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Abstract 

Migraine is a cyclic disorder, in which functional and morphological brain changes fluctuate over 

time, culminating periodically in an attack. In the migrainous brain, temporal processing of external 

stimuli and sequential recruitment of neuronal networks are malfunctioning. These changes reflect 

complex CNS dysfunction patterns. Assessing the altered temporal patterns of the brain’s 

electrophysiological activity, using multimodal evoked potentials and nociceptive reflex responses, 

can aid in understanding the pathophysiology of migraine. In this Review, we summarize the most 

important findings on temporal processing of evoked and reflex responses in migraine. Considering 

these data, we propose that thalamocortical dysrhythmia may be responsible for the altered 

synchronicity in migraine. To test this hypothesis in future research, electrophysiological recordings 

of temporal patterns of sensory processing in patients with migraine should be combined with 

neuroimaging studies of the accompanying anatomical and functional changes. 
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Key points 

 Migraine is the most prevalent neurological disorder in the general population and a 

considerable societal burden.  Its episodic form consists of paroxysmal attacks separated by 

remissions of variable duration, but in some patients migraine becomes unremittingly 

chronic 

 Migraine is a functional brain disorder caused by interplay between a genetic 

predisposition and hormonal/environmental factors. Electrophysiological studies are able 

to identify the abnormal functioning of the migrainous brain between, just before and 

during attacks and to monitor the effect of therapeutic interventions  

 Most electrophysiological studies in migraineurs are characterised between attacks, by 

hyperresponsivity to repeated sensory stimuli with abnormal temporal processing of brain 
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responses, malfunctioning sequential recruitment of neuronal networks and deficit of 

habituation  

 These abnormalities of sensory processing vary over the migraine cycle: they worsen pre-

ictally but tend to disappear during the attack; they differ between episodic and chronic 

migraine.  

 Refined neurophysiological investigations suggest that the cyclic brain dysfunctions in 

migraine might be related to an abnormal cross-talk between thalamus and cortex 

(thalamocortical dysrhythmia) 

 Understanding the dysfunction of temporal information processing in migraine paves the 

way for novel acute and preventive therapies, including pathophysiology-based 

neuromodulatory techniques 

 

 

Introduction 

Migraine is the most prevalent neurological disorder in the general population: its cumulative 

lifetime incidence is 43% in women and 18% in men.1  Its episodic form is characterized by 

recurrent headache attacks, which are often accompanied by nausea, vomiting photophobia or 

phonophobia.2 Some patients develop chronic migraine (at least 15 days of headache per month, 

including at least 8 days with typical migraine attacks).2 In about 20% of patients, migraine attacks 

are preceded by or associated with an aura composed of transient focal neurological symptoms, 

such as scintillating scotomata (blurred areas in the visual field), paraesthesias or language 

disturbances. As interictal symptoms and overt brain lesions are absent, migraine is commonly 

considered to be a prototypic functional brain disorder. 

The common migraine types, migraine with and without aura, are determined by complex 

interactions between multiple additive genetic, environmental, hormonal and endogenous 

(cognitive and emotional) factors.3 These factors modify dynamic interactions between various 



brain areas and components that define the individual’s level of susceptibility to migraine, which 

fluctuates and at times becomes sufficiently intense to precipitate a migraine attack. The neural 

components involved in susceptibility to migraine include the cerebral cortex, brainstem, 

hypothalamus and thalamus, as well as peripheral and central portions of the trigeminovascular 

system — the main pain-signalling system of the brain. The relative importance and exact 

sequence of activation of these structures during a migraine attack might vary with the migraine 

type, and remains a topic for extensive research.3,4 

The temporal precision and non-invasiveness of electrophysiological methods is particularly 

well suited to study of the cyclic functional brain changes associated with migraine.5 Investigators 

using these techniques have demonstrated that the migrainous brain has altered functioning 

between migraine attacks, and that this brain dysfunction undergoes cyclic changes up to initiation 

of the attack.6 Various electrophysiological parameters have been studied in migraine research: 

multimodal evoked potentials, steady-state visual evoked responses, noxious evoked cortical 

responses, and nociceptive reflexes. Their results have provided three major sets of observations, 

which were consistent across most studies. First, between attacks, a stimulus-frequency-

dependent increase occurs in photic driving and synchronization of EEG alpha (8–13 Hz) and beta 

(13–30 Hz) rhythms. Second, the interictal migrainous brain is characterized by a habituation (or 

adaptation) deficit of cortical evoked responses to repetitive, non-noxious sensory stimuli, which 

normalizes during an attack. Third, noxious evoked responses or reflexes also fail to habituate 

interictally, but this abnormality does not reverse during an attack. It should, however, be noted 

that not all studies confirmed these results.  

In this Review, we describe the data on alterations of neuronal processing in patients with 

migraine, affecting habituation, potentiation, summation, sequential dipolar source activation and 

synchronization. We provide an overview of these neurophysiological studies and describe the 

novel methods used to explore functional brain connectivity in the migrainous brain. We pay 

particular attention to the temporal dimension of these abnormalities, which seems crucial to 

understanding the functional brain changes in migraine and their clinical correlates. 

 



H1: EEG changes induced by visual stimuli 

H2: Increased photic driving  

Many studies have focused on steady-state visual evoked potentials (SSVEPs), which are the EEG 

response to repetitive visual stimulation. SSVEPs are not generated by amplitude modulation; 

instead, they primarily result from phase alignment of the ongoing background EEG activity7 with 

the changes in frequency of the repetitive stimulus. This phenomenon, called photic driving, 

reflects the tendency of cortical neurons to synchronize their firing with the frequency of the visual 

stimuli. 

