

ISBN: 978-9-09-027444-7

UNVERSITET GENT

Book of Proceedings of the 4th International Conference on the Application of Physical Modelling to Port and Coastal Protection – Coastlab12

Department of Civil Engineering, Ghent University Ghent, Belgium, September 17 – 20, 2012

edited by

Peter Troch, Vasiliki Stratigaki and Sieglien De Roo

Papers

1. Structures	77
REINFORCEMENT SOLUTIONS FOR COASTAL STRUCTURES IN RELATION TO CLIMATE CHANGE-INDUCED SEA LEVEL RISE: AN EXPERIMENTAL STUDY	
Giovanni Mattarolo, Maryline Luck, Jean-Romain Delisle, Michel Benoit	79
HYDRODYNAMIC BEHAVIOUR OF LOW-CRESTED SLOPES Victor Lander, Peter Troch	89
COMPLEX REFLECTION COEFFICIENTS APPLIED TO STEEP SLOPING	T T
STRUCTURES Fritz Büsching	99
2D ANALYSIS OF THE HYDRODYNAMIC BEHAVIOUR OF COASTAL STRUCTURES USING IMAGE PROCESSING TOOLS AND NUMERICAL MODELS	
Hugo Guedes Lopes, Rui China Periera, Francisco Taveira-Pinto, F. Veloso Gomes, Rafael Molina Sánchez, Maria Graça Neves, Maria Teresa Reis, Jorge Filipe Gadelho	109
HYDRODYNAMIC LOAD ON BUILDING CAUSED BY OVERTOPPING WAVE	
	119
INFLUENCE OF WAVE AND STRUCTURE PARAMETERS ON THE TRANSFORMATION OF SOLITARY WAVES AT SUBMERGED REEFS USING A NONLINEAR FOURIER TRANSFORM (NLFT) Markus Brühl, Anja Gossel, Hocine Oumeraci	127
SLAMMING WAVE IMPACT ON CYLINDRICAL STRUCTURES: MODEL TESTS INCLUDING A RIGID AND DEFORMABLE CYLINDER Diederik Van Nuffel, Kameswara Sridhar Vepa, Ives De Baere, Julien De	
•	137

DYNAMIC PRESSURES UPON A LARGE MONO-PILE UNDER MULTI- DIRECTIONAL NON-BREAKING WAVES	
Tri Cao Mai, Torsten Schlurmann	147
WAVE RUN-UP ON OFFSHORE WIND TURBINE FOUNDATIONS Elisabeth Baden, Jesper Skourup, Thomas Lykke Andersen, Peter Frigaard	157
3D HYDRAULIC MODEL STUDIES OF PIPELINE SECONDARYSTABILIZATION MEASURES Scott Baker, Andrew Cornett, Paul Knox	167
WAVE OVERTOPPING OF THE NEW RUNWAY AT THESSALONIKI AIRPORT Theodora Giantsi, B. Papathanassiou, S. Azorakos, Constantinos Moutzouris	177
WAVE OVERTOPPING AND WAVE-INDUCED LOADING ON A HORIZONTAL QUAY STRUCTURE IN BEIRUT, LEBANON Kerstin Hinze, Andreas Kortenhaus, Hocine Oumeraci, Norbert Peetz	187
WAVE FORCE ACTING ON HORIZONTAL PLATE ABOVE STILL WATER LEVEL DUE TO BREAKING WAVE Susumu Araki, Shun-Ichiro Kitagawa, Ichiro Deguchi	197
EXPERIMENTAL STUDY ON PERMEABILITY EFFECT ON FINAL PROFILE OF DYNAMICALLY RESHAPING BRAKWATER Peyman Aghtouman	207
LABORATORY MEASUREMENTS OF WAVE INDUCED MASS FLUXES AT EMERGENT RUBBLE-MOUND BREAKWATERS Lorenzo Cappietti, Andreas Kortenhaus, Hocine Oumeraci	3 217
WAVE ENERGY DISSIPATION DUE TO PERCOLATION WITH IN FLOATING BREAKWATER Luana Kann Kelch Vieira, Tiago Zenker Gireli	225
COASTAL PROTECTION BY VERKALIT[®]-REVETMENT BLOCKS Fabian Gier, Dmitry Tokarev, H. Rubin, Y. Agnon, Holger Schüttrumpf, Hillel Rubin, Jens Mönnich	232

