

Pyridine hydrodenitrogenation over an industrial NiMo/γ-Al₂O₃ catalyst Application of gas phase models to liquid phase reactions

<u>Chetan S. Raghuveera,</u>, Ruben De Bruyckera, Joris W. Thybauta, Leslie W Bolton^b and Guy B. Marin^a

^a Laboratory for Chemical Technology, Ghent University, Belgium ^b BP plc, Sunbury, UK

Molecular Aspects of Catalysis by Sulfides , Satillieu, France 2013, May 12-16

MACS VI, Satillieu, France 2013, May 12-16

introduction and motivation

Bridging the gap between laboratory and industrial reactors

2

MACS VI, Satillieu, France 2013, May 12-16

methodology

Extended set of gas phase experimentation

Limited liquid phase experimentation

Three phase industrial reactor simulation

- Operating conditions
- Reaction pathway
- Detailed kinetics
- Model construction
- Evaluation estimated parameters

- Liquid phase conditions on
- Formation of new compounds
- Solvent adsorption
- Assessment of liquid phase non ideality

Validation of data available from industrial / Pilot plant studies

Berty Reactor

Robinson Mahoney Reactor

outline

- Gas versus liquid phase experiments
 - network elucidation and difference in experimental programmes
- Liquid phase experimental results
- Thermodynamic non ideality in liquid phase
- Gas phase model and subsequent extension
- Liquid phase model
- Conclusions

gas and liquid phase experiments

- ✓ Challenges in extension
 - \checkmark Differing denitrogenation kinetics in gas and liquid phase
 - \checkmark Accounting for additional response in the model

- 1-pentylpiperidine observed in the liquid phase experiments only
 - ✓ observed with 2D GC MS analysis
 - due to the varying operating conditions and higher bimolecular reactions
- Highly reactive/unstable intermediates not observed during analysis

comparison gas and liquid phase

Program	Gas Phase ^a	Liquid Phase ^b		
Reactor type	Berty type	Robinson		
	(CSTR)	Mahoney (CSTR)		
Temperature range (K)	573 – 633	543 – 613		
Pressure (MPa)	1.5 – 4.0	6.0 - 8.0		
H ₂ /pyridine (mol/mol)	80 – 600	10 – 15		
Space time (kg _{cat} .s/mmol)	0.36 – 1.8	0.65 – 3		
Solvent/pyridine (mol/mol)	40	20 - 40		
Solvent	n-hexane	Halpasol©		

✓ Halpasol[©] : Mixture of C9-C14 paraffins

✓ Catalyst

- ✓ NiMoP/Al₂O₃
- ✓ Gas and liquid phase experiments
- ✓ PROCATALYSE
- ✓ Literature insights
 - ✓ Temperature dependent
 - ✓ H₂S has a promoting effect on the C-N bond scission reaction

^a R. Pille, G. Froment, Hydrotreatment and Hydrocracking of Oil Fractions 106 (1997) 403-413. ^B This work

 $\ensuremath{\mathbb{C}}$: Haltermann products Gmbh

Liquid Phase Experimental results

Operating conditions : 6.0 MPa, Spacetime : 790 kg_{cat}.s/mol H₂/pyridine : 10 (mol/mol) H₂S/pyridine : 0.04 (mol/mol)

✓ Assessment of Influence of temperature on HDN conversion ??

т	Р	W/Fp°	H ₂ S/P	х		Selectivity	
					C5	PP	Pentyl PP
(K)	(MPa)	(kg.s/mol)	(-)	(-)	(-)	(-)	(-)
573	6.0	1129	0.04	0.64	0.34	0.44	0.22
583	6.0	790	0.04	0.65	0.45	0.35	0.20

MACS VI, Satillieu, France 2013, May 12-16

Liquid Phase Experimental results

operating conditions : 6.0 MPa, spacetime : 439 kg_{cat}.s/mol, H₂/pyridine : 10 (mol/mol)

- \checkmark H₂S has positive effect on the C-N bond scission
 - ✓ Higher hydrocarbon yield at higher H_2S /pyridine
 - ✓ Lower intermediate piperidine yield
- ✓ Substitution pathway is more pronounced at higher H₂S partial pressures

o=oFluid phase

Thermodynamic non-ideality and effect of aggregation state

- ✓ Non ideality in liquid phase $f_i^v = f_i^l$ i = 1, ..., n
- ✓ Effect of aggregation state (gas / liquid phase)
 - Description of kinetics, independent of phase in which reaction occurs
 - ✓ Difference between vapour and liquid phase kinetics is situated in the chemisorption step

$$A + * \leftrightarrow A - * \qquad K_{A,\tau} = \frac{\theta_{A-*}}{f_A \theta_*}$$

$$f_i = \varphi_i \cdot P y_i = \varphi_k C_i V_m P \qquad \varphi_i = \frac{f_{i,G}}{P y_i}$$

gas phase model

✓ Development of gas phase model

- Model assumptions based on previous literature insights^a
- ✓ Two site model related to CUS^b and SA^b sites
- Model discrimination performed between 48 rival models
- $\checkmark \text{ RDS} : 3^{\text{rd}} \text{ hydrogen addition and ring opening}$ $R_{P \to PP} = k_{p,+} K_{P-PH2} K_{H2} K_P C_*^2 \sqrt{\delta \mu} \left(P_{H_2} P_{C_5 H_5 N} \frac{1}{K_{Equi}} \frac{P_{C_5 H_{10} N H}}{P_{H2}^2} \right)$

$$R_{PP \to PA} = k_{PP} K_{PP-PPH} K_{PP} \mu P_{C_5 H_{10} NH} C_*^2$$

$$\delta = 1 + K_P P_{C_5 H_5 N} + K_{PP} P_{C_5 H_{10} NH} + K_{NH_3} P_{NH_3}$$

$$\mu = K_{H_2} P_{H_2} + K_{H_2 S} P_{H_2 S} \qquad C_* = C_{*,tot} / \left(\delta + \mu \frac{C_{S^{2-}}}{C_{S^{2-}H^+}}\right)$$

^bC.M.C. Romero, J.W. Thybaut, G.B. Marin, Catalysis Today 130 (2008) 231-242.