Although normal brain activity is entrained by repetitive low-frequency (±10 Hz) light stimuli, 

increased photic driving has been described in response to medium-frequency (±20 Hz) light 

stimuli in patients with migraine, and is called the H response.8 SSVEPs to flash stimuli in the 

medium-frequency range confirmed increased photic driving in individuals with migraine, without 

any relation to migraine severity or duration.9,10 This observation was interpreted as hyper-

responsivity of the brain to visual stimuli. Further analysis showed that in migraine patients SSVEP 

amplitude was less stable  over time than in controls11. Fluctuation of increased photic driving over 

the migraine cycle has also been reported.10,12 Instability, changes over the migraine cycle, and 

methodological differences probably explain some of the contradictory results reported in the 

literature.12 

Another interesting aspect of visually induced changes in EEG recordings is that they might 

differ between migraine types. Some SSVEP studies found no differences between migraine with 

and without aura,13 but one study showed that interhemispheric SSVEP asymmetry was increased 

in about half of patients affected by migraine with aura, whereas in those with migraine without 

aura, the amplitude of the second harmonic was increased.14 Another group found an increased 

amplitude of the second harmonic in both migraine groups, but an augmented amplitude of the 

fourth harmonic at high spatial frequency only in patients who had migraine with aura.15 The 

investigators interpreted their results as reflecting increased responsivity of the primary visual 

cortex in both types of migraine, albeit with extension of this increased responsivity to include 



secondary visual areas in migraine with aura. This hypothesis is being further tested in studies of 

EEG mapping during intermittent visual stimulation, as described below. 

 

H2: Increased synchronization 

The role of neuronal networks in determining responsivity of the brain to visual stimulation can be 

assessed comprehensively by studying the synchronization and causal connections of different 

brain areas using non-linear analysis methods. In healthy individuals, the alpha activity is 

suppressed during flicker stimulation, possibly as a result of desynchronization.16 By contrast, in 

patients who have migraine without aura, the alpha rhythm remains highly synchronized across 

different brain areas during visual stimulation.17 This pattern does not depend on the alpha 

amplitude, but pertains to the synchrony of temporal activation and dynamic interactions, i.e. 

functional connectivity, between brain areas,18 and to their modification by sensory stimuli. Some 

researchers have suggested that functional connectivity is determined by both corticocortical and 

thalamocortical loops.19 The mechanisms underlying temporal synchrony of EEG rhythms are not 

simply a result of the balance between excitatory and inhibitory inputs. Anticonvulsants, for 

instance, modulate alpha rhythm synchronization differentially: topiramate, an established 

migraine-preventing drug, has no effect on alpha oscillations, whereas levetiracetam, which might 

also be effective in migraine prevention, reduces alpha synchronization.20 Low frequency repetitive 

transcranial magnetic stimulation (rTMS) that has been tried as preventive treatment in migraine 

and is thought to inhibit the underlying occipital cortex, has no effect on alpha phase 

synchronization.21 

Oscillatory properties of neuronal networks can be accurately assessed by measuring the 

directed flow of information between its components, using Granger causality22,23 or dynamic 

causal modeling,24 both of which measure effective connectivity. Granger causality detects 

connectivity only in linear data; however, a modified version, kernel Granger causality,23can be 

used to infer direct dynamic influences from non-linear signals such as EEG data. In a preliminary 

study, individuals who had migraine without aura showed increased phase synchronization in the 

alpha band during intermittent flash stimulation and reduced connectivity, whereas those who had 



migraine with aura displayed clear desynchronization in the beta frequency range and increased 

connectivity during visual stimulation (Figure 1).25 Given that brain activation is now described in 

terms of increased connectivity of different functional brain networks, visual stimulation seems to 

induce a more vigorous cortical activation and spread of information in migraine with aura, than in 

migraine without aura (which is characterized by weak interaction between cortical regions), 

possibly because of a prevalent resonance of rhythmic activity generated at subcortical and 

thalamic levels.22 

 

H1: Evoked brain responses to non-noxious stimuli 

H2: Impaired habituation  

Habituation—a response decrement as a result of repeated stimulation26—is a multifactorial 

process. The properties and characteristics of habituation27 have been revised and refined,28 but 

the underlying neural mechanisms are still not completely understood. Habituation has multiple 

roles ranging from pruning irrelevant information to protection of the cerebral cortex against 

overstimulation. It has been studied to investigate the neuronal substrates of behaviour, learning 

processes, and treatment of CNS information in health and disease.29–32  

The majority of interictal evoked potential studies in patients with migraine support the 

notion that the migrainous brain is characterized by impaired habituation to repetitive stimuli. The 

habituation deficit is observed across several sensory modalities, and usually accompanied by a 

normal to low amplitude of early responses in averaged data. Lack of habituation is the most 

prominent (probably genetically determined) consequence of the functional brain abnormality that 

characterises many migraine patients between attacks.33 Of note, the abnormal visual information 

processing that occurs in migraine between attacks corresponds neither to sensitization nor to 

dishabituation (restoration to full strength of a response previously weakened by habituation). It is 

accompanied by initially decreased or normal amplitude of response after a small number of 

stimuli, followed by a stable amplitude, or even a transient amplitude increase (potentiation).34–43 