3D PHYSICAL MODEL TESTING OF THE LOWERING OF A CAISSON INTO WATER AT THE TANGIER MED 2 DEVELOPING PROJECT Pedro Lomonaco, Andres Mendoza, Alvaro Alvarez, Emmanuel Berger, Melanie Mazet	244	
EXPERIMENTAL STUDY ON THE RESPONSE OF MOORED SHIPS: APLICATION TO THE LEIXÕES OIL TERMINAL, PORTUGAL Paulo Rosa Santos, Francisco Taveira Pinto, Fernando Veloso Gomes	254	
PHYSICAL MODELLING OF SEAWATER INTAKE AND OUTFALL CHANNELS ON A CORAL REEF Gabriel Mengin, Nicolas Garcia, Henning Lauridsen	264	
2. Erosion/Scour	275	
INVESTIGATION OF SCOUR DEVELOPMENT UNDERNEATH OFFSHORE GRAVITY FOUNDATIONS DURING LOWERING Nannina Horstmann, Matthias Kudella, Stefan Schimmels, Hocine Oumeraci 277		
EXTENDED VALIDATION OF DYNAMIC DESIGN FORMULA FOR SCOUR PROTECTION AROUND MONOPILES Leen Baelus, Peter Troch, Nicolas Loosveldt, Kenneth Vannieuwenhuyse, Leen De Vos, Annelies Bolle	287	
INVESTIGATION OF HYDRODYNAMICS ON LOCAL SCOUR BY SHAPE OF SINGLE SPUR DIKE IN RIVER BEND Alireza Masjedi, Elaheh Peymani Foroushani	296	
EFFECTS OF WAVE-DRIVEN COASTAL SEEPAGE ON BEACH STABILIZATION IN SWASH ZONE Miyatake Makoto, Kimura Katsutoshi, Ochi Masashi	305	
ARTIFICIAL HEADLANDS TO PREVENT BEACH EROSION Mikio Sasaki	312	
EXPERIMENTAL EVALUATION OF THE INFLUENCE OF A DETACHED BREAKWATER IN A SANDY BEACH Francisco Taveira Pinto, Rui China Pereira, Raquel Silva, Luciana Das Neves	322	

	_
WAVE RUN-UP OF BREAKING AND NON-BREAKING WAVES WITH LONGSHORE CURRENT	1
Antje Bornschein, Reinhard Pohl	333
A NON INTRUSIVE APPROACH TO FLOATING STRUCTURES	
SIMULATION: SMALL SCALE REAL-TIME CAISSON MONITORING	&
CONTROL SYSTEM	
Miguel Cabrerizo, Rafael Molina, Joaquin Vaquero, Susana Borromeo, M	2.12
Cristina Rodriguez-Sanchez, Alberto Rodriguez, Alberto Camarero	343
NON INTRUSIVE INSTRUMENTAL TECHNIQUES COMBINATION	
FOR OVERTOPPING FLOW PROPERTIES MEASUREMENT: NIOVE	
PROMES PROJECT	
Alberto Llana, Rafael Molina, Jose Damián López, Alberto Camarero	351
WAVE LOADING ON WAVE RETURN WALLS WITH SHALLOW	
FORESHORES: A CASE STUDY FROM THE FLEMISH COAST	
William Veale, Toon Verwaest, Corrado Altomare, Tomohiro Suzuki, Koen	
Trouw, Jonas Vermander	360
USE OF 3D LASER SCANNING IN DETERMINING BREAKWATER	
DAMAGE PARAMETERS	
Tom Rigden, Terry Stewart	370
LASER SCANNER TECHNIQUE TO QUANTIFY RANDOMNESS IN	
CUBE AND CUBIPOD ARMOR LAYERS	
Jorge Molines, Maria Piedad Herrera, Tomas Javier Perez, Vicente Pardo,	
Josep Ramon Medina	380
MAPPING OF 3D-BATHYMETRIES AND STRUCTURES USING	
STEREOPHOTOGRAPHY THROUGH AN AIR-WATER-INTERFACE	
Tim Raaijmakers, Freek Liefhebber, Bas Hofland, Paul Meys	390
LAYOUT OF WAVE GAUGE ARRAY FOR ESTIMATION OF 3D WAVE	20
Morten M. Jakobsen, Peter Frigaard	400
,	