^b CUS : Coordinatively unsaturated sites, SA : Sulphur anion sites

Extension of gas phase model

the non ideality

site balances

$$\begin{aligned} r_{P \to PP} &= k_{p,+} K_{P-PH2} K_{H2} K_P C_*^2 \sqrt{\delta \mu} \left(f_{H_2} f_{C_5 H_5 N} - \frac{1}{K_{Equi}} \frac{f_{C_5 H_{10} N H}}{f_{H_2}^2} \right) \\ r_{PP \to PA} &= k_{PP} K_{PP-PPH} K_{PP} \mu f_{C_5 H_{10} N H} C_*^2 \\ \delta &= 1 + K_P f_{C_5 H_5 N} + K_{PP} f_{C_5 H_{10} N H} + K_{NH_3} f_{NH_3} \\ &+ K_{solvent} f_{solvent} + K_{PentylPP} f_{PentylPP} \\ \mu &= K_{H_2 S} f_{H_2 S} + K_{H_2} f_{H_2} \end{aligned}$$

- ✓ Accounting for additional response,
 - ✓ Two possible reaction networks
 - 1. 2 Piperidine \rightarrow 1-Pentylpiperidine
 - 2. Piperidine + Pentylamine \rightarrow 1-Pentylpiperidine

Extension of gas phase model

Pentyl amine denitrogenation Condensation of PP and PA

$$r_{PA\to C5} = k_{PA} K_{PA-PAH} K_{PA} \mu f_{C_5H_{11}NH_2} C_*^2$$
$$r_{PA+PP\to PentylPP} = k_{PA+PP} K_{PP} K_{PA} \sqrt{\frac{\mu}{\delta}} f_{C_5H_{10}NH} f_{C_5H_{11}NH_2} C_*^2$$

Dealkylation of PPP

 $r_{PentylPP \rightarrow PP+C5} = k_{PentylPP} K_{PentylPP} K_{PentylPP} \mu f_{PentylPP} C_*^2$

Results : Liquid phase model

^a J.A. Dumesic et al The Microkinetics of heterogenous catalysis, 1993

Results

Pressure = 6.0 MPa, Space time = 790 kg s / mol, H_2 /pyridine = 10, H_2 S/pyridine = 0.04, Solvent/pyridine = 40;

Operating conditions: total pressure = 6.0MPa, space time = 439 kg s / mol, H2/pyridine = 10, H₂S/P = 0.04, Solvent/pyridine = 40

Pressure = 6.0 MPa, Temperature = 573K, Spacetime = 564 kg.s/mol, H_2 S/pyridine = 0.04; Solvent/pyridine = 40

Temperature = 573.15K, space time = 1400 kg_{cat} .s /mol, H₂/Pyridine = 620 and H₂S/Pyridine = 15, solvent/pyridine = 40

Conclusions

- Reconciliation of data at two different reaction conditions
- Effects of aggregation states (G-S / L-S) on kinetics
- Successful extension of gas phase kinetics to liquid phase reactions
 - By taking thermodynamic non ideality in liquid phase
 - Additional compound formed at liquid phase conditions

 A robust model that performed well in three phase and gas phase conditions

Acknowledgements

 The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 238013.

 Dr. Haitao Huang, Dr. Steven Mitchell and Dr. John Shabaker for sharing their technical knowhow and scientific advice during the course of this work.

Discussions

Thank you for your attention

- Also called active centre. Those sites for adsorption which are the effective sites for a particular heterogeneous, catalytic reaction.
- Aggregation State : A physically distinctive form of a substance, such as solid, liquid and gaseous state.
- Fugacity : Thermodynamic activity in a non ideal phase with the ideal gas state as the reference state
- Heterolytic dissociation : Breaking a chemical bond to produce two oppositely charged fragments, e.g. H₂ into H⁺ and H⁻.

model assumptions

- Two sites located at the edges of the sulphided NiMo are considered.
- Hydrogenation proceeds via successive hydrogen additions either from coordinatively unsaturated sites (CUS) or from sulphur anions (SA).
- Chemisorption of hydrocarbon/nitrogen species can only occur on the coordinatively unsaturated sites due to the electronic nature of this interaction^{a,b}
- No interconversion of active sites is considered because sulphydril on a CUS is electronically different from a hydrogen atom or proton on a SA

Jeppe V. Lauritsen et al, Journal of Catalysis Volume 249, Issue 2 2007 220 - 233

Thermodynamic non-ideality in the liquid phase

✓ Chemical potential : Independent of standard state used $\mu_i = \mu_{i \, standard} + RT \ln a_i$

 $\mu_i^{v} = \mu_i^l$ i = 1, ..., n

✓ Condition for phase equilibrium

$$f_i^{\nu} = f_i^l \qquad i = 1, \dots, n$$

✓ Basis of V-L relationships : Relate fugacity to compositions and intensive properties (T, P) $f = fn(T, P, y_i)$

^bC.M.C. Romero, J.W. Thybaut, G.B. Marin, Catalysis Today 130 (2008) 231-242.