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Abstract

When the initial and transition probabilities of a
finite Markov chain in discrete time are not well
known, we should perform a sensitivity analysis.
This is done by considering as basic uncertainty
models the so-called credal sets that these prob-
abilities are known or believed to belong to, and
by allowing the probabilities to vary over such
sets. This leads to the definition of an imprecise
Markov chain. We show that the time evolution of
such a system can be studied very efficiently using
so-called lower and upper expectations. We also
study how the inferred credal set about the state
at time n evolves as n→∞: under quite unrestrict-
ive conditions, it converges to a uniquely invariant
credal set, regardless of the credal set given for the
initial state. This leads to a non-trivial generalisa-
tion of the classical Perron–Frobenius Theorem
to imprecise Markov chains.

1 Setting the stage

One convenient way to model uncertain dynamical systems
is to describe them as Markov chains. These have been
studied in great detail, and their properties are well known.
However, in many practical situations, it remains a chal-
lenge to accurately identify the transition probabilities in the
Markov chain: the available information about physical sys-
tems is often imprecise and uncertain. Describing a real-life
dynamical system as a Markov chain will therefore often
involve unwarranted precision, and may lead to conclusions
not supported by the available information.

For this reason, it seems quite useful to perform probabil-
istic robustness studies, or sensitivity analyses, for Markov
chains. This is especially relevant in decision-making ap-
plications. Many researchers in Markov Chain Decision
Making (White and Eldeib, 1994; Harmanec, 2002; Nilim
and El Ghaoui, 2005; Itoh and Nakamura, 2007)—inspired

by Satia and Lave’s (1973) original work—have paid atten-
tion to this issue of ‘imprecision’ in Markov chains.

Early work on the more mathematical aspects of modelling
such ‘imprecision’ in Markov chains was done by Kozine
and Utkin (2002). Armed with linear programming tech-
niques, these authors also performed an experimental study
of the limit behaviour of Markov chains with uncertain
transition probabilities. More recently, Škulj (2006, 2007)
has begun a formal study of the time evolution and limit
behaviour of such systems.

All these approaches use sets of probabilities to deal with
the imprecision in the transition probabilities. When these
probabilities are not well known, they are assumed to belong
to certain sets, and robustness analyses are performed by
allowing the transition probabilities to vary over such sets.
As we shall see, this approach leads to a number of com-
putational difficulties, which we show can be overcome by
tackling the same problem from another angle, using lower
and upper expectations, rather than sets of probabilities.

In the rest of this Introduction, we give an overview of the
theory of classical Markov chains and formulate the classical
Perron–Frobenius theorem. Then, in Sections 2 and 3, we
introduce imprecise Markov chains and generalise many
aspects of the classical theory. In Section 4, we generalize
the Perron–Frobenius theorem. We discuss a number of
theoretical and numerical examples in Section 5, and we
give perspectives for further research in the Conclusions.

1.1 Analysis of classical Markov chains

Consider a finite Markov chain in discrete time, where at
times n = 1,2,3, . . . ,N, N ∈ N the state X(n) of a system
can assume any value in a finite set X . Here N denotes the
set of non-zero natural numbers, and N is the time horizon.
The time evolution of such a system can be modelled as if it
traversed a so-called event tree (Shafer, 1996). An example
of such a tree for X = {a,b} and N = 3 is given in Figure 1.
The situations, or nodes, of the tree have the form x1:k :=
(x1, . . . ,xk) ∈X k, k = 0,1, . . . ,N. For k = 0 there is some
abuse of notation as we let X 0 := {�}, where � is the
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Figure 1: The event tree for the time evolution of system that
can be in two states, a and b, and can change state at time
instants n = 1,2. Also depicted are the respective cuts X 1

and X 2 of � where the states at times 1 and 2 are revealed.

so-called initial situation, or root of the tree. In the cuts X n

of �, the value of the state X(n) at time n is revealed.

In a classical analysis, it is generally assumed that we have:
(i) a probability distribution over the initial state X(1), in
the form of a probability mass function m1 on X ; and (ii)
for each situation x1:n that the system can be in at time n,
a probability distribution over the next state X(n+1), in the
form of a probability mass function q(·|x1:n) on X . This
means that in each non-terminal situation1 x1:n of the event
tree, we have a local probability model telling us about
the probabilities of each of its child nodes. This turns the
event tree into a so-called probability tree; see Shafer (1996,
Chapter 3) and Kemeny and Snell (1976, Section 1.9).

The probability tree for a Markov chain is special, because
the Markov Condition states that when the system jumps
from state X(n) = xn to a new state X(n + 1), where the
system goes to will only depend on the state X(n) = xn the
system was in at time n, and not on its states X(k) = xk at
previous times k = 1,2, . . . ,n−1. In other words:

q(·|x1:n) = qn(·|xn), x1:n ∈X n, n = 1, . . . ,N−1, (1)

where qn(·|xn) is some probability mass function on X .
The Markov chain may be non-stationary, as the transition
probabilities are allowed to depend explicitly on the time n.
Figure 2 gives an example of a probability tree for a Markov
chain with X = {a,b} and N = 3.

With the local probability mass functions m1 and qn(·|xn)
we associate the linear real-valued expectation functionals
E1 and En(·|xn), given, for all real-valued maps h on X , by

E1(h) := ∑
x1∈X

h(x1)m1(x1),

En(h|xn) := ∑
xn+1∈X

h(xn+1)qn(xn+1|xn).

