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Abstract

The Basel accords require financial institutions to regularly vali-
date their LGD (Loss Given Default) models. This is crucial so banks
are not misestimating the minimum required capital to protect them
against the risks they are facing through their lending activities. The
validation of an LGD model typically includes backtesting which in-
volves the process of evaluating to which degree the internal model
estimates still correspond with the realized observations. Reported
backtesting examples have typically been limited to simply measuring
the similarity between model predictions and realized observations. It
is however not straightforward to determine acceptable performance
based on these measurements alone. Although recent research led to
advanced backtesting methods for PD models, the literature on simi-
lar backtesting methods for LGD models is much scarcer. This study
addresses this literature gap by proposing a backtesting framework
using statistical hypothesis tests to support the validation of LGD
models. The proposed statistical hypothesis tests implicitly define re-
liable reference values to determine acceptable performance and take
into account the number of LGD observations as a small sample may
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a↵ect the quality of the backtesting procedure. This workbench of
tests is applied to an LGD model fitted to real-life data and evaluated
through a statistical power analysis.

1 Introduction

Banks are required to validate the internal estimation process and their in-
ternal models so as to prove their soundness to the national regulator [38].
The validation of the estimation process involves issues like data quality, re-
porting and problem handling and how the predictive models are used by the
bank; it is mainly qualitative in nature, although quantitative methods are
useful for the examination of data quality. The validation of the models on
the other hand includes both the examination of the model design and the
predictions that each such model produces for the key risk parameter it is
modeling: Probability of Default (PD), Exposure at Default (EAD), or Loss
Given Default (LGD), i.e. the percentage of the loan that the bank will not
be able to recover in the event of a default. The evaluation of the model
design consists of a qualitative review of the statistical techniques and the
relevance of the data used to build the model. The assessment of a model’s
predictions typically includes quantitative methods such as benchmarking
and backtesting.

While benchmarking methods evaluate the internal model estimates against
(where available) external model estimates [35], backtesting methods eval-
uate the internal model estimates against the actual realized observations.
The purpose of backtesting is to evaluate the predictive performance of a
model and how this evolves over time, in order to detect model deteriora-
tion in a timely manner. An LGD model can experience reduced predictive
performance when current loan loss behavior no longer reflects the previous
loan loss behavior on which the model was originally built. This may lead to
an overestimation or underestimation of a bank’s required minimum capital
so that its operations can become less profitable or more risky, respectively.
Although banks are required to regularly validate their models in order to
be Basel-compliant, the accord does not mention how to perform this val-
idation [38]. In addition, recent research has largely focused on advanced
methods for backtesting PD models [21, 23, 26] but literature on comparable
methods for backtesting LGD models is virtually non-existing.
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Current LGD performance evaluation practices found in the literature have
so far been usually limited to comparing internal LGD predictions and real-
ized LGD observations using error-based metrics, correlation-based metrics
or even classification-based metrics [35]. It is however not straightforward
to determine acceptable performance solely based on these metrics. A single
value has little meaning without an appropriate reference value indicating
acceptable accuracy. Additionally, these metrics do not take into account
the number of LGD observations. When the portfolio lacks su�cient ob-
servations, a few extreme observations can distort the accuracy result and
thus undermine its reliability. This study therefore proposes a backtesting
framework in which the model performance on an out-of-time test data set
is evaluated against earlier model performance, e.g. on the training data,
using a number of suggested statistical hypothesis tests. Hence, an appro-
priate reference value is introduced for each metric of interest that takes into
account the number of observations.

The remainder of this paper is organized as follows. First, a literature review
is conducted on empirical LGD studies that focus on the evaluation of the
predictive performance of LGD models. Second, the key idea of the proposed
backtesting procedure is explained together with our workbench of available
statistical hypothesis tests to evaluate LGD models. Third, the experimental
set-up to apply and evaluate the backtesting framework is described. This
involves information about the employed real-life LGD data, the design of a
predictive LGD model based on this data, a statistical significance analysis
of the measured predictive model performance and a statistical power anal-
ysis of the proposed tests based on these performance metrics. Fourth, the
results of the application and the evaluation of the backtesting procedure are
reported and discussed.

2 Literature review

The Basel accords require banks to backtest their internal models but do not
further specify how this needs to be performed [38]. Current backtesting prac-
tices in the empirical LGD literature are usually limited to comparing inter-
nal LGD predictions and realized LGD observations with error-based metrics
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(e.g. MAE, RMSE), correlation-based metrics (e.g. Pearson’s r, Kendall’s
⌧ , Spearman’s ⇢, coe�cient of determination R2) or even classification-based
metrics (e.g. AUROC) [35]. Each of these metrics has its own method of
quantifying the degree of similarity between LGD model predictions and the
actual realized observations. This section describes the workings of these
metrics more in detail and explains how they are used to assess the pre-
dictive performance of LGD models. It will conclude by identifying several
problems when using these metrics for the purpose of backtesting LGD.