The first evidence for altered interictal habituation in patients with migraine came from studies of 

contingent negative variation (CNV), a slow-event-related cortical response representing higher 



mental functions.44–47 Subsequently, deficient habituation was demonstrated for another event-

related potential, P300, which is elicited in the process of decision-making after visual48 or 

auditory49,50 stimulation. Deficient habituation was also subsequently described for several other 

modality-specific evoked potentials: pattern-reversal visual evoked potentials (VEP),33–42 visual 

evoked magnetoencephalographic (MEG) responses,43 auditory evoked potentials (AEP)51,52 and 

somatosensory evoked potentials (SSEP).53–55  

However, several other studies were not able to reproduce these results, and found no 

habituation deficit in individuals with migraine, possibly because of differences in the methods used 

or selection of patients.56-62  The reasons for the discrepant results of habituation studies are not 

fully understood. Insufficient blinding of the investigator has been suggested as a possible culprit;63 

however, since the same researchers have found the same result (that is, normal habituation) in 

individuals with migraine in both blinded and nonblinded studies,57 and lack of habituation has also 

been reported in a blinded study, this factor is unlikely to be the sole cause.64 Factors directly 

related to the pathophysiology of migraine are probably involved. For instance, the habituation 

deficit is not constant in the same patient with migraine. It varies not only over the migraine cycle 

(interictal, preictal and ictal), but also within the interictal state, becoming more or less profound 

with decreasing time respectively to the next or from the previous attack.65  Moreover, genetic 

variants can have an effect on habituation profiles.66,67 Finally, spontaneous clinical worsening or 

improving of attack frequency can influence the baseline level of thalamocortical activation,68,69 and 

hence the degree of habituation in patients with migraine.55 

 

H2: Variation over the migraine cycle 

H3: Episodic migraine  

Episodic migraine is by definition a cyclic disorder. The attack itself is not an abrupt event, but the 

result of a sequential process that might start several hours before the aura or the headache by the 

so-called prodromal or premonitory symptoms. Moreover, attack frequency varies over the 

patient’s lifetime. It is thus of major pathophysiological interest to study the changes in brain 

responsivity associated with various stages of the migraine cycle. During the days preceding an 



attack, CNV and P300 habituation is minimal, and the amplitude of these responses is 

maximal.70,71 Within the 12–24 h immediately preceding an attack, and during the attack, 

habituation of evoked potentials normalizes. This pattern has been shown for CNV,36,70,71 VEP,57,72 

and SSEP61 amplitudes, and for visual P300 latency.73 The R2 component recorded during blink 

reflexes evoked by an electrical stimulus delivered with a classic non-nociceptive surface electrode 

showed a habituation deficit in patients before a migraine attack,76 although in another study only 

slight habituation abnormalities were found interictally.77 In a longitudinal study of brainstem AEP, 

habituation of wave IV–V amplitude was deficient in patients with migraine, but did not change over 

the migraine cycle.78 

To our knowledge, no single satisfactory explanation exists for the cyclic nature of episodic 

migraine, except for the one related to the ovarian cycle and variations in sex hormone levels. 

Nonetheless, various experimental data suggest some interesting avenues for further research. 

For instance, cortical responsivity is cyclic in individuals with migraine,71 and varies in parallel with 

changes in platelet serotonin content.73 The periodicity of neurophysiological brain activity might 

also be related to psychophysical, genetic66,79 or metabolic factors,80 or to the biorhythms of 

hypothalamic activity.81 Migraine periodicity might thus be the result of several interacting biological 

cycles. Indeed, the migraine cycle is probably not caused by a single determinant factor, but by a 

complex interplay between intrinsic cerebral, hormonal and environmental factors acting on a 

genetically predisposed nervous system. Disentangling this interplay is a challenge for future 

research, and will be a prerequisite for the development of novel effective therapies. 

 

H3: Chronic migraine 

Cortical responsivity is different in episodic and chronic migraine. For instance, the initial amplitude 

of visual MEG responses (P100m) was greater in chronic migraine than in interictal episodic 

migraine.82 Moreover, these responses show substantial habituation (comparable to that of healthy 

controls) to repetitive stimuli,82 which contrasts with the interictal habituation deficit observed in 

episodic migraine. Interestingly, the habituation deficit reappears when patients evolve from 

chronic to episodic migraine.83 Since the response pattern in chronic migraine is indistinguishable 



from that observed during migraine attacks,43,51–62,70–72 our research group has suggested that 

patients with chronic migraine are locked in an ictal-like state.84  

The most prevalent factor associated with the transition from episodic to chronic migraine is 

acute medication overuse. In medication overuse headache (MOH), the cortical response pattern 

suggests that the brain is locked in a preictal state, characterized by an increased amplitude of 

responses to intermittent stimuli (sensitization) and a consistent deficit of habituation to continuous 

or repetitive stimuli.54 This pattern might vary with the class of drug overused. In triptan overusers, 

the initial SSEP amplitude is normal, whereas it is increased in overusers of NSAIDs and in those 

overusing drugs from both classes.54,85 In both groups of overusers, however, SSEP habituation 

was normal.  

 

H2: Possible mechanisms of habituation 

 Genetic predisposition is likely to influence the brain’s responsivity patterns, although its effects 

are variable between patients and migraine types. In migrainous child–parent pairs, habituation of 

evoked potentials has a clear familial pattern.66,71 Moreover, in asymptomatic individuals who have 

a first-degree relative with migraine, and are thus at risk of developing migraine during their 

lifetime, cortical evoked potentials79 and nociceptive blink reflexes86 (nBRs, discussed under 

processing of noxious stimuli, below) showed amplitude and habituation abnormalities similar to 

those found interictally in people with migraine. 