In any probability tree, probabilities and expectations can be
calculated very efficiently using backwards recursion. Sup-
pose that in situation x1:n, we want to calculate the condi-
tional expectation E( f |x1:n) of some real-valued function f

1A non-terminal situation is a node of the tree that is not a leaf.
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Figure 2: The probability tree for the time evolution of
a Markov chain that can be in two states, a and b, and can
change state at each time instant n = 1,2.

on X N that may depend on the values of the states X(1)
to X(N). Let us indicate briefly how this is done, also taking
into account the simplifications due to the Markov Condi-
tion (1). A prominent part is played by the so-called trans-
ition operators Tn and Tn. Consider the linear space L (X )
of all real-valued maps on X . Then the linear operator
Tn : L (X )→L (X ) is defined by

Tnh(xn) := En(h|xn) = ∑
xn+1∈X

h(xn+1)qn(xn+1|xn) (2)

for all real-valued maps h on X . In other words, Tnh
is the real-valued map on X whose value Tnh(xn) in
xn ∈X is the conditional expectation of the random vari-
able h(X(n + 1)), given that the system is in state xn at
time n. More generally, we also consider the linear maps Tn
from L (X n+1) to L (X n), defined by

Tn f (x1:n) :=Tn f (x1:n, ·)(xn) = En( f (x1:n, ·)|xn)

=∑
xn+1∈X

f (x1:n,xn+1)qn(xn+1|xn) (3)

for all x1:n in X n and all real-valued maps f on X n+1. We
begin with the expectation E( f |x1:n) for n = N−1:

E( f |x1:N−1) =∑
xN∈X

f (x1:N−1,xN)q(xN |x1:N−1)

=∑
xN∈X

f (x1:N−1,xN)qN−1(xN |xN−1)

=TN−1 f (x1:N−1),

where the second inequality follows from the Markov Con-
dition (1), and the third from Eq. (3). Similar arguments for
n = N−2 and the Law of Iterated Expectations yield:

E( f |x1:N−2) = E(E( f (x1:N−2, ·, ·)|x1:N−2, ·)|x1:N−2)
= TN−2TN−1 f (x1:N−2).

Repeating this argument leads to the backwards recursion
formulae (for n = 1, . . . ,N−1)

E( f |x1:n) = TnTn+1 . . .TN−1 f (x1:n) (4)
E( f ) := E( f |�) = E1(T1T2 . . .TN−1 f ). (5)



In these formulae, f is any real-valued function on X N . If
we let f be the indicator functions I{x1:N} of the singletons
{x1:N}, these formulae allow us for instance to calculate
the joint probability mass function p(x1:N) = E(I{x1:N})
for all the variables X(1), . . . , X(N). We can also use
them to find the conditional mass functions p(xn+1:N |xn) =
p(xn+1:N |x1:n) := E(I{x1:N}|x1:n).

1.2 The Perron–Frobenius Theorem for classical
Markov chains

We are especially interested in the case of a stationary
Markov chain, and in the (marginal) expectation En(h) of
a real-valued function h (on X ) that depends only on the
state X(n) at time n. Here, Eq. (5) becomes

En(h) := E1(Tn−1h), (6)

where T := T1 = T2 = · · · = TN−1, and where we denote
by Tk the k-fold composition of T with itself; in particular,
T0 is the identity operator on L (X ). If we let h = I{xn}, this
allows us to find the probability mass function mn(xn) =
En(I{xn}) for the state X(n). Under some restrictions on
the transition operator T, the classical Perron–Frobenius
Theorem then tells us that, as n and the time horizon N
recede to infinity, this probability mass function converges
to some limit, independently of the initial probability mass
function m1; see Kemeny and Snell (1976, Theorem 4.1.6)
and Luenberger (1979, Chapter 6). In terms of expectation
functionals and transition operators:

Theorem 1 (Classical Perron–Frobenius Theorem, Expect-
ation Form). Consider a stationary Markov chain with fi-
nite state set X and transition operator T. Suppose that
T is regular, meaning that there is some k > 0 such that
minTkI{xk} > 0 for all xk in X . Then for every initial expect-
ation operator E1, the expectation operator En = E1 ◦Tn−1

for the state at time n converges point-wise to the same limit
expectation operator E∞: for all h ∈L (X ),

lim
n→∞

En(h) = lim
n→∞

E1(Tn−1h) = E∞(h).

Moreover, the limit expectation E∞ is the only T-invariant
expectation on L (X ), in the sense that E∞ = E∞ ◦T.

2 Towards imprecise Markov chains

The treatment above rests on the assumption that the initial
probabilities and the transition probabilities are precisely
known. If such is not the case, then it seems necessary to
perform some kind of sensitivity analysis, in order to find out
to what extent any conclusions we might reach using such a
treatment, depend on the actual values of these probabilities.

A very general way of performing a sensitivity analysis for
probabilities involves calculations with closed convex sets
of probability mass functions, also called credal sets, rather

than with single probability measures. Let ΣX denote the
set of all probability mass functions on X , an (|X |−1)-
dimensional unit simplex in the |X |-dimensional linear
space RX , then

{
m ∈ ΣX : (∀x ∈X )(m(x)≤ 1

2 )
}

is a cre-
dal set, but

{
m ∈ ΣX : (∃x ∈X )(m(x)≥ 1

2 )
}

is not.

There is a growing body of literature on this interesting and
fairly new area of imprecise probabilities, starting with the
publication of Walley’s (1991) seminal work. We refer to
the literature (Walley, 1991, 1996; Weichselberger, 2001;
De Cooman and Miranda, 2007) for more details and dis-
cussion.

Specifying a closed convex set P of probability mass
functions p on a finite set Y is equivalent (Walley, 1991,
Section 3.4.1) to specifying its lower and upper expecta-
tion (functionals) EP : L (Y )→R and EP : L (Y )→R,
defined by

EP(g) := min
{

Ep(g) : p ∈P
}

EP(g) := max
{

Ep(g) : p ∈P
}

for real-valued maps g on Y , where Ep(g) = ∑y∈Y g(y)p(y)
is the expectation of g associated with the probability
mass function p. In a sensitivity analysis, such function-
als are quite useful, because they give tight lower and upper
bounds on the expectation of any real-valued map. Since
the functionals EP and EP are conjugate in the sense that
EP(g) =−EP(−g) for all real-valued maps g on Y , one
is completely determined if the other is known. Below, we
concentrate on upper expectations.

