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tion and motivation

Environmental Issues
Government Regulations
Technical

Trickle Bed Reactor
(Ni/Co)Mo/ A1203

Industrial reactors

- Three Phase reactions
- Kinetics may be disguised by

0
hydrodynamic phenomenon 200 — 400 C
10 — 40 bar

Laboratory Reactors
- G-S/ G-S-L reactions
- Intrinsic kinetics

v' Three phase
v Fischer Tropsch
v Hydrocracking
Bridging the gap between laboratory v Hydroprocessing
and industrial reactors

- Used for model construction and

discrimination
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methodology

Operating conditions

— Reaction pathway
Detailed kinetics

— Liquid phase conditions on —  Validation of data

available from industrial /

— Formation of new

Model constructi:
SREON on compounds Pilot plant studies
— Evaluation estimated —  Solvent adsorption
parameters —  Assessment of liquid phase

non ideality

Robinson
Mahoney
Reactor Reactor
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outline

Gas versus liquid phase experiments

— network elucidation and difference In
experimental programmes

Liquid phase experimental results

Thermodynamic non ideality in liquid
phase

Gas phase model and subsequent
extension

Liquid phase model
Conclusions
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)hase experiments

N v 1-pentylpiperidine observed
N in the liquid phase
wan experiments only

o S v observ_ed with 2D GC - MS
| - N o analysis
| . S v due to the varying operating
O = S, R YT s conditions and higher
| N\j | /HH/S bimolecular reactions
| N~ v Highly reactive/unstable
 adiionalreacions at intermediates not observed

gas phase reaction network

liquid phase conditions

during analysis
v Challenges in extension
v" Differing denitrogenation kinetics in gas and liquid phase
v" Accounting for additional response in the model
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on gas and liquid phase

Program Gas Phase? | Liquid Phase®
Reactor type Berty type Robinson
(CSTR) Mahoney (CSTR)
Temperature range (K) 573 - 633 543 - 613
Space time (kg.,:-S/mmol) 0.36 — 1.8 0.65-3
Solvent/pyridine (mol/mol) 40 20 - 40

v" Halpasol® : Mixture of C9-C14 paraffins

aR. Pille, G. Froment, Hydrotreatment and Hydrocracking of Oil Fractions 106 (1997) 403-413.

B This work
© : Haltermann products Gmbh

v’ Catalyst
v NiMoP/Al, O,

v' Gas and liquid
phase
experiments

v PROCATALYSE

v’ Literature insights

v' Temperature
dependent

v H,S has a
promoting effect
on the C-N bond
scission reaction
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Se Experimental results

1 1,2
A0,9 } 1 i
: %
507 - { } ~08 " *
w ~
506 | } 206 m Piperidine
£0,5 } % * 4 Pentane
= 0,4 L
© 0,4 - { < + Pentylpiperidine
50,3 - 02 - 3 i
i ' g
0 1 4 O L T T T T
’ 520 540 560 580 600 620
0 T T T T 1 '0,2 -
520 540 560 580 600 620 Temperature (K)

Temperature (K)

Operating conditions : 6.0 MPa, Spacetime : 790 kg.,;.s/mol H,/pyridine : 10 (mol/mol) H,S/pyridine : 0.04
(mol/mol)

v Assessment of Influence of temperature on HDN
conversion ??

0.04

0.64

583 6.0 790 0.04 0.65
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Xperimental results

Conversion (-)

0,7 -

mH2S/P=0.04 ®Piperidine
0.6 - &H25/P=0.2 0,7 Pentane
0,5 - ; % 0,6 % i m Pentylpiperidine
04 ? 05 3 N
03 - 3 04 T
>
Z 0,3 I
0,2 - S 3 Vv g
30,2 T T
0,1 - 1 L
0,1
1
0 T T T T 1
560 565 570 575 580 585 0

