Exponentially-fitted methods and their stability functions
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Abstract. Is it possible to determine the stability function of an exponentially-fitted Ruagea method, without actually
constructing the method itself? This question was answered in a recamtgrapexamples were given for one-stage methods.
In this paper we summarize the results and we focus on two-stage methods

Keywords: Exponential fitting; Stability functions
PACS: 02.60.Lj

EXPONENTIALLY-FITTED RUNGE-KUTTA METHODS
The most general form of an exponentially-fitted Runge-&atethod for solving
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With such a method, a generalised Butcher tableau can beiatsxb
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The coefficients of these EFRK methods in general depend tgoproductzy := wh wherew is a parameter that
can be related to the solution of the problem to be solvedadh £EF methods are designed to solve problems which
have an exponential behaviour or (in the casie purely imaginary) a periodic behaviour. To constructsair EFRK
method, a set of linear functionals can be introduced [1]:

{ Ay h =y(x+ch) —yy(x) —h 35 ay(x+cjh), i=1..s
Zy(x);h] = y(x+h) —yy(x) —h 5 by (x+cih).

Next, conditions are imposed onto these functionals. Feh edlage of the method, a so-called fitting space is
determined. Each stage conta®s 1 parameters and for each stage the same fitting spacé dimensions+ 1

can be considered.

It is well-known that collocation offers an alternative wiy construct such methods: a functi®x) € .77 is
constructed such that
{ Pasan i ¥

Py +cih) = f(xa+cih P(x,+¢cih)), i=1,...,s.
The method is then defined by imposing 1 := P(x, + h).



Vanden Berghe et al. [2] and Calvo et al. [3] have construEfeEK methods with” = {x4e*“*|q=0, 1, ...,P}U
{x99=0,1,....,K}and.¥ = {et9|q=1,...,P+1}U{xq=0,1,...,K} resp. where 2P+ 1)+ K+1=s+1.
Note that a generalisation of both approaches is to consifler {e“*|q=1,...,s+ 1}, wherewy, ..., ws1 take
different values.

THE STABILITY FUNCTION OF EFRK METHODS

In the case of initial value problems, the stability the noetplays an important role and the stability properties ef th
methods should be examined. Therefore, the method is dgplide linear equation

y=A2Ay 3)
giving rise to a relation of the form, .1 = R(z,zp) y, with z:= A h. Independently of the specific choice for the space
.7, the stability functiorR(z, zp) of an EFRK method can be written as

R(zz) = y+zb' (I—zAT

whereR is a rational function irz with coefficients that depend upap. When the parameter(s) of an EFRK method
tend(s) to 0, the classical RK method of collocation typeoignid. Its stability function is then given by (we omit the
second argument, since it is not present in the expression)

R(z) =1+42zb" (I —zA le=€&+0(z"™),

whereeis the vector of lengtls with unit entries and < p < 2s.
In [4] it is shown that for an EFRK method that is fitted to thaedtionsx?e®*, q=0, 1, ..., P the conditions that
should be imposed, can be written down as
q

d
T%R(z,zo)yz:m:em q=0,1,...,P. (4)

One notices that in the special case- 0, i.e.Z=0, the classical conditiorig9 (0)=1,9q=0,1,...,P, are obtained,
which means thaR(z) —exp(z) = ¢(Z°+1). The results can be extended to methods that are fitted sabpaeameters
w. Forinstance, suppose that a method is fitted for two valuasdc’. We can then denote the corresponding stability

function asR(z, {z0,%}) wherez, := wh andz, = w'h and the method will be fitted tpxde“* x4e“*}, q=0, ..., P
iff
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In particular, an EFRK method that is fitted to the space ofians{1, x, ..., x2}U{x9e¥|q=0, 1, ...,P.}, has to
satisfy:
lg—(ZZR(z,{zo,O})L:O:l q=0,1,...,R
2aR(Z{2,0})],, =€ q=0,1,...,P.