What is the upshot of all this for the Markov chain problem
we are considering here? First of all, in the initial situation �,
corresponding to time n = 0, rather than a single initial
probability mass function m1, we now have a local credal
set M1 of candidate mass functions m1 for the state X(1)
that the system will be in at time k = 1. We denote by E1
the upper expectation associated with M1:

E1(h) := max
{

∑
x∈X

h(x)m1(x) : m1 ∈M1

}
for all h ∈L (X ). Also, in any situation x1:n ∈X n, corres-
ponding to time n = 1,2, . . . ,N−1, instead of a single trans-
ition mass function qn(·|xn), we now have a local credal set
Qn(·|xn) of candidate conditional mass functions qn(·|xn)
for the state X(n+1) that the system will be in at time n+1.
We denote by En(·|xn) the upper expectation associated with
Qn(·|xn), i.e., for all h ∈L (X ):

En(h|xn) := max
{

∑
x∈X

h(x)q(x) : q ∈Qn(·|xn)
}

. (7)

We call the resulting model an imprecise Markov chain.
Figure 3 gives an example of an imprecise Markov chain
probability tree. A classical, or precise, Markov chain is an
imprecise one with credal sets that are singletons.
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Figure 3: The tree for the time evolution of an imprecise
Markov chain that can be in two states, a and b, and can
change state at each time instant n = 1,2.

How, then, is a sensitivity analysis typically performed (Koz-
ine and Utkin, 2002; Škulj, 2006, 2007) for such an impre-
cise Markov chain? We choose, in each non-terminal situ-
ation x1:k of the above-mentioned event tree, a local trans-
ition probability mass q(·|x1:k) in the set of possible can-
didates Qk(·|xk).2 For k = 0, we get the initial situation �,
where we choose some element m1 in the set of possible
candidates M1. We then obtain a so-called compatible prob-
ability tree, for which we may calculate all (conditional)
expectations and probability mass functions:

E( f |x1:n) = ∑
xn+1:N∈X N−n

f (x1:n,xn+1:N)
N−1

∏
k=n

q(xk+1|x1:k), (8)

E( f ) = ∑
x1:N∈X N

f (x1:N)m1(x1)
N−1

∏
k=1

q(xk+1|x1:k), (9)

for n = 1, . . . ,N−1, and for all real-valued maps f on X N .
As we have just come to realise, the probability trees that are
compatible with an imprecise Markov chain are no longer
necessarily (precise) Markov chains themselves. It is still
possible to calculate the E( f |x1:n) and E( f ) in Eqs. (8)
and (9) using backwards recursion (Shafer, 1996, Chapter 3),
but the formulae for doing so will be more complicated than
the ones for precise Markov chains given by Eqs. (4) and (5).

If we repeat this for every other choice of the m1 in M1
and the q(·|x1:k) in Qk(·|xk), we end up with an infinity of
compatible probability trees, for which the associated (con-
ditional) expectations and probability mass functions turn
out to be closed convex sets. We denote their correspond-
ing upper expectation functionals on L (X N) by E(·|x1:n)
and E. These upper expectations, and the conjugate lower
expectations, are the final aim of our sensitivity analysis.

The procedure we have just described is computationally
very complex. When the closed convex sets M1 and Qk(·|x)
each have a finite number of extreme points (are polytopes),
we can limit ourselves to working with these sets of extreme

2These local transition probability masses themselves depend
on the situation x1:k they are attached to, but the sets Qk(·|xk) they
are chosen from only depend on the last state xk.

points, rather than with the infinite sets themselves. But even
then, the computational complexity of this approach will
generally be exponential in the number of time steps.

However, we prove in Section 3 that the upper expectations
E and E(·|x1:n) associated with the closed convex sets of
(conditional) probability mass functions for the compatible
probability trees of an imprecise Markov chain can be cal-
culated in the same way as the expectations E and E(·|x1:n)
in a precise one: using counterparts of the backwards recur-
sion formulae (4)–(6). Because of this, making inferences
about the mass function of the state at time n, i.e., finding
the upper envelope En of the En given in Eq. (6) now has
a complexity that is linear, rather than exponential, in the
number of time steps n. This is our first contribution.

Our second contribution in this paper is a Perron–Frobenius
Theorem for a special class of so-called regular stationary
imprecise Markov chains: in Section 4 we prove a gener-
alisation of Theorem 1, which tells us that under the fairly
weak condition of regularity, the upper expectation operat-
ors En converge to limits that do not depend on the initial
upper expectation operators E1.

3 Sensitivity analysis of imprecise Markov
chains

We are now ready to take our most important step: the
backwards recursion formulae for the conditional and joint
upper expectations in an imprecise Markov chain. We first
define upper transition operators Tn and Tn. The operator
Tn : L (X )→L (X ) is defined by

Tnh(xn) := En(h|xn) (10)

for all real-valued maps h on X , and all xn in X . In other
words, Tnh is the real-valued map on X , whose value
Tnh(xn) in xn ∈ X is the conditional upper expectation
of the random variable h(X(n+1)), given that the system
is in state xn at time n. More generally, we also consider the
maps Tn from L (X n+1) to L (X n), defined by

Tn f (x1:n) := Tn f (x1:n, ·)(xn) = En( f (x1:n, ·)|xn) (11)

for all x1:n in X n and all real-valued maps f on X n+1.
Of course, we can also consider lower expectations and
lower transition operators, which are related to the upper
expectations and upper transition operators by conjugacy.

The upper expectations E(·|x1:n) and E on L (X N) can be
calculated very easily by backwards recursion.