Error-based metrics quantify the error or di↵erence between predicted and
observed values. One of the most often used error-based metrics is the Mean
Squared Error (MSE) [12, 17, 31]. The MSE is defined as the average of
the squared di↵erences between loan-level LGD predictions and actual ob-
served values. Since errors are squared, this metric heavily weights outliers.
The metric is bound between the maximum squared error and zero (perfect
prediction). The Root MSE (RMSE) is also often used as a metric in the
literature [9, 11, 16]. The RMSE is merely the square root of the MSE but
o↵ers the additional advantage that it has the same unit scale as the depen-
dent variable being predicted, unlike MSE. Another error-based metric used
in the literature is the Mean Absolute Error (MAE) [9, 11, 17]. The MAE
is given by the averaged absolute di↵erence between predicted and observed
values. Just like the RMSE, the MAE has the same unit scale as the de-
pendent variable being predicted, but MAE is not as sensitive to outliers.
The metric is bound between the maximum absolute error and zero (perfect
prediction).

Correlation-based metrics quantify the degree of some statistical relationship
between predicted and observed values. A very popular correlation-based
metric seems to be the R2 [12, 20, 24, 30]. The R2 can be defined as one
minus the fraction of the sum of squared errors to the variance of the obser-
vations. Since the second term in the formula can be seen as the fraction of
unexplained variance, the R2 can be interpreted as the fraction of explained
variance. Although R2 is usually a number on a scale from zero to one, R2

can yield negative values when the model predictions are worse than using
the mean y from the training set as prediction. Other correlation-based met-
rics include Pearson’s r [31], Spearman’s ⇢ [35] and Kendall’s ⌧ [22]. Pear-
son’s r measures the degree of linear relationship between predictions and
observations. Spearman’s ⇢ is defined as Pearson’s r applied to the rank-
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ings of predicted and observed values. Kendall’s ⌧ measures the degree of
correspondence between predictions and observations. All three correlation
coe�cients can take values between minus one (perfect negative correlation)
and one (perfect positive correlation) with zero meaning no correlation at all.

Although not considered to be a metric to assess the performance of a re-
gression model, a typical binary classification-based metric such as the Area
Under the Receiver Operating Characteristic curve (AUROC) [27] is also
used in the LGD literature [22, 31, 30]. It is employed in an LGD context to
measure how good an LGD regression model is able to distinguish between
high and low losses. In order for the curve to be produced, the observed
values are first dichotomized into a high and a low class using e.g. the mean
y of the training set as the cut-point. The area under the ROC curve is an
estimate for the discriminatory power of a model. The metric varies from 0.5
(random classification) to one (perfect classification). Another similar metric
is the Area Over the Regression Error Characteristic curve (AOREC) [14].
It can be seen as either a generalization of an error-based metric or a regres-
sion equivalent for the AUROC. The AOC curve plots the error tolerance
on the x-axis onto the percentage of points predicted within that tolerance
(or accuracy) on the y-axis. The resulting curve represents the cumulative
distribution function of the squared error. The area over the REC curve
(AOC) is an estimate of the prediction error by the model. The metric is
bound between zero (perfect prediction) and the maximum squared error.

The evaluation scheme used to assess the predictive performance of a LGD
model varies in the literature. For prediction it is important that the model
performance is evaluated on unseen cases which is what it will also encounter
in real-life. These evaluation schemes are called out-of-sample. In an out-
of-sample schema [9, 11, 22, 20, 30], the LGD dataset is split into a random
training set (e.g. two-thirds of the total dataset) and a test set (remaining
one-third of the total dataset). The training set is used to build the model;
the test set is used to evaluate the model. In order to enhance the reliability
of the assessment, multiple hold-out validations can be considered [9, 11].
Alternatively, rather than using a simple out-of-sample test set, one can also
opt for an out-of-time scheme. In an out-of-time scheme [9, 12, 16, 17, 31],
the model itself is built on data from a specific time period and is evaluated
on data collected after this time period. While an average of multiple hold-
out validations is most applicable to assess how well a technique fits a model
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to a dataset, out-of-time validation adds additional insights into real-life pre-
dictive model performance as the model is strictly built using historical data
and strictly evaluated on future data. Backtesting always comes down to an
out-of-time evaluation.

The use of the above-described metrics for backtesting an LGD model may
present problems. First, it is not straightforward to determine acceptable
model performance solely based on these metrics. A single value has little
meaning without an appropriate reference value indicating acceptable per-
formance. For example, a loan level R2 of 50% may look poor on paper
since a perfect LGD model should in theory yield an R2 of 100%. However,
comparing this performance with other real-life LGD benchmarking results
where the average R2 ranges from 4% to 43% [35], this may sound very good.
Similarly, for error-based metrics, it is useful to employ, for example, the rel-
ative squared error or relative absolute error which measures the model’s
predictive performance compared to the predictive performance of historical
average LGDs which may be seen as a reference model (null model) [10].
Second, the above-described metrics do not take into account the number of
LGD observations. When the portfolio lacks su�cient observations, a small
number of extreme observations can distort the accuracy results and thus
a↵ect its reliability. For example, when assessing LGD model performance
in a specific year with only ten defaults in the portfolio, one or two large
loan-level prediction errors may cause a disproportionately low performance.

