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3.1. Introduction

The moment problem in probability theory refers to the existence and
uniqueness of a σ-additive probability measure with a particular sequence
of moments m, or equivalently mk, k ≥ 0, i.e., of a measure µ such that∫
xk dµ = mk for all k ≥ 0. There are three classical moment problems: the

Hamburger moment problem, where the support of µ is the real line; the
Stieltjes moment problem, where it is [0,+∞); and the Hausdorff moment
problem, where it is the closed interval [0, 1]. This last problem is the one
we shall consider in this paper.

Hausdorff [4, 5] has proved that there is a solution to the moment
problem for a moment sequence m if and only if this sequence is completely
monotone, meaning that (−1)n∆nmk ≥ 0 for all m, k ≥ 0, with ∆nmk =
∆n−1mk+1−∆n−1mk for n ≥ 1 and ∆0mk = mk. In this case, the existence
of a probability measure µ with a sequence of moments implies its uniqueness,
by virtue of the Riesz Representation Theorem.

In this paper, we study the Hausdorff moment problem for finitely
∗Extended versions of parts this paper, with proofs, are available [6, 7]. E-mail addresses:
enrique.miranda@urjc.es, Gert.deCooman@UGent.be, Erik.Quaeghebeur@UGent.be.
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additive probabilities. We consider a sequence m of real numbers and study
whether there is a unique finitely additive probability (or probability charge)
with this sequence of moments. We shall see that in this case the question
of the existence of such a probability charge is a fairly trivial one, but the
study of its unicity becomes much more involved as soon as we let go of the
countable additivity (or continuity) axiom. Hence, it will be important to
study for which functions (and in particular on which events) the expectation
with respect to such probability charges µ is uniquely determined by the
moments. It turns out that studying and solving this problem can be
done quite efficiently using the language of Walley’s behavioural theory of
coherent lower previsions [8].

3.2. A short introduction to lower previsions

Let us give a short introduction to those concepts from the theory of coherent
lower previsions that we shall use in this paper. We refer to [8] for their
behavioural interpretation, and for a much more complete introduction and
treatment. Consider a non-empty set Ω. Then a gamble on Ω is a bounded
real-valued function on Ω. We denote the set of all gambles on Ω by L(Ω).

A lower prevision P is a real-valued map defined on some subset K of
L(Ω). If the domain K of P only contains (indicators of) events A, then P
is also called a lower probability. We also write P (IA) as P (A), the lower
probability of the event A. The conjugate upper prevision P of P is defined
on −K by P (f) := −P (−f) for every −f in the domain of P . If the domain
of P contains indicators only, then P is also called an upper probability.

A lower prevision P defined on L(Ω) is called coherent if it is super-
additive: P (f + g) ≥ P (f) + P (g), positively homogeneous: P (λf) =
λP (f) for λ ≥ 0, and positive: P (h) ≥ inf h. A lower prevision P on
a general domain is then called coherent if it can be extended to some
coherent lower prevision on all gambles. This is the case if and only if
sup [

∑n
i=1 fi −mf0] ≥

∑n
i=1 P (fi)−mP (f0) for any n,m ≥ 0, and f0, f1,

. . . , fn in the domain of P .
A linear prevision P on L(Ω) is a coherent lower prevision that is self-

conjugate: P (−f) = −P (f), or in other words, a linear functional that is
positive and normalised: P (1) = 1 (1 also used as a constant function).
A functional defined on an arbitrary subset K of L(Ω) is called a linear
prevision if it can be extended to a linear prevision on L(Ω). This is the case
if and only if sup[

∑n
i=1 fi −

∑m
j=1 gj ] ≥

∑n
i=1 P (fi)−

∑m
j=1 P (gj) for any

n,m ≥ 0, and f1, . . . , fn, g1, . . . , gm in the domain of P . The restriction
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Q of a linear prevision P on L(Ω) to the set ℘(Ω) of all events is a finitely
additive probability measure (probability charge). Moreover, it holds that
P (h) = (D)

∫
hdQ for any gamble h (Dunford integral). Hence, linear

previsions are completely determined by the values they assume on events,
and are simply expectations with respect to finitely additive probabilities.

