for socio-economic status

and for diabetes.

socio-economic status

potential outcome
birth weight Yx

maternal age (X)

Figure 1.8: Potential outcome in a causal DAG

In conclusion, the population causal effect is obtainable under the fol-

lowing conditions:

• A causal DAG is created and all assumptions of such a DAG should

be met.

• A set of variables A should be found so that Yx
∐
X|A.

• These variables A should be accurately measured and correctly ad-

justed for.

A final remark on both the causal DAG methodology and the potential

outcome model is that they rely on the assumption of no unmeasured con-
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founders for the effect of exposure on the outcome (for estimating the total

effect) and on the additional assumption of no unmeasured confounders for

the intermediate variable and the outcome (for estimating the direct effect).

These assumptions cannot be tested based on the observed data, which is

a drawback of the methods. This might be the reason why many scientists

are a bit sceptical towards these methods. However, causal DAGs allow

to easily detect confounding problems, especially in complex settings like,

for example, estimating direct causal effects where there are confounders of

the intermediate variable and the outcome that are affected by the expo-

sure. Causal DAGs also help to better understand complex ascertainment

schemes (Robins et al., 2001).

In the following chapters, we will apply the ideas of causal DAGs and

potential outcomes to address substantive problems that were motivated

through collaborations with gynecologists at the Ghent University Hospital

who are dealing with twin data, infertility and perinatal outcomes. In

Chapter 2, we will examine the analysis of twin data, which offer a unique

source of information about genetic and environmental factors, and we will

address confounding problems in this setting. In Chapter 3, we will develop

a methodology for analysing general clustered data which protects estimates

against certain confounders. From Chapter 4 onwards, we will address the

difficulties of estimating direct causal effects, starting with an introductory

chapter and followed by two chapters in which solutions are offered.



Chapter 2

Analysis of twin data

2.1 Introduction

The development of causal methods in the statistical literature has so

far mostly focused on data obtained from independent observation units,

with some exceptions (Loeys, Vansteelandt and Goetghebeur, 2001; Vanstee-

landt, 2007; Albert, 2002). In practice, however, many other forms of

dependency frequently arise. In twin and family studies, for example, mea-

surements obtained on individuals from the same twin pair of family tend

to be more alike. Similarly, studies that measure the effect of exposures

on eyes, kidneys, teeth,... also deliver correlated data structures. In experi-

mental studies, correlated data typically arise in cluster-randomized studies

and multicenter studies. For instance, Sommer et al. (1986) analyse data

on children who were (cluster-)randomized per village in rural Indonesia

to either vitamin A or placebo. Here, children within the same treatment

group are more alike by the fact that they are from the same village. Hirano

et al. (2000) study the effect of flu vaccination and must deal with the fact

that patients visiting the same doctor may be more alike. Clustered data

are also very common outside the biomedical context: educational research

is typically performed over different schools or classes, marketing studies

try out different strategies in different shops or offices, machines are used

under different circumstances in different periods of time,...

Ignoring correlation within clusters of data typically causes biased con-

37
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fidence intervals for parameters of interest. The chance that these intervals

cover the target population parameter is then not guaranteed to equal the

level that was a priori specified. Depending on the data-generating mech-

anism and the parameter of interest, the calculated intervals may be too

tight, in which case the analysis could be misleading, or too wide, in which

case the analysis may be insufficiently informative. The former is typically

true when assessing the effects of between-cluster exposures (i.e. expo-

sures that do not vary within the cluster); the latter is more typical when

estimating the effects of within-cluster exposures (i.e. exposures that do

vary within the cluster). In both cases the analysis is not correctly reflect-

ing the available information. With the goal of drawing valid inferences,

a large collection of statistical methods is now available to accommodate

the correlated nature of data in diverse application settings (Diggle, Liang

and Zeger, 1994, Laird and Ware, 1985, Verbeke and Molenberghs, 1997,

Verbeke and Molenberghs, 2000).

While correlated data structures call for a more complex analysis, they

are frequently not only tolerated, but often also exploited to good use by

statisticians/scientists. Indeed, by comparing differently exposed subjects

from the same cluster, one may obtain more valid causal inferences by

the fact that such subjects are more alike to begin with. More formally,

such within-cluster comparisons allow to correct for unmeasured between-

cluster confounders (i.e. unmeasured confounders that have a constant value

within the cluster). In Chapter 3, we will expand on this and develop a

general methodology for making within-cluster comparisons when analyzing

clustered data. In this chapter, we focus specifically on the analysis of twin

data.

2.2 Estimation of heritability

Twin data play an important role in medical research because they

offer a unique source of information about the impact of genetic and en-

vironmental factors on human wellbeing. The impact of these factors is

hard to detect on the basis of individual observations on independent units.

The reason why twin data is so informative about the distinct roles of ge-
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netic and environmental factors, lies in the fact that there are two types

of twins: monozygotic and dizygotic twins. Monozygotic (MZ) twins, also

called identical twins, are the result of division of a single fertilized ovum

(zygote) at an early stage of development. Two individuals of identical

genetic structure are therefore produced. Dizygotic (DZ) twins or fraternal

twins are derived from two distinct fertilized ova. Like full siblings, DZ

twins have, on average, half their genes in common.

The argument that data on MZ and DZ twins can be used to separate

genetic from environmental influences is based on the following assumption:

Assumption 1 (Equal environment). MZ and DZ twins do not differ in to-

tal environmental variance, or in the proportion of environmental variance

that is common to members of the same twin-pair.

Under this equal environment assumption, any excess similarity be-

tween MZ twins over that between DZ twins must be due to the greater

proportion of genes shared by MZ twins than by DZ twins. In the follow-

ing section, we describe two methods that exploit this idea to estimate the

impact of genetic and environmental factors on human wellbeing.

We first note, however, that caution should be taken because the equal

environment assumption may well be violated in realistic settings. Sham

(1998) describes the following example. Suppose that a student of human

heredity should hail from another planet and that he should be required

to use the twin method to find out whether or not people’s clothes were

a direct consequence of heredity. He would find that identical twins were

often dressed alike, often down to quite small details, and that this was

uncommon with fraternal twins. He would confidently conclude that the

choice of clothes was almost an exclusively hereditary trait. However, this

conclusion cannot be trusted since the assumption of equal environment,

on which the analysis is based, is not valid in this situation. This exam-

ple illustrates how the environment can exaggerate the genetic component.

There are various other situations in which it is realistic to believe that MZ

twins (who are often more close than DZ twins) share more common envi-

ronment, resulting in a violation of the assumption. Suppose, for example,

that lung cancer is no hereditary trait. Since MZ twins likely have a more
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similar smoking behavior than DZ twins (e.g. as a result of sharing more

friends), the occurrence of lung cancer will also be more strongly correlated

in MZ twins than in DZ twins. In that case, lung cancer may appear to be

hereditary even when it is not.

In contrast, it may well happen that violation of the equal environment

assumption results in an underestimation of the role of genetic factors. The

phenomenon of lateral inversion with MZ twins, for example, where some

aspect of normal anatomical asymmetry is reversed in one member of a

twin-pair, increases variability within these MZ twin-pairs. The common

environment is then again, not the same for MZ as for DZ twins and estima-

tion of heritability may not be trusted. Sommer et al. (1999), for example,

consider diseases whose pathology is related to cerebral lateralization. The

equal environment assumption (1) states that monozygotic twins, like dizy-

gotic twins, share cerebral hemispheric functions. This assumption may be

false, since monozygotic twins are more liable to the occurrence of mirror-

imaging. They explain the phenomenon as follows. Left-right asymmetry

is probably determined as early as the first few cell divisions, long before

any morphological sign of asymmetry is visible. The process of twinning in

monozygotic twins may interfere with the development of normal lateraliza-

tion in such a way that for some of the asymmetrical features the resulting

twins will not be duplicates, but mirror-images of each other. Mirror-

imaging in monozygotic twins has been described for structures that de-

velop from the ectoderm such as hair whorl, eye sight, dentation, neavi and

dermatoglyphs, and for handedness. Therefore, it may also be expected for

the cerebral hemispheres. Thus, it may also have implications for studies

that use twins to investigate the relative contribution of genes and environ-

ment in cerebral diseases, such as schizophrenia. In schizophrenia, the left

hemisphere is reported to be more affected than the right. A subject with

‘mirrored’ dominance may become much less disabled by left hemispherical

disease processes than a subject with ‘standard’ dominance. Such unequal

involvement of the hemispheres may be relevant in other cerebral diseases

such as depression, autism and dyslexia as well.

Despite the above concerns, the twin method remains a useful and

common tool in human genetics. It is valid when it is reasonable to believe
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that MZ and DZ twins share the same environment with respect to factors

that could be linked with the phenotype of interest.

2.2.1 Structural equation models

General theory

In the literature of twin studies, as well as in psychometrics and econo-

metrics, path-diagrams and structural equation models (SEM) are com-

monly used to model the effects of exposures on outcomes and to measure

the genetic impact on a phenotype (Neale and Cardon, 1992). Roughly,

path diagrams are much like causal DAGs (see Chapter 1) in the sense that

they represent the data-generating mechanism. This happens by visualiz-

ing all causal relations between (measured and unmeasured) variables by

means of edges.

Path diagrams incorporate the following conventions (Neale and Car-

don, 1992):

• A fundamental distinction is made between independent variables and

dependent variables. Independent variables are not caused by other

variables in the system.

• Each dependent variable is influenced by an exogenous error term,

unless this term is assumed to be (and is fixed to) zero. This error

term is a variable which does not correlate with any other determi-

nants of its dependent variable, and which is usually (but not always)

uncorrelated with other independent variables.

• Observed variables are enclosed in rectangles. Latent variables are

enclosed in ellipses. Error terms are included in the path diagram

and are not enclosed.

• A one-way arrow between two variables indicates the possibility of

a direct influence of the variable at the tail on the variable at the

arrowhead. A two-way arrow between two variables indicates that

these variables may be correlated without any assumed direct (causal)
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relationship. A two-way arrow from one variable into itself represents

the variance of that variable.

• The parameter corresponding to a path is called a path coefficient and

the parameter corresponding to a two-way arrow is called a correlation

(or covariance) coefficient.

• Coefficients may have two subscripts, the first indicating the variable

to which the arrow points, the second showing its origin.

A basic premise of path diagrams is the following:

Assumption 2 (Causal closure). All direct influences of one variable to

another are included in the path diagram.

Hence, the non-existence of an arrow between two variables means that

these variables are assumed not to be directly related.

Before elaborating on the definition of a path diagram, we give an ex-

ample of a path diagram in Figure 2.1. The diagram has two dependent

variables η1 and η2, which are affected by 3 independent variables ξ1, ξ2
and ξ3. The three independent variables are correlated with covariance

coefficients (φ12, φ13, φ23) and variances equal to φ11, φ22 and φ33 respec-

tively. Further, ζ1 and ζ2 are the error terms corresponding to η1 and η2,

respectively, and have variances ψ11 and ψ22 respectively.

Although the description of path diagrams so far is very similar to the

description of causal DAGs in Chapter 1, they differ from causal DAGs

by the fact that they represent a linear structural equation model. This

is a multivariate normal model for the joint distribution of all dependent

variables in the path diagram, conditional on the independent variables.

Here, this distribution is such that it satisfies all conditional independence

relationships implied by the underlying DAG (i.e. the path diagram with bi-

directional arrows being replaced by an unmeasured common cause) (Pearl,

2000) and such that all relationships between variables are linear. Because

path diagrams represent a linear structural equation model, their formal

completeness requires the introduction of error terms unless there is a rea-

son to assume a fully deterministic additive model or unless these are al-

ready represented through unmeasured variables in the diagram. Such error
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η1 η2

ξ3ξ2ξ1

ζ1
ζ2

ψ11

Φ11 Φ22
Φ33

Φ12
Φ23

Φ13

ψ22

1 1

γ11 γ12 γ22
γ23

Figure 2.1: Example of a path diagram

terms are not usually displayed in causal DAGs, which merely require to

include common causes of any 2 variables in the DAG. The other major

distinction is that DAGs are inherently non-parametric in the sense of not

making any distributional assumptions, whereas path diagrams are fully

parametric. This makes path diagrams of more limited usefulness, although

the assumption of a linear model may serve as a good approximation for

many non-linear functions within limited range.

The structural equation models corresponding to Figure 2.1 are

η1 = α1 + γ11ξ1 + γ12ξ2 + ζ1

and

η2 = α2 + γ22ξ2 + γ23ξ3 + ζ2

where α1 and α2 are intercepts and ζ1 and ζ2 are independent mean zero,

normally distributed variables with variances ψ11 and ψ22 respectively. We
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can rewrite these equations using matrices

(
η1

η2

)
=

(
α1

α2

)
+

(
γ11 γ12 0

0 γ22 γ23

)


ξ1
ξ2
ξ3


+

(
ζ1
ζ2

)

or, using bold matrix notation,

η = α + Γξ + ζ (2.1)

where η, α, ξ and ζ are column vectors and Γ is a matrix of regression

coefficients. If we denote Φ and Ψ for the covariance matrices of ξ and ζ

respectively, we find, using simple matrix algebra, the following expected

covariance matrix (Σ) for η

Σ = ΓΦΓ′ + Ψ (2.2)

=

(
γ11 γ12 0

0 γ22 γ23

)


φ11 φ12 φ13

φ12 φ22 φ23

φ13 φ23 φ33







γ11 0

γ12 γ22

0 γ23


+

(
ψ11 0

0 ψ22

)

After collecting data on the observed variables (η1, η2, ξ1, ξ2 en ξ3),

they may be summarized as an observed covariance matrix S. This ob-

served covariance matrix is then compared with the expected covariance

matrix Σ using maximum likelihood, weighted least squares or other esti-

mation methods, to obtain estimates for the unknown parameters in the

model. One key issue with structural equation modeling is that it is not

always easy to see whether a model or a parameter within a model is iden-

tified. Parameters of a model are either overidentified, just identified or

underidentified. If all of the parameters fall into the first two classes, the

model as a whole is identified, but if one or more parameters are in the

third class, the model is not identified. In that case, one must fix the

unidentified parameters in the model (e.g. set them equal to zero) until the

model becomes identified (Neale and Cardon, 1992), or better, recourse to

a sensitivity analysis (Vansteelandt et al. , 2006).
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Application to the twin model

The classical twin model, in which MZ and DZ twins are raised together

in the same home, is represented by the path diagram in Figure (2.2). Here,

Pi, Ai, Di, Ci and Ei represent (for both MZ and DZ twins) the observed

phenotype (Pi) and unobserved additive genetic factors1 (Ai), dominant

genetic factors2 (Di), common environment (Ci) and specific (individual)

environment (Ei) of twin i (i = 1, 2).

A1 D1 C1 E2C2A2

1.0 (MZ) of 0.5 (DZ)

1.0 (MZ,DZ)

a
d c a

d c

E1 D2

e
e

1.0 (MZ) of 0.25 (DZ)

P1
P2

Figure 2.2: Path diagram of the classical twin model

Expert knowledge about the correlation between additive and dom-

inant genetic factors, leads to the correlation coefficients shown on the

diagram. MZ twins have identical genes, thus, both their additive and

dominant genetic factors are perfectly correlated. DZ twins share, on av-

1Additive genetic factors refer to a mechanism of quantitative inheritance such that

the combined effects of genetic alleles at two or more gene loci are equal to the sum of

their individual effects.
2Dominance describes a relationship between the effects of different versions of a gene

(alleles) on a phenotype. Humans have two copies of each gene, one inherited from each

parent. If the combined effect of these two alleles is the same as the effect of having two

copies of one of the alleles, we say that allele’s effect is dominant over the other.



46 Analysis of twin data

erage, half their additive and a quarter of their dominant genetic factors

(Neale and Cardon, 1992). The common environmental factors of twin 1

and 2 of both MZ and DZ twins, are, by definition, perfectly correlated.

The specific environment can be seen as an error term and is assumed un-

correlated with any other variable in the diagram. Since all genetic and

environmental factors are unobserved, their variance is assumed to equal 1,

without loss of generality. In addition, the path coefficients (a, d, c and e)

are assumed to be equal for MZ and DZ twins and for first and second born

twins. Intuitively, this is logical for the genetic effects a and d as there is

no reason to believe that genes have different effects for MZ twins as for DZ

twins. For the environmental effects c and e, this follows from Assumption

1 which implies that c and e are the same for MZ and DZ twins. Further,

the path diagram 2.2 implicitly assumes

• no genotype-environment correlation, i.e. latent genetic variables A

and D are uncorrelated with latent environmental variables C and E;

• no genotype × environment interaction, so that the observed pheno-

types are a linear function of the underlying genetic and environmen-

tal variables.

Under the assumptions of this path diagram, the goal is now to estimate

the impact of genetic factors (i.e. a and d) on the phenotype.

Consider a sample of MZ and DZ twin-pairs, ascertained, for example,

from a population twin register. Measurements on the phenotype, col-

lected from this sample, are summarized in the covariances, one between

measurements of MZ twins and one between measurements of DZ twins,

and in terms of the variance of the measurements. To obtain estimates of a,

d, c and e, we may compare the empirical covariances with the expected co-

variance. This expected covariance can be found as in the previous section,

using structural equations. The structural equations in this application are

P1 = α+ eE1 + cC1 + aA1 + dD1 (2.3)

P2 = α+ eE2 + cC2 + aA2 + dD2
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or in matrix notation

(
P1

P2

)
=

(
α

α

)
+

(
e c a d 0 0 0 0

0 0 0 0 e c a d

)




E1

C1

A1

D1

E2

C2

A2

D2




both for MZ and DZ twins. The covariance matrix Φ of the independent

variables however, is different for MZ and DZ twins:

ΦMZ =




1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1




and

ΦDZ =




1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 0.5 0

0 0 0 1 0 0 0 0.25

0 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 0.5 0 0 0 1 0

0 0 0 0.25 0 0 0 1




This leads to the following formulas for the expected covariance of MZ twins

(ΣMZ), the expected covariance for DZ twins (ΣDZ) and the variance (VP)
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of the phenotype:

ΣMZ =

(
e2 + c2 + a2 + d2 c2 + a2 + d2

c2 + a2 + d2 e2 + c2 + a2 + d2

)
(2.4)

ΣDZ =

(
e2 + c2 + a2 + d2 c2 + 0.5a2 + 0.25d2

c2 + 0.5a2 + 0.25d2 e2 + c2 + a2 + d2

)
(2.5)

Comparing these expected (co)variances with the empirical (co)variances,

we obtain three estimating equations to estimate 4 unknown parameters:





Cov(MZ) = c2 + a2 + d2

Cov(DZ) = c2 + 0.5a2 + 0.25d2

VP = e2 + c2 + a2 + d2

(2.6)

Therefore, if we are limited to data from a classical twin study, i.e. MZ and

DZ twins raised together, it is necessary to impose at least one constraint on

the parameters a, c or d (for instance, that one of them is zero) to identify

the model. Suppose that we have good reasons to believe that c can be

ignored. This could be the case, for example, when estimating heritability

of late-onset diseases such as Alzheimer’s disease. It may then be reasonable

to assume that the two members of the twin do not share much environment

(any more), that could affect the occurrence of the disease. Then, the

equations may be rewritten as





Cov(MZ) = a2 + d2

Cov(DZ) = c2 + 0.5a2 + 0.25d2

VP = e2 + a2 + d2

(2.7)

which leads to identified parameters.

Another, generally superior, approach to resolving the identification

problem (Neale and Cardon, 1992) is to collect additional data on, for ex-

ample, separated MZ twins. Indeed, the covariance (Cov(MZA)) between

the phenotypes obtained from these twins leads a fourth estimating equa-

tion

Cov(MZA) = a2 + d2
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which can be added to (2.6) to make all 4 parameters identified. Addi-

tional information on ‘normal’ siblings does not resolve the identification

problem, since these share the same proportion of genes like DZ (fraternal)

twins. Measurements on half siblings or cousins, on the other hand, do add

information since the expected covariances between these are 0.25a2 and

0.125a2, respectively (Neale and Cardon, 1992).

2.2.2 Random effects models

We will now describe an alternative method for testing and estimating

heritability, introduced by Sham (1998), based on random intercept models

with exchangeable correlation structure. The method is mathematically

equivalent to the one described in the previous section.

Consider a sample of MZ (or DZ) twin-pairs in which the phenotype

P has been measured on each individual. Let the value of the phenotype

for twin j (j = 1, 2) in pair i (i = 1, ..., n) be pij . In random intercept

models with exchangeable correlation structure it is assumed that the out-

come variable P is determined by two underlying variables, say B and W ,

in which B is perfectly correlated between members of the same twin-pair

but uncorrelated between members of different twin-pairs, while W is un-

correlated between any two individuals. That is, assume that

Pij = Bi +Wij (2.8)

with Wij , i = 1, ..., n, j = 1, 2 and Bi, i = 1, ..., n mutually independent

mean zero normally distributed variates. Assume that this model holds

for both MZ and DZ twins, with possibly different variance components

(i.e. variance and covariance). Here, the variable B contributes to the varia-

tion between, but not within twin-pairs, whereas the variableW contributes

to the variation between individuals, both between and within twin-pairs.

Testing for heritability

A test for heritability is based on the comparison of intraclass corre-

lations between MZ and DZ twins. An intraclass correlation is the corre-

lation between two individuals in the same class (i.e. the same twin-pair).
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It can be calculated based on a one-way ANOVA or based on the variance-

components estimates of the random intercept model introduced above.

Two assumptions need to hold in order to yield the intraclass correlation.

Assumption 3. The variance VP of the trait is equal for MZ and DZ twins.

and

Assumption 4. The variation within a twin-pair is not related to the av-

erage of the pair (i.e. homoscedasticity).

Assumption 3 may be violated for several reasons. It is possible, for

example, that DZ twins with extreme values of the traits are less likely to

be sampled and that this is not the case for MZ twins. This, however, does

not happen when using data from a twin register. Alternatively, there may

be factors that operate on MZ but not DZ twins (or vice versa), e.g. in DZ

twins there is more differential fertility of the mother than in MZ twins;

such factors will contribute variability to one type of twins but not the

other. Yet another possibility is reciprocal twin-interaction, where the trait

value of one twin has a direct effect on the trait value of the other twin.

This interaction can be cooperative (high value in one twin increases the

value of the other twin) or competitive (high value in one twin decreases

the value of the other twin). For twins who deviate in the same direction

from the overall population mean, cooperative interaction tends to increase

their distance from this mean. For twins deviating in opposite directions

from the overall population mean, cooperative interaction tends to decrease

their distance from this mean. Since deviation of both twins in the same

direction is more frequent for MZ than for DZ twins (assuming that genetic

factors are operating), cooperative twin-interaction leads to a greater trait

variance in MZ than in DZ twins. Competitive interaction has the opposite

effect, i.e. a smaller trait variance in MZ than in DZ twins.

With concern for violation of assumption 3, one may test it via the F -

statistic

F =
MSTMZ

MSTDZ
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where MSTMZ and MSTDZ are the total mean squares for MZ and DZ

twins respectively. These are obtained by dividing the total sum of squares

(SSTMZ and SSTDZ) by their respective degrees of freedom 2nMZ − 1 and

2nDZ−1, with nMZ the number of MZ twin pairs and 2nDZ−1 the number of

DZ twin pairs. The total sum of squares can be calculated for MZ and DZ

twins separately and equals
∑

i

∑
j(pij−p..)

2, where p.. = (
∑

i

∑
j pij)/(2n)

with n = nMZ and n = nDZ for MZ and DZ twins respectively. The test

statistic F follows an F -distribution with (2nMZ − 1, 2nDZ − 1) degrees of

freedom under the hypothesis of equal variances.

Assumption 4 can be tested by means of two tests for homoscedasticity.

Heteroscedasticity arises when the effect sizes of unshared factors (i.e. fac-

tors that cause variation within pairs) in a twin-pair depend on the level of

the shared factors present in the pair. The variation within a twin-pair can

be measured by the absolute pair-difference, defined as pi− = |pi1−pi2|. De-

noting the average absolute pair-difference of the sample as p.−, the product

moment correlation between pair-means and absolute pair-difference is

d =

∑
i(pi. − p..)(pi− − p.−)

(
∑

i(pi. − p..)2
∑

i(pi− − p.−)2)1/2

The significance of this correlation can be tested using Fisher’s z transfor-

mation

z =
1

2
ln

[
1 + d

1− d

]
(2.9)

which is normally distributed in large samples under the null hypothesis

of no correlation, with mean zero and variance equal to 1/(n − 3) (again,

n = nMZ and n = nDZ for MZ and DZ twins respectively).

When these assumptions are justified, the intraclass correlation can be

calculated as follows. It follows from the random intercept model, that the

covariance between the outcomes of two individuals in the same twin-pair is

Var(B), and the variance of each individual’s outcome is Var(B)+Var(W ).

Thus, the intraclass correlation is

ρ =
Var(B)

Var(B) + Var(W )
(2.10)
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Estimates for these variance components (for MZ and DZ twins separately)

can be obtained from the estimates of the variance of the random inter-

cept (i.e. B) and the variance of the residual error (i.e. W) in the random

intercept model for P . We then obtain estimates rMZ and rDZ for the in-

traclass correlation of MZ and DZ twins, respectively. The hypothesis of

a genetic contribution to P predicts a greater value for rMZ than for rDZ.

Using Fisher’s z-transformation

z =
1

2
ln

[
1 + r

1− r

]
(2.11)

yields zMZ and zDZ when using r = rMZ and r = rDZ, respectively. A formal

test statistic is then

zT =
zMZ − zDZ(

1
nMZ−2 + 1

nDZ−2

)1/2
(2.12)

which follows approximately a standard normal distribution in large sam-

ples under the null hypothesis of equal intraclass correlation for MZ and

DZ twins.

Estimating heritability

If there is evidence of a greater intraclass correlation among MZ than

among DZ twins, then one may wish to proceed to obtain some measure of

the relative importance of genetic to environmental factors, i.e. heritability.

There are two different such measures that are both often referred to

as heritability. The first is called broad heritability and is the proportion of

total phenotypic variance accounted for by all genetic components (i.e. ad-

ditive and dominant). The second is called narrow heritability, or just

heritability, and is the proportion of phenotypic variance accounted for by

the additive genetic component.

As already mentioned in the previous section, the classical twin method

is based on the partition of genetic variance into additive and dominance

components, and the partition of environmental variance into shared and

non-shared components. It assumes a partly common environment for the
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twin-pairs, meaning that one can define a single component of variance, VC ,

to represent the common environmental variance and a single component of

variance VE , to represent the remaining, non-shared, (individual) environ-

mental variance. Assumption 1 implies that this common and individual

environment variability is equal for MZ and DZ twins. The estimation of

heritability is based on modeling the total phenotypic variance, VP , both

for MZ and DZ twins, as

VP = VA + VD + VC + VE

in which VA and VD represent to variability due to additive and domi-

nant genetic components respectively. Note that this decomposition ignores

epistatic genetic effects3 and assumes no gene × environment interaction.

Thus, the model is based on the same assumptions implied by the path

diagram of the SEM method in the previous section.

Under these assumptions, an estimate for heritability can be obtained

as follows. The relationships between the variance components (VA, VD,

VC , VE) and the intraclass correlations for MZ and DZ twins are (Sham,

1998)

ρMZ =
VA + VD + VC

VA + VD + VC + VE
(2.13)

ρDZ =
1/2VA + 1/4VD + VC

VA + VD + VC + VE

Estimates (rMZ, rDZ) for these intraclass correlations can be obtained

using the method described in the previous section, based on the random

intercept model (2.8). Since we are interested in the proportions of the

variance components, we can set the total phenotypic variance, VP , to 1

with no loss of generality. However, even when doing so, estimating the

values of three unknown parameters (VA, VD, VC) by equating them with

the two sample correlations (rMZ, rDZ) yields no unique solution.

To gain insight, note that the above model requires that the ratio of

ρMZ and ρDZ (the true correlations) takes values between 1 (when VC > 0,

3that is, interactions between additive and dominant genetic factors.
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VA = VD = 0) and 4 (when VD > 0, VA = VC = 0). Moreover, ρMZ/ρDZ = 2

when VA > 0 and VC = VD = 0, ρMZ/ρDZ < 2 when VA > 0, VC > 0 and

VD = 0, and ρMZ/ρDZ > 2 when VA > 0, VD > 0 and VC = 0. Hence, when

rMZ/rDZ < 1 or rMZ/rDZ > 4, we conclude that the model is inappropriate.

When 1 ≤ rMZ/rDZ ≤ 2, we may be willing to assume that VD = 0 and then

estimate VA and VC as

V̂A = 2rMZ − 2rDZ (2.14)

V̂C = 2rDZ − rMZ

In this case, we cannot obtain an estimate of broad heritability. The esti-

mate of narrow heritability is then

H2
N = V̂A

When 2 < rMZ/rDZ ≤ 4, we set VC = 0 and estimate VA and VD as

V̂A = 4rDZ − rMZ (2.15)

V̂D = 2rMZ − 4rDZ

An estimate of broad heritability is then

H2
B = V̂A + V̂D

and an estimate of narrow heritability is the same as in the previous case.

This procedure does not imply that VC and VD cannot coexist, but

merely that they cannot be jointly estimated with the data available.

Since these heritability estimates are linear combinations of intraclass

correlations estimates, their approximate standard errors can be obtained

by considering the sampling variances of the intraclass correlations (Sham,

1998). The variance of the intraclass correlation, r, estimated from data

on n twin-pairs is approximately

V ar(r) =
(1− ρ2)2

n
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where ρ is the true intraclass correlation. When 1 < rMZ/rDZ ≤ 2, for

example, narrow heritability is estimated by H2
N = V̂A = 2rMZ − 2rDZ so

that its standard error is approximately

SE(h2) = 2

(
(1− r2MZ)

2

nMZ

+
(1− r2DZ)

2

nDZ

)1/2

This method can be used to obtain approximate standard errors of h2 and

H2 for the different ranges of values of the rMZ/rDZ ratio.

2.2.3 Heritability of birth weight in the East Flanders Prospec-

tive Twin Survey

The East Flanders Prospective Twin Survey (EFPTS) (Loos et al.,

1998; Derom and Derom, 2005) gathers data on all twins born in East

Flanders since 1976. This register is renowned internationally because it

concerns a population and because it is the only twin register which gathers

detailed information on zygosity. Zygosity is determined through sequential

analysis of fetal sex, fetal membranes, and umbilical cord blood groups and

by DNA fingerprinting based on allelic similarity within a twin pair of short

tandem repeat loci on nine different chromosomes. Overall, zygosity (and

chorionicity) are determined with an accuracy of over 99%.

Using data from the EFPTS on twins born between 1976 and 2002,

we will examine the heritability of birth weight. Before we calculate the

intraclass correlations for MZ and DZ twins, we need to ascertain whether

Assumptions 3 and 4 are met. There are 1610 MZ twin pairs and 3290 DZ

twin pairs. The total mean squares (MST) for MZ and DZ twins can be

found in Table 2.1 in the third row. Using an F-test (see previous section),

we test whether Assumption 3 is met, i.e. whether birth weights are equally

variable in MZ and DZ twins and find a p-value of 0.9999992, suggesting

no evidence to reject the hypothesis of equal variances.