560 565 570 575 580 585

Temperature (K) Temperature (K)

operating conditions : 6.0 MPa, spacetime : 439 kg.,..s/mol, H,/pyridine : 10 (mol/mol)

v H,S has positive effect on the C-N bond scission
v" Higher hydrocarbon yield at higher H,S/pyridine
v" Lower intermediate piperidine yield

v" Substitution pathway is more pronounced at higher H,S
partial pressures
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and effect of aggregation state

v Non ideality in liquid phase  U=zU  #=0  0z@
A i=1,..,n

v Effect of aggregation state (gas / liquid phase)

v Description of kinetics, independent of phase in which
reaction occurs

v Difference between vapour and liquid phase kinetics is

situated in the chemisorption step oeo  O=®=0o_0
o= oFIUId phﬁ%@
O.—_(’)—O ~e vaa?a.lyst §‘.
HA—* O= .Q. .Q. s

A-|—*(—)A—* KAT=
" fab
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gas phase model

v Development of gas phase model
v Model assumptions based on previous literature
Insights?
v Two site model related to CUSP and SAP sites

v Model discrimination performed between 48 rival
models

v" RDS : 3" hydrogen addition and ring opening

1 Peshyone
Rp—pp = kp+Kp_pH2 Knz Kp C*Z\/ o u <PH2P65H5N K > 102
Equi Phy

_ 2
Rpp_pa = kpp Kpp_ppu Kpp U Pc o onu Co

6 =1+ Kp Pccun + KppPeon,ove + Knb, Pyn,

Cq2-
U= KHZPHZ + KHZSPHZS C* —_ C*,tot/ (5 + i S )

bC.M.C. Romero, J.W. Thybaut, G.B. Marin, Catalysis Today 130 (2008) 231-242.
b CUS : Coordinatively unsaturated sites, SA : Sulphur anion sites 10
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)f gas phase model

. idealit
the non dea y { "p~pp = Kp +Kp_py2 Ky Kp C*Z‘/g_“ (szszHsN o : fCSHlONH )}

KEqui fH22
Tpp—pa = kpp Kpp—ppu Kpp 1 fognyonm Co
. site balances (6 =+1]:_ Kpfeonon + Kepfeonone + Knb, fva, )
) sotvent fsowent + Kpentyipp frentyipp X
i = Kuy,s fu,s + Ku, fu,
. o

v Accounting for additional response,
v Two possible reaction networks

1. 2 Piperidine — 1-Pentylpiperidine
2. Piperidine + Pentylamine — 1-Pentylpiperidine

11
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of gas phase model

O o O @ S N o PN

3)
@ @
2) Gas phase kinetics /Erj
3) Relative pentylamine reaction rate

4) Dealkylation of 1-pentylpiperidine < : _\_\;

1) Gas phase klnetlcs O +

. . : _ 2
Pentyl amine denitrogenation Tpa—scs = kpa Kpa—pan Kpa U fC5H11NH2 C.

. _ ’ 2
Condensation of PP and PA Tpat+pp—pentylrp = Kpatpp Kpp Kpa 5 feshyoNE sty NH, Cs

Dealkylation of PPP TPentylPP—PP+C5 2
= kPentylPP KPentylPP—PentylPPH KPentylPP H f PentylPP Cs

12
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. Liquid phase model

Pre exponential factors?
k D o, 2z 6
f=Y0T%a0 exp — <
h  Q4Qy kpT S Q) .
Ksurtace = 10%° to 10*°s* (AS=-58-56 3/ mol K) & g ¢ . B
Ksurface = 1to 10 ag_& /’,’00" + pyridine
»
Ky =~ 1010 to 1013 Pal CHE R
P
KH2 H2S ~ 10_8 fo 10_13 Pa_l § 30‘6’
’ 0
0 2 4 6 8
Experimental flow rate (umol/s)
3,5
[
*é‘ 3
3 25 /
Parameter Value = P
©
D
e -AH 34.5+0.77 kJ/mol © A + Piperidine
E o A AC5
K1-penty|piperidine -AH 858i16 kJ/mol _Q' ' e 1pentylpiperidine
_ _kpa® 3
Kratio = Kpa+pPP” = 108+12 kJ/mol -é
I(Pen'[yIPP->PP+C5 Ea 83.0+ 78.0 kJ/mol > . 4