331

3. Measuring Techniques

OBTAINING HIGH ACCURACY WAVE HEIGHT MEASUREMENTS USING CAPACITANCE WAVE HEIGHT GAUGES Peter Laurich, Bamdad Sadjadi	408	
WAVE MEASUREMENT TECHNIQUES FOR THE NEW LARGE-SCALE DELTA FLUME Bas Hofland, Rob Hoffman ¹ , Roderik Lindenbergh ²	417	
FLOW SIMILARITY OF BOUNDARY LAYER FLOW INDUCED BY A SHOALING SOLITARY WAVE PROPAGATING OVER A SLOPING BOTTOM		
Chang Lin, Shih-Chun Hsieh, Min-Shiuan Yu, Rajumar V. Raikar, Ming-Jer Kao	427	
4. Waves	431	
NUMERICAL MODELLING OF WAVE GENERATION IN SOUTHERN ADRIATIC SEA Eva Ocvirk, Goran Loncar, Mateja Blaževic	433	
NUMERICAL MODEL OF TSUNAMI WAVE PROPAGATION AROUND		
AN ISLAND Houssam Eddine Touhami, Mohammed Cherif Khellaf LEGHYD laboratory, ALGIERS, Algeria	437	
NUMERICAL STUDY OF WIND-GENERATED WAVES IN THE RED SEA		
Natacha Fery, Gerd Bruss, Abdullah Al-Subhi, Roberto Mayerle	446	
LABORATORY GENERATION OF SOLITARY WAVES: AN INVERSION TECHNIQUE TO IMPROVE AVAILABLE METHODS Alessandro Romano, Marco Guerrini, Giorgio Bellotti	N 456	
WAVE MODELLING IN NAVIGATION CHANNELS Daniel Dusseljee, Coen Kuiper, Gert Klopman	465	
PHYSICAL MODELLING OF WAVES INSIDE THE NEW HARBOUR OF		
OSTEND Wael Hassan, Toon Verwaest, Marc Willems	475	

COMPARATIVE STUDY OF ANALYTICAL WAVE THEORIES AND FULLY NONLINEAR NUMERICAL MODELS IN SHALLOW WATER CONDITIONS	
David Aknin, Johannes Spinneken	485
A CONTRIBUTION TO THE STUDY OF WAVE PROPAGATION AND WAVE BREAKING: PHYSICAL AND NUMERICAL MODELLING José Conde, Conceicao Fortes, Eric Didier, Diogo Neves & L.A.M. Endres	494
TRANSMISSION OF LARGE SOLITARY WAVES OVER A SUBMERGED BREAKWATER Valeri Penchev, Zuo Qihua, Shirin Shukrieva, Wang Den Ting, Pan Jun Ning	; 504
NUMERICAL MODELLING OF INFRA-GRAVITY PERIOD OSCILLATIONS IN A MARINA Darshani Thotagamuwage, Charitha Pattiaratchi	514
LONG PERIOD WAVES IN THE OUTER BASIN OF RIA DE FERROL (NW SPAIN) Mario López, Gregorio Iglesias, Ivan Lopez	524
OVERTOPPING OF A POROUS STRUCTURE USING A SMOOTHED PARTICLE HYDRODYNAMICS NUMERICAL MODEL Diogo R.C.B. Neves, Eric Didier, Maria T. Reis, Maria G. Neves	531
IMPLEMENTING THE AWASYS WAVE ABSORPTION SYSTEM IN A PECULIAR WAVE FLUME Rui Capitao, Jose Conde	541
STROKE, VELOCITY AND ACCELERATION REQUIREMENTS FOR PISTON-TYPE FLUME WAVE GENERATORS Ivo Wenneker	
Deltares, DELFT, The Netherlands	551
EXPERIMENTAL MODELLING OF LANDSLIDE-GENERATED TSUNAMI	
Colin Whittaker, Roger Nokes	561

Ŷ.

5.	Sediment transport & Erosion Scour	571
SEI	PERIMENTAL INVESTIGATION OF NEGATIVELY BUOYANT DIMENT PLUMES RESULTING FROM DREDGING OPERATIONS adewijn Decrop, Tom De Mulder, Peter Troch, Erik Toorman, Marc Sas	573
WA	PERIMENTAL STUDY OF THE INFLUENCE OF BREAKWATERS IN VE ACTION DOWNSTREAM OF HARBOURS Koufali, V.K. Tsoukala, TH. Giantsi, C.I. Moutzouris	583
PHYSICAL AND NUMERICAL MODELLING OF SUSPENDED SEDIMENT SPREADING WITH APPLICATION TO DREDGE PLUME FORECAST AND CONTROL		
Val	eri Penchev, Antoaneta Kirova	592
6.	Structures & Result interpretation	601
PA CO	TEGRAL DESIGN OF HARD SEA DEFENSE OF MAASVLAKTE 2; RT I: DESIGN TAILORED TO RE-USE OF MATERIAL & NSTRUCTABILITY rard Loman, J.G. Poot, Stephan Van der Biezen, Rene Roels	603
PA	FEGRAL DESIGN OF HARD SEA DEFENSE OF MAASVLAKTE 2; RT II: PHYSICAL MODEL TESTING OF CUBE REVETMENT & REEF rard Loman, Bas Hofland, Stephan Van der Biezen, J.G. Poot	613
des Enr	y sical modelling of two adjacent rubble mound breakwaters - Optimal ign for the Punta Langosteira Port (A Coruña, Spain) rique Peña, E. Macineira, Javier Ferreras, F. Costa, Félix Sánchez- nbleque, A. Ruiz, J. Sande, F. Noya, V. Bajo	623
BR	ABILITY CONFIRMATION TESTS OF A RUBBLE MOUND EAKWATER ROUNDHEAD drés Mendoza Munizaga, Pedro Lomonaco Tonda	635