Theorem 2 (Concatenation Formula). For any x1:n in X n,
n = 1, . . . ,N−1, and for any real-valued map f on X N:

E( f |x1:n) = TnTn+1 . . .TN−1 f (x1:n) (12)

E( f ) = E1(T1T2 . . .TN−1 f ). (13)



Call, for any non-empty subset I of {1 . . . ,N}, a real-valued
map f on X N I-measurable if f (x1:N) = f (z1:N) for all
x1:N and z1:N in X N such that xk = zk for all k ∈ I. In other
words, an I-measurable f only depends on the states X(k) at
times k ∈ I. As an example, an {n}-measurable map h only
depends on the state X(n) at time n, and we identify it with
a map on X (but remember that it acts on states at time n).
The following proposition tells us that all upper conditional
expectations satisfy a Markov condition.
Proposition 3 (Markov Condition). Consider an impre-
cise Markov chain with finite state set X and time ho-
rizon N. Fix n ∈ {1, . . . ,N − 1}. Let x1:n−1 and z1:n−1 be
arbitrary elements of X n−1, and let xn ∈ X . Let f be
any {n,n+1, . . . ,N}-measurable real-valued map on X N .
Then it holds that E( f |x1:n−1,xn) = E( f |z1:n−1,xn), and
therefore we may write E( f |x1:n−1,xn) = E |n( f |xn).

The index ‘|n’ is meant to make clear that we are considering
an expectation conditional on X(n) = xn.

If we apply the joint upper expectation E to maps h that
only depend on the state X(n) at time n, we get the mar-
ginal upper expectation En(h) := E(h), which is a model
for the uncertainty about the state X(n) at time n. More gen-
erally, taking into account Proposition 3, we use the notation
En|`(h|x`) := E |`(h|x`) for the upper expectation of h(X(n)),
conditional on X(`) = x` with 1 ≤ ` < n. With notations
established in Eq. (7), En+1|n(h|xn) = En(h|xn) = Tnh(xn).
Such expectations can be found using simpler recursion
formulae than Eqs. (12) and (13), as they are based on the
simpler upper transition operators Tk.
Corollary 4. For any real-valued map h on X , and for any
1≤ ` < n≤ N and all x` in X :

En|`(h|x`) = T`T`+1 . . .Tn−1h(x`),

En(h) = E1(T1T2 . . .Tn−1h). (14)

This offers a reason for formulating our theory in terms of
real-valued maps rather than events: suppose we want to
calculate the upper probability En(A) that the state X(n)
at time n belongs to the set A. According to Eq. (14),
En(A) = E1(T1 . . .Tn−1IA), and even if Tn−1 can still be
calculated using upper probabilities only, it will generally
assume values other than 0 and 1, and therefore will not be
the indicator of some event. Already after one step, i.e., in
order to calculate Tn−2Tn−1IA, we need to leave the ambit of
events, and turn to the more general real-valued maps; even
if we only want to calculate upper probabilities after n steps.
But for joint upper and lower probability mass functions,
however, we can remain within the ambit of events:
Proposition 5 (Chapman–Kolmogorov Equations). For an
imprecise Markov chain, we have for all 1 ≤ n < m ≤ N
and all (xn,xn+1:m) ∈X m−n+1 that

E |n({xn+1:m}|xn) =
m−1

∏
k=n

TkI{xk+1}(xk), (15)

and for all 1≤ m≤ N and all x1:m ∈X m that

E({x1:m}) = E1({x1})
m−1

∏
k=1

TkI{xk+1}(xk). (16)

Analogous expressions hold for the lower expectations.

4 Convergence for imprecise Markov chains

Let us now consider a stationary imprecise Markov chain
with infinite horizon, meaning that T1 = T2 = · · · = Tn =
. . . =: T. Analogous to the precise case, we define the regu-
larity condition for the upper transition operator T. It will
turn out to be a sufficient condition for convergence.
Definition 6 (Regularity for upper transition operators). We
call an upper transition operator T regular if there is some
n ∈ N such that minTnI{y} > 0 for all y in X .

We call an upper expectation E on L (X ) T-invariant
whenever E ◦T = E, i.e., if E(Th)= E(h) for all h∈L (X ).
With this definition, we can formulate the upper expectation
form of the Perron–Frobenius theorem.
Theorem 7 (Perron–Frobenius Theorem, Upper Expecta-
tion Form). Consider a stationary imprecise Markov chain
with finite state set X and an upper transition operator T
that is regular. Then for every initial upper expectation E1,
the upper expectation En = E1 ◦Tn−1 for the state at time n
converges point-wise to the same upper expectation E∞:

lim
n→∞

En(h) = lim
n→∞

E1(Tn−1h) =: E∞(h)

for all h in L (X ). Moreover, the limit upper expectation
E∞ is the only T-invariant upper expectation on L (X ).

The classical Perron–Frobenius Theorem (Theorem 1) is of
course a special case of our Theorem 7. Škulj (2007) uses a
different, credal set approach to prove a similar (but much
weaker) result for imprecise Markov chains with regular
lower transition operators T. He also proves a convergence
result for conservative (too large) approximations of the En,
in the special case that T is regular but 2-alternating; see
Section 5.3 for further details.

5 Examples

In this section, we indicate how the above theory can be
applied in a number of practical situations, where the upper
expectations are of some special types, described in the
literature on imprecise probabilities. We present concrete
and explicit examples, as well as a number of simulations.

5.1 Contamination models

Suppose we consider a precise stationary Markov chain,
with transition operator T. We contaminate it with a vacu-
ous model, i.e., we take a convex mixture with the upper



transition operator IX max. This leads to the upper trans-
ition operator T, defined by

Th = (1− ε)Th+ IX ε maxh, (17)

for all h ∈L (X ), where ε is some constant in the open
real interval (0,1). The underlying idea is that we consider
a specific convex neighbourhood of T. Since for all x in X ,
minTI{x} = (1− ε)minTI{x}+ ε > 0, this upper transition
operator is always regular, regardless of whether T is! We
infer from Theorem 7 that, whatever the initial upper expect-
ation operator E1 is, the upper expectation operator En for
the state X(n) will always converge to the same E∞.

