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ABSTRACT

Optical coherence tomography produces high resolution medical images based on spatial and temporal co-
herence of the optical waves backscattered from the scanned tissue. However, the same coherence introduces
speckle noise as well; this degrades the quality of acquired images.

In this paper we propose a technique for noise reduction of 3D OCT images, where the 3D volume is
considered as a sequence of 2D images, i.e., 2D slices in depth-lateral projection plane. In the proposed
method we first perform recursive temporal filtering through the estimated motion trajectory between
the 2D slices using noise-robust motion estimation/compensation scheme previously proposed for video
denoising. The temporal filtering scheme reduces the noise level and adapts the motion compensation on
it. Subsequently, we apply a spatial filter for speckle reduction in order to remove the remainder of noise
in the 2D slices. In this scheme the spatial (2D) speckle-nature of noise in OCT is modeled and used for
spatially adaptive denoising. Both the temporal and the spatial filter are wavelet-based techniques, where
for the temporal filter two resolution scales are used and for the spatial one four resolution scales.

The evaluation of the proposed denoising approach is done on demodulated 3D OCT images on different
sources and of different resolution. For optimizing the parameters for best denoising performance fantom
OCT images were used. The denoising performance of the proposed method was measured in terms of
SNR, edge sharpness preservation and contrast-to-noise ratio. A comparison was made to the state-of-the-
art methods for noise reduction in 2D OCT images, where the proposed approach showed to be advantageous
in terms of both objective and subjective quality measures.
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1. INTRODUCTION

Optical Coherence Tomography performs high resolution, cross-sectional tomographic imaging of the in-
ternal micro-structure in materials and biological systems by measuring backscattered or back-reflected
light [1]. OCT is capable of real-time in vivo imaging with multiple frames per second with little image
degradation due to motion of the specimen [2].

Although OCT produces high resolution images, it also introduces significant amount of noise. The
noise complicates many post-processing tasks such as detection of important features and degrades visual
quality in general. The acquired noise is usually spatially correlated and signal dependent, often referred
to as “speckle” noise.

Speckle-noise reduction of OCT images aims at suppressing signal-degrading speckle and accentuating
noise-free signal. Numerous methods have been developed for speckle reduction in OCT images; most
common are median filtering [3], homomorphic Wiener filtering [4], multi-resolution based techniques [5]
and adaptive smoothing [6].

In this work, we propose a filtering scheme for OCT images, which combines our video denoising al-
gorithm from [7] and speckle noise reduction from [8]. Specifically, we apply first spatio-temporal filtering
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Figure 1. The general framework description of the proposed algorithm: In(t) - input 2D OCT noisy frame, If (t) -
spatio-temporally filtered frame, WBn(t) - noisy wavelet band, WBtf(t) temporally filtered wavelet band; WBstf (t)
spatio-temporally filtered wavelet band; σn - standard deviation of Gaussian noise; t - temporal coordinate; Sv(t) -
set of estimated motion vectors v for frame t.

using the method of [7] and for the suppression of the remaining noise we propose a simple three-dimensional
extension of the method of [8].

In Section 2 we present the proposed spatio-temporal scheme for noise reduction. First we describe the
motion compensated filtering scheme from [7] (Section 2.1) and then we present the proposed extension of
the speckle filter from [8] (Section 2.2). In Section 3 we present experimental results and in Section 4 we
conclude the paper and give hints for future work.

2. THE PROPOSED ALGORITHM FOR WAVELET-BASED DENOISING 3D
OCT IMAGES

In our denoising approach we treat three-dimensional (3D) OCT images as sequences of two-dimensional
(2D) slices (frames). Since the processed 3D OCT image sequences were obtained by consecutive acquir-
ing (scanning) 2D OCT images in direction perpendicular to the acquired image plane at different, fixed
distances (and at different time instances), we treat the 3D OCT volume as a sequence of 2D OCT image
frames and we treat changes from one frame to another as motion (in the “temporal” direction). Conse-
quently, we apply a causal recursive temporal filter to each OCT slice. The denoising of each slice is hence
influenced by the previously processed OCT slices.

A general description of the proposed denoising algorithm is presented in Fig. 1. Three important steps
are:

• Motion estimation: The proposed approach estimates a single motion vector field for all wavelet
bands but different motion vector reliabilities in each band. In the motion estimation, we make use of
spatial image discontinuities, represented by wavelet coefficients, in combination with spatio-temporal
correlations of the motion vectors, within a recursive scheme.