The natural extension EP to L(Ω) of a coherent lower prevision P defined
on K, is the point-wise smallest coherent lower prevision that extends P
to all gambles. It is equal to the lower envelope of the set M(P ) of all
linear previsions that point-wise dominate P on its domain K: EP (f) =
minQ∈M(P ) Q(f) for any gamble f in L(Ω). Moreover,M(EP ) =M(P ).

A coherent lower prevision defined on a lattice of gambles K (a set of
gambles closed under pointwise minima and maxima) is called n-monotone
if
∑
I⊆{1,...,p}(−1)|I|P

(
f ∧

∧
i∈I fi

)
≥ 0 for all 1 ≤ p ≤ n, and all f ,

f1, . . . , fp in K. A coherent lower prevision is completely monotone when it
is n-monotone for any n ≥ 1. A thorough study of n-monotone coherent
lower previsions, and their properties, can be found in [1, 2].

3.3. Formulation and initial solution of the problem

We are now ready to formulate the moment problem using the language
established in the previous section. Consider a moment sequence m and
the subset Vp([0, 1]) of the set of all polynomials on the unit interval given
by Vp([0, 1]) := {pk : k ≥ 0}, where pk(x) = xk. We define a functional
Pm on this set by letting Pm(pk) := mk. This functional can be uniquely
extended to a linear functional P̂m on the set of all polynomials as fol-
lows: P̂m(

∑n
k=0 akp

k) =
∑n
k=0 akmk. The following theorem summarises

a number of results from the literature. It tells us under what conditions
there exists a linear prevision on the set L([0, 1]) of all gambles on [0, 1], or
equivalently a finitely additive probability on the set ℘([0, 1]) of all subsets
of [0, 1], for which the moments are given by m.

Theorem 3.1. The following are equivalent.

(1) The functional Pm can be extended uniquely to a linear prevision on the
set C([0, 1]) of all continuous gambles on [0, 1]. We shall denote this
extension by P̂m.

(2) For all polynomials q =
∑n
k=0 akp

k, min q ≤ P̂m(q) ≤ max q.
(3) The moment sequence m satisfies the Hausdorff moment condition [4, 5]:

m0 = 1 and m is completely monotone, meaning that (−1)n∆nmk ≥ 0
for all k ≥ 0 and n ≥ 0.



36 E. Miranda, G. de Cooman and E. Quaeghebeur

So we see that the Hausdorff moment problem has a solution (as a
linear prevision) if and only if the Hausdorff moment condition is satisfied,
and in that case the solution is uniquely determined on the set C([0, 1]) of
continuous functions.

If we invoke the Riesz Representation Theorem (see for instance [3,
Section V.1]), we see that there is a unique σ-additive probability measure
Pσm on the Borel sets of [0, 1], and a unique (right-continuous) distribution
function Fσm on [0, 1] such that for all continuous gambles h, the expectation
Eσm(h) is equal to (L)

∫
hdPσm = (LS)

∫
hdFσm = P̂m(h), where the first

integral is the Lebesgue integral associated with the probability measure
Pσm, and the second integral the Lebesgue–Stieltjes integral associated with
the distribution function Fσm . Also, Fσm(x) = Pσm([0, x]). Note that, actually,
the expectation operator Eσm, as well as both integrals are defined for all
Borel-measurable functions on [0, 1].

In this sense, the moments determine a unique σ-additive probability
measure on the Borel sets. But the solution is not as clear-cut if we look for
the finitely additive probabilities on all events (or equivalently the linear
previsions on all gambles) that correspond to the given moments. These
are given by the set M(P̂m) of all linear previsions Q that dominate, or,
equivalently, coincide with, P̂m on continuous gambles.

For any gamble h on [0, 1], it follows that the linear previsions that solve
the moment problem can assume a value in the real interval [Em(h), Em(h)],
where Em(h) = inf{Q(h) : Q ∈ M(P̂m)} and Em(h) = sup{Q(h) : Q ∈
M(P̂m)}. In fact, given any real number a in this interval, there will be a
solution Q to the moment problem such that Q(h) = a. The functional Em
on L([0, 1]) is the natural extension of P̂m, and it is the point-wise smallest
coherent lower prevision that coincides with P̂m on C([0, 1]). The functional
Em is its conjugate upper prevision and satisfies Em(h) = −Em(−h) for
all gambles h on [0, 1].