We test the homoscedasticity (Assumption 4) for MZ and DZ twins by

calculating the absolute pair-differences, using Fisher’s z transformation

and comparing the obtained statistic to a normal distribution with mean

zero and variance equal to 1/(n − 3) (n = nMZ and n = nDZ for MZ and
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MZ twins DZ twins

n 1610 3290

SST 1 130 891 100 1 999 473 503

MST 351 317.5 303 917.5

Var(B) 275 644 210 575

Var(W ) 76 313 93 627

r 0.7832 0.6922

p-value of < 0.0001

z-test for heritability

Table 2.1: Calculations to obtain estimated intraclass correlation (r) for MZ and

DZ twins

DZ twins respectively). The results can be found in Table 2.2. The ob-

tained p-value for MZ twins allow us to conclude that there is no evidence

of heteroscedasticity. For DZ twins however, there is some evidence of de-

pendency between the pair-differences and pair means. However, we note

that the DZ twin sample is very large, which increases the chance of finding

significance. Moreover, the upper bound of the 95% confidence interval is

close to zero. Thus, this violation of the assumption will not have a major

impact on the heritability estimate.

MZ twins DZ twins

p.− 282.03 324.53

d 0.0263 0.0451

z 0.0263 0.0451

p-value 0.28 0.0088

95% CI for z [-0.023;0.075] [0.011;0.079]

Table 2.2: Calculations to test the Assumption 4 for MZ and DZ twins. CI=

confidence interval

Now, we fit a random intercept model for birth weight using proc mixed

in SAS (version 9.1) with exchangeable correlation structure and different

covariance parameters for MZ and DZ twins. We obtain the estimates for

these covariance parameters in the fourth and fifth row of Table 2.1. Us-
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ing these estimates, the intraclass correlation of MZ and DZ twins can be

calculated (last row of Table 2.1). We find that there is a difference in

intraclass correlation between MZ and DZ twins, which is an indication

that birth weight might be subject to genetic influences. This is confirmed

by testing the hypothesis of equal intraclass correlations based on the zT
test statistic (2.12) which gives a p-value smaller than 0.0001. To estimate

heritability, we first calculate the ratio of the two intraclass correlations,

i.e. 0.7832/0.6922=1.1315 which lies between 1 and 2. Thus, we assume

that the variability due to dominant genetic factors can be ignored and es-

timate the additive genetic variability (VA) and the common environmental

variability (VC) as

V̂A = 2rMZ − 2rDZ = 0.182 (2.16)

V̂C = 2rDZ − rMZ = 0.6012

This leads to an estimate of narrow heritability of 0.182 with a standard

error of 0.026 and a 95% confidence interval of [0.13; 0.23]. This means that

18.2% of the total phenotypic variability is explained by additive genetic

factors. Note that, if we would have assumed that variability due to com-

mon environmental factors could be ignored, we would have obtained an

estimate of 1.99 for narrow heritability, which is not interpretable.

2.2.4 Heritability and confounding

Estimation of heritability brings along the question whether heritabil-

ity estimates may be confounded by extraneous factors. In particular, it

is of interest to assess whether standard twin analyses could systemati-

cally find a given phenotype to be heritable, even when in fact it is not at

all related to genetic causes. To the best of our knowledge, this problem

has only been tangentially addressed in the literature (Neale and Cardon,

1992). Common practice is to adjust the analyses for factors such as age.

From the perspective of confounding adjustment, this approach will not

remove confounding bias. Instead it will remove part of the variability due

to environmental factors and thus will yield larger heritability estimates by

the fact that they pertain to more homogeneous subpopulations.
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To gain insight into the problem of confounding, consider the causal

DAG underlying the standard path diagram for twin analysis (see Figure

2.2). It is then natural to think that heritability estimates will be con-

founded whenever there exist common causes of the phenotype, the genetic

and the environmental factors (e.g. age of first pregnancy, as it is related

to adverse perinatal outcomes and may also be genetically determined).

However, this interpretation is misleading. This is because estimation of

heritability is based on comparing intraclass correlations of the phenotype

between MZ and DZ twins (and not by using actual data on genetic or

environmental factors). Confounding of heritability estimates will there-

fore arise whenever the phenotypic correlation differs between MZ and DZ

twins, even in the absence of a genetic effect. We thus conclude that her-

itability estimates may be confounded whenever the association between

zygosity and phenotype is confounded. This is represented in the diagram

of Figure 2.3. Note that, since DAGs are inherently non-parametric, stan-

dard d-separation rules continue to apply, even though this association is

now represented as a difference in phenotypic correlation. It follows that

heritability estimates are confounded whenever there exist common causes

of zygosity and the phenotype.

Data analysis

When estimating the heritability of birth weight, one such common

cause of zygosity and birth weight is the type of conception. Indeed, it has

been established that the type of conception (spontaneous or not) affects

birth weight (Verstraelen et al., 2005). Furthermore, until recently, when

artificial reproductive technologies like in vitro fertilization (IVF) or in-

tracytoplasmic sperm injection (ICSI) were used to help conception, often

more than one embryo was placed back into the womb. This hence implied a

bigger chance of having a DZ twin than in spontaneously conceived twins.

Another possible confounder for the effect of zygosity on birth weight is

maternal age. The older the mother at the time of conception, the more

chance of having a DZ twin and the more risk of a low birth weight baby.

Applying d-separation teaches us that the causal effect of zygosity on birth

weight can be obtained by adjusting the analysis for type of conception and
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Zygosity Phenotype P

Common causes

Figure 2.3: Causal diagram for estimating heritability of a phenotype P

maternal age. Because type of conception and maternal age are amongst

the few factors that might affect the prevalence of MZ versus DZ twins, con-

founding poses no major issues when estimating the heritability of a given

trait, provided that these factors are adjusted for. For the EFPTS register,

adjustment for type of conception and maternal age does not modify the

heritability estimate, thus the estimated heritability in Section 2.2.3 is not

subject to confounding by type of conception and maternal age.

Simulation study

We illustrate that the heritability estimate for a phenotype may be

confounded when zygosity and the phenotype share a common cause, via

a simple simulation study. We generate a twin data set according to the

DAG in Figure 2.3, but with no heritability. We generate a binary common

cause C (e.g. type of conception; spontaneous or not) with 30% chance

of ‘success’ and a binary variable representing zygosity with a 20 + 75C

% chance of a dizygotic twin. The phenotype P (e.g. IQ) for the twins is

generated using a random intercept model with residual standard deviation
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equal to 3 and with mean 180+12C+bi in which bi (i = 1, 2) represents the

random intercept which is mean zero normally distributed with standard

deviation equal to 4. Note that the phenotype is generated independently

of zygosity to reflect the fact that there is no heritability.

The results can be viewed in Table 2.3. We find that the estimated

heritability without adjusting for type of conception is significantly different

from zero. There is a substantial bias of 0.30. After adjusting the analysis

for type of conception, we find that heritability is no longer significant. We

conclude that estimating heritability without adjusting for the common

causes may give seriously misleading results.

No adjustment Adjustment for C

C = 0 C = 1

ITC for Z=MZ 0.84 0.644 0.64

ITC for Z=DZ 0.68 0.6399 0.6396

heritability 0.31 0.0082 0.0009

SE 0.0053 0.0075 0.0076

95% CI [0.30;0.32] [-0.0065;0.023] [-0.014;0.016]

Table 2.3: Intratwin correlations (ITC) for monozygotic (MZ) and dizygotic (DZ)

twins and estimation of heritability with standard error (SE) and 95% confidence

interval (CI)

2.3 Estimation of causal exposure effects based

on twin data

Twin data are not only useful for estimating genetic effects, they also

have a rich structure for inferring causal effects because the comparability of

twin children can be exploited to obtain effect estimates that are consistent

in the presence of unmeasured confounders that are constant within twins,

e.g. parental characteristics, environmental factors,...

For example, when estimating the effect of smoking on lung cancer,

twins offer an estimator that is ‘protected’ against factors like smoking by



2.3 Estimation of causal exposure effects based on twin data 61

friends (which are often the same for both twin children), smoking by par-

ents,....These factors are often unmeasured in studies about the effects of

smoking, leading to biased estimates. A study using twin data and making

comparisons within twins, would not encounter this problem (Carmelli and

Page, 1996). Carlin et al. (2005) examined the effect of cord blood ery-

thropoietin (X) on birth weight (y) in twin data. They describe 3 methods

to analyse the data, two of them being based on the principle of making

comparisons within twins. These methods thus protect the estimated effect

against confounders that are common for both twin children (e.g. mater-

nal factors such as diet and socioeconomic background). The first method

is developed by Neuhaus and Kalbfleisch (1998) and models the expected

outcome as follows

E(Yij) = β0 + βw(Xij −X i) + βbXi

whereXi represents the mean value ofX for twin pair i. The exposure effect

is separated into a within- (βw) and between- (βb) twin component. The

model is fitted using a method that respects the paired structure of the data,

such as mixed models (Verbeke and Molenberghs, 1997, 2000) or generalized

estimating equations (Diggle et al., 1994). The model is commonly used

for general clustered data, however, its validity and efficiency has not been

formally studied.

The second proposed method is based on analyzing paired-difference

values, where differences between X and Y values within each pair are

defined by ordening the twins according to birth order, leading to DY
i =

Yi1−Yi2 and DX
i = Xi1−Xi2. The method then models these transformed

values as

E(DY
i ) = βDX

i

and uses mixed models or generalized estimating equations to obtain a

‘difference-in-difference’ estimator for β. Carlin et al. (2005) show that β

represents the same within-cluster effect as βw in the model of Neuhaus

and Kalbfleisch (1994).

In Chapter 3, we develop a general methodology for clustered data

with arbitrary correlation structure based on the principle of making com-

parisons within clusters. In particular, we develop semi-parametric efficient
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estimators for the parameters indexing marginal linear and loglinear models

which include unmeasured confounders that are constant within clusters.

On the basis of the resulting ‘conditional generalized estimating equations’,

we study the validity of the adjustment procedure proposed by Neuhaus

and Kalbfleisch (1998). By construction, other common types of estima-

tors that offer protection against unmeasured cluster-level confounders can

be viewed as estimators within our class, e.g. conditional likelihood estima-

tors (Diggle, Liang and Zeger, 1994; Verbeke, Spiessens and Lesaffre, 2001),

difference-in-difference estimators (Abadie, 2005; Carlin et al., 2005),... Our

approach extends these to general covariance structures and nonlinear link

functions under weaker assumptions.



Chapter 3

Conditional generalized estimating

equations for the analysis of

clustered and longitudinal data

Summary

A common and important problem in clustered sampling designs is

that the effect of within-cluster exposures (i.e. exposures that vary within

clusters) on outcome may be confounded by both measured and unmea-

sured cluster-level factors (i.e. measurements that do not vary within clus-

ters). When some of these are ill/not accounted for, estimation of this

effect through population-averaged models or random-effects models may

introduce bias. We accommodate this by developing a general theory for

the analysis of clustered data which enables consistent and asymptotically

normal (CAN) estimation of the effects of within-cluster exposures in the

presence of cluster-level confounders. Semi-parametric efficient estimators

are obtained by solving so-called conditional generalized estimating equa-

tions (CGEE). In this chapter, we compare this approach with a popular

proposal by Neuhaus and Kalbfleisch (1998) who separate the exposure ef-

fect into a within- and between-cluster component within a random inter-

cept model. We find that the latter approach yields consistent and efficient

estimators when the model is linear, but is less flexible in terms of model

specification. Under nonlinear models, this approach may yield inconsistent

63
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and inefficient estimators, though with little bias in most practical settings.

[Original co-author: S. Vansteelandt]

3.1 Introduction

Clustered data, such as arise in twin studies, multicenter studies, lon-

gitudinal studies, etc., are frequently encountered in practice. They are no-

table for allowing improved inference for the causal effect of within-cluster

exposures on outcome by providing naturally matched subjects. In partic-

ular, comparisons of subjects within clusters yield exposure effects that are

protected against cluster-level confounders.

Methods for clustered data differ in the way how they infer exposure

effects: through within-cluster comparisons only, through between-cluster

comparisons only, or through a combination of both. Standard inference

for population-averaged models or random-effects models (which implic-

itly assume independence of cluster effects and covariates) usually relies

on information obtained from both within- and between-cluster compar-

isons. Estimation of the effect of within-cluster exposures on outcome can

therefore be seriously misleading under these models whenever important

cluster-level confounders are unmeasured or ill accounted for (Neuhaus and

Kalbfleisch, 1998; Ten Have et al., 2004; Palta and Yao, 1991; Chao et al.,

1997). In view of this, considerable attention has been devoted to statistical

methods which infer exposure effects solely through within-cluster compar-

isons and hence yield valid estimates even in the presence of cluster-level

confounders (see for example Begg and Parides, 2003; Berlin et al., 1999;

Diggle, Liang, and Zeger, 1994; Neuhaus and Kalbfleisch, 1998; Ten Have et

al., 2004; Verbeke, Spiessens, and Lesaffre, 2001), though at the expense of

some efficiency loss (Palta and Yao, 1991; Chao et al., 1997). Among these,

conditional likelihood methods (Diggle et al., 1994, Verbeke et al., 2001)

are popular when outcomes are dichotomous and independent within clus-

ters. For continuous outcomes which lend themselves to linear modeling,

such methods have been used to allow inference for within-cluster expo-
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sures in linear mixed models with uncorrelated residual errors (Verbeke et

al., 2001). However, a possible drawback of conditional likelihood methods

which has been repeatedly suggested in the literature, is that in addition

to removing the effects of cluster-level confounders, they also remove the

effects of cluster-level covariates that may be of interest. Neuhaus and

Kalbfleisch (1998) overcome this by separating exposure effects into effects

that are shared among cluster members and subject-specific effects. Specifi-

cally, they consider generalized linear mixed-effects models with conditional

mean

E(Yij |bi,Xi) = h
{
β0 + bi + βw(Xij − X̄i) + βbX̄i

}
(3.1)

and independent residuals, conditional on bi and Xi, where Yij and Xij

are the outcome and exposure for the jth subject (j = 1, ..., ni) in the

ith cluster (i = 1, ..., n), Xi = (Xi1, ..., Xini
)′, X̄i is the average exposure

in the ith cluster, h is a known inverse link function and bi is a random

intercept (assumed to be independent of Xi). They show by example that

for h the identity or inverse logit link, ordinary mixed-effects estimation

of the exposure effect βw yields an estimate that is nearly identical to the

one obtained via conditional likelihood estimation. The simplicity of this

approach, along with its potential to yield estimates of between-cluster

effects, has made it a popular alternative to conditional likelihood methods

(Begg and Parides, 2003; Ten Have et al., 2004).

In this article, we study the validity of the proposal by Neuhaus and

Kalbfleisch (1998) for inferring within-cluster exposure effects under stan-

dard conditional mean models which may involve unmeasured cluster-level

confounders, nonlinear link functions and general covariance structures.

Our focus on such general models is motivated by the fact that, as we

argue in Section 3.4, models which involve within- and between-cluster ex-

posure effects cannot be viewed as data-generating models and have limited

flexibility.

We start in Section 3.3 by developing a class of estimators which con-

tains (up to asymptotic equivalence) all consistent and asymptotically nor-

mal (CAN) estimators for the within-cluster exposure effects indexing gen-

eral conditional mean models. This class thus unites the different existing
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analysis methods, such as regression of change in response on change in

covariates (Louis et al., 1986). In addition, we identify a (locally) effi-

cient estimator within our class and thus a recommended analysis method.

The proposed estimators are obtained by solving unbiased estimating equa-

tions, which we call conditional generalized estimating equations (CGEE)

to express that they form a semi-parametric alternative to conditional like-

lihood estimation with the flexibility and properties of generalized esti-

mating equations (Liang and Zeger, 1986). Informally, CGEE remove any

dependence on the cluster-level part of the model by making within-cluster

comparisons. The corresponding estimators thus remain CAN even when

there are unmeasured cluster-level confounders and/or when the cluster-

level part of the model is misspecified.

In Section 3.4, we compare CGEE estimators with those obtained by

separating exposure effects into within- and between-cluster effects (Neuhaus

and Kalbfleisch, 1998). We find that, under our model with the identity

link, the latter estimators are asymptotically equivalent to CGEE estima-

tors within our class, thus confirming their validity. However, we show that

using this approach may lead to inconsistent and inefficient estimators of

the within-cluster effects under models with log link, in which case consis-

tent and efficient estimators can be obtained via CGEE. This is confirmed

via simulation studies in Section 3.6, where we find relatively weak bias in

most practical settings, but a more important loss of efficiency. CGEE has

the drawback of using computationally slightly more complex estimators.

It has the advantage of yielding efficient and consistent estimators in both

linear and loglinear marginal models with general covariance structures

and not being restricted to limited and more difficult-to-interpret models

(namely, those that involve within- and between-cluster effects).

3.2 Clinical effect of imipramine on depression

We consider data from a longitudinal psychiatric study to examine

the clinical effects of imipramine (IMI) on depression (Reisby et al., 1977).

Sixty six depressed inpatients were enrolled in the study and baseline char-

acteristics were recorded (including gender and diagnosis of endogenous
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depression). After a one week run-in placebo period, they were given the

same daily dose of 225 mg IMI during four weeks. Desipramine (DMI)

is the active ‘in vivo’ metabolite of IMI and, as such, is responsible for

the antidepressant effects of IMI. The plasma levels of both IMI and DMI

were therefore measured at the end of every treatment week and the log

concentration ratio of DMI and IMI was considered as a measure for IMI

absorption, large values being indicative of an effective absorption of IMI

into the blood. In addition, the Hamilton depression rating scale (HDRS)

score was measured at the start and end of the run-in period, as well as

at the end of every treatment week. The change in HDRS score (i.e. since

baseline) was reported as the outcome. Positive outcomes are indicative of

an improved depression status.

Our goal is to estimate the effect of IMI absorption on the expected

change in HDRS score. Standard inference under population-averaged mod-

els or random-effects models might lead to biased estimates of this effect

whenever, as often, (a) there are unmeasured prognostic factors for depres-

sion which are associated with IMI absorption (e.g. body size, use of other

medicines, amount of sleep); or (b) the effect of these measured prognostic

factors was not adequately modeled. In this chapter, we develop a flexi-

ble strategy which protects against unmeasured or misspecified cluster-level

confounders by making efficient within-patient comparisons under limited

modeling assumptions.
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3.3 Conditional generalized estimating equations

The study design that we consider, collects data (Yi,Xi,Vi, Si) for

each of i = 1, ..., n independent clusters/patients. Here, Yi = (Yi1, ..., Yini
)′

is a vector of outcome measurements (e.g. depression change) for each of

j = 1, ..., ni subjects/occasions, Xi = (Xi1, ..., Xini
)′ is a vector of primary

exposure measurements (e.g. log concentration ratio of DMI and IMI), Vi =

(Vi1, ..., Vini
)′ is a remaining within-cluster variable (e.g. time, or a within-

cluster confounder) and Si contains cluster-level measurements (e.g. gender,

diagnosis of endogenous depression at baseline, ...). With a slight abuse of

notation, we allow Xij , Vij and Si to be vector measurements. The goal of

the study is to infer the effect β of exposure Xij on expected outcome in

the conditional mean model

E(Yij |Xi,Vi, Si, bi) = h(α+Xijβ + Vijγ + Siδ + bi), (3.2)

where h(.) is the identity or inverse log link and bi is an unmeasured cluster-

level variable. Unlike in ordinary random effects models (Diggle et al., 1994;

Ten Have et al., 2004), bi is allowed to be correlated with the remaining vari-

ables in the model and thus allows for unmeasured cluster-level confounders

and/or misspecified effects of Si on outcome. Note that formulation (3.2)

is flexible in that it makes no distributional assumptions (in particular,

it allows arbitrary covariance structure) and that it allows interactions be-

tween cluster-level variables (by including these in Si), between cluster-level

variables and bi (by including these in bi), between within-cluster variables

and between within-cluster and cluster-level variables (by including these in

Vij). In the context of longitudinal studies, it allows, for example, for time

effects (by including these in Vij) and adjustment for previous exposures

(by letting these be part of Xij).

Our goal is to conduct inference for the association ω = (β, γ)′ of

within-cluster variables Lij = (Xij , Vij) with outcome under the observed

data model defined by (3.2). This is challenging because the linear pre-

dictor includes an infinite-dimensional nuisance parameter bi. Using semi-

parametric theory (Bickel et al., 1993), we derive, up to asymptotic equiv-

alence, the set of all CAN estimators for ω under this model. Theorem 3
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states the main results and motivates our construction of estimators for ω

in this model.

Suppose first that h(.) is the identity link. Part 1a of Theorem 3 then

shows that CAN estimators for ω under model (3.2) can be obtained by

solving the estimating equation

n∑

i=1

Gid
i (di,ω) =

n∑

i=1

(di − d̄i) (Yi − Liω) = 0 (3.3)

where di = d (i,Li, Si) (which depends on the cluster index i only through

its dimension) is an arbitrary q × ni matrix function of (Li, Si) with Li =

(Li1, ...,Lini
)′. Further, q is the number of estimable parameters in ω and

d̄i is a q × ni matrix with the sample averages
∑ni

j=1 dikj/ni in the kth

row, where dikj is the element in the kth row and jth column of di. Sub-

tracting the cluster mean d̄i of di ensures that for arbitrary d (i,Li, Si),

the estimating functions involve within-cluster comparisons (i.e. differences

between residuals Yij−α−Xijβ−Vijγ−Siδ−bi within cluster i, so that the

cluster-level part −α − Siδ − bi disappears) and therefore yield protection

against the presence of unmeasured cluster-level confounders. For example,

with follow-up data obeying model

E(Yit|Xi, bi) = α1 + tα2 +Xitβ +Xi,t−1γ + bi (3.4)

where t = 1, ..., ni and Xi0 = 0, solving (3.3) with di = (t,Xi,Xi,−1)
′, t =

(1, ..., ni)
′ and Xi,−1 = (Xi0, ..., Xi,ni−1)

′, is equivalent to solving gener-

alized estimating equations (GEE) with independence working correlation

under model

E(Yit − Ȳi|Xi) = (t− t̄)α2 + (Xit − X̄i)β + (Xi,t−1 − X̄i,−1)γ (3.5)

where X̄i,−1 =
∑ni

t=1Xi,t−1/ni. This model is obtained by subtracting the

cluster average from the left and righthand side of (3.4). While the useful-

ness of methods which regress changes in response on changes in covariates

has long been realized (Louis et al., 1986), Theorem 3, Part 1b, shows

that the resulting estimators are essentially the only CAN estimators for ω

under model (3.2). Specifically, the efficient estimator for ω under model

(3.2), as given in Theorem 4, can be obtained from a regression of changes.
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Suppose now that h(.) is the exponential link. Let Ỹi(ω) be the ni×1

vector with jth component Ỹij(ω) = Yijexp(−Lijω). Part 2 of Theorem

3 then shows that, up to asymptotic equivalence, all CAN estimators for

ω under the observed data model (3.2) can be obtained by solving the

estimating equation

n∑

i=1

G
log
i (di,ω) =

n∑

i=1

(di − d̄i)Ỹi(ω) = 0 (3.6)

where di = d(i,Li, Si) is defined as before. This equation expresses that,

after having removed the cluster-varying part exp(Lijω) from the outcome,

it should retain no cluster-varying components and thus Ỹi(ω) should have

zero covariance with di − d̄i. Specifically, with cross-sectional data for

pairs (i.e. ni = 2,∀i) obeying the model E(Yij |Xi) = exp(α + Xijβ) and

di = (Xi1, Xi2), the estimating equation in (3.6) can be written as

n∑

i=1

(Xi1 − X̄i)Yi1exp(−Xi1β) + (Xi2 − X̄i)Yi2exp(−Xi2β) = 0

Part 3 of Theorem 3 shows that, owing to non-collapsibility of the

odds ratio, no
√
n-consistent estimators exist for ω under the observed

data model (3.2) when h(.) is the inverse logit link. Informally, this is

because no reduced model of within-cluster differences, such as (3.5), exists

for the logit link. It follows that it is not possible to obtain estimators for

the within-cluster effects ω that are protected against unmeasured cluster-

level confounders and converge at the usual rate under this model, unless

one is willing to make additional assumptions. For instance, under the

additional assumption that outcomes within clusters are independent (given

measured covariates), it is well known that conditional likelihood estimation

yields
√
n-consistent estimators for ω under the resulting, more restrictive

model. A more general development for the logistic model that allows

general correlation structures is beyond the scope of this work.

Theorem 3. Suppose that the regularity conditions in Appendix 3.A1 hold.

Then,

1. (a) under the observed data model (3.2) with h(.) equalling the identity

link, the estimating equations (3.3) have a solution ω̂ (d) such that
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√
n(ω̂ (d) − ω)

d→ N (0,Σ(d)) . Σ(d) can be consistently estimated

with

En

{
∂Gid

i (di, ω̂ (d))

∂ω

}−1

En

{
Gid

i (di, ω̂ (d))⊗2
}
En

{
∂Gid

i (di, ω̂ (d))

∂ω′

}−1

(3.7)

where for any random variable W, En(W) =
∑n

i=1Wi/n and W⊗2 =

WW′.

(b) if ̂̂ω is a CAN estimator of ω under the observed data model (3.2)

with h(.) the identity link, then there exists a q × ni vector function

d (i,Li, Si) such that
√
n
(
ω̂ (d)− ̂̂ω

)
converges to 0 in probability.

2. part 1 of Theorem 3 holds with h(.) replaced by the inverse log link,

estimating equations (3.3) replaced by (3.6) and Gid
i (di, ω̂ (d)) by

G
log
i (di, ω̂ (d)).

3. no
√
n-consistent estimators exist for ω under the observed data model

(3.2) with h(.) equalling the inverse logit link.

Note that because the true association of measured cluster-level con-

founders Si with outcome in model (3.2) can be considered to be part of

bi, the results of Theorem 3 continue to hold when that association is mis-

specified.

Throughout we will refer to equations (3.3) and (3.6) as conditional

generalized estimating equations (CGEE). These represent a subset of the

generalized estimating equations corresponding to model (3.2) with bi empty

(i.e. set to zero). Consequently, estimators for ω in model (3.2) obtained

by solving CGEE are never more efficient than those obtained by ordinary

GEE when bi is independent of within-cluster covariates. However, unlike

GEE-estimators, they are guaranteed to be asymptotically unbiased even

when bi is associated with within-cluster covariates. In our opinion, the

hope to control bias trumps efficiency concerns and it is because of this

that we recommend using CGEE instead of ordinary GEE when estimating

the effects of within-cluster exposures in the possible presence of important
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unmeasured cluster-level confounders and/or with concern for misspecifica-

tion of the association of cluster-level confounders with outcome. Because

one may lose efficiency, it becomes increasingly important to identify and

implement the efficient estimating function (i.e. the efficient score) within

our class. In Theorem 4, we show that when h(.) is the identity link, the

efficient score for ω under our model equals Gid
i (deff ,ω) with

deff (i,Li, Si) = L′
iVar−1(Yi|Li, Ci) (3.8)

when the within-cluster variance Var(Yi|Li, Ci) (with Ci denoting the index

of cluster i) is constant. When h(.) is the inverse log link, the efficient score

equals G
log
i (deff ,ω) with

deff (i,Li, Si) = L′
iVar−1(Ỹi(ω)|Li, Ci)Ỹi(ω) (3.9)

and Ỹi(ω) =
∑ni

j=1 Ỹij(ω)/ni, when the within-cluster variance

Var(Ỹi(ω)|Li, Ci) is constant. When outcomes are independent within each

cluster, then Var(Yi|Li, Ci) is the ni×ni identity matrix in which case the

efficient choice for di simplifies to L′
i for the identity link. This choice is also

efficient for the inverse log link when, in addition, the within-cluster mean

and variance of the outcome are the same (as would be the case for Poisson

data). For most practical purposes the latter choices will provide good

approximations of the efficient score since the within-cluster correlation is

typically weak as compared to the correlation induced by between-cluster

components.

Theorem 4. Estimating function Gid
i (deff ,ω) with deff as defined in

(3.8) when h(.) is the identity link and estimating function G
log
i (deff ,ω)

with deff as defined in (3.9) when h(.) is the inverse log link, is the efficient

score for ω under the observed data model (3.2) in the sense that for any

d, Var {ω̂ (d)} ≥ V ar {ω̂ (deff )}, provided that the within-cluster variance

Var(Yi|Li, Ci) or Var(Ỹi(ω)|Li, Ci), respectively, is constant.

In Appendix 3.A4, we deduce from (3.8) that, under the identity link,

the efficient score can be easily obtained via a regression of changes using

generalized estimating equations with working covariance equal to the co-

variance of the changes Yi − Yi. Because the latter covariance is more
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difficult to specify than the covariance of the original outcome, we recom-

mend however to work on the original scale, as suggested by expression

(3.8). To estimate the within-cluster variance matrix in this expression, we

propose to fit a random effects model for the outcome and to use the es-

timated residual covariance matrix (i.e. the outcome covariance, given the

random effects) as an estimate for Var(Yi|Li, Ci). When h(.) is the inverse

log link, we proceed in two steps because the efficient choice for di then

involves the unknown parameter. First we obtain an inefficient estimate ω̂

for ω by choosing di = L′
i in (3.6). Next, we fit a random effects model for

the transformed outcome Ỹi(ω̂) and use the estimated residual covariance

matrix as an estimate for Var(Ỹi(ω)|Li, Ci).

3.4 Separating within- from between-cluster ex-

posure effects

Neuhaus and Kalbfleisch (1998) propose to estimate the effect of within-

cluster exposures in the presence of unmeasured cluster-level confounders by

separating exposure effects into within- and between-cluster components, as

in model (3.1). Several studies have shown by example that for h the iden-

tity or inverse logit link, ordinary mixed-effects estimation of the within-

cluster exposure effect βw yields an estimate that is nearly identical to the

one obtained via conditional likelihood estimation, and theoretical justifica-

tions have been reported (Neuhaus and McCulloch, 2006). The simplicity

of this approach has made it a popular alternative to conditional likelihood

methods (Ten Have et al., 2004), even though its validity and efficiency has

not been formally studied.

In Appendix 3.A4 we consider GEE-estimators obtained by fitting

model

E(Yij |Xi,Vi) = h{(Xij − X̄i)β + (Vij − V̄i)γ}, (3.10)

which replaces each within-cluster exposure by its deviation from the clus-

ter mean. We show that, when h(.) is the identity link, all these estimators

belong to our class of CGEE-estimators under model (3.2) (regardless of
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whether one adds an intercept and further adjusts for the cluster mean

of the within-cluster exposures), provided that the chosen working model

for the outcome covariance does not allow dependence on cluster-varying

covariates. Under this restriction, it thus follows that the NK-approach is

valid for the identity link. This approach also yields efficient estimators un-

der the data-generating model (3.2) when the working covariance equals the

true outcome covariance, suggesting that CGEE-estimators are not more

efficient. However, when h(.) is the exponential link, we show in Appendix

3.A4 that estimators obtained by fitting model (3.10) may be inconsistent

for the effect of within-cluster exposures in model (3.2). Informally, this

is because no reduced conditional mean model of within-cluster differences

can be derived due to the nonlinearity of the log link. We therefore recom-

mend to solve CGEE in that setting. For the logit link, it follows from Part

3 of Theorem 3 that no
√
n-consistent estimators can be found for the effect

of within-cluster exposures in model (3.2). Specifically, fitting model (3.10)

with h(.) the inverse logit link will yield no
√
n-consistent estimators under

model (3.2) (unless possibly under additional assumptions on the outcome

covariance).