The neural mechanisms underlying habituation and its impairment in patients with migraine 

remain poorly understood.87 In theory, habituation deficits could be due to increased excitatory 

mechanisms, decreased activity of inhibitory interneurons, or reduced baseline activation of 

sensory cortices according to the “ceiling theory”. This theory postulates that an individual has a 

similar maximal activation range of sensory cortices, but a variable level of baseline activation. 

During repetitive stimulation, the maximum activation level (the ceiling) is reached rapidly and the 

response amplitude decreases rapidly (habituates) In subjects with a normal baseline activation 

while habituation is delayed or absent when baseline activation is low.88 The first two of these 

mechanisms would be expected to give rise to a high initial response amplitude, indicating genuine 



hyperexcitability, and a linear decrease of habituation. By contrast, the ceiling theory can also 

account for the normal or decreased initial amplitude and the nonlinear and cyclic changes in 

habituation. Studies of high-frequency oscillations (HFOs) embedded in evoked cortical responses 

have contributed to understanding of the abnormal information processing in migraine. Amplitude 

of early HFOs embedded in the common SSEPs, thought to reflect spiking activity in 

thalamocortical cholinergic afferents, is decreased interictally in patients with migraine and 

normalizes during attacks, whereas that of late HFOs, which probably reflect the activity of 

inhibitory cortical interneurons, remain normal89 or decreased90 between attacks. Moreover, a 

reduction in amplitude of early HFOs is associated with worsening of the clinical course of 

migraine.68 Contrasting with these results, increased amplitudes of early and late HFOs has also 

been reported in patients with migraine between attacks.91 These disparate findings may be a 

result of differences in recording parameters and selection of patients. 

In patients with migraine, activation of the sensorimotor cortex induced by 10 Hz rTMS 

increased the amplitude of early and late HFOs in SSEPs, and induced habituation of the 

broadband SSEP.55 rTMS significantly increased the amplitude of late HFOs, but had no effect on 

either early HFOs or habituation of the broadband SSEP in nonmigrainous controls, probably 

because their thalamocortical activity was already maximal at baseline55. These observations 

support the hypothesis that the habituation deficit in patients with migraine is due to reduced 

thalamic activation, and hence reduced baseline activation of sensory cortices. Concordant data 

indicate that the interictal habituation deficit and low initial amplitude of VEPs in individuals with 

migraine normalizes after 10Hz rTMS over the visual cortex.36 Further evidence that control of 

thalamocortical activity is abnormal in people with migraine between attacks is suggested by the 

marked reduction in sensory gating of P50 middle-latency AEPs92 and the significant habituation 

deficit in late visual-evoked high frequency activity (oscillations in the gamma range, 20-35 Hz),93 in 

comparison to healthy controls. Taken together, these studies indicate a dysfunction in 

thalamocortical oscillatory networks, and patients with migraine might, therefore, be considered to 

have thalamocortical dysrhythmia (Figure 2). 



The thalamocortical dysrhythmia theory postulates that when an anatomical or functional 

disconnection of the thalamus from subcortical areas is present, the rhythmic thalamocortical 

activity may change to favour low frequency activity (mainly 4–7 Hz theta waves). At the cortical 

level, this change will result in reduced firing rates of excitatory pyramidal cells at the beginning of 

stimulation, and of fast-spiking inhibitory interneurons during stimulus repetition.94,95 Reduced firing 

of fast-spiking interneurons leads to disinhibition of adjacent cortical columns, which is reflected by 

a progressive rise in high-frequency gamma band oscillations, the so-called edge effect.95 This 

theory could explain both the reduced thalamic and thalamocortical activity observed with HFOs, 

and the rise in late visual-evoked gamma band oscillations. Several findings support this 

hypothesis. In agreement with the thalamocortical dysrhythmia theory, short-range lateral inhibition 

in the visual cortex is more pronounced in migraine patients than in healthy volunteers at the 

beginning of the stimulus session.65 Moreover, short-range lateral inhibition in the visual cortex also 

increases over successive responses in people with migraine, but remains unchanged in healthy 

controls.65 Several quantitative EEG studies in individuals with migraine have shown a widespread 

increase in slow (mostly theta) activities, chiefly over temporo-occipital areas,96,97 which similarly 

concords with the thalamocortical dysrhythmia theory.  

 

H2: Amplitude–stimulus intensity function 

Another time-related modality of stimulus processing that seems to be altered in people with 

migraine is the progressive amplitude adaptation of cortical responses to repetitive stimuli of 

increasing intensity, which is referred to as the amplitude–stimulus intensity function. When stimuli 

are delivered at an increasing intensity, the evoked cortical responses increase in certain 

individuals, but decrease in others.98 This so-called augmenting–reducing response has been 

widely studied, mainly in the context of auditory stimuli. The intensity dependence of AEP (IDAP) is 

expressed by the amplitude–stimulus intensity slope of the cortical N1–P2 wave where N1 is the 

greatest negative component between 60 and 150 msec post-stimulus and P1 the greatest 

positivity between 120 and 200 msec. Interestingly, IDAP correlates inversely with central 

serotonin activity as evaluated indirectly by biochemical and pharmacological methods.99  



Although the grand average of long-latency AEPs has normal latency and amplitude in 

patients with migraine,100,57
 IDAP is significantly increased interictally compared to healthy 

volunteers in most,51,52,72 although not all57 studies. IDAP normalizes the day before and during the 

migraine attack, similarly to VEP habituation.72 In fact, the interictal increase in IDAP in people with 

migraine can be attributed to a habituation deficit of the cortical response to high-intensity auditory 

stimuli.52 IDAP is also strongly influenced by sensory overload.101 Indeed, when IDAP is assessed 

during intense flash stimulation, two subgroups of patients with migraine can be identified—one 

reacts to the stimulus by a decrease in IDAP, as do controls, whereas the other reacts by an 

increase in IDAP. The underlying neurobiological basis of this difference between clinically similar 

patients is unknown, but might be related to differences in genetic background and/or brain 

connectivity. 