3 Proposed backtesting framework

The proposed approach for backtesting the predictive performance of an LGD
model is to evaluate model performance on the most recent out-of-time vali-
dation set collected (referred to as ‘test performance’ from here on) against
model performance on the original training dataset1 (referred to as ‘training
performance’ in what follows); to conduct this comparison, we will suggest
a series of alternative statistical hypothesis tests. By comparing test perfor-

1Additionally, one could also decide to backtest against a validation sample from an-
other past time period (e.g. using predicted and observed data collected as part of a
previous backtesting exercise as a reference); the statistical tests used would be similar
though.
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mance against training performance, a reference value is introduced, tailored
to the respective model. Model deterioration is thus defined as a decrease
of model performance compared to the performance during model building
(or some other reference period). Note that this is in contrast to the process
of benchmarking where the performance of multiple models is compared to
each other. By applying statistical hypothesis tests, model deterioration can
be statistically detected at a pre-defined significance level (e.g. 5%). In addi-
tion, statistical hypothesis tests implicitly take into account any insu�cient
number of observations (i.e. sample size) to prevent incorrect judgements.

In what follows, the proposed statistical hypothesis tests to decide upon ac-
ceptable model performance are explained. These tests typically start with
the formulation of a null hypothesis, H0, which assumes no model deteriora-
tion and an alternative hypothesis, Ha, which indicates model deterioration.
Then, some test statistic is identified in order to assess H0. A decision
whether or not to reject H0 can be made by calculating this test statistic for
the sample at hand and comparing it to the critical value corresponding to
a significance level of 5%. If the resulting test statistic falls in the rejection
region (e.g. is greater than the critical value), H0 may be rejected in favor
of Ha; i.e., one would accept there is su�cient evidence to support model
deterioration.

3.1 Central tendency error tests

The most basic model performance aspect is the central tendency of the error;
the corresponding metrics are useful in assessing so-called model calibration,
i.e. whether the model tends to under- or over-estimate the true LGD of
loans. The error E for loan defaults in the test set is defined here as the dif-
ference between observed LGD, Y , and predicted LGD, Ŷ ; thus, E = Y � Ŷ .
Two well-known statistical hypothesis tests from the literature may be used
in this context: the T test and the Wilcoxon signed rank test. Both tests
allow one to evaluate whether the central tendency of the error equals zero,
which serves as the reference value. In other words, it is assumed that the
central tendency of the training error, Et, of a well-aligned model equals zero.
Whereas the T test compares the mean error to zero, the Wilcoxon signed
rank test compares the median error to zero.
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Note that one-tailed tests will be used instead of two-tailed tests because
the former provide more power to detect whether model predictions are too
low on average by not looking for systematic misestimations on either side.
Although overestimating LGDs may needlessly increase a bank’s capital re-
quirements, detecting any systematic underestimation of losses is considered
more important since the primary regulatory concern is that the bank would
not have set aside su�cient capital. Nonetheless, a bank may become less
profitable compared to other banks when their capital requirements are sig-
nificantly overestimated so, where this would be a key concern, it may be
beneficial to consider two-tailed versions of the proposed tests instead.

The T test can be used to make inferences about whether the mean of the
test-set error µE equals zero or (provided that one opts for a one-tailed test)
is positive:

H0 : µE = 0, Ha : µE > 0

A test statistic T can be derived from the property that the sample mean
of a normally distributed variable is normal or, in the absence of normality,
approximately normal for a large enough sample (cf. the Central Limit The-
orem). Hence, given that H0 is true, and with the true variance of the error
being unknown, the following test statistic follows a t-distribution:

T =
ē
sep
n

⇠ tn�1

with n the number of loss observations available for backtesting. Note that as
n becomes larger (e.g. starting from n > 30), a t-distribution converges to a
normal distribution. Hence, in that case, performing a Z test and comparing
the test statistic against a normal distribution table would be an appropriate
alternative.

The one-sample Wilcoxon signed rank test [42] on the other hand can be
used for making inferences about whether the median of the test-set error,
⌘E, equals zero:

H0 : ⌘E = 0, Ha : ⌘E > 0

A test statistic can now be derived by ranking the absolute values of non-
zero errors in ascending order. The smallest error is ranked 1, the second
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smallest is ranked 2, etc. Tied cases (i.e. absolute LGD prediction errors
of the same magnitude) are assigned the average of their ranks. The test
statistic is then given by the sum of the ranks of the positive errors, r+, and
is approximately normal under H0 and for a large enough sample; hence, one
can use the following standardized test statistic:

Z =
r+ � n(n+ 1)

4s
n(n+ 1)(2n+ 1)

24

⇠ N(0, 1)2

Compared to the T test which draws conclusions based on the actual value of
the mean in the test sample and its assumed distribution, the Wilcoxon test
statistic is a non-parametric alternative which looks solely at the ranking of
the errors. Nonetheless, in order to be able to easily quantify and compare the
central tendency error over the test years, we propose an additional metric
that will be referred to in this paper as the Wilcoxon metric wr. It is defined
as the ratio of the rank sum of negative errors (r�) to the total rank sum of
positive and negative errors (r++r�). It is bound between zero (i.e. all errors
are underestimations) and one (all are overestimations) with 0.5 indicating
there is no upward or downward bias.