Confusion has been raised regarding the interpretation of the param-

eters in models such as (3.1) because these models involve the target ex-

posure only through its deviation from cluster mean (Begg and Parides,

2003). Specifically, βw in model (3.1) represents the expected change in

outcome when increasing Xij with one unit, while holding the cluster mean

fixed, which is difficult to interpret because the cluster mean itself involves

Xij . The discussion in the previous paragraph shows that for the identity

link, estimates for the within-cluster effects (i.e. the effects of Xij − X̄i) in

these models can be interpreted as within-cluster effects in standard con-

ditional mean models. Our focus on such standard models in this article

is additionally motivated by the fact that models which involve within-

and between-cluster exposure effects cannot be viewed as data-generating

models and are therefore biologically/causally difficult to interpret. For in-

stance, conditioning on X̄i in longitudinal studies is tantamount to letting

the future determine the present because X̄i involves measurements up to

the study end. Likewise models that condition on X̄i in cross-sectional
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clustered sampling designs cannot be viewed as data-generating models in

settings where the outcome cannot be affected by other subjects’ covariates.

Further, even if other subjects’ covariates affect outcome, the meaning of

the model parameters in (3.1) remains unclear. It can only be deduced by

reparameterizing the model as

E(Yij |bi,Xi) = h



β0 + bi +

(
βw +

βb − βw

ni

)
Xij +

βb − βw

ni

∑

k 6=j

Xik





(3.11)

that βw does not represent the effect of one’s own exposure, but the differ-

ence in effect between one’s own exposure and the exposure of other cluster

members. Because models that involve within- and between-cluster effects

cannot be viewed as data-generating models, postulating them can be es-

pecially difficult in complex settings, such as family-based studies where

parents’ exposure affects the offspring’s outcome differently than siblings’

exposure, and in longitudinal studies where exposure effects persist, but

weaken over time.

Besides offering computational simplicity, the NK-approach allows es-

timation of the effect of cluster-level exposures. Such effects must however

be cautiously interpreted. First, in cross-sectional study designs where

outcome cannot be affected by other cluster members’ exposure, it follows

from (3.11) that βw should equal βb. Any deviation of βb from βw is there-

fore indicative of the presence of (unmeasured) cluster-level confounders.

Likewise, any such deviation in longitudinal studies reflects bias due to con-

founding since the model would otherwise allow future exposures to affect

present outcome. Second, also the effects of cluster-level variables (e.g. Si)

on outcome will typically carry no causal meaning. This is not only because

of similar confounding bias, but also because within-cluster exposures will

often be intermediate on the causal path from cluster-level exposures to

outcome and adjustment for such intermediate variables may induce selec-

tion bias (Hernan et al., 2004). If the association of cluster-level exposures

were nevertheless of interest, note that they can be estimated using stan-

dard GEE estimation under model (3.2) with bi set to zero and the effects

of within-cluster exposures replaced by their CGEE-estimates.
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Figure 3.1: Profile plot of depression change versus time.

3.5 Data analysis

In this section, we analyze the data described in Section 3.2 to examine

the clinical effect of IMI on the expected change in depression. All analyses

were conducted in R (version 2.3.1). The profile plot in Figure 3.1 shows a

clear indication of a random intercept, but little or no evidence of a random

time evolution. Thus, we start from the conditional mean model

E(Yij |Xi, bi) = α+Xijβ + tijγ + bi, (3.12)

where Yij is the change in HDRS, Xij the log concentration ratio of DMI

and IMI, and tij the time point (in weeks) at which the jth measurement

was recorded for patient i. Throughout we will assume that IMI absorption

is not affected by the previous depression status (i.e. change in HDRS) and

that there are no remaining time-varying confounders for the association

between IMI absorption and change in HDRS.

We first fitted model (3.12) using GEE and efficient CGEE, assuming

no within-cluster correlation. Next, in line with the NK-approach, we fitted
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model

E(Yij |Xi, bi) = α+ βw(Xij −Xi) + βbXi + γtij + bi, (3.13)

using GEE with compound symmetry working covariance. The 3 results

are summarized in the first 3 columns of Table 3.1 and are labeled GEE,

CGEE and NK, respectively. The CGEE-analysis shows that, at a fixed

time point, the effect of a unit increase in log concentration ratio (i.e. bet-

ter absorption of IMI) is to increase (i.e. improve) the expected change in

HDRS with 0.57 (95% confidence interval (CI) [−1.68, 2.82]). As predicted

by the theory, it yields results similar to those obtained from model (3.13).

In contrast, the GEE-analysis which ignores the possibility of cluster-level

confounding, yields a doubled effect size which is almost significantly differ-

ent from zero (1.18 with 95% CI [−0.05, 2.41]). The difference between these

results is suggestive of the possible presence of patient-specific confounders

which may compromise the GEE analysis. The advantage of obtaining

more robust estimates with CGEE comes, however, with a price of reduced

efficiency. In the next section, we will investigate this via simulation studies.

We refitted model (3.12) using CGEE allowing for a residual homoge-

neous autoregressive covariance structure besides the exchangeable corre-

lation implied by a random intercept, and similarly for model (3.13). This

further decreased the clinical effect of IMI to 0.50 with CGEE, but gave no

change in precision. This is not surprising because the residual correlation

was estimated to equal merely 0.18 using CGEE. We further observed an

expected decrease of 2.05 (95% CI [1.29, 2.81]) in HDRS per week using

CGEE, suggesting that the average depression status improves over time.

There was no indication that the clinical effect of IMI changes over time

(p-value 0.12 using CGEE).

To investigate whether the exposure effect differs between patients

with/without a diagnosis of endogenous depression at baseline (= Si), we

added a main effect and interaction of diagnosis with exposure to all models.

Following Section 3.4, this can be done by subtracting the cluster average

from the cluster-varying exposures Xij and XijSi:

E(Yij |Xi, Si) = α+βw(Xij−Xi)+βbXi +γtij + δSi +β(XijSi−XiSi).
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This gives similar results as using efficient CGEE (i.e. (3.3) with Li =

(Xi, ti,XiSi) and di = deff ). Table 3.2 reveals a significant IMI effect

among patients with non-endogenous depression using GEE, but not when

the possible presence of cluster-level confounders is taken into account.

None of the 3 methods find a significant interaction effect, but the estimated

value obtained with GEE is more than three times smaller than with CGEE.
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Exchangeable Random intercept and

correlation autoregressive residual correlation

Working model CGEE GEE NK CGEE GEE NK

IMI (SE) 0.57 (1.15) 1.18 (0.63) 0.57 (1.15) 0.50 (1.15) 1.18 (0.63) 0.48 (1.15)

p-value 0.62 0.061 0.62 0.66 0.062 0.68

time (SE) 2.01 (0.37) 2.01 (0.38) 2.03 (0.37) 2.05 (0.39) 2.13 (0.42) 2.14 (0.41)

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

Table 3.1: Estimates, standard errors (SE) and p-values for within-cluster effects in model (3.12) using

CGEE, using GEE, and in model (3.13) using the NK-approach (NK).
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Exchangeable Random intercept and

correlation autoregressive residual correlation

Working model CGEE GEE NK CGEE GEE NK

IMI (SE) 2.14 (1.11) 1.96 (0.82) 2.14 (1.10) 2.04 (1.09) 1.68(0.81) 1.85 (1.06)

p-value 0.050 0.017 0.053 0.060 0.040 0.083

time (SE) 2.14 (0.35) 2.06 (0.36) 2.16 (0.35) 2.18 (0.37) 2.16 (0.40) 2.25 (0.38)

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

IMI × diagn (SE) -3.90 (2.33) -1.60 (1.32) -3.91 (2.32) -3.68 (2.36) -0.94 (1.27) -3.19 (2.36)

p-value 0.090 0.22 0.092 0.12 0.46 0.18

Table 3.2: Estimates, standard errors (SE) and p-values for within-cluster effects in model (3.12) using CGEE, using

GEE, and in model (3.13) using the NK-approach (NK), where all models are augmented with a main effect of diagnosis

and its interaction with IMI.
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3.6 Simulation study

To investigate the bias-variance trade-off of using CGEE versus GEE,

we generated 500 data sets using the following models:

Yij = h(αY +XijβY + SiδY + biY + ǫijY ) (3.14)

Xij = αX + SiδX + ηbiX + ǫijX (3.15)

where h is the identity link or the inverse log link, Si is normally dis-

tributed with mean µS and standard deviation σS , biX and biY are in-

dependent normally distributed mean zero random intercepts with stan-

dard deviations σbX and σbY , and ǫijX and ǫijY are independent normally

distributed mean zero residual errors with standard deviations σwX and

σwY . We conducted 6 simulation studies, each time with and without

the presence of unmeasured cluster-level confounders. We define θ1
id =

(αY , βY , δY , σbY , σwY , αX , δX , η, σwX , σbX , µS , σS), θ2
id = (δY , αX , δX , η, σbX),

θ1
log = (αY , δY , σbY , αX , δX , η, µS , σS) and θ2

log = (δY , δX , η, σbX). In simu-

lation 1, we used 400 clusters of size 5 with identity link, uncorrelated resid-

uals ǫijY and θ1
id = (1, 2, 1.2, 2, 1, 2,−1, 0, 0.5, 0, 2, 2) (and θ2

id = (0, 3, 0, 1, 1.5)

in the analysis without confounder). In simulations 2 and 3, we used 50

clusters of size 4 with identity link, correlated residuals ǫijY (with expo-

nentially decaying correlation of 0.6 between successive time points) and

θ1
id = (3, 1, 2, 1, 5, 1, 3, 0, 1, 0, 4, 3) (and θ2

id = (0, 1, 0, 1, 2) in the analysis

without confounder). In simulations 4 and 5, we used 500 clusters of size 3

with inverse log link, independent Poisson distributed outcomes conditional

on biY , and θ1
log = (0,−0.5, 0.5, 0,−0.5, 0, 0, 1) (and θ2

log = (0, 0, 0.5, 2) in the

analysis without confounder). In simulation 6, we used 400 clusters of size 5

with inverse log link, independent Poisson distributed outcomes conditional

on biY , and θ1
log = (0, 0.6, 0.5, 2,−0.3, 0, 0, 2) (and θ2

log = (0, 0, 0.5, 2) in the

analysis without confounder). For (βY , σwX) we chose values (1.2, 0.7),

(0.6, 2) and (0.4, 0.5) for simulation 4, 5 and 6, respectively.

The simulated data were analyzed using the following 3 approaches,

each time using the same working covariance model: (a) CGEE with com-

pound symmetry working covariance for simulations 1, 3 and 6, with inde-

pendence working covariance for simulation 4 and 5, and using a random
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intercept model with autoregressive residual covariance for simulation 2; (b)

GEE, ignoring the presence of the cluster-level confounder Si (i.e. setting

δY = 0); (c) NK, by fitting model E(Yij |Xi) = α + βw(Xij − X i) + βbX i

using GEE (for reasons of comparability with the other estimators).

The results are summarized in Tables 3.3 and 3.4. As expected, GEE

gives seriously biased results when a cluster-level confounder is ignored,

while CGEE yields unbiased estimates. When the model is linear and there

are no unmeasured confounders, then, as expected, the GEE estimator is

more precise than the CGEE estimator with relative efficiencies of 1.33,

1.96 and 2.04 for simulation 1, 2 and 3, respectively. Although substantial,

this may be affordable, given the huge loss of coverage of the GEE estima-

tor in the presence of unmeasured confounding. We further observe that,

as predicted by the theory, the NK approach gives similar results as CGEE

for the identity link. For the inverse log link, the NK approach performs

well when the effect size βY and the within-cluster standard deviation in X

are small, as in simulation 6, but has a worse performance than the CGEE

estimator otherwise in terms of bias, precision (relative efficiencies of 2.64

and 2.15 in simulation 4 and 5, respectively) and coverage. Surprisingly,

the CGEE estimator has greater precision than the GEE estimator in sim-

ulations 4 and 5 in the absence of unmeasured confounding. This is a finite

sample problem caused by the fact that the GEE (and NK) estimator re-

quire estimation of the covariance structure, unlike the CGEE estimator.

Indeed, the precision advantage of the CGEE estimator disappeared in ad-

ditional simulation studies (not displayed) with larger numbers of clusters

or in the absence of correlation (so that the independence model holds).
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Bias Empirical SE Coverage

Simulation CGEE GEE NK CGEE GEE NK CGEE GEE NK

1 0.0014 0.48⋆⋆ 0.0014 0.053 0.055 0.053 0.93 0.00 0.93

2 0.0080 0.63⋆⋆ 0.0050 0.28 0.067 0.27 0.93 0.00 0.93

3 -0.0070 0.64⋆⋆ -0.0070 0.30 0.068 0.30 0.95 0.00 0.95

4 -0.00099 0.29⋆⋆ -0.022⋆⋆ 0.032 0.052 0.052 0.95 0.00067 0.93

5 -0.000042 0.034⋆⋆ -0.020⋆⋆ 0.015 0.022 0.022 0.95 0.75 0.89

6 0.0011 -0.12⋆⋆ 0.0022 0.025 0.020 0.026 0.94 0.00 0.94

Table 3.3: Simulation results for β (with unmeasured cluster-level confounder), ⋆⋆ = p-value (for H0: bias=0) <0.0001
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Bias Empirical SE Coverage

Simulation CGEE GEE NK CGEE GEE NK CGEE GEE NK

1 0.0014 0.0022 0.0014 0.053 0.046 0.053 0.93 0.97 0.93

2 0.0080 -0.0030 0.0047 0.28 0.20 0.27 0.93 0.93 0.93

3 -0.0070 -0.0026 -0.0070 0.30 0.21 0.30 0.95 0.92 0.95

4 -0.00021 -0.0024 0.0021 0.030 0.051 0.051 0.95 0.87 0.93

5 0.00048 0.00030 0.00061 0.014 0.019 0.022 0.94 0.92 0.93

6 -0.00052 -0.0025⋆ -0.0018⋆ 0.018 0.022 0.019 0.96 0.92 0.96

Table 3.4: Simulation results for β (without unmeasured cluster-level confounder), ⋆ = p-value (for H0: bias=0) <0.05
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3.7 Discussion

Conditional generalized estimating equations provide a general frame-

work for protecting estimation of within-cluster exposure effects in the anal-

ysis of clustered and longitudinal data, against unmeasured cluster-level

confounding factors and against misspecification of the effects of measured

cluster-level variables. They are obtained by using G-estimation (Robins,

Mark and Newey, 1992) to avoid modelling the association of cluster-level

confounders with outcome, while instead modelling their association with

exposure nonparametrically in terms of cluster-level averages. Paired with

the theory of G-estimation, we find that such protection against unmea-

sured cluster-level confounding factors is possible under the identity and

log link, but not under the logistic link without additional assumptions

(Vansteelandt and Goetghebeur, 2003).

By construction, other common types of estimators that offer pro-

tection against unmeasured cluster-level confounders can be viewed as es-

timators within our class, e.g. conditional likelihood estimators (Diggle,

Liang and Zeger, 1994; Verbeke, Spiessens and Lesaffre, 2001), difference-

in-difference estimators (Abadie, 2005),... Our approach extends these to

general covariance structures and nonlinear link functions under weaker

assumptions. It avoids separation of exposures into within- and between-

cluster components (Neuhaus and Kalbfleisch, 1998) because (a) models

which involve such components cannot be viewed as data-generating mod-

els; and (b) such approaches may be inconsistent and inefficient under non-

linear link functions. Nonetheless, we show the latter approaches to be

very useful and attractive because they offer computationally convenient

estimators, they are valid under the identity link and approximately valid,

but inefficient, under the log link. R-programs for solving CGEE can be

obtained upon request. Future work will concentrate on whether and how

results can be extended to longitudinal studies with measured time-varying

confounders.
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Appendix 3.A1:

Assumptions

Throughout the article, we make the following assumptions which are

required to ensure that β in model (3.2) represents the causal effect of expo-

sure Xij on outcome Yij . When the study is cross-sectional and each cluster

represents observations obtained from different but related subjects, we will

assume that, given (Xij , Vij , Si, bi), the outcome for subject j in cluster i

has no residual dependence on within-cluster variables (Xik, Vik), k 6= j of

other subjects in that cluster. When the study is longitudinal, we will as-

sume that the process (Xij , Vij) is ancillary (Robins, 1999a), meaning that

Yij is conditionally independent of future covariates after adjustment for

the covariate history. This assumption is valid whenever covariates (X,V )

are not affected by previous outcomes and there are no remaining time-

varying confounders for the association between (X,V ) and outcome. In

both study designs, when the goal is to infer the effect of exposure on

outcome, we will assume that it is sufficient to adjust for measured within-

cluster confounders Vij , i.e. that all within-cluster confounders have been

measured and correctly adjusted for. These assumptions are implicit in the

NK-approach.
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Appendix 3.A2: proof of

Theorem 3

For notational convenience, we will ignore boldface notation to dis-

tinguish vectors and scalars in this appendix. Suppose first that b is

completely observed. The nuisance tangent space (Bickel et al., 1993)

ΛF = ΛF
1 + ΛF

2 + ΛF
3 for the full data model AF defined by the restric-

tions of model

E(Y |X,V, S, b) = h {α+ βX + γV + δS + g(b; η3)}

where g(.) is an unknown function, is then the closed linear span of the

union of the tangent sets (Bickel et al., 1993) ΛF
1 , ΛF

2 , ΛF
3 corresponding

to the parameters in any regular parametric submodel for f(Y |X,V, S, b),
f(X,V, S, b) and g(b), respectively.

It follows from Bickel et al. (1993) that the orthocomplement of the

tangent space ΛF
1 +ΛF

2 is
(
ΛF

1 + ΛF
2

)⊥
= {D ǫ(ω, ν, η3) : D = d (X,V, S, b)

arbitrary}. To derive the restrictions on the elements of the set ΛF
3 , consider

arbitrary parametric submodels g(b; η3) containing the true model. Denote

ǫ(ω, ν, η3) = Y −h {α+ βX + γV+ δS + g(b; η3)} where ν = (α, δ)′. From

the expressions for the full data scores w.r.t. η3, we find that

ΛF
3 = {A ≡ a(Y |X,V, S, b) : E(A|X,V, S, b) = 0;

E {ǫ(ω, ν, η3)A|X,V, S, b} = h′{α+ βX + γV + δS + g(b; η3)}
∂g(b; η3)

∂η3

}

where h′(x) = ∂h(x)
∂x . To derive the set of all influence functions for ω

indexing AF , we use the fact that
(
ΛF

1 + ΛF
2 + ΛF

3

)⊥
=
(
ΛF

1 + ΛF
2

)⊥∩ ΛF⊥
3

89
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and hence identify those functions D = d (X,V, S, b) satisfying for each

A ≡ a(Y |X,V, S, b) ∈ ΛF
3 :

0 = E {D ǫ(ω, ν, η3)A} (3.16)

= E

[
D h′{α+ βX + γV + δS + g(b; η3)}

∂g(b; η3)

∂η3

]

Consider first model AF with h(.) equalling the identity link. Then the

above equality (3.16) is satisfied if and only if E (D|b) = 0. Hence, for

D = d (X,V, S, b)

(
ΛF

1 + ΛF
2 + ΛF

3

)⊥
= {D ǫ(ω, ν, η3) : D arbitrary satisfyingE (D |b) = 0}

Consider now the observed data modelA, implied byAF , with h(.) equalling

the identity link. The orthocomplement of the nuisance tangent space for

η1, η2, η3 in this model consists of all mean zero functions of (Y,X, V, S, C)

(with C the cluster index), whose expected value, given (Y,X, V, S, b),

is an element of
(
ΛF

1 + ΛF
2 + ΛF

3

)⊥
. Thus, for ǫ(ω) = Y − βX − γV ,

(Λ1 + Λ2 + Λ3)
⊥ equals {[D − E (D |C)] ǫ(ω) : D = d (X,V, S) arbitrary}

because b∐(X,V, S)|C so that the within-cluster sample average E (D|C) =

E (D|C, b) and (X,V, S, Y ) ∐ C|b (by the fact that clusters are identi-

cally distributed conditional on b) so that E{E(D|C, b)|X,V, S, Y, b} =

E(D|b). Note that we replaced ǫ(ω, ν, η3) by ǫ(ω) = Y − βX − γV because

{D − E (D |C)} {α+ δS + g(b; η3)} has mean zero regardless of (ω, ν, η3)

and hence is orthogonal to the tangent space for ω. This proves part 1b of

Theorem 3.

Consider now AF with h(x) = exp(x). Then (3.16) is satisfied iff

E [D exp{α+ βX + γV+ δS + g(b; η3)}|b] = 0, so that
(
ΛF

1 + ΛF
2 + ΛF

3

)⊥

equals

{D ǫ(ω, ν, η3) : D = d (X,V, S, b) arbitrary satisfying

E {D exp (βX + γV + δS) |b} = 0}
It follows using similar arguments as in the previous paragraph that for the

exponential link (Λ1 + Λ2 + Λ3)
⊥ equals

{[D − E (D|C)]Y exp(−βX − γV ) : D = d (X,V, S;ω) arbitrary}
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This proves part 2b of Theorem 3.

Consider finally the full data model AF with h(.) equaling the inverse

logit link. Then we must determine those functions D = d (X,V, S, b;ω)

that satisfy

E

(
D exp (βX + γV + δS)

[1 + exp{α+ βX + γV + δS + g(b; η3)}]2
|b
)

= 0

The orthocomplement of the nuisance tangent space for η1, η2, η3 in the

observed data model A with h(.) equaling the inverse logit link, contains

only 0 because there is no function d (X,V, S;ω) of (X,V, S) that differs

from zero and satisfies the above equality for any b. It follows that no

root-n estimators of β and γ exist in the observed data model A when h(.)

is the inverse logit link. This proves part 3 of Theorem 3.

The proof of parts 1a and 2a of Theorem 3 follows the lines of Ap-

pendix B of Robins, Rotnitzky and Zhao (1994) with bi(γ; d, φ) replaced

by bi(d, ω) ≡ Gc1
i (d,ω) when h(.) equals the identity link and bi(d, ω) ≡

Gc2
i (d,ω) when h(.) equals the inverse log link.
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Appendix 3.A3: proof of

Theorem 4

To calculate the efficient score for ω, we project the observed data

score Sω for ω corresponding to the true parametric submodel (Bickel et

al., 1993) onto (Λ1 + Λ2 + Λ3)
⊥. Let us define Ỹ (ω) = Y −Lω when h(.) is

the identity link and Ỹ (ω) = Y exp(−Lω) when h(.) is the inverse log link.

It can easily be deduced from

E{Ỹ (ω)|L, S,C} = E{Ỹ (ω)|S,C}

where C is the cluster index, that

E
{
Sω

(
Ỹ (ω)− E{Ỹ (ω)|S,C}

)
|L, S,C

}
= {L−E(L|S,C)}E{Ỹ ′(ω)|S,C}

where we define Ỹ ′(ω) = 1 when h(.) is the identity link and Ỹ ′(ω) = Ỹ (ω)

when h(.) is the inverse log link. The efficient score for ω is a function

(d0 − d̄0){Ỹ (ω)− E{Ỹ (ω)|S,C}}

where d0 ≡ d0(L, S,C) is such that for arbitrary d ≡ d(L, S,C)

0 = E
[{
Sω − (d0 − d̄0){Ỹ (ω)− E{Ỹ (ω)|S,C}}

}

(d− d̄){Ỹ (ω)− E{Ỹ (ω)|S,C}}
]

= E
[{
{L− E(L|S,C)}E{Ỹ ′(ω)|S,C}

−(d0 − d̄0)V ar{Ỹ (ω)|L, S,C}
}

(d− d̄)
]
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Assuming that V ar{Ỹ (ω)|L, S,C} is a constant variance matrix, it follows
that for arbitrary d ≡ d(L, S,C)

0 = E
[{
{L− E(L|S,C)}E{Ỹ ′(ω)|S,C} − (d0 − d̄0)V ar{Ỹ (ω)|L, S,C}

}
d
]

from which we find

d0 = LE
{
Ỹ ′(ω)|S,C

}
V ar−1{Ỹ (ω)|L, S,C}

This proves Theorem 4.
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CGEE- versus NK-approach

Using Taylor series expansion, it can be shown that the (efficient) es-

timating equations for βw in the observed data model (3.1) with h(.) the

identity link, accounting for estimation of the nuisance parameters β0 and

βb, equal
∑

i

[
dwi − E

{
dwi

(
1, Xi

)}
E−1

{
dbi

(
1, Xi

)}
dbi

]
ǫi,

with dwi = (X ′
i − Xi)V ar

−1(Yi|Xi), dbi =
(
1, Xi

)′
V ar−1(Yi|Xi) and ǫi =

Yi− β0− βw(Xi−Xi)− βbX i. Suppose for the purpose of illustration that

the true data-generating model equals

E(Yij |Xi, bi) = βXij + bi (3.17)

where bi is a random effect which may be correlated with Xi. Then it

follows from the proof of Part 1 of Theorem 3 that consistent estimators

for the within-cluster effects under model (3.17) can be obtained from esti-

mating equations of the form
∑

i diǫi with E(di|Ci) = 0 and ǫi = Yi− βXi,

where Ci is the index of cluster i. The condition E(di|Ci) = 0 is satisfied

for the above equations since it can easily be shown that E(dwi|bi) = 0 and

E
{
dwi

(
1, Xi

)}
= 0 when the variance matrix V ar(Yi|Xi) does not depend

on Xi other than through cluster-level summaries of Xi. We conclude that

the NK-approach yields estimators within our class of CGEE-estimators

and hence yields consistent estimators of within-cluster effects in the pres-

ence of unmeasured cluster-level confounders under the identity link and
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homoscedasticity (w.r.t. X). Efficient estimators under model (3.1) with

h(.) the identity link are also efficient under model (3.17). The key to show-

ing this is that they are CGEE estimators and hence consistent regardless

of whether one consistently estimates the cluster-specific part of the model

(e.g. βb). It then follows from Newey and McFadden (1994) that their

asymptotic distribution remains unchanged if one fixes βb = βw (i.e. if one

conducts inference under model (3.17)).

Efficient estimators for β in model (3.17) can also be obtained by fitting

model

E(Yij − Ȳi|Xi) = β(Xij − X̄i) (3.18)

This can be seen from the following arguments. It is immediate that model

(3.17) implies the above model (3.18). That also the reverse is true can

be seen upon writing E(Yij |Xi) = µ(Xi); under model (3.18), µ(Xi) must

satisfy µ(Xi)− µ̄(Xi) = β(Xij−X̄i). Writing ¯µ(Xi) = βX̄i+bi without loss

of generality, where bi is now a function of Xi, we find that µ(Xi) = βXij +

bi. It follows that models (3.17) and (3.18) impose the same restrictions on

the observed data law. Furthermore, the parameter β in these models is

the same functional

β =
Cov(Yij − Ȳi, Xij − X̄i)

Var(Xij − X̄i)

of the observed data law under both models. Consequently, the set of

CAN estimators for β under model (3.17) equals the set of CAN estimators

for β under model (3.18). In particular, efficient estimators for β under

both models are asymptotically equivalent. By similar arguments, efficient

estimators for β in model (3.17) can also be obtained by fitting a model for

the changes Yij − Yi1.

Finally, we show that the NK-approach yields no consistent estimators

of within-cluster effects β under model (3.2) when h(.) is the inverse log

link. Key to this proof is the fact that the estimating functions under

this approach do not belong to the class of CGEE estimating functions.

Suppose that E(Yij |Xi, bi) = exp(βXij + bi) where bi is possibly correlated

with Xi. Then fitting model E(Yij |Xi) = exp{β∗(Xij−X̄i)} yields possibly
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inconsistent estimates for β in the above model because the estimating

functions may have mean

E
(
dj(Xi)

[
Yij − exp{β(Xij − X̄i)}

])

= E
(
dj(Xi) exp{β(Xij − X̄i)}

[
exp(α+ βX̄i + bi)− 1

])

different from zero. Indeed, let dj(Xi) = Xij − X̄i and suppose that

Xij−X̄i|X̄i ∼ N(0, σ2
i ) within the ith cluster. Then, using the moment gen-

erating function of normally distributed variates, we find that the cluster-

average of dj(Xi) exp{β(Xij − X̄i)} equals exp(σ2
i β

2/2)σ2
i β which differs

from zero for β 6= 0, and likewise the mean of exp(α+ βX̄i + bi)− 1 is not

guaranteed to be zero. Allowing for an intercept in the model and further

adjusting for the cluster mean provides no solution because we are precisely

looking for estimators which are unaffected by adjustment for cluster-level

variables. We conclude that the class of estimating functions under model

(3.1) with h(.) the inverse log link contains functions which are biased under

the data-generating model (3.2) and, hence, may yield inconsistent estima-

tors of β under model (3.2). The proof further shows that bias under the

NK-approach gets more severe with increasing effect sizes β and within-

cluster exposure variation σ2
i . Hypothesis tests for the absence of an effect

will preserve their nominal α-level (as there is no bias in the absence of

an effect, i.e. β = 0), but may be less powerful than tests obtained using

CGEEs.

Intuitively, the reason why the NK-approach fails under nonlinear link

functions can be seen as follows. Consider first model (3.17) with identity

link. This model implies model (3.18), from which all cluster-level con-

founders have been removed. It follows that valid estimates for the effect β

can be obtained by fitting the latter model, even in the presence of cluster-

level confounding. The NK-approach is a slight variation of this model

whereby E(Ȳi|Xi, bi) is replaced by the fitted value from a regression model

E(Ȳi|Xi, bi) = βbX̄i + bi

In fact, the NK-approach under the identity link is an immediate appli-

cation of G-estimation whereby the exposure in a linear model is replaced
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by its residual from a regression on confounders (i.e. on the cluster in-

dex). Suppose now that E(Yij |Xi, bi) = exp(βXij + bi). This model cannot

be rewritten in terms of within-cluster exposures Xij − X̄i such that the

cluster-level confounders bi disappear. For instance, while the cluster-level

confounder bi can be removed through the transformation

E(Yij |Xi, bi)

E(Ȳi|Xi, bi)
=

exp(βXij)∑ni

k=1 exp(βXik)/ni

this does not imply a loglinear model involving within-cluster exposures

Xij − X̄i due to the nonlinearity of the link function.



Chapter 4

Introduction to direct effect

estimation

Summary

In this chapter, we will outline the difficulties in inferring direct expo-

sure effects. We start by introducing concrete definitions of direct effects

in terms of potential outcomes notation. We compare these different direct

effects definitions and we discuss their usefulness and relevance in different

settings. Then, the problem with inferring direct effects is explained by

using a causal DAG. Besides explaining the difficulties in inferring these

effects, we will show with a case study that in certain settings, direct effect

estimates can be easily obtained. In addition, we will investigate whether

structural equation models (SEM) (introduced in Chapter 2) can be used

to estimate direct effects and finally, we give an brief overview of recent

literature on direct effect estimation. In the next chapters, we will develop

solutions to address the difficulties described in this chapter.

