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1. Introduction

The enormous importance of the concept of symmetry in a great number of applications

in physics is beyond any doubt. Symmetry properties of mechanical systems in particular

have been studied intensively in the last decades (see e.g. the survey in Chapter 3 of

the recent monograph [8]). The bulk of the literature, however, concentrates on the

Hamiltonian description of symmetric systems in which mainly the theory of Poisson

manifolds plays an important role. Less well-known is the process of symmetry reduction

for Lagrangian systems. When the Lagrangian is invariant under the action of a Lie

group, so that we are dealing with a symmetry group of the Euler-Lagrange equations,

the equations of motion can be reduced to a new set of equations with fewer unknowns.

In the literature, there are in fact a lot of different paths that lead to different Lagrangian

reduction theories. For example, if the configuration space is either a Lie group or a semi-

direct product, the distinct reduction method is called either Euler-Poincaré reduction

or semi-direct product reduction. Another path is the following. In rough terminology,

the invariance of the Lagrangian leads via the Noether theorem to a set of conserved

quantities (the momenta). Whether or not one wants to take these conserved quantities

into account in this reduction process leads to either the Routh or the Lagrange-Poincaré

reduction method. For more details and some comments on the history of the above

mentioned reduction theories, see e.g. [8] and [11].

In this paper, we concentrate solely on Lagrange-Poincaré reduction, and the associated

reduced equations, the so-called Lagrange-Poincaré equations. The geometric framework

for these equations that has been developed in e.g. [1, 10] relies heavily on methods

coming from the calculus of variations. It is shown there that Hamilton’s principle

can be reduced to a principle on the reduced space, and that the equations of motion

that follow from this reduced principle are exactly the Lagrange-Poincaré equations. In

this paper, we wish to take an alternative view of Lagrange-Poincaré reduction. We

will not take recourse to variations, but rather interpret the Euler-Lagrange equations

as defining the integral curves of an associated second-order differential equation field

on the velocity phase space. We will show that the Lagrange-Poincaré equations can

be derived in a relatively straightforward fashion from the Euler-Lagrange equations,

by choosing a suitable adapted frame, or equivalently by employing well-chosen quasi-

velocities.

Next to investigating aspects of reduction, we also focus on the inverse process, that

of reconstruction. With the aid of a principal connection, for any invariant system one

can reconstruct a solution of the original problem from a reduced solution. In the case

of a so-called simple mechanical system (with a Lagrangian of the form T − V where

the kinetic energy T is derived from a Riemannian metric), it is well-known that such a

connection is naturally available, and it is therefore called ‘the mechanical connection’.

We will show in this paper that we can define for any arbitrary Lagrangian system

(under a natural regularity assumption) a generalized mechanical connection, and that

we can employ this connection in the process of reconstructing integral curves of the
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Euler-Lagrange field. The generalized mechanical connection is new. The construction

to be found in Lewis’s paper [9], while superficially similar is in fact rather different.

We emphasize that the generalized mechanical connection is designed for use in the

reconstruction process only and does not play a role in the reduction step.

The paper is organised as follows. In the next section we explain our approach to

Lagrangian systems using adapted frames and quasi-velocities. We extend the notion

of a mechanical connection to arbitrary Lagrangian systems in Section 3. In Section 4

we derive the Lagrange-Poincaré equations within our framework and in Section 5 we

discuss the matter of reconstruction. We end the paper with some illustrative examples.

2. Preliminaries

Consider a Lagrangian function L, defined on the tangent bundle τ : TM → M of some

manifold M (the configuration space). In terms of local coordinates (xα, uα) (where the

xα are coordinates on M and the uα the corresponding fibre coordinates on TM) the

Euler-Lagrange equations of L are

d

dt

(
∂L

∂uα

)
− ∂L

∂xα
= 0.

We will assume that the Lagrangian is regular, which is to say that its Hessian with

respect to the fibre coordinates,

∂2L

∂uα∂uβ
,

considered as a symmetric matrix, is everywhere non-singular. In case the Lagrangian is

regular, the Euler-Lagrange equations can be written explicitly in the form of a system

of differential equations ẍα = Γα(x, ẋ). These equations may be thought of as defining

a vector field Γ on TM , a second-order differential equation field, namely

Γ = uα ∂

∂xα
+ Γα ∂

∂uα
;

we call this the Euler-Lagrange field of L. In fact when L is regular the Euler-Lagrange

field is uniquely determined by the fact that it is a second-order differential equation

field and satisfies

Γ

(
∂L

∂uα

)
− ∂L

∂xα
= 0.

In this paper we will work with regular Lagrangians and their Euler-Lagrange fields,

determined by the version of the Euler-Lagrange equations given immediately above.

However, we will often not use coordinates; instead, we will express everything in terms

of certain convenient local bases of vector fields. We must therefore explain how to

modify the formulation above to take account of this difference.

There are two canonical ways of lifting a vector field Z on M to one on TM . Firstly,

the vector field on TM with the property that its flow is tangent to the flow of Z on M

is called the complete lift of Z, and is denoted by ZC. In terms of coordinates

ZC = Zα ∂

∂xα
+

∂Zβ

∂xα
uα ∂

∂uβ
, where Z = Zα(x)

∂

∂xα
.
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The second canonical way of lifting the vector field Z from M to TM is the vertical lift:

ZV = Zα ∂

∂uα
;

ZV is tangent to the fibres of the projection τ : TM → M , and on the fibre over m ∈ M

it coincides with the constant vector field Zm. In general, we have Tτ ◦ZC = Z ◦τ while

Tτ ◦ ZV = 0 (regarding the vector fields as sections of the appropriate bundles). The

Lie brackets of complete and vertical lifts of vector fields Y and Z on M are given by

[Y C, ZC] = [Y, Z]C, [Y C, ZV] = [Y, Z]V and [Y V, ZV] = 0. It is worth emphasising that

although the map Z 7→ ZV is C∞(M)-linear, the map Z 7→ ZC is only R-linear: in fact

for f ∈ C∞(M)

(fZ)C = fZC + ḟZV

where ḟ is the so-called total derivative of f , given in coordinates by

ḟ = uα ∂f

∂xα

(a function on TM). More details on all of this can be found in e.g. [5].

Now take a local basis of vector fields on M , say {Zα}. Then {ZC
α , ZV

α} is a local basis

of vector fields on TM . Moreover, we can introduce new fibre coordinates vα on TM ,

adapted to the local basis {Zα}, as follows: for any tangent vector vm ∈ TmM , the vα

are the components of v with respect to the basis Zα(m), that is, vm = vαZα(m). Such

fibre coordinates are called quasi-velocities.

From the coordinate expressions of the vertical and complete lifts above it is easy to see

that if {Zα} is such a basis then the equations

Γ(ZV

α (L))− ZC

α(L) = 0 (1)

are equivalent to the Euler-Lagrange equations. Moreover, the fact that Γ is a second-

order differential equation field means that it takes the form

Γ = vαZC

α + Γ̂αZV

α (2)

where the vα are the quasi-velocities corresponding to the basis {Zα}.
We will also need a coordinate-independent version of the Hessian. The Hessian of

L at u ∈ TM is the symmetric bilinear form g on TmM , m = τ(u), given by

g(v, w) = vV(wV(L)), where the vertical lifts are to u. Alternatively we can regard

g as operating on pairs of vector fields Y , Z on M : then g(Y, Z) is a function on TM ,

depending bilinearly on its arguments, such that g(Y, Z) = Y V(ZV(L)); the fact that it

is symmetric in Y and Z is a consequence of the bracket relation [Y V, ZV] = 0 stated

earlier.