• Motion compensation: Temporal filtering in each wavelet band is recursively performed along the
estimated motion trajectories. The amount of filtering is tuned to the estimated reliability of the
corresponding motion vectors within a certain block of wavelet coefficients.

• The adaptive spatial filtering scheme suppresses the remaining (non-stationary) noise. It evaluates
distributions of the wavelet coefficients which represent mainly speckle noise on the one hand and
useful signal corrupted by speckle on the other. Analytic models for evaluating these distributions is
given in [8] for 2D images with their parameters automatically computed from a given 2D image.



In the denoising scheme, motion estimation and compensation were proposed in [7] for video sequences
with white Gaussian noise; we apply here the same framework on a new application: OCT image sequences,
as a part of the denoising framework, in combination with [8].

The proposed method uses a non-decimated wavelet transform implemented with spline wavelets [9],
which results in two detail images and one approximation (low-pass) image at each scale. We apply a
two-dimensional (spatial) wavelet transform to each 2D OCT frame and denote wavelet bands of this spa-
tial wavelet transform by WB = LL, DX, DY for the low-pass (approximation), horizontal and vertical
orientation bands, respectively. We use a subscript to denote the noisy or denoised band as follows: WBn

- noisy band, WBtf - temporally filtered and WBstf - spatio-temporally filtered band. Additionally, we
denote the spatial position as r = (x, y) and frame index (time) as t. The decomposition level is denoted
by a superscript (l), where l = 1, . . . , N (1 denotes the finest scale and N the coarsest).

As can be seen from Fig. 1, the noisy input frame In(r, t) is first decomposed into wavelet bands

WB
(l)
n (r, t). Using the noisy wavelet bands WB

(l)
n (t) from the current frame and temporally filtered wavelet

bands WB
(l)
tf (t − 1) from the previous time recursion, and taking into account the estimated standard

deviation (σn) of the Gaussian noise∗, we perform motion estimation. The estimation of the (approximated)
Gaussian noise level is performed using a spatial-gradient approach [10], based on evaluating the distribution
of spatial gradient magnitudes. Subsequently, we apply a recursive temporal filter (Subsection 2.1.1) on the

noisy wavelet bands WB
(l)
n (t) along the estimated motion trajectory, using the corresponding WB

(l)
tf (t− 1)

band. The temporally filtered wavelet bands WB
(l)
tf (t) are further subjected to spatial filtering. Finally,

the inverse wavelet transform yields the denoised video sequence If (t).

2.1. Inter-based Denoising of 2D slices in z-direction

Classical single resolution motion estimation and compensation techniques use block-matching [11, 12].
This assumes that motion is translational and locally stationary. The motion vector v is determined by
minimizing a certain cost function in a confined search area:

v(s) = argmin
v

[cost(s,v)] (1)

where cost(s,v) is a linear or nonlinear function of the pixel values from the s-th block of the current frame
and the pixel values from the corresponding block in the previous frame, displaced by the motion vector v.
The most common cost function is the mean absolute difference (MAD).

In [7], we introduced a novel block-based motion estimation approach which employs a three-step
search [11–13], within the wavelet domain, operating in a spatio-temporal recursive manner. In the first step
the initial motion vector is either equal to the previously computed motion vector from the spatio-temporal
neighborhood or it is set to a zero vector. Subsequently, the chosen initial motion vector is refined in the
three steps. The proposed motion estimation approach produces a single motion vector field which is used
for the adaptive temporal filtering for all wavelet bands.

In the proposed method, the refinement of the initial motion vector is based on motion-matching image
discontinuities (represented by groups of significant wavelet coefficients) and defined reliabilities per ori-

entation (2). Specifically, the motion matching value of the image discontinuities, of a specific orientation
(horizontal or vertical), is determined as a weighted sum of MAD’s (3) for the tested motion vector and
corresponding wavelet bands of the same orientation and different resolution scales.