Em is the smallest coherent lower prevision that satisfies Em(pk) =
Em(pk) = mk, k ≥ 0. It is easy to see (use [8, Theorem 3.4.1]) that
M(Em) = M(P̂m) = M(Pm). So we see that the lower prevision Em
completely determines the solution to the Hausdorff moment problem for
linear previsions. In particular, the gambles h on [0, 1] where the lower
and upper natural extensions coincide, i.e. Em(h) = Em(h), are precisely
those gambles to which Pm has a unique extension. We shall call such
gambles m-integrable. One of the goals in this paper is precisely to study
these m-integrable gambles. Another, closely related goal, is to study the
functional Em.
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With Em and its conjugate Em we can associate a lower distribution
function Fm and an upper distribution function Fm on [0, 1],

Fm(x) = Em([0, x]), Fm(x) = Em([0, x]),

for x ∈ [0, 1]. We then ask: what are the properties of these distribution
functions, what is their relationship to Fσm, and to what extent do they
determine the functional Em, and therefore the solution to the Hausdorff
moment problem?

3.4. The natural extension Em and m-integrable gambles

Since C([0, 1]) is a linear subspace of L([0, 1]) that contains all constant
gambles, we may apply another known result [8, Corollary 3.1.8] from the
theory of coherent lower previsions to obtain the following expressions:
for any gamble h on [0, 1], Em(h) = sup{P̂m(g) : g ∈ C([0, 1]), g ≤ h} and
Em(h) = inf{P̂m(g) : g ∈ C([0, 1]), h ≤ g}. We use these expressions to
prove a number of interesting properties of Em and the lower and upper
distribution functions Fm and Fm.

Proposition 3.1. Consider a moment sequence m satisfying the Hausdorff
moment condition.

(1) 0 ≤ Fm ≤ Fσm ≤ Fm ≤ 1.
(2) Fm and Fm are non-decreasing functions.
(3) Fm(0) = 0 and Fm(1) = Fm(1) = 1.

It follows from Proposition 3.1 that the left and right limits of Fm and
Fm exist everywhere. Let us denote by DFm

:= {x ∈ [0, 1] : Fm(x+) 6=
Fm(x−)} the set of all points of discontinuity of Fm, and similarly by
DFm

= {x ∈ [0, 1] : Fm(x−) 6= Fm(x+)} the set of points where Fm is not
continuous. Let Dm := DFm

∪ DFm
denote their union. It follows from

the non-decreasing character of Fm and Fm that DFm
, DFm

and Dm are
countable subsets of [0, 1].

Proposition 3.2. Consider a moment sequence m satisfying the Hausdorff
moment condition.

(1) For any x ∈ [0, 1], Fm(x+) = Fm(x) = F
σ

m(x) = Fm(x+).
(2) Fm(x−) = Fm(x) = Fm(x−) ∀x ∈ (0, 1).
(3) Fm(0−) := Fm(0) ≤ Fm(0−) := Fm(0).
(4) Fm(1−) = Fm(1−) ≤ Fm(1) = Fm(1).
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(5) DFm
∩ (0, 1] = DFm

∩ (0, 1].
(6) The following statements are equivalent for all x ∈ (0, 1): (i) x 6∈ Dm;

(ii) Fm(x) = Fm(x); and (iii) Fσm is continuous in x.

Hence, if m is a sequence satisfying the Hausdorff moment condition,
the distribution function Fσm of the unique σ-additive probability with these
moments is equal to the upper distribution function Fm.

Example 3.1. Consider the moment sequence m given by m0 = 1, mk = 0,
k > 0. It is completely monotone, because the probability measure all of
whose mass is concentrated in 0 has these moments. If we consider the Fm
and Fm produced by this sequence, it is easy to check that the fifth and
sixth statements of Proposition 3.2 do not hold for x = 0, and that the
inequality in the third statement may be strict.

Let us now define, for any gamble h on [0, 1], the gambles h↓ and h↑ on
[0, 1] by h↑(x) = sup{g(x) : g ∈ C([0, 1]), g ≤ h} and h↓(x) = inf{g(x) : g ∈
C([0, 1]), h ≤ g} for all x in [0, 1]. Then h↑ is the pointwise greatest lower
semi-continuous gamble that is dominated by h, and h↓ is the pointwise
smallest upper semi-continuous gamble that dominates h. Observe also that
for any A ⊆ [0, 1], (IA)↑ = Iint(A) and (IA)↓ = Icl(A), where int(A) is the
topological interior of A, and cl(A) its topological closure.

