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Abstract

Automatic music recommendation has become an increasingly relevant problem
in recent years, since a lot of music is now sold and consumed digitally. Most
recommender systems rely on collaborative filtering. However, this approach suf-
fers from the cold start problem: it fails when no usage data is available, so it is not
effective for recommending new and unpopular songs. In this paper, we propose
to use a latent factor model for recommendation, and predict the latent factors
from music audio when they cannot be obtained from usage data. We compare
a traditional approach using a bag-of-words representation of the audio signals
with deep convolutional neural networks, and evaluate the predictions quantita-
tively and qualitatively on the Million Song Dataset. We show that using predicted
latent factors produces sensible recommendations, despite the fact that there is a
large semantic gap between the characteristics of a song that affect user preference
and the corresponding audio signal. We also show that recent advances in deep
learning translate very well to the music recommendation setting, with deep con-
volutional neural networks significantly outperforming the traditional approach.

1 Introduction

In recent years, the music industry has shifted more and more towards digital distribution through
online music stores and streaming services such as iTunes, Spotify, Grooveshark and Google Play.
As a result, automatic music recommendation has become an increasingly relevant problem: it al-
lows listeners to discover new music that matches their tastes, and enables online music stores to
target their wares to the right audience.

Although recommender systems have been studied extensively, the problem of music recommenda-
tion in particular is complicated by the sheer variety of different styles and genres, as well as social
and geographic factors that influence listener preferences. The number of different items that can
be recommended is very large, especially when recommending individual songs. This number can
be reduced by recommending albums or artists instead, but this is not always compatible with the
intended use of the system (e.g. automatic playlist generation), and it disregards the fact that the
repertoire of an artist is rarely homogenous: listeners may enjoy particular songs more than others.

Many recommender systems rely on usage patterns: the combinations of items that users have con-
sumed or rated provide information about the users’ preferences, and how the items relate to each
other. This is the collaborative filtering approach. Another approach is to predict user preferences
from item content and metadata.

The consensus is that collaborative filtering will generally outperform content-based recommenda-
tion [1]. However, it is only applicable when usage data is available. Collaborative filtering suffers
from the cold start problem: new items that have not been consumed before cannot be recommended.
Additionally, items that are only of interest to a niche audience are more difficult to recommend be-
cause usage data is scarce. In many domains, and especially in music, they comprise the majority of
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Artists with positive values Artists with negative values
1 Justin Bieber, Alicia Keys, Maroon 5, John

Mayer, Michael Bublé
The Kills, Interpol, Man Man, Beirut, the bird
and the bee

2 Bonobo, Flying Lotus, Cut Copy, Chromeo,
Boys Noize

Shinedown, Rise Against, Avenged Sevenfold,
Nickelback, Flyleaf

3 Phoenix, Crystal Castles, Muse, Röyksopp,
Paramore

Traveling Wilburys, Cat Stevens, Creedence
Clearwater Revival, Van Halen, The Police

Table 1: Artists whose tracks have very positive and very negative values for three latent factors. The factors
seem to discriminate between different styles, such as indie rock, electronic music and classic rock.

the available items, because the users’ consumption patterns follow a power law [2]. Content-based
recommendation is not affected by these issues.

1.1 Content-based music recommendation

Music can be recommended based on available metadata: information such as the artist, album and
year of release is usually known. Unfortunately this will lead to predictable recommendations. For
example, recommending songs by artists that the user is known to enjoy is not particularly useful.

One can also attempt to recommend music that is perceptually similar to what the user has previously
listened to, by measuring the similarity between audio signals [3, 4]. This approach requires the
definition of a suitable similarity metric. Such metrics are often defined ad hoc, based on prior
knowledge about music audio, and as a result they are not necessarily optimal for the task of music
recommendation. Because of this, some researchers have used user preference data to tune similarity
metrics [5, 6].