Further on, in order to properly coordinate our motion estimation process we introduce the concept of
reliability per orientation for the corresponding initial motion vector that is to be refined. The idea of using
motion reliability is as follows [7]: we assume that the motion estimation is most reliable on significant
image discontinuities (producing largest wavelet coefficient magnitudes) and the least reliable in uniform

∗We make here an approximation that the noise is white Gaussian and disregard its spatial correlation.



areas (characterized by none-significant wavelet coefficient values). Consequently, we aim at estimating
motion vectors in highly reliable areas, by performing refinement of the initially estimated motion vector;
in less reliable areas we rather rely on (already obtained) reliable spatio-temporally neighboring motion
vectors and prevent further refinements (changes) of the chosen initial motion vector.

We define the horizontal θH and vertical θV “per orientation” reliabilities of the motion vector v, as
follows:

θH(s, t, σn,v) =
σn

1 +
∑N

l=1 dlMAD
(l)
DY (s, t,v)

θV (s, t, σn,v) =
σn

1 +
∑N

l=1 dlMAD
(l)
DX(s, t,v)

(2)

with parameters dl (l = 1, ..., N) denoting the weights associated with the corresponding wavelet decompo-

sition scale l, where d1 = d2 = . . . = dN and
∑N

l=1 dl = 1.

The Mean Absolute Difference (MAD) for each block s in the wavelet band WB(l)(r, t) is defined as
follows:

MAD
(l)
WB(s, t,v) =

1

N

∑

r∈Bs

|WB(l)
n (r, t) − WB

(l)
tf (r − v, t − 1)| (3)

where s denotes the index of a block within the current frame, t the current frame index and v a motion
vector. Bs represents a set of N = Nx ×Ny spatial positions belonging to the given block s, where Nx = 8
and Ny = 8 represent the number of rows and columns in the block, respectively.

Additionally, after final motion vector v has been estimated for particular block s, we determine the
reliability of the finally estimated motion vectors per wavelet band to determine the appropriate amount

of temporal filtering (Subsection 2.1.1), along the estimated motion trajectory. The “per wavelet band”
reliability for the WB(l)) of the estimated motion vector v, for temporal filtering, is defined as follows [7]:

θ
(l)
WB(s, t, σn,v) =

σn

1 + MAD
(l)
WB(s, t,v)

. (4)

In our motion estimation approach the search area in each step of the algorithm is confined to a
(Nx/2j−1) × (Ny/2j−1) block where j = 1, 2, 3 for the first, second and third step, respectively. For each

step j of the algorithm, we define initial motion vectors v
(j)
i and motion vector corrections v

(j)
c where v

(j)
i is

fixed and v
(j)
c varies. The vectors v

(j)
i + v

(j)
c are then tested in order to find the best matching vector v

(j)
b

for step j. The best matching vector is determined by minimizing a cost function (which we define later),
as follows:

v
(j)
b (s, t) = arg min

v
(j)
c ∈Sj

cost(s, t, ϑH , ϑV ,v
(j)
i ,v(j)

c ) (5)

where Sj represents the set of allowed v
(j)
c s. The best matching motion vector v

(j)
b at step three (j = 3) is

defined as the final estimated motion vector vbf . The initial motion vector at each step j > 1 is the best

estimated motion vector from the preceding step, i.e., v
(j)
i = v

(j−1)
b . In the first step (j = 1) the initial

motion vector is the best matching motion vector among the tested motion vectors from a spatio-temporal

neighborhood. Specifically, we define the initial motion vector at step 1, v
(1)
i as the prior initial motion

vector candidate vpi that minimizes:

v
(1)
i (s, t) = arg min

vpi∈U

(

MAD
(N)
LL (s, t,vpi) + P (vpi)

)

(6)

where vpi denotes the prior initial motion vector candidate and P (vpi) represents a penalty for the corre-
sponding vector vpi, with which we introduce prior knowledge. If the penalty P (vpi) is smaller, the initial



motion vector candidate vpi is more likely to be chosen as the initial motion vector v
(1)
i for the first step of

the motion estimation approach.

The prior initial motion vector candidates vpi belong to set U = {0, s, s′, t, t′}. This candidate set
includes the zero motion vector (0) and the motion vectors from two neighboring blocks within the current
frame (s, s′) and from two neighboring blocks in the previous frame (t, t′). The zero motion vector (0) is
used for a re-initialization of the motion vector search (estimation) and the spatio-temporal neighboring
vectors (s, s′, t, t′) are used to enable spatio-temporal recursiveness in the motion estimation approach.