What is this E∞ is for given T and ε? For any n≥ 1, Tnh =
(1− ε)nTnh+ IX ε ∑

n−1
k=0(1− ε)k maxTkh, and therefore

En+1(h) = (1−ε)nE1(Tnh)+ε

n−1

∑
k=0

(1−ε)k maxTkh. (18)

If we now let n→ ∞, we see that the limit is indeed inde-
pendent of the initial upper expectation E1:

E∞(h) = ε

∞

∑
k=0

(1− ε)k maxTkh. (19)

Example 5.1 (Contaminating a cycle). Consider for in-
stance X = {a,b}, and let the precise Markov chain be
the cycle with period 2, with transition operator T given
by Th(a) = h(b) and Th(b) = h(a). Then T2nh = h and
T2n+1h = Th, and therefore maxT2nh = maxT2n+1h =
maxh, whence E∞(h) = maxh. �

Example 5.2 (Contaminating a random walk). Consider
a random walk, where X = {a,b} and Th = IX

h(a)+h(b)
2 .

Then we find that

E∞(h) = ε maxh+(1− ε)
h(a)+h(b)

2
. �

Example 5.3 (Another contamination model). To illus-
trate the convergence properties of an imprecise Markov
chain, let us look at a simple numerical example.
Again consider X = {a,b} and let the stationary im-
precise Markov chain be defined by an initial credal set
M1 =

{
m ∈ Σ{a,b} : 0.6≤ m(a)≤ 0.9

}
, and a contamina-

tion model of the type (17), with ε = 0.1, and for which
the precise transition operator T is defined by the Markov
matrix T :=

[q(a|a) q(b|a)
q(a|b) q(b|b)

]
=
[

0.15 0.85
0.85 0.15

]
. In Figure 4 we plot

the evolution of En({a}) and En({a}), the upper and lower
probability for finding the system in state a at time n, which
can be calculated efficiently using Eq. (18).

For comparison, we also plot the evolution of En({a}), the
probability for finding the system in state a at time n, for a
(precise) Markov chain defined by probability mass func-
tions that lie on the boundaries of the credal sets defining
the above imprecise Markov chain; to wit, its initial mass
function is given by M1 :=

[
m1(a) m1(b)

]
=
[
0.9 0.1

]
and its Markov matrix is

[
0.135 0.865
0.865 0.135

]
. Here E∞({a}) =

E∞({b}) = 0.5. �

En({a})
En({a})

En({a})

n
1 5 10 15 20

0

.2

.4

.6

.8

1

Figure 4: The time evolution of (i) the upper and lower
probability of finding the imprecise Markov chain of Ex-
ample 5.3 in the state a (outer plot marks and connecting
lines); and of (ii) the probability of finding the classical
Markov chain of Example 5.3 in the state a (inner plot
marks and connecting lines). The filled area denotes the
hull of the evolution of this probability, under the contam-
ination model of Example 5.3, for all possible initial mass
functions.

5.2 Belief function models

The contamination models we have just described are a
special case of a more general and quite interesting class
of models, based on Shafer’s notion of a belief function
Shafer (1976). We can consider a number of subsets Fj,
j = 1, . . . ,n of X , and a convex mixture of the vacuous
upper expectations relative to these subsets:

E(h) =
n

∑
j=1

m(Fj)max
x∈Fj

h(x), (20)

with m(Fj) ≥ 0 and ∑
n
j=1 m(Fj) = 1. In Shafer’s termino-

logy, the sets Fj are called focal elements, and the m(Fj)’s
the basic probability assignment.

We can now consider imprecise Markov chains where the
local models, attached to the non-terminal situations in the
tree, are of this type. The general backwards recursion for-
mulae we have given in Section 3 can then be used in com-
bination with the simple formulae of the type (20) for an
efficient calculation of all conditional and joint upper and
lower expectations in the tree. We leave this implicit how-
ever, and move on to another example, which is rather more
popular in the literature.

5.3 Models with lower and upper mass functions

An intuitive way to introduce imprecise Markov chains (Koz-
ine and Utkin, 2002; Campos et al., 2003; Škulj, 2006) goes
by way of so-called probability intervals, studied in a paper
by De Campos et al. (1994); see also Walley (1991, Sec-
tion 4.6.1). It consists in specifying lower and upper bounds
for mass functions. Let us explain how this is done in the
specific context of Markov chains.

For the initial mass function m1, we specify a lower bound
m1 : X → R, also called a lower mass function, and an
upper bound m1 : X → R, called an upper mass function.



The credal set M1 attached to the initial situation, which
corresponds to these bounds, is then given by

M1 := {m ∈ ΣX : (∀x ∈X )(m1(x)≤ m(x)≤ m1(x))} .

Similarly, in each non-terminal situation x1:k ∈ X k,
k = 1, . . . ,N−1 we have a credal set Qk(·|xk) that is defined
in terms of conditional lower and upper mass functions
qk(·|xk) and qk(·|xk). Here, for instance, qk(xk+1|xk) gives a
lower bound on the transition probability qk(xk+1|xk) to go
from state X(k) = xk to state X(k +1) = xk+1 at time k.

Under some consistency conditions—see (De Campos et al.,
1994) for more details—the upper expectation associated
with M1 is then given in all subsets A of X by

E1(A) = min
{

∑
z∈A

m1(z),1−∑
z∈X \A

m1(z)
}

,

This E1 is 2-alternating: E1(A∪B)+E1(A∩B)≤ E1(A)+
E1(B) for all subsets A and B of X . This implies (Wal-
ley, 1991, Section 3.2.4) that for all h ∈L (X ) the upper
expectation E1(h) can be found by Choquet integration:

E1(h) = minh+
maxh∫

minh

E1({z ∈X : h(z)≥ α})dα, (21)

where the integral is a Riemann integral. Similar considera-
tions for the 2-alternating Ek(·|xk) lead to formulae for the
upper transition operators Tk: for all xk in X ,

TkIA(xk) = min
{

∑
z∈A

qk(z|xk),1−∑
z∈X \A

qk(z|xk)
}

(22)

Tkh(xk) = minh+
maxh∫

minh

TkI{z∈X : h(z)≥α}(xk)dα. (23)

Example 5.4 (Close to a cycle). Consider a three-state sta-
tionary imprecise Markov model with X = {a,b,c} and
with marginal and transition probabilities given by probab-
ility intervals. It follows from Eqs. (22) and (23) that the
upper transition operator T is fully determined by the upper
and lower Markov matrices:q(a|a) q(b|a) q(c|a)

q(a|b) q(b|b) q(c|b)
q(a|c) q(b|c) q(c|c)

=
1

200

 9 9 162
144 18 18

9 162 9


q(a|a) q(b|a) q(c|a)

q(a|b) q(b|b) q(c|b)
q(a|c) q(b|c) q(c|c)

=
1

200

 19 19 172
154 28 28
19 172 19

 ,

where the numerical values are particular to this example.
Similarly, the initial upper expectation E1 is completely
determined by the matrices M1 and M1:

M1 :=
[
m1(a) m1(b) m1(c)

]
M1 :=

[
m1(a) m1(b) m1(c)

]
.