We turn now to the question of symmetries and invariance.

Throughout the paper we will assume that the configuration space M of the Lagrangian

system comes equipped with a free and proper left action ψM : G × M → M of a

group G, which eventually will be the symmetry group of the Lagrangian system under

consideration. In taking the group to act to the left we follow the convention of [10];

changing to a right action (as is the standard in e.g. [7]) has the effect only of a sign
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change in some of our results and formulae. The projection πM : M → M/G on the set

of equivalence classes gives M the structure of a principal fibre bundle. The action on

M induces an action ψTM
g = TψM

g on the tangent manifold TM , so πTM : TM → TM/G

is also a principal fibre bundle.

A tensor field t on M is invariant under the action of G if for all g ∈ G,

tψM
g m(ψT ∗M

g αm, . . . , ψTM

g vm, . . .) = tm(αm, . . . , vm, . . .), αm ∈ T ∗
mM, vm ∈ TmM,

where 〈ψT ∗M
g αm, ψTM

g vm〉 = 〈αm, vm〉. For convenience we will assume that the group G

is connected. Then the invariance property is equivalent to the infinitesimal condition

Lξ̃t = 0 for all ξ ∈ g (the Lie algebra of G), where ξ̃ on M is the fundamental vector

field associated with ξ. The proof of the equivalence relies on the fact that the flow of

ξ̃ on M is ψt : m 7→ ψM

exp(tξ)m. In particular, a function f on M is invariant if and only

if it satisfies ξ̃(f) = 0, and a vector field X on M is invariant if and only if [ξ̃, X] = 0,

for all ξ ∈ g.

A tensor field on TM is invariant if and only if all of its Lie derivatives by fundamental

vector fields of the induced action on TM vanish. The flow of such a vector field is given

by vm 7→ TψM

exp(tξ)vm for some ξ ∈ g, and is therefore tangent to m → ψM

exp(tξ)m, the flow

of the vector field ξ̃ on M . That is to say, the fundamental vector field corresponding

to ξ ∈ g of the action of G on TM is just ξ̃C.

For the remainder of the paper we will suppose that L is a Lagrangian function on

TM invariant under the induced action of a connected group G on TM , so that

L(ψTM
g v) = L(v), or equivalently ξ̃C(L) = 0 for all ξ ∈ g.

We will work with a local basis {Ẽa, Xi} of vector fields on M which is adapted to

the bundle structure M → M/G in the following way. The vector fields Ẽa are the

fundamental vector fields corresponding to a basis {Ea} of g; the Xi are the G-invariant

horizontal lifts of a coordinate basis of vector fields on M/G, where the horizontal lift

is associated with some principal connection ω on M → M/G. The quasi-velocities

corresponding to such a basis will be denoted by (va, vi), so that for every tangent

vector vm, vm = vaẼa(m) + viXi(m).

It will also be convenient to have a basis {Êa, Xi} that consists only of invariant vector

fields. Let U ⊂ M/G be an open set over which M is locally trivial. The projection πM

is locally given by projection onto the first factor in U × G → U , and the (left) action

of G by ψM
g (x, h) = (x, gh). The vector fields on M defined by

Êa : (x, g) 7→ ˜(adg Ea)(x, g) = ψTM

g (Ẽa(x, e))

are invariant. The relation between the sets {Êa} and {Ẽa} can be expressed as

Êa(x, g) = Ab
a(g)Ẽb(x, g) where (Ab

a(g)) is the matrix representing adg with respect

to the basis {Ea} of g. In particular, Ab
a(e) = δb

a. The quasi-velocities corresponding to

the basis {Ê,Xi} will be denoted by (wa, vi), where in fact va = Aa
bw

b.

The left-invariant vector fields Êa satisfy the bracket relations [Êa, Êb] = Cc
abÊc where

the Cc
ab are the structure constants of the Lie algebra (so that the Lie algebra bracket

satisfies [Ea, Eb] = Cc
abEc). For the fundamental vector fields, on the other hand, we
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have [Ẽa, Ẽb] = −Cc
abẼc. Other Lie brackets of basis vector fields are: [Xi, Ẽa] = 0 by

invariance, whence [Xi, Êa] = Xi(A
c
a)Ā

b
cÊb = Υb

iaÊb say, where (Āb
a) is the matrix inverse

to Ab
a; and [Xi, Xj] = Ka

ijÊa, where the Ka
ij are the components of the curvature of ω,

regarded as a g-valued tensor field.

By expressing the fact that the vector fields Êa are invariant in the form [Ẽb, Êa] = 0

we find that

Ẽb(A
c
a)− Ad

aC
c
bd = 0.

With respect to the basis {Êa, Xi} the Euler-Lagrange field is of the form

Γ = waÊC

a + viXC

i + ΓaÊV

a + ΓiXV

i . (3)

The functions Γi and Γa can be determined from the Euler-Lagrange equations

Γ(XV

i (L))−XC

i (L) = 0

Γ(ÊV

b (L))− ÊC

b (L) = 0. (4)

We will now deduce from the assumed invariance of L that the Euler-Lagrange field Γ

is invariant, using this machinery. That is to say, we will show that if ẼC
a (L) = 0 for all

a, then [ẼC
a , Γ] = 0 also. One easily verifies that the quasi-velocities corresponding to

an invariant basis are invariant (and in any case the derivation is given in full later); it

follows that

[ẼC

b , Γ] = ẼC

b (Γi)XV

i + ẼC

b (Γa)ÊV

a .

From the above Euler-Lagrange equations it easily follows that

0 = ẼC

b (Γ(XV

i (L)))− ẼC

b (XC

i (L))

= [ẼC

b , Γ](XV

i (L)) + Γ(ẼC

b (XV

i (L)))− [ẼC

b , XC

i ](L)−XC

i (ẼC

b (L))

= [ẼC

b , Γ](XV

i (L)) + Γ([ẼC

b , XV

i ](L)) + Γ(XV

i (ẼC

b (L)))

= [ẼC

b , Γ](XV

i (L)).

Likewise, [ẼC
b , Γ](ÊV

c (L)) = 0. From the expression for [ẼC
b , Γ] we obtain

ẼC

b (Γi)g(Xi, Xj) + ẼC

b (Γa)g(Êa, Xj) = 0 = ẼC

b (Γi)g(Xi, Êc) + ẼC

b (Γa)g(Êa, Êc).

Now at any point u of TM we may regard [ẼC
b , Γ] as the vertical lift of some

vector w ∈ TmM , m = τ(u). From the last displayed equations we conclude that

g(w,Xj(m)) = 0 = g(w, Êc(m)). The required conclusion that w = 0 follows from the

assumed non-singularity of g. Notice that it follows that ẼC
b (Γi) = 0 and ẼC

b (Γa) = 0.

3. The mechanical connection

A connection on πM : M → M/G is a left splitting ω of the short exact sequence

0 → M × g → TM
TπM→ (πM)∗T (M/G) → 0.

We identify M × g as a subbundle of TM by means of (m, ξ) 7→ ξ̃(m). We will use

the symbol ω for the following two related objects: ω may be thought of as a type



Invariant Lagrangians, mechanical connections and Lagrange-Poincaré equations 7

(1, 1) tensor field on M , for which, in particular, ω(ξ̃) = ξ̃. On the other hand, we

will also use ω for its projection onto g; we then have ω(ξ̃(m)) = ξ. With the second

interpretation, if ω satisfies ω(ψTM
g v) = adg ω(v) the connection is said to be principal.