Proposition 3.3. Consider a moment sequence m satisfying the Haus-
dorff moment condition. Then for any gamble h on [0, 1] we have that
Em(h) = Em(h↑) and Em(h) = Em(h↓). In particular, for any A ⊆ [0, 1],
Em(int(A)) = Em(A) and Em(cl(A)) = Em(A).

Now consider, for any set A its interior int(A). It is easy to check
that int(A) is a countable union of disjoint open intervals. The following
important result now tells us that it even suffices to know the values of Em
on open intervals.

Proposition 3.4. Consider a moment sequence m satisfying the Hausdorff
moment condition. Let B be a countable union of disjoint open intervals
Bn, n ≥ 0. Then Em(B) = supn≥0

∑n
k=0 Em(Bk).

Summarising, Em is completely determined on events if we know its
values on all open intervals. The following proposition establishes that these
values are determined by the lower and upper distribution functions Fm
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and Fm.

Proposition 3.5. Consider a moment sequence m satisfying the Hausdorff
moment condition.

(1) Em([0, x)) = Fm(x−) for all x ∈ [0, 1].
(2) Em((x, 1]) = 1− Fm(x) for all x ∈ [0, 1].
(3) Em((x, y)) = Fm(y−)− Fm(x) for all 0 ≤ x < y ≤ 1.
(4) For all 0 ≤ x < y ≤ 1, the interval (x, y) is m-integrable if and only

if x and y do not belong to Dm. For x ∈ [0, 1], [0, x) and (x, 1] are
m-integrable if and only if x does not belong to Dm.

We can also deduce from these results that there is never a unique linear
prevision that solves the Hausdorff moment problem.

Remark 3.1. Consider the set Q ∩ [0, 1] of all rational numbers between
zero and one, then int(Q ∩ [0, 1]) = ∅ and cl(Q ∩ [0, 1]) = [0, 1], so we infer
from Proposition 3.3 that Em(Q∩ [0, 1]) = Em(∅) = 0 and Em(Q∩ [0, 1]) =
Em([0, 1]) = 1. This shows that there is always either none (when m is not
completely monotone) or an uncountable infinity of linear previsions that
produce a given sequence of moments mk, k ≥ 0.

There are two further questions we would still like to look at in this sec-
tion. First of all, are the values of Em on events also completely determined
by Fm and Fm in their points of continuity, or in other words, by Fσm in
its points of continuity? By virtue of Proposition 3.5, this comes down to
Em being determined by its values on m-integrable open intervals. And
secondly, can we say something similar about the values that Em assumes
on gambles, and not just events? We shall answer both questions in the
positive in Theorem 3.3 further on.

But before we can address these issues, we need to prepare ourselves a
bit better. In order to answer the first question, it will help us to consider
the set of all m-integrable open intervals. By Proposition 3.5 this is the set
{[0, 1], [0, x), (x, y), (y, 1] : x, y /∈ Dm}. This set is closed under intersections,
so the lattice of events Om generated by all m-integrable open intervals is
the set made up of all finite unions of m-integrable disjoint open intervals.
For the second question, let Lm denote the class of m-integrable gambles,
Lm := {h ∈ L([0, 1]) : Em(h) = Em(h)}, and let Fm denote the class of
m-integrable events, i.e., those events with m-integrable indicators. Then
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we have the following [1, 2]:

Theorem 3.2. Consider a moment sequence m satisfying the Hausdorff
moment condition.

(1) Em is the natural extension of its restriction to events, which is a com-
pletely monotone coherent lower probability.

(2) Em is completely monotone on L([0, 1]), and Em(h) = (C)
∫
hdEm

for any h ∈ L([0, 1]), where the integral is the Choquet integral of
h with respect to Em, equal to (using the Riemann integral) inf h +
(R)

∫ suph
inf h Em({h > t}) dt.

(3) Lm is a uniformly closed linear lattice that contains all constant gambles.
(4) Fm is a field of subsets of [0, 1] that includes Om.
(5) A gamble f is m-integrable if and only if its cut sets {f ≥ t} := {x ∈

[0, 1] : f(x) ≥ t} are m-integrable for all but a countable number of t in
[0, 1].

Let us denote by P̃m the restriction of Em to Om. Then we know by
Proposition 3.4 that P̃m is additive on this lattice of events. We show next
that Em is completely determined by P̃m.