4.1 Motivation for direct effects

The causal effect of an exposure on an outcome may manifest itself

through various causal paths. For example, advanced maternal age at preg-

nancy may increase the risk of hypertension or diabetes during pregnancy,

99
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which adversely affects birth weight. Advanced maternal age may also in-

crease the risk of twins, which again adversely affects birth weight. Besides

these indirect effects, maternal age may directly affect birth weight. In fact,

in most cases the total effect of an exposure on an outcome (i.e. through all

causal paths) is virtually always a combination of direct and indirect effects.

Researchers’ interest is frequently not only in this total effect, but also in

the effect that is not mediated through intermediate variables, i.e. the direct

effect of the exposure on the outcome. The following examples motivate

this.

(Example 1 Verstraelen, Goetgeluk et al., 2005) Artificial reproduc-

tive technologies (ART) can have an effect on perinatal outcomes for twins

through various causal pathways. For example, the occurrence of dizygotic

(DZ) twins is much larger in the group of babies conceived through ART

than in the group conceived naturally. Because DZ twins have better peri-

natal outcomes than monozygotic (MZ) twins, this may induce an indirect

effect of ART on perinatal outcomes through twin zygosity. In Section 4.4,

besides inferring a total causal effect, we infer the effect of ART on perinatal

outcomes that is not mediated through type of twinning (MZ or DZ).

(Example 2 Vansteelandt, Goetgeluk et al., 2008) Lyon et al. (2004)

find SNPs in the IL10 gene to be associated with both body mass index

(BMI) and forced expiratory volume (FEV). Because BMI and lung func-

tion are themselves associated (Oliveti et al., 2006), this raises the question

whether a genetic effect found on one of these phenotypes is actually an

indirect effect through the other (intermediate) phenotype. In Chapter 5,

we infer the genetic effect of the SNPs of interest on FEV which is not

mediated through BMI.

(Example 3 Goetgeluk et al., 2008) De Sutter et al. (2006) estimate

the effect of single versus double embryo transfer (SET versus DET) on

birth weight. They observe birth weights to be 120 grams (95% confidence

interval [44;197]) lower on average in singletons born after double than

single embryo transfer. In response to criticism that the analysis was not

adjusted for gestational age, Delbaere et al. (2007b) argue that such adjust-

ment would remove a possible indirect effect of SET/DET on birth weight

through gestational age, and that this could even introduce selection bias
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(see Section 4.3). At the same time, the debate raises the question whether

the effect of SET/DET on birth weight is entirely mediated through gesta-

tional age. In Chapter 6, we will discuss this in more detail and infer the

effect of SET/DET on birth weight that is not mediated through gestational

age.

(Example 4 Rosenblum et al., 2007) When investigating the effect of

diaphragm and lubricant gel use on HIV infection on the basis of the ran-

domized Methods for Improving Reproductive Health in Africa (MIRA)

trial, Rosenblum et al. (2007) observe much lower reported condom use in

the treatment arm than in the untreated arm. This makes it difficult to an-

swer important public health questions solely on the basis of the intention-

to-treat analysis. In view of this, they estimate the effect on HIV infection

of assignment to diaphragm and lubricant gel use, were all participants to

consistently use condoms during all sex acts. That is, they infer the effect

of treatment on HIV infection which was not mediated through condom

use.

We will now introduce concrete definitions of direct effects in terms of

potential outcomes notation.

4.2 Definitions of direct effect

We define Yx as the potential outcome a given subject would have

had if he/she received exposure X = x. The average total effect of ex-

posure x versus 0 is then an average contrast between Yx and Y0, e.g.

E(Yx − Y0). In a causal diagram, we may consider a number of interme-

diate variables/mediators K, which are affected by X and in turn have an

effect on Y . A direct effect of X on Y other than through modifying an

intermediate variable K, expresses the effect of, say, exposure x versus 0

had the intermediate variable K remained unchanged. This requires us to

introduce potential outcomes following joint exposures x and k. Specifi-

cally, define Yxk as the potential outcome which a given subject would have

experienced under exposure X = x and a fixed value k for the intermediate

variable K. Throughout, we make the consistency assumption that this

potential outcome equals the observed outcome for subjects for whom x
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and k correspond to the observed values for the exposure and the interme-

diate variable, respectively. Using this notation, a number of definitions for

direct effects have been proposed in the literature.

1. Controlled direct effect (Robins, 1999b; Pearl, 2001; Robins and

Greenland, 1992, Petersen, Sinisi and van der Laan, 2006; Didelez,

Dawid and Geneletti, 2006; Goetgeluk et al., 2008)

The individual controlled direct effect of setting exposure X to x (ver-

sus setting X to 0) on outcome Y , when holding K fixed at a value

k, is defined as the contrast Yxk −Y0k between the two potential out-

comes Yxk and Y0k for the same subject. The (population) controlled

direct effect is defined as the average of the individual controlled di-

rect effects taken over all subjects, i.e.

E(Yxk − Y0k)

It expresses how much the expected outcome would change if the

exposure X changed from x to 0, but the intermediate variable K

were kept uniformly fixed at a given k.

2. Natural direct effect (Pearl, 2001; Robins and Greenland, 1992;

Petersen, Sinisi and van der Laan, 2006; Didelez, Dawid and Geneletti,

2006)

The individual natural direct effect on outcome Y of setting exposure

X = x (versus X = 0), when holding K fixed at the value K0, which

the intermediate would have had were the subject not exposed, is

defined as the contrast YxK0
− Y0K0

between the two potential out-

comes YxK0
and Y0K0

for the same subject. The main difference with

controlled direct effects is that the value K0 can be different for all

subjects (that is, K0 is a random variable). The (population) natural

direct effect is defined as the average of the individual natural direct

effects taken over all subjects, i.e.

E(YxK0
− Y0K0

)

It expresses how much the expected outcome would change if the

exposure X changed from 0 to x, but its effect on the intermediate

variable K were blocked.
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3. Principal stratification direct effect (Rubin, 2004; Frangakis and

Rubin, 2002)

Principal stratification direct effects measure the average causal effect

of setting exposure X = x (versus X = 0) among subjects for whom

the intermediate variable was not affected by X; that is,

E(Yx − Y0|Kx = K0)

where Kx is the potential (counterfactual) value of the intermediate

variable K corresponding to setting X = x.

4. Standardized direct effects (Didelez, Dawid and Geneletti, 2006)

Standardized direct effects are obtained by averaging controlled direct

effects over a chosen density function f∗(K) for the mediator, which

does not depend on the exposure; that is,
∫
E(Yxk − Y0k|K = k)f∗(K = k)dk

for a chosen density function f∗(K). Equivalently, they can be written

as the expected contrast

E(YxK∗ − Y0K∗)

where K∗ is a random draw from the distribution f∗(K), indepen-

dently of x. Natural direct effects form a special case obtained by

setting f∗(K) = f(K0).

We illustrate the difference between these definitions using Example 3. The

direct effect of SET (X = 0) versus DET (X = x) on birth weight, not

mediated through gestational age translates as follows under the different

direct effect definitions:

1. The controlled direct effect of SET/DET on birth weight expresses

how different the average birth weight would have been had the study

population uniformly experienced SET versus had they uniformly ex-

perienced DET, but gestational age were fixed for all women at the

same value, e.g. 266 days (i.e. 38 weeks). By fixing gestational age to
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be the same for all women, the indirect effect of SET/DET through

gestational age is blocked.

For this direct effect parameter to be well defined, it must be pos-

sible, at least in principle, to imagine interventions that would fix

gestational age to be the same for all women and that do not affect

birth weight in any other way (Frangakis and Rubin, 2002). While

such interventions might technically be approximately possible, this

direct effect parameter may not be the most relevant one from a

public health perspective because one would never consider doing an

intervention such that all women have the same gestational age.

2. The natural direct effect of SET/DET on birth weight expresses how

much the average birth weight would change if the study population

would uniformly experience DET instead of SET, but gestational age

remained unchanged. Under this definition, we also block the indi-

rect effect of SET/DET through gestational age, but allow for differ-

ent women to have different gestational ages so as to obtain a more

natural definition of direct effects. Note however that it is not tech-

nically possible to imagine interventions that would realize this. This

is because, even if one could fix gestational age at a given value, the

problem is that for those women undergoing DET, it is unclear what

their gestational age would have been, had they experienced SET.

3. The principal stratification direct effect of SET/DET on birth weight

is the difference in average birth weight between SET and DET for

women whose gestational age is the same under SET as under DET.

Because this direct effect parameter only relates to a small subgroup of

all subjects, inferences for principal stratification direct effects must

deal with a sparse data problem (Robins, Rotnitzky and Vanstee-

landt, 2007). Furthermore, while this effect estimand is well defined,

even when one cannot imagine interventions that fix gestational age,

it may have limited public health relevance (a) because one can never

identify women whose gestational age would be the same under SET

as under DET; and (b) because this group of women to which the

direct effect estimand relates may be a very small subset of the pop-
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ulation.

4. The standardized direct effect of SET/DET on birth weight is the

difference in average birth weight had the study population uniformly

experienced SET versus DET, but gestational age for each subject

were fixed at a certain value which may be different for every subject.

It could for example be the average value for women of the same age

who had spontaneous conception.

Each of the different direct effect definitions have their advantages and

disadvantages. They may be useful in different situations/contexts. The

controlled direct effect is meaningful when one can imagine realistic inter-

ventions that fix the value of the intermediate variable to be the same for

all subjects. When the restriction for all subjects to have the same value

for the intermediate is too restrictive, natural and standardized direct ef-

fects become more meaningful. For example, Petersen et al. (2006) infer

the natural direct effect of air pollution on lung function, not mediated

through use of respiratory (rescue) medication. They do so because it is

not meaningful to imagine fixing the level of this medication to be the same

(e.g. no use of the medication) for the entire study population. This is be-

cause there are likely children in the study population whose underlying

respiratory illness is such that they always need this medication, regardless

of air pollution level. They henceforth fix the level of medication use for

each child at the level it would have been if there were no air pollution. A

drawback of inference for natural direct effects is that stronger assumptions

are required because the potential use of medication in the absence of air

pollution is not directly observable.

In certain situations, natural, controlled and standardized direct effects

are equivalent. This is so when the exposure and the intermediate variable

do not interact to affect the outcome (Robins and Greenland, 1992). That

is, when the controlled direct effect satisfies the no-interaction assumption

that

E(Yxk − Y0k) = E(Yxk′ − Y0k′)

for all k′ 6= k in the support of K. This and the fact that natural direct

effects are more difficult to infer, explains why inference for controlled direct
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effects is of interest, despite natural direct effects often being more relevant.

Moreover, controlled direct effects can easily be estimated using standard

regression techniques, under specific assumptions (see next section). To

estimate natural direct effects, simple regression cannot be used and extra

assumptions are needed (Petersen et al., 2006). In particular, note that

natural direct effects average controlled direct effects

E(YxK0
− Y0K0

) =

∫
E(Yxk − Y0k)f(K0 = k)dk

provided that the untestable assumption holds that (Petersen et al., 2006)

E(Yxk − Y0k|K0 = k) = E(Yxk − Y0k)

Note from the above result that identifying natural direct effects addition-

ally requires causal assumptions to identify f(K0).

The advantage of principal stratification direct effects is that they do

not consider interventions on the intermediate variable and are thus al-

ways well defined in the context of randomized studies (in which there are

no unmeasured common causes of exposure and outcome). However, for

continuous intermediate variables, it is likely that the principal stratum of

subjects whose level of the intermediate variable was not affected by the

exposure, will be a set of probability mass zero (Robins, Rotnitzky and

Vansteelandt, 2007). This implies that inferences may become unstable

and that this parameter is meaningful only for a very small subset of the

population. Therefore, this direct effect parameter is mostly used when the

intermediate is qualitative.

In the remainder of this thesis, we focus on estimating controlled direct

effects because they are more easily obtained, require less assumptions and

because common language about direct effects usually reflects controlled

direct effects. From now on, we will use ‘direct effects’ and ‘controlled

direct effects’ interchangeably.

4.3 The problem with inferring direct effects

Suppose we are interested in estimating the direct effect of exposure X

on outcome Y that is not mediated through the intermediate variable K.
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A causal DAG that illustrates this scenario is shown in Figure 4.1. The

causal DAG represents a setting of a randomized treatment X which may

have both a direct and indirect effect on outcome Y . Even in this ideal

experimental setting, there may be unmeasured factors U jointly affecting

the intermediate variable and the outcome. We will see that the existence

of such variables complicates direct effects inference, even in randomized

trials (Cole and Hernan, 2002; Rosenbaum, 1984).

X Y

U

K

Figure 4.1: Causal diagram representing the (direct) effect of exposure X on

outcome Y which is not mediated through intermediate variable(s) K

To examine whether the direct effect of X on Y is identifiable, we use

d-separation. In the absence of a direct effect (i.e., when we ignore the

arrow between X and Y ) the DAG in Figure 4.1 reveals an open path from

X to Y through K. This path can be blocked by adjusting the association

between X and Y for K. Without such adjustment, the path from X to

Y through K and U was blocked because K is a collider along that path.

However, this path becomes unblocked upon adjusting for K. In order

to close this path again, we need to additionally adjust for U . When all

variables U are measured, this causes no problems and the direct effect
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can be estimated. Often however, not all common causes of K and Y are

measured or known, and thus, the estimated direct effect, as obtained via

traditional regression adjustment for K, is biased in that case.

For the remainder of this chapter, we examine under what conditions

the direct effect of X on Y can be identified. In the following chapters, we

will develop novel direct effect estimators which require fewer assumptions

than direct effect estimators obtained via traditional regression methods.

4.4 Case study: inferring the direct effect of ART

on perinatal health other than through zygos-

ity

The previous development shows that, under certain conditions, di-

rect effects can be relatively easily inferred through traditional regression

adjustment for the intermediate variable. This is the case when the in-

termediate variable K does not share any other causes with the outcome

than the exposure. Traditional regression adjustment is also valid when the

common causes L of the intermediate variable and the outcome are mea-

sured and adjusted for, and in addition they either share no unmeasured

common causes U with the outcome or are not affected by the exposure.

This will be explained in more detail at the end of this section. First, we

will illustrate this through the following example.

Increasingly more couples attempting pregnancy fail to conceive nat-

urally within a year and seek help through subfertility treatments (Taylor,

2003). Efforts to increase the success rates of subfertility treatment have

been accompanied by an insidious rise in the rate of multifetal pregnan-

cies (Blondel et al., 2002). In the face of this multiple birth epidemic, and

despite widespread concern about the effects of medically aided concep-

tion on perinatal outcome, few studies have investigated outcomes in twins

(Blondel et al., 2003), and largely conflicting results have been reported

(Helmerhorst et al., 2004). Twins tend to fare considerably worse than

singletons, with much higher rates of perinatal mortality, neonatal morbid-

ity, and long term neurological impairment (Blondel et al., 2002). Adverse
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pregnancy outcome in turn relates to the high prevalence of preterm birth

among twins (Derom et al., 2005; Loos et al., 1998). Whether subfertility

treatment also impinges on gestational length in twins, as has been estab-

lished among singletons (Helmerhorst et al., 2004; Jackson et al., 2004), is

unclear, as is the extent to which type of twinning interferes with perinatal

outcome after subfertility treatment (Machin, 2004).

To investigate whether there is a direct effect of ART on perinatal

outcomes that is not mediated through zygosity, we first draw a DAG con-

taining the exposure (ART) and outcome (perinatal outcomes) of interest.

Here, three types of ART are being considered: ovulation induction, in

vitro fertilization and intracytoplasmic sperm injection. Since there is an

interest in investigating to which extent type of twinning (i.e. zygosity)

affects perinatal outcomes after subfertility treatment, we add zygosity to

the DAG. Finally, we add all common causes of all pairs of variables to the

DAG. Measured common causes of ART and perinatal outcomes are parity

(i.e. the number of older children), maternal age and year of birth. In our

analysis below, we assume that there are no other (possibly unobserved)

common causes of ART and perinatal outcomes.

Direct effects inference is simplified in this setting because there are

few processes acting upon zygosity. Besides type of conception (naturally

or through ART) and maternal age1, we believe there are few processes that

may have an influence on type of twinning. Thus, we draw an extra arrow

from maternal age to zygosity and assume that there are no remaining

common causes of zygosity and perinatal outcomes. The resulting causal

DAG is shown in Figure 4.2.

Note that the analysis is restricted to twins. This may introduce selec-

tion bias since ART makes it more likely to have twins2 and thus restricting

the analysis to twins involves adjustment for a post-treatment measure-

ment. As explained in the previous section, such adjustment is problematic

whenever there exist risk factors for perinatal outcomes which are also as-

1The older the mother at the time of conception, the more chance of having a DZ

twin (Hoekstra et al., 2008).
2This is so for hormone use, and was until recently also the case for IVF and ICSI,

since two or more embryos were often transferred to the womb.
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sociated with multiplicity (i.e. having a singleton or multiple birth). Such

risk factors may well exist. For instance, this would be the case if cer-

tain genes that predispose people to having multiples, also affect perinatal

outcomes. In that case, this unmeasured genetic variable, may introduce

selection bias. Another possible risk factor is fertility of the mother. Like-

wise, maternal age affects multiplicity and perinatal outcomes, but this

variable is not problematic since it is already accounted for in the analysis.

ART

Maternal age

Perinatal outcomes

Zygosity

Parity
Year of birth

Figure 4.2: Causal diagram for estimating direct effect of ART on perinatal out-

comes

We focus on two main perinatal outcomes, birth weight and gestational

age. In a first analysis, the total effect (i.e. combination of direct effect and

indirect effects) of ART on birth weight and gestational age is estimated. D-

separation indicates that adjustment for the confounders parity, maternal

age and year of birth is necessary. We estimate the total effect of ART

on the risk of low birth weight and risk of preterm birth through marginal
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logistic regression models, which are fitted using generalized estimating

equations (Diggle et al., 1994) with exchangeable working correlation and

different correlation allowed for monozygotic and dizygotic twins (in SAS

version 9.1, with proc genmod). The results can be viewed in the first

column of Table 4.1. In a second analysis, the goal is to estimate the direct

effect of ART on the risk of low birth weight and on the risk of preterm

birth, which is not mediated through zygosity. Since no other variables

than ART and maternal age are assumed to affect zygosity, additionally

adjusting for zygosity3 in the analysis for inferring the direct effect of ART

on perinatal outcomes opens the closed sequence of arrows that point to

zygosity (zygosity is a collider), but does not induce bias because the path

is closed by adjusting for maternal age. The results can be viewed in the

second column of Table 4.1.

Preterm birth

total effect OR direct effect OR

OI vs. SC 1.26 [1.07,1.50] 1.46 [1.22,1.75]

IVF/ICSI vs. SC 1.38 [1.15,1.66] 1.73 [1.34,2.00]

Low birth weight

total effect OR direct effect OR

OI vs. SC 1.07 [0.93,1.24] 1.29 [1.10,1.50]

IVF/ICSI vs. SC 1.09 [0.93,1.24] 1.32 [1.12,1.55]

Table 4.1: Odds ratios for preterm birth and low birth weight for total and

direct effect of ART (ovulation induction (OI), IVF/ICSI or spontaneous

conception (SC))

We find that the odds of preterm birth is 1.26 (95%CI [1.07,1.50])

times higher for ovulation induction compared to spontaneous conception

and 1.46 (95%CI [1.22,1.75]) times higher when fixing zygosity. The odds of

preterm birth is 1.38 (95%CI [1.15,1.66]) times higher for IVF/ICSI versus

spontaneous conception and 1.73 (95%CI [1.34,2.00]) times higher when

fixing zygosity. All of these odds ratios are significantly different from 1

and thus, represent a systematic difference between all types of conception.

3next to maternal age, parity and year of birth
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The total effect odds ratios (1.26, 95%CI [1.07,1.50], for ovulation induction

versus spontaneous conception and 1.38, 95%CI [1.15,1.66], for IVF/ICSI

versus spontaneous conception), however, are smaller than the direct effect

odds ratios. This is due to the mediation of the direct negative effect of ART

on gestational age by the indirect beneficial effect of ART on gestational

age since there are more dizygotic twins after ART who, on average, have

an older gestational age than monozygotic twins. The odds of low birth

weight is only significantly higher (e.g. 1.29 (95%CI [1.10,1.50]) times and

1.32 (95%CI [1.12,1.55]) times respectively) for ovulation induction and

IVF/ICSI compared to spontaneous conception for the direct effect, not

for the total effect (1.07, 95%CI [0.93,1.24], for ovulation induction versus

spontaneous conception and 1.09, 95%CI [0.93,1.24], for IVF/ICSI versus

spontaneous conception). This is again due to the mediation of the direct

negative effect of ART on birth weight by the indirect beneficial effect of

ART on birth weight through zygosity.

We conclude that infertility is associated with a quite large negative

effect on gestational age and this effect is somewhat larger for IVF/ICSI

than for ovulation induction (Verstraelen et al., 2005). Our results suggest

that, in contrast to the general belief, twins born after ART have an ad-

ditional risk of preterm birth over and above the risk implied by being a

twin. However, this increased risk diminishes due to the large number of

dizygotic twins after ART. Thus, when zygosity is not taken into account,

the direct effect of ART on gestational age is underestimated. These re-

sults show the importance of correctly registering the type of zygosity and

conception in studies of fertility treatment.

The above example is a simple illustration of direct effects estimation,

where the simplicity results from few processes acting upon the intermedi-

ate variable. In most cases, however, inferring a direct effect is not as easy

as in this case study. Problems arise when one (or more) of the measured

confounders of the effect of the intermediate variable on the outcome, is it-

self affected by the exposure and, in addition, there exist prognostic factors

of the outcome which are associated with this confounder. This situation

is shown in the DAG in Figure 4.3. D-separation shows that additionally

adjusting for such measured confounders L of the intermediate and out-
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come may then induce bias. It may do so by opening the path from X

to Y through L and U . Thus, when there are unmeasured confounders U

affecting L and Y , simple regression adjustment does not give the causal

effect of interest.

X

UL

K

Y

Figure 4.3: Causal diagram for estimating direct effect of exposure X on outcome

Y in presence of measured confounders L and unmeasured confounders U

The DAG in Figure 4.3 may seem complex at first sight, but is nonethe-

less representative of many realistic situations. This is so because the in-

termediate variable K arises post treatment X and thus it is likely that

some of the confounders for the association between K and outcome also

arose only post treatment. In Example 2, for instance, height is a mea-

sured confounder for the association between body weight (the intermedi-

ate variable) and lung function (the outcome), and may itself be genetically

affected. In Example 3, zygosity and multiplicity (e.g. twin/singleton) are

measured confounders for association between the intermediate (gestational
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age) and the outcome (birth weight), which may themselves be affected by

SET/DET. In the example about the effect of ART on perinatal outcomes

multiplicity is also a measured confounder for the association between the

intermediate (zygosity) and perinatal outcomes. Note that in this exam-

ple only twins are ascertained, and in Example 3 only singletons. Thus,

these analyses implicitly adjust for multiplicity, which may induce bias,

as explained above. In the former example, a possible solution is to con-

straint the analysis to the principal stratum of women who would have got-

ten a twin either way, after ART and after spontaneous conception. This

way twin/singleton status is no longer adjusted for, but the counterfactual

twin/singleton status is, which is no longer affected by type of conception.

The same can be done in Example 3, by constraining the analysis to the

principal stratum of women who would have gotten a singleton eitherway,

after SET and after DET.
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4.5 Structural equation models

4.5.1 Inferring direct causal effects via structural equation

models

A frequently used alternative for direct effect inference is based on path

diagrams and structural equation models. In this section, we evaluate how

well these methods perform to estimate the direct effect of an exposure X

on an outcome Y in the DAG in Figure 4.3 and under what assumptions

they give valid estimates.

Remember from Chapter 2 that structural equation models parame-

terize a causal DAG using multiple linear models involving measured and

possibly unmeasured variables. In particular, they postulate a multivariate

normal distribution for the vector of measured and unmeasured variables,

which satisfies the conditional independence assumptions imposed by the

underlying DAG (see Chapter 2 for a more detailed explanation). For

instance, the structural equation model corresponding to the diagram in

Figure 4.3 is

X = α0 + ǫX (4.1)

U = β0 + ǫU

L = γ0 + γ1X + γ2U + ǫL

K = δ0 + δ1X + δ2L+ ǫK

Y = η0 + η1X + η2K + η3U + ǫY

where ǫX , ǫU , ǫL, ǫK and ǫY are mutually independent, mean zero normal

variates with variances ψX , ψU , ψL, ψK and ψY . If this model is correctly

specified, unbiased estimates may be obtained of the path coefficients of in-

terest, e.g. the direct effect parameters, provided that they are identifiable

from the observed data distribution. It follows from the Causal Markov

Assumption (see Chapter 1) that, assuming that the path diagram corre-

sponding to the SEM is a causal diagram, SEM adjust for the correct set of

variables in order to obtain the direct effect of X on Y , and thus that the

path coefficients represent direct causal effects (see also Pearl, 2000, for a

more detailed argument).
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4.5.2 Simulation study

In the previous sections, we have seen that it is important to consider

the existence of unmeasured common causes of confounders L and out-

come Y , as these may bias traditional regression estimates whenever the

confounder L is affected by the exposure X. Structural equations must ex-

plicitly model such common causes. This may be problematic when these

common causes are unmeasured as it may yield identifiability problems

and because model misspecification then becomes difficult to detect. In

this section, we investigate this through limited simulation studies under

the DAG of Figure 4.3. All analyses were conducted in R (version 2.3.1),

using function ‘sem’ to fit structural equation models and ‘glm’ to fit linear

regression models.

Simulation experiment 1

We simulate 1000 data sets of size n (n = 100 or n = 1000) corresponding to

the path diagram in Figure 4.3, under the following models (corresponding

to equations (4.1)):

X = 2 + ǫX (4.2)

U = ǫU

L = 3 + 2X + 2U + ǫL

K = 3 + 2X + 1.5L+ ǫK

Y = 5 + 1.5X + 0.8K + 2U + ǫY

where ǫX , ǫU , ǫL, ǫK and ǫY are mutually independent, mean zero normal

variates with standard deviations 1.5, 1, 5, 0.5 and 1, respectively. We

then repeat the simulation study with the effect of X on L set to zero. The

previous theoretical results indicate that simple regression adjustment for

K and L will be biased, except in the second simulation setting, where L

is not affected by X.

Simulation experiment 2

We simulate 1000 data sets of size n (n = 100 or n = 1000) corresponding to

the path diagram in Figure 4.3, under the following models (corresponding
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to equations (4.1)):

X = ǫX (4.3)

U = ǫU

L = 3 + 2X + 2U + ǫL

K = 3 +X + 1.5L+ ǫK

Y = 5 + 3X + 1.8K + 2U + ǫY

where ǫX , ǫU , ǫL, ǫK and ǫY are mutually independent, mean zero normal

variates with standard deviations 1.5, 1, 5, 0.5 and 1, respectively. Com-

pared to the previous simulation setting, we have strengthened the direct

effect of X on Y and weakened the effect of X on K. This way, the indi-

rect effect of X on Y is weakened and we expect that adjusting for K will

cause less bias than in the previous simulation. As before, we repeat the

simulation study with the effect of X on L set to zero.

Simulation experiment 3

We simulate 1000 data sets of size n (n = 100 or n = 1000) corresponding to

the path diagram in Figure 4.3, under the following models (corresponding

to equations (4.1)):

X = 1 + ǫX (4.4)

U = ǫU

L = 1 + 2X + U + ǫL

K = −0.5X + 0.5L+ ǫK

Y = 5 + 2X + 0.5K + U + ǫY

where ǫX , ǫU , ǫL, ǫK and ǫY are mutually independent, mean zero normal

variates with standard deviations 0.5, 1, 3, 0.3 and 1, respectively. Com-

pared to the previous simulation settings, the confounding effects of U on L

and Y are weakened now. As before, we repeat the simulation study with

the effect of X on L set to zero.

Simulation experiment 4

In this simulation study we will examine the impact of misspecifying one of

the linear models in the structural equation model. Specifically, we generate
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a nonlinear relationship between U and Y . As before, we simulate 1000 data

sets of size n (n = 100 or n = 1000) corresponding to the path diagram in

Figure 4.3, under the following models (corresponding to equations (4.1)):

X = ǫX (4.5)

U = ǫU

L = 3 + 2X + 2U + ǫL

K = 3 +X + 1.5L+ ǫK

Y = 5 + 3X + 1.8K + 2U + 1.5U2 + ǫY

where ǫX , ǫU , ǫL, ǫK and ǫY are mutually independent, mean zero normal

variates with standard deviations 1.5, 1, 5, 0.5 and 1, respectively. Com-

pared to Simulation 2, a quadratic effect of U on Y is added to the model

for Y .

Again, we perform this simulation twice, once using the models above

and once with the effect of X on L set to zero.

Analysis

In all analyses, U is assumed to be unmeasured. The following analyses

were considered.

SEM) We fit the structural equation model given in (4.1), with η1 the direct

effect parameter of interest. Because of identifiability problems, we

follow standard practice by fixing certain path coefficients to 1. In

particular, we set the effects of U and its variance equal to 1.

LM) We ignore the unmeasured confounder U by fitting the linear model

E(Y |X,K,L) = κ0 + κ1X + κ2K + κ3L

to estimate the effect κ1. D-separation indicates that this effect cor-

responds to the direct effect η1 of interest only when L is not affected

by X.

UW) Finally, we apply a novel methodology that we develop in Chapters

5 and 6 to estimate direct effects (see Chapter 5 and the unweighted

estimator in Section 6.2.4). This method overcomes the need to model

the unmeasured confounders U for L and Y .
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Results

The simulation results of Simulation experiment 1, 2 and 3 are shown in

Table 4.2 for the case where there is an effect of X on L and in Table 4.3 for

the case where there is no effect of X on L. Table 4.4 gives the results for

Simulation experiment 4. In Simulation experiment 3, in several iterations,

the structural equation models failed to converge due to singularities. This

was the case in 54 and 22 iterations in the setting with an effect of X

on L for sample size 100 and 1000 respectively. For these iterations, the

corresponding estimates for the unweighted estimator and the traditional

regression adjustment estimator were excluded to maintain comparability

with the SEM results. In case of no effect ofX on L, the structural equation

models failed to achieve convergence in almost every iteration, which is why

these results are not added to Table 4.3.

As expected the simple regression model only gives unbiased results

when there is no effect of X on L. The efficiency of the novel unweighted

estimator is then comparable to that of traditional regression adjustment,

suggesting that the protection guarantees offered by our estimators do not

come at expense of imprecision in cases where traditional regression ad-

justment works. This is especially so at larger sample sizes (i.e. n = 1000).