1.2 Collaborative filtering

Collaborative filtering methods can be neighborhood-based or model-based [7]. The former methods
rely on a similarity measure between users or items: they recommend items consumed by other users
with similar preferences, or similar items to the ones that the user has already consumed. Model-
based methods on the other hand attempt to model latent characteristics of the users and items, which
are usually represented as vectors of latent factors. Latent factor models have been very popular ever
since their effectiveness was demonstrated for movie recommendation in the Netflix Prize [8].

1.3 The semantic gap in music

Latent factor vectors form a compact description of the different facets of users’ tastes, and the
corresponding characteristics of the items. To demonstrate this, we computed latent factors for a
small set of usage data, and listed some artists whose songs have very positive and very negative
values for each factor in Table 1. This representation is quite versatile and can be used for other
applications besides recommendation, as we will show later (see Section 5.1). Since usage data is
scarce for many songs, it is often impossible to reliably estimate these factor vectors. Therefore it
would be useful to be able to predict them from music audio content.

There is a large semantic gap between the characteristics of a song that affect user preference, and the
corresponding audio signal. Extracting high-level properties such as genre, mood, instrumentation
and lyrical themes from audio signals requires powerful models that are capable of capturing the
complex hierarchical structure of music. Additionally, some properties are impossible to obtain
from audio signals alone, such as the popularity of the artist, their reputation and and their location.

Researchers in the domain of music information retrieval (MIR) concern themselves with extracting
these high-level properties from music. They have grown to rely on a particular set of engineered
audio features, such as mel-frequency cepstral coefficients (MFCCs), which are used as input to
simple classifiers or regressors, such as SVMs and linear regression [9]. Recently this traditional
approach has been challenged by some authors who have applied deep neural networks to MIR
problems [10, 11, 12].
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In this paper, we strive to bridge the semantic gap in music by training deep convolutional neural
networks to predict latent factors from music audio. We evaluate our approach on an industrial-
scale dataset with audio excerpts of over 380,000 songs, and compare it with a more conventional
approach using a bag-of-words feature representation for each song. We assess to what extent it is
possible to extract characteristics that affect user preference directly from audio signals, and evaluate
the predictions from our models in a music recommendation setting.

2 The dataset

The Million Song Dataset (MSD) [13] is a collection of metadata and precomputed audio features
for one million contemporary songs. Several other datasets linked to the MSD are also available,
featuring lyrics, cover songs, tags and user listening data. This makes the dataset suitable for a
wide range of different music information retrieval tasks. Two linked datasets are of interest for our
experiments:

• The Echo Nest Taste Profile Subset provides play counts for over 380,000 songs in the MSD,
gathered from 1 million users. The dataset was used in the Million Song Dataset challenge [14]
last year.

• The Last.fm dataset provides tags for over 500,000 songs.

Traditionally, research in music information retrieval (MIR) on large-scale datasets was limited to
industry, because large collections of music audio cannot be published easily due to licensing issues.
The authors of the MSD circumvented these issues by providing precomputed features instead of raw
audio. Unfortunately, the audio features provided with the MSD are of limited use, and the process
by which they were obtained is not very well documented. The feature set was extended by Rauber
et al. [15], but the absence of raw audio data, or at least a mid-level representation, is still an issue.
However, we were able to attain 29 second audio clips for over 99% of the dataset from 7digital.com.

Due to its size, the MSD allows for the music recommendation problem to be studied in a more
realistic setting than was previously possible. It is also worth noting that the Taste Profile Subset is
one of the largest collaborative filtering datasets that are publicly available today.

3 Weighted matrix factorization

The Taste Profile Subset contains play counts per song and per user, which is a form of implicit
feedback. We know how many times the users have listened to each of the songs in the dataset, but
they have not explicitly rated them. However, we can assume that users will probably listen to songs
more often if they enjoy them. If a user has never listened to a song, this can have many causes:
for example, they might not be aware of it, or they might expect not to enjoy it. This setting is not
compatible with traditional matrix factorization algorithms, which are aimed at predicting ratings.