The infinitesimal version of this invariance property is that Lξ̃ω = 0, for all ξ, where ω is

now interpreted as a (1, 1)-tensor on M . The kernel of ω (in either interpretation) defines

a distribution on TM , invariant when the connection is principal, which is called the

horizontal distribution. We can also define the connection by specifying its horizontal

distribution.

In the case of a so-called simple mechanical system, one can associate a principal

connection with the system in a natural way. In this case the Lagrangian takes the form

L = T−V where T is a kinetic energy function, defined by a Riemannian metric g on M ,

and V is a function on M , the potential energy. The symmetry group of the Lagrangian

consists of those isometries of g which leave V invariant. The mechanical connection ω

can be defined by taking for its horizontal subspaces the orthogonal complements of the

tangent spaces to the fibres of πM .

The construction of the mechanical connection relies heavily on the availability of a

Riemannian metric. Now the components of the metric with respect to a coordinate

basis coincide with those of the Hessian of the simple Lagrangian with respect to the

fibre coordinates. However, the Hessian of an arbitrary Lagrangian does not provide

a Riemannian metric on configuration space. Nevertheless, the notion of a mechanical

connection may be generalized in such a way that the Hessian plays the same role in

relation to the generalized mechanical connection as the metric does to the mechanical

connection for a simple system. This we now show.

Recall that the Hessian of L at u ∈ TM is the symmetric bilinear form g on TmM ,

m = τ(u), given by g(v, w) = vVwV(L). As such, it can be interpreted as a tensor

field along the tangent bundle projection τ : TM → M , as we show in the following

paragraphs.

A vector field along τ is a section of the pullback bundle τ ∗TM → TM . Such a section

can in an equivalent way be interpreted as a map X : TM → TM with the property

that τ ◦X = τ . A vector field along τ takes the local form

X = Xα(x, u)
∂

∂xα
.

A vector field Z on M can be interpreted as the vector field Z ◦ τ along τ . We will call

such vector fields along τ ‘basic’, and use the same symbol for the vector field on M

and the basic vector field along τ .

By taking for 1-forms along τ the sections of τ ∗T ∗M → TM , we can obtain in the usual

manner a C∞(TM)-module of tensor fields along τ . (For more information see e.g.

[12, 15].) In particular, we can interpret the Hessian of a Lagrangian as the symmetric

(0,2) tensor field along τ given by

g = gαβ(x, u)dxα ⊗ dxβ, gαβ =
∂2L

∂uα∂uβ
.
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Then as we pointed out earlier, if X,Y are vector fields on M then g(X, Y ) =

XV(Y V(L)).

We show now that when L is invariant, g is also invariant in an appropriate sense.

The action of the symmetry group G on TM induces an action of G on τ ∗TM by

(g, (um, vm)) 7→ (ψTM
g um, ψTM

g vm) for g ∈ G. Then, for example, a vector field X along

τ is invariant if

X(ψTM

g v) = ψTM

g (X(v)), ∀g ∈ G.

The infinitesimal version of this property will follow from a more general construction

in [6], which we adapt to the current context.

Let ϕ : TM → TM be fibred over f : M → M . Then we can extend ϕ to a map

ϕ̄ : τ ∗(TM) → τ ∗(TM), fibred over ϕ, as follows: for um, vm ∈ TM , set

ϕ̄(um, vm) = (ϕ(um), T f(vm)),

where Tf : TM → TM is the tangent map to f . We have τ ◦ ϕ = τ ◦ Tf = f , so ϕ̃ is

well defined. In coordinates (xα, uα, vα), with ϕ(x, u) = (fα(x), ϕα(x, u)), we have

ϕ̄(x, u, v) =

(
fα(x), ϕα(x, u),

∂fα

∂xβ
vβ

)
.

Given any vector field X along τ and any fibred diffeomorphism ϕ : TM → TM we can

define a new vector field along τ , ϕ]X, by ϕ]X(v) = ϕ̄(X(ϕ−1(v))). We can thus define

a Lie derivative operator of vector fields on M on the set of vector fields along τ : for

any vector field Z on M and vector field X along τ set

LZX =
d

dt
(ψ(−t)]X)t=0,

where ψt is the flow of ZC. If we think of X as a derivation from functions on M to

functions on TM , we have for a function F on M

LZX(F ) = ZC(X(F ))−X(Z(F )).

In coordinates

LZ

(
Xα ∂

∂xα

)
=

(
Zβ ∂Xα

∂xβ
+

∂Zβ

∂xγ
uγ ∂Xα

∂uβ
−Xβ ∂Zα

∂xβ

)
∂

∂xα
.

If X is a basic vector field along τ then LZX is the basic vector field [Z,X] along τ ,

where the bracket is the bracket of vector fields on M .

The operator LZ has all the usual properties of the Lie derivative, except that for

functions F on TM , LZ(FX) = ZC(F )X + FLZX. So if we define the action of LZ on

functions by LZF = ZC(F ), we can extend the action to the tensor algebra of τ ∗TM in

the usual way. In particular, for a type (0, 2) tensor field g and vector fields X, Y along

τ ,

(LZg)(X,Y ) = ZC(g(X,Y ))− g(LZX,Y )− g(X,LZY ).

Consider the case where X is an invariant vector field along τ , and where Z is a

fundamental vector field ξ̃. The flow of ξ̃ is exactly ft : m 7→ ψM

exp(tξ)m. By



Invariant Lagrangians, mechanical connections and Lagrange-Poincaré equations 9

definition of a complete lift, the flow of ξ̃C is the tangent of the flow of ξ̃, that is

ψt : v 7→ TψM

exp(tξ)v = ψTM

exp(tξ)v. Since (ψ−t)
−1 = ψt, we find that

((ψ−t)]X)(v) = ψ̄−t

(
X(ψtv

)
=

(
ψ−t(ψtv), T f−t(X(ψtv))

)
= (v, X(v)),

where we have used the invariance property of X with respect to group elements of the

form exp(tξ). So (ψ−t)]X = X and we conclude that Lξ̃X = 0 for all ξ ∈ g. Since G

is supposed to be connected, a standard argument shows that this criterion is in fact

sufficient.

The vertical lift operation described earlier can easily be extended to vector fields

along τ . From the coordinate expression of the Lie derivative it is easy to see that

(LZX)V = [ZC, XV]. It follows in particular that a vector field X along τ is invariant if

and only if its vertical lift is invariant as a vector field on TM .

With a similar argument to the one for vector fields along τ , we can conclude that a

tensor field g along τ is invariant if and only if Lξ̃g = 0 for all ξ ∈ g. In fact it is

enough to show that this tensor vanishes when its arguments are basic vector fields

X,Y along τ . Let g be the Hessian of an invariant Lagrangian. Recall that for X, Y

basic, g(X, Y ) = XV(Y V(L)). We have

(Lξ̃g)(X, Y ) = ξ̃C(g(X,Y ))− g(Lξ̃X,Y )− g(X,Lξ̃Y )

= ξ̃C(XVY V(L))− [ξ̃, X]VY V(L)−XV[ξ̃, Y ]V(L)

= [ξ̃C, XV]Y V(L) + XVξ̃CY V(L)− [ξ̃, X]VY V(L)−XV[ξ̃, Y ]V(L)

= [ξ̃C, XV]Y V(L)− [ξ̃, X]VY V(L) + XV[ξ̃C, Y V](L)−XV[ξ̃, Y ]V(L)

= 0,

since by assumption ξ̃C(L) = 0.

We turn now to the definition of the generalized mechanical connection. We first make

some remarks about connections in this general context.