3.2 Error dispersion tests

Another model performance characteristic that complements the central ten-
dency of the error is the dispersion of the error, or, inversely, model precision.
Whereas the central tendency tests proposed in the previous section look for
systematic under- (or over-)estimations of LGD, dispersion tests are meant
to detect whether this error distribution is getting wider; i.e. loan-level pre-
dictions are becoming less precise. Two existing statistical hypothesis tests
may be used for this purpose: the F test (a well-known parametric test) and
the Ansari-Bradley test (a non-parametric alternative). Both tests allow one
to evaluate whether the dispersion of the error in the most recently collected
test set di↵ers from the dispersion of the training error, which serves as a
reference. While the F test compares the variance of the test set error to the
variance of the training error, the Ansari-Bradley test compares the spread
of both distributions by using a ranking procedure rather than relying on

2Because r+ takes only integer values, a continuity correction may be applied.
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the numerical error values directly. Note that, similarly to before, one-tailed
tests are proposed in order to enhance the statistical power to detect when
the dispersion of the test error is larger than the dispersion of the training
error. A larger error dispersion implies larger prediction errors; this loss of
predictive power might impact the model’s ability to correctly identify the
LGD risk of individual loans or to produce su�ciently homogeneous LGD
risk grades.

The F test [43] can be used to determine whether the variance of the test set
error �2

E is equal to the variance of the training error �2
Et
, i.e. for a one-tailed

test:

H0 : �
2
E = �2

Et
, Ha : �

2
E > �2

Et

A test statistic is produced by inspecting the ratio of observed error variance
in the test sample, s2e, over observed error variance in the training sample,
s2et . Assuming the error terms are sampled from an underlying normal dis-

tribution, (n � 1)
s2e
�2
E

and (nt � 1)
s2et
�2
Et

follow a �2-distribution, with n � 1

and nt � 1 degrees of freedom, respectively (where n is the number of loan
defaults to backtest and nt the number of defaults in the training (refer-
ence) set). Hence, dividing each by the corresponding degrees of freedom
and taking the ratio leads to the following F-distributed test statistic, under
H0:

F =
s2e
s2et

⇠ Fn�1,nt�1

Note that deviations from the normality assumption could undermine the
validity of this test. Therefore, we propose a second, non-parametric test.

Alternatively, the Ansari-Bradley test [5] can be used to assess whether the
cumulative error distribution for the test set, FE(u), and the cumulative
distribution function of the training errors, FEt(u), are equal, assuming they
can only di↵er in the value of a scale parameter ✓:

H0 : FE(u) = FEt(u), Ha : FE(✓u) = FEt(u) with ✓ > 1

In this setting, a test statistic can be derived by calculating the sum of rank
scores or weights of the ordered errors in the combined sample containing
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both test and training errors, e and et; let the size of this sample be m =
n + nt. The weights assigned are one to both the smallest and largest error
value in the combined sample (i.e. the ‘outer edges’ of the empirical error
distribution), 2 to the next smallest and next largest, etc., until a weight of
m
2 is assigned to the two middle observations if m is even, or m+1

2 to the one
middle observation if m is odd (using mid ranks for ties). The test statistic
is given by the sum of these weigths (denoted we) for the ordered errors e
associated with the test set only. For large sample sizes, we is asymptotically
normally distributed, specifically3:

Z =
we �

n(m+ 2)

4s
nnt(m+ 2)(m� 2)

48(m� 1)

⇠ N(0, 1)

when m is even, or:

Z =
we �

n(m+ 1)2

4ms
nnt(m+ 1)(3 +m2)

48m2

⇠ N(0, 1)

when m is odd. A lower-tail test is then used to detect larger dispersion in
the test sample. As the test requires that E and Et have identical population
medians, Ansari and Bradley [5] recommend subtracting the sample medians
and shifting both e and et to zero median if this assumption should not be
met.

Compared to the F test which draws conclusions based on the actual values
of training and test sample variances, the Ansari-Bradley test statistic uses
a ranking procedure to determine whether the test sample error distribu-
tion is wider than that previously observed in the training (reference) data.
Nonetheless, to be able to easily quantify and compare the test performance
over the out-of-time validation period at hand, relative to the training per-
formance, we propose an additional metric that will be referred to in this
paper as the Ansari-Bradley metric abw. This metric is defined as the ratio
of the sum of weights of the ordered errors in the combined sample associated

3A further modification may be applied to the test statistic variance in this large-sample
approximation if ties are present.
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with e (we) to the total sum of weights in the combined sample associated
with both e and et (we + wet). Values closer to zero (one) imply greater
(smaller) error dispersion in the test data, respectively; 0.5 indicates similar
error dispersion in training and test set.

3.3 Error-, correlation- and classification-based tests

In addition to our proposed tests for monitoring model calibration and pre-
cision, a number of other metrics are frequently used in the empirical LGD
literature to assess model performance. These are error-based (i.e. RMSE,
MAE, AOREC), correlation-based (i.e. R2, r, ⇢, ⌧) or classification-based
(i.e. AUROC) metrics. However, the backtesting literature has not always
identified readily available statistical hypothesis tests for them or described
how to apply these to the problem of detecting model deterioration. The
main problem is that it is often not straightforward to determine the theo-
retical distribution of a test statistic under a null hypothesis based on these
metrics. Instead, such a distribution may be estimated via a bootstrapping
approach. The basic idea of bootstrapping is that inference about a popula-
tion can be made by resampling from the available sample data. By doing so,
one can produce an empirical distribution for a test statistic under a given
null hypothesis when its true distribution is unknown.