An increased IDAP (that is, an augmenting pattern), suggests the presence of decreased 

central serotonergic transmission.102,103 A high IDAP is positively correlated with clinical symptoms 

of major depression104 that are thought to be associated with decreased serotonergic signalling, 

and normalizes in depressed patients treated with selective serotonin reuptake inhibitors.105 IDAP 

abnormalities also correlate with personality traits thought to be associated with decreased 

serotonergic transmission in individuals with migraine.106 Treatment with migraine-preventing drugs 

such as β-blockers, which increase serotonergic transmission, normalizes the increased interictal 

IDAP in patients with migraine.107 All things considered, the increased IDAP in migraine could be 

secondary to reduced activity of raphe cortical monoaminergic pathways, which causes low 

baseline activation levels of auditory cortices. 

 

H1: Processing of noxious stimuli 

Another feature that is present in patients with migraine concerns the altered processing of 

nociceptive stimuli that has been studied using nociceptive trigeminal and biceps femoris reflexes, 

as well as thermonociceptive-induced cortical evoked responses. 

 Pain disorders are commonly accompanied by central sensitization that amplifies the CNS 

response to painful stimuli. This amplification also occurs during migraine attacks108 and worsens 



with increasing attack frequency.109 One mechanism underlying central sensitization is the activity-

dependent change in excitability of central nociceptors, which results in an abnormal amplification 

of pain sensation in physiological nociception, a phenomenon referred to as temporal summation 

of pain stimuli110  that is equivalent to “wind-up” in animal experiments.111 

 

H2: The nociceptive flexion reflex  

The nociceptive flexion or withdrawal reflex (NWR) is a reliable measure of spinal nociception, as 

demonstrated by the facts that it requires Aδ fibre activation, that the reflex threshold is related to 

the pain perception threshold, and that the reflex magnitude positively correlates with pain intensity 

ratings.112,113 Temporal summation of pain develops in parallel with temporal summation of the 

NWR of the lower limbs, reflected by a progressive increase in magnitude of the NWR after 

constant-intensity electrical stimulation (which activates both Aδ and C fibres,113–115 and is inhibited 

by NMDA receptor antagonists).116 Interestingly, descending pain control systems modulate 

temporal summation of the NWR,117 and might be dysfunctional in a number of chronic pain 

disorders, including migraine. For example, studies of temporal summation of the NWR in people 

with migraine show facilitation of temporal pain processing between attacks.118 Administration of a 

nitric oxide donor, such as glyceryl trinitrate, that triggers an attack in many migraineurs at delay of 

several hours, induces within 120 min a transitory facilitation of temporal summation of the NWR, 

in those patients who will develop a migraine attack (Figure 3).119  

In individuals with chronic headache, such as MOH evolving from episodic migraine, the 

threshold for temporal summation of the NWR is markedly reduced compared to that in controls or 

patients with episodic migraine, which indicates a strong facilitation in the temporal processing of 

pain.118 In patients with MOH, the suppressing effect of supraspinal diffuse noxious inhibitory 

control (DNIC) (Box 2) on temporal summation of the NWR is deficient.118 This effect, which in 

humans is termed conditioned pain modulation,120 can be tested by the heterotopic application of a 

painful cold stimulus.119 The deficits in conditioned pain modulation or supraspinal diffuse noxious 

inhibitory control and facilitation of temporal summation of the NWR normalize after drug 

withdrawal, which could be related to the reduction in activity of anandamide hydrolase (also 



known as fatty acid amide hydrolase) and hence slowing of the degradation of 

endocannabinoids.121 

 

H2: Nociceptive trigeminal evoked responses 

The nBR is obtained in orbicularis oculi muscles by stimulating the supraorbital nerve via a 

concentric high-density electrode, which activates mainly Aδ afferents. This reflex is mediated via 

interneurons of the spinal trigeminal nucleus. Migraine is characterized by an interictal deficit of 

nBR habituation during both short74 and long38 series of stimuli. nBR habituation normalizes during 

migraine attacks,74 and individuals at risk of developing migraine lack nBR habituation deficits,86 

whereas habituation of nociceptive laser-evoked potentials (LEP, discussed further below) remains 

deficient.75 Patients with migraine also show temporal summation of the nBR.122  

Brief radiant heat pulses generated by CO2 laser stimulation or contact thermode-delivered 

stimuli excite Aδ and C-fibre thermonociceptors in superficial skin layers.123 The Aδ fibre input 

generates cortical potentials, called respectively LEP or contact-heat evoked potentials (CHEP). 