Moreover, Simulation experiment 3 illustrates that, in the setting with an

effect of X on L, the unweighted estimator may also seriously outperform

the regression estimator in terms of MSE.4

In all simulations, the structural equations analysis gives biased results,

even when all model assumptions are correct, as in Simulation experiment

1, 2 and 3. This is likely the result of fixing unknown parameter values at

1 to obtain an identifiable model. Note however that the standard errors

of the structural equations estimates are much smaller than those obtained

with the unweighted estimator or with the linear model. Because bias is

not easily detectable, we believe however that the concern for bias trumps

efficiency concerns. In particular, note that the confidence intervals ob-

tained via structural equations analysis have very low coverage, in contrast

4Note that for the unweighted estimator, the estimated standard error deviates from

the empirical standard error in several cases, thus, the assymptotics cannot always be

trusted and bootstrap standard errors would be more appropriate.
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to those obtained with the novel estimator. This is of concern, noting that

confidence intervals are frequently used for decision making.
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Simulation experiment 1

n Bias 95% CI Bias Estimated SE Empirical SE Coverage MSE MSE ratio

SEM 100 -0.35 [-0.36;-0.34] 0.19 0.20 0.55 0.40 5.63

LM 100 -0.33 [-0.38;-0.27] 0.88 0.91 0.91 0.97 2.32

UW 100 -0.11 [-0.25;0.033] 2.53 2.25 0.975 2.25

SEM 1000 -0.34 [-0.35;-0.34] 0.061 0.061 0 0.35 2.00

LM 1000 -0.27 [-0.29;-0.26] 0.27 0.28 0.80 0.39 1.79

UW 1000 0.0037 [-0.04;0.047] 0.78 0.70 0.97 0.70

Simulation experiment 2

n Bias 95% CI Bias Estimated SE Empirical SE Coverage MSE MSE ratio

SEM 100 -0.28 [-0.29;-0.27] 0.18 0.18 0.63 0.33 5.48

LM 100 -0.30 [-0.33;-0.27] 0.46 0.48 0.88 0.57 3.18

UW 100 -0.083 [-0.20;0.030] 2.14 1.81 0.98 1.81

SEM 1000 -0.27 [-0.28;-0.27] 0.056 0.056 0.004 0.28 2.00

LM 1000 -0.27 [-0.28;-0.27] 0.14 0.15 0.52 0.31 1.81

UW 1000 0.0032 [-0.032;0.038] 0.66 0.56 0.98 0.56

Simulation experiment 3

n Bias 95% CI Bias Estimated SE Empirical SE Coverage MSE MSE ratio

SEM 100 -1.00 [-1.02;-0.98] 0.29 0.30 0.070 1.044 0.39

LM 100 -0.20 [-0.22;-0.17] 0.38 0.38 0.90 0.43 0.95

UW 100 -0.0035 [-0.030;0.023] 1.20 0.41 1 0.41

SEM 1000 -0.996 [-1.00;-0.99] 0.091 0.092 0 1.00 0.12

LM 1000 -0.196 [-0.20;-0.19] 0.12 0.12 0.62 0.23 0.52

UW 1000 0.0032 [-0.0045;0.011] 0.37 0.12 1 0.12

Table 4.2: Simulation results for the case where X affects L. CI=Confidence interval, MSE=mean squared

error, MSE ratio= ratio of the MSE of the unweighted estimator versus the MSE of the other estimators.
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n Bias 95% CI Bias Estimated SE Empirical SE Coverage MSE MSE ratio

SEM 100 -0.14 [-0.15;-0.13] 0.15 0.16 0.83 0.21 4.48

LM 100 -0.047 [-0.10;0.0089] 0.88 0.90 0.94 0.90 1.04

UW 100 -0.041 [-0.99;0.017] 1.35 0.94 0.99 0.94

SEM 1000 -0.14 [-0.14;-0.13] -.048 0.048 0.18 0.14 2.07

LM 1000 -0.0019 [-0.016;0.019] 0.27 0.28 0.95 0.28 1.04

UW 1000 0.0026 [-0.015;0.020] 0.41 0.29 0.99 0.29

Simulation experiment 2

n Bias 95% CI Bias Estimated SE Empirical SE Coverage MSE MSE ratio

SEM 100 -0.072 [-0.081;-0.063] 0.14 0.15 0.90 0.17 3.12

LM 100 -0.025 [-0.054;0.042] 0.46 0.47 0.93 0.47 1.13

UW 100 -0.019 [-0.052;0.014] 1.38 0.53 1 0.53

SEM 1000 -0.068 [-0.070;-0-065] 0.045 0.046 0.68 0.081 1.85

LM 1000 0.0015 [-0.0077;0.011] 0.14 0.15 0.94 0.15 1.00

UW 1000 0.0022 [-0.0072;0.012] 0.42 0.15 1 0.15

Simulation experiment 3

n Bias 95% CI Bias Estimated SE Empirical SE Coverage MSE MSE ratio

SEM 100

LM 100 0.0012 [-0.023;0.025] 0.37 0.38 0.94 0.38 1.11

UW 100 0.0067 [-0.0019;0.033] 1.11 0.42 1 0.42

SEM 1000

LM 1000 0.0037 [-0.0033;0.011] 0.11 0.11 0.95 0.11 1.09

UW 1000 0.0039 [-0.0034;0.011] 0.34 0.12 1 0.12

Table 4.3: Simulation results in case X does not affect L. CI=Confidence interval, MSE=mean squared

error, MSE ratio= ratio of the MSE of the unweighted estimator versus the MSE of the other estimators.
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with effect of X on L

n Bias 95% CI Bias Estimated SE Empirical SE Coverage MSE MSE ratio

SEM 100 -0.27 [-0.29;-0.26] 0.25 0.27 0.79 0.38 6.74

LM 100 -0.30 [-0.34;-0.26] 0.66 0.68 0.92 0.75 3.41

UW 100 -0.097 [-0.26;0.06] 2.80 2.56 0.98 2.56

SEM 1000 -0.27 [-0.28;-0.27] 0.079 0.084 0.069 0.29 2.62

LM 1000 -0.28 [-0.29;-0.26] 0.20 0.20 0.72 0.34 2.24

UW 1000 <0.001 [-0.047;0.047] 0.87 0.76 0.97 0.76

without effect of X on L

n Bias 95% CI Bias Estimated SE Empirical SE Coverage MSE MSE ratio

SEM 100 -0.67 [-0.081;-0.054] 0.20 0.21 0.92 0.22 3.50

LM 100 -0.023 [-0.064;0.019] 0.65 0.66 0.95 0.66 1.17

UW 100 -0.023 [-0.071;0.024] 1.58 0.77 1 0.77

SEM 1000 -0.069 [-0.073;-0.065] 0.064 0.066 0.81 0.10 2.00

LM 1000 <0.001 [-0.012;0.012] 0.20 0.20 0.96 0.20 1.00

UW 1000 <0.001 [-0.013;0.012] 0.47 0.20 1 0.20

Table 4.4: Simulation results for Simulation experiment 4, in which U has a quadratic effect on Y .

CI=Confidence interval, MSE=mean squared error, MSE ratio= ratio of the MSE of the unweighted es-

timator versus the MSE of the other estimators.
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4.6 Brief overview of literature about estimation

of direct effects

Methods for direct effects estimation have long been around, with ex-

tensive developments mainly within the structural equations literature (see

e.g. Baron and Kenny, 1986; MacKinnon et al., 2002). These methods

ignore the problem of confounding of the association between the inter-

mediate variable and the outcome, and will therefore not be further dis-

cussed in this work. One of the first rigorous accounts of direct effects

estimation, which acknowledges and clarifies the problems raised by such

confounders, is Robins and Greenland (1992). These authors propose the

G-computation algorithm to obtain controlled direct effect estimates ad-

justed for confounding bias. Later, Robins (1999b) discussed problems

related to using the G-computation formula: (a) that is computationally

complex; (b) that it is heavily model dependent; and (c) that the so-called

null paradox guarantees rejection of the null hypothesis of no direct effect

with probability approaching 1 as the sample size increases. The latter is

due to the G-computation formula, like structural equation models, being

based on models that do not carry direct effect parameters.

In view of this, Robins (1999b) proposes structural nested direct ef-

fect models which parameterize controlled direct effects (see Chapter 6).

An estimation method based on inverse probability weighting is proposed,

whereby each subject’s data is inversely weighted by a conditional distri-

bution of the intermediate variable. This method works well when the

intermediate variable is categorical, but suffers from instability when this

variable is absolutely continuous or when strong predictors of the interme-

diate variable exist (Vansteelandt, Goetgeluk et al., 2008; Goetgeluk et al.,

2008). Van der Laan and Petersen (2004) develop similar methods based

on marginal structural models for multiple interventions. Both methods

have been proposed for longitudinal data.

Robins and Greenland (1992), Pearl (2001) and Petersen, Sinisi and

van der Laan (2006) argue that natural direct effects are often more mean-

ingful effect estimands than controlled direct effects. Robins and Greenland

(1992) argue that these are extremely difficult to identify and suggest that
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they are equivalent to controlled direct effects under the assumption of

no interaction between the exposure and the intermediate variable. Pearl

(2001) avoids the no-interaction assumption, which is testable, and pro-

poses an untestable assumption under which natural direct effects can be

identified. This is further relaxed in Petersen, Sinisi and van der Laan

(2006) and van der Laan and Petersen (2004).

Ten Have et al. (2007) avoid the assumption of no unmeasured con-

founders for the association between the intermediate variable and the out-

come, by using an instrumental variables approach (with the target expo-

sure taken as the instrumental variable). Their method is of interest in the

context of randomized experiments, but involves untestable no-interaction

assumptions and tends to yield very inefficient estimates. Using a somewhat

related estimation principle, Frangakis and Rubin (2002) identify principal

stratification direct effects, additionally assuming the non-existence of cer-

tain principal strata.

In Chapter 5, we develop a simple, novel estimation method for con-

trolled direct effects, which is easily implemented in statistical software. It

is based on the no-unmeasured confounders assumption of Robins (1999b),

but offers much more stable and accurate inferences, even in case the in-

termediate variable is continuous. We apply the methodology on a family-

based association study to estimate the direct effect of certain SNPs in

the IL10-gene on asthma, that is not mediated through body mass. This

chapter was originally written as a stand alone article for geneticists. In

Chapter 6, we extend estimation of direct effects based on Robins’ struc-

tural nested direct effect models by developing doubly robust estimators.

This means that the assumption on which these models are based is re-

laxed which makes them of use in realistic situations. These doubly robust

estimators offer more stable and accurate inferences than the estimators

obtained with the structural nested direct effect model. In addition, we

find that the simple estimation method of Chapter 5, is a special estimator

in the class of estimators developed in Chapter 6.
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Chapter 5

A general principle for the

identification of direct causal

genetic pathways in association

studies

Summary

In genetic association studies, different complex phenotypes are of-

ten associated with the same marker. Such associations can be indica-

tive of common genetic causes, non-genetic/environmental links between

the traits, or the gene causing one of the traits which in turn causes the

other trait. The presence of these multiple possible scenarios can obscure

the true causative association and impede its identification. To identify

the phenotype(s) with the causal genetic effects, statistical methods are

needed to distinguish among these different possible origins of the associa-

tions. Herein, we propose a simple, general adjustment principle that can

be incorporated into many standard genetic association tests to infer that

a SNP has a direct causal influence on a given trait other than through

the SNP’s influence on another correlated phenotype. The proposed ad-

justment requires an estimate of the effect of the intermediate phenotype

on the target trait, and thus requires measurements on all important com-

mon risk factors of both traits. Given such measurements, the adjustment

127
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is straightforward to compute and thus particularly relevant for genome-

wide association studies, pathway analyses, and association studies with an

integrative genomic component. Using simulation studies, we show that

standard association tests without the proposed adjustment can be biased

in the presence of a non-causal link between marker and phenotypes. The

simulations confirm our theoretical derivations that the proposed method-

ology is unbiased in such situations. Its achieved power levels are almost

identical to those of standard methodology in situations where standard

methods are valid. An application of the principle to three genome-wide

association studies illustrates its practical importance.

[Original co-authors: S. Vansteelandt, Irwin Waldman, Helen Lyon, Eric

E. Schadt, Scott T Weiss and Christoph Lange]

5.1 Introduction

It is well-established that the findings of genetic association studies

can be confounded and biased by genetic and/or phenotypic heterogeneity

which is not accounted for in statistical analyses. Consequently, much ef-

fort has been devoted to the development of statistical analytic techniques

that minimize the impact of such effects, in particular population admix-

ture and stratification (Pritchard and Rosenberg, 1999; Devlin and Roeder,

1999; Price et al., 2006; Epstein et al., 2007). Relatively little is known,

however, about situations in which the same SNP is associated with mul-

tiple phenotypes which are themselves associated other than through the

SNP of interest. Given such related phenotypes, a true association of the

SNP with one phenotype can also induce an association with the other

phenotype even in the absence of a direct independent effect of the SNP on

that phenotype (Smoller et al., 2000; Robins et al., 2001). Such situations

arise in genome-wide association studies (GWAS), in pathway analyses of

candidate genes, and in association studies that incorporate genomic infor-

mation.

There are three common contexts in which this problem arises. First,

in both medical and psychiatric genetics, disorders of interest frequently
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overlap and their symptoms covary, a phenomenon termed ‘comorbidity’.

In such cases, a SNP associated with the target disorder will often also

be associated with the comorbid disorder(s). This raises the question of

whether such associations reflect the independent influence of the SNP on

the comorbid disorders or merely the influence of the SNP on the target

disorder, which then in return stimulates the occurrence of comorbid dis-

orders. Similar issues are encountered in the pathway analysis of complex

diseases. For example, recent independent genome-scans for obesity and

nicotine addiction revealed associations between SNPs in the FTO gene

and both BMI and Smoking Quantity (SQ) (Frayling et al., 2007; Bierut et

al., 2007). It is not obvious whether the observed associations here are at-

tributable to direct genetic effects of FTO on both phenotypes, or whether

links between nicotine addiction and obesity induce associations with each

phenotype that are not a direct influence of the FTO gene. Second, medical

and psychiatric geneticists often seek to explain the association between a

SNP and a disorder using constructs that are considered to be more di-

rect and proximal influences of the gene of interest. Such constructs, often

referred to as endophenotypes or intermediate phenotypes, may represent

immediate biological products of the gene, aspects of physiological or neu-

rological function or various cognitive/neuropsychological functions. One

index of the utility and validity of such endophenotypes is that they account

for all or at least part of the SNP’s influence on the disorder of interest.

Thus, researchers are interested in testing whether the SNP influences the

endophenotype in addition to the disorder and, conversely, whether the

SNP shows any residual association with the disorder after accounting for

its effects on the endophenotype. A third, conceptually different situation

is encountered in genetic association studies that incorporate genomic data,

e.g., expression profiles. Here, associations between the same marker and

both traits, the expression profile and the disease phenotype of interest,

can be especially informative. If one is able to conclude that the observed

association between the marker and the disease phenotype is caused by the

marker’s effects on the expression profile, this increases the validity of an

association finding with the disease phenotype.

A first common approach to test whether a SNP shows any residual
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association with the target phenotype other than through its effects on a

related phenotype, is to regress the target phenotype on the related phe-

notype and to use the corresponding residuals as the phenotype of interest

in the association analysis. This approach is commonly recommended in

GWAS of complex diseases, although with the different purpose of reduc-

ing the environmental variance of the phenotype, consequently increasing

the statistical power of the association test. A second approach is to test

whether the SNP is associated with the target phenotype after adjusting for

the other phenotype. In this article, we argue, using causal diagrams, that

both approaches are fallible. For the first approach, this is partly because by

removing the association between both phenotypes (through taking resid-

uals), one risks to remove also part of the effect of the SNP on the target

phenotype. For the second approach this is because adjustment for pheno-

types, or more generally covariates, is only valid under the assumption that

the influencing factors/covariates are not associated with the marker locus

(Rosenbaum, 1984; Cole and Hernan, 2002). Nonetheless, in the context of

GWAS which interrogate the entire human genome, the assumption that

covariates are not associated with a relevant marker locus is generally un-

tenable. In order to identify the true genetic pathways underlying complex

diseases, it will be crucial to distinguish whether an observed genetic as-

sociation with a phenotype is attributable to its non-marker relation with

another phenotype that is itself influenced by the marker, or whether the

observed association represents the independent effects of the SNP, thus in-

dicating a direct causal genetic relationship between the marker locus and

the phenotype.

To address this problem, we propose a simple, general principle and

method to adjust the phenotype of interest for its relation with another phe-

notype. We develop a computationally simple adjustment approach that

is applicable to both binary and quantitative traits. The proposed adjust-

ment requires an estimate of the effect of the intermediate phenotype on

the target trait, and thus requires measurements on all important common

risk factors of both traits. Given such measurements, the adjustment is

straightforward to compute and can be incorporated into many standard

genetic association tests, which then test for the direct genetic effect of
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the marker on the phenotype of interest. It is important to note that if

the adjustment is applied to account for a ‘false-positive’ association and

the other phenotype is not actually associated with the marker locus, the

adjustment remains valid.

Using simulation studies, we demonstrate that, association tests with

covariate adjustments that are based on intuitive regression approaches can

be biased and provide incorrect results whenever some of these covariates

have a non-causal relation with the target phenotype. In contrast, our sim-

ulation studies verify that association tests using the proposed adjustment

approach are valid when all common risk factors/confounders of the target

phenotype and these covariates are correctly taken into account, and show

reasonable robustness against moderate degrees of residual confounding.

The simulation studies also demonstrate that the approach is suffciently

powered to detect causal genetic effects for realistic sample sizes. Further,

when the proposed adjustment is applied to account for a ‘false positive’ as-

sociation, the adjusted association test remains unbiased and is only slightly

less powerful compared to standard regression approaches. This suggests

the proposed approach is generally applicable for the adjustment of pheno-

types in genetic association studies.

As a real data example, we present results from a GWAS in the Fram-

ingham Heart Study that suggested an association between a SNP and

two phenotypes, FEV1 and BMI which was detected using a standard

regression-based covariate adjustment. In contrast, application of the pro-

posed adjustment method suggests that the ‘true’ effect of this SNP orig-

inated from its association with BMI and that the observed association

with FEV1 is attributable to this true association. This conclusion is then

confirmed by replication replications in an independent GWAS, the CAMP

study (Group CAMP, 1999).

5.2 Fallacies of intuitive regression adjustments

Suppose that in the study of interest, n subjects have been genotyped

at a specified marker locus and their coded genotype are denoted by Xi, i =

1, ..., n. If the selected sample is a family-based study, we further assume
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Figure 5.1: Causal diagram illustrating the confounding of the genetic association

between the primary phenotype Y and the SNP X. The variable K denotes the

intermediate phenotype, X the SNP, and S a collection of measured factors (e.g.,

parental genotypes in the case of a family-based study) inducing population admix-

ture. U1 denotes a collection of unmeasured factors that allow for confounding

due to population admixture and U2 a collection of common risk factors of both

phenotypes.

that additional genotype data on other family-members are available so

that the expected marker score, E(Xi|Si), can be computed conditional on

Mendelian transmissions. When parental data are available, the variable

Si denotes the parental genotypes; otherwise it represents the sufficient

statistic by Rabinowitz and Laird (2000).

Two phenotypes, Ki and Yi, have been recorded for the ith subject.

Both phenotypes are influenced by the shared, non-marker related set of

factors, Li, and are thus correlated. Assume that the first ‘intermediate’

phenotype Ki has been tested for association with the SNP, and a signifi-

cant association has been observed. Now, given the established association

between the SNP and the phenotype Ki, our goal is to test for an asso-

ciation between the ‘target’ phenotype Yi and the SNP that cannot be

explained by the existing genetic association with Ki and the correlation

between both phenotypes.

To understand the problems of standard intuitive regression approaches,

we use causal diagrams (Pearl, 1995; Robins, 2001; Robins et al., 2001).

These postulate the causal relationships between all measurements of in-
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terest by means of directed arrows, as in Figure 5.1. Here, S encodes the

parental genotypes in the case of a family-based study, and measured fac-

tors inducing population admixture otherwise. Further, U1 is a collection

of unmeasured factors that allow for confounding due to population ad-

mixture and U2 a collection of unmeasured common risk factors of L and

Y . For this diagram to be causal, it must satisfy the following two basic

assumptions:

1. The absence of an arrow between any two variables A and B encodes

the assumption that A exercises no direct causal effect on B. Figure

5.1 thus postulates that L cannot affect Y other than by modifying

K. We will relax this restriction later.

2. The diagram includes all variables that jointly affect any two variables

in the diagram. Figure 5.1 thus postulates that all risk factors for the

intermediate phenotype K, which are also associated with the target

phenotype Y , have been measured and are contained in L. The figure

allows, however, for the presence of unmeasured common risk factors

of L and Y , and of S and Y .

The double-headed arrow between U1 and U2 allows for both variables to be

associated (i.e., it allows for an unmeasured common cause). Note that a

critical assumption, embedded in Figure 5.1, is that the target phenotype Y

is affected by the intermediate phenotype K and not the other way around.

We will elaborate on this restriction in the discussion section.

Two variables in a causal diagram may be statistically associated along

all paths that have no converging arrows (i.e., along all unbroken sequences

of edges between those two variables, disregarding the direction of the ar-

rows, in which no two arrows point to each other) (Pearl, 1995; Robins,

2001; Robins et al., 2001). Specifically, the genotype X and primary phe-

notype Y in Figure 5.1 may be associated because of a direct genetic effect

(i.e., along the path X − Y ), because of an indirect genetic effect (i.e.,

along the path X − K − Y ) and because of population admixture (i.e.,

along the path X − S − U1 − Y ). Importantly, note that when the tar-

get phenotype is not directly genetically affected, then (in the absence of
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population admixture) no association can be detected between the geno-

type and the target phenotype, unless there is a causal link between both

phenotypes (i.e., unless K causally affects Y ). Indeed, a non-causal rela-

tionship between both phenotypes does not induce an association between

the genotype and the target phenotype because the converging arrows along

the paths X−K−L−U2−Y and X−L−U2−Y transmit no association.

We will now use the causal diagram in Figure 5.1 to gain insight into

the validity of common regression approaches to test the hypothesis whether

the SNP directly affects the target phenotype other than through the in-

termediate phenotype K. A first common approach is to eliminate the

effects of the established association with the other phenotype Ki by re-

gressing the target phenotype Yi on Ki and using the residuals of Yi as the

new phenotype in the association test. This approach has the disadvantage

that the residuals remove the overall association between both phenotypes,

which mixes the effect of the intermediate phenotype on the target trait

(i.e., along the path K − Y ), with spurious (i.e., non-causal) associations

through the SNP X (i.e., along the paths K −X − Y , K −L−X − Y and

K−X−S− (U1, U2)−Y ), and by spurious association other than through

the SNP X (i.e., along the path K − L − (U1, U2) − Y ). By not solely re-

moving the causal effect of the intermediate phenotype on the target trait,

the residuals may be associated with the SNP, even when it has no direct

influence on the target trait. In particular, suppose that the SNP directly

influences K, but not Y , and that K has no effect on Y . Then the SNP has

neither a direct, nor an indirect effect on Y . Nonetheless, the residual, say

Y − γK, will have γ 6= 0 because Y is spuriously associated with K along

the path K −L−U2 − Y , and will be associated with the SNP by the fact

that K is influenced by it.

An alternative common approach to test the hypothesis that the SNP

has a direct influence on the target phenotype other than through K, is to

measure the association between X and Y conditional on K. To appreciate

the impact of such adjustment for K, note that adjustment for a variable K

on a path between two variables X and Y in the causal diagram blocks the

association between those variables along that path. This is true except

when K is a (descendant of a) collider along that path, in which case
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an association is induced (Pearl, 1995; Robins, 2001; Robins et al., 2001).

Stratification of the analysis on the intermediate phenotype K thus removes

the indirect effect of X on Y , but at the same time induces a spurious

association along the path X−K−U2−Y because K is a collider along that

path. Additional adjustment for the confounders L blocks this assocation,

but induces a new, non-causal association along the path X −L−U2 − Y .

In summary, traditional approaches for estimating/testing direct ge-

netic effects, either based on an analysis of residuals or based on ordinary

regression adjustment, may yield biased inferences whenever, as is likely

the case, the association between the intermediate and target phenotype is

confounded. Traditional regression adjustment for measured confounders

remains problematic when (some of) these confounders are themselves influ-

enced by the the target SNP. In the next section, we propose an alternative

adjustment principle which is valid even when these confounders may be

genetically affected.

5.3 A general principle to test for causal direct

genetic effects

For simplicity, we illustrate the principle first for the association anal-

ysis of quantitative traits, either in population-based designs or in family-

based designs. For both scenarios, i.e. population-based studies and family-

based designs, we assume that the selected association test T (e.g., a stan-

dard score test, Wald test or likelihood ratio test) has the general form

T =
n∑

i=1

Ti, (5.1)

where Ti denotes the contribution of the ith subject to the test statistic.

To keep the notation simple and without loss of generality, we assume that

the expected value of the test statistic T is 0 (i.e. E(T ) = 0) under the

null-hypothesis of no association between the selected phenotype and the

marker locus.

In order to derive a valid test for the direct association between the
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target phenotype Y and the SNP that is not influenced by the existing asso-

ciation between the intermediate phenotype K and the same SNP, we need

to estimate the non-marker related effect of Ki on the target phenotype Yi.

Inferring this requires knowledge regarding all common risk factors on both

phenotypes, as this is a prerequisite for disentangling a spurious association

between both traits from a real effect. A test for a direct genetic effect of

the SNP on the target phenotype Yi will therefore require an assessment of

all shared risk factors influencing both phenotypes other than the SNP of

interest. Nonetheless, as we will see in the simulation study this assump-

tion can be relaxed and applies only to the major risk factors underlying

both phenotypes, which are typically known.

For simplicity, we assume here that the target phenotype Yi and the

intermediate phenotype Ki share one common risk factor Li. Then, in a

population-based study, the following linear model can be used to assess

how the phenotype Ki influences the target phenotype Yi

E(Yi) = γ0 + γ1Ki + γ2Xi + γ3Li (5.2)

In a family-based study, the expected marker-score, E(Xi|Si), would be

added to the model to maintain robustness against population stratification,

i.e.

E(Yi) = γ0 + γ1Ki + γ2Xi + γ3Li + γ4E(Xi|Si). (5.3)

In both equations, γ0, γ1, γ2, γ3 and γ4 denote the mean parameters. It is

important to note that these models include the offspring genotype Xi as

well as the common risk factor Li of both phenotypes, in order to ensure

that γ1 represents the true effect of Ki on Yi and no spurious association.

This will guarantee later during the computation of the adjusted pheno-

types (i.e., the residuals) that only the effect of Ki is removed from the

target phenotype, but a potential direct association between Yi and the

target SNP is maintained. Indeed, it follows upon applying the principles

outlined in the previous section to the causal diagram in Figure 5.1, that

adjustment for Xi, Li and Si removes spurious associations between both

phenotypes and thus reveals the causal effect of Ki on Yi.
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Using ordinary least squares to estimate all parameters in model (5.2)

or (5.3), the target phenotype Yi can be adjusted for just the effect that

the phenotype Ki has on the target phenotype Yi,

Ỹi = Yi − y − γ̂1(Ki − k) (5.4)

where γ̂1 is the ordinary least squares estimate for γ1 in model (5.2) or (5.3)

and y and k are the observed phenotypic means of Y and K, respectively, in

the sample. The phenotype adjustment (5.4) here deliberately only involves

the other phenotype Ki and not the shared risk factor Li. Although this

may seem counterintuitive and contrary to standard practice, including

factors such as Li in the phenotypic adjustment would introduce bias to the

extent that the common risk factor Li is itself associated with the target

SNP. If the residuals Ỹi are computed based on the adjustment formula

(5.4), this problem is avoided because the adjustment removes the effect

of Ki on Yi (i.e., the direct edge from Ki into Yi on Figure 5.1) and thus

also the indirect genetic effect (see Appendix 5.A1 for a more detailed

argument).

Using the adjusted phenotype (i.e., the residual Ỹi) as the target phe-

notype, we can construct standard association tests for quantitative traits

in either population-based or family-based designs. For example, in a

population-based setting, the adjusted phenotype Ỹi can be tested for asso-

ciation with a standard regression approach, i.e. each subject’s contribution

to the test statistic is given by

Ti = {Xi − E(Xi)} Ỹi (5.5)

For family-based studies, we can construct an association test based on a

standard FBAT statistic (Laird et al., 2000) by defining the contribution

of each offspring to be

Ti = {Xi − E(Xi|Si)} Ỹi (5.6)

Both association tests, (5.5) and (5.6), will then test for a direct association

between the SNP and the target phenotype Yi (other than through its as-

sociation with the phenotype Ki). More generally, as we show in Appendix
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5.A1, any association test statistic T which is linear in the phenotype and

which utilizes the adjusted phenotype Ỹi (equation (5.4)) as the target

phenotype will provide a valid test for the null hypothesis that there is no

direct effect of the SNP on the target phenotype Yi, provided that model

(5.2) or (5.3) is correctly specified and includes all common risk factors for

both phenotypes, Y and K. Under this condition, the expected value of

the test statistic T will be zero, E(T ) = 0 when T is computed based on

the adjusted phenotype (equation (5.4)). Further, for family-based tests,

we show in Appendix 5.A1 that, under the null hypothesis of no direct ef-

fect, the modified FBAT-statistic (5.6) remains robust against confounding

due to population admixture, so long as the population admixture on both

phenotypes is w.r.t. unrelated causes (since otherwise there could exist

unmeasured common causes of both phenotypes).

The proposed phenotype adjustment (equation (5.4)) of the associa-

tion test T for a direct genetic effect includes a parameter estimate for γ1

that is obtained by fitting model (5.2) or (5.3). Given that the impreci-

sion of the estimate for γ1 must be acknowledged in the computation of

the asymptotic variance of the test statistic, the standard variance of the

selected association test is no longer applicable.

In Appendix 5.A1, we show that the standardized association test

statistic for the adjusted phenotype T 2/(nΣ) follows a chi-square distri-

bution with 1 degree of freedom under the null hypothesis of no direct

effect, where the variance of the test statistic, Σ, is given by

Σ = V ar(T̃i)

with T̃i = Ti(Ỹi)− E
[
T ′

i (Ỹi)Ki

]
(
Ki − µ(i)

K

)

σ2
K

ǫi

where Ti(P ) denotes the contribution of the ith subject to the association

test statistic for the target phenotype P and T ′
i (P ) the first order derivative

of Ti(P ) w.r.t. P (e.g., for population-based tests, we have T ′
i (Ỹi) = Xi in

(5.5) and, for family-based tests, T ′
i (Ỹi) = Xi − E(Xi|Si) in (5.6)). The

variable ǫi is the residual in model (5.2). In population-based designs, the

parameters µK and σ2
K are obtained by fitting a linear regression for Ki
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with the covariates Li and Xi. For family-based studies, the covariate

E(X |Si ) has to be included as well. The predicted value for Ki is then

defined by µ
(i)
K = E(K |Li, Xi ) or by µ

(i)
K = E(K |Li, Xi, E(X |Si )). The

residual variance in the model is denoted by σ2
K .

When the phenotype of interest Yi is dichotomous, e.g. affection sta-

tus, the proposed adjustment can be extended provided that a relative

risk model and a log-link function is assumed. The technical details are

discussed in Appendix 5.A1.

5.4 Data analysis: An application to the Framing-

ham Heart Study, the British Birth Cohort

and the CAMP study

We evaluated the practical relevance of the proposed adjustment prin-

ciple by an application to 3 genome-wide association studies: a 100K

Affymetrix scan in the family-plates of the Framingham Heart Study (1,400

probands) (Herbert et al., 2006), a 550K Illumina scan in the British Birth

Cohort (genotype data on 1,430 probands,http://www.b58cgene.sgul.ac.uk/)

and a 550K Illumina scan in 440 trios of the CAMP study (Group CAMP,

1999). As target phenotype, we selected the lung-function measurement

FEV1, which was available in all 3 studies. Since the 3 studies were

genotyped on different platforms (the Framingham Heart Study on 100K

Affymetrix, the British Birth Cohort and CAMP on Illumina 550K), we

selected the 32,121 SNPs for the analysis that are common among both

platforms.