Experimental flow rate (umol/s)

c* - 1.7+0.3 (-)

aJ.A. Dumesic et al The Microkinetics of heterogenous catalysis, 1993 13
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1 0.7 Xp
09 06
0.8 - 06 - EYpp
O 7 = 05 - g W A-YC5
' >
2 o . 0.4 #YpentylPP
5 0.5 - 047 mSelPP : by
05 S L eis 2 "
S 04 03 & A9E §02 m B
0.3 02 O & Sel PentylPP § xS -
0.2 * Xp A A
gt || 5 o 0
0 0 0 10 20 30
560 570 580 590 600 Hz/Pyridine (-)
Temperature (K)
Pressure = 6.0 MPa, Space time = 790 kg s / mol, H,/pyridine = 10, Pressure = 6.0 MPa, Temperature = 573K, Spacetime = 564 kg.s/mol,
H,S/pyridine = 0.04, Solvent/pyridine = 40; H,S/pyridine = 0.04; Solvent/pyridine = 40
0.4
0.6 ¢ XxXp
+Conv.
e Yield PP g A
= ° e 303 - = xpp
© 04 A¥1eld €5 2 —= Pentylpiperidine
> #Yield PentylPP =
5§08 N £0.2 |
o ] - | )
202 )
= >
2 5
© 01 ©0.1 -
0
560 570 580 0 - ]
Temperature (K 15 25
R ) Pressure (bar)
Operating conditions: total pressure = 6.0MPa, space time = 439 Temperature = 573.15K, space time = 1400 kg, .s /mol,

kg s / mol, H2/pyridine = 10, H,S/P = 0.04, Solvent/pyridine =40  H./Pyridine = 620 and H,S/Pyridine = 15, solvent/pyridine = 40 »
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Conclusions

 Reconciliation of data at two different reaction conditions
« Effects of aggregation states (G-S / L-S) on kinetics

« Successful extension of gas phase kinetics to liquid
phase reactions

— By taking thermodynamic non ideality in liquid phase

— Additional compound formed at liquid phase conditions

* A robust model that performed well in three phase and
gas phase conditions

15
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Discussions

Thank you for your attention

PR
+ QY 2

ra, b

9.

17
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Also called active centre. Those sites for adsorption which are the
effective sites for a particular heterogeneous, catalytic reaction.

Aggregation State : A physically distinctive form of a substance,
such as solid, liquid and gaseous state.

Fugacity : Thermodynamic activity in a non ideal phase with the
ideal gas state as the reference state

Heterolytic dissociation : Breaking a chemical bond to produce two
oppositely charged fragments, e.g. H, into H* and H-.

18
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odel assumptions

10
Two sites located at the edges of the (052 s
sulphided NiMo are considered. (100%S)
Hydrogenation proceeds via successive & (828
hydrogen additions either from coordinatively — Qg w s sae> Gono
unsaturated sites (CUS) or from sulphur ‘.'3,3:3:8:3:3.3-.‘ i
anions (SA). she"e"s e e e © vo

Chemisorption of hydrocarbon/nitrogen A
species can only occur on the coordinatively

unsaturated sites due to the electronic nature

of this interactionap

No interconversion of active sites is
considered because sulphydril on a CUS is
electronically different from a hydrogen atom
or proton on a SA

19
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ality in the liguid phase

v Non ideality in mixturese
0=0 020  0z20

v Chemical potential : Independent of standard
state used

Ui = Ui standara T RT Inq;

u? = ul i=1,..,n

v Condition for phase equilibrium

= i=1,..,n

v’ Basis of V-L relationships : Relate fugacity to

compositions and intensive properties (T, P)
f = fn(T.P,y)

bC.M.C. Romero, J.W. Thybaut, G.B. Marin, Catalysis Today 130 (2008) 231-242. 20