The N2–P2 component of LEP and CHEP is thought to be generated in the posterior part of the 

anterior cingulate cortex and in bilateral insula.124  

Compared to healthy controls and people with episodic migraine between attacks, the brain 

distribution of LEP is shifted rostrally in patients with migraine during an attack125 and in patients 

with chronic migraine.126 This anterior shift of activation contrasts with the posterior shift of LEP 

observed during capsaicin-induced neuropathic pain in healthy volunteers,127 and with the caudal 

displacement of cortical evoked potentials in the cingulate gyrus after intramuscular nociceptive 

stimulation of the trapezius muscle in patients with migraine.128 This difference with the data on 

LEP can be explained by the different methodology used, which involves stimulation of different 

nociceptive afferents.129 

Similarly to the cortical evoked potentials elicited by non-noxious stimuli, LEP75,130 and 

CHEP131 show habituation deficits in patients with migraine between attacks. However, in contrast 

with non-noxious cortical evoked potentials, the lack of habituation of LEP persists during the 

attack, and is associated with an increased N2–P2 amplitude.132 



Nonlinear analysis of ongoing EEG changes shows subtle changes in the cortical response 

to painful laser stimuli in patients with migraine.133 For example, individuals with episodic migraine 

have markedly reduced predictability of their EEG rhythms after the laser stimulus compared to 

healthy individuals, although their averaged LEP appear normal; however, the averaging technique 

used to extract evoked potentials from the background EEG signals might neglect subtle changes 

in the processing of pain by the brain. Future studies using analysis of single (non averaged) 

nociceptive evoked potentials, refined neurophysiological techniques and the combination of 

neurophysiological and imaging methods will help to characterize the pathophysiological features 

of central processing of pain in patients with migraine. 

In chronic migraine and medication overuse headache, pain-related cortical potentials to 

electrical forehead or forearm stimulation were facilitated, but not the nBR.134 

 

H1: Migraine pathogenesis from the neurophysiological perspective 

Given the results of the abovedescribed neurophysiological studies, the pathogenesis of 

migraine seems to be driven by a complex dysfunction of thalamocortical connectivity and temporal 

activation of neuronal networks. Thalamocortical dysrhythmia might also explain the phenomena 

observed in patients with migraine treated with transcranial neuromodulation techniques—for 

instance, the increased variability of dynamic changes in excitability135 or the paradoxical 

homeostatic cerebral plasticity.136–138 In a proof-of-concept study, the plastic cortical changes 

induced by rTMS were inversely related to thalamocortical activation 139. This observation suggests 

that the paradoxical effects observed after rTMS in patients with migraine might be a consequence 

of abnormal thalamocortical drive, which impairs short-term and long-term changes in cortical 

synaptic effectiveness, and finally leads to maladaptive responses. Taken together, the 

dysfunctions found in the migrainous brain suggest an impairment of thalamocortical control of 

temporal activation of different neuronal networks.48  

Thalamocortical dysrythmia has been proposed to underlie other functional brain 

disorders.140,141 Theta and beta overactivation on the EEG, suggestive of thalamocortical 

dysrhythmia, was found in the  cortical “pain matrix” of patients with chronic neuropathic pain, and 



was attenuated together with the pain in 6 patients treated by central lateral thalamotomy.142 The 

anatomical correlates of thalamocortical dysrhythmia in migraine remain to be analysed further with 

modern neuroimaging methods. A functional MRI (fMRI) study in people with migraine revealed a 

lack of habituation of the BOLD (Box 2) signal during repetitive trigeminal nociceptive stimulation in 

areas of the pain matrix (anterior insula and middle cingulate gyrus).143 Interestingly, this difference 

with healthy controls was not found for olfactory stimuli, which the researchers attributed to the fact 

that olfaction is not relayed in the thalamus.  

Our research group has proposed that hypofunctioning serotoninergic projections to the 

thalamus and cortex might cause functional disconnection of the thalamus, leading to 

thalamocortical dysrhythmia and reduced cortical habituation.40 (Fig. 4) 

It has not yet been demonstrated whether the different synchronicity and deficient 

habituation characterizing neuronal responses to external stimuli in migraine play a role in the 

cortical predisposition to spreading depression, or any other phenomenon able to activate the 

trigeminovascular system and induce a migraine attack. It is also not proven (though it would 

intuitively seem possible) that the abnormal temporal processing of nociceptive information 

predisposes to migraine attacks, central sensitization and possibly chronic migraine. However, the 

fact that the interictal cortical hyperresponsivity to sensory stimuli in migraine can be alleviated by 

neurostimulation techniques55 (see below) and by preventive anti-migraine drugs,107 both of which 

also decrease attack frequency, is indirect evidence that the brain dysfunction between attacks 

may predispose patients to recurrent attacks. Considering that the cerebral energy reserve (ATP 

content) is significantly lower in migraineurs between attacks compared to healthy subjects80, it is 

tempting to speculate that the cortical hyperresponsivity may contribute to disrupt the brain’s 

metabolic homeostasis by enhancing energy demands and to start up the biochemical cascade 

that leads to the migraine attack.6 

 

H1: Prospects for clinical research  

The results of MRI studies suggest that migraine is associated with altered interictal 

functional connectivity in subcortical and cortical areas that are devoted to cognitive functions and 



pain processing.144,145 Connectivity was stronger between the periaqueductal grey and several 

brain areas associated with pain processing, such as the prefrontal cortex, anterior cingulate and 

amygdala, areas that are very similar to brain regions implicated in neurophysiological data on 

sequential cortical activation during painful stimuli.125,126,144,146 Diffusion-weighted MRI studies 

showed that microstructural alterations of white matter, and thus of functional connectivity, are 

present across the orbitofrontal cortex, insula, thalamus and dorsal midbrain.147 It was 

suggested147 that these alterations might reflect maladaptive plastic changes driven by 

dysfunctions in multimodal exogenous and endogenous task processing. In another fMRI study, 

thalamic sensitization correlated with widespread mechanical allodynia during the migraine 

attack.148 Moreover, in a diffusion tensor MRI study, our research group found dynamic ictal and 

interictal microstructural variations in the thalamus that were related to the time from or to the last 

migraine attack, and seemed to mimic the cyclic neurophysiological changes described above.149  