As the first step, we analyzed FEV1 at exam 1 in the family-plates

of the Framingham Heart Study. Using a standard regression approach,

we adjusted FEV1 for height, height2, gender, weight and age, and then

used the residuals as the target phenotype in the analysis. All statistical

analysis was conducted under an additive mode of inheritance. Since the

Framingham Heart Study is a family-based study, we applied the weighted

Bonferroni-testing strategy by Ionita-Laza et al. (2007). the testing strat-

egy evaluates the evidence for association at a population-level and then
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estimates the conditional power of the FBAT-statistic for each marker in

the first step. In the second step of the testing strategy, FBAT-statistics

are computed for all markers. Their significance is assessed based on indi-

vidually adjusted α-levels that maintain the overall type-1 error and that

are weighted based on the conditional power estimate for the corresponding

marker.

When the weighted Bonferroni-approach was applied to the 32,121

SNPs that are on both genotyping platforms, none of the SNPs reached

genome-wide significance. However, the SNP (rs2415815) with the high-

est conditional power estimate had an unadjusted FBAT p-value of 0.0234,

warranting additional analysis. When the covariates were tested for associ-

ation with rs2415815, an association with weight was observed (p-value of

0.0054 for FBAT adjusted for age and gender). Both associations between

the SNP and the two phenotypes were then verified in the CAMP study

and the British Birth Cohort (Table 5.1). For weight, SNP rs2415815 has

nominal significant p-values in CAMP and the British Birth Cohort (mea-

sured as BMI), while the association tests with FEV1 are not significant in

either studies. Given the established link between asthma and obesity for

which FEV1 and weight (Olivetti et al., 2006; Yuan et al., 2002; Gessner

and Chimonas, 2007; Sin et al., 2004; Demissie et al., 1998; Tavernas et

al., 2006; Camargo et al., 1999) are endophenotypes, the inconsistent repli-

cations of FEV1 in CAMP and FHS were re-analyzed with the proposed

adjustment procedure. For the British Birth Cohort, we did not have access

to the raw data and the proposed adjustment could not be computed.

The lung-function measurement FEV1 was adjusted for its covariates,

for the SNP and for weight. The phenotype weight was adjusted for gender,

age and height, for the SNP and for FEV1. Based on the adjusted phe-

notype, the FBAT-statistics in CAMP and FHS were re-calculated (Table

5.1). The associations with weight remained significant after the adjust-

ment for a potential genetic association with FEV1. However, when we ac-

counted for a potential genetic association between the SNP and weight, the

association tests for FEV1 in FHS and in CAMP were no longer significant

(Table 5.1). Our results suggest that the originally observed association

with FEV1 in the FHS may have been attributable to the association with
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Phenotype Adjustment FHS CAMP BBC

FEV1 standard adjustment 0.0376 0.5920 0.436

proposed adjustment 0.1012 0.7790 NA

Weight standard adjustment 0.0054 0.00053 0.0445∗

proposed adjustment 0.0088 0.0033 NA

Table 5.1: Association with rs2415815 in the Framingham Heart Study (FHS),

the CAMP Study and the British Birth Cohort (BBC). ∗ measured as BMI.

weight and that there is no evidence of a direct genetic effect of rs2415815

on FEV1 other than through weight.

5.5 Simulation Study

Using simulation studies, we assess the type-1 error, the power and

the robustness of the new approach and compare it to the two standard

approaches earlier described. The new principle is evaluated under various

conditions, including scenarios in which there are unmeasured risk factors

that are common for both phenotypes and that are not included in the

adjustment formula. In all simulations, we focus on quantitative traits and

assume that there is no ascertainment condition. A sample size of 1,000

probands is selected. All simulation results that are presented in this chap-

ter are based on 5,000 replicates. With the data analysis example in the

Framingham Heart Study in mind, the phenotype of interest Y is simulated

so that it resembles the FEV1 phenotype in that application. The second

phenotypeK is weight and the set of common confounding variables is given

by height and age, which are denoted by L and S, respectively. First the

genotype data is generated by drawing from a Binomial distribution with

the specified marker allele frequency. Using the genotype data, all pheno-

typic variables are simulated from normal distributions under the causal

diagrams of Figure 5.2, with phenotypic means and variances that were

observed in the application to the Framingham Heart Study. In addition,



142 Direct causal genetic pathways in association studies

L

K

S

YX

U

L

K

S

YX

U

L

K

S

Y
X

U

L

K

S

Y

X

U

Scenario I

Scenario III

Scenario II

Scenario IV

Figure 5.2: Causal diagrams illustrating the data generating mechanism

under simulation scenarios I-IV.

unless otherwise specified, effect sizes were also chosen to match the data

application.

Five tests are evaluated each time. The first two test the associa-

tion between the target phenotype Y and the marker locus with standard

Wald tests that are applied to the adjusted phenotypic residuals, where the

residuals are obtained from linear regressions adjusting for either (S,K) or

(S,K,L). The next two test this association with standard Wald tests that

are applied to the phenotype itself, adjusting for either (S,K) or (S,K,L).

Finally, we evaluate the proposed adjustment principle.

Empirical significance level

The first set of simulation studies is conducted under the null hypothesis

of no direct genetic effect on the target phenotype Y . In order to assess
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the robustness of the adjustment principle against spurious associations,

we consider the following scenarios corresponding to the causal diagrams

in Figure 5.2:

• In the first scenario, we assume that there is a direct genetic effect

of the marker on the intermediate phenotype K and on the common

covariate L. Each genetic effect has a locus specific heritability of

1%. The intermediate phenotype K explains 1% of the phenotypic

variation in Y , creating a spurious association between the SNP and

Y . Under these conditions, a standard adjustment for the covariates

(L,Z) will provide correct results for the Wald test.

• In the second simulation experiment, the first scenario is modified so

that there is no genetic effect on the confounder L, but the genetic

association with the intermediate phenotype K is still present.

• The third simulation experiment varies from the first scenario with

respect to the association between the phenotypes Y and K. While

the common confounder L is still associated with the marker locus in

the third scenario, there is no link anymore between the intermediate

phenotype K and the target phenotype Y , making an adjustment for

the intermediate phenotypeK in the association analysis unnecessary.

• In the fourth simulation experiment, the second scenario is modified

so that there is also no genetic effect on the intermediate phenotype

K.

For a variety of allele frequencies, the estimated nominal significance

levels are shown in Table 5.2 for the five different tests (performed at the

5% significance level).

The Wald test based on the new adjustment principle maintains the

specified significance level well in all four scenarios and throughout the en-

tire range of allele frequencies. This is true regardless of whether the inter-

mediate phenotype affects the target phenotype Y or not, and of whether

the confounders L for the association between both phenotypes are ge-

netically affected. However, Wald tests that are based on the standard
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adjustments for (S,K,L) or (S,K) generally fail to preserve the theoretical

α-level, with the exception of Scenarios II and IV. In the latter scenar-

ios, the Wald test based on the standard adjustment for the confounding

variables (S,K,L) maintains the significance level because L is not geneti-

cally affected in these scenarios. In Scenario IV, Wald tests that are based

on residuals, adjusting for (S,K,L) or (S,K), additionally maintain the

significance level because Y and K, and thus the residuals, are jointly inde-

pendent of the genotype in this scenario, after adjustment for S. While, as

in these two scenarios, there are instances in which standard adjustments

provides correct α-levels for the Wald tests, this can only be achieved if

the underlying genetic architecture is known and all necessary confounding

variables are included in the standard standard adjustment. The proposed

adjustment principle does not require any prior knowledge about potential

links and genetic associations between the phenotypes and the covariates,

and maintains the significance level in all considered scenarios.

Wald test on residuals Wald test on trait Proposed adj.

adjusted for adjusted for principle

S Freq (S,K,L) (S,K) (S,K,L) (S,K) (D)

1 0.05 0.080 0.150 0.044 0.134 0.051

0.1 0.085 0.079 0.065 0.075 0.047

0.15 0.092 0.059 0.079 0.057 0.053

0.2 0.083 0.047 0.075 0.047 0.047

0.25 0.089 0.057 0.081 0.056 0.056

0.3 0.093 0.058 0.086 0.058 0.057

0.35 0.083 0.051 0.075 0.051 0.047

0.4 0.085 0.055 0.078 0.055 0.052

0.45 0.095 0.056 0.086 0.056 0.053
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Wald test on residuals Wald test on trait Proposed adj.

adjusted for adjusted for principle

S Freq (S,K,L) (S,K) (S,K,L) (S,K) (D)

2 0.05 0.054 0.052 0.054 0.052 0.053

0.1 0.045 0.045 0.045 0.045 0.048

0.15 0.047 0.045 0.047 0.045 0.047

0.2 0.048 0.049 0.048 0.049 0.049

0.25 0.049 0.050 0.049 0.050 0.048

0.3 0.049 0.048 0.049 0.048 0.049

0.35 0.054 0.052 0.054 0.052 0.054

0.4 0.052 0.050 0.052 0.050 0.052

0.45 0.052 0.051 0.052 0.051 0.054

3 0.05 0.085 0.144 0.050 0.131 0.049

0.1 0.083 0.077 0.065 0.074 0.046

0.15 0.083 0.061 0.072 0.060 0.050

0.2 0.090 0.051 0.083 0.051 0.050

0.25 0.085 0.048 0.078 0.048 0.046

0.3 0.081 0.050 0.075 0.050 0.049

0.35 0.085 0.054 0.076 0.054 0.052

0.4 0.083 0.051 0.075 0.050 0.048

0.45 0.095 0.053 0.086 0.052 0.050

4 0.05 0.049 0.046 0.049 0.046 0.047

0.1 0.051 0.053 0.051 0.053 0.052

0.15 0.049 0.049 0.050 0.049 0.051

0.2 0.052 0.053 0.052 0.053 0.050

0.25 0.049 0.047 0.049 0.047 0.048

0.3 0.052 0.050 0.052 0.049 0.052

0.35 0.049 0.054 0.050 0.054 0.054

0.4 0.047 0.047 0.047 0.047 0.049

0.45 0.052 0.052 0.052 0.052 0.053

Table 5.2: Empirical Type I errors at 5% significance level of Wald tests for

genetic effects, (a) based on residuals adjusted for (S,K,L), (S,L), (b) directly

adjusted for (S,K,L), (S,L), and (c) adjusted with the proposed adjustment prin-

ciple (D). S=Scenario
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Estimated statistical power

To assess whether the Wald tests based on the new adjustment principle

have sufficient power to detect genetic effects of realistic magnitudes, we

repeat the simulation study under the assumption that, in all the four

scenarios, there is a direct genetic effect of the marker locus on the target

phenotype Y . The locus-specific heritability of the genetic effect is specified

to be 0.33%. The estimated power levels for the Wald tests based on the

proposed adjustment principle are displayed in Table 5.3. In general, we

find high power levels in all simulation experiments, except, as usual, at

low allele frequencies (< 0.10).

Comparison of the attained power levels of the new adjustment prin-

ciple is especially relevant vis-a-vis the (S,K,L)-adjustment in the second

Scenario and vis-a-vis all other tests in the fourth Scenario. In these scenar-

ios, these other approaches are also valid and are expected to yield higher

power levels by the fact that they involve stronger assumptions. Interest-

ingly, these standard approaches provides power levels that are essentially

identical to those of the proposed adjustment principle. Since these sce-

narios are essentially the best case scenarios for the standard approaches,

these results illustrate the potential of the proposed adjustment principle

as a generally applicable tool in genetic association studies.

Wald test on residuals Wald test on trait Proposed adj.

adjusted for adjusted for principle

S Freq (S,K,L) (S,K) (S,K,L) (S,K) (D)

1 0.05 0.520 0.119 0.406 0.106 0.341

0.1 0.787 0.437 0.743 0.427 0.624

0.15 0.904 0.709 0.891 0.706 0.787

0.2 0.955 0.857 0.951 0.856 0.868

0.25 0.971 0.906 0.969 0.906 0.919

0.3 0.980 0.930 0.977 0.929 0.943

0.35 0.988 0.943 0.986 0.943 0.958

0.4 0.992 0.957 0.991 0.957 0.969

0.45 0.993 0.962 0.992 0.962 0.975
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Wald test on residuals Wald test on trait Proposed adj.

adjusted for adjusted for principle

S Freq (S,K,L) (S,K) (S,K,L) (S,K) (D)

2 0.05 0.405 0.401 0.405 0.401 0.390

0.1 0.655 0.655 0.655 0.655 0.642

0.15 0.805 0.802 0.804 0.801 0.791

0.2 0.883 0.878 0.883 0.878 0.874

0.25 0.929 0.927 0.929 0.927 0.923

0.3 0.947 0.945 0.947 0.945 0.944

0.35 0.964 0.962 0.964 0.962 0.958

0.4 0.973 0.970 0.973 0.970 0.967

0.45 0.976 0.974 0.977 0.974 0.974

3 0.05 0.519 0.114 0.396 0.101 0.337

0.1 0.787 0.442 0.742 0.434 0.618

0.15 0.897 0.691 0.884 0.689 0.777

0.2 0.959 0.859 0.955 0.859 0.873

0.25 0.975 0.910 0.973 0.909 0.927

0.3 0.984 0.927 0.983 0.927 0.947

0.35 0.986 0.945 0.985 0.945 0.958

0.4 0.991 0.959 0.991 0.959 0.972

0.45 0.995 0.964 0.994 0.964 0.974

4 0.05 0.407 0.400 0.407 0.400 0.396

0.1 0.647 0.643 0.647 0.643 0.636

0.15 0.803 0.802 0.804 0.803 0.794

0.2 0.887 0.882 0.887 0.882 0.875

0.25 0.927 0.926 0.927 0.926 0.919

0.3 0.953 0.950 0.953 0.950 0.947

0.35 0.962 0.961 0.962 0.961 0.959

0.4 0.968 0.967 0.968 0.967 0.966

0.45 0.977 0.976 0.977 0.976 0.974

Table 5.3: Empirical power at 5% significance level of Wald tests for genetic

effects, (a) based on residuals adjusted for (S,K,L), (S,L), (b) directly adjusted

for (S,K,L), (S,L), and (c) adjusted with the proposed adjustment principle (D).

S=Scenario
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Robustness of the adjustment principle when common confound-

ing variables of both phenotypes are not included in the adjust-

ment principle

The final series of simulation experiments is aimed to evaluate the robust-

ness of the proposed approach against the omission of common confounders

for both phenotypes. We therefore introduce a (normally distributed) non-

genetic risk factor U to explain 1% and 10%, respectively, of the phenotypic

variation in both phenotypes. The variable U∗ will be considered unmea-

sured in the analysis. In the presence of such a variable, the proposed

adjustment approach, like the standard approaches, will be biased because

it will estimate the effect of the intermediate phenotype on the target phe-

notype without incorporating the common, unmeasured risk factor.

For a variety of allele frequencies, Table 5.4 shows the estimated nomi-

nal significance levels for Wald tests that are based on the proposed adjust-

ment principle. Although, as predicted by our theoretical considerations,

our approach no longer maintains the specified significance level, the impact

appears negligible for applications. For an unknown confounding variable

that explains 1% of the phenotypic variation (r2 = 0.01), no observable de-

parture from the theoretical 5%-level can be detected. When a confounding

variables that explains 10% of the phenotypic variation in both phenotypes

is omitted in the adjustment principle, the theoretical significance level is

not maintained for small allele frequencies (< 15%). Given the current

epidemiologic knowledge and understanding of the phenotypes studied in

genetic association study, the omission of common confounding variable

with r2 of 10% is extremely unlikely. Even for a r2-range of about 1%,

most confounding variables for phenotypes of complex disease are typically

known.

In summary, our simulation studies suggest that the proposed ad-

justment principle performs well under realistic conditions. The approach

maintains the significance level in the presence of spurious associations. For

realistic genetic effect sizes, the approach achieves sufficient power, even in

situations in which an adjustment is not required and standard approaches

are optimal. The disadvantage of the approach, the required knowledge
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Wald test on residuals Wald test on trait Proposed adj.

adjusted for adjusted for principle

U∗ Freq (S,K,L) (S,K) (S,K,L) (S,K) (D)

1% 0.05 0.061 0.172 0.029 0.155 0.052

0.1 0.061 0.093 0.046 0.090 0.050

0.15 0.071 0.065 0.059 0.065 0.051

0.2 0.076 0.049 0.070 0.049 0.051

0.25 0.075 0.053 0.069 0.052 0.052

0.3 0.070 0.051 0.064 0.050 0.046

0.35 0.078 0.055 0.069 0.054 0.053

0.4 0.067 0.048 0.060 0.047 0.046

0.45 0.069 0.059 0.063 0.058 0.054

10% 0.05 0.057 0.228 0.028 0.207 0.099

0.1 0.054 0.117 0.037 0.113 0.069

0.15 0.057 0.072 0.048 0.070 0.057

0.2 0.057 0.050 0.054 0.050 0.050

0.25 0.058 0.050 0.053 0.050 0.048

0.3 0.056 0.054 0.051 0.054 0.052

0.35 0.052 0.050 0.046 0.050 0.048

0.4 0.059 0.055 0.052 0.055 0.050

0.45 0.056 0.059 0.050 0.058 0.054

Table 5.4: Empirical Type I errors at 5% significance level of Wald tests for

genetic effects, (a) based on residuals adjusted for (S,K,L), (S,L), (b) directly

adjusted for (S,K,L), (S,L), and (c) adjusted with the proposed adjustment prin-

ciple (D), in the presence of unmeasured confounding.

of all common confounding variables, turns out to be of lesser concern in

applications where the degree of unmeasured confounding is anticipated to

be weak.
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5.6 Discussion

In order to understand the genetic architecture of complex diseases,

it is important to gain insight into the multifaceted relationships between

complex phenotypes and their genetic associations. The origin of an ob-

served genetic association between a SNP and the target phenotype can be

attributable to a direct genetic effect or can be caused by a non-genetic link

with another phenotype that is itself influenced by the marker locus of in-

terest. In order to prioritize the follow-up of large-scale association studies

in terms of replication strategies in other populations or, even more impor-

tantly, in terms of functional work, it is crucial to be able to distinguish

between these different sources of genetic association.

In this chapter, we proposed an adjustment that can be incorporated

into many genetic association tests and, thereby, enables the test to assess

whether an observed association is caused by a genetic association with an-

other phenotype, or whether it is attributable to a direct genetic effect. The

approach is computationally simple and can be easily be implemented in

most software packages. If the principle is applied to correct for a false pos-

itive association, the adjusted test remains valid and its power is decreased

only marginally compared to standard adjustment. These properties make

the proposed procedure a universally applicable adjustment principle in

genetic association studies.



Appendix 5.A1: Distribution

of the test statistic

The proposed adjustment principle forms a special case of the ‘un-

weighted estimator’ in Goetgeluk, Vansteelandt and Goetghebeur (2008),

which allows for more general complexities, such as arbitrary non-linear

models for the expected outcome and gene-environment interactions be-

tween the genotype and intermediate phenotype. Below, we demonstrate

the validity of this principle for the setting that we have considered in this

article.

By using the adjusted phenotype Ỹ in the test statistic (5.5) or (5.6),

we remove the arrow from K to Y , and thus the indirect effect of X on Y .

This can be seen using the principles of causal diagrams (see Section 5.2)

and explains intuitively why a standard association test, using the adjusted

phenotype Ỹ , is valid for testing direct genetic effects. More formally,

suppose that the null hypothesis is true that X has no effect on Y other

than through K. Let

E(Y |X,K,U1, U2) = Φ{ω(U1, U2) + γ1K} (5.7)

where Φ is the identity link (Φ(x) = x) or the exponential link (Φ(x) =

exp(x)) and where ω(U1, U2) is an arbitrary function. This model does not

involve X because we are working under the null hypothesis of no direct

effect. Furthermore, the parameter γ1 in this model is the same as in model

E(Y |X,K,L, S) = Φ{ω∗(X,L, S) + γ1K}
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(cfr. model (5.2)), which can be seen by inferring this model from model

(5.7) upon noting that Y ∐ (L, S)|K,X,U1, U2 and (U1, U2) ∐ K|L,X, S
under the diagram of Figure 5.1, where A ∐B|C for variables A,B and C

means that A is conditionally independent of B, given C. It now follows

that the test statistic (5.6) with Ỹ = Y − γK when Φ is the identity link

and Ỹ = Y exp(−γK) when Φ is the exponential link (and likewise the test

statistic (5.5)) has mean zero at the null hypothesis. For the test statistic

(5.6), for instance, this is because

E
[
{X − E(X|S)} Ỹ

]
= E [{X − E(X|S)}Φ{ω(U1, U2)}]

and by the fact that (U1, U2) ∐ X|S (which follows because the genotype

X is only directly affected by S).

When there is population admixture on both phenotypes w.r.t. unre-

lated causes (i.e., when the diagram of Figure 5.1 includes an additional

unmeasured variable U3 which simultaneously affects S and K), then the

proposed adjustment principle remains valid. This is because the princi-

ples of causal diagrams show that adjustment for S,X and L is then still

sufficient to estimate the causal effect of K on Y , where the adjustment for

S in model (5.3) happens through the adjustment for E(X|S).

Remark. Note that Figure 5.1 implicitly assumes that common risk

factors L of both phenotypes do not themselves affect the target phenotype.

Our test remains valid without this assumption. In that case, it tests for

an association between the target SNP and target phenotype Y , other than

through the given intermediate phenotype K.

We now derive the distribution of the test statistic (5.6). The deriva-

tion is analogous for the test statistic (5.5) upon substituting Xi−E(Xi|Si)

withXi−E(Xi). Using M-estimation arguments (van der Vaart, 1998, p.48-

60), the test statistic (5.6) may be adjusted for estimating γ1 by calculating

the adjusted test statistic

T̃i ≡ {Xi − E(Xi|Si)} Ỹi − λ {Ki − E(Ki|Li, Xi, Si)} ǫi (5.8)

which guarantees that the test statistic (5.8) is uncorrelated with the scores

needed for estimation of γ1. Under model (5.2), ǫi is the residual from that
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model,

λ ≡ E [{Xi − E(Xi|Si)}Ki]

V ar (Ki|Li, Xi, Si)

and E(Ki|Li, Xi, Si) is the fitted value from a linear regression of Ki on

(Li, Xi, Si). For binary traits or counts obeying the multiplicative model

E(Yi) = exp(γ0 + γ1Ki + γ2Xi + γ3Si + γ4Li) (5.9)

the adjusted phenotype can be computed as

Ỹi ≡ Yi exp(−γ̂1Ki)− µ

where γ̂1 now denotes the maximum likelihood estimate obtained by fitting

the Poisson regression model (5.9). In that case, ǫi is the residual from that

model,

λ ≡
E
[
{Xi − E(Xi|Si)} ỸiKi

]

V ar
(
µ

1/2
i Ki|Li, Xi, Si

)

µi is the fitted value under model (5.9) and E(Ki|Li, Xi, Si) is the fitted

value from a weighted linear regression of Ki on (Li, Xi, Si), with weights

µi.

By the Central Limit Theorem, n−1/2
∑n

i=1 T̃i has a normal distribu-

tion in large samples with mean zero at the null hypothesis and variance

Σ which can be estimated by the sample variance of T̃i. Squaring and

noting that
∑n

i=1 {Ki − E(Ki|Li, Xi, Si)} ǫi = 0 by construction, yields the

distribution of the test statistic as reported in Section 5.2.



154 Direct causal genetic pathways in association studies



Chapter 6

Estimation of controlled direct

effects

Summary

When regression models adjust for mediators on the causal path from

exposure to outcome, the regression coefficient of exposure is commonly

viewed as a measure of the direct effect of exposure. The term ‘direct

effect’ then indicates the total effect of exposure on outcome, minus the

effect that is due to an exposure effect on the mediator. This interpre-

tation can be misleading, even with randomly assigned exposure. This

happens because adjustment for post-exposure measurements introduces

bias whenever their association with outcome is confounded by more than

just the exposure. By the same token, additional adjustment for such con-

founders stays problematic when these confounders are themselves affected

by exposure. Robins (1999b) accommodated this problem by introducing

structural nested direct-effects models. Their direct effect parameters can

be estimated using inverse probability weighting by a conditional distribu-

tion of the mediator. The resulting estimators are consistent, but inefficient

and can be extremely unstable when the intermediate variable is absolutely

continuous, because minor errors in the density of the mediator (e.g. due

to random noise or model misspecification) may get severely inflated in the

inverse weighting procedure. In this chapter, we develop direct effect esti-

mators which are not only more efficient, but also consistent under a less
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demanding model for a conditional expectation of the outcome. We find

the one estimator which avoids inverse probability weighting altoghether

by using sequential G-estimation to perform best. This estimator is intu-

itive, computationally straightforward and, as demonstrated by simulation,

competes extremely well with ordinary least squares estimators in settings

where standard regression is valid.

[Original co-author: S. Vansteelandt and E. Goetghebeur]

6.1 Introduction

Once researchers have established that an exposure affects an outcome,

the attention typically turns to understanding the biologic/mechanistic

pathways that contribute to this effect. Empirically, this is most natu-

rally approached by disentangling the part of the exposure effect that is

explained by intermediate effects of the exposure on the outcome through

given mediators, and by the remaining direct effect. The following examples

illustrate this.

(Example 1: Surrogate biomarkers) The pressure of accelerated evalua-

tion of new AIDS therapies has led to the use of CD4 blood count and viral

load as endpoints that replace time to clinical events and overall survival.

This raises the question whether an effect of treatment on the biomarker

provides evidence for a clinical effect (Molenberghs et al., 2004). While a

good biomarker need not lie on the causal path from treatment to clini-

cal event, a biomarker which does, is often more trustworthy. A number

of approaches have therefore been developed to infer whether the effect of

treatment on the outcome is entirely mediated by its effect on the biomarker

(Frangakis and Rubin, 2002; Taylor et al., 2005). These approaches are of

special interest in settings where data from a single study are available

and prediction-based approaches (Molenberghs et al., 2004) are thus not

applicable.

(Example 2: Gender discrimination) Bickel, Hammel and O’Connell

(1975) examine data on sex bias in university graduate admissions. Noting
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that study choices are on average different between male and female ap-

plicants, the investigation of gender discrimination may be approached by

evaluating whether there is a direct gender effect on admission rates, which

is not mediated by study choice.

(Example 3: Zygosity in reproductive epidemiology) Verstraelen et al.

(2005) estimate that the odds of preterm birth in twins conceived after in

vitro fertilization (IVF) is higher than in naturally conceived twins, after

controlling for maternal age and parity. Since many more twins conceived

after subfertility treatment are dizygotic and since perinatal outcomes tend

to be better for dizygous than for monozygous twins, this effect of IVF on

birth weight is partly explained by its effect on zygosity. Verstraelen et al.

(2005) thus infer the effect which subfertility treatment has on preterm birth

risk, other than through modifying the dizogytic/monozygotic twinning

rate.

Traditional regression approaches for direct effects estimate the resid-

ual exposure effect that remains on the outcome after adjusting for the

given mediator. These approaches tend to be biased by the same token

that adjustment for post-randomization measurements may introduce bias

in the analysis of randomized experiments (Rosenbaum, 1984). This is so

whenever there exist common causes of the mediator and outcome, other

than the considered exposure (Cole and Hernan, 2002; Pearl, 2000; Robins,

1986). In some cases, the absence of such common causes may be accepted

based on biological grounds. For instance, Verstraelen et al. (2005) used

standard adjustment for zygosity to estimate the direct effect of subfertility

treatment on preterm birth because it is reasonable to assume that zygos-

ity is not affected by risk factors of preterm birth other than subfertility

treatment (and parental fertility) itself. When, as usually, the presence of

common causes of mediator and outcome cannot be precluded, as in most

cases of interest, untestable assumptions must be made. In this chapter,

as in Robins (1999b) and Petersen, Sinisi and van der Laan (2006), we

proceed under the assumption of no unmeasured confounders for the as-

sociation between mediator and outcome. Intuitively, this assumption is

sufficient because the size of the direct effect depends on how strongly the

mediator affects the outcome and inferring the latter requires knowing all
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common causes of both mediator and outcome. Ten Have et al. (2007)

avoid this assumption but assume instead that exposure and mediator do

not interact in their effect on the outcome, and that the effect of exposure

on the mediator varies by baseline covariates. However, this method typ-

ically comes with large standard errors for the estimated effects and thus,

with information loss.

Even when all confounders for the association between mediator and

outcome have been measured, standard regression adjustment is not valid

for estimating the direct effect of exposure on outcome. It is prone to bias

whenever some of these confounders are themselves affected by the treat-

ment. This happens for the same reason that stratifying by the mediator

may induce selection bias. van der Laan and Petersen (2005) and Robins

(1999b) accommodate this via inverse probability of treatment weighting es-

timators for the parameters indexing marginal structural models and struc-

tural nested direct effects models, respectively. Both classes of estimators

involve inverse probability weighting by a conditional distribution of the

mediator. As demonstrated by extensive simulation studies in Section 6.3,

these estimators can be extremely inefficient and unstable when there are

strong predictors of the mediators, or when the mediator is absolutely con-

tinuous; in the latter case, they are also likely biased by the fact that models

for a conditional density are difficult to postulate.

In this chapter, we mitigate these problems by developing estimators

for the direct effect parameters indexing structural nested direct effects

models, which are asymptotically unbiased as soon as a less demanding

model for the conditional expectation of the outcome is correctly specified.

One of the estimators avoids inverse probability weighting altoghether by

using a sequential G-estimation procedure. This estimator is intuitive and

computationally straightforward. As demonstrated by extensive simulation

studies, it competes extremely well with standard ordinary least squares

estimators in settings where standard regression is valid, but in contrast,

remains valid when some of the considered confounders are themselves af-

fected by the exposure. Our methods also provide insights on how to sta-

bilize estimators based on inverse probability weighting in the presence of

extreme weights.
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6.2 Structural nested direct effect models

6.2.1 Controlled direct effects

Let Yxk be the potential outcome which a given subject would have

experienced under exposure X = x and a fixed value k for the intermediate

variable K. Then, as in Robins (1999b), we formally define the direct effect

on outcome Y of setting exposure X = x (versus X = 0), when holding

K fixed, as the contrast Yxk − Y0k between the two potential outcomes Yxk

and Y0k for the same subject. This is termed a controlled direct effect. In

this chapter, we develop inference for structural nested direct effect (SNDE)

models (Robins, 1999b) which parameterize average controlled direct effects

conditionally on pre-exposure covariates S and among subjects withX = x:

E(Yxk − Y0k|X = x, S) = m(x, k, S;ψ∗) (6.1)

wherem(x, k, S;ψ) is a known function, smooth in ψ, satisfyingm(0, k, S;ψ)

= 0 and where ψ∗ is an unknown finite-dimensional parameter. For exam-

ple, assuming that the direct effect of exposure x (versus 0) is linear in x

and the same regardless of k and S, we may choose m(x, k, S;ψ) = ψx.

6.2.2 Inverse Probability of Intermediate Weighted estima-

tors

Inference for ψ∗ in model (6.1) is developed by Robins (1999b) and

briefly reviewed here from a different perspective. Suppose first that the

potential outcome Yk ≡ YXk following setting K = k is observed for every

subject and every value k on the support of K. Further, assume that, as

expressed by the causal diagram of Figure 6.1, S contains all confounders

for the association between X and Yk so that

Yxk ∐X|S ∀(x, k) (6.2)

Then, for each k, model (6.1) is a structural nested mean model (Robins,

1994) which can be fitted by G-estimation (Robins, Mark and Newey, 1992).