r

7. Ocean Renewable Energy	645
PHYSICAL MODELLING OF AN OWC WAVE ENERGY CONVERTE Ivan Lopez, Gregorio Iglesias, Mario Lopez, Victor Ramos, Rodrigo Carb	
OSCILLATING WATER COLUMN (OWC) WAVE POWER CAISSON BREAKWATERS - PRESENT STATUS, DEVELOPMENTS NEEDED Kannapiran Thiruvenkatasamy, Pengzhi Lin	657
PHYSICAL MODELLING OF AN OFFSHORE OWC WAVE ENERGY CONVERTER MOUNTED ON A WINDMILL MONOPILE FOUNDATION	
Carlos Pérez, Gregorio Iglesias	666
SITE OPTIMIZATION IN TIDAL STREAM ENERGY Gregorio Iglesias, Marcos Sanchez, Rodrigo Carballo, Victor Ramos	676
8. Scale Effects & Structures	687
NON-CONVENTIONAL MATERIALS FOR MOVABLE-BED COAST PHYSICAL MODELS AT HIGH SCALE OF REDUCTION Valentina Petruzzelli, Antonio Felice Petrillo, Francesc Xavier Gironella I	
Cobos, Andrea Marzeddu	689
EXPERIMENTAL STUDY OF A MULTIPLE-ROW PILE BREAKWATH Theoharris Koftis, Panayotis Prinos, Michael Aftias	E R 699
PHYSICAL AND ANALYTICAL MODELLING ON DUNE EROSION Felice D'Alessandro, Giuseppe Roberto Tomasicchio	708
9. Intercomparison modeling tools	717
PREDICTION OF WAVE TRANSMISSION COEFFICIENT BY COMBINING EXPERIMENTAL MEASUREMENTS AND NUMERIC MODELLING	AL
IVIL / L/L/L/L/INLY	

NUMERICAL MODELLING OF COASTAL DEFENCES USING THE SMOOTHED PARTICLE HYDRODYNAMIC METHOD	
A.J.C. Crespo, Corrado Altomare, Benedict Rogers, J.M. Dominguez, Xavier Gironella	728
NUMERICAL WAVE PENETRATION MODELLING AND COMPARISON WITH PHYSICAL MODEL AND FIELD MEASUREMENTS FOR THE HARBOUR OF ZEEBRUGGE	
Vincent Gruwez, Annelies Bolle, Toon Verwaest	738
WAVE PENETRATION INTO A SHALLOW MARINA - CASE STUDY FOR BLANKENBERGE, BELGIUM	
Tomohiro Suzuki, Vincent Gruwez, Annelies Bolle, Toon Verwaest	748
10. Large scale experiments	759
DETAILED HYDRAULIC MODEL FOR THE PORT OF ZEEBRUGGE: PHYSICAL MODEL AS A RESEARCH TOOL TO STUDY ACCESSIBILITY AND SILTATION	
Marc Willems, Boris Van Dingenen, Toon Verwaest	761
IMPACT LOADS ON A VERTICAL WALL DUE TO OVERTOPPING BORE - LARGE SCALE PHYSICAL MODEL EXPERIMENTS Karunya Ramachandran, Stefan Schimmels, Hocine Oumeraci, Koen Van Doorslaer	769
WAVE REFLECTION ON DISSIPATIVE QUAY WALLS: AN EXPERIMENTAL STUDY Corrado Altomare, Xavier Gironella, Agustin Sanchez-Arcilla, Joaquim	770
Sospedra	779
DEVELOPMENT OF A POINT ABSORBER WAVE ENERGY CONVERTER FOR INVESTIGATION OF ARRAY WAKE EFFECTS IN LARGE SCALE EXPERIMENTS	
Vasiliki Stratigaki, Peter Troch, Tim Stallard, David Forehand, Marc Vantorre, Matt Folley, Jens Peter Kofoed, Aurélien Babarit & Michel Benoit	787
VEGETATIVE WAVE ATTENUATION THROUGH IDEALIZED FLEXIBLE BEDS	
Mary Anderson, Jane Smith	797

