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An instantaneous spatiotemporal model to predict a
bicyclist’s Black Carbon exposure based on mobile noise
measurements.

Luc Dekonincky)

Dick Botteldooreny,

Information Technology, Acoustics Group, Ghent University
St-Pietersnieuwstraat 41, 9000 Ghent, Belgiumab

Luc Int Paniscq

Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium¢

Transportation Research Institute (IMOB), Hasselt University, Wetenschapspark 5 bus 6, 3590
Diepenbeek, Belgiumd

ABSTRACT

Several studies have shown that a significant amount of daily air pollution exposure, in particular
black carbon (BC), is inhaled during trips. Assessing this contribution to exposure remains difficult
because on the one hand local air pollution maps lack spatio-temporal resolution, at the other hand
direct measurement of particulate matter concentration remains expensive. This paper proposes to
use in-traffic noise measurements in combination with geographical and meteorological information
for predicting BC exposure during commuting trips. Mobile noise measurements are cheaper and
easier to perform than mobile air pollution measurements and can easily be used in participatory
sensing campaigns.

The uniqueness of the proposed model lies in the choice of noise indicators that goes beyond the
traditional overall A-weighted noise level used in previous work. Noise and BC exposures are both
related to the traffic intensity but also to traffic speed and traffic dynamics. Inspired by theoretical
knowledge on the emission of noise and B(, the low frequency engine related noise and the difference
between high frequency and low frequency noise that indicates the traffic speed, are introduced in the
model. In addition, it is shown that splitting BC in a local and a background component significantly
improves the model. The coefficients of the proposed model are extracted from 200 commuter bicycle
trips. The predicted average exposure over a single trip correlates with measurements with a Pearson
coefficient of 0.78 using only four parameters: the low frequency noise level, wind speed, the
difference between high and low frequency noise and a street canyon index expressing local air
pollution dispersion properties.

Highlights

e We performed combined black carbon and traffic noise measurements by bicycle.
e  After correcting for the black carbon background concentrations a successful model is build.
e Personal noise measurements can be used as a proxy for black carbon exposure for bicyclists.
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1.INTRODUCTION

Exposure to particulate matter is currently regulated in PM standards, that only distinguish between the
size of the particles (PM10, PM2.5, ...) and between the composition and thus origin of the particulate matter.
The soot fraction, Black Carbon (BC) is the part of the PM directly related to combustion processes. Recent
evidence, summarized by the world health organization (WHO), documents the relevance of BC for evaluating
traffic related health effects (WHO Europe, 2102). The first epidemiological results suggest health effects that
are up to 10 times higher than a similar evaluation based on PM10. Further research into health effects is
hampered by the difficulty to measure or model BC concentrations. An important reason for this is the
stronger spatial variability than for example PM10 variability. In addition, efforts are now made to
standardize BC measurements as a first step to including BC in the set of official air pollution standards. For
these reasons, this paper takes a closer look at an innovative way to predict a bicyclist's Black Carbon

exposure.

Large personal exposure measurement campaigns proof the relevance of the in-traffic exposure
contribution (Dons et al,, 2011, 2012). Technology for mobile air pollution measurements is however scarce
and expensive. On the one hand, cheap implementations do not meet quality requirements, at the other hand
high quality equipment is often highly demanding on the operator (e.g. changing filters or liquids, limited
portability). In contrast, mobile noise measurements can be done with low intrusive measurement equipment
like dosimeters and new mobile technologies. Mobile noise measurements are a popular theme in noise
exposure modeling (Eisenman et al,, 2009; Kanjo et al,, 2010, Maissonneuve et al,, 2009). Noise levels are
strongly related to traffic related air pollution levels and might be a good proxy to model personal air
pollution exposure (Dekoninck et al.,, 2012; Can et al., 2010, 2011; Eisenman et al. 2009, Foraster et al., 2011).
Since in-traffic personal air pollution exposure is a major component of the total personal diurnal exposure
and diurnal activity patterns are very divers within the population, epidemiology would benefit from
including exposure differences due to different activity patterns when investigating the health effects of air
pollution (von Klot et al,, 2011; Dons et al., 2012). The use of a proxy which is easy to monitor could result in

improved personal exposure estimates on larger population samples at a reasonable cost.