In Figure 5, we plot conservative approximations for the
credal sets Mn corresponding to the upper expectation oper-
ators En. Each approximation is based on the constraints that
can be found by calculating E1(Tn−1I{x}) and E1(Tn−1I{x})
using the backwards recursion method, for x = a,b,c.
The Mn evolve clockwise through the simplex, which is not
all that surprising as the lower and upper Markov matrices
are quite ‘close’ to the precise cyclic Markov matrixq(a|a) q(b|a) q(c|a)

q(a|b) q(b|b) q(c|b)
q(a|c) q(b|c) q(c|c)

=

0 0 1
1 0 0
0 1 0

 .

After a while, the Mn converge to a limit that is independent
of the initial credal set M1, as can be predicted from the
regularity of the upper transition operator. �

n = 1 n = 2 n = 3

n = 4 n = 5 n = 6

n = 11 n = 22 n = 1000

Figure 5: Evolution in the simplex Σ{a,b,c} of the credal sets
Mn for the near-cyclic transition operator from Example 5.4
for three different choices of the initial credal set M1.

6 Conclusions

Regularity seems to be a reasonably weak condition on
the upper transition operator T for a stationary imprecise
Markov chain, but we have seen that it is strong enough to
guarantee that the upper expectation for the state at time n
converges to a uniquely T-invariant upper expectation E∞,
regardless of the initial upper expectation E1.

Even when the regularity condition is not satisfied, it is not
so hard to see that any upper transition operator T is still
non-expansive under the supremum norm given for every
h ∈L (X ) by ‖h‖

∞
:= max |h|:

‖Tg−Th‖
∞
≤ ‖g−h‖

∞
,



Moreover, the sequence ‖Tnh‖
∞

is bounded because
‖Tnh‖

∞
≤ ‖h‖

∞
. It then follows from non-linear Perron–

Frobenius theory (Sine, 1990; Nussbaum et al., 1998) that
the sequence Tnh has a periodic limit cycle. More precisely,
there is a ξh ∈ L (X ) such that Tphξh = ξh i.e., ξh is a
periodic point of T with (smallest) period ph, and such that
Tnphh→ ξh (point-wise) as n→ ∞. It would be a very inter-
esting topic for further research to study the nature of the
periods and periodic points of upper transition operators.

In our discussions, for instance in Section 3, we have consist-
ently used the sensitivity analysis interpretation of imprecise
probability models such as upper expectations. Upper and
lower expectations can also be given another, so-called beha-
vioural interpretation, in terms of some subjects dispositions
towards accepting risky transactions. This is for instance
Walley’s (1991) preferred approach. The results we have de-
rived here remain valid on that alternative interpretation, and
the concatenation formulae (12) and (13) can then be shown
to be special cases of so-called marginal extension proced-
ure (Miranda and De Cooman, 2007), which provides the
most conservative coherent (i.e., rational) inferences from
the local predictive models Tk to general lower and upper
expectations. In another paper (De Cooman and Hermans,
2008), we give more details about how to approach a pro-
cess theory using imprecise probabilities on a behavioural
interpretation.
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A Proofs of main results

In this Appendix, we have gathered proofs for the most important results in the paper. We have done this to allow reviewers
to check our claims. Due to limitations of space, this Appendix will be omitted should the paper be accepted for publication.

Before we go on, it will be useful to collect a number of properties of the upper transition operators associated with imprecise
Markov chains. They follow immediately from the corresponding properties of upper expectations, so we omit the proof.

Proposition 8 (Properties of upper transition operators). Consider an imprecise Markov chain with a set of states X and
upper transition operators Tk. Then for arbitrary h, h1, h2, hn in L (X ), real λ ≥ 0 and real µ:

T1. IX minh≤ Tkh≤ IX maxh (boundedness);

T2. Tk(h1 +h2)≤ Tkh1 +Tkh2 (sub-additivity);

T3. Tk(λh) = λTkh (non-negative homogeneity);

T4. Tk(h+ µIX ) = Tkh+ µIX (constant additivity);

T5. if h1 ≤ h2 then Tkh1 ≤ Tkh2 (monotonicity);

T6. if hn→ h (point-wise) then Tkhn→ Tkh (continuity);

T7. Tkh≥−Tk(−h) = Tkh (upper–lower consistency).

Proof of Theorem 2. We first prove by induction that the left-hand sides are dominated by the right-hand sides in Eqs. (12)
and (13). To get the induction process started, we observe that Eq. (12) holds trivially for n = N−1. Next, we prove that if
the desired inequality in Eq. (12) holds for n = k +1, it also holds for n = k, where k is any element in {1,2, . . . ,N−2}. Let
us fix x1:k ∈X k, then we have to prove that

E( f |x1:k)≤ TkTk+1 . . .TN−1 f (x1:k),

where we can use that, in particular, for all xk+1 ∈X :

E( f |x1:k,xk+1)≤ Tk+1Tk+2 . . .TN−1 f (x1:k,xk+1). (24)

We have fixed x1:k, so we can regard E( f |x1:k, ·) as a real-valued map on X , depending only on the state X(k +1) at time
k +1. We denote this map by hk+1.