11. Sediment Transport

A NEW EXPRESSION TO ESTIMATE THE LONGSHORE SEDIMENT TRANSPORT RATE		
Giuseppe Barbaro, Giandomenico Foti, Carmelo Luca Sicilia	809	
MOVABLE BED MODEL OF A SYSTEM OF DETACHED BREAKWATERS		
Theodora Giantsi, John Karmpadakis, Fotis Chatzimichalakis, Constantinos Moutzouris	818	
12. Natural Hazards	829	
COMPUTER VISION APPLIED TO FLEXIBLE OIL BOOM TESTS Alberte Castro, Gregorio Iglesias, Oscar Ibañez	831	
A LABORATORY EXPERIMENT SIMULATING THE 2011 TOHOKU EARTHQUAKE TSUNAMI WAVEFORM Nobuyuki Iwamae, Takako Fukuyama, Satoshi Inagaki, Yoshinobu Akiyama Tsuyoshi Ikeya	a, 837	
DESIGN OF STORM RETURN WALLS FOR THE MASTERPLAN FOR COASTAL SAFETY: FROM CONCEPTUAL TO DETAILED DESIGN Koen Trouw, Tina Mertens, Jonas Vermander, Toon Verwaest, Annelies Bolle, Koen Van Doorslaer, Julien De Rouck	844	
13. Currents & large scale experiments	855	
NUMERICAL SIMULATION OF WATER MIXING AND RENEWAL IN THE BARCELONA HARBOUR AREA Anthony Galea, Manel Grifoll, Federico Roman, Marc Mestres, Vincenzo Armenio, Agustin Sanchez-Arcilla	857	
HYDRODYNAMICS OF A GENERATED WAVE-CURRENT BOUNDAR LAYER	Y	
Duncan Bryant, Joe Gailani, Ernest Smith	867	

807

DESIGN OF STORM RETURN WALLS FOR THE MASTERPLAN FOR COASTAL SAFETY: FROM CONCEPTUAL TO DETAILED DESIGN

KOEN TROUW⁽¹⁾, TINA MERTENS⁽²⁾, JONAS VERMANDER ⁽²⁾, TOON VERWAEST⁽³⁾, ANNELIES BOLLE⁽⁴⁾, KOEN VAN DOORSLAER⁽⁵⁾, JULIEN DE ROUCK⁽⁵⁾

 Fides Engineering, Sint Laureisstraat 69D 2018 Antwerp, Belgium, Koen.Trouw@fidesengineering.be

(2) Coastal Division (Flemish Agency for Maritime Services and Coast) Vrijhavenstraat 3, Oostende, 8400, Belgium. Tina.mertens@mow.vlaanderen.be

(3) Flanders Hydraulics Berchemlei 115 2600 Antwerp – Toon.verwaest@mow.vlaanderen.be

⁽⁴⁾ IMDC, Coveliersstraat 15, Berchem (Antwerpen), 2600, Belgium. Annelies.bolle@imdc.be

⁽⁵⁾ Department of Civil Engineering, Ghent University Technologicpark 904, Gent, B-9052, Belgium. Julien.derouck@ugent.be

Abstract

This paper reflects on the design of measures for the Integrated Master Plan to protect the Flemish coastline against erosion and flooding on a short and long term basis, looking ahead at the year 2050. Different measures and alternatives to prevent present and future flooding are being worked out on the basis of safety checks and flood risk calculations along the entire Flemish coastline. This paper describes how initially the available knowledge about the effect of measures is used and how the physical experiments are used to refine this knowledge for detailed design.

1. Introduction

Although the Flemish coastline is merely 67 kilometers long, every meter is optimally used. Many stakeholders have specific interests in this varied area: housing, tourism, harbour activities, nature reserves, ... To balance the needs of all these interest groups, mutual cooperation is needed to guarantee their future. The Integrated Master Plan for coastal safety started in 2007 and brought all these factors together. This plan was approved in June 2011 by the Flemish Government and forms the basis for the development of the seafront along the Flemish coast in the nearby and distant future (looking at 2050) with safety against flooding as a primary aim. A combination of soft and hard coastal protection techniques will be used. To detail the design of these hard measures architectural, numerical and physical modelling is being executed. This abstract outlines the process of the conceptual and the detailed design.