In this paper the focus is on the personal exposure of cyclists. Numerous efforts have been made to

quantify the exposure and health effects of cycling in dense traffic since the current trends in sustainable
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mobility focus on establishing modal shifts towards biking and walking (de Nazelle et al.,, 2011; Int Panis et
al, 2010; Berghmans et al., 2009; de Hartog et al.,, 2010). Exposure of cyclists is directly influenced by the
distance to the local traffic, strongly related to local traffic conditions (congestion, traffic lights etc) and highly
influenced by meteorological conditions. The strong effects of built-up areas on air pollution dispersion also
influence the exposure of cyclists. The local traffic and its properties is an important contributor to bicyclist’s
exposure. Since cyclists often travel along low-traffic-density roads however, there is in general no traffic data
available from either counting loops or traffic models. The most important exposure parameter is therefore
unknown in most studies. Local traffic on low density roads is also highly variable in both space and time. A
suitable traffic description should reflect these short-term effects with an adequate spatial and temporal
resolution. Mobile noise exposure therefore has the potential to become this key indicator to predict the local

component of traffic related air pollution exposure.

Based on theoretical aspects of traffic dynamics, the relationship between noise and particulate matter
emission and the potential to extract one from the other have been discussed earlier (Dekoninck et al. 2012).
The focus there was on the selection of noise descriptors correlating best with vehicular particulate matter
emissions for typical traffic dynamics. However, noise exposure close to the source is not strongly influenced
by the meteorological condition while air pollution is strongly affected by the meteorological conditions. This
is one of the reasons why the average of repeated noise exposure measurements will converge faster
compared to repeated air pollution exposure measurements. So, if mobile noise measurements are proven to
be a valid proxy for air pollution exposure, fewer measurements will be needed to predict the personal

exposure at a higher spatial and temporal resolution.

To establish an instantaneous relationship between noise exposure and air pollution exposure
meteorological conditions have to be taken into account. A major concern is the influence of long term
meteorology and long distance air pollution transport on the background concentrations influencing the
actual personal exposure. In this paper two major research questions are addressed: (1) is a prediction model
for BC exposure improved by separating out long term variations in the background concentration; (2) can
the instantaneous local Black Carbon exposure be predicted based on instantaneous local noise exposure and
meteorological conditions. For the latter, the question how to derive the local traffic dynamics that influence

the instantaneous Black Carbon exposure from noise measurements, is addressed. Section 2 will address the
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methodology including the definition of the models and the noise exposure parameters. Section 3 gives the

results of the models and the model validations. Results are discussed in section 4.

2.Methodology

2.1 Measurement equipment and setup

The experimental setup contains a basic GPS (in a HTC Desire smart phone), a Type 1 Noise Level Meter
(Svantek 959) and a micro-aethalometer (Model AE51 MageeScientific, 2009) to measure Black Carbon. The
measurements were performed while commuting by bicycle from the villages to the west of Ghent (Belgium)
into the city center, thus covering the sparsely build areas in the villages, the city center, open recreational
areas and natural reserves in between. A total of 209 biking trips were performed, covering a distance of
2300 kilometer, a total measurement time of 128 hours at an average speed of 18 km per hour. More than 75

km of distinct roads were sampled at least 3 times.

The details of the measurement setup, temporal resolution, preprocessing, meteorological data and the
spatial mapping on aggregation points px along the network with a spatial resolution of 50 m are available in
the supplementary data. In this instantaneous model only one spatial attribute, the street canyon index
StCan, at aggregation point px is included, identifying ‘street canyon likeliness’ of the built-up area along the

trip trajectories. More detail on the calculation of StCan,, is available in the supplementary data.

2.2 Black carbon, background and local contribution

The BC exposure during a cycling trip consists of a contribution of local sources and a background
contribution. The latter varies only little over a large area and can thus easily be obtained from a well-located
fixed measurement station. The background contribution strongly depends on long-term meteorological
conditions. The proposed model assumes that the dominant source of BC in the vicinity of the cyclist is the
local traffic on the travelled road. An additive approach is used; the BC exposure is viewed as the sum of the
background level BC;,, during trip j and the “local” contribution BCp.. Similar procedures are used in
exposure estimations where regional and local scale models are added to estimate personal exposure (Isakov
et al, 2009). The available background measurements are averaged concentrations over half an hour (see