That is, ψ∗ can be estimated as the value ψ such that, after subtracting
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Confounder S

SET/DET X Birth weight Y
Gestational age K

Confounder L

U

Figure 6.1: Causal Diagram

the direct effect m(X, k, S;ψ) from Yk, no dependence on X remains, con-

ditionally on S. Specifically, for given k, all unbiased estimating functions

for ψ∗ in the model given by restrictions (6.1) and (6.2) for the given k,

with Yk observed, are of the form

∆{dk(X,S)|S} {Yk −m(X, k, S;ψ)− qk(S)} (6.3)

where dk(X,S) is an arbitrary vector function of the dimension of ψ, qk(S)

is an arbitrary scalar function and where for any 2 random variables A

and B, we define ∆{A|B} ≡ A − E(A|B). For example, we may choose

dk(X,S) = X, which, as we will show later, corresponds to the optimal

choice for dk(X,S) when model (6.1) is linear in x and independent of k

and S (i.e. m(X, k, S;ψ) = ψX). That (6.3) is unbiased at ψ = ψ∗ follows

because E(Yk −m(X, k, S;ψ)|X,S) = E(Y0k|X,S) = E(Y0k|S) under the

model given by restrictions (6.1) and (6.2). It then follows that all unbiased

estimating functions for ψ∗ in model (6.1)-(6.2) (for all k) with Yk observed

are of the form
∫

∆{dk(X,S)|S} {Yk −m(X, k, S;ψ)− qk(S)} dk (6.4)

Estimating equations based on (6.4) yield no feasible estimators for

ψ∗ because Yk is unknown for each k except the observed realization of

K. Multiplying each term in (6.4) with I(K = k) yields an observed data

estimating function, which in general no longer has mean zero because

subjects with K = k may form a selective subgroup. To correct for this,

we make the additional assumption, which is expressed by the diagram
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of Figure 6.1, that (X,L, S) contains all confounders for the association

between K and Y so that

Yxk ∐K|X = x, L, S ∀x, k (6.5)

This assumption allows for inversely weighting each term in the estimating

function (6.4) by the conditional distribution f(K|L, S,X) of K given X,

L and S, as in

∫
I(K = k)

f(K = k|L, S,X)
∆{dk(X,S)|S} {Yk −m(X, k, S;ψ)− qk(S)} dk

=
∆{dK(X,S)|S}
f(K|L, S,X)

{Y −m(X,K, S;ψ)− qK(S)} (6.6)

Estimating function (6.6) has mean zero at ψ = ψ∗ under the model defined

by (6.1), (6.2) and (6.5) because the conditional mean of

I(K = k)

f(K = k|L, S,X)

given (L, S,X, Yk) equals 1. This unbiasedness is key to the fact that the

solution to the estimating equation

0 =
n∑

i=1

∆{dKi
(Xi, Si)|Si}

f(Ki|Li, Si, Xi)
{Yi −m(Xi,Ki, Si;ψ)− qKi

(Si)} (6.7)

is (under standard, weak regularity conditions) a consistent and asymptot-

ically normal (CAN) estimator of ψ∗, provided that f(K = k|L, S,X) > 0

with probability 1 for all k in the support of K (Robins, 1999b).

Solving (6.7) requires that we specify parametric models

f(K|L, S,X) = f(K|L, S,X;α∗) (6.8)

E(dK(X,S)|S) =

∫
dK(X,S)f(X|S)dX = E(dK(X,S)|S;β∗)(6.9)

where f(K|L, S,X;α) is a conditional density function, smooth in α,

E(dK(X,S)|S;β) is a function of S, smooth in β, and (α∗, β∗) is an un-

known finite-dimensional parameter. For example, we may assume that
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the conditional distribution of K given (L, S,X) is normal with mean

α0 + α1L + α2S + α3X and constant standard deviation σK and, with

dK(X,S) = X, that E(X|S;β) = β0 + β1S.

Throughout we let A be the model for the observed data defined by

the model restrictions (6.1), (6.8) and (6.9), and the no unmeasured con-

founders assumptions (6.2) and (6.5). Let α̂ and β̂ be (root-n) consistent

estimators for α∗ and β∗, respectively, such as can be obtained via stan-

dard regression. It then follows from the previous discussion that a CAN

estimator ψ̂IPIW for the direct effect parameter ψ∗ under model A can be

obtained by solving

0 =
n∑

i=1

Ui,IPIW (d, q;ψ, α̂, β̂) (6.10)

where

Ui,IPIW (d, q;ψ, α, β) =
∆{dKi

(Xi, Si)|Si;β}
f(Ki|Li, Si, Xi;α)

{Yi−

m(Xi,Ki, Si;ψ)− qKi
(Si)} (6.11)

For given k, optimal choices for dk(X,S) and qk(S) which lead to a semi-

parametric efficient estimator of ψ∗ in the model given by restrictions (6.1)

and (6.2) (for the given k) and with Yk observed, have been derived by

Robins (1994). When the potential outcome variance Var(Yk|X,S) is con-

stant in (X,S), these choices equal

dk(X,S) =
∂m(X, k, S;ψ)

∂ψ

qk(S) = E{Yk −m(X, k, S;ψ)|S} (6.12)

where the latter can be calculated using the law of iterated expectations

E(Yk −m(X, k, S;ψ)|S) = E [E(Y |K = k,X,L, S)−m(X, k, S;ψ)|S)]

The same choices may not lead to a semi-parametric efficient estimator of

ψ∗ under model A, in which Yk is not observed for each subject. How-

ever, we recommend using the above choices for practical use because we
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conjecture that they will generally yield reasonable efficiency, while calcu-

lating the semi-parametric efficient estimator under model A is much more

tedious as it requires solving integral equations. In addition, using the

choice (6.12) yields the additional advantage that the estimator ψ̂IPIW ,

and likewise all other estimators developed in this article, remains CAN

when instead of model (6.9), a model for the conditional expectation (6.12)

is correctly specified (for each k). Our focus on correct specification of (6.9)

is motivated by the fact that this model is usually known exactly when X

is an exposure that is randomly assigned, conditional on S.

When the intermediate variable is absolutely continuous, the above

method requires inverse weighting by a density. The inverse weighting es-

timator ψ̂IPIW is then likely to have serious finite sample bias because

statistical models for a density are difficult to postulate and small misspec-

ifications in the tails of the density can have a large effect on the direct-

effects estimates through their influence on the inverse weights. Further-

more, the large variability of the inverse weights may then seriously distort

the precision of the estimate. An ad hoc approach to stabilize the inverse

weights is to multiply the estimating function (6.6) by f(K|S), because

observations with extreme values for f(K|L, S,X) are likely also extreme

in terms of f(K|S) and may therefore have a more stable ratio of both.

The resulting estimating function remains unbiased because dK(X,S) is

an arbitrary function of K,X and S, and the conditional expectation in

E(dK(X,S)|S) is only w.r.t. X. Therefore, from now on, we will replace

the weights 1/f(K|L, S,X) by the stabilized weights f(K|S)/f(K|L, S,X).

However, as we will show in several simulation studies in Section 6.3, this

ad hoc stabilization will often not suffice to obtain well-behaved estimators

in moderate sample sizes. Alternatively, one could truncate the weights

(Wang et al., 2006). However, one may argue that truncated weights are

deliberately misspecified weights and, as such, may impact the consistency

of the direct-effects estimator. In the next sections, we will therefore de-

velop estimators which allow misspecification (and thus truncation) of the

weights.
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6.2.3 Doubly-robust estimators

To obtain estimators with better performance in the presence of unsta-

ble weights, note (using similar arguments as in van der Laan and Robins,

2003) that, up to asymptotic equivalence, all CAN estimators for ψ∗ under

model A can be obtained by solving estimating equations of the form

0 =
n∑

i=1

Ui,IPIW (d, q;ψ, α, β)−∆ {φ(Ki, Li, Xi, Si)|Li, Xi, Si} (6.13)

where φ(Ki, Li, Xi, Si) is an arbitrary vector function of the dimension of

ψ. Part 2 of Theorem 5 below shows that for given dK(X,S) and qK(S),

the optimal choice of φ(Ki, Li, Xi, Si) that leads to estimators of ψ∗ with

minimum asymptotic variance, equals

φopt(Ki, Li, Xi, Si) ≡ E(Ui,IPIW (d, q;ψ, α, β)|Ki, Li, Xi, Si) (6.14)

In the proof of Theorem 5 (see Appendix 6.S1), we further show that this

yields the following estimating function for ψ

∆{dK(X,S)|S;β}W (α)∆ {Y |K,L,X, S}+

∫
∆{dK(X,S)|S;β} {E(Y |K,L,X, S)−m(X,K, S;ψ)− qK(S)} f(K|S)dK

(6.15)

where W (α) = f(K|S)/f(K|L, S,X;α) and where the conditional density

f(K|S) may be replaced by an estimate. Using this estimating function

requires that we specify a parametric model

E(Y |K,L,X, S) = E(Y |K,L,X, S; γ∗) (6.16)

where E(Y |K,L,X, S; γ) is a function of (K,L,X, S), smooth in γ, and γ∗

is an unknown finite-dimensional parameter. A consistent estimator γ̂ for

γ∗ can be obtained using standard regression techniques. For example, for

the linear model

E(Y |K,L,X, S; γ) = γ0 + γ1K + γ2L+ γ3X + γ3S (6.17)
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and with m(X,S,K;ψ) = ψX, dK(X,S) = X and using the optimal choice

of qK(S), the estimating function (6.15) has the relatively simple form

∆{X|S;β} [W (α)∆{Y |K,L,X, S; γ}+ γ2∆{L|S}+ (γ3 − ψ)∆{X|S}]

Part 1 of Theorem 5 shows that the solution ψ̂DR to an estimating equation

based on (6.15) has the interesting feature of being a consistent estimator

of ψ∗ when either model (6.8) holds or model (6.16), but not necessarily

both. We therefore call ψ̂DR a doubly-robust estimator of ψ∗.

Theorem 5. 1. The solution ψ̂DR to equation

0 =
n∑

i=1

Ui,DR(d, q;ψ, α̂, β̂, γ̂) (6.18)

where

Ui,DR(d, q;ψ, α, β, γ) =

∆{dKi
(Xi, Si)|Si;β}Wi(α)∆ {Yi|Ki, Li, Xi, Si; γ}

+

∫
∆{dKi

(Xi, Si)|Si;β} {E(Yi|Ki, Li, Xi, Si; γ)

−m(Xi,Ki, Si;ψ)− qKi
(Si)} f(Ki|Si)dKi (6.19)

is a consistent estimator of ψ∗ under model A ∪ B, where B is the

model for the observed data defined by the model restrictions (6.1),

(6.9) and (6.16), and the no unmeasured confounders assumptions

(6.2) and (6.5).

2. Let ψ̂(φ) be the solution to (6.13) for the given choice of φ(Ki, Li, Xi, Si),

for the same choice of dK(X,S) and qK(S) as used to obtain ψ̂DR,

and with (α, β, γ) replaced by (α̂, β̂, γ̂). When the true distribution of

the data lies in the intersection model A ∩ B, then the difference in

asymptotic variance of ψ̂(φ) and ψ̂DR is non-negative.



166 Estimation of controlled direct effects

6.2.4 Unweighted estimators and sequential G-estimators

The attractiveness of the doubly-robust estimator ψ̂DR lies not only

in it (typically) being more efficient than the simpler inverse weighting es-

timator ψ̂IPIW . Its main attraction lies in the fact that it avoids reliance

on a difficult-to-postulate model for the density of the mediator. Instead,

it relies on a model for the expected outcome, which is typically easier to

specify. In this section, we completely avoid reliance on the model for the

density of the mediator by setting f(K|L, S,X) equal to f(K|S) in the es-

timating function (6.18) of the doubly-robust estimator. The implication of

this is to set all weights equal to 1, which leads to an unweighted estimating

equation. The corresponding estimators ψ̂UW solve

0 =

n∑

i=1

Ui,UW (d, q;ψ, β̂, γ̂) (6.20)

where Ui,UW (d, q;ψ, β, γ) is defined as Ui,DR(d, q;ψ, α, β, γ), but withWi(α)

replaced by 1. For example, when choosing a linear conditional mean

model for Y as in (6.17), m(X,K, S;ψ) = ψX, dK(X,S) = X, qK(S) =

γ1E(K|S), we obtain the simple form

0 =
n∑

i=1

∆{Xi|Si;β} (Yi − γ1Ki − ψXi) (6.21)

Note that this estimating equation is very intuitive as it expresses that,

after subtracting the effect γ1Ki of the mediator and the direct effect ψXi

of the exposure from the outcome, no association with Xi should remain

after adjustment for the confounder Si. As such, the solution ψ̂ for ψ to

equation (6.21) with γ1 replaced by a consistent estimate γ̂1, can be viewed

as a sequential G-estimator (i.e., it is obtained by G-estimation applied to

the residual outcome Yi− γ̂1Ki that remains after removing the effect of the

mediator from the outcome). The ‘unweighted’ estimators that solve (6.20)

generalize such sequential G-estimators by allowing for nonlinear models

(6.16) for the outcome and for SNDE models that incorporate interactions

between X and K, and by enabling greater efficiency.

By the fact that the solutions to (6.18) are consistent estimators for ψ∗

under model A∪B, solving (6.20) gives a consistent estimator for ψ∗ under
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model B. In the simulation study of Section 6.3, we will show that the

resulting estimator has the desirable property of being very stable and effi-

cient as a result of avoiding the inverse weighting, but is no longer doubly-

robust. In the following sections, we briefly introduce alternative estimators

which are designed to perform well in the presence of extreme weights and

protect the double robustness property.

6.2.5 Stabilized doubly-robust estimators

Using arguments similar to Robins et al. (2007), we will stabilize

the doubly-robust direct effects estimator by substituting ψ in expression

(6.14) by an estimator ψ̃ which is consistent under model B. We denote the

resulting estimator with ψ̂SDR. When considering closed-form estimators

for ψ∗ obtained from expression (6.18), it can be seen that the impact of this

is that the weights Wi(α) appear both in the numerator and denominator.

For example, with m(X,K, S;ψ) = ψX, dK(X,S) = X, qK(S) = 0 and a

linear conditional mean model for Y as in (6.17), we then obtain

ψ̂SDR =

∑n
i=1 ∆ {Xi|Si;β}

[
Wi(α)

{
∆ {Yi|Ki, Li, Xi, Si; γ}+ ψ̃Xi

}]

∑n
i=1Wi(α)Xi∆ {Xi|Si;β}

+

∑n
i=1

{
ψ̃Xi − E(Yi|Ki = E(Ki|Si), Li, Si, Xi; γ)

}

∑n
i=1Wi(α)Xi∆ {Xi|Si;β}

(6.22)

The resulting estimator is generally more stable than the doubly-robust
estimator
∑n

i=1
∆ {Xi|Si;β} [Wi(α)∆ {Yi|Ki, Li,Xi, Si; γ}+ E(Yi|Ki = E(Ki|Si), Li, Si,Xi; γ)]∑n

i=1
Xi∆ {Xi|Si;β}

of Section 6.2.3 by the fact that subjects with extreme weights Wi(α) in

the numerator of (6.22) will also make the denominator of (6.22) extreme.

The stabilized doubly-robust estimator ψ̂SDR is a consistent estimator of

ψ∗ under model A, even when model (6.16) is misspecified and thus even

when ψ̃ is an inconsistent estimator, because estimating equation (6.13) is

unbiased under model A regardless of φ(Ki, Li, Xi, Si) (and thus in partic-

ular when the unknown parameters indexing φ(Ki, Li, Xi, Si) are replaced
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by inconsistent estimators). Likewise, ψ̂SDR is a consistent estimator of ψ∗

under model B, even when model (6.8) is misspecified, because estimating

equation (6.18) is unbiased under model B and because ψ̃ is a consistent

estimator of ψ∗ under model B. It follows that ψ̂SDR is a doubly-robust

estimator of ψ∗.

Alternatively, we may improve the finite-sample behavior of ψ̂DR by

adapting ideas in Tan (2006) for inverse weighting estimators to inverse

weighting estimating functions. Specifically, we modify the doubly-robust

estimating equation for ψ∗ as

0 =
n∑

i=1

Ui,IPIW (d, q;ψ, α, β)−κ∆ {φopt(Ki, Li, Xi, Si)|Li, Xi, Si} (6.23)

and determine an ‘optimal’ choice of κ that leads to improved efficiency.

Note that the choice κ = 1 yields the estimator ψ̂DR, which may be an inef-

ficient doubly-robust estimator whenever model (6.16) is incorrectly speci-

fied.

Let for notational convenience ξ ≡ ∆ {φopt(Ki, Li, Xi, Si)|Li, Xi, Si}
and η ≡ Ui,IPIW (d, q;ψ, α, β). For arbitrary random variable A, define

Ê(A) as the sample average
∑n

i=1Ai/n. Then choosing κ equal to κopt =

Ê−1(ξξ′)Ê(ξη′) yields an estimator ψ̂(κopt) with minimal variance among

all estimators ψ̂(κ) that solve (6.23) for given κ. This can be seen from

the following 2 arguments. First, the variance E(η2 − 2κηξ + κ2ξ2) of the

estimating function η − κξ is minimized at κopt. Second, the estimator ob-

tained by solving the corresponding estimating equation itself has minimal

variance among all estimators ψ̂(κ) because

V ar(ψ̂(κ)) ≈ 1

n
E

(
∂η

∂ψ

)−1

V ar (η − κξ)E
(
∂η

∂ψ

)−1′

and thus the variance of these estimators is proportional to the variance

of their estimating function. The estimator ψ̂(κopt) is however not doubly-

robust because κopt may not converge to 1 under a correctly specified model

for (6.16).

Choosing κ to equal

κdr ≡ Ê−1(ξχ′)Ê(ξη′)
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with

χ ≡ ∆{dKi
(Xi, Si)|Si;β}Wi(α) [E {Yi −m(Xi,Ki, Si;ψ)|Xi,Ki, Li, Si} − qKi

(Si)]

accommodates this. Indeed, κdr converges to 1 when the model for (6.16) is

correctly specified, because χ = E(η|X,K,L, S) and thus E−1(ξχ′)E(ξη′) =

1 under such correctly specified model. It follows that the estimator ψ̂(κdr)

is a doubly-robust estimator. Further,

E(ξχ′) = E
[
ξ {ξ + E(η|X,L, S)}′

]
= E(ξξ′)

if model (6.8) is correctly specified, because ξ has conditional mean zero,

given (X,L, S), under that model. It follows that κdr − κopt converges

to zero under model (6.8), suggesting that ψ̂(κdr) has minimal variance

among all estimators ψ̂(κ) under that model. Throughout this chapter, we

will refer to ψ̂(κdr) ≡ ψ̂IDR as an improved doubly-robust estimator.

Finally, combining the ideas leading to the estimators ψ̂SDR and ψ̂IDR

leads to yet a final estimator that we will refer to as the stabilized, improved

doubly-robust estimator. The resulting estimator is obtained by substitut-

ing κ with κdr in (6.23) and ψ in expression (6.14) by an estimator ψ̃ which

is consistent under model B. We will denote it as ψ̂SIDR.

6.3 Simulation study

We generate 1000 datasets of size 1500 according to the data gener-

ating mechanism of Figure 6.1, but without confounder S. All analyses

were conducted in R (version 2.3.1). In a first simulation experiment, we

postulate linear models for all variables in the diagram: X = 1 + ǫX , L =

1+λX+0.8U+ǫL, K = 0.5L−0.5X+ǫK and Y = δ(−1+2X+0.5K+U+ǫY )

for mutually independent, normally distributed variates U , ǫX , ǫL, ǫK and

ǫY with mean zero and standard deviations 1, 0.5, 1, 0.3 and 0.5, respec-

tively and with δ = 1. We considered both the cases λ = 1.5 and λ = 0 to

represent settings where L is/is not affected by X. As such, we represent

both settings where standard regression methods are/are not applicable

for estimating the direct effect (i.e. 2δ) of X on Y (which is not medi-

ated by K). A characteristic feature of the simulation experiments with



170 Estimation of controlled direct effects

λ = 1.5 is that there is a strong association between X and Y along the

path X − L− U − Y .

Assuming a correctly specified structural nested direct-effects model

with m(X,

K;ψ) = ψX, the following estimators were calculated in each simulation,

corresponding to the choices dK(X) = X and qK = 0: the Inverse Prob-

ability of Intermediate Weighting (IPIW) estimator of Section 6.2.2, the

doubly-robust (DR) estimator of Section 6.2.3, the sequential G-estimator

(SG) of Section 6.2.4, the stabilized doubly-robust (SDR) estimator, the im-

proved doubly-robust (IDR) estimator and the stabilized, improved doubly-

robust (SIDR) estimator of Section 6.2.5. The sequential G-estimator was

used as a preliminary estimator (ψ̃) in both stabilized estimators. Finally,

we also reported the estimated coefficient for X in a linear regression model

for Y , given X,K and L. We chose the following correctly specified working

models: a normal conditional distribution for K given L and X with mean

linear in L and X and constant residual standard deviation, and a linear

regression model for Y with mean linear in X, K and L.

Because of outlying values for a number of estimators, Tables 6.1-6.3 re-

ports both the average and median bias, the average and median bootstrap

standard error, the empirical standard deviation of the estimates and corre-

sponding (robust) Minimum Covariance Determinant (MCD) estimator for

the standard deviation, the p-value of the Wilcoxon rank test whether the

median direct-effect estimate differs from zero, and the coverage of standard

95% bootstrap confidence intervals. Here, bootstrap estimates are based

on 1000 bootstrap samples.

In the first simulation experiment (see Table 6.1), we find that the

standard linear regression analysis (LM) yields severely biased estimates

when the confounder L is affected by X, while all other estimators are

approximately unbiased. The IPIW estimator is unstable in the sense that

it suffers from many outlying values. The DR estimator is considerably

more stable and more efficient. Slightly higher efficiency is observed for

the improved doubly-robust estimator, but the best results are obtained

using the unweighted estimator. The simulation experiment where L is not

affected by X reveal that the latter estimator competes very well with the
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standard regression analysis. Indeed, it is only slightly less efficient, but

has the advantage of remaining unbiased when L is affected by X.

In a second simulation experiment (see Table 6.2), we investigate the

impact of model misspecification by generating K as exp(0.5L−0.5X+ǫK),

with all remaining variables generated as before. Estimators were obtained

using the same working models that were previously used. We now obtain

extremely unstable IPIW and DR estimates as a result of the estimated

density of the intermediate taking extremely small values for some subjects

(due to the skewness of the data). The improved doubly-robust estimators

perform considerably better, with the stabilized improved DR estimator

having the best performance. However, as a result of remaining instability,

bootstrap standard errors could not be obtained in all simulated datasets.

Overall, the most efficient estimates are again obtained via the sequential

G-estimator.

In a third simulation experiment (see Table 6.3), we misspecified work-

ing model (6.16) by generating Y as Y = δ(−1+2X+0.5(K−E(K))−3(K−
E(K))2 + U + ǫY ), with δ = 0.7 to obtain the same variability in Y as in

the first simulation expiriment. Results are now similar to those of the first

simulation experiment. Curiously, also the sequential G-estimator, while

fully relying on the misspecified working model (6.16), remains unbiased.

When L is not affected by X, this can be understood from the following

arguments. Fitting the outcome model (6.17) (with S empty) then yields

valid estimates for the direct effect ψ∗ of X on Y , even when the associ-

ation between K and Y is misspecified, because the conditional mean of

X is linear in K and L under the considered data-generating mechanism

(see e.g. Robins, Mark and Newey, 1992). From the form of the normal

equations for the parameters indexing model (6.17), it thus follows that

∆{X}(Y − γ∗0 − γ∗1K −ψ∗X − γ∗2L), with γ∗0 , γ
∗
1 and γ∗3 the limiting values

of the ordinary least squares estimators for γ0, γ1 and γ3 under model (6.17),

has mean zero. In particular, because L is not affected by X and thus in-

dependent of X under our model, we have that the estimating function of

the sequential G-estimator,

∆(X)(Y − γ∗1K − ψ∗X),
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with effect of X on L

bias (mean/med) boot SE (mean/med) SE (emp/MCD) p-value bias= 0 boot cov

IPIW -0.49/-0.024 44.98/0.20 13.59/0.28 0.01 92.3

DR 0.029/-0.001 1.36/0.12 1.37/0.17 0.73 96.1

UW -0.001/-0.001 0.061/0.061 0.061/0.061 0.51 95.0

SDR -0.055/0.00 26.53/0.15 1.91/0.21 0.51 94.1

IDR -0.011/-0.010 0.16/0.10 0.21/0.13 0.11 93.9

SIDR -0.016/-0.006 1.013/0.12 0.40/0.15 0.43 95.3

LM -0.73/-0.73 0.068/0.068 0.071/0.072 0.00 0

without effect of X on L

bias (mean/med) boot SE (mean/med) SE (emp/MCD) p-value bias= 0 boot cov

IPIW 0.18/0.032 49.33/0.26 1.79/0.37 0.00 94.4

DR 0.009/0.005 1.23/0.12 1.25/0.18 0.60 95.5

UW 0.004/0.007 0.07/0.07 0.071/0.071 0.059 95.3

SDR 0.034/0.002 18.92/0.16 2.59/0.23 0.71 94.0

IDR 0.005/0.002 0.15/0.10 0.17/0.13 0.19 94.7

SIDR -0.003/0.006 1.88/0.13 0.24/0.16 0.28 95.3

LM 0.003/0.003 0.062/0.062 0.063/0.064 0.078 95.3

Table 6.1: Results of Simulation Experiment 1



6.3 Simulation study 173

is unbiased, even when the association between K and Y is misspecified.

It can be seen with some algebra that this result continues to hold when L

is affected by X and (X,K,L) is multivariate normal.

In a fourth simulation experiment (see Table 6.4), we misspecified both

working models by generating K and Y as in the previous 2 simulation ex-

periments, respectively, but with δ = 0.04. As expected, all estimators are

now biased. Note that, while the additional misspecification of the working

model (6.8) has no immediate impact on the sequential G-estimator (be-

cause this estimator avoids inverse probability weighting), it also becomes

biased because the robustness property of this estimator (see previous para-

graph) only holds for linear models. Note however, that the sequential

G-estimator is still outperforming the other estimators both in terms of

precision and bias. With a correctly specified working model (6.8) for the

intermediate, but a misspecified outcome model (see Table 6.5, simulation

experiment 5), as expected, the sequential G-estimator continues to behave

poorly as it does not make use of the working model for the intermediate.

However, the (stabilized) improved doubly-robust estimators now outper-

form the others, both in terms of bias and precision (but the bootstrap

confidence intervals are poor in terms of coverage). The usefulness of the

latter estimators is most apparent when the intermediate is non-normal

and, additionally, this is acknowledged via the working model (6.8). We

conjecture that these stabilized doubly-robust estimators will be more com-

petitive with the sequential G-estimator in settings where the weights are

more stable, such as may happen when the mediator is binary.
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with effect of X on L

bias (mean/med) boot SE (mean/med) SE (emp/MCD) p-value bias= 0 boot cov

IPIW 10.82/9.1 437/10.0 23.8/5.3 0.00 60.0

DR 8.3 1050/-0.13 1.4 1064/1.8 109 2.7 1051/1.9 0.59 100.0

UW -0.001/-0.001 0.059/0.059 0.059/0.059 0.78 95.1

SDR 0.00/0.018 41.3/0.97 2.1/0.77 0.80 94.2

IDR 17.1/0.037 -/- 520/1.8 0.00 -

SIDR -0.022/-0.002 -/- 0.58/0.088 0.86 -

LM -0.73/-0.73 0.061/0.061 0.063/0.063 0.00 0

without effect of X on L

bias (mean/med) boot SE (mean/med) SE (emp/MCD) p-value bias= 0 boot cov

IPIW -15.0/10.2 4153/39.0 936.4/16.2 0 84.8

DR −3.3/1050/-4.4 2.5 1065/8.9 1011 1.1 1053/- 0.012 100.0

UW 0.002/0.000 0.062/0.062 0.062/0.062 0.23 96

SDR -6.7/0.022 594/4.9 151.8/2.4 0.88 96.6

IDR 3.6/0.033 -/- 353.62/2.60 0.001 -

SIDR -0.074/0.005 -/- 3.13/0.12 0.17 -

LM 0.002/0.001 0.053/0.053 0.053/0.053 0.41 95.3

Table 6.2: Results of Simulation Experiment 2
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with effect of X on L

bias (mean/med) boot SE (mean/med) SE (emp/MCD) p-value bias= 0 boot cov

IPIW -0.63/-0.027 84.1/0.33 20.8/0.43 0.9 91.7

DR -0.017/-0.010 1.9/0.17 2.0/0.25 0.94 96.1

UW -0.002/-0.004 0.096/0.095 0.099/0.098 0.35 93.0

SDR 0.11/-0.008 44.6/0.21 3.7/0.31 0.55 94.7

IDR -0.004/-0.007 0.23/0.13 0.26/0.16 0.45 95.1

SIDR 0.059/-0.008 0.53/0.15 1.8/0.20 0.95 95.2

LM -0.51/-0.52 0.12/0.12 0.12/0.12 0.00 1.2

without effect of X on L

bias (mean/med) boot SE (mean/med) SE (emp/MCD) p-value bias= 0 boot cov

IPIW 0.068/-0.004 106/0.35 7.5/0.51 0.01 92.9

DR -0.035/-0.005 2.4/0.18 2.4/0.26 0.66 95.1

UW 0.001/0.003 0.12/0.12 0.12/0.12 0.63 95.6

SDR -0.17/-0.014 56.9/0.23 3.02/0.35 0.22 94.5

IDR -0.008/0.001 0.23/0.14 0.29/0.18 0.83 94.6

SIDR -0.008/-0.007 0.65/0.17 0.50/0.22 0.97 95.3

LM 0.000/0.002 0.12/0.12 0.12/0.12 0.80 95.5

Table 6.3: Results of Simulation Experiment 3
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with effect of X on L

bias (mean/med) boot SE (mean/med) SE (emp/MCD) p-value bias= 0 boot cov

IPIW -92.87/-37.12 8590.71/51.34 405.46/63.32 0.00 53.2

DR −8.21052 / −42581 1.3 1066 / 3.5 1043 2.0 1054/- 0.0 100.0

UW 1.85/0.58 0.067/0.066 0.067/0.066 0.00 0.0

SDR -1.65/-20.01 493.06/2.70 40.03/1.96 0.00 95.7

IDR -16.75/0.52 224.65/113.73 319.29/0.11 0.57 96.7

SIDR 1.83/0.55 3.49/0.14 0.44/0.083 0.00 93.1

LM 1.78/-1.16 0.054/0.055 0.065/0.064 0.00 0

without effect of X on L

bias (mean/med) boot SE (mean/med) SE (emp/MCD) p-value bias= 0 boot cov

IPIW 16.6/-19.9 7999/65.6 1507/39.5 0 79.6

DR 4.2 1052/2211408 3.0 1067/ 1.2 1013 1.2 1051 / 2.37 0.00 100.0

UW -0.34/-0.33 0.11/0.097 0.15/0.095 0.00 0

SDR 9.4/-11.2 3514/0.097 826/21.9 0.00 76.2

IDR 6.6/0.52 -/- 107/1.78 0.00 -

SIDR -0.24/0.55 -/- 1.3/0.12 0.00 -

LM -0.34/-0.30 0.16/0.14 0.15/0.089 0.00 27.3

Table 6.4: Results of Simulation Experiment 4
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with effect of X on L

bias (mean/med) boot SE (mean/med) SE (emp/MCD) p-value bias= 0 boot cov

IPIW -0.30/-0.035 13.68/0.091 5.79/0.092 0.00 92.7

DR 0.43/0.46 1.13/0.35 5.04/0.36 0.00 61.5

UW 0.64/0.57 0.18/0.14 0.29/0.15 0.00 0

SDR 201/0.41 137.52/0.43 49.38/0.47 0.00 70.3

IDR 0.042/0.0014 0.13/0.097 0.22/0.11 0.57 74.7

SIDR 0.039/-0.00097 0.14/0.084 0.22/0.088 0.00 77.8

LM -1.30/-1.16 0.097/0.085 0.55/0.056 0.00 44.4

without effect of X on L

bias (mean/med) boot SE (mean/med) SE (emp/MCD) p-value bias= 0 boot cov

IPIW -0.008/0.022 2.78/0.033 1.25/0.035 0.00 39.6

DR -0.17/-0.24 0.39/0.11 2.34/0.12 0.00 58.8

UW -0.34/-0.30 0.084/0.060 0.15/0.072 0.00 0.30

SDR -0.17/-0.22 7.2/0.14 3.10/0.15 0.00 73.3

IDR 0.0003/-0.008 0.069/0.056 0.10/0.049 0.037 64.9

SIDR 0.009/0.009 0.081/0.053 0.096/0.055 0.00 54.5

LM -0.34/-0.30 0.024/0.021 0.14/0.063 0.00 21.3

Table 6.5: Results of Simulation Experiment 5
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6.4 Data analysis

De Sutter et al. (2006) estimate the effect of single versus double em-

bryo transfer (SET versus DET) on birth weight using a survey of 557 SET

and 396 DET patients who entered the subfertility program at the Ghent

University hospital and who delivered a singleton child of at least 500 grams

after fresh embryo transfer in a first, second or third cycle between Jan-

uary 2003 and May 2007. The mean gestational age (GA) of singleton

babies is 273.9 days (SD 12.4). The mean birth weight (BW) is 3231.8

grams (SD 565.4). De Sutter et al. (2006) observed birth weights to be 120

grams (95% confidence interval 44 - 197) lower on average in babies born

after double than single enmbryo transfer. In response to criticism that the

analysis was not adjusted for gestational age, Delbaere et al.(2007b) argue

that such adjustment would remove a possible indirect effect of SET/DET

on birth weight through gestational age, and would introduce bias because

gestational age may be affected by SET/DET and is associated with birth

weight. At the same time, the debate raises the question whether the effect

of SET/DET on birth weight is entirely mediated through gestational age.