We used the weighted matrix factorization (WMF) algorithm, proposed by Hu et al. [16], to learn
latent factor representations of all users and items in the Taste Profile Subset. This is a modified
matrix factorization algorithm aimed at implicit feedback datasets. Let rui be the play count for
user u and song i. For each user-item pair, we define a preference variable pui and a confidence
variable cui (I(x) is the indicator function, α and ε are hyperparameters):

pui = I(rui > 0), (1)

cui = 1 + α log(1 + ε−1rui). (2)

The preference variable indicates whether user u has ever listened to song i. If it is 1, we will assume
the user enjoys the song. The confidence variable measures how certain we are about this particular
preference. It is a function of the play count, because songs with higher play counts are more likely
to be preferred. If the song has never been played, the confidence variable will have a low value,
because this is the least informative case.

The WMF objective function is given by:
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min
x?,y?

∑
u,i

cui(pui − xTu yi)2 + λ

(∑
u

||xu||2 +
∑
i

||yi||2
)
, (3)

where λ is a regularization parameter, xu is the latent factor vector for user u, and yi is the latent
factor vector for song i. It consists of a confidence-weighted mean squared error term and an L2
regularization term. Note that the first sum ranges over all users and all songs: contrary to matrix
factorization for rating prediction, where terms corresponding to user-item combinations for which
no rating is available can be discarded, we have to take all possible combinations into account. As
a result, using stochastic gradient descent for optimization is not practical for a dataset of this size.
Hu et al. propose an efficient alternating least squares (ALS) optimization method, which we used
instead.

4 Predicting latent factors from music audio

Predicting latent factors for a given song from the corresponding audio signal is a regression prob-
lem. It requires learning a function that maps a time series to a vector of real numbers. We evaluate
two methods to achieve this: one follows the conventional approach in MIR by extracting local
features from audio signals and aggregating them into a bag-of-words (BoW) representation. Any
traditional regression technique can then be used to map this feature representation to the factors.
The other method is to use a deep convolutional network.

Latent factor vectors obtained by applying WMF to the available usage data are used as ground truth
to train the prediction models. It should be noted that this approach is compatible with any type
of latent factor model that is suitable for large implicit feedback datasets. We chose to use WMF
because an efficient optimization procedure exists for it.

4.1 Bag-of-words representation

Many MIR systems rely on the following feature extraction pipeline to convert music audio signals
into a fixed-size representation that can be used as input to a classifier or regressor [5, 17, 18, 19, 20]:

• Extract MFCCs from the audio signals. We computed 13 MFCCs from windows of 1024
audio frames, corresponding to 23 ms at a sampling rate of 22050 Hz, and a hop size of 512
samples. We also computed first and second order differences, yielding 39 coefficients in total.

• Vector quantize the MFCCs. We learned a dictionary of 4000 elements with the K-means
algorithm and assigned all MFCC vectors to the closest mean.

• Aggregate them into a bag-of-words representation. For every song, we counted how many
times each mean was selected. The resulting vector of counts is a bag-of-words feature repre-
sentation of the song.

We then reduced the size of this representation using PCA (we kept enough components to retain
95% of the variance) and used linear regression and a multilayer perceptron with 1000 hidden units
on top of this to predict latent factors. We also used it as input for the metric learning to rank (MLR)
algorithm [21], to learn a similarity metric for content-based recommendation. This was used as a
baseline for our music recommendation experiments, which are described in Section 5.2.

4.2 Convolutional neural networks

Convolutional neural networks (CNNs) have recently been used to improve on the state of the art in
speech recognition and large-scale image classification by a large margin [22, 23]. Three ingredients
seem to be central to the success of this approach:

• Using rectified linear units (ReLUs) [24] instead of sigmoid nonlinearities leads to faster conver-
gence and reduces the vanishing gradient problem that plagues traditional neural networks with
many layers.

• Parallellization is used to speed up training, so that larger models can be trained in a reasonable
amount of time. We used the Theano library [25] to take advantage of GPU acceleration.
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• A large amount of training data is required to be able to fit large models with many parameters.
The MSD contains enough training data to be able to train large models effectively.

We have also evaluated the use of dropout regularization [26], but this did not yield any significant
improvements.