supplementary data). Subtracting a fixed measurement with a temporal resolution of a half hour with mobile
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BC measurements sampled at 1 second time interval is not trivial. When sampling air pollution at a shorter
time interval, concentrations below the “background” concentrations can be measured at some of the low
traffic locations. Correcting for the background concentration could then result in negative local
concentrations. The proposed models will use a logarithm of BC as an outcome variable because noise is also
measured on a logarithmic scale and hence negative values cannot be allowed. For this reason the
background concentration is not removed completely but replaced by a typical but constant low background
concentration. The choice of this constant is not very critical since it will be added again to the model
outcome and constants do not affect the model. This approach enables the dataset to retain spatial variation
also for low density roads. Nevertheless a physical reference to the ambient concentration is useful, therefore
the long term first quartile concentration over the whole measurement period is chosen, the resulting
background BC concentration Q1(BCyg,;;) is equal to 775 ng/m3. The relation between the measured BCraw
and the local contribution BCj, for a location i and during a trip j, can be written as:
BCraw,i,j = BCioc,ijj + (BChgj — Q1(BChgi)) (1)

Where BCyg; is the background concentration obtained from the continuous measuring station averaged

over the whole duration of the trip j. At each aggregation points px on the network, the arithmetic average of

all n measurements of trip j in this collection is calculated as:

1
BCloc,px,j = ;Zepr_j BCloc,i,j (2)

2.3 Noise parameters and physical interpretation

Details of noise parameter calculations are available in the supplementary data. For an even more detailed
description of the theoretical and empirical relations of the noise parameters with the BC exposure the reader
is referred to Dekoninck et al, 2012. The main arguments for selecting particular noise indicators to be
included in the model, based on their physical and technical interpretations, are briefly reminded to the
reader. Three noise parameters were included in the instantaneous modeling. The harmonized calculation
method used for noise map calculations for the European Union (END Directive) separates the noise emission
into an engine contribution and a rolling noise contribution. Engine noise is dominant in the low frequencies;
rolling noise is dominant in the high frequencies at higher speeds. The two first parameters are directly
related to these emission features. The first parameter Lo, r . ; (100 - 200 Hz) describes the engine noise of

the nearby traffic at point px for trip j. High throttle increases the engine noise. Lz, .; (1000 - 2000 Hz) is
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related to the rolling noise. The second parameter Lypmirp,,;is the difference between high and low
frequencies in the noise spectrum at point px for trip j. High levels of Lyppr,,, ; indicate a relative stronger
contribution of high frequencies, compared to low frequencies, indicating more rolling noise than engine

noise due to the nearby traffic, hence traffic at higher speed. The third parameter (Lsoq — Lamin )p,,j referred

to as the short term dynamics of the noise at point py for trip j, indicates the presence of noise events. If noise
levels Laeq,100 ms within a single second change rapidly, the passing vehicles can individually be detected in the

noise measurements. If (Lyeq — Lamin )p,,j 1S low, noise levels are constant, indicating constant flow traffic

with many sources in the vicinity.

2.4 GAM modeling

Generalized additive models (GAMs) are regression models where smoothing splines are used instead of
linear coefficients for the covariates. This approach has been found to be particularly effective for handling
the complex non-linearity associated with air pollution research (Dominici et al., 2002, Pearce et al,, 2011).

The additive model in the context of spatial exposure modeling can be written in the form:

log(BCpx,j) = Z?:lsz (vz,px,j) + Ex.j (3)

Where v, is the zth covariate evaluated for trip j at location px; s.(Vspx;) is the smooth function of zth
covariate, n is the total number of covariates, and &; is the corresponding residual with var(ex;) = o2, which is
assumed normally distributed. Smooth functions are developed through a combination of model selection
and automatic smoothing parameter selection using penalized regression splines, which optimize the fit and
try to minimize the number of dimensions in the model. The main advantage of GAM modeling is the
possibility to adjust for non-linear relationships between the covariate and the outcome. The analysis was
constructed using the GAM modeling function in the R environment for statistical computing (R development

Core Team, 2009) with the package ‘mgcv’ (Wood, 2006).

Two modeling approaches will be discussed. The first option is to model the measurements on the basic
aggregation level: one value for each parameter for each trip at each aggregation point px. This dataset
contains about 37.700 records and will be referred to as the basic dataset (BDS). The second approach starts
the modeling after aggregating the BDS to a dataset averaging the BC exposure for the classified parameters

included in the aggregation models. Each of the retained parameters is classified according a set of predefined
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percentile classes (see supplementary data). For each of these two approaches the models will be evaluated
for both the raw BC result (BCraw) as for the local contribution BCjc to assess the relevance of handling

background concentrations separately.

