
A Connection-based Router for FPGAs

Elias Vansteenkiste, Karel Bruneel and Dirk Stroobandt
Hardware and Embedded Systems Team, Computer Systems Lab

Department of Electronics and Information Systems, Ghent University, Belgium
Email: {Elias.Vansteenkiste, Karel.Bruneel, Dirk.Stroobandt}@UGent.be

Abstract—The FPGA’s interconnection network not only re-
quires the larger portion of the total silicon area in comparison to
the logic available on the FPGA, it also contributes to the majority
of the delay and power consumption. Therefore it is essential that
routing algorithms are as efficient as possible. In this work the
connection router is introduced. It is capable of partially ripping
up and rerouting the routing trees of nets. To achieve this, the
main congestion loop rips up and reroutes connections instead of
nets, which allows the connection router to converge much faster
to a solution. The connection router is compared with the VPR
directed search router on the basis of VTR benchmarks on a
modern commercial FPGA architecture. It is able to find routing
solutions 4.4% faster for a relaxed routing problem and 84.3%
faster for hard instances of the routing problem. And given the
same amount of time as the VPR directed search, the connection
router is able to find routing solutions with 5.8% less tracks per
channel.

I. INTRODUCTION

The routing infrastructure contributes to the majority of
the FPGA’s silicon area, delay and power consumption [1].
Therefore it is important that a router assigns the routing
resources to nets in a highly efficient manner, with a minimum
number of tracks per channel. In case the routing requirements
of the design are the bottleneck, a more efficient router can
significantly reduce the cost of the design, if the design could
be realised with a smaller FPGA device. Efficient routing
algorithms are particularly interesting for FPGA manufactures,
because a router that can achieve routing solutions with lower
track width, allows an FPGA vendor to provide less routing
facilities, thereby saving precious silicon area.

This work aims to improve the state-of-the-art routing al-
gorithms. In [2], the authors designed a reconfiguration-aware
router for tuneable circuits. Due to the nature of the routing
problem, the negotiated congestion mechanism of this router
routes tuneable circuits on a per connection basis instead of on
a per net basis. In this work the idea to route on a connection
basis is elaborated for conventional circuits. We introduce an
optimized router with a directed search instead of a breadth-
first search, called the Directed Search Connection router. By
ripping up and rerouting on a per connection basis, the routing
trees of the nets are partially ripped up and rerouted. The
effects of partially ripping up and rerouting the routing trees on
the quality of the routing solutions is investigated in this work
by comparing the Directed Search Connection router with the
VPR Directed Search routing algorithm [3] on the basis of the
benchmark circuits available in the state-of-the-art Verilog-To-
Routing project [4] and we found that it is faster and has better
results.

The remaining part of this article is organized as follows.
In Section II, the background concepts, such as the routing

problem, are explained. The VPR breadth-first router and the
VPR directed search router are also described in this section.
The connection router is presented in detail in Section III.
In Section IV the experiments and results are described.
This paper concludes with future work and a conclusion in
Section V.

II. BACKGROUND

A. Routing problem

If the routing architecture of the FPGA is represented as a
routing-resource graph (RRG), the routing problem reduces to
finding a subgraph of the RRG, called a routing tree, for each
net in the input circuit. The routing trees should be disjoint in
order to avoid short circuits. Each routing tree should contain
at least the source node and sink nodes of its associated net
and enough wire nodes so that source and sink nodes are
connected. This problem definition can also be expressed in
terms of connections, where a connection is an ordered pair
containing a source and a sink. Each net can be seen as a set of
connections and thus all interconnection between logic blocks
can be defined as a set of connections. The routing problem
then reduces to finding a simple path in the RRG for each
connection in the circuit. Each path starts at the source node
and ends at the sink node of its associated connection. These
paths should only share nodes if the corresponding connections
have the same source. Allowing other connections to share
nodes would lead to short circuits.