We first extracted an intermediate time-frequency representation from the audio signals to use as
input to the network. We used log-compressed mel-spectrograms with 128 components and the same
window size and hop size that we used for the MFCCs (1024 and 512 audio frames respectively).
The networks were trained on windows of 3 seconds sampled randomly from the audio clips. This
was done primarily to speed up training. To predict the latent factors for an entire clip, we averaged
over the predictions for consecutive windows.

Convolutional neural networks are especially suited for predicting latent factors from music audio,
because they allow for intermediate features to be shared between different factors, and because their
hierarchical structure consisting of alternating feature extraction layers and pooling layers allows
them to operate on multiple timescales.

4.3 Objective functions

Latent factor vectors are real-valued, so the most straightforward objective is to minimize the
mean squared error (MSE) of the predictions. Alternatively, we can also continue to minimize
the weighted prediction error (WPE) from the WMF objective function. Let yi be the latent fac-
tor vector for song i, obtained with WMF, and y′i the corresponding prediction by the model. The
objective functions are then (θ represents the model parameters):

min
θ

∑
i

||yi − y′i||2, (4) min
θ

∑
u,i

cui(pui − xTu y′i)2. (5)

5 Experiments

5.1 Versatility of the latent factor representation

To demonstrate the versatility of the latent factor vectors, we compared them with audio features in
a tag prediction task. Tags can describe a wide range of different aspects of the songs, such as genre,
instrumentation, tempo, mood and year of release.

We ran WMF to obtain 50-dimensional latent factor vectors for all 9,330 songs in the subset, and
trained a logistic regression model to predict the 50 most popular tags from the Last.fm dataset
for each song. We also trained a logistic regression model on a bag-of-words representation of the
audio signals, which was first reduced in size using PCA (see Section 4.1). We used 10-fold cross-
validation and computed the average area under the ROC curve (AUC) across all tags. This resulted
in an average AUC of 0.69365 for audio-based prediction, and 0.86703 for prediction based on
the latent factor vectors.

5.2 Latent factor prediction: quantitative evaluation

To assess quantitatively how well we can predict latent factors from music audio, we used the pre-
dictions from our models for music recommendation. For every user u and for every song i in the
test set, we computed the score xTu yi, and recommended the songs with the highest scores first. As
mentioned before, we also learned a song similarity metric on the bag-of-words representation using
metric learning to rank. In this case, scores for a given user are computed by averaging similarity
scores across all the songs that the user has listened to.

The following models were used to predict latent factor vectors:

• Linear regression trained on the bag-of-words representation described in Section 4.1.
• A multi-layer perceptron (MLP) trained on the same bag-of-words representation.
• A convolutional neural network trained on log-scaled mel-spectrograms to minimize the mean

squared error (MSE) of the predictions.
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• The same convolutional neural network, trained to minimize the weighted prediction error
(WPE) from the WMF objective instead.

Model mAP AUC

MLR 0.01801 0.60608
linear regression 0.02389 0.63518

MLP 0.02536 0.64611
CNN with MSE 0.05016 0.70987
CNN with WPE 0.04323 0.70101

Table 2: Results for all considered mod-
els on a subset of the dataset containing
only the 9,330 most popular songs, and
listening data for 20,000 users.

For our initial experiments, we used a subset of the
dataset containing only the 9,330 most popular songs,
and listening data for only 20,000 users. We used 1,881
songs for testing. For the other experiments, we used
all available data: we used all songs that we have usage
data for and that we were able to download an audio clip
for (382,410 songs and 1 million users in total, 46,728
songs were used for testing).

We report the mean average precision (mAP, cut off at
500 recommendations per user) and the area under the
ROC curve (AUC) of the predictions. We evaluated all
models on the subset, using latent factor vectors with
50 dimensions. We compared the convolutional neural
network with linear regression on the bag-of-words rep-
resentation on the full dataset as well, using latent factor vectors with 400 dimensions. Results are
shown in Tables 2 and 3 respectively.