To address this question, we assume that the causal diagram of Figure

6.1 represents the data generating mechanism, with S representing mea-

sured baseline confounders (embryo quality, duration of infertility, ma-

ternal age, female and male pathology, gravida and type of conception

(IVF/ICSI)) for the association between SET/DET and pregnancy out-

comes, and L representing measured confounders (complications during

pregnancy, vaginal blood loss, preterm contractions, preterm rupture of the

membranes and growth retardation) for the association between gestational

age and birth weight. The diagram allows for the presence of unmeasured

confounders U for the association between these confounders and outcome

Y . Note that the analysis is restricted to women who deliver a singleton

baby and that an implicit assumption in the analysis is thus that the loss of

an embryo (in early pregnancy) in women with DET treatment is not asso-

ciated with gestational age and birth weight. A more appropriate analysis

would be restricted to the principal stratum (Frangakis and Rubin, 2002)

of women who would deliver a singleton child (of at least 500 grams) under
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both treatments.

Of all variables listed above as potential baseline confounders for the as-

socation between embryo transfer (SET/DET) and the outcome BW, only

maternal age, embryo quality, duration of infertility and IVF/ICSI treat-

ment showed a significant association with SET/DET and/or BW. Thus,

only these variables are included as confounders S. For similar reasons,

only preterm contractions, preterm rupture of the membranes and growth

retardation are included as confounders L. Due to the many missing values

for duration of infertility (33.6%), we first performed the analyses assuming

that infertility duration does not confound the association between GA and

BW. This leaves us with 895 complete observations.

To estimate the direct effect of SET/DET on BW, which is not me-

diated by GA, we use the approaches proposed in Section 6.2. Based on

the results of the simulation experiments in the previous section, we use

the sequential G-estimator with a linear conditional model for Y as the

primary estimator in the analysis. Since GA is skewly distributed to the

left, we transformed it via a Box-Cox transformation so that we could as-

sume a normal distribution for model (6.8), with mean α0 + α1L+ α2S +

α3X and constant residual standard deviation σK . Further, we postu-

lated m(X,K, S;ψ) = ψX, chose dK(X,S) = X and qK(S) = 0 and

we specified linear models E(X|S;β) = β0 + βS and E(Y |K,L,X, S) =

γ0 + γ1K + γ2L+ γ3X + γ4S for the conditional expectations of the expo-

sure SET/DET (X) and the outcome BW (Y ).

Table 6.6 summarizes the estimates obtained from the different estima-

tion methods, along with bootstrap standard errors and confidence intervals

based on 1000 bootstrap samples. As expected, after removing the indirect

effect through GA, we now estimate the average birth weight to be merely

60 grams (95% confidence interval 14 - 136) lower on average in babies

born after double than single enmbryo transfer. While the difference in

birth weight is no longer significant after controlling for GA, the confidence

interval does not exclude the possibility of important differences exceeding

100 grams.
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Without infertility duration With infertility duration

ψ̂ boot SE 95% CI ψ̂ boot SE 95% CI

IPIW 78.20 100.16 [-143.41;304.21] 91.90 144.41 [-224,78;338.44]

DR -67.77 40.44 [-141.19;14.42] -84.11 53.75 [-190.64;14.79]

UW -59.64 36.70 [-136.49;13.97] -70.76 47.92 [-156.37;14.98]

SDR -67.69 40.38 [-141.22;14.38] -83.82 53.54 [-189.42;15.37]

IDR -69.52 42.46 [-154.40;18.41] -86.07 54.87 [-181.93;15.03]

SIDR -69.45 42.33 [-153.08;18.18] -85.77 54.59 [-181.63;14.70]

LM -44.59 33.49 [-115.06;28.88] -71.14 45.18 [-148.02;6.27]

Table 6.6: Data Analysis Results

6.5 Discussion

Estimating the direct effect of an exposure on an outcome, which is

not mediated by some given variable, requires adjustment not only for

prognostic factors of the outcome that are associated with the exposure, but

additionally for those associated with the mediator. In practice, several of

these prognostic factors may only arise after the exposure was administered

and thus possibly be affected by it. In such settings, standard regression

methods may yield biased estimates of the direct exposure effect.

While methods based on inverse probability weighting have been pro-

posed to accommodate this problem, they require inverse weighting by a

density when the mediator is discrete with many levels or absolutely con-

tinuous. Inefficient effect estimators with large bias are then typically ob-

tained. In this chapter, we have proposed a sequential G-estimator (or,

more generally, unweighted estimator) which mitigates this problem by

avoiding the inverse weighting altogether. This estimator competes remark-

ably well with ordinary least squares estimators in settings where these are

valid (i.e. in settings where prognostic factors of the outcome which are

predictive of the mediator, are not themselves affected by the exposure),

but remains valid in settings where the ordinary least squares estimator

fails. The proposed estimator requires postulating a working model for the

expected outcome in function of exposure, mediator and prognostic fac-
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tors. It is robust against misspecification of this working model when the

exposure, mediator and its prognostic factors have a multivariate normal

distribution, but not otherwise. In view of this, we have derived doubly-

robust estimators which allow for misspecification, provided that a working

model for a conditional density of the mediator is correctly specified. On the

basis of the simulation studies, we recommend the sequential (unweighted)

G-estimator and the (stabilized) improved doubly-robust estimator when

the mediator is absolutely continuous. For a dichotomous mediator, less

variable inverse weights are expected, and thus a relatively much better

performance of the (stabilized) improved doubly-robust estimator.

A number of restrictions are implicit in our approach. First, we have

implicitly assumed that the mediator may affect the outcome, but is not

itself affected by it. In many practical studies, mediator and outcome may

mutually affect each other over time. We plan to accommodate this by

allowing for repeated measurements on mediator and outcome. Second, we

have implicitly assumed that controlled direct effects are well defined. In

certain situations however, the idea of fixing the intermediate variable at

a value equal for all subjects is not realistic (see Chapter 4 for examples).

Standardized direct effects (Didelez, Dawid and Geneletti, 2006) are more

broadly useful in the sense that they allow each subject to have their own

fixed value for the intermediate variable. Moreover, they can be obtained by

averaging the controlled direct-effect estimates in this chapter over a chosen

mediator density, under additional assumptions (Petersen, Sinisi and van

der Laan, 2006).
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Appendix 6.A1: Proof of

Theorem 5

Part 2 of Theorem 5 is immediate upon applying Theorem 1.2 in van
der Laan and Robins (2003). To prove Part 1 of Theorem 5, we assume
that the regularity conditions of Theorem 1A in Robins, Mark and Newey
(1992) hold for Ui,DR(d, q;ψ, α, β, γ), the estimating function Gi(γ) for γ
and Ai(α) for α. For simplicity, we assume that β∗ is known, as is usually
the case when X is a randomly assigned exposure. By standard Taylor
expansion arguments, we have that

0 = n−1/2

n∑

i=1

Ui,DR(d, q;ψ∗, α̃, β, γ̃)

+E

{
∂

∂ψ
Ui,DR(d, q;ψ = ψ∗, α̃, β, γ̃)

}√
n(ψ̂ − ψ∗)

−E
{
∂

∂γ
Ui,DR(d, q;ψ∗, α̃, β, γ = γ̃)

}
E−1

{
∂

∂γ
Gi(γ = γ̃)

}
Gi(γ̃)

−E
{
∂

∂α
Ui,DR(d, q;ψ∗, α = α̃, β, γ̃)

}
E−1

{
∂

∂α
Ai(α = α̃)

}
Ai(α̃) + op (1)

(6.24)

where op(1) denotes a random variable converging to 0 in probability, and

where γ̃ and α̃ are the probability limits of the estimators for γ∗ and α∗.

First note that Ui,DR(d, q;ψ, α̃, β, γ̃) has mean zero at ψ = ψ∗ under
model A, even when model (6.16) for the conditional expectation of the
outcome is misspecified. This is because the first term in (6.13) has mean
zero at ψ∗ under model A by construction and the second term is a mean
zero function under model A for each choice of φ(Ki, Li, Xi, Si) and thus in
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particular for φopt(Ki, Li, Xi, Si). We now show that Ui,DR(d, q;ψ, α̃, β, γ̃)
has mean zero at ψ = ψ∗ under model B, even when model (6.8) for the
conditional density of the mediator is misspecified. Using the potential
outcomes framework and denoting F ≡ f(K|L, S,X;α), F ∗ ≡ f(K|S),
F ∗

k ≡ f(K = k|S), M ≡ m(X,S,K;ψ), Q ≡ qK(S) and D ≡ dK(X,S), we
may rewrite the estimating function in (6.18) as

UDR =

∫
I(K = k)

F
F ∗∆{D|S}(Yk −M −Q)dk

−E
(∫

I(K = k)

F
F ∗∆{D|S}(Yk −M −Q)dk|X,K,L, S

)

+E

[
E

(∫
I(K = k)

F
F ∗∆{D|S}(Yk −M −Q)dk|X,K,L, S

)
|X,L, S

]

We rewrite the first term as
∫ [

F ∗

k ∆{D|S}(Yk −M −Q) +

{
I(K = k)

F
− 1

}
F ∗

k ∆{D|S}(Yk −M −Q)

]

The second term equals
∫
I(K = k)

F
F ∗∆{D|S}E(Yk −M −Q|K = k,X,L, S)dk

and the third term can be further simplified to

E

[∫
I(K = k)

F
F ∗∆{D|S}E(Yk −M −Q|K = k,X,L, S)dk|X,L, S

]

=

∫
F ∗

k ∆{D|S}E(Yk −M −Q|K = k,X,L, S)E

(
I(K = k)

F
|X,L, S

)
dk

=

∫
F ∗

k ∆{D|S}E(Yk −M −Q|K = k,X,L, S)dk

Adding these 3 terms yields

∫ [
F ∗

k ∆{D|S}(Yk −M −Q) +

{
I(K = k)

F
− 1

}
F ∗

k ∆{D|S}(Yk −M −Q)

−
{
I(K = k)

F
− 1

}
F ∗

k ∆{D|S}E(Yk −M −Q|K = k,X,L, S)

]
dk

=

∫
(Yk −M −Q)F ∗

k ∆{D|S}dk

+

∫ {
I(K = k)

F
− 1

}
F ∗

k ∆{D|S}(Yk − E(Yk|K = k,X,L, S))dk
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The first term was shown to have mean zero at ψ∗ in Section 6.2.2. The

integrand of the second term has mean zero conditional on (K,X,L, S)

when, as in model B, the conditional expectation of Y is correctly specified,

since Yk is independent of K conditionally on X, L and S.

We conclude that Ui,DR(d, q;ψ, α̃, β, γ̃) has mean zero at ψ = ψ∗ under

model A ∪ B. Further, note that γ̃ = γ∗, and thus that

E {∂Ui,DR(d, q;ψ∗, α = α̃, β, γ̃)/∂α} = 0 and E{Gi(γ̃)} = 0 when model

(6.16) is correctly specified. Likewise, α̃ = α∗, and thus

E {∂Ui,DR(d, q;ψ∗, α̃, β, γ = γ̃)/∂γ} = 0 and E{Ai(α̃)} = 0 when model

(6.8) is correctly specified. Under the regularity conditions of Theorem 1A

in Robins, Mark and Newey (1992), it now follows from the asymptotic

unbiasedness of
√
n(ψ̂ − ψ∗) under model A ∪ B that ψ̂ is a consistent

estimator of ψ∗ under model A ∪ B.



186 Estimation of controlled direct effects



Discussion

The main challenge in causal inference is protecting estimators of the

effect of an exposure on an outcome against possible confounders. This

is important because improper or insufficient adjustment for confounders

may yield estimated effects that reflect merely associations in the data

and not causal effects. In particular, such associations may be found even

in the absence of a causal effect. In this thesis, we were motivated by

research questions concerning twin data, infertility and perinatal outcomes

that were raised through collaborations with the Department of Obstetrics

and Gynecology. This has lead to the development of new methods for

inferring causal effects.

In the first part of the thesis, we considered the use of twin data for

estimating heritability. We learned that estimates of heritability may be

confounded, in the sense that standard estimates obtained using structural

equation models may suggest a trait to be heritable even when it is not.

This may happen, even when the equal environment assumption appears

to hold, whenever there exist common causes of zygosity and the trait of

interest. Causal directed acyclic graphs (Pearl, 2000) help gain insight into

this and suggest that problems of confounding may not be very common

when estimating heritability.

Next, we evaluated how to estimate the effect of an exposure (e.g. smok-

ing) on a given outcome (e.g. lung function) based on twin data. For such

studies, it has been suggested, on the basis of data analysis and simulation

evidence, that the separation of exposures into within- and between-cluster

components within a random intercept model yields protection against un-

measured twin-specific confounders (Neuhaus and Kalbfleisch, 1998; Car-
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lin, 2005). We investigated the validity of these methods by first devel-

oping a general class of conditional generalized estimating equations for

the estimation of causal effects from general clustered data (e.g. data from

multi-center studies, family data, longitudinal data, ...), which offer pro-

tection against confounders that have a constant value within each cluster

(cluster-level confounders). This is done by exploiting the correlated struc-

ture of the data and making comparisons within clusters. Next, we eval-

uated whether estimators obtained by separating exposures into within-

and between-cluster components can be viewed as estimators within our

class. We expressed some concerns over these estimators because (a) mod-

els which involve within- and between-cluster exposures cannot be viewed

as data-generating models; and (b) such approaches may be inconsistent

and inefficient under nonlinear link functions. Nonetheless, we show the

latter approaches to be very useful and attractive because they offer com-

putationally convenient estimators, they are valid under the identity link

and approximately valid, but inefficient, under the log link.

Conditional generalized estimating equations were developed to obtain

protection against unmeasured cluster-level confounders. In the context of

longitudinal studies, that is, to offer protection against unmeasured baseline

confounders. Future research would be useful to extend these methods to

marginal structural models (Robins et al., 2000; Yu and van der Laan,

2006) or structural nested mean models (Robins, 1999b) for the effect of

time-varying exposures in longitudinal studies.

From Chapter 4 onwards, we focused on estimation of direct causal

effects. This was motivated by research questions at the Department of

Obstetrics and Gynecology on the effect of subfertility treatments on peri-

natal health, which is not mediated by the beneficial effect through zygosity.

Direct effects play an important role in many fields of research. This is be-

cause exposures often affect the outcome through various pathways, both

indirectly through intermediate variables and directly. Understanding and

estimating the different path-specific effects is then important to gain in-

sight into the mechanistic action of a treatment (e.g. a drug) or intervention

or to evaluate the importance of specific components of an intervention For

example, Petersen, Sinisi and van der Laan (2006) estimate the effect of
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protease inhibator-based antiretroviral therapy on CD4 T-cell count (an

indication for HIV infection). They then investigate whether this beneficial

effect is entirely due to a reduction in plasma HIV RNA level (viral load).

In randomized clinical studies for the effect of postmenopausal hormone

therapy on breast cancer, women in the treated group tend to undergo a

mammography more often which leads to a more early detection of breast

cancer than in the untreated group, and thus to better survival chances

(Gajdos et al., 2000). It is then of interest to investigate whether the treat-

ment directly affects the survival chances for breast cancer patients, not

mediated through mammography. Direct effects are also relevant in many

non-medical contexts. In the context of company management, direct ef-

fects are of interest when companies make decisions about their marketing

strategy and wish to know the impact on the behavior of customers. These

decisions also have an indirect effect, which is not of interest, since they

affect the reaction of competitive companies which also influences the cus-

tomer. In human resources, questions of race or gender discrimination are

frequently posed when hiring people. To examine this, one needs to ac-

knowledge that race and gender may affect the educational level, career

objectives, etc., which in turn affects the decision to hire someone. This

indirect effect through educational level, career objectives, etc., does not

reflect race or gender discrimination and thus only the direct effect is of

interest.

Estimation of direct effects is more complex than estimation of (total)

causal effects. This is so because estimation of direct effects requires ad-

justment for intermediate variables, which may induce non-causal relations

between the exposure and the outcome when, as is likely the case in prac-

tice, prognostic factors of the outcome also affect the intermediate variable.

Even when some of these prognostic factors are measured and can be ad-

justed for, standard adjustment remains problematic when the exposure

affects these factors and when there are unmeasured confounders for these

factors and the outcome. Robins introduced inverse probability weighting

for structural nested direct effects models (1999b) to infer controlled direct

effects (i.e. the effect of an exposure on an outcome while holding the in-

termediate variable fixed at a certain value for all subjects). This is based
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on inversely weighting each subject’s data by a conditional distribution of

the intermediate variable. When the latter is absolutely continuous, these

weights may be very unstable and lead to extremely imprecise direct ef-

fect estimates. In this thesis, we have therefore developed doubly robust

estimators. These are consistent when either the model for the weights is

correctly specified or a conditional mean model for the outcome. By pur-

posely misspecifying the weights to equal 1, the weight instability is avoided

and consistent and efficient estimators are obtained provided that the con-

ditional mean model for the outcome is correctly specified. To make the

resulting unweighted estimator more robust against model misspecification,

we additionally developed doubly robust estimators that cope better with

weight instability.

Further research is of interest to extend these methods to longitudinal

data. While methods for longitudinal data have been proposed (Rosenblum

et al., 2007), they are based on inverse probability weighting and thus also

fail to work well when the intermediate variable is continuous. It is hence

of interest to develop approaches that work well even with an absolutely

continuous intermediate variable.

A further extension of interest is to estimate natural direct effects.

These represent the effect of exposure on outcome when removing the ex-

posure effect on the intermediate variable. Petersen, Sinisi and van der

Laan (2006) proposed natural direct effects estimators, but only for cases

where confounders for the association between intermediate and outcome

are not themselves affected by the exposure. Allowing for greater flexibility

is of interest.

We have applied the unweighted estimator to estimate a direct genetic

effect on lung function, not mediated through body mass. Our method so

far assumes that there are no ascertainment conditions (i.e., it assumes hav-

ing a random sample of data). However, many genetic studies sample study

subjects on the basis of their outcome. Vansteelandt et al. (2007) show in

the context of family-based designs that the ascertainment is not problem-

atic when there is no (total) genetic effect (i.e. the combination of direct

and indirect effects trough intermediate variables). In particular, tests for

a genetic effect will not incorrectly reject the null hypothesis more often
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than a priori stated. The reason is that under no (total) genetic effect, the

SNPs and the potential outcome are independent (i.e. d-separated) within

the group of ascertained subjects. A challenge would be to develop direct

effect tests which are valid in the presence of ascertainment conditions.
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Nederlandse samenvatting

Situering en probleemstelling

Oorzaak-effectrelaties detecteren en kwantificeren vormt de basis voor

procesbeheersing en interventie in wetenschap en industrie. Data worden

daartoe op grote schaal vergaard via experimentele of observationele studies

en statistische technieken worden aangewend om deze data te analyseren.

Echter, standaard statistische technieken zijn gericht op het vinden van as-

sociaties tussen metingen en die kunnen bestaan zelfs als er geen causaal

verband is en omgekeerd. Dit is het geval wanneer de oorzakelijke fac-

tor samengaat met andere variabelen die een eigen impact op de uitkomst

hebben. Dergelijke variabelen worden ‘confounders’ genoemd. Statistische

modelbouw kan soms corrigeren voor gemeten confounders, maar niet voor

ongekende confounders waarvan men veelal het bestaan vermoedt. Het

zoeken naar onvertekende, efficiënte en robuuste methoden voor causale

besluitvorming is daarom een belangrijk, maar niettemin zeer complex on-

derdeel van het statistisch onderzoek.

De laatste 3 decennia werden belangrijke nieuwe inzichten verworven

omtrent besluitvorming voor causale effecten (Rubin, 1978; Robins, 1986;

Pearl, 1995, 2000). Zo werden potentiële uitkomsten (Rubin, 1978; Robins,

1986) gëıntroduceerd die een duidelijke definitie van het causaal effect toe-

laat, en werden causale diagrammen (Pearl, 1995, 2000) ontwikkeld die

het mogelijk maken deze effecten visueel voor te stellen. Een introductie

tot causale besluitvorming, voornamelijk omtrent potentiële uitkomsten en

causale diagrammen, wordt gegeven in Hoofdstuk 1.

209
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In deze thesis worden causale methodes toegepast en ontwikkeld die

algemeen noodzakelijk zijn om enkele specifieke causale problemen aan

te pakken, gemotiveerd door onderzoeksvragen vanuit de Vakgroep Uro-

Gynaecologie van het Universitair Ziekenhuis Gent en het Department of

Biostatistics van de Harvard School of Public Health, betreffende de analyse

van perinatale uitkomsten en tweelingen- en familiegegevens.

Overzicht van de thesis

In Hoofdstuk 2 focussen we specifiek op de analyse van tweelingen

data. Deze spelen een belangrijke rol in het medisch onderzoek omdat ze

een unieke bron van informatie bieden omtrent de impakt van genetische en

omgevingsfactoren op het welzijn van de mens. We introduceren en onder-

zoeken eerst de structurele schattingsvergelijkingen (SEM), een methode

die vaak gebruikt wordt voor het analyseren van tweelingen data en voor

het schatten van de impakt van genetische factoren, i.e. erfelijkheid, op

een bepaald fenotype. Het schatten van erfelijkheid brengt de vraag met

zich mee of deze schatting vertekend kan zijn door de aanwezigheid van

confounders. Dit werd, bij ons weten, nog slechts vaag beschreven in de

literatuur. We onderzoeken dit daarom op het einde van Hoofdstuk 2 en

geven een eenvoudige nieuwe methode om de schatting van erfelijkheid te

beschermen tegen gemeten confounders.

In Hoofdstuk 3 onderzoeken we vervolgens, voor algemene geclusterde

datastructuren, hoe schatters beschermd kunnen worden tegen de aan-

wezigheid van bepaalde confounders. We tonen aan hoe een statistische

analyse die rekening houdt met de correlatie binnen clusters kan corrigeren

voor ongemeten confounders die constant zijn binnen clusters. Tweelingen

bijvoorbeeld delen logischerwijze dezelfde tweeling-specifieke kenmerken zo-

dat een paarsgewijze vergelijking van tweelingen met onderling een verschil-

lende blootstelling, niet verstoord wordt door de invloed van ongemeten

tweeling-specifieke factoren. Dit begrip is welgekend in de statistiek en epi-

demiologie, maar niettemin maken heel wat frequent gehanteerde analyses

daar geen gebruik van (bvb., veralgemeende schattingsvergelijkingen met

onafhankelijke correlatie structuur). Ze bekomen op die manier onnodig
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vertekende resultaten. Omdat correctie voor confounders zo belangrijk is

voor een causale analyse gaan we na hoe dit gerealiseerd kan worden en

onder welke voorwaarden dit opportuun is. Op die manier worden nieuwe

schatters gecreëerd die onvertekend zijn zelfs wanneer er ongemeten con-

founders zijn die constant zijn binnen clusters. De bekomen nieuwe schat-

tingsmethode (die we ‘conditionele veralgemeende schattingsvergelijkingen’

noemen) worden vervolgens aangewend om de validiteit na te gaan van een

eenvoudige regressie methode waarin men een opsplitsing maakt tussen ef-

fecten binnen clusters en effecten tussen clusters (Neuhaus en Kalbfleisch,

1998). We tonen onder andere theoretisch aan dat de methode van Neuhaus

en Kalbfleisch slechts consistente schatters levert bij lineaire modellen, en

dus niet algemeen bruikbaar is. Door middel van simulaties tenslotte, verge-

lijken we beide methodes wat betreft vertekening en precisie van de schat-

ters. We concluderen dat voor lineaire modellen, beide methodes verge-

lijkbaar zijn wat vertekening en precisie betreft, maar dat bij log-lineaire

modellen bij de methode van Neuhaus en Kalbfleisch de schatters vertekend

en minder precisie zijn.

Wegens de dringende onderzoeksvraag omtrent het effect van vrucht-

baarheidsbehandelingen op perinatale uitkomsten vanuit de vakgroep Uro-

Gynaecologie, gaan we vanaf Hoofdstuk 4 dieper in op het schatten van

directe causale effecten. Dit zijn causale effecten van de blootstelling op

de uitkomst die niet via gegeven andere variabelen (i.e. intermediaire vari-

abelen) werken. Vruchtbaarheidsbehandelingen hebben immers via ver-

schillende causale paden een effect op perinatale uitkomsten, bvb. door de

kans op een tweeling te doen stijgen voor wie perinatale uitkomsten vaak

slechter zijn dan voor eenlingen, door de grotere kans op een dizygote twee-

ling na deze behandeling, voor wie, vergeleken met monozygote tweelingen,

de perinatale uitkomsten beter zijn, en daarnaast ook door een direct effect

op deze uitkomsten.

In Hoofdstuk 4 kaderen we de complexiteit van het schatten van di-

recte effecten (Pearl, 2001; Robins en Greenland, 1992; van der Laan en

Petersen, 2004). Deze complexiteit ontstaat doordat het bepalen van het

directe effect van een blootstelling op een uitkomst vereist dat men in de

analyse corrigeert voor de gegeven intermediaire variabelen. Indien dat
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via traditionele regressiemethoden gebeurt, ontstaan daardoor niet-causale

associaties wanneer (zoals gewoonlijk) de intermediaire variabelen worden

bëınvloed door prognostische factoren voor de uitkomst. Bijgevolg kun-

nen directe effecten doorgaans onmogelijk worden geschat via standaard

statistische methoden, tenzij onder erg restrictieve assumpties (i.e. geen

ongemeten confounders), die zelden realistisch zijn. Niettegenstaande deze

restrictieve assumpties, wordt toch meestal traditionele regressie gebruikt

voor het schatten van een direct effect en is de bekomen schatting in vele

gevallen vertekend. Ten slotte tonen we in dit hoofdstuk dat het definiëren

van een direct effect op zich al erg subtiel is en geven we enkele bestaande

definities, waaronder het gecontrolleerde direct effect. Het is voor het schat-

ten van dit gecontrolleerd direct effect dat we in de laatste 2 hoofdstukken

nieuwe schattingsmethodes ontwikkelen

In Hoofdstuk 5 ontwikkelen we een eenvoudige schatter voor gecon-

trolleerde directe effecten die consistent is onder zwakkere assumpties dan

de traditionele regressie-gebaseerde methodes voor directe effecten. Ze

laten bijvoorbeeld toe dat confounders voor het effect van intermediaire

variabelen op de uitkomst zelf bëınvloed zijn door de blootstelling. Door

middel van simulaties en toepassing op een familie-gebaseerde genetische

associatie studie, illustreren we de dramatische verbeteringen die bekomen

worden door gebruik van deze schatter vergeleken met regressie-schatters.

Bovendien is deze schatter zeer eenvoudig implementeerbaar in standaard

statistische software.

In Hoofdstuk 6 tenslotte, tonen we dat de schatter uit Hoofdstuk 5

een bijzonder geval is van een meer algemene klasse van schatters voor di-

recte effecten die gebaseerd zijn op invers wegen volgens een conditionele

dichtheid van de intermediaire variabele. Wanneer deze variabele continu

is, kunnen de gewichten en daarom dus ook de bekomen schattingen, erg on-

stabiel zijn. Om meer stabiele schattingen te bekomen, wordt daarom in dit

hoofdstuk een dubbel robuuste schatter ontwikkeld. Deze is asymptotisch

onvertekend als ofwel een conditioneel model voor de gemiddelde uitkomst

correct gespecifieerd is of het model voor een conditionele dichtheid van

de intermediaire variabele (dit zijn de gewichten). De schatter uit Hoofd-

stuk 5 wordt bekomen door het model voor de conditionele dichtheid van
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de intermediaire variabele bewust verkeerd te specifiëren, namelijk door

alle gewichten gelijk aan 1 te onderstellen, wat de schatting veel stabieler

maakt. Deze schatting is consistent zolang het conditioneel model voor de

gemiddelde uitkomst correct gespecifieerd is. Tenslotte gaan we nog een

stap verder en ontwikkelen we andere dubbel robuuste schatters die zich

zelfs in de aanwezigheid van extreme gewichten goed gedragen. De ver-

schillende schatters worden vergeleken in uitvoerige simulatie studies en in

de analyse van perinatale uitkomsten van eenlingen geboren na enkele of

dubbele embryo transfer.

We besluiten de thesis met een overzicht en met een beschrijving van

open onderzoeksproblemen die nauw gelinkt zijn aan de behandelde onder-

zoeksvragen.