A bootstrap test can thus be used to determine to what degree, for a metric
of interest, the test performance P is equal to the training performance Pt:

H0 : P = Pt, Ha : P < Pt

In this case, the test statistic is given by Pt � P if P is one of the com-
monly used correlation- or classification-based metrics, or P�Pt if the metric
of interest is an error-based one (since their values are inversely related to
model performance). The distribution of this test statistic under the null
hypothesis can be simulated through bootstrapping according to Beran’s al-
gorithm [13, 33, 41, 44]. First, the training and test observations, along with
their predicted LGD values, are pooled into one larger sample. Next, a train-
ing/test bootstrap sample with the same length as the original training/test
set is extracted from this pool of observation/predictions through random
sampling with replacement. Then, the di↵erence in value for the metric
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under consideration between the bootstrap training sample and bootstrap
test sample is calculated. This procedure is repeated 1000 times in order
to empirically build up the distribution of the test statistic under the null
hypothesis. Note that again only one-tailed tests are proposed so as to en-
hance the statistical power to detect performance deterioration; however, the
method can easily be adapted to implement two-tailed tests where needed.

4 Methods

This section evaluates the proposed backtesting framework by applying it to
an example LGD model fitted to and tested on real-life data. The experi-
mental set-up is as follows. First, real-life loss data was collected consisting
of a variety of characteristics of each respective loan on the one hand and
its corresponding observed LGD on the other. Second, a regression analysis
is performed over the loss data in order to build a predictive LGD model.
Third, the performance of the predictive LGD model is backtested on multi-
ple years of out-of-time data. To this end, the proposed statistical hypothesis
tests are run in order to discover any significant model deteriorations. Fourth,
the proposed statistical hypothesis tests are empirically evaluated through a
statistical power analysis.

4.1 Data collection

The real-life LGD dataset collected in this study consists of corporate loan
losses over a time span from 1984 to 2004 and contains 891 observations.
Data from 2001 to 2004 is used to annually backtest the constructed LGD
model. The model is built with data from 1984 to 2000. This split between
training and test data (i.e. letting the training window run to the year 2000)
is chosen so as to have su�cient data (about 500 defaults) to train an LGD
model while still having su�cient time periods (i.e. four years) to backtest
the LGD model. The number of observations used for training and backtest-
ing purposes is given in Table 1.

The empirical distribution of the LGD data used for training and testing is
shown in Figure 1. It appears to be predominantly J-shaped with the highest
observed frequencies at the right end of the LGD value range. This means
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Year Observations Purpose

2004 30

Backtesting
2003 47
2002 140
2001 155

1984-2000 519 Training

Table 1: Number of observations

that the dataset is characterized by high LGDs for a majority of defaults.
Notice that especially 2001 and 2002 are characterized by high LGDs while
this shifts to generally lower LGDs for 2003 and 2004. From the literature,
we know that the LGD distribution is indeed typically non-normal and often
bimodal; real-life LGD tends to be characterized by high concentrations of
either (near-)total recovery (LGD = 0 or close to 0) or total loss (LGD = 1)
or both. The majority of the empirical LGD literature reports a large peak
at zero and a smaller peak on one [9, 17, 22, 24, 31]. Nonetheless, a few
studies also report what we observe in our dataset: a large peak on one and
a smaller or non-existing peak on zero [20, 31].

The LGD dataset covers both loans and bonds from large corporates. Apart
from the LGD target variable, the dataset includes 42 variables which repre-
sent potential LGD drivers, among others rating, level of seniority, country of
domicile, type of industry, US default rate. The data covers di↵erent sectors
such as transportation, finance, public, industrial and real estate. Firms are
domiciled in America, Europe and Oceania. The average size of the debts
is about $100 million and about 15% of the debts are secured by collateral.
For the purpose of predictive modeling, a few pre-processing actions are per-
formed. Continuous variables are transformed to the standard z-score using
the sample mean and standard deviation of the training set. Furthermore,
categorical variables are quantified by dummy encoding. More information
about this dataset is confidential.

4.2 Predictive modeling

First of all, a predictive LGD model is required to estimate future outcomes.
This allows the bank to protect itself against default losses whilst remaining

14



0 0.5 1
0

20

40

60

80

100
(a) Year 1984−2000

0 0.5 1
0

20

40

60
(b) Year 2001

0 0.5 1
0

10

20

30

40
(c) Year 2002

0 0.5 1
0

2

4

6

8

10
(d) Year 2003

0 0.5 1
0

2

4

6

8

10
(e) Year 2004

0 0.5 1
0

20

40

60

80

100
(f) Year 2000−2004

Figure 1: LGD observations histogram

competitive. A second consideration is that the bank may need to provide a
comprehensible LGD model typically required by the national regulators in
order to ensure that banks fully understand their risks and underlying model
relations. Although non-linear models such as Support Vector Machines and
Artificial Neural Networks seem to show significantly higher performance on
average than linear models in a recent benchmarking study, they are often
labelled as black-box models [35]. Therefore, a simple linear model is delib-
erately chosen in this paper so that the model form remains understandable
and its backtesting results can be more easily interpreted. Note that, in the
context of this study, the focus is not on building the best possible model,
but to illustrate how a given model can be properly backtested.