On the subset, predicting the latent factors seems to outperform the metric learning approach. Using
an MLP instead of linear regression results in a slight improvement, but the limitation here is clearly
the bag-of-words feature representation. Using a convolutional neural network results in another
large increase in performance. Most likely this is because the bag-of-words representation does not
reflect any kind of temporal structure.

Interestingly, the WPE objective does not result in improved performance. Presumably this is be-
cause the weighting causes the importance of the songs to be proportional to their popularity. In
other words, the model will be encouraged to predict latent factor vectors for popular songs from
the training set very well, at the expense of all other songs.

Model mAP AUC

random 0.00015 0.49935
linear regression 0.00101 0.64522
CNN with MSE 0.00672 0.77192

upper bound 0.23278 0.96070

Table 3: Results for linear regression on
a bag-of-words representation of the audio
signals, and a convolutional neural network
trained with the MSE objective, on the full
dataset (382,410 songs and 1 million users).
Also shown are the scores achieved when
the latent factor vectors are randomized,
and when they are learned from usage data
using WMF (upper bound).

On the full dataset, the difference between the bag-of-
words approach and the convolutional neural network is
much more pronounced. Note that we did not train an
MLP on this dataset due to the small difference in per-
formance with linear regression on the subset. We also
included results for when the latent factor vectors are ob-
tained from usage data. This is an upper bound to what
is achievable when predicting them from content. There
is a large gap between our best result and this theoretical
maximum, but this is to be expected: as we mentioned be-
fore, many aspects of the songs that influence user prefer-
ence cannot possibly be extracted from audio signals only.
In particular, we are unable to predict the popularity of
the songs, which considerably affects the AUC and mAP
scores.

5.3 Latent factor prediction: qualitative evaluation

Evaluating recommender systems is a complex matter, and
accuracy metrics by themselves do not provide enough in-
sight into whether the recommendations are sound. To establish this, we also performed some
qualitative experiments on the subset. For each song, we searched for similar songs by measuring
the cosine similarity between the predicted usage patterns. We compared the usage patterns pre-
dicted using the latent factors obtained with WMF (50 dimensions), with those using latent factors
predicted with a convolutional neural network. A few songs and their closest matches according
to both models are shown in Table 4. When the predicted latent factors are used, the matches are
mostly different, but the results are quite reasonable in the sense that the matched songs are likely
to appeal to the same audience. Furthermore, they seem to be a bit more varied, which is a useful
property for recommender systems.
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Query Most similar tracks (WMF) Most similar tracks (predicted)

Jonas Brothers -
Hold On

Jonas Brothers - Games
Miley Cyrus - G.N.O. (Girl’s Night Out)
Miley Cyrus - Girls Just Wanna Have Fun
Jonas Brothers - Year 3000
Jonas Brothers - BB Good

Jonas Brothers - Video Girl
Jonas Brothers - Games
New Found Glory - My Friends Over You
My Chemical Romance - Thank You For The Venom
My Chemical Romance - Teenagers

Beyoncé -
Speechless

Beyoncé - Gift From Virgo
Beyonce - Daddy
Rihanna / J-Status - Crazy Little Thing Called Love
Beyoncé - Dangerously In Love
Rihanna - Haunted

Daniel Bedingfield - If You’re Not The One
Rihanna - Haunted
Alejandro Sanz - Siempre Es De Noche
Madonna - Miles Away
Lil Wayne / Shanell - American Star

Coldplay -
I Ran Away

Coldplay - Careful Where You Stand
Coldplay - The Goldrush
Coldplay - X & Y
Coldplay - Square One
Jonas Brothers - BB Good

Arcade Fire - Keep The Car Running
M83 - You Appearing
Angus & Julia Stone - Hollywood
Bon Iver - Creature Fear
Coldplay - The Goldrush

Daft Punk -
Rock’n Roll

Daft Punk - Short Circuit
Daft Punk - Nightvision
Daft Punk - Too Long (Gonzales Version)
Daft Punk - Aerodynamite
Daft Punk - One More Time / Aerodynamic

Boys Noize - Shine Shine
Boys Noize - Lava Lava
Flying Lotus - Pet Monster Shotglass
LCD Soundsystem - One Touch
Justice - One Minute To Midnight

Table 4: A few songs and their closest matches in terms of usage patterns, using latent factors obtained with
WMF and using latent factors predicted by a convolutional neural network.