2. Masterplan Coastal Safety

The Belgian coast is situated at the southern part of the North Sea. The coastline is 67 km long consisting mostly of sandy beaches with sea walls in front of the cities and dunes in

between. There are 4 harbours at Nieuwpoort, Oostende, Blankenberge and Zeebrugge and the Zwin (tidal inlet) (Fig. 1). In the flood prone area live about 400.000 people.

Although Belgium has a small coast, every kilometer is intensively used. Residential neighbourhoods, ports, industries and important nature reserves are present. The pressure from tourism and recreation is immense. To balance the needs of all these interests, at present and in the future, an integrated approach is necessary. Nonetheless, special attention has to be given to coastal safety. Due to climate changes (e.g. sea level rise) and continuing development of the coastal zone, protection against coastal erosion and flooding will become increasingly difficult and costly to guarantee. To counter this problem, good spatial planning, cooperation between different governmental organisations and collaboration with neighbouring countries will be essential.

Figure 1. The Belgian coast is 67 km long and has 4 harbours at Nieuwpoort, Oostende, Blankenberge and Zeebrugge. At the borders two important nature reserves (Westhoek and Zwin) are located.

A lot of coastal communities however did not achieve the (intermediate) safety standard to be protected for the 1 in 1000 year storm. There was a need for long-term planning. Hence, for the first time, the Coastal Division of the Flemish region started up a study to work out an 'integrated master plan for Flanders future coastal safety'. The aim of this study was to protect the Flemish coast against erosion and flooding on a short and long term basis, looking ahead at the year 2050, based on the principles of Integrated Coastal Zone Management (ICZM). Therefore the time aspects of investments, sea level rise, beach erosion, ... are also taken into account. This integrated master plan was approved in June 2011 and defines the measures needed to develop and guarantee a safe coastline.

The different topics of the study are summarised in Fig. 2.

Figure 2. Different topics of the Integrated Master Plan.

3. Conceptual design

Both for the harbours and the coastal towns a social cost benefit analysis was executed. In this analysis different measures were compared. For the coastal towns (where overtopping is the main problem) the measures consist of a beach nourishment in combination with possible hard measures at the location of the current sea wall. Possible hard measures are storm return walls and stilling wave basins. The larger the hard measure, the less sand has to be nourished (or the higher the protection level). For the harbours (where also overflow can be a problem in the initial situation) measures consist of storm return walls all around the quays in the harbour, to prevent both overtopping and overflow, and a possibility to close the harbour with a storm surge barrier.

For all measures the cost was estimated based on experience of comparable projects and/or on a rough preliminary design of the structures. With flood risk calculations the (remaining) potential damage was evaluated. The higher the protection level of the measure the less damage.

All costs and benefits were compared, taking into account the social consequences. By doing so, a ranking of the different types of measures was obtained and the optimal height and /dimension of the measures was determined.

For this exercise no detailed calculations of wave forces and stability of the foundation were necessary. The cost benefit analysis only gives a ranking. If two measures are of comparable impact and cost, other considerations have to be taken into account for the decision, such as the social impacts. Therefore the outcome of the cost benefit analysis has to be robust for changes in costs or avoided damage, including the high uncertainty on extreme water levels, wave heights, It was not be realistic (and necessary) to investigate all possible measures with physical modelling or complicated modelling.

4. Used methodology for the conceptual design

4.1 Harbours

The wave penetration in harbours is calculated with the wave energy model SWAN. SWAN is not suitable to calculate diffraction, but for most locations the wave height is determined by local wind growth and/or direct wave penetration. For the detailed design a combination of a (semi-) time domain numerical wave model (e.g. Boussinesq modeling) (for the wave penetration) and a spectral model (SWAN, for the local wind growth) is used.

The possible flood protection measures in harbours consists of quay walls with a storm return wall at some distance from the quay wall, heightening of quays, storm surge barriers, ... To calculate overtopping over quay walls with a storm return wall, the method of Den Heijer is used (Den Heijer, 1998). However, it should be noted that in the physical modeling on which the method is based, only 1 test is done for a case with a water level lower than the quay level (h_B<0, cf. Figure 3.

Figure 3 Reduction coefficient dependency on the relative water level

Also the obliqueness of the waves (for quays) is taken into account, using the formulaes of (Eurotop Manual) :

$$\begin{aligned} \gamma_{\beta} &= 1 - 0.0062\beta \text{ voor } 0^{\circ} < \beta < 45^{\circ} \\ \gamma_{\beta} &= 0.72 \text{ voor } \beta \ge 45^{\circ} \end{aligned}$$

It should be noted that in this approach, the reduction for wave directions of 80° (what is a common case in harbor (entrances)) is equal to 45° wave attack. This makes physical modeling necessary for the detailed design (optimisations). These experiments are scheduled for the near future.