Theorem 3.3. Consider a moment sequence m satisfying the Hausdorff
moment condition.

(1) The natural extension of P̃m to all events is the inner set function P̃m,∗
of P̃m, where, for any A ⊆ [0, 1], P̃m,∗(A) = supB∈Om ,B⊆A Pm(B).

(2) For any A ⊆ [0, 1], Em(A) = P̃m,∗(A).
(3) Em(h) = (C)

∫
hdP̃m,∗ ∀h ∈ L([0, 1]).

3.5. The natural extension of lower and upper distribution func-
tions

In the rest of this paper, we intend to show that Em is the natural extension
of the lower and upper distribution functions Fm and Fm . But before we can
do that, we must make a small digression, in order to explain exactly what
we mean by the phrase “natural extension of lower and upper distribution
functions” in a general context. This is the subject of the present section.
In the next section, we take up the thread of the moment problem again.
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3.5.1. A precise distribution function

Let us begin with the simplest problem. We call any non-decreasing function
F : [0, 1] → [0, 1] that satisfies the normalisation condition F (1) = 1 a
distribution function on [0, 1]. The interpretation of such a distribution
function is as follows: for any x ∈ [0, 1], the (lower and upper) probability
PF ([0, x]) of [0, x] is equal to F (x). Consequently, the probability PF ((x, 1])
of (x, 1] is equal to 1 − F (x). In other words, specifying a distribution
function F is tantamount to specifying a set function PF on the set of events
H := {[0, x] : x ∈ [0, 1]}∪{(x, 1] : x ∈ [0, 1]}, and it is easy to check that this
PF is a linear prevision. It can be uniquely extended to a linear prevision
on the lattice Q generated by H, where all elements have the form

[0, x1] ∪ (x2, x3] ∪ · · · ∪ (x2n, 1] or (x2, x3] ∪ · · · ∪ (x2n, 1]

where 0 ≤ x1 ≤ x2 ≤ x3 ≤ · · · ≤ x2n ≤ 1.
The natural extension EF of PF is the lower envelope of the setM(PF )

of all linear previsions Q for which Q([0, x]) = F (x), x ∈ [0, 1]. For any
gamble h on [0, 1], [EF (h), EF (h)] is the range of the value Q(h) for all such
linear previsions Q.

Using the results in [1, 2], we see that EF is a completely monotone
coherent lower prevision, that the restriction of EF to events is the inner
set function PF ,∗ of PF , and that for all gambles h on [0, 1], EF (h) =
(C)

∫
hdEF . If LF := {h ∈ L([0, 1]) : EF (h) = EF (h)} is the set of all

F -integrable gambles, then we also know that LF is a uniformly closed linear
lattice containing all constant gambles, and that a gamble h is F -integrable
if and only if its cut sets {h ≥ t} are F -integrable for all but a countable
number of t.

Interestingly, it can be checked that any distribution function F pro-
duces precise moments, i.e., the polynomials pk are F -integrable for any
distribution function F .

3.5.2. Lower and upper distribution functions

Suppose now that we have two maps F , F : [0, 1]→ [0, 1], which we interpret
as a lower and an upper distribution function, respectively. This means that
F and F determine a lower probability PF,F on the set H by PF,F ([0, x]) =
F (x) and PF,F ((x, 1]) = 1−F (x) for all x ∈ [0, 1]. Walley [8, Section 4.6.6]
has shown that PF,F is a coherent lower prevision if and only if F ≤ F and
both F and F are distribution functions, i.e., non-decreasing and normalised.
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We shall assume in what follows that these conditions are satisfied.
The natural extension EF,F of the coherent lower probability PF,F

to all gambles is the smallest coherent lower probability that coincides
with PF,F on H, or in other words, that has lower and upper distribution
functions F and F . Denote byM(F , F ) the set of all distribution functions
(non-decreasing and normalised) on [0, 1] that lie between F and F .

Theorem 3.4. EF,F (h) = inf{EF (h) : F ∈M(F , F )} for all h ∈ L([0, 1]).

3.6. The information given by the lower and the upper distribution
functions

Let us now go back to the Hausdorff moment problem. As we have seen, if
we consider a sequence m of moments mk, k ≥ 0 that satisfies Hausdorff’s
moment condition, we can consider the lower and upper envelopes Em and
Em of all linear previsions with those moments. These lower and upper
envelopes induce the lower and upper distribution functions Fm and Fm.
We now proceed to show that these two functions already capture all the
information that is present in the moments.