Shaggy

DangerdoomEminem

Ice Cube Featuring Mack 10 And Ms Toi

D-12

Eminem

Method Man

Cypress Hill

Justin Timberlake Featuring T.I.

Eminem
Eminem

Sugar Ray feat. Super Cat

Baby Boy Da Prince / P. Town Moe

Lil Wayne

EminemFabolous / The-Dream

Lil Scrappy

Calle 13

50 Cent

Baby Bash

Swizz Beatz

Young Jeezy / Akon

Kanye West

Tech N9ne

Terror Squad / Remy / Fat Joe

The Streets

OutKast

Big Kuntry King

Wiz Khalifa

The Roots / Common

Usher featuring Jay Z

Ludacris

Binary Star

Black Eyed Peas / Papa Roach

Jill Scott

Bubba Sparxxx

Brandon Heath

Binary Star

DJ Khaled

The Ethiopians

Puff Daddy

Black Eyed Peas

The Lonely Island / T-Pain

Baby Bash / Akon

Fort Minor (Featuring Black Thought Of The Roots And Styles Of Beyond)

Will SmithSwizz BeatzMystikal

Yung Joc featuring Gorilla Zoe

Fugees

Big Tymers

50 Cent

Eminem

Don Omar
Michael Franti & Spearhead / Cherine Anderson

The Lonely Island

Soulja Boy Tell’em / Sammie

T.I.

The Notorious B.I.G.

Gang Starr

Hot Chip

DMX

Jurassic 5

Cam’Ron / Juelz Santana / Un KasaEminem / DMX / Obie Trice

BonoboDangerdoom

Common / Kanye West

Yung Joc featuring Gorilla Zoe

Black Eyed Peas

Mike Jones

Lupe Fiasco

Ying Yang Twins ft. Lil Jon & The East Side Boyz

A Tribe Called Quest

M. Pokora

Swizz Beatz

Alliance Ethnik

Calle 13

Gorillaz

Calle 13

DMX

Tech N9NE Collabos featuring Big Scoob, Krizz Kaliko

Calle 13

The Notorious B.I.G.

Rick Ross

Shaggy / Ricardo Ducent

California Swag District

Girl Talk

D4L

Collie Buddz

Sexion d’Assaut

DMX

Lupe Fiasco

The Notorious B.I.G.

Sean Paul

Westside Connection Featuring Nate Dogg

Redman

Jay-Z / John Legend

Jordan Francis/Roshon Bernard Fegan

Gang Starr

Bow Wow

Cam’Ron / Juelz Santana / Freekey Zeekey / Toya

Shaggy / Brian & Tony Gold

EPMD / Nocturnal

Eminem

Eminem
Guru

Common
Ignition

Slick Rick

Danger Doom

Ratatat

Diddy - Dirty Money / T.I.
Kanye West / GLC / Consequence

Common
Jay-Z

Daddy Yankee / Randy

Eminem / Dina Rae

Nas / Damian ”Jr. Gong” Marley

Fort Minor (Featuring Styles Of Beyond)

Common / Kanye West

New Edition
Jay-Z

Buju Banton

Method Man / Busta Rhymes

Gotan Project

Prince & The New Power Generation

Linkin Park

Ying Yang Twins ft. Pitbull
Wax Tailor

The Notorious B.I.G.

LL Cool J

The Notorious B.I.G.

Usher

Slum Village

Gym Class Heroes

Plies

Method Man

Company Flow

Louis Smith

The Presidents of the United States of America

Kim Carnes

Easy Star All-Stars

The Rolling Stones

Steve Winwood

Nick Drake

The Doors The Cars
The Contours

Velvet Underground & Nico

War

The Grass Roots

Eric Clapton

Wild Cherry

Metallica

Creedence Clearwater Revival

Marvin Gaye

Tom Petty And The Heartbreakers

No Doubt

Bill Medley & Jennifer Warnes

Ramones

Yeah Yeah Yeahs

The Chills

Crosby, Stills & Nash

R.E.M.