4.2 Coastal towns

For coastal towns first the erosion of the beach during a storm is calculated with Durosta (Steetzel, 1993). The eroded beach profile is used as input for the wave modeling (SWAN) in order to calculate the wave parameters at the toe of the dike. In the detailed design SWASH is used for this calculation (Suzuki et al, 2012).

If a storm return wall at the dike crest is examined, again Den Heijer is used (outside the range of valid configurations).

5. Physical experiments for optimalisations

5.1 Wave overtopping on quay walls with a storm return wall

Figure 4 Model set-up

At UGent physical experiments are performed for different (relative) water levels, wave heights, crest widths and wall heights (set up as shown in Figure 4).

In Figure 5 the available data are clustered based on the ratio between the berm width (Lb) and the wall height (hm): Black: very small berm length Lb (LB/hm around 2); Red: broad berm (Lb/hm around 10); Orange (Lb/hm around 5); Blue (Lb/hm >>10); Green : no wall The dimensionless overtopping (Q^*) and freeboard (R^*) are calculated as:

$$R_n = \frac{h_c}{H_s} \frac{1}{\gamma_{\text{totach}}}$$
$$Q_n = \frac{q}{\sqrt{g H_s^3}}$$

Figure 5 Dimensionless overtopping (Q^*) related to the dimensionless freeboard (R^*) for different quay layouts

Within the figure, the factor γ is left out to see where all data are located in the graph related to the each other. The points are clearly clustered. For each cluster the corresponding gamma is determined to fit the relation:

This gives the dependency as shown in Figure 6:

Figure 6 Reduction coefficient γ in relation to the ratio of berm width and wall height

Parapet walls result in a further reduction. For the used shape of parapet, a γ of 0.8 can be used (cf. Figure 7).

Figure 7 Comparison of overtopping discharges between walls with and without parapet.

5.2 Wave forces

For the determination of wave forces Den Heijer and Goda are used for the conceptual design. For oblique waves a reduction of the dynamic forces is applied (multiplying by $\cos^2(\beta)$) However, these formulae are used out of the range for which they were intented.

The idea is to find a relation between layer thickness, velocity and wave force, since already data exist about the relation between wave parameters and layer characteristics (cf. Figure 8) (e.g. Van der Meer et al, 2010).

Figure 8 Definition of parameters to find relations

5.2.1 Experiments with the wave overtopping generator

A test campaign was carried out using the Wave Overtopping Simulator, (Van Doorslaer et al.,2012) In the wave overtopping simulator (see Figure 9) different volumes of water can be released in a short time, simulating individual overtopping events. At a distance of 10m from the simulator storm walls are placed, on which impact forces are measured.

Figure 9 Set up of the overtopping Simulator and storm return walls

The force record over time is shown for an overtopping wave of 35001/m, measured on the horizontal plate (Figure 10) and one of the vertical plates (Figure 11). The 4 individual sensors (Bottom left (BL), bottom right (BR), top left (TL) and top right (TR)) are to be read from the left Y-axis, and are expressed per meter width (N/m). The sum of the four sensors, divided by the width of the measurement plate is to be read from the right Y-axis (also in N/m).

The force records of the horizontal plate (Figure 10) have a very steep rise over time: the maximum is reached in 0.1 to 0.2s for the bottom sensors (_BL and _BR) and about 0.3s for the top sensors (_TL and _TR). The bottom sensors measure the highest forces. The top sensors are located above the flow depth, and measure less high forces. The measurements of the left and right sensors on both top and bottom are very similar.

Figure 10. Force record of a horizontal plate, under an overtopping wave volume of 35001/m

Figure 11. Force record of a vertical plate, under an overtopping wave volume of 35001/m

5.2.2 Experiments at GWK

Another test campaign was carried out at the Large Wave Flume (Grosser Wellen Kanal, GWK) in Hannover. A dike with slope 1/3 was built in the flume with a crest level of +6m. on top of the dike, a 10m long promenade was built and storm walls were installed at the end of this promenade (see Figure 12). Both forces and pressures were measured in this test campaign and linked to the parameters of the incoming bore of the wave which overtopped the dike's crest.

Figure 12 Model set-up experiments at GWK

More information about the test results can be found in Ramachandran et at, 2013.

5.3 Wave overtopping and wave forces over dikes with a shallow foreshore.

The foreshore at most of the coastal towns is very shallow and therefore wave breaking plays an important role for wave loading on the proposed wave return wall. Physical and numerical model tests have shown that the swash zone during extreme storm events is characterized by the generation of low-frequency infragravity waves (f < 0.04 Hz prototype scale), and the formation of solitary bores which collapse at the shoreline, propagate up the beach face and impact the sea dike. The physical experimental set up includes the foreshore. More information can be found at Veale et al, 2012.