3.Results

In this section, the following terminology will be used to refer to the different models that will be

compared:

e  BCpg model: this model simply assumes that exposure during cycling trips equals concentrations
measured at a regional background measurement station.

e BCrw model: uses GAM to obtain BC directly from noise, weather, and geometrical data.

e  BCj,c model: uses GAM to obtain BCj,c and adds measured BCyg to obtain the overall concentration
as shown in Egs. (1).

o Aggregated BC.w and BCi,c models: same as above but with predictive variables categorized in

percentile classes.

3.1 BCloc and BCraw mOdEI

The BCjoc model is based on the BDS dataset and includes the three noise parameters, wind speed WSuip,
temperature Temprip and street canyon index StCan,, . The parameters of the GAM models are shown in Table
1. The quality of a GAM model and the relative strength of its parameters are described by the devience
explained, the intercept, the F and p-value for each of its covariates. Since the number of data points in the
models is large compared to the number of covariates, the degrees of freedom is large and the p-values are in
general too small to be used to compare the covariates. The F-parameters present the relative strength of the
covariates instead. In the BCioc model the intercept and the Ly,r . j have a similar strength; the wind speed is
about half the strength of Loz, ;- The plots of the splines created by the GAM modeling show the relation of
the parameter to the outcome log(BCio) (Figure 1). In the BCioc model the Ly, ; is the strongest component
and has a linear relation with log(BCioc). Lyrmirp,,; Saturates for higher levels. Log(BCi.c) decreases for high
wind speeds. The street canyon effect is visible as a steady increase of the exposure with a higher street

canyon index StCan, . The temperature is not very important, the steep upward trend is based on only a few
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204 values of (Lyeq — Lamin )p,,j indicating episodes with almost constant noise levels result in higher BC
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207 Figure 1: Splines of the six covariates of the BCi,c GAM model, ordered by strength within the model
208 (top-left to bottom-right).
209 The BCraw model shows a slightly higher deviance explained than the BCi,c model (Table 1). The BCraw

210 model also has a higher intercept. Wind speed is the strongest component. The low frequency noise level Lo.r

211 and temperature have a similar strength.

212

213 Table 1: Comparing the results of the BCj,c and BCaw models, F-value and p-value.
214

215 3.2 Aggregated BCioc and BCraw models

216 The aggregated models are built including respectively 3, 4 and 5 parameters. The temperature is not
217 included since it proved to be of little relevance in the BCj,c model. In Table 2 the results of the aggregated
218 models are assembled, including the number of unique combinations of the classified parameters. Again

219 similar changes between the BCraw,xp and BCiocxp models can be detected (were X is the number of aggregation
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parameters). In Figure 2 the splines of the five parameter model BCio5p are shown. The deviance explained is
higher and the splines are smoother compared to the BCj,c model due to the aggregation process. In the 3
parameter model Loir the only acoustic parameter describing the source has the strongest importance in the
model, but as other traffic descriptors, Lupmir and (Laeq-Lamin) are added, wind speed becomes the most
important covariate.

Table 2: Comparing the results of the aggregated models.

10

LoLF trip 1, px Wi StCang, L HFmLF trip . (LaeqLaminkre j, px

= 3
[y e
— o
So
=
w [

; L
T ‘ T T T T T T T
4 45 50 55 1 2 3 4 5 8 00 02 04 08 08 10 5 10 15 20 2 4 6 8
OLF (dBA) wind speed (mis) StCan Index (%) HFmLF (dBA) LAeg-LAMIN (dBA)

5
05
5
5
5

siWind Speed)
on
Il Il
/
s(StCan)
on
I i
stHMmLF)
on
L
i
H
hi
1
\
1
s(Ldeqmin)
0p

-0.5

o
0
-1.0
o

Figure 2: Splines of the five covariates of the GAM BCj,.5, model.