Creedence Clearwater RevivalBachman-Turner OverdriveThe Doors

Journey

Cream

Miriam Makeba

Motrhead

Enigma
ParliamentDavid Bowie

Flight Of The Conchords

Louis Prima And Keely Smith
Steel Pulse

Regina Spektor

The Velvet Underground

Pepper

Cher

Fleetwood Mac

Steely Dan Tom Petty And The Heartbreakers

Ricchi E Poveri

Eddy Grant

The Statler Brothers

Huey Lewis & The News

Chris Rea
Vienio & Pele

Bread

Traveling Wilburys
The Killers

Metallica

Prince

Charlelie Couture

Bobby HelmsBill Withers

Love

Labelle (featuring Patti Labelle)

Modest Mouse

James Taylor
Jimi Hendrix

Ray LaMontagne

The Kills

Steve Miller Band

The Animals

Against Me!

Vanilla Ice

Steely Dan

Tommy James And The Shondells

Beastie Boys

Noir Dsir

The Turtles

Cat Stevens

Labi Siffre

The Mercury Program

Creedence Clearwater Revival

Barry Manilow

The Hives

Billy Joel

The Black Keys

The Runaways

Re-up Gang

Crosby, Stills, Nash & Young

Tom Petty

The Mamas & The Papas

Cheap TrickThe Turtles

Laura Branigan

The dB’s

Insane Clown Posse

Freda Payne

Gipsy Kings

Pinback

Marty Stuart

Warren Zevon

The Black Keys

Mud

Kings Of Leon

Ray LaMontagne

Bee Gees

Happy Mondays
Blue Swede

Weezer

The Doobie Brothers

Graham Nash

Steve Miller Band

The Police

Van McCoy

Eric Clapton

Europe

The Four Seasons

Rose Royce

Cat Stevens

Easy Star All-Stars
The Police

ZZ Top

Fleetwood Mac
Billy Idol

Patrice Rushen

The Monkees

John Waite

Weird Al YankovicDexys Midnight Runners

Bodo Wartke

Creedence Clearwater Revival

Estopa

PAULA COLE

Steve Miller

Thelma Houston
Bootsy Collins

Sam & Dave

Prince & The Revolution

Lonesome River Band

Joan Jett & The Blackhearts

Ruben Blades

Aerosmith

Beyonc

Destiny’s Child

Rilo KileyTokio Hotel
Kardinal Offishall / Akon

Ace of Base

Jem

Dragonette

Madonna

Flo Rida

Miranda Lambert

Cline Dion

Mariah Carey

Rihanna / J-Status

Amy Winehouse

Alicia Keys

Amy Winehouse

Lady GaGa

Lady GaGa

Fergie

Pretty Ricky

Passion Pit
Mylo

Mariah Carey

Belanova

Sugarland

Aaliyah Yeah Yeah Yeahs

The CorrsBeyonc Sia

Christina Aguilera

The-Dream

Mase

Vanessa Carlton

Alicia Keys

Daniel Bedingfield

The Veronicas

Flo Rida

Beyonc

The Pussycat Dolls / Busta Rhymes

Alejandro Sanz

Lady GaGa

Santigold

Young Money

Julieta Venegas A Dueto Con Dante

Rilo Kiley

Rusko

The Pussycat Dolls

Cheryl Cole

Justin Bieber

Kelly Clarkson

Avril Lavigne

Shakira

Beyonc

The-Dream

Jack White & Alicia Keys

Beyonc

Lady GaGa

Aneta Langerova

Brandy

Young Money featuring Lloyd

EmiliaPlies
Gretchen Wilson

Mariah Carey

Ashanti

Taylor Swift

Kylie Minogue

Marc Anthony;Jennifer Lopez

Beyonce

Gym Class Heroes

Taylor Swift

Eve / Truth Hurts

Boys Like Girls featuring Taylor Swift

Jack Johnson

Timbaland / Keri Hilson / D.O.E.