By assigning the smallest penalty to vpi = 0, we increase the sensitivity of the motion estimation to
sudden scene changes or the appearance of small image parts (this concerns the accuracy of the motion
estimation). Hence, the penalty for vpi being equal to either of the four spatio-temporal neighboring
vectors should be sufficiently large to re-initialize the motion vector search in case of sudden scene changes.
However, the penalty value should not be too big either in order to enable spatio-temporal recursiveness
in the motion estimation and consequently enforce smoothness (consistency) of the motion vector field. In
our experiments, we use P (0) = 0 and P (vpi) = 2.5; this constant was experimentally optimized in terms
of maximal motion vector consistency and accuracy.

In step 1, we consider the candidate motion vector corrections v
(1)
c with horizontal component v

(1)
cx

and vertical component v
(1)
cy in the set {−8,−4, 0, 4, 8}. They are added to the v

(1)
i and tested in order

to find the best matching motion vector v
(1)
b . In the second step, v

(2)
i = v

(1)
b and the candidate motion

vector corrections v
(2)
c can have horizontal v

(2)
cx and vertical v

(2)
cy components within the set {−4,−2, 0, 2, 4}.

Finally, in the third step, v
(3)
i = v

(2)
b and the candidate motion vector correction v

(3)
c components v

(3)
cx and

v
(3)
cy belong to the set {−2,−1, 0, 1, 2}.

We define a novel cost function for motion estimation, consisting of horizontal and vertical components,
where each component is weighted by the estimated reliability measures with respect to the corresponding
initial motion vector component:

cost(s, t, ϑH , ϑV ,vi,vc) = kx(s, t, ϑH , vcx
)costx(s, t,vi + vc)

+ky(s, t, ϑV , vcy
)costy(s, t,vi + vc), (7)

where costx(s, t,v) and costy(s, t,v) are separate cost functions for horizontal and vertical motion, respec-
tively, defined as:

costx(s, t,v) = MAD
(N)
LL (s, t,v) +

∑N
l=1 MAD

(l)
DY (s, t,v)

costy(s, t,v) = MAD
(N)
LL (s, t,v) +

∑N
l=1 MAD

(l)
DX(s, t,v). (8)

The multiplicative penalties kx and ky in the cost function (7) are defined in terms of the motion reliabilities,
as follows:

kx(s, t, ϑH , v(j)
cx

) = C1 + C2
|v

(j)
cx |

2N−j
ϑ2

H ,

ky(s, t, ϑV , v(j)
cy

) = C1 + C2
|v

(j)
cy |

2N−j
ϑ2

V , (9)

where the constants C1 and C2 are optimized in order to obtain a noise robust and smooth motion vector
field. We have experimentally found the following optimal parameter values: C1 = 1, C2 = 1.45. The values

of the constants C1 and C2 are fixed in all three steps and the correction motion vector components (|v
(j)
cx |

and |v
(j)
cx |) are normalized with their maximum amplitudes (2N−j) for j step of the proposed algorithm.



2.1.1. Recursive Temporal Filtering

The proposed wavelet domain recursive temporal filtering (RTF) scheme filters a video sequence along
the estimated motion trajectories and adapts the amount of smoothing to the estimated reliability of the
motion vectors. Specifically, recursive adaptive temporal filtering is performed separately in each noisy

(non-processed) wavelet band WB
(l)
n (r, t) as follows:

WB
(l)
tf (r, t) = α

(l)
WB(s, t, σn,vb)WB

(l)
tf (r − vb, t − 1) + (1 − α

(l)
WB(s, t, σn,vb))WB(l)

n (r, t) (10)

where WB
(l)
tf stands for the temporally processed wavelet band at scale l. The weighting factor α

(l)
WB(s, t, σn,vb)

controls the amount of filtering for each wavelet band (WB(l)) in the following way:

α
(l)
WB(s, t, σn,vb) = b

(l)
WB(ϑ

(l)
WB(s, t, σn,vb))

2 (11)

with ϑ
(l)
WB the motion reliability per wavelet band WB of the motion vector vb and b

(l)
WB a normalizing

parameter that we experimentally optimize in terms of the mean squared error. Specifically, in our two-

scale decomposition implementation we determine the parameters for the first (finest) scale as b
(1)
WB = 0.9,

for the second scale as b
(2)
WB = 0.95 and b

(2)
LL = 1.25 for the low-pass (approximation) band (roughest scale).