The LGD model is estimated by applying Ordinary Least Squares (OLS)
regression to the training data. In order to improve the generalization abil-
ity, i.e. the ability to accurately estimate the LGD on out-of-sample data, a
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variable selection method is used to exclude irrelevant or redundant variables
from the model. Using a ten-fold cross-validation scheme, a model wrapper
searches for a subset of variables that best predicts the LGD by sequentially
selecting variables until there is no improvement in minimizing the sum of
squared di↵erences between predictions and observations. The selected sub-
set includes two binary variables referring to the level of seniority, i.e. senior
unsecured (SU) (true/false) and junior subordinated (JS) (true/false), and
one continuous variable, i.e. (standardized) US default rate from the previous
year (USDR(t-1)). The output of the variable selection strengthens previous
literature studies which stress the importance of seniority and default rate
as major predictive drivers [38]:

LGD = 0.74� 0.15 · SU+ 0.18 · JS+ 0.02 ·USDR(t-1)

The resulting linear model can be interpreted as follows. The baseline LGD
estimate is 74%; this estimate decreases with 15% when the loan is senior
unsecured or increases with 18% when the loan is junior subordinated (keep-
ing the other variables constant). Similarly, the LGD increases with the US
default rate from the previous year. These relations are roughly in line with
previous empirical studies. Secured debt and high priority are known to de-
crease the LGD [1, 2, 3, 4, 6, 7, 18, 19, 25, 29, 32]. Also, LGD was reported
to be higher in periods of high defaults [3, 4, 6, 28, 29, 32, 34].

4.3 Significance analysis

Table 2 gives an overview of the performance metrics on which the statisti-
cal hypothesis tests of the proposed backtesting framework are based. The
name of each performance metric is given in column one while the values in
columns two and three show its lower and upper bound. The first two metrics
specifically measure the central tendency of the error while the subsequent
two metrics measure the dispersion of the error. As explained in sections 3.1
and 3.2, standard (non-)parametric tests are available to test performance
deterioration in terms of these metrics. The following eight metrics are a
further selection of error-, correlation- and classification-based metrics. To
detect performance deterioration based on these metrics, we will use the
bootstrapping procedure outlined in section 3.3.
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Metric Worst Best

e -1 0
wr 0 0.5
s2e +1 0
abw 0 0.5

RMSE +1 0
MAE +1 0

AUROC 0.5 1
AOREC +1 0

R2 04 1
r 0 1
⇢ 0 1
⌧ 0 1

Table 2: Performance metrics

To monitor whether the performance according to each metric falls within an
acceptable range, the out-of-time performance is compared with the train-
ing performance. Each statistical hypothesis test assumes a null hypothesis
and if su�cient evidence exists against the null hypothesis, one accepts the
alternative hypothesis, i.e. that performance has been a↵ected. This evi-
dence is gathered in the form of a p-value. The p-value is the probability
of obtaining a test statistic at least as extreme as the one that was actually
observed, assuming that the null hypothesis is true. When the resulting p-
value is compared to a pre-defined significance threshold, a decision can be
made on statistical significance. This pre-defined level is the maximum al-
lowed probability of making a type I error (i.e. the incorrect rejection of the
null hypothesis). This is generally denoted as ↵ and can e.g. be set to 5%.
Low p-values (i.e. <5%) indicate that H0 can be more confidently rejected,
whereas larger p-values (i.e. >5%) indicate that there is insu�cient evidence
to do so. Other values of ↵ may be chosen depending on cost considerations,
the level of conservatism required by the bank or regulator, etc.

Note that a significance analysis may be extended in various ways. First,

4Although R2 can yield excessive negative values when the model predictions are worse
than using the mean from the training set as prediction, these have however the same
meaning as zero values, i.e. that the model does not explain any variation at all [37].
Hence, any negative values are replaced by zero to enhance their interpretation.
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if required, statistical comparisons may also be performed between the per-
formance of the test year under consideration and the performance of any
previous year(s), instead of the performance on the training set. Second,
the statistical tests may also be performed on specific segments of the data.
This segmentation could be done either on the input data (e.g. di↵erent
levels of seniority) or on the output data (i.e. di↵erent levels or ‘grades’
from low to high LGD risk). Third, a tra�c lights approach may be used
to support the visualization of the resulting p-values. Di↵erent colors can be
assigned depending on the range that the corresponding p-values are in [21].
The choice and number of colors as well as the definition of their underlying
p-value bounds are at the discretion of the financial institution, although a
minimum number of three is suggested [40]. These extensions are however
not put into practice in this paper for reasons of brevity.

4.4 Power analysis

In order to evaluate whether the results of the statistical hypothesis tests are
su�ciently reliable, the statistical power ⇡ is empirically determined. The
power of a test is defined as the probability that the test rejects the null
hypothesis when it is indeed false. Note that this is the probability of not
making a type II error (i.e. the failure to reject the null hypothesis while
it is actually false). The probability of making a type II error is generally
denoted as �. To decide upon acceptable statistical power, a threshold of
85% is often used. A test is then considered to be su�ciently powerful when
⇡ is higher than 85% or � is lower than 15%. Note that � (and thus also ⇡)
is related to the significance level ↵ desired. When ↵ is higher, � is lower or
⇡ is higher, and vice versa.