6 Conclusions

- A master plan for coastal safety was set up using as much as possible available knowledge
- · For the design phase many experiments are done/planned

• A reduction coefficient for overtopping over quay walls with a storm return wall on top is obtained

• In general the results of these experiments do not result in a need to reconsider the social cost benefit analysis

• However, communication to the public with preliminary results can be confusing if the results change after the detailed design.

References

- Den Heijer, F., 1998. Golfoverslag en krachten op verticale waterkeringsconstructies (Wave overtopping and forces on vertical structures). Delft Hydraulics Report H2014, August 1998. In Dutch.
- EA, ENW & KFKI, 2007. EurOtop: Wave Overtopping of Sea Defences and Related Structures: Assessment Manual.
- Ramachandran, Karunya, Stefan Schimmels, Hocine Oumeraci, Koen Van Doorslaer (2013). Impact loads on a vertical wall due to overtopping bore - large scale physical model experiments, Coastlab12
- Suzuki, T., Verwaest, T., Veale, W., Trouw, K., Zijlema, M., (2012) A numerical study on the effect of beach nourishment on wave overtopping, proc. of the ICCE 2012
- Van der Meer, J.W., B. Hardeman, G.J. Steendam, H. Schttrumpf and H. Verheij (2010). Flow depths and velocities at crest and inner slope of a dike, in theory and with the Wave Overtopping Simulator. ASCE, Proc. ICCE 2010, Shanghai.
- Van Doorslaer, K., De Rouck, J., Trouw, K., van der Meer, J.W., Schimmels, S., (2012) Wave forces on storm walls, small and large scale experiments, 8th International Conference On Coastal And Port Engineering In Developing Countries Copedec 2012, IIT Madras, Chennai, INDIA. 20-24 Feb. 2012
- Veale, W., Tomohiro, S., Verwaest, T., Hassan, W., Trouw, K., Mertens, T., (2012) Integrated design of coastal protection works for Wenduine, Belgium, proc. of the ICCE 2012

Author Index

Aftias, M.	699
	207
Aghtouman, P.	
Agnon, Y.	232
Akiyama, Y.	837
	485
Aknin, D.	
Al-Subhi, A.	446
Altomare, C.	360, 728, 779
Alvarez, A.	244
Anderson, M.	797
Araki, S.	197
Armenio, V.	857
Azorakos, S.	177
Babarit, A.	787
Baden, E.	157
Baelus, L.	287
Bajo, V.	623
Baker, S.	167
Barbaro, G.	809
Bellotti, B.	456
Benoit, M.	79, 787
Berger, E.	244
Blaževic, M.	433
	287, 738, 748, 844
Bolle, A.	
Bornschein, A.	333
Borromeo, S.	343
Brühl, M.	127
Bryant, D.	867
Buesching, F.	99
Bruss, G.	446
Cabrerizo, M.	343
Camarero, A.	434, 351
Capitao, R.	541
Cappietti, L.	217
Carballo, R.	647, 676
Castro, A.	831
	818
Chatzimichalakis, F.	
Chen, X.	119
China Pereira, R.	109, 322
Chondros, M.	719
Conde, J.M.P.	494, 541
Cornett, A.	167
Costa, F.	623
Crespo, A.J.C.	728
D'Alessandro, F.	708
Das Neves, L.	322
De Baere, I.	137
De Mulder, T.	573
	510

What works to be	
De Rouck, J.	137, 844
De Vos, L.	287
Decrop, B.	573
Degrieck, J.	137
Deguchi, I.	197
Delisle, JR.	79
Denting W.	504
Didier, E.	494, 531
Dominguez, J.M.	728
Dusseljee, D.	465
Endres L.A.M	494
Ferreras, J.	623
Fery, N.	446
Fortes, C.	494
Foti, G.	809
Frigaard, P.	157, 400
Folley, M.	787
Forehand, D.	787
Fukuyama, T.	837
Gadelho, J.F.	109
Gailani, J.	867
Galea, A.	857
Garcia, N.	264
Giantsi, T.	177, 583, 818
Gier, F.	232
Gironella, X.	
Gironella I Cobos, F.X.	728, 779 689
Gossel, A.	127
Graça Neves, M.	127
Grimm C.	232
Grifoll, M.	857
Gruwez, V.	
Guerrini, M.	738, 748 456
Hassan, W.	475
Herrera, M.P. Hinze, K.	380