Collectively, these observations suggest that searching for optimal methods of influencing 

the cortical temporal processing of exogenous stimuli that can trigger a migraine attack, or of 

modulating endogenous trigeminal noxious inputs that lead to central sensitization and eventually 

chronic headache could result in novel interventions for migraine prevention. The modes of action 

of anticonvulsants or antidepressants, and of other pharmacological or non-pharmacological 

interventions such as neuromodulation methods, should be reconsidered in terms of their ability to 

normalize the complex abnormalities of brain connectivity and hyperresponsivity found in patients 

with migraine.150 For example, non-invasive cortical neuromodulation techniques such as rTMS 

and transcranial direct current stimulation (tDCS) have already been assessed in clinical trials. 

Several studies investigated the hypothesis that the cortex in patients with migraine patients is 

hyperexcitable between attacks. However, inhibitory low-frequency rTMS over the vertex had no 

superior therapeutic effect to sham stimulation,151 and cathodal (i.e.inhibitory) tDCS over the 

occipital cortex had no significant preventive effect, although the latter intervention did reduce 

attack intensity compared to placebo.152 By contrast, in a pilot trial designed to assess an 

alternative hypothesis — that the visual cortex is not hyperexcitable per se, but rather insufficiently 

activated at baseline (as described above)87 — anodal (facilitatory) tDCS over the occipital cortex 



significantly decreased attack frequency and intensity when used as preventive therapy in patients 

with migraine.150  

The challenge for future research, therefore, lies in identification of the precise anatomical 

structures and functional networks involved in migraine, and determining which pharmacological 

and non-pharmacological interventions can optimally modulate the function of these areas and 

thereby improve temporal information processing. Such investigations will involve simultaneous 

recordings of the above-reported phenomena by neurophysiological and functional neuroimaging 

techniques, along with the application of nonlinear algorithms to model brain complexity.153 Novel 

therapeutic interventions can then be tested for their capacity to normalize the anatomic and 

functional changes associated with migraine and its subtypes. 

 

H1: Conclusions  

Most data described here suggest that the cortical processing of non-noxious and noxious 

sensory stimuli is different between patients with migraine and healthy controls. The neuronal 

networks involved in sensory processing are characterized by different modalities of sequential 

recruitment under different environmental or endogenous conditions. The patterns of temporal 

activation have been analysed over a range of neuronal activities, from progressive changes of 

neuronal recruitment in the habituation or intensity dependence phenomena to facilitation of 

noxious stimuli summation, and complex patterns of variability, phase synchronization and 

causality that are adapted to describe the properties of a chaotic and nonlinear system. These 

intricate processes are different not only between patients with migraine and healthy individuals, 

but also vary according to the phases of the migraine cycle in the same patient.  

The mechanisms underpinning these complex changes are far from being understood and 

how they fit into the puzzle of migraine pathogenesis is still unclear. Owing to their complexity, 

however, it is unlikely that the brain dysfunctions can simply be explained by an imbalance 

between excitatory and inhibitory circuits.87 We propose that thalamocortical dysrhythmia may be 

the culprit for abnormal central processing of non-noxious and noxious sensory stimuli in migraine 

patients and that it might be itself caused by a genetically determined, inadequate control of the 



thalamus and cortex by monoaminergic (serotonergic) projections originating in the brain stem 

(Fig. 4).  We further postulate that the cortical hyperresponsivity to sensory stimuli may contribute 

causally to migraine attack repetition because it favours an excessive energy expenditure in a 

brain with a reduced energy reserve.  

In order to reduce discrepancies between studies, more attention should be paid to blinding 

of investigators, so that accurate clinical data and headache diaries can be collected before and 

during testing. In addition, prospective studies should be conducted to monitor patients’ clinical 

fluctuations throughout the migraine cycle. It will also be of utmost importance to gather more data 

on the (neurophysiological) phenotype–genotype correlations in patients with the various migraine 

types. Finally, improved insight into the nature of the interictal dysfunction of temporal information 

processing in individuals with migraine will, we hope, pave the way for novel therapeutic targets 

and could herald improved migraine management.  

 

Review criteria  

We initially searched the PubMed database to identify articles published up to June 2013. The 

search terms used were, “migraine”, “electroencephalography”, “EEG”, “evoked potentials”, 

“habituation”, “temporal summation”, “nociceptive withdrawal reflex”, and “blink reflex”, alone and in 

combination. The literature search was updated using the additional keywords “migraine”, 

“habituation” and “evoked potentials” to identify full-text papers written in English and published in 

peer-reviewed journals up to December 2013, using PubMed and Google Scholar databases. 

Reviews were considered only when they introduced new concepts or hypotheses. 
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Figure 1  

Temporal evolution in effective connectivity (causality-ordinate) as revealed by kernel Granger 

causality analysis of averaged EEG data from patients with migraine and healthy controls during a 

10-sec flash stimulation (abscissa) at a 21Hz frequency. In the alpha band (a), causal/effective 

connections across scalp derivations are reduced in migraine without aura compared to migraine 

with aura or healthy controls, while in the beta band (b) migraine with aura patients have increased 

causality across cortical areas. This phenomenon may be subtended by an increase of  cortical 

activation in migraine with aura during visual stimulation. 