3.3 Comparing the fit of the models

The BC exposure during individual trips is reconstructed based on the models presented above. The
results for the BCyg, BCioc and BCraw models are shown in Figure 3. The second row shows the results of the
BCioc model, and the third row the results of the BC..w model. Each point in de charts represents a single trip.
The x-axis shows the measured BC exposure, the y-axis the model outcome. The first column shows the total
trip exposure (as ng/m3 * seconds), the second column the average exposure over the trip. Both are relevant,
but the correlation in the first column is strongly influenced by the duration of the trip. The predictive quality
of the models is best determined by the ability to predict the trip averaged exposure. In each of these charts,
the diagonal (red) and the linear fit (green) on the results are shown and the correlation and the spearman’s
correlation between model and measurement are given. The properties (intercept and slope) of the linear fit
are shown to evaluate the model fits. The third column shows the distribution of the relative prediction: total
model BC divided by total measured BC, presenting the under- and overshoots of the trip total exposure

prediction which is identical for the total and averaged evaluation.
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244 Figure 3: Evaluation of the model fit of the BCpg, BCioc and BC;aw models. Each point in de charts

245 represents a single trip. The first row shows the results of the BC,; model, the second row the results
246 of the BCjo,c model, the third row the results of the BC;.w model.
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Figure 4: Evaluation of the model fit of the aggregated BC;, models for 3, 4 and 5 parameters.

A similar procedure is performed for the aggregated models. For each passage at an aggregation point the
corresponding classification is used to estimate BC exposure. Summing all results over the full trajectory
reconstructs the total trip exposure. In Figure 4 the fitting properties of the reconstructed trips of the BCiocxp
models are shown for the three aggregated models on BCi,.. The aggregated BCr.w model evaluations are not

shown.

3.4 Comparing the predictive strength of the models

The predictive strength of the models is checked by building variants of the models based on a random
subset of 75% of the available trips and then predicting the remaining trips. This procedure is repeated 50

times. For each trip, a set of approximately 13 predictions for different model variants are thus available. The
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average BC trip exposure is calculated for the trips used to build the model (referred to as ‘fitted trips’) and
predicted for the trips left out of the model (referred to as ‘predicted trips’). The Pearson correlation of the
fitted trips versus the measurements and the predicted tips versus the measurements are calculated for each
model variant. The distributions of the correlations of the fitted trips of the model variants and the
distributions of correlations of predicted trips out of the model variants are shown by model type in Figure 5.
The mean correlations of the total exposure of the fitted trips for the models (as ordered in Figure 5) are
0.90, 0.86, 0.88, 0.89 and 0.89, the mean correlations of the total exposure of the predicted trips are 0.88,
0.84, 0.89, 0.90 and 0.90. The mean correlations of the averaged exposure of the fitted trips for the models are
0.78,0.71, 0.75, 0.77 and 0.77; the mean correlations of the averaged exposure of the predicted trips are 0.75,
0.67, 0.75, 0.78 and 0.74. Models BCioc, BCioc4p and BCiocsp have similar distributions for both the fitted trips
and the predicted trips. The predicted trips show wider distributions compared to the fitted trips. BCraw and
BCioc,3p perform significantly lower than BCioe, BCioc4p and BCigesp. The correlation of the predicted trips of
BCraw model is extremely sensitive to the trip selection. Figure 5C shows the relation between the correlations
of the fitted and predicted trips for the individual model variants. Correlations of the predicted trips are not
necessarily lower than the fitted trips. The correlation of the predictions can be higher than the correlation of

the fitted trips, especially for the BCjoc and BCiocxp models (Figure 5C).
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Figure 5: Distributions of the model variants correlation of the fitted trips (A), distributions of the
model variants correlation of the predicted trips (B) and the relations between the correlation of the
fitted trips and the correlation of the predicted trips for the individual model variants (C).

For each set of predictions of a single trip obtained from a model variant, the average prediction and the
standard deviation of the trip predictions is calculated. The relative prediction (average of the total trip
predictions divided by the total measured for trip j) and the standard deviation of the trip j predictions

divided by the trip j total exposure are used to compare the predictive strength and sensitivity of the model
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variants to the random sampling strategy. The results are shown in two charts in Figure 6. The BCj,c model is
slightly underestimating the exposure, BCraw and BCio3p are overestimating, the BCjoc4p and BCioc,5p models are
centered around 1.0. The interquartile range of the distribution of the relative trip predictions for the BCioc
model is 0.38, the ranges are slightly larger for the BCioc4p and BCioc5p models, respectively 0.47 and 0.43. The
interquartile range of the BCioc model is 3.1, the BCraw model performs with 5.8 much worse. The best IQR is
found for the BCiosp model with 1.8. All aggregated models perform better than the BCi,c model for the

distribution of the standard deviation of the trip predictions.
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Figure 6: Distribution of the average of the relative trip predictions (A) and the distribution of the
standard deviations of the trip prediction relative to the trip total measured BC (B), presented by
model.