We analyze the statistical power of a test using again Beran’s algorithm [13,
33, 41, 44]. First, the distribution of the test statistic under Ha is em-
pirically derived. To do so, a same-sized training/test bootstrap sample is
extracted from the original training/test set, respectively, through random
sampling with replacement. Subsequently, the test statistic is calculated for
each bootstrap sample. This procedure is repeated 1000 times in order to
empirically build up a reliable distribution of the test statistic under Ha.
Similarly to section 3.3, the distribution of the test statistic under H0 can
be empirically derived by repeatedly extracting a training and test bootstrap
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sample but now from a pooled dataset which combines the training and test
set values. Next, the probability of making a type II error � is calculated.
This is given by the percentile rank of the test statistic’s distribution under
Ha for the 95th percentile (corresponds to ↵ = 5%) of the distribution of the
test statistic under H0 for the case of a right-tailed test. Finally, the power
can be calculated as ⇡ = 1� �.

5 Results and discussion

Metric 1984-2000 2001 2002 2003 2004

e 0.00 -0.17 -0.12 0.08 0.16
wr 0.43 0.15 0.20 0.53 0.83
s2e 0.05 0.05 0.05 0.07 0.05
abw 0.50 0.24 0.21 0.06 0.05
RMSE 0.23 0.29 0.25 0.28 0.27
MAE 0.18 0.26 0.22 0.25 0.23
AUROC 0.70 0.56 0.55 0.63 0.55
AOREC 0.05 0.08 0.06 0.08 0.07
R2 0.12 0.00 0.00 0.01 0.00
r 0.34 0.14 0.19 0.30 0.17
⇢ 0.33 0.03 0.22 0.24 0.07
⌧ 0.23 0.03 0.18 0.19 0.06

Table 3: Performance metric values

This section reports and discusses the performance values of the LGD model,
the statistical significance values of the performance di↵erences between
training and test sets and the statistical power values of the applied sta-
tistical hypothesis tests. The performance results of the LGD model for each
metric are listed in Table 3. Both training (i.e. data from 1984 to 2000)
and test set performances (i.e. data from 2001 to 2004) are given in order to
show the evolution of the performances of the subsequent years with respect
to the training performance. In order to detect significant performance dete-
riorations based on these performance values, Table 4 presents the resulting
p-values of the statistical hypothesis tests corresponding to each performance
metric; bold-face notation is used to denote significant di↵erences (p < 0.05).
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Test 2001 2002 2003 2004

T 0.00 0.00 0.97 1.00
Wilcoxon 0.00 0.00 0.98 1.00
F 0.43 0.73 0.04 0.52
Ansari-Bradley 0.86 0.29 0.00 0.10
RMSE 0.00 0.09 0.03 0.07
MAE 0.00 0.00 0.00 0.06
AUROC 0.00 0.00 0.21 0.10
AOREC 0.00 0.07 0.02 0.07
R2 0.00 0.00 0.13 0.18
r 0.01 0.05 0.33 0.15
⇢ 0.00 0.13 0.25 0.10
⌧ 0.00 0.26 0.35 0.08

Table 4: Statistical significance values (p-values rounded to two decimal
places)

Finally, Table 5 lists the power values of each statistical hypothesis test so
that we can evaluate to what degree they can be su�ciently relied upon to
discover performance deteriorations. Power values greater than our example
threshold of 0.85 are again put in bold.

The evolution of the central tendency of the error in terms of the mean error
e or (our variant of) the Wilcoxon metric wr is represented in the first and
second row of Table 3. Regardless of whether the central tendency of the
error is measured using e or wr, the same trend is observed. The central
tendency is below zero in terms of e and below 0.5 in terms of wr for 2001
and 2002, while it is above zero in terms of e and above 0.5 in terms of wr

for 2003 and 2004. The corresponding p-values in Table 4 for both the T
test and one-sample Wilcoxon test are (close to) zero for 2001 and 2002 and
are (close to) one for 2003 and 2004. This means that both tests agree that
the model is significantly underestimating LGD for 2001 and 2002 while this
is not the case for 2003 and 2004. The consistent underestimations of the
model may point to a more severe economic downturn period than expected
by the model. The corresponding power values in Table 5 for both the T test
and one-sample Wilcoxon test are at their maximum value for 2001 and 2002
and at their minimum value for 2003 and 2004. Both results should be seen
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Test 2001 2002 2003 2004

T 1.00 1.00 0.00 0.00
Wilcoxon 1.00 1.00 0.00 0.00
F 0.09 0.02 0.54 0.01
Ansari-Bradley 0.05 0.15 0.94 0.30
RMSE 1.00 0.36 0.79 0.40
MAE 1.00 0.95 0.92 0.57
AUROC 0.87 0.95 0.15 0.19
AOREC 1.00 0.39 0.75 0.39
R2 0.98 0.91 0.13 0.09
r 0.89 0.50 0.06 0.38
⇢ 0.96 0.27 0.15 0.50
⌧ 0.95 0.18 0.12 0.55

Table 5: Statistical power values

in conjunction with the significance results obtained for those same years.
Note that, even prior to the test results for 2001-2004, the Wilcoxon metric
wr when calculated using the training data only was lower than 0.5, thus
indicating that the error is non-normally distributed and mean and median
error are di↵erent.