  Data used to generate this Figure were obtained from de Tommaso et al.25  

 

Figure 2  

Schematic overview showing amplitude changes in the N20–P25 component of averaged EEG 

recordings in patients with migraine and healthy controls. a | HFOs and b | somatosensory evoked 

potentials. In healthy controls (panel 1), the N20–P25 component habituates, and early HFOs 



(reflecting thalamocortical drive) are greater than late HFOs (generated by intrinsic cortical 

activation). In patients with migraine between attacks (panel 2) habituation is absent and early 

HFOs are reduced, although late HFOs are normal. During a migraine attack (panel 3), habituation 

and early HFOs normalize. After 10Hz HF-rTMS is applied over the somatosensory cortex in 

patients with episodic migraine (panel 4), the interictal lack of habituation reverses and both early 

and late HFOs increase. Abbreviations: HFO, high frequency oscillation; HF-rTMS, high frequency 

repetitive transcranial magnetic stimulation. 

 

Figure 3  

Facilitation of the temporal summation threshold of the biceps femoris nociceptive withdrawal reflex 

is markedly more facilitated by glyceryltrinitrate administration (versus placebo) in patients with 

migraine than in healthy controls. Data for these graphs were obtained from Perrotta et al., 2011.119 

Abbreviations: NWR, nociceptive withdrawal reflex; TST, temporal summation threshold, GTN, 

glyceryltrinitrate; Plb, placebo.  

 

Figure 4 

The migraine headache (1) is due to activation of the trigeminovascular system (TVS), the major 

pain-signalling system in the brain. The migraine aura is caused by cortical spreading depression 

(CSD) that may or may not activate the trigeminovascular sytem. Genetic channelopathies (2) 

predispose to CSD in the rare Familial/Sporadic Hemiplegic forms of migraine (FHM). 

The challenge in migraine research is to determine what causes CSD, and what, besides CSD, 

can activate the TVS in the more common forms of migraine. Neurophysiological studies described 

in this review have contributed to disentangle some of the complex pathomechanisms in migraine. 

They have shown that interictal abnormalities of sensory processing might predispose the 

migrainous brain to an attack. Interictal thalamocortical dysrhythmia causes hyperresponsivity of 

sensory cortices (3) as well as abnormal pain processing (4). The thalamocortical dysrhythmia 

itself may be induced by decreased control from brain stem monoaminergic nuclei (5). Cortical 



hyperresponsivity combined with a decreased mitochondrial energy reserve favours metabolic 

strain and rupture of metabolic homeostasis(6). This may trigger CSD in the cortex and, via 

subcortical chemosensitive structures, TVS activation. There is evidence for upper brain stem 

activation during migraine attacks. Whether this is due to collateral projections from the trigeminal 

nociceptive pathway, to chemosensing of the metabolic dysequilibrium or to input from 

hypothalamus and limbic system remains to be determined. Activation of the monoaminergic nuclei 

may explain why cortical hyperresponsivity normalizes during an attack. The migraine attack is 

associated with sensitization of central nociceptive pathways (7) which can be detected by 

abnormalities of noxious evoked cortical and subcortical responses. The latter abnormalities 

amplify and persist in chronic migraine (8) where the neurophysiological pattern is that of a «never-

ending attack ».  

Common genetic variants set the « migraine threshold » by modulating a number of different 

physiological mechanisms: oxidative stress, neuroinflammation, neurotransmission, metabolism.. 

As described in the text, the neurophysiological abnormalities vary between patients, over the 

migraine cycle, under the influence of preventive anti-migraine medications and with migraine 

chronification. 

Dashed lines indicate connections for which there is little or no experimental evidence yet. 

 

   



Box 1 Neurophysiological findings associated with migraine  

Several abnormalities of sensory processing may be observed in patients with migraine: 

 

Interictal light-induced EEG changes  

 Stimulus-frequency dependent increase in photic drive 

 Alpha frequency synchronization and decrease in functional connectivity (in 

migraine without aura) 

 Beta frequency desynchronization and increase in functional connectivity (in 

migraine with aura) 

Interictal (& ictal) changes in non-noxious sensory evoked potentials 

 Trend for low amplitude averaged responses to small numbers of repeated stimuli 

 Deficient habituation during prolonged stimulus repetition (normalizes during attack) 

 Increased intensity dependence of auditory evoked potentials  

Interictal (& ictal) changes in noxious sensory evoked responses  

 Deficient habituation of cortical evoked responses (persists during attack) 

 Deficient habituation of nociceptive blink reflexes (normalizes during attack) 

 Facilitation of temporal summation of the biceps femoris flexion reflex  

Changes in chronic migraine 

 High amplitude averaged cortical responses to small numbers of repeated non-

noxious or noxious stimuli 

 Normal habituation of non noxious sensory evoked responses 

 Deficient habituation of noxious sensory evoked responses 

 

Box 2: Glossary  

Granger causality/Kernel Granger causality: operative definition of causality for 

linear/nonlinear systems 



Diffuse noxious inhibitory control (DNIC): pain inhibition by a heterotopic painful 

stimulation 

BOLD: blood oxygen level dependent  

AEP: auditory evoked potentials 

IDAP: intensity dependence of auditory evoked potentials 

VEP: visual evoked potentials  

SSVP: steady state visual evoked potential 

SSEP: somato-sensory evoked potential 

HFO: high frequency oscillations 

MOH: medication overuse headache 

NWR: nociceptive withdrawal reflex 

nBR: nociceptive blink reflex 

LEP: laser evoked potentials 

CHEP: contact heat evoked potentials 

rTMS: repetitive transcranial magnetic stimulation 

tDCS: transcranial direct current stimulation 
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