The short exact sequence 0 → M × g → TM → πM∗T (M/G) → 0 extends in a natural

way to an exact sequence of vector bundles over TM ,

0 → TM × g → τ ∗TM → (πM ◦ τ)∗T (M/G) → 0,

where the first space is spanned by basic vector fields ξ̃ along τ . We will call an invariant

left splitting of this sequence an invariant connection along τ . Equivalently, an invariant

connection along τ is a (1,1)-tensor field ω along τ with the property that Lξ̃ω = 0 for

all ξ ∈ g. For a basic vector field η̃ along τ we have ω(η̃) = η̃. A vector field X along τ

which satisfies ω(X) = 0 is said to be horizontal.

From the fact that ω(η̃) = η̃ it follows automatically that

(Lξ̃ω)(η̃) = ω([ξ̃, η̃])− [ξ̃, ω(η̃)] = 0.

So, for invariance, the only condition we need to check is that for all horizontal vector

fields X along τ , Lξ̃X is horizontal also. In fact

(Lξ̃ω)(X) = ω(Lξ̃X)− Lξ̃(ω(X)) = ω(Lξ̃X),

so Lξ̃ω = 0 if and only Lξ̃X is horizontal whenever X is horizontal.
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Any principal connection on M → M/G can be extended to an invariant connection

along τ in a trivial way.

In the case of an invariant Lagrangian system we can define a connection along τ by

adapting the construction of the mechanical connection of a simple mechanical system;

the result is the generalized mechanical connection, which we denote by ωm. A vector

field X along τ is horizontal with respect to ωm if it is in the orthogonal complement of

TM × g with respect to g, that is if

g(ξ̃, X) = 0, ∀ξ ∈ g. (5)

Of course, this defines a splitting only if we suppose that g is non-singular when restricted

to the set of fundamental vector fields; this will be the case in particular if g is everywhere

positive-definite.

We now show that ωm is invariant, by showing that if X is a horizontal vector field

along τ , so is Lξ̃X for all ξ ∈ g. For a horizontal X

0 = (Lξ̃g)(η̃, X) = ξ̃C(g(η̃, X))− g([ξ̃, η̃], X)− g(η̃,Lξ̃X)

= g( ˜[ξ, η], X)− g(η̃,Lξ̃X)

= − g(η̃,Lξ̃X),

so Lξ̃X is indeed horizontal, as claimed.

We can lift ωm in a natural way to define a principal connection Ωm on TM → TM/G.

The process by which we obtain Ωm from ωm is a variant of the so-called vertical lift

of a principal connection ω on πM : M → M/G to TM → TM/G: the vertical lift of

ω, considered here as a g-valued 1-form on M , is just τ ∗ω, a g-valued 1-form on TM .

It is easy to show that τ ∗ω is a principal connection on πTM : TM → TM/G: see for

example [2].

The vertical lift of the generalized mechanical connection ωm is the g-valued 1-form Ωm

on πTM defined by

Ωm(W ) = ωm(τ∗W ) (6)

for any vector field W on TM ; here τ∗W is the projection of W regarded as a vector

field along τ . Thus a vector field W on TM is horizontal if g(τ∗W, η̃) = 0 for all η ∈ g,

where as usual η̃ is regarded as a basic vector field along τ . It is clear that the horizontal

subspace of TuTM is complementary to the tangent to the fibre of πTM , provided that

gu is non-singular on the tangent to the fibre of πM , as before. Note in particular the

paradoxical-sounding fact that every vertical vector field is horizontal: to be precise,

every vector field on TM which is vertical with respect to the tangent bundle projection

τ is horizontal with respect to the connection Ωm. Now Ωm defines a principal connection

if [ξ̃C,W ] is horizontal whenever W is horizontal. From the definition of the generalized

Lie derivative above it is easy to see that for any vector field W on TM we have

LZ(τ∗W ) = τ∗[ZC,W ].

Then, indeed,

g(τ∗[ξ̃C,W ], η̃) = g(Lξ̃(τ∗W ), η̃) = −g(τ∗W,Lξ̃η̃) = −g(τ∗W, [ξ̃, η̃]) = 0.
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This confirms that Ωm is a principal connection on πTM .

The generalized mechanical connection ωm and its vertical lift Ωm are intrinsic to the

invariant Lagrangian system; that is to say, it is not necessary to invoke a principal

connection on πM : M → M/G to define them. Nevertheless it is often convenient to

work with a local basis of vector fields {Ẽa, Xi} on M , with Xi invariant, as described

earlier; and this implicitly involves a principal connection on ω on πM . In general ω will

not be directly related to ωm; but for a simple mechanical system we can take for ω the

mechanical connection, in which case ωm is the natural extension of ω to an invariant

connection along τ , and Ωm is the vertical lift of ω.

We will end this section by expressing the generalized mechanical connection and its

vertical lift in terms of the basis {Ẽa, Xi}.
Let us express the components of the Hessian g in terms of the basis {Ẽa, Xi} as follows:

g(Ẽa, Ẽb) = gab, g(Xi, Xj) = gij, g(Xi, Ẽa) = gia = gai = g(Ẽa, Xi)

(in general these will be functions on TM , not M , of course). We have gab = ẼV
a (ẼV

b (L)),

etc. Recall that to define the generalized mechanical connection we have assumed that

(gab) is non-singular. If we set

X̄i = Xi − gabgibẼa = Xi + Ba
i Ẽa

then the X̄i are vector fields along τ which are horizontal with respect to the generalized

mechanical connection, and so

ωm(Ẽa) = Ẽa, ωm(X̄i) = 0.

The invariance of the Hessian g amounts for its coefficients to

ẼC

a (gij) = 0, ẼC

a (gbc) = Cd
abgcd + Cd

acgbd, ẼC

a (gic) = Cd
acgid.

It follows that ẼC
a (Bb

i ) = Bc
i C

b
ca. It is now easy to see that X̄i is an invariant vector field

along τ :

LẼa
X̄i = LẼa

Xi + ẼC

a (Bb
i )Ẽb + Bb

iLẼa
Ẽb = [Ẽa, Xi] + Cb

caB
c
i Ẽb + Bb

i [Ẽa, Ẽb] = 0.

Furthermore, let us define vector fields

X̄C

i = XC

i + Ba
i Ẽ

C

a

on TM . (The notation X̄C
i is not intended to imply that these vector fields are complete

lifts of vector fields on M .) One can easily verify that the vector fields X̄C
i are invariant:

[ẼC
a , X̄C

i ] = 0. For the lifted connection Ωm we get

Ωm(ẼC

a ) = ẼC

a , Ωm(ẼV

a ) = 0, Ωm(X̄C

i ) = 0 and Ωm(XV

i ) = 0.

4. The reduced Euler-Lagrange field

As before, we assume that the Lagrangian L is invariant under a symmetry group G, so

that ξ̃C(L) = 0. Then L defines a function l on TM/G, the reduced Lagrangian, such

that L = l◦πTM , where πTM is the projection of the principal fibre bundle TM → TM/G.
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We showed above that the Euler-Lagrange field Γ is also invariant. As an invariant

vector field, Γ on TM defines a πTM-related reduced vector field Γ̌ on TM/G: due to

the invariance of Γ, the relation TπTM(Γ(v)) = Γ̌(πTM(v)) is independent of the choice

of v ∈ TM within the equivalence class of πTM(v) ∈ TM/G.

Our aim in this section is to give an explicit expression for the reduced Euler-Lagrange

field Γ̌ on TM/G in terms of the reduced Lagrangian l.