We have chosen the quadratic dependency in (11) because our experiments showed that it introduces less
temporal blur and artifacts than e.g., a linear model which does not respond well to motion vector miss-
matches. In addition, we have also tested higher degree models and found that the quadratic dependency
model indeed provides the best results in terms of maximal PSNR of the denoised sequence.

Because of the imperfections of the motion estimation process (due to various difficulties such as occlusion
or an imperfect motion estimation model) and rather rough assumption that the noise is white Gaussian,
the temporal filter still leaves some noise behind.

2.2. 2D spatially adaptive speckle suppression scheme

In this section we propose a denoising algorithm of [8] for removing the remaining noise. The adaptive speckle

suppression scheme from of [8] is a shrinkage technique where each denoised wavelet coefficient WB
(l)
stf (r) is

determined as WB
(l)
stf (r) = q(r)WB

(l)
tf (r), where q represents shrinkage parameter. Specifically, q reduces

wavelet coefficient amplitude depending on the estimated probability that it represents important noise-free
image feature. The corresponding estimated probability is computed based on two sources of information:
(i) coefficient magnitude and the corresponding conditional probability density functions of the coefficient
magnitudes representing mainly noise on the one hand, and representing the useful edges on the other hand
and (ii) spatial context information.

Let us denote the coefficient magnitude by m(r), and let us associate with each wavelet band WB
(l)
tf

a mask X of binary labels, where X(r) = 0 (“non-edge” label) if WBtf (r) represents mainly noise, and
X(r) = 1 (“edge” label) if WBtf (r) represents useful signal. The likelihood of m(r) given the label value
X(r) will be denoted by p(m(r)|X(r)).

The method of [8] defines the shrinkage parameter as follows:

q(r) = P (X(r) = 1|m(r),Xr
′) (12)

where Xr
′ denotes the mask labels at all positions except r. It is shown in [8] that this expression can be

expressed as:

q(r) =
ε(r)η(r)

1 + ε(r)η(r)
(13)

where ε(r) is the likelihood ratio at the current position r:

η(r) =
p(m(r)|X(r) = 1)

p(m(r)|X(r) = 0)
(14)



and η(r) is derived from a spatial surrounding ∂(r) as follows [8]:

η(r) = exp(γ
∑

rk∈∂(r)

(2X(rk) − 1)) (15)

Note that if there is equal number of “edge” and “non-edge” labels in the neighborhood ∂(r) then the
neighborhood information is “neutral” and (13) yields η(r) = 1. This means that in case where there is
equal number of edge and non-edge labels in ∂(r) the spatial context information does not influence the
calculation of the shrinkage factor in (12). In that case, the suppression factor depends on the coefficient
magnitude and the corresponding likelihood ratio only. If the neighborhood ∂(r) contains a majority of
edge (“1”) labels then η(r) is greater than 1 and it increases the shrinkage factor in (12). The opposite is
true when there is a majority of “non-edge” (zero) labels in the corresponding neighborhood. In this way,
the spatial context information, expressed through η(r), favors suppressing less those wavelet coefficients
that are surrounded by the majority of “edge” coefficients and it favors suppressing heavier the isolated big
coefficients (that are more likely to originate from noise).

The binary labels X are estimated using a preliminary coefficient classification as follows:

X(r) =

{

0, |WB
(l)
tf (r)||WB

(l+1)
tf (r)| < σ2

l

1, |WB
(l)
tf (r)||WB

(l+1)
tf (r)| ≥ σ2

l

(16)

where σl is the standard deviation of noise at the scale l. In this process, a “coarse-to fine” strategy is
employed, where a previously denoised wavelet subband from a coarser scale is used to estimate the edge
positions at the next finer scale.

For the calculation of the likelihood ratio’s, the following model was proposed in [8]:

p(m(r)|X(r) = 0) =
1

a
exp(−m(r)/a)

p(m(r)|X(r) = 1) =
m(r)

2b3
exp(−m(r)/b) (17)

where the parameters a and b are computed automatically during the denoising procedure, by minimizing
the mean squared difference between the normalized histogram (of data for binary labels 0 and 1) and the
corresponding sampled analytic approximations given in (17), i.e., by maximum likelihood approach.