Now consider any compatible probability tree. In particular, let q(·|x1:k) ∈Qk(·|xk) be the corresponding local probability
mass function for the uncertainty about the state X(k +1) in the situation x1:k we are considering. It follows from the Law of
Iterated Expectations that in this probability tree

E( f |x1:k) = E(E( f |x1:k, ·)|x1:k),

and since E( f |x1:k, ·) ≤ E( f |x1:k, ·) = hk+1, by definition of the upper expectations in the tree, we may derive from the
monotonicity of expectation operators that E( f |x1:k) ≤ E(hk+1|x1:k). Now, hk+1 is a function of X(k + 1) only, so its
conditional expectation E(hk+1|x1:k) in situation x1:k can be calculated using the local conditional model q(·|x1:k) for
X(k +1), i.e.,

E(hk+1|x1:k) = ∑
xk+1∈X

hk+1(xk+1)q(xk+1|x1:k)≤ Ek(hk+1|xk),

where the inequality follows from Eq. (7). Hence E( f |x1:k)≤ Ek(hk+1|xk) and therefore

E( f |x1:k)≤ Ek(hk+1|xk) = Tkhk+1(xk)

≤ Tk
(
Tk+1Tk+2 . . .TN−1 f (x1:k, ·)

)
(xk) = TkTk+1Tk+2 . . .TN−1 f (x1:k),

where the first inequality follows from the definition of the upper expectations in the tree, the first equality follows from (10),
the second inequality from Eq. (24) and the monotonicity (T5) of upper transition operators, and the second equality from
Eq. (11).



In a completely similar way, but now using the model M1 rather than the model Qk(·|xk), we can prove that the desired
inequalities hold for n = 0, given that they hold for n = 1. So now we know that the left-hand sides are dominated by the
right-hand sides in Eqs. (12) and (13).

It remains to prove the converse inequalities. First, fix any x1:N−1 in the cut X N−1. Consider the partial map hN :=
f (x1:N−1, ·), then we know, because the credal set QN−1(·|xN−1) is convex and closed, that there is some probability mass
function in QN−1(·|xN−1), which we denote by q̂(·|x1:N−1), such that

∑
xN∈X

hN(xN)q̂(xN |x1:N−1) = EN−1(hN |xN−1) = TN−1 f (x1:N−1, ·)(xN−1) = TN−1 f (x1:N−1),

and therefore

∑
xN∈X

f (x1:N−1,xN)q̂(xN |x1:N−1) = TN−1 f (x1:N−1). (25)

Next, fix any situation x1:N−2 in the cut X N−2, and consider the partial map hN−1 := TN−1 f (x1:N−2, ·). Again we know,
since QN−2(·|xN−2) is convex and closed, that there is some probability mass function in QN−2(·|xN−2), which we denote
by q̂(·|x1:N−2), such that

∑
xN−1∈X

hN−1(xN−1)q̂(xN−1|x1:N−2) = EN−2(hN−1|xN−2)
= TN−2

(
TN−1 f (x1:N−2, ·)

)
(xN−2)

= TN−2TN−1 f (x1:N−2)

and therefore

∑
xN−1∈X

TN−1 f (x1:N−2,xN−1)q̂(xN−1|x1:N−2) = TN−2TN−1 f (x1:N−2). (26)

If we combine Eqs (25) and (26), we find that

∑
xN−1:N∈X 2

f (x1:N−2,xN−1:N)q̂(xN−1|x1:N−2)q̂(xN |x1:N−1) = TN−2TN−1 f (x1:N−2). (27)

We can obviously continue in this manner until we reach the root of the tree. We have then effectively constructed a
compatible probability tree for which the associated conditional and joint expectation operators satisfy

E( f |x1:n)≥ Ê( f |x1:n) :=∑
xn+1:N∈X N−n

f (x1:n,xn+1:N)
N−1

∏
k=n

q̂(xk+1|x1:k) = TnTn+1 . . .TN−1 f (x1:n),

for n = 1, . . . ,N−1 and

E( f )≥ Ê( f ) :=∑
x1:N∈X N

f (x1:N)m̂1(x1)
N−1

∏
k=1

q̂(xk+1|x1:k) = E1(T1T2 . . .TN−1 f ).

This tells us that the converse inequalities in Eqs. (12) and (13) hold as well.

Proof of Proposition 3. We use Eq. (12). It is clear from the definition (11) of the Tk that if f is {n,n+1, . . . ,N}-measurable,
then TN−1 f is {n,n + 1, . . . ,N − 1}-measurable, and then TN−2TN−1 f is also {n,n + 1, . . . ,N − 2}-measurable; so by
continuing the induction, we find Tn+1 . . .TN−1 f is {n,n+1}-measurable, and finally, Tn . . .TN−1 f is {n}-measurable.

Proof of Corollary 4. We use Eqs. (12) and (13) with f defined as follows: f (x1:N) := h(xn) for all x1:N ∈X N . Then, also
using (T3), the non-negative homogeneity of upper transition operators, we find after subsequently applying TN−1, . . . , T`



that

TN−1 f (x1:N−1) = TN−1(h(xn)IX )(xN−1) = h(xn)
...

Tn . . .TN−1 f (x1:n) = Tn(h(xn)IX )(xn) = h(xn)

Tn−1 . . .TN−1 f (x1:n−1) = Tn−1h(xn−1)

Tn−2 . . .TN−1 f (x1:n−2) = Tn−2Tn−1h(xn−2)
...

T` . . .TN−1 f (x1:`) = T`T`+1 . . .Tn−1h(x`),

and therefore T` . . .TN−1 f (x1:`−1, ·) = T`T`+1 . . .Tn−1h. Applying Proposition 3 then leads to the first desired equality. If,
for ` = 1, we now also apply the upper expectation E1 to both sides of this equality, the proof is complete.