4.DISCUSSION

The first research question investigates whether a prediction model for BC exposure could be improved
by separating out long term variations in the background concentration; the second research question the
whether the instantaneous local Black Carbon exposure could be predicted on the basis of local noise
exposure and meteorological conditions. The first research question is addressed by comparing BCyg BCioc
and BCr.w models. The second research question is addressed by evaluating the features of BCioe, BCioc3p,

BCioc,4p, BCioc,5p models.

The BCyz model accounts on average for 30-40% of the total trip exposure only, but the slope in the
relation between modeled and measured exposure is as large as 0.36 (Figure 3). High average trip exposure is
partially related to higher background concentrations. Although the BC..w model on average results in a good
estimate of the average exposure during cycling trips, the trend line connecting prediction to measurement

(Figure 3) slopes at 0.25. The strong influence of wind speed and temperature indicates that this model
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mainly tries to resolve the temporal variations in the background contributions and fails to include indicators
for local exposure. Integrating the GAM model for BCj,c with measured BCpg combines best of both worlds:
temporal variability of the BCypg with spatial variability of the BCi,c model and results in a slope between

modeled and measured average trip exposure of 0.53.

A similar conclusion can be drawn when evaluating the predictive power of the models in Section 3.4. The
wide distribution of the correlations of the predicted trips in the model variants of the BC;.w model (Figure
5B) and the high relative standard deviation of the individual trip prediction (Figure 6B) illustrate the
sensitivity of the BC.w model to the trip selection. All variants of the BCj,c model perform significantly better.
The BCi,c model is lightly sensitive to over fitting for the low exposure values, which reflects in the

underestimation of the relative trip prediction (Figure 6A).

As it is now established that the BCj,c models outperform models that aim at predicting the whole
exposure at once, let us now look in detail at the choice of predictive variables for these models. In the BCioc
model Ly, ; is the strongest component and wind speed the second strongest. The negligible importance of
temperature in the model can be explained as follows. Temperature is expected to affect emission and is an
indicator for meteorological conditions that influence dispersion. The background concentration indeed
shows a distinctive seasonal pattern and temperature is related to season (see supplementary data 1.9 figure
S3). BCyg seems to include the temperature dependence sufficiently thereby reducing the relevance of
temperature in the BCj,c model. Wind speed has a similar relationship with background concentration as
temperature (supplementary data 1.9 figure S4). The strength of the wind speed covariate is therefore also
reduced in the BCj,c compared to its strength in the BC;.w model but in contrast to the temperature, it is still
highly relevant. This is explained by the observation that wind speed not only influences background
concentrations but also instantaneous dispersion of the local emissions. Higher wind speeds reduce the local
exposure of cyclists. StCAN and Lurmir are also stronger in the BCj,c model compared to the BCr.w model
probably because major confounders are eliminated by treating BCyg separately. The BCi,c model becomes
more sensitive to spatially varying variables such as vehicle speed and local air pollution accumulation effect.
The latter effects and its dependence on street canyon geometry (measured here as StCAN) is confirmed by
physical calculations of street canyon accumulation, validated with measurements such as the one presented

by Berkowicz et al (2008).
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High-degree-of-freedom models such as the GAM model risk to over fit the data that they are based on and
while losing the ability to generalize to other situations. This can be prevented by reducing the number of
input variables (covariates) and -in the particular case of GAM models - also by reducing the number of
values that the variable can take. Classification of the covariates indeed reduces the degrees of freedom
(Table 2) in the model. Because of the change in number of data points, the goodness-of-fit parameters and
the strength of the covariates in the models cannot be compared directly, the quality of the models is
determined by evaluating the properties of the predictions. In addition, a lower number of variables reduces

the complexity of the model and simplifies implementation.