From now on we will use local coordinates on M defined as follows. Let U ⊂ M/G be

an open set over which M is locally trivial, so that (πM)−1(U) ' U ×G, and which is a

coordinate neighbourhood in M/G. We take coordinates (xα) = (xi, xa) on a suitable

open subset of (πM)−1(U) (containing U × e) such that (xi) are coordinates on U , (xa)

coordinates on the fibre G. Then Ẽa and Êa can be identified with vector fields on G,

right- and left-invariant respectively, and so are independent of the xi. Recall that Xi

is an invariant vector field on M projecting onto ∂/∂xi on M/G. If we set

Xi =
∂

∂xi
− γb

i (x
i, xa)Êb

then invariance of the Xi means that

∂γb
i

∂xa
= 0.

Recall that we have set [Xi, Êa] = Υb
iaÊb. Then Υb

ia = −γc
i C

b
ca.

An invariant vector field W on TM projects onto a vector field W̌ on TM/G, so that

(as sections)

TπTM ◦W = W̌ ◦ πTM .

Furthermore, if F is an invariant function on TM and if f is its reduction to a function

on TM/G then

W (F ) = W (f ◦ πTM) = W̌ (f) ◦ πTM .

We will now show in detail that the coordinate functions xi, vi and wa (where wa and

vi are the quasi-velocities corresponding to our chosen invariant basis {Êa, Xi}) are

invariant functions on TM . As a consequence, they can be used as coordinates on

TM/G. Then the action of W on these functions completely determines W̌ . We are in

particular interested in the reduced fields of the invariant vector fields XC
i , X̄C

i , XV
i and

ÊV
a on TM .

The following observation can easily be verified. For any vector field Z, function f and

1-form θ on M ,

ZC(f) = Z(f), ZV(f) = 0, ZC(~θ) =
−−→LZθ, ZV(~θ) = τ ∗θ(Z),

where ~θ stands for the fibre-linear function on TM defined by the 1-form θ. Note that

if {Zα} is a local basis of vector fields on M and θα the dual local basis of 1-forms,

then the quasi-velocities vα corresponding to the given vector-field basis, regarded as

functions on TM , are given by vα = ~θα.
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Let {$a, ϑi} be the dual 1-form basis of the basis {Êa, Xi}. Then ~$a = wa and ~ϑi = vi.

We have, for example,

(LXi
$a)(Êb) = Xi(δ

a
b )−$a([Xi, Êb]) = −Υa

ib

(LXi
$a)(Xj) = −$a([Xi, Xj]) = −Ka

ij,

so XC
i (wa) = −Ka

ijv
j − Υa

ibw
b. The relevant derivatives, obtained in the case of the

quasi-velocities by similar calculations, are

XC
i (xj) = δj

i , XC
i (vj) = 0, XC

i (wa) = −Ka
ijv

j −Υa
ibw

b,

XV
i (xj) = 0, XV

i (vj) = δj
i , XV

i (wa) = 0,

ÊC
a (xj) = 0, ÊC

a (vi) = 0, ÊC
a (wb) = Υb

iav
i + Cb

acw
c,

ÊV
a (xj) = 0, ÊV

a (vi) = 0, ÊV
a (wb) = δb

a,

ẼC
a (xj) = 0, ẼC

a (vi) = 0, ẼC
a (wb) = 0,

ẼV
a (xj) = 0, ẼV

a (vi) = 0, ẼV
a (wb) = Āb

a.

From the penultimate row we conclude that xi, vi and wa are invariant. Therefore

TπTM ◦XC

i =

(
∂

∂xi
+ (−Ka

ijv
j −Υa

ibw
b)

∂

∂wa

)
◦ πTM = TπTM ◦ X̄C

i ,

TπTM ◦XV

i =
∂

∂vj
◦ πTM ,

TπTM ◦ ÊC

a = (Υb
iav

i + Cb
acw

c)
∂

∂wb
◦ πTM , TπTM ◦ ÊV

a =
∂

∂wa
◦ πTM .

As we noted earlier the Euler-Lagrange field is invariant. The Euler-Lagrange equations,

in terms of the invariant basis {Êa, Xi}, are

Γ(XV

i (L))−XC

i (L) = 0

Γ(ÊV

b (L))− ÊC

b (L) = 0.

Using invariance we see that

Γ(XV

i (L)) = Γ(X̌V

i (l) ◦ πTM) = Γ̌(X̌V

i (l)) ◦ πTM ,

and similarly for the other terms in the Euler-Lagrange equations. These may therefore

be written, entirely in terms of vector fields and functions on TM/G, as

Γ̌(X̌V

i (l))− X̌C

i (l) = 0

Γ̌(ĚV

b (l))− ĚC

b (l) = 0,

where ĚV
b and ĚC

b are the projections onto TM/G of the invariant vector fields ÊV
b and

ÊC
b . We can now employ the coordinate expressions for the reduced vector fields X̌V

i

etc. obtained earlier to express these equations as

Γ̌

(
∂l

∂vi

)
− ∂l

∂xi
= (Ka

ikv
k + Υa

ibw
b)

∂l

∂wa

Γ̌

(
∂l

∂wa

)
= (Υb

iav
i + Cb

acw
c)

∂l

∂wb
. (7)

Recall that, with respect to the basis {Xi, Êa}, the Euler-Lagrange field is of the form

Γ = waÊC
a + viXC

i + ΓaÊV
a + ΓiXV

i . Given that Cc
abw

awb = 0 and Ka
ijv

ivj = 0, the



Invariant Lagrangians, mechanical connections and Lagrange-Poincaré equations 14

coordinate expression of the reduced field is simply Γ̌ = vi∂/∂xi + Γi∂/∂vi + Γa∂/∂wa;

as we observed earlier, Γi and Γa are invariant, so may be considered as functions on

TM/G. The above equations, usually written in the form

d

dt

(
∂l

∂vi

)
− ∂l

∂xi
= (Ka

ikv
k + Υa

ibw
b)

∂l

∂wa

d

dt

(
∂l

∂wa

)
= (Υb

iav
i + Cb

acw
c)

∂l

∂wb
,

are the so-called Lagrange-Poincaré equations (see e.g. [1]).

The specific structure of the manifold and the symmetry group at hand can lead to some

interesting subcases. For example, if the symmetry group G happens to be Abelian, all

terms containing the structure coefficients of the Lie algebra vanish. From the last

equation we then obtain that the ‘momentum’ ∂l/∂wa is constant, let’s say µa. If

moreover the matrix (∂2l/∂wa∂wb) is non-singular, the relation ∂l/∂wa = µa can be

rewritten in the form wa = ρa(x, v). With that, the first equation becomes a second

order differential equation in the variables xi. By introducing Routh’s (reduced) function

Rµ(x, v) = l(x, v, ρ(x, v))− µaρ
a(x, v)

the first equation can equivalently be rewritten as

d

dt

(
∂Rµ

∂vi

)
− ∂Rµ

∂xi
= Ka

ikv
kµa.

This equation is known as Routh’s (reduced) equation for an Abelian symmetry group.

Routh’s reduction process can be extended to non-Abelian symmetry groups. However,

the extension requires that the two steps in the process above (first reduction and then

restriction to a level set of momentum) be alternated. For more details, see [3] and

[10]. There is no obvious way to relate the Lagrange-Poincaré equations to the reduced

Routh equations in the case of a non-Abelian symmetry group.

Another interesting case occurs when the manifold M is a product N × G. Then, we

can choose the connection to be trivial and all terms involving connection coefficients

will vanish. Finally, if the manifold is in fact the Lie group G, the equations

d

dt

(
∂l

∂wa

)
= Cb

acw
c ∂l

∂wb

are known as the Euler-Poincaré equation, see e.g. [10].