The evolution of the dispersion of the error in terms of the observed variance
of the error s2e or the Ansari-Bradley metric abw is shown in the third and
fourth row of Table 3. According to s2e, the dispersion of the error remains
fairly stable for the subsequent years, except for 2003 which shows a 0.02 in-
crease in error variance. According to abw on the other hand, the dispersion
of the error seems to worsen over time, gradually dropping further below the
reference value of 0.5 tabulated in the training results column. The corre-
sponding p-values in Table 4 for both the F test and Ansari-Bradley test are
above the significance level of 5%, except for 2003. This means both tests
agree that only for 2003 there is a significant deterioration. However, the
corresponding power values in Table 5, with the exception of 2003, are low
for both. These low values undermine the usefulness of the p-values greater
than 0.05, as they imply that we can not conclude with much certainty that
there is no deterioration of the error dispersion in those years. For 2003
however, the detection of significant di↵erences is supported by the greater
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power of both tests for that year. Interestingly, the power values of the F
test are generally much lower compared to the power values of the Ansari-
Bradley test. This is hardly a surprise as previous power analysis studies
have found that the F test is most powerful under normal assumptions [43]
but extremely sensitive to non-normality [15, 36] whereas the Ansari-Bradley
test makes no distribution assumptions and can be applied to relatively small
samples [39]. Hence, the non-symmetrical shape of the error distribution ob-
served in training and test samples is likely to be a major factor in explaining
the lower power values of the F test.

The observed values for our series of error-, classification- and correlation-
based metrics are shown in the last eight rows of Table 3. The corresponding
p-values for 2001 in Table 4 are also all below the significance level of 5%.
This means that all tests unanimously agree that there is a significant deterio-
ration of the performance for 2001. For 2002 and 2003 however, some metrics
still agree on significant performance deterioration but this is no longer true
for all of them. In 2004, no significant performance deteriorations could be
detected although all metrics show consistently lower test performance com-
pared to the training performance. The corresponding power values shown
in Table 5 are generally high for 2001 and decrease for the subsequent years.
In other words, the significant di↵erences detected for the bootstrap tests
are backed up by large power values. However, in the rest of the cases (i.e.
where no significant di↵erences are detected) the bootstrap tests show only
moderate power. This leaves decisions about lack of performance deteriora-
tion in those later years rather unconclusive.

Summarizing the reported performance results, one can conclude that the
model shows significantly worse performance in 2001 and (according to sev-
eral of the tests) 2002, specifically where it comes to being well-calibrated (see
the central tendency tests) as well as in terms of a series of other performance
metrics that we tested using a bootstrapping procedure. However, with the
exception of significantly lower precision in 2003, performance over the subse-
quent two years, 2003-2004, is much more acceptable; admittedly some of the
tests applied over that period appear to only have moderate power though.
The observed performance loss in 2001 and 2002 may be linked to the US re-
cession experienced in the early 2000s and the corresponding increase of the
number of defaults in the loan portfolio. As suggested by several (e.g. [8]),
higher default rates can be associated with higher LGDs, and our simple lin-
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ear model may not adequately quantify this adverse relationship, despite the
inclusion of US default rate as a macro-economic factor and the fact that the
training data did include loss observations from a previous recession in the
1990s. This suspicion is strengthened by the shift in the actual LGD distri-
bution seen in Figure 1, and the fact that the model, according to both the
T test and Wilcoxon test, is consistently underestimating the elevated LGDs
during those recession years. The subsequent economic recovery period may
explain the slow performance correction for the following years.

When taking into account the resulting p-values and power values, one can
conclude that the model performance significantly deteriorates in 2001 and
according to some tests also in 2002. For the subsequent years however, the
statistical hypothesis tests are not su�ciently powerful to detect performance
deterioration even if the model would su↵er from it. Hence, in these time
periods, many of the tests are of limited value. Part of the explanation for
this may lie in the smaller sample sizes available for backtesting in those last
two years (see Table 1).

Generally, when the model is well trained but degrades over time, it means
that the original training data is no longer representative for the current
population. This can be caused by external changes (e.g. new developments
in the economic, political or legal environment) or internal changes (e.g. new
business strategies, exploration of new market segments or new organiza-
tional structure) [21]. A data stability analysis may o↵er more insight into
which variables are causing possible shifts [21]. In this case it is advised to
build a new model with more representative (recent) training data.

6 Conclusions

This paper addresses the call for more research on backtesting LGD models,
a Basel validation requirement for any bank implementing the advanced IRB
approach, by proposing a framework to backtest LGD models using a series
of statistical hypothesis tests. The key idea is to evaluate two performance
aspects, i.e. model calibration and precision, on an out-of-time test data
set, against the original performance on the training data (or some other
earlier collected reference sample). For both aspects, potentially suitable
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parametric and non-parametric tests are identified. In addition, a bootstrap
method is suggested to test for di↵erences in other commonly used perfor-
mance metrics. One of the main attractions of this framework is that an
appropriate reference value is introduced which takes into account the num-
ber of observations available for backtesting. The practical implementation
of the framework would require the following three steps. First, model per-
formance must be quantified using a selection of metrics so that validators
can monitor their evolution over the available time horizon. Second, the
corresponding statistical tests should be run to help flag any significant per-
formance degradations. Third, the power of each test could be calculated in
order to verify whether weakening performance would likely be picked up by
the test. The proposed backtesting framework is illustrated by applying it
to an LGD model fitted to real-life corporate loss rate data.
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