Turning to the model prediction evaluation shown in Figure 5 and Figure 6, it is clear that the BCiocg3p
model performs worse than the BCi,c model in predicting the average exposure. This is not unexpected as the
information used in the prediction is significantly reduced. The reduction in number of covariates and the
clustering of values is expected to make the model less sensitive to trip sampling in the model variants and to
make it should perform better on the independent test data. For BCi.cg3p the aggregation is to strong to
observe this positive effect. The BCiocgsp and BCiocgsp models slightly outperform the BCi,c model when
evaluated for correlation between model and measurement on the data not used for fitting (Figure 5B). The
distribution of relative trip predictions (Figure 6A) is wider for the BCiocgsp and BCiocgsp models compared to
the BCioc model, but the distributions are centered around 1. The relative standard deviation of the individual
trip prediction (Figure 6B) is slightly better. The BCiocgsp outperforms the BCj,c model despite the fact that it
only reduces the number of data points from 37722 to 8832. The aggregation process removes the lowest

values in the basic dataset, resulting in a better prediction of the total trip BC exposure.

It is more difficult to distinguish between the BCiocgsp and BCiocgsp models. The only relevant difference is
the reduction of the intercept in the BCiocgsp model. The short term dynamics (Laeq-Lamin) covariate - the
variable differentiating BCiocgsp from BCiocgap — distinguishes between two different traffic conditions: low
values can be linked to situations of congested traffic, many cars with constant noise emission (idling) result
in constant noise levels; high values indicate short distinct events, typically a single car passing by at a
relatively high speed. This last traffic situation is however rare during the rush hour and is under represented

in our (rush hour only) database. When similar measurements would be performed outside the rush hour,
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this covariate might prove more relevant. With the available measurements it cannot conclude that the

BCioc,sp model is better than BCjgc4p model.

In general, the simplification of the model improves its quality as long as the 4 or 5 most significant
parameters are kept. The models suggested in this paper perform well mainly due to the unique choice of
noise indicators that are directly related to relevant traffic dynamics. The Lo.r covariate detects traffic volume
including acceleration both linked to higher particulate emissions. Lurmir indicates the traffic speed;
emissions increase with speed at low speeds, but saturate at higher speeds because constant high speed
result in more efficient combustion processes and lower particulate emissions. Similar relationships were
reported for nanoparticles in Uhrner et al., 2011 and for gaseous emissions in De Vlieger et al., 2000. This also
explains why models based on Laeq are less successful: Laeq is related to human loudness perception and does
allow distinguishing situations with different traffic dynamics (Boogaard et al., 2008). Ross et al., 2011 relates
a spectral noise evaluation to air pollution on a fixed monitoring station. Although these measurements are
not directly comparable with the measurements in this paper, the same frequency bands are found to be

relevant.

5.CONCLUSIONS

This paper proves that it is possible to predict instantaneous BC concentrations based on mobile noise
measurements. The in-traffic exposure to Black Carbon of bicyclists is determined by background
concentration, distance to source, local traffic density and speed, local traffic dynamics, local street geometry,
and meteorological conditions. Spectral evaluation of (mobile) noise measurements can be used to implicitly
detect local traffic conditions directly related to the local BC emission. Predicting personal BC exposure of
cyclists proved only successful after splitting the model into a background contribution and a local
component. In particular, it was shown that the spatial variability due to the local traffic contribution can be
modeled using four parameters: the low frequency noise Lo.r related to the traffic volume and engine throttle,
the difference between high and low frequencies Lurmir related to the traffic speed, the instantaneous wind
speed and the street canyon index both related to the local accumulation of the BC. The overall trip exposure
is predicted by the four categorized parameters GAM model, BCjocgap, With a correlation of 0.90. The average

trip exposure is predicted with a correlation of 0.78.
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The structure of the model presented in this paper can be expected to be valid for different areas in the
world since parameters are chosen with a physical background in mind and because the model has been well
validated. Since fleet composition and driving behavior might differ between different parts of the world, it is
suggested that each mobile noise measurement campaign is accompanied with a partial BC sampling to re-
establish the model coefficients. The measurement underlying the specific model presented here, are
performed in a typical (European) environment, a medium size city including suburbs and green areas,
representative for the living environment of the majority of the population in Europe. The exact same model

including model coefficients is expected to be applicable in any city sufficiently similar to this situation.

Mobile noise measurements on bicycles have the potential to provide the spatial detail and high temporal
resolution that is necessary to predict the urban exposure to black carbon, including the local effects of route
choice. Mobile noise measurements therefore have the power to replace large scale in-traffic personal air
pollution exposure measurements and can be performed on larger populations at a significantly lower cost
than traditional participatory sampling techniques. In this way the results obtained in this study could be
useful for raising public awareness, changing personal behavior by selecting low exposure routes and to

perform large scale epidemiological research on the impact of personal BC exposure on health.
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