5. Reconstruction

Now that we have derived the reduced form of the Euler-Lagrange equations it remains to

consider the problem of reconstruction: suppose we can find a solution of these equations,

that is, an integral curve of Γ̌, how do we reconstruct from it a solution of the original

equations, that is, an integral curve of Γ?

There is in fact a standard method for reconstructing integral curves of an invariant

vector field from reduced data, which makes use of connection theory. Let π : M → B
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be a principal fibre bundle with group G. An invariant vector field X on M defines

a π-related reduced vector field X̌ on B. Let us suppose that M is equipped with a

principal connection ω. Let v̌(t) be an integral curve of X̌ (in B). Let m be a point of

M in the fibre over v̌(0): we aim to find the integral curve of X though m. We first lift

v̌(t) to M by using the connection to form its horizontal lift through m, v̌H(t): this is

the unique curve in M projecting onto v̌ such that ω( ˙̌vH) = 0 and v̌H(0) = m. Now let

v(t) be the integral curve of X through m. Since v(t) also projects onto v̌(t) there is a

curve t 7→ g(t) ∈ G, with g(0) = e, such that v(t) = ψM

g(t)v̌
H(t). On differentiating this

equation we obtain

v̇ = ψTM

g

(
ϑ̃(ġ) ◦ v̌H + ˙̌vH

)

where ϑ is the Maurer-Cartan form of G (so that ϑ(ġ(t)) is a curve in g). But

v̇(t) = X(v(t)) = X(ψM

g(t)v̌
H(t)) = ψTM

g(t)X(v̌H(t)),

since X is invariant, from which it follows that

ϑ̃(ġ) ◦ v̌H + ˙̌vH = X ◦ v̌H.

The first term on the left-hand side is vertical, the second horizontal, so this equation

is simply the decomposition of X ◦ v̌H into its horizontal and vertical components with

respect to ω. Thus g(t) must satisfy the so-called reconstruction equation

ϑ(ġ) = ω(X ◦ v̌H),

where ω is taken to be the connection 1-form, so that the right-hand side is a curve

in g. This is a differential equation for the curve g(t), and has a unique solution with

specified initial value (see for example [14]). Thus the curve g(t) is uniquely determined

by the equation and the initial condition g(0) = e. Conversely, if g(t) is the solution

of the reconstruction equation such that g(0) = e then v(t) = ψM

g(t)v̌
H(t) is the integral

curve of X through m.

We can use this method to obtain an integral curve of Γ from one of Γ̌ by using

the generalized mechanical connection on πTM : TM → TM/G. The reconstruction

equation in this case is

ϑ(ġ) = Ωm(Γ ◦ v̌H). (8)

We have therefore to find the vertical component of Γ with respect to Ωm. This is not

completely straightforward because we have expressed Γ in terms of the invariant basis

to obtain the reduced Euler-Lagrange equations in the previous section, whereas Ωm, as

a g-valued 1-form, is specified by

Ωm(ẼC

a ) = Ea, Ωm(ẼV

a ) = 0, Ωm(X̄C

i ) = 0, Ωm(XV

i ) = 0,

where

X̄C

i = XC

i + Ba
i Ẽ

C

a = XC

i − gabgbiẼ
C

a .

Recall that Êa = Ab
aẼb. From the general properties (fZ)C = fZC + ḟZV and

(fZ)V = fZV we find that

ÊC

a = Ab
aẼ

C

b + Ȧb
aẼ

V

b , ÊV

a = Ab
aẼ

V

b ,
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and therefore

Ωm(ÊC

a ) = Ab
aEb, Ωm(ÊV

a ) = 0.

Moreover, Ωm(XC
i ) = Ba

i Ea. Thus with

Γ = waÊC

a + viXC

i + ΓaÊV

a + ΓiXV

i .

we have

Ωm(Γ) = (Aa
bw

b −Ba
i v

i)Ea.

The reconstruction equation is therefore

ϑ(ġ(t)) = (Aa
b (v̌

H(t))wb(t)−Ba
i (v̌H(t))vi(t))Ea;

since wa and vi are invariant, wb(t) and vi(t) are just their values on v̌(t). In fact

in the coordinate system we used in the previous section, corresponding to a chart

U × G on M , the (left) action on M is simply given by ψM
g (x, h) = (x, gh), and

the induced action on TM by ψM
g (x, h, wa, vi) = (x, gh, wa, vi) (to use a somewhat

bastardized but self-explanatory notation). We assume that we are able to calculate the

integral curve v̌(t) = (x(t), wa(t), vi(t)) of the reduced vector field Γ̌ through πTM(v0)

for some point v0 ∈ TM . The horizontal lift of v̌ is a curve in TM of the form

v̌H(t) = (x(t), h(t), wa(t), vi(t)), where h(t) is a curve in G to be determined by v0 and by

the relation Ωm( ˙̌vH) = 0. Moreover, since we have identified the fibres of πM : M → M/G

with G, Aa
b is effectively a function on G. The reconstruction equation can therefore be

written

ϑ(ġ(t)) = (Aa
b (h(t))wb(t)−Ba

i (v̌H(t))vi(t))Ea, (9)

and the integral curve of Γ is just v(t) = (x(t), g(t)h(t), wa(t), vi(t)).

It may be of interest to express Γ in its vertical and horizontal components with respect

to Ωm. In the first place,

Γ = (Aa
bw

b −Ba
i v

i)ẼC

a + viX̄C

i + (Γa + wbȦc
bĀ

a
c)Ê

V

a + ΓiXV

i ,

where (Āb
a) is the matrix inverse to (Ab

a). To proceed further we need a more revealing

expression for the term involving Ȧc
b, the total derivative of Ac

b. We can rewrite Ȧc
b as

wdÊd(A
c
b) + viXi(A

c
b).

Now

Êd(A
c
b) = Ae

dẼe(A
c
b) = Ae

dC
c
efA

f
b ,

and therefore

wbwdÊd(A
c
b) = Cc

ef (A
e
dw

d)(Af
b w

b) = 0.

Recall that Xi(A
c
b) = Υd

ibA
c
d. Thus

wbȦc
bĀ

a
c = Υa

ibv
iwb,

and the coefficient of ÊV
a is Γa + Υa

ibv
iwb.
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By taking into account the fact that Ka
ijv

ivj = 0, together with the expression just

obtained, it easily follows that the horizontal part of Γ projects onto Γ̌, as it must.

The above connection is not the same as the one we have used in [2] for the reconstruction

of an arbitrary (not necessarily Lagrangian) second-order field Γ on TM . There we

started with an arbitrary principal connection ω on M and formed its vertical lift Ω

on TM , as we described earlier. For projectable vector fields W on TM we have

Ω(W ) = ω(τ∗W ) (regarding connections as type (1, 1) tensor fields). Thus

Ω(ẼC

a ) = ẼC

a , Ω(ẼV

a ) = 0, Ω(XC

i ) = 0 and Ω(XV

i ) = 0.

With respect to the vertical lift connection Ω the reconstruction equation is just

ϑ(ġ) = Ab
a(h(t))wb(t)Eb, (10)

where the curve h(t) in G is now of course determined by the horizontal lift of v̌ with

respect to Ω, not Ωm as before.

Note that in the case of a simple mechanical system, where we can take ω to be the

mechanical connection, the vertical lifts Ω and Ωm coincide. In that case, the Hessian

coincides with the Riemannian metric, and the horizontal vector fields Xi are orthogonal

to the vector fields Ẽa, from which gai = 0 and therefore also Ba
i = 0.