2.3. The proposed 3D extension

In this work, we propose a 3D extension of this method, by modifying the equation 15 in such a way that
we do not take only mask from the current frame into account but from the previous frame as well, in
case when no undergoing motion is detected (assumed) between those frames. Specifically, the considered
spatial surrounding ∂ is now extended to the 3D (2x3x3) surrounding, where the binary labels from masks
are considered from both the current and previously processed frame. The criteria for deciding whether
only 2D surrounding will be considered or the 3D one is defined as follows: If

||WB
(l)
tf (r, t)WB

(l+1)
tf (r, t)| − |WB

(l)
tf (r, t − 1)WB

(l+1)
tf (r, t − 1)|| > σ2

l (18)

is satisfied then only 2D neighbouring surrounding is used as suggested in [8]; otherwise 3D (2x3x3) sur-
rounding is used for computing η(r) in equation 15



3. EXPERIMENTAL RESULTS

The performance of the proposed algorithm is evaluated on the processed 3D OCT images of “phantom” and
human tissue, provided by AGFA. Images denoised using different methods were compared using contrast-
to-noise ratio (CNR) and the equivalent number of looks (ENL) over six regions of interest in each image.
CNR is a measure of contrast between image feature and backgound of image, while the ENL measures
smoothness in areas that should be homogeneous but are corrupted by speckle. Contrast-to-noise ratio
is defined as CNRm = 10log[(ηm − ηb)/

√

(σ2
m + σ2

b )] and ENLm = η2
m/σ2

m, where ηm and σm are the
mean and the standard deviation of the pixel values in the m-th region of interest (ROI) and ηb and σb

are the mean and standard deviation of the background region. Besides these measures, denoised images
are also compared using global image sharpness parameter, β which is used to determine the degree of
smoothing of denoised images, and is defined [14]. Our method is compared to the methods of Adler and
Fujimoto [15], Lee [16], Balster [17] and rotating kernel method presented in [18]. Some of the methods
used for comparison were developed specifically for OCT images ( [15], [18]), while others like Balster and
were proposed only for white Gaussian noise. Nevertheless we used them here for comparison of speckle
noise in OCT images. Regions of interest are chosen in a way that characteristic textures from the image
are present. First region represents background of the image. results of quantitative comparisons of the
proposed and reference methods are given in the tables 1 and 2

Table 1. Image quality metrics for the compared methods for breast cancer image

Method CNR ENL

”RKT” 3.75 1843
”Lee” 4.65 2756

”Balster” 4.23 2430
”Adler” 3.17 1289

”Proposed” 5.04 2889

Table 2. Image quality metrics for the compared methods for phantom image

Method CNR ENL

”RKT” 3.15 1102
”Lee” 3.29 1205

”Balster” 2.38 639
”Adler” 2.33 574

”Proposed” 3.63 1933

As can be seen from the tables, proposed method outperforms reference methods in terms of objective
measures. Proposed method also outperforms reference methods in the terms of visual quality. Denoised
images of noisy fantom image and the image of breast cancer are shown in Figures 3 and 2

As can be seen from 2 and 3 methods of [17] and [16] remove background noise better than other reviewed
methods. Still details are slightly better preserved in image processed by algorithm of [16]. The largest
amount of the backgound noise remains after noise removal using algoritm of [18]. Method of [15] removes
background noise very well, while preserving details better than the other reference methods. Proposed
method outperforms reference methods in terms of visual quality, both in backgound noise removal and
detail preservation. This can especially be observed for image of human tissue.

4. CONCLUSION AND FUTURE WORK

In this paper we have proposed a novel scheme for removing noise in 3D OCT images. In the proposed
scheme we first apply the temporal filter of [7] and subsequently remove the remaining noise by a simple
3D extension of the despeckling filter from [8].



In future we intend to model, in a more sophisticated manner, the statistical and correlation properties
of the noise in OCT images and use it in both temporal and spatial filter for optimal filtering performance.
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Figure 2. OCT image of the breast cancer denoised using a.) Rotating kernel transform method of [18] b.) Method
of Lee [16] c.) Method of Balster [17] d.) Method of Adler [15] e.) Proposed method



Figure 3. OCT “phantom” image denoised using a.) Rotating kernel transform method of [18] b.) Method of
Lee [16] c.) Method of Balster [17] d.) Method of Adler [15] e.) Proposed method