Theorem 3.5. Consider a moment sequence m satisfying the Hausdorff
moment condition.

(1) For all F in M(Fm, Fm), the restriction of EF to Om is equal to P̃m.
Hence, EF ≥ Em and Lm ⊆ LF .

(2) Em = EFm ,Fm
.

Corollary 3.1. The following statements are equivalent.

(1) Fm = Fm;
(2) Fm, Fm and Fσm are continuous on [0, 1);
(3) Em = EF for some F ∈M(Fm, Fm);
(4) Em = EF for all F ∈M(Fm, Fm);
(5) Em = (RS)

∫
·dF for all F ∈ M(Fm, Fm), where the integral is a lower

Riemann-Stieltjes integral.

We can also prove the following:

Theorem 3.6. Consider a moment sequence m satisfying the Hausdorff
moment condition. Then for any F ∈M(Fm, Fm) such that F (0) = 0 and
any gamble h on [0, 1], Em(h) ≤ (RS)

∫
hdF ≤ (RS)

∫
hdF ≤ Em(h).
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Hence, if a gamble h is m-integrable, then the Riemann–Stieltjes integral
of h with respect to F exists for any F ∈M(Fm, Fm), and they all agree
with Em(h) = Em(h). It may happen nonetheless that a gamble h is
Riemann-Stieltjes integrable with respect to some F ∈M(Fm, Fm) but not
with respect to all of them.

There is a final result that summarises much of what has been said
before in a concise manner. For this, note that any distribution function F
inM(Fm, Fm) can be written as a convex mixture F = µmFb+(1−µm)Fc
of a continuous distribution function Fc and a ‘pure break function’ Fb,
which is a uniformly and absolutely convergent sum (convex mixture) of
simple break functions. Explicitly, we have for all x ∈ [0, 1]

µmFb(x) := F (x)− Fm(x−) +
∑

d∈Dm ,d<x

[Fm(d)− Fm(d−)]

and

(1− µm)Fc(x) := F (x)− µmFb(x) = Fm(x)−
∑

d∈Dm ,d<x

[Fm(d)−Fm(d−)],

where 0 ≤ µm =
∑
d∈Dm

[Fm(d) − Fm(d−)] ≤ 1, so the continuous part
Fc is the same for all distributions F inM(Fm, Fm), and the pure break
parts are identical in all the continuity points of Fm and Fm, and differ
only by the values F (d) they assume in the countably many discontinuity
points d ∈ Dm. Define, for d ∈ [0, 1], the functional oscd by oscd(h) :=
supd∈Bopen infz∈B h(z) for all gambles h on [0, 1].

Theorem 3.7. Consider a moment sequence m satisfying the Hausdorff
moment condition, and h ∈ L([0, 1]). Then Em(h) = (1 − µm)EFc(h) +∑
d∈Dm

[Fm(d)− Fm(d−)]oscd(h), and the following are equivalent:

(1) h is m-integrable.
(2) h is continuous in all the discontinuity points d ∈ Dm, and Riemann–

Stieltjes-integrable with respect to Fc if µm < 1.

3.7. Conclusions

We have proven that the existence of a (finitely additive) probability charge
with a given sequence of moments is equivalent to the existence of a (σ-
additive) probability measure with these moments. Perhaps more surpris-
ingly, and contrary to what happens in the case of σ-additive probabilities,
a sequence of moments does not determine a unique probability charge.
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If we consider the set of all probability charges with the given moment
sequence, we can also induce lower and an upper distribution functions. We
have proven that these two functions (actually any of the two) capture all
the information given by the moments, i.e., we can deduce the lower and
upper natural extensions from them. Moreover, we can gain more insight in
the problem by considering these functions. First, the (unique) σ-additive
probability measure with these moments induces the greatest distribution
function of all the compatible probability charges; secondly, if there exists a
continuous distribution function with these moments, then the results in
Section 3.6 imply that all the distribution functions with those moments
coincide and are, therefore, continuous. In particular, we deduce that the
moments of a continuous distribution function can never be induced by a
different, and discrete, distribution function on [0, 1]. Note however that
even this does not imply the unicity of probability charges producing them!
This is a consequence of Remark 3.1.
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