6. Illustrative examples

6.1. A charged particle in a magnetic field and Wong’s equations

We apply the above introduced machinery to the Kaluza-Klein formulation of a charged

particle in a magnetic field, see e.g. [10]. We will consider two steps of abstraction. In the

first step, we assume given a Riemannian manifold on which a group G acts freely and

properly to the left as isometries and we make the further stipulation that the vertical

part of the metric (that is, its restriction to the fibres of πM : M → M/G) comes from

a bi-invariant metric on G. We write down the geodesic equations of the metric, by

interpreting them as the Euler-Lagrange equations for the kinetic energy Lagrangian.

The reduced equations in such a case are known as Wong’s equations [1, 13]. In the

second step, we take the manifold to be E3 × S and the metric to be of Kaluza-Klein

type.

We will denote the metric by g. The fact that the symmetry group acts as isometries

means that the fundamental vector fields ξ̃ are Killing fields: Lξ̃g = 0. It follows that

the components of g with respect to the members of an invariant basis {Êa, Xi} are

themselves invariant. We will set g(Êa, Êb) = hab and g(Xi, Xj) = gij. We will use the

mechanical connection, which means that g(Êa, Xi) = 0. Since both hab and gij are G-

invariant functions, they pass to the quotient; in particular, the gij are the components

with respect to the coordinate fields of a metric on M/G, the reduced metric.

The further assumption about the vertical part of the metric has the following

implications. It means in the first place that LÊc
g(Êa, Êb) = 0 (as well as LẼc

g(Êa, Êb) =

0), and secondly that the hab must be independent of the coordinates xi on M/G,



Invariant Lagrangians, mechanical connections and Lagrange-Poincaré equations 18

which is to say that they must be constants. From the first condition, taking into

account the bracket relations [Êa, Êb] = Cc
abÊc, we easily find that the hab must satisfy

hadC
d
bc + hbdC

d
ac = 0. Recall that if we set

Xi =
∂

∂xi
− γa

i Êa

for some G-invariant coefficients γa
i , we get Υb

ia = γc
i C

b
ac, and therefore hacΥ

c
ib +hbcΥ

c
ib =

0.

The geodesic equations may be derived from the Lagrangian

L = 1
2
gαβuαuβ = 1

2
gijv

ivj + 1
2
habw

awb.

It is of course G-invariant. We may therefore apply Lagrange-Poincaré reduction, which

gives the reduced equations

d

dt
(gijv

j)− 1
2

∂gjk

∂xi
vjvk = − (Ka

ijv
j + Υa

ibw
b)hacw

c

d

dt
(habw

b) = (Υb
iav

i + Cb
acw

c)hbdw
d.

Now Υa
ibhac is skew-symmetric in b and c, and Cb

achbd is skew-symmetric in c and d, so the

final terms in each equation vanish identically. Let Γ i
jk be the connection coefficients of

the Levi-Civita connection of the reduced metric gij. Then, we may write the equations

in the form

gij

(
ẍj + Γj

klẋ
kẋl

)
= − hbcK

c
ijẋ

jwb

hab

(
ẇb + Υb

icẋ
iwc

)
= 0,

using the skew-symmetry of Υc
ibhac again in the second equation. Given that Kc

ij is of

course skew-symmetric in its lower indices, these equations are equivalent to

ẍi + Γ i
jkẋ

jẋk = gikhbcK
c
jkẋ

jwb

ẇa + Υa
jbẋ

jwb = 0.

These are Wong’s equations.

Let us now take M to be E3 × S, with coordinates (xi, θ). Let Ai be the components of

a covector field on E3, and define a metric g on M , the Kaluza-Klein metric, by

g = δijdxi ¯ dxj + (Aidxi + dθ)2

where (δij) is the Euclidean metric. The Kaluza-Klein metric admits the Killing field

E = ∂/∂θ. The vector fields Xi = ∂/∂xi − Ai∂/∂θ are orthogonal to E and invariant;

moreover gij = g(Xi, Xj) = δij, while g(E, E) = 1. Finally

[Xi, Xj] =

(
∂Ai

∂xj
− ∂Aj

∂xi

)
∂

∂θ
.

Putting these values into the reduced equations above we obtain

ẍi = wẋj

(
∂Ai

∂xj
− ∂Aj

∂xi

)
, ẇ = 0.

These are the equations of motion of a particle of unit mass and charge w in a magnetic

field whose vector potential is Aidxi.
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6.2. A worked-out example

We will consider the Lie group G of the affine line. An element of this group is an affine

map R → R : t 7→ exp(θ)t + φ and can be represented by the matrix
(

exp θ φ

0 1

)
.

The identity element is just t 7→ t (the identity matrix) and multiplication on the left of

(θ2, φ2) by (θ1, φ1) is given by the composition of the two affine maps, i.e. the element

(θ1, φ1) ∗ (θ2, φ2) = (θ1 + θ2, exp(θ1)φ2 + φ1).

The corresponding Lie algebra is given by the set of matrices of the form
(

a b

0 0

)
.

The manifold M of interest is G × R. The action on the manifold is given by left

translation on the G factor of G × R. We will write x0 = x for the coordinate on R.

For this action and this manifold there is a trivial principal connection ω, with γ0
a = 0.

A basis of fundamental vector fields is

Ẽ1 =
∂

∂θ
+ φ

∂

∂φ
, Ẽ2 =

∂

∂φ
.

The vector fields that are horizontal with respect to the trivial connection all lie in

the direction of X = ∂/∂x. The adapted coordinates (vi, va) are therefore v0 = ẋ and

v1 = θ̇, v2 = φ̇− φθ̇.

The Lie algebra bracket is given by [Ẽ1, Ẽ2] = −Ẽ2. The complete and vertical lifts of

this basis are

ẼC

1 =
∂

∂θ
+ φ

∂

∂φ
+ φ̇

∂

∂φ̇
, ẼC

2 =
∂

∂φ
, ẼV

1 =
∂

∂θ̇
+ φ

∂

∂φ̇
, ẼV

2 =
∂

∂φ̇
.

An invariant basis of vector fields is given by {Ê1, Ê2, X}, where

Ê1 =
∂

∂θ
, Ê2 = exp(θ)

∂

∂φ
,

and the coordinates with respect to this basis are v0 = ẋ, w1 = θ̇ and w2 = exp(−θ)φ̇.

The complete and vertical lifts of the above basis are

ÊC

1 =
∂

∂θ
, ÊC

2 = exp(θ)
( ∂

∂φ
+ θ̇

∂

∂φ̇

)
, ÊV

1 =
∂

∂θ̇
, ÊV

2 = exp(θ)
∂

∂φ̇
,

XC =
∂

∂x
, XV =

∂

∂ẋ
.

Finally, the matrix A, defined by the relation Êa(x, g) = Ab
a(g)Ẽb(x, g), is here

A(g) =

(
1 0

−φ exp(θ)

)
.

At the identity of the Lie group, the matrix A is the identity matrix, as it should be.
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If we use the invariant fibre coordinates (v0, wa), the induced action on TM is simply

ψTM
(φ1,θ1)(x, (φ, θ), ẋ, w1, w2) = (x, (φ1, θ1) ∗ (φ, θ), ẋ, w1, w2). Since the coordinates

(x, ẋ, w1, w2) can be interpreted as coordinates on TM/G = TR × TG/G = TR × g,

invariance of the Lagrangian simply means that the group variables do not explicitly

appear in the Lagrangian, when it is written in terms of the invariant fibre coordinates.