Proof of Proposition 5. As an example, we prove Eq. (15), by applying Eq. (12) with its parameters chosen as f = I{xn+1:m}
and N = m. We then see that for any z1:m−1 ∈X m−1,

Tm−1I{xn+1:m}(z1:m−1) = Tm−1
(
I{xn+1:m−1}(zn+1:m−1)I{xm}

)
(zm−1)

= I{xn+1:m−1}(zn+1:m−1)Tm−1I{xm}(zm−1)

= I{xn+1:m−1}(zn+1:m−1)Tm−1I{xm}(xm−1)

= I{xn+1:m−1}(zn+1:m−1)Em−1({xm}|xm−1),

where we have used the non-negative homogeneity (T3) of upper transition operators. Therefore Tm−1I{xn+1:m} =
I{xn+1:m−1}Em−1({xm}|xm−1). Consequently, for any z1:m−2 ∈X m−2,

Tm−2Tm−1I{xn+1:m}(z1:m−2) = Tm−2
(
Tm−1I{xn+1:m}(z1:m−2)

)
(zm−2)

= Tm−2
(
I{xn+1:m−2}(zn+1:m−2)I{xm−1}Em−1({xm}|xm−1)

)
(zm−2)

= I{xn+1:m−2}(zn+1:m−2)Em−1({xm}|xm−1)Tm−2I{xm−1}(zm−2)

= I{xn+1:m−2}(zn+1:m−2)Em−1({xm}|xm−1)Tm−2I{xm−1}(xm−2)

= I{xn+1:m−2}(zn+1:m−2)Em−1({xm}|xm−1)Em−2({xm−1}|xm−2),

again using (T3), and therefore

Tm−2Tm−1I{xn+1:m} = I{xn+1:m−2}Em−1({xm}|xm−1)Em−2({xm−1}|xm−2).

Continuing in this fashion eventually leads to Eq. (15).

Before we prove the upper expectation form of the Perron–Frobenius theorem we will first prove the following lemma.

Lemma 9. Let the T be an upper transition operator, hence satisfying (T1)–(T7). Consider any h ∈L (Y ). Then the real
sequence minTnh, n ∈ N is non-decreasing and converges to some limit l(h) ∈ R. Similarly, the real sequence maxTnh,
n ∈ N is non-increasing and converges to some limit L(h) ∈ R. Of course minh≤ l(h)≤ L(h)≤maxh. If, in addition, T
satisfies Def. 6, then l(h) = L(h).

Proof. Fix h in L (Y ) and n in N0. From IY minTnh ≤ Tnh ≤ IY maxTnh we deduce using (T5) that T(IY minTnh) ≤
Tn+1h≤ T(IY maxTnh), and therefore, using (T3) and (T4), that IY minTnh≤ Tn+1h≤ IY maxTnh. Consequently,

minh≤minTnh≤minTn+1h≤maxTn+1h≤maxTnh≤maxh. (28)

This tells us that the real sequence maxTnh is non-increasing and bounded below (by minh). It therefore converges to some
real number L(h). Similarly, the real sequence minTnh is non-decreasing and bounded above (by maxh), and therefore
converges to some real number l(h). That minh≤ l(h)≤ L(h)≤maxh follows from the inequalities in Eq. (28) by taking
the limit n→ ∞.



To complete the proof, assume that T also satisfies Def. (6). We then have to prove that l(h) = L(h). We begin by showing
that there is some yo in Y such that for all n ∈ N there is some n′ > n for which L(h) ≤ Tn′h(yo). Indeed, suppose this
were not the case, then for all y ∈ Y there would be some ny such that for all n′ > ny, Tn′h(y) < L(h). Since Y is finite,
this would imply that there is some N := max

{
ny : y ∈ Y

}
such that for all n′ > N, maxTn′h < L(h), which contradicts

maxTnh↘ L(h).

We conclude from this that there is some yo in Y and some strictly increasing sequence kn of natural numbers with
limn→∞ kn = ∞, such that L(h)≤ Tknh(yo) for all n ∈N. Moreover, since also Tknh(yo)≤maxTknh, and limn→∞ maxTknh =
L(h), we see that limn→∞ Tknh(yo) = L(h).

By construction, we have for each n ∈ N that

IY minTknh+
[
Tknh(yo)−minTknh

]
I{yo} ≤ Tknh,

so it follows from (T1)–(T3) that for all k ∈ N

IY minTknh+
[
Tkn h(yo)−minTkn h

]
TkI{yo} ≤ Tkn+kh,

and by taking the minimum on both sides of the inequality,

minTknh+
[
Tknh(yo)−minTknh

]
minTkI{yo} ≤minTkn+kh.

If we now take the limit n→ ∞, we find that for all k ∈ N

l(h)+ [L(h)− l(h)]minTkI{yo} ≤ l(h),

and we infer from Def. 6 that there is some k ∈ N for which minTkI{yo} > 0, whence indeed L(h) = l(h).

Proof of Theorem 7. Since IY minTnh≤ Tnh≤ IY maxTnh, and by Lemma 9, both sequences minTnh and maxTnh con-
verge to the same real limit, which we denote by µh, it follows at once that Tnh converges (point-wise) to IY µh, hence
limn→∞ Tnh = IX µh. If we use the continuity of the upper expectation operator E1, as well as (T4) and (T3), we get

lim
n→∞

E1(Tn−1h) = E1

(
lim
n→∞

Tn−1h
)

= E1(IX µh) = µh,

and this limit is indeed independent of the choice of E1. Hence we find for the limit that E∞(h) := µh.

To complete the proof, consider any upper expectation E1 on L (X ) and any h in L (X ), then for all n ∈ N, E1(Tnh) =
E1(Tn−1Th). If we let n→ ∞ on both sides of this equality, we find that E∞(h) = E∞(Th), showing that E∞ is indeed
T-invariant. Now let E i be any T-invariant upper expectation on L (X ). Then we find for any h in L (X ), and for all
n ∈ N, that E i(Tn−1h) = E i(h), and if we let n→ ∞ on both sides of this equality, we find that E∞(h) = E i(h).
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