Jay-Z

Rihanna

LMFAO

Monica featuring Tyrese

Chris Brown featuring T-Pain

Lupe Fiasco feat. Nikki Jean
Justin Bieber

Mariah CareyShakira

Mariah Carey

Britney Spears

Keri Hilson / Lil Wayne

Beyonc
Kat DeLuna

Colbie Caillat

Kesha

Tito El Bambino

Next

La Roux

Miley Cyrus

Two Door Cinema Club

Mariah Carey

Avril Lavigne

Donavon Frankenreiter

Juvenile / Mannie Fresh / Lil Wayne

Britney Spears featuring Ying Yang Twins
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Figure 1: t-SNE visualization of the distribution of predicted usage patterns, using latent factors predicted
from audio. A few close-ups show artists whose songs are projected in specific areas. We can discern hip-hop
(red), rock (green), pop (yellow) and electronic music (blue). This figure is best viewed in color.

Following McFee et al. [5], we also visualized the distribution of predicted usage patterns in two
dimensions using t-SNE [27]. A few close-ups are shown in Figure 1. Clusters of songs that appeal
to the same audience seem to be preserved quite well, even though the latent factor vectors for all
songs were predicted from audio.

6 Related work

Many researchers have attempted to mitigate the cold start problem in collaborative filtering by
incorporating content-based features. We review some recent work in this area of research.
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Wang et al. [28] extend probabilistic matrix factorization (PMF) [29] with a topic model prior on
the latent factor vectors of the items, and apply this model to scientific article recommendation.
Topic proportions obtained from the content of the articles are used instead of latent factors when no
usage data is available. The entire system is trained jointly, allowing the topic model and the latent
space learned by matrix factorization to adapt to each other. Our approach is sequential instead: we
first obtain latent factor vectors for songs for which usage data is available, and use these to train
a regression model. Because we reduce the incorporation of content information to a regression
problem, we are able to use a deep convolutional network.

McFee et al. [5] define an artist-level content-based similarity measure for music learned from a
sample of collaborative filter data using metric learning to rank [21]. They use a variation on the
typical bag-of-words approach for audio feature extraction (see section 4.1). Their results corrob-
orate that relying on usage data to train the model improves content-based recommendations. For
audio data they used the CAL10K dataset, which consists of 10,832 songs, so it is comparable in
size to the subset of the MSD that we used for our initial experiments.

Weston et al. [17] investigate the problem of recommending items to a user given another item as
a query, which they call ‘collaborative retrieval’. They optimize an item scoring function using a
ranking loss and describe a variant of their method that allows for content features to be incorpo-
rated. They also use the bag-of-words approach to extract audio features and evaluate this method
on a large proprietary dataset. They find that combining collaborative filtering and content-based in-
formation does not improve the accuracy of the recommendations over collaborative filtering alone.

Both McFee et al. and Weston et al. optimized their models using a ranking loss. We have opted to
use quadratic loss functions instead, because we found their optimization to be more easily scalable.
Using a ranking loss instead is an interesting direction of future research, although we suspect that
this approach may suffer from the same problems as the WPE objective (i.e. popular songs will have
an unfair advantage).

7 Conclusion

In this paper, we have investigated the use of deep convolutional neural networks to predict latent
factors from music audio when they cannot be obtained from usage data. We evaluated the predic-
tions by using them for music recommendation on an industrial-scale dataset. Even though a lot
of characteristics of songs that affect user preference cannot be predicted from audio signals, the
resulting recommendations seem to be sensible. We can conclude that predicting latent factors from
music audio is a viable method for recommending new and unpopular music.

We also showed that recent advances in deep learning translate very well to the music recommenda-
tion setting in combination with this approach, with deep convolutional neural networks significantly
outperforming a more traditional approach using bag-of-words representations of audio signals. This
bag-of-words representation is used very often in MIR, and our results indicate that a lot of research
in this domain could benefit significantly from using deep neural networks.
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