We will work with the Lagrangian

L = 1
2
θ̇2 + qẋθ̇ + 1

2
ẋ2 + ln(exp(−θ)φ̇),

where q is a constant. The Lagrangian is clearly not of the simple type. One easily

verifies that the Lagrangian is invariant: ẼC
1 (L) = 0 = ẼC

2 (L). In the invariant fibre

coordinates (wi = (w1, w2), ẋ), the Lagrangian is

L = 1
2
w2

1 + qẋw1 + 1
2
ẋ2 + ln(w2),

so, indeed, (φ, θ) do not appear explicitly. This Lagrangian is also invariant under the

obvious R-action on the manifold, but we will not take this into consideration.

The Hessian matrix in the basis {Ẽa, X} is here

g =




1− φ2

φ̇2 − φ

φ̇2 q

− φ

φ̇2 − 1
φ̇2 0

q 0 1


 .

The determinant of g is (q2 − 1)/φ̇2, so the Lagrangian is regular as long as q2 6= 1.

The upper left (2,2) matrix represents (gab). It is non-singular since its determinant is

−1/φ̇2. Its inverse is

(gab) =

(
1 −φ

−φ φ2 − φ̇2

)
.

The vector field X̄ along τ that projects onto ∂/∂x on M/G and is horizontal for the

generalized mechanical connection ωm is

X̄ =
∂

∂x
− gbcgcxẼb

=
∂

∂x
− qẼ1 + qφẼ2

=
∂

∂x
− q

∂

∂θ
.

This vector field is in fact a basic vector field along τ . Although the Lagrangian and

the Hessian are not of the simple type, in this example the generalized mechanical

connection turns out to be derived from a principal connection on M → M/G, and is

not of the most general case of an invariant connection on the pullback bundle.

The corresponding vector field that is horizontal with respect to the connection Ωm is

X̄C =
∂

∂x
− qẼC

1 + qφẼC

2

=
∂

∂x
− q

∂

∂θ
− qφ̇

∂

∂φ̇
.
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Let us look now at the dynamics. First, let us pretend that we do not know that the

system exhibits symmetry and solve directly the Euler-Lagrangian equations for this

Lagrangian. The equations for x, θ and φ are here, respectively:

qθ̈ + ẍ = 0, θ̈ + qẍ + 1 = 0, − φ̈

φ̇2
= 0.

From the x-equation, it is again clear that there is also R-symmetry. The solution of

the system is easy to find. With the obvious notations for the integration constants, we

obtain

x(t) = −1
2

qt2

q2 − 1
+ ẋ0t + x0, θ(t) = 1

2

t2

q2 − 1
+ θ̇0t + θ0, φ(t) = φ̇0t + φ0.

We will assume that φ̇0 > 0.

We now apply the technique of symmetry reduction and reconstruction. We first need

a solution of the Lagrange-Poincaré equations. Since for the current example the

connection coefficients of the trivial connection vanish, these equations become

d

dt

(
∂l

∂wb

)
=

∂l

∂wa
Ca

bdw
d,

d

dt

(
∂l

∂ẋ

)
− ∂l

∂x
= 0.

The reduced Lagrangian on TM/G is

l(x, ẋ, w1, w2) = 1
2
w2

1 + qẋw1 + 1
2
ẋ2 + ln(w2),

and the reduced equations are

ẇ1 + qẍ = −1, ẇ2 = −w1w2, qẇ1 + ẍ = 0.

If we set w1(0) = θ̇0 and w2(0) = exp(−θ0)φ̇0, the solution of the above equations is

x(t) = −1
2

qt2

q2 − 1
+ ẋ0t + x0, w1(t) =

t

q2 − 1
+ θ̇0,

w2(t) = φ̇0 exp

(
−θ0 − 1

q2 − 1
(1

2
t2 − θ̇0t + θ̇0q

2t)

)
.

Clearly, x(t) has the desired form. From the reduced solution v̌(t) =

(x(t), ẋ(t), w1(t), w2(t)), we could determine the remaining coordinates (θ(t), φ(t))

directly from the relations θ̇ = w1 and exp(−θ)φ̇− θ̇ = w2. The reconstruction process

as described above splits this calculation into two steps: first we calculate the horizontal

lift of v̌(t), and then we use it in the reconstruction equation. In this way, we will see

the effect of changing the connection in the reconstruction equation.

The coordinates of the horizontal lift using the generalized mechanical connection are

v̌H(t) = (x(t), φH(t), θH(t), ẋ(t), w1(t), w2(t)), with respect to the invariant basis. They

can be determined by the relation

0 = Ωm( ˙̌vH(t)) = ωm(v̌H, T τ ◦ ˙̌vH) = ωm

(
v̌H,

d

dt
(τ ◦ v̌H)

)
.

This equation for τ ◦ v̌H(t) = (x(t), φH(t), θH(t)) is

θ̇H = −qẋ, φ̇H = −qẋφH + qẋφH = 0.
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Therefore θH(t) = −qx(t) + qx0 + θ0 and φH(t) = φ0.

Now we determine the curve g(t) = (θ1(t), φ1(t)) in G such that v = gv̌H is the

solution of the Euler-Lagrange equations with the given initial values. This curve is

the solution through the identity of the reconstruction equation g−1ġ = Ωm(Γ ◦ v̌H).

The left hand side is θ̇1E1 + exp(−θ1)φ̇1E2. The right hand side is ωm(v̌H), or

(w1 + qẋ)ẼC
1 ◦ v̌H + (w2 + qφmẋ)ẼC

1 ◦ v̌H. The reconstruction equations are therefore

θ̇1 = w1 + qẋ, exp(−θ1)φ̇1 = −φHw1 + exp(θm)w2 − qφHẋ.

Solving the above equations for (θ1, φ1) gives

θ1(t) = −1
2
t2 + (qẋ0 + θ̇0)t, φ1(t) = φ̇0t + φ0

(
1− exp(1

2
(2qẋ0 − t + 2θ̇0)t)

)
.

The final solution is therefore indeed

θ(t) = θ1(t) + θm(t) = 1
2

t2

q2 − 1
+ θ̇0t + θ0, φ(t) = exp(θ1(t))φm(t) + φ1(t) = φ̇0t + φ0.

If we use the vertical lift Ω of the trivial (principal) connection ω, the equation that

determines the horizontal lift v̌H (again with group coordinates (φH, θH)) is ω( d
dt

(τ◦v̌H)) =

0, or

θ̇H = 0, φ̇H = 0,

from which θH(t) = θ0 and φH(t) = φ0. The equation g−1ġ = Ω(Γ ◦ v̌H) = ω(v̌H) for

g = (φ1(t), θ1(t)) is then

θ̇1 = w1, exp(−θ1)φ̇1 = −φHw1 + exp(θH)w2.

Its solution is

θ1(t) = 1
2

t2

q2 − 1
+ θ̇0t, φ1(t) = φ0(1− exp(1

2

t2 − 2θ̇0t + 2θ̇0q
2t

q2 − 1
)) + φ̇0t,

which leads again to the same solution (θ(t), φ(t)).

The solution using the vertical lift of ω is somewhat simpler, but this is only to be

expected since ω is trivial.

7. Conclusions and Outlook

We have considered regular Lagrangians that are invariant under a symmetry Lie group

and we have derived the reduced Euler-Lagrange equations, the so-called Lagrange-

Poincaré equations. Our framework relied on the associated Euler-Lagrange vector

field and its quotient field, rather than on the variational formalism and on the use

of well-chosen quasi-velocities. Given an integral curve of the reduced vector field, we

have shown how to reconstruct an integral curve of the original Euler-Lagrange field

by means of a principal connection that is natural associated to the Lagrangian, the

so-called generalized mechanical connection.

In forthcoming papers, we will apply the same technique also to the context of a different

but related Lagrangian reduction technique [3] and to the characterization of relative

equilibria [4].
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