B. VPR Breadth-First Search Routing Algorithm

The main structure of the VPR Breadth-First router is the
negotiated congestion loop, adopted from Pathfinder [5]. In
every routing iteration, the algorithm rips up and reroutes all
the nets in the circuit. These iterations are repeated until no
resources are shared illegally. This is achieved by gradually
increasing the cost of illegally shared resources. The cost of a
node is modulated with congestion penalties.

f(n) = b(n) · h(n) · p(n) (1)

where b(n) is the base cost, p(n) is the present congestion
penalty, and h(n) is the historical congestion penalty. The
present congestion penalty p(n), is updated whenever a net
is rerouted. The update is done as follows,

p(n) =

 1 if cap(n) > occ(n)
1 + pf ·
(occ(n)− cap(n) + 1) otherwise

, (2)

where cap(n) represents the capacity of the node and
occ(n) is the occupancy of the node. The occupancy of a

1 routeNet(Net n):
2 routingTree = {source}
3 for each Sink s of n:
4 path = dijkstra(routingTree, s)
5 routingTree = routingTree∪path

Fig. 1. Pseudo code of the maze router that the VPR routers use as net router
heuristic.

node is the number of nets that are presently using the node.
The factor pf is used to increase the illegal sharing cost as
the algorithm progresses. The historical congestion penalty
is updated after every routing iteration i, except for the first
iteration. The update is done as follows

hi(n) =

1 if i = 1

h(i−1)(n) if cap(n) ≥ occ(n)
h(i−1)(n)+
hf (occ(n)− cap(n)) otherwise

. (3)

Again, the factor hf is used to control the impact of the
historical congestion penalty on the total resource cost. The
way the congestion factors pf and hf change as the algorithm
progresses is called the routing schedule.

To route one net, the embedded net router tries to find a
minimum cost routing tree in the RRG. This problem is called
the minimum steiner tree problem and is NP-complete.The
VPR routers use a variant of the maze router heuristic [6].
The pseudo code for the VPR net router heuristic is shown
in Fig. 1 The heuristic loops over all the sinks of the net and
extends the already found routing tree with the shortest path
from the routing tree to the sink under consideration. This
heuristic is fast but does not always come up with an optimal
solution, certainly in case of nets with a high fanout. It forces
the router to extend paths that were previously added to the
routing tree.

C. VPR Directed Search Routing Algorithm

A breadth-first search first expands the least-cost nodes,
this leads to a circular wavefront. This guarantees a shortest
path, but a lot of nodes are expanded in the wrong direction.
For large architectures the search space can become very large.
As the source node and the sink nodes are farther apart, the
number of nodes that must be visited increases quadratically
and hence the run-time and memory requirements increase.
To remedy this issue the locations of the sink nodes, found in
the placement of the circuit, are used to reduce the number
of nodes visited during the search. The directed search routing
algorithm, first introduced in [3] does not expand the least-cost
node but the node that leads to a least-cost path. This results in
a narrow wavefront that expands in the direction of the target
pin to be connected. The path cost is calculated as follows,

f(n) = cprev + b(n) · h(n) · p(n) + α · cexp, (4)

with α, the direction factor, which determines how aggres-
sively the router explores towards the target sink, cprev is the
cost of the previous wire nodes on the path from the source to
this wire node and cexp is the expected cost of the path from
this wire node to the sink node. The expected cost is calculated

based on the Manhattan distance from this wire node to the
sink node.

cexp = northo · bortho + nsame dir · bsame dir + bipin + bsink (5)

with northo, the number of expected wire segments orthog-
onal to the wire segment under consideration, bortho, the base
cost of an orthogonal wire segment, nsame dir, the number
of expected wire segments in the same directions as the wire
segment under consideration, bsame dir, the base cost of an
wire segment in the same direction as the wire segment under
consideration, bipin the base cost of and bsink the base cost of
a sink node.

III. CONNECTION ROUTER

A. Rip up and Reroute Connections

To partial rip up and reroute the routing tree of a net,
the connection router rips up and reroutes connections in the
main congestion loop instead of nets, as can be seen in the
pseudocode in Fig. 3. The pseudocode can be compared with
the pseudocode of the VPR router in Fig. 2. The connection
router rips up each connection, recalculates the occupation
of the nodes in the old routing path and if the occupation
of a node decreases, then the present congestion penalty is
updated according to Equation 2. In VPR the occupation
(occ(n)) is the number of different nets that use the node. In
the connection router, however, the occupancy is the number
of different sources that drive the connections that use the
node. The Dijkstra’s algorithm is then used to find a path for
each connection. If a new path is found, the occupation of
each node in the new path is recalculated if the occupation
of a node increases, then the present congestion penalty of
that node is again updated according to Equation 2. At the
end of each routing iteration the present congestion multiplier,
historical congestion penalties and present congestion penalties
are updated according to the Equations 3 and 2 respectively,
in the same way as in VPR .

So the negotiated congestion mechanism in the connection
router is applied on a smaller scale. First, the present con-
gestion penalties are updated along with adding the nodes to
the routing path of a connection in the connection router. In
VPR, the present congestion penalties are only updated after
the whole routing tree is found. And second, nodes in the path
of one connection will be reconsidered when the Dijkstra’s
algorithm is searching a path for another connection of the
same net. In VPR, once a node is added to a routing tree of a
net, then the embedded net router is forced to make use of the
node, if it is along the way to the sink of another connection
of the same net.

To make ripping up and rerouting connections possible, a
new node cost model had to be developed to take the nodes
that will be shared between connections driven by the same
source, into account.

B. A New Node Cost Model

The total wire-length is the sum of the base costs of the
different nodes used in the routing solution. This total cost
can be partitioned according to the nets in the circuit. In a
legal routing solution, the nets are disjoint so no nodes can be

1 while (IllegalSharedResourcesExist()):
2 for each Net n do:
3 n.ripUpRouting()
4 for each Sink s in n do:
5 path = Dijkstra(RoutingTree,s)
6 RoutingTree = RoutingTree ∪ path
7 n.resources().updatePresentCongestionCost()
8 allResources().updateHistoryCost()
9 updatePresentCongestionMultiplier()

10 allResources().updatePresentCongestionCost()

Fig. 2. Pseudo code of the VPR Router.

shared between nets. The cost of a net is the sum of the cost of
each node used in net. Analogous to the partitioning of the total
wire-length according to the nets, it is also possible to partition
the cost according to the source-sink connections in the circuit.
However, in a legal solution the connections do not have to be
disjoint. Connections can legally share routing nodes if they
are driven by the same source. So if the total wire-length is
partitioned by connections, the cost of a connection is the sum
of the base costs of the nodes that realise the connections, but if
a node is shared between a number of connections, share(n),
then the cost of a node has to be shared by all the connections
using it. Consequently, the cost of a node is divided by the
number of connections that use the node and are driven by the
same source as the connection under consideration.

C. Directed Search Connection-based Routing Algorithm

In Fig. 3 the pseudo code for the main loop of the
negotiated congestion mechanism can be found. In one rout-
ing iteration all the connections are ripped up and rerouted.
Dijkstra’s algorithm searches the lowest cost path between the
sink and the source of the connection. The cost of a node is
calculated as follows

f(n) = cprev +
b(n) · h(n) · p(n)

share(n)
+ α · cexp, (6)

b(n), h(n) and p(n) are calculated in the same way as
in VPR, see Equation 2 and 3, except for the occupation
(occ(n)), which is the number of different sources that drive
the connections that use the node. Another important difference
is that the cost of the node is now divided by share(n), the
number of connections that legally share the node with the
connection that Dijkstra’s algorithm is currently searching a
path for.

To calculate share(n), the router keeps a map for each
net. The map contains the used nodes and for each node the
number of connections that use the node. The values are loaded
in, in the rip up method, before routing the connection and
loaded out after a path is found by Dijkstra’s algorithm. This
implementation limits the extra data that has to be kept per
node in the routing resource graph, and is therefore scalable
with respect to the size of the FPGA.

To allow an A* search, the heuristic to calculate the
expected cost has to be admissible. An admissible heuristic
may never overestimate the cost of reaching the sink node.
To keep the expected cost heuristic in the connection router
admissible, the cost of the segments has to be divided by the
number of connections that use the node under consideration

1 while (IllegalSharedResourcesExist()):
2 for each Connection c do:
3 c.ripUpRouting()
4 c.routingPath = Dijkstra(c.source,c.sink)
5 c.resources().updatePresentCongestionCost()
6 allResources().updateHistoryCost()
7 updatePresentCongestionMultiplier()
8 allResources().updatePresentCongestionCost()

Fig. 3. Pseudo code of the Connection Router.

and are driven by the same source, because it is possible that
all the wire segments up to the input pin of a connections are
shared with other connections that have the same source.

cexp =
northo · bortho
share(n)

+
nsame dir · bsame dir

share(n)
+ bipin + bsink, (7)

IV. EXPERIMENTS AND RESULTS

A. FPGA Architecture

To test the connection router we used an architecture1

based on Altera’s Stratix IV and Xilinx’ Virtex 7. The routing
infrastructure of this architecture is built up by wires that span
four logic blocks. Each logic block contains ten 6-input LUTs.
The wires are interconnected via Wilton switch blocks.

B. Methodology

The Connection-based directed search router, hereafter
mentioned as the connection router, is compared with the
directed-search VPR router and not the timing-driven VPR
router because the timing-driven mode is not yet implemented
for the connection router. The comparison was made on the
basis of the benchmarks included in the VTR project [4]. The
placements were generated with the VPR wire-length-driven
placer with default settings. For each benchmark, the following
properties of the routing implementation were measured;

• The Minimum Channel Width (MCW) is the min-
imum number of tracks per channel that have to be
present on the FPGA for the router to find a solution
in a given maximum number of routing iterations.

• The Total Wire-length (TWL)

• The Critical path delay (CP) in nanoseconds

• The Runtime is the time the router needs to find
a solution for an FPGA architecture with a given
channel width. The routing algorithms were executed
on a workstation with a 3.4 GHz quad-core Intel Core
i7 processor and 32 GB memory.

C. Minimum Channel Width

We try to give both routers the same amount of time and
measure what they achieve in that time. In a first attempt
both routing algorithms were allowed 50 routing iterations to
find a routing solution, this resulted in a 14.23% reduction in

1A description of this architecture is provided with the VTR project in
k6_N10_memDepth16384_memData64_40nm_timing.xml.

TABLE I. THE MINIMUM CHANNEL WIDTHS FOR THE VTR
BENCHMARKS.

Circuit VPR ConR
Max routing its 100 50 50 40
bgm 150 154 132 132
blob merge 96 100 88 88
boundtop 68 68 66 66
ch intrinsics 48 48 46 48
diffeq1 52 56 54 56
diffeq2 48 50 48 50
LU8PEEng 130 136 116 118
LU32PEEng 200 204 172 178
mcml 142 142 128 128
mkDelayWorker32B 92 92 86 86
mkPktMerge 48 48 50 50
mkSMAdapter4B 64 70 64 64
or1200 84 84 76 80
raygentop 72 72 72 72
sha 62 62 60 60
stereovision0 70 70 66 66
stereovision1 112 114 108 108
stereovision2 166 170 154 154
stereovision3 30 30 30 30
Total 1756 1846 1616 1634
Relative difference +5.1% -8.0% -5.8%
Runtime 3h11m 56m 5h13m 3h7m

total number of tracks per channel for the connection router
in comparison with VPR, but the connection router needed
roughly 4 hours more time to achieve those track widths
than VPR, as can be seen in Table I. To allow a more fair
comparison we increased the maximum number of routing
iterations for the VPR router to 100. VPR still used 2 hours
less than the connection router. Giving VPR more than 100
routing did not lead to significant decrease in channel width, so
we limited the number of routing iterations of the connection
router to 40. In that case the routers used about the same
amount of time, 3h11m for VPR and 3h7m for the connection
router and the connection router still found routing solutions
for an FPGA with 5.8% less tracks.

D. Runtime

In this section both routers are given an FPGA with a
fixed channel width and the runtime and quality of the routing
solutions is compared. The channel width was fixed from
MCW’s that VPR found in 100 routing iterations up to 20%
over provisioning on the MCW’s that VPR found in 50 routing
iterations. Table II contains the relative difference in quality
of the routing solutions. The connection router is able to find
routing solution on average 4.37% faster for a relaxed routing
problem (MCW VPR for 50 routing iterations with an over
provisioning of 20%) up to 84.28% faster for non-relaxed
routing problems (MCW VPR for 100 routing iterations). The
quality of connection router solutions is better with an average
reduction in total wire length of 3.4% for relaxed routing
problems up to 6.9% for harder routing problems. The critical
path delay decreases slightly with 0.5% to 2.0% decrease.

The Connection router converges much faster to a solu-
tion than the VPR router. The number of routing iterations
decreases for all the benchmark circuits, except mkPktMerge.
The connection router needs on average, 44.28% less iterations
to find a routing solution. This leads to a decrease in runtime
for all the benchmark circuits except the smaller ones (less than
500 LUTs), such as mkPktMerge, diffeq2 and ch intrinsics

TABLE II. THE RELATIVE DIFFERENCE IN AVERAGE RUNTIME AND
QUALITY OF THE ROUTING SOLUTIONS

Channel width Runtime CP(%) TWL(%)

VPR Conr ∆ (%)

CW50 routing its
min, VPR +20% 6m24s 6m7s -4.37 -0.5 -3.4

CW50 routing its
min, VPR +15% 7m7s 5m57s -16.23 -1.7 -5.6

CW50 routing its
min, VPR +10% 8m3s 6m56s -13.82 -1.5 -5.8

CW50 routing its
min, VPR +5% 13m30s 9m20s -30.89 -2.0 -5.9

CW50 routing its
min, VPR 57m19s 17m14s -69.92 -0.7 -6.6

CW100 routing its
min, VPR 3h11m19s 30m5s -84.28 -1.8 -6.9

for the MCW’s found by VPR in 100 routing iterations. The
cause of the increase in runtime for the smaller circuits, is the
overhead to calculate and save the number of connections per
net that use a node in the routing tree (see the division by
share(n) in the node cost in Equation 6 and 7). For the larger
circuits the rapid convergence gains the upper hand, resulting
in a net decrease in runtime.

V. CONCLUSION AND FUTURE WORK

In this work a new routing algorithm is proposed, the
Directed Search Connection router. The Connection router rips
up and reroutes parts of the routing tree of a net, by ripping up
and rerouting connections in the main congestion loop instead
of nets. The Directed Search Connection router is more pareto
efficient than the VPR directed search router. Given an FPGA
with a certain channel width, it is able to find routing solutions
4.37% up to 84.28% faster, the quality of the routing solutions
is slightly better and it is able to find routing solutions with
5.8% fewer tracks per channel, given the same amount of time.

In the future we will build a timing-driven router capable
of partially ripping up and rerouting the routing trees of the
nets, similar to the connection router presented in this work.

REFERENCES

[1] I. Kuon, R. Tessier, and J. Rose, “FPGA architecture: Survey and
challenges,” Found. Trends Electron. Des. Autom., vol. 2, no. 2, pp. 135–
253, Feb. 2008.

[2] E. Vansteenkiste, K. Bruneel, and D. Stroobandt, “Maximizing the reuse
of routing resources in a reconfiguration-aware connection router,” in
Field Programmable Logic and Applications (FPL), 2012 22nd Interna-
tional Conference on, 2012, pp. 322–329.

[3] J. S. Swartz, V. Betz, and J. Rose, “A fast routability-driven router for
FPGAs,” in Proceedings of the 1998 ACM/SIGDA sixth international
symposium on Field programmable gate arrays, ser. FPGA ’98. New
York, NY, USA: ACM, 1998, pp. 140–149.

[4] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville,
K. B. Kent, P. Jamieson, and J. Anderson, “The VTR project: architecture
and CAD for FPGAs from verilog to routing,” in Proceedings of the
ACM/SIGDA international symposium on Field Programmable Gate
Arrays, ser. FPGA ’12. New York, NY, USA: ACM, 2012, pp. 77–
86.

[5] L. McMurchie and C. Ebeling, “Pathfinder: a negotiation-based
performance-driven router for FPGAs,” in Proceedings of the 1995 ACM
third international symposium on Field-programmable gate arrays, ser.
FPGA ’95. New York, NY, USA: ACM, 1995, pp. 111–117.

[6] C. Y. Lee, “An algorithm for path connections and its applications,”
Electronic Computers, IRE Transactions on, vol. EC-10, no. 3, pp. 346–
365, Sept. 1961.