It was also shown in [4] that nice relations exist betweebibta functions and the order stars: suppose a method
My, (the number of stages does not really matter here) is buiilitégrate exactly all functions in the space

(@) = Spar(1,x, ..., X1 9% xeX . K 1e®X}.

For the equation (3), this gives risey@ 1 = Ry (z 20) Yn.

On the other hand, following Lawson [5] and defining) = e~ “*y(x) the equation (3) becomes= (A — w)u.
If y e A (w), thenu € . (—w), and this then leads tah,1 = R k(z— Z0, —20) Un, from whichyn,1 = €9 R (z—
2, —2p) Y is obtained. In general, we thus have

Rai(z20) = €°R k(z2— 20, ~ ). (5)
For the corresponding order star, this then means

R (z2)| _ |Rk(z=20,—2)
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THE TWO STAGE-CASE

The one-stage case has been discussed in detail in [4].slipaipier, we will focus on the two-stage case. For a two-
stage method, the stability function will be a rational apgmation of degree at most two in both the numerator and
the denominator, i.e.

ao+6112+3222
R ==
(22) 1+byz+byz2’
whereag, a3, a2, by andb, can depend upomy. There are five degrees of freedom, so we can impas¢ = 5
conditions: $-R(z.2)|,_, = 1, 4= 1,....i and g—(sz(z,zo)|ZZZO —=e0,q=1...,j, i.e. we consider the stability

functions that are obtained by fitting #d, x, ...,xX 1} U {e*X, xe®*, ..., xI~1e®X}. Then we obtain six different
stability functions that are denoted Bs; (z, 2o)
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Making use of (5), the explicit form of the functiorﬁgg, Ry 4 and I§’0$5 can be determined. All these functions
reduce tdRs o(2), the Padé approximant of ordey/2] of &, for zy — 0.

In Figure 1 the stability regions, the order stars and théadiew from & along the real axis for these functions have
been shown for the cagg = —3. Starting at the left side WitFAi5,o, which is exactly A-stable, and going to the right,
we see that the stability region (i.e. the gray area) gronm@mRhe corresponding order stars, we can learn how well
the stability function approximate$ éor z= 0 andz = 7. Indeed, we can see that an approximation of omar
z=zy0orz= 0results in an order star in that point witli2+ 1) equal sectors. Also the relations (6) that exist between
the different order stars are clearly illustrated. Thedmottow, which shows the difference$-eR, j(z z) also shows
the orders of approximation in= z; andz= 0.

On the other hand, given two nodesandc, we can construct 2-stage EFRK methods and then we obtain the
following stability functions
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FIGURE 1. The stability regions (top) and the order stars (middle) for the funcﬁ?@,nﬁi(z, 7),i=0,...,5, forzg = —3. For

each picture, both axes vary betweeid en 75. In the lower part, the difference withaong the real axis is shown. Again the
x-axis covers the intervadl-7, 7], they-axis shows the interva-0.05,0.05.
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We thus have two sets of stability functions : functi&]§_j(z,m), j =0,...,5 that are determined by imposing
5 conditions on a rational function and functidﬁ{%_’?}(z, %),i=0,...,3 that are obtained by constructing 2 stages
EFRK methods fitted to 3 dimensional set. One could wondethenét is possible to choosg andc; in such a way
thatR'5 % (z,20) coincides withR; s j(,2) for somej with i < j <i+2. E.g. it is well-known thaR{3 ?’ (z,20)
coincides withRs o(z, z0) iff {c1,c2} = {32, 231, butiis it also possible to coincide wifky 1(z,2) or Rs (2, 20) -
Yes it is possible, but in that casg andc, depend upouy, as shown in the left part of Figure 2.
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FIGURE 2. Behavior of the coefficients; andc, to satisfy (from left to right)Ré%’cZ}(z, 2) = FAQ4’1(Z, 2), 0 (z29) =

{C1.C2}

Re2(z20), RIS (2,20) = Re1(2.20), RIS (2.20) = Ra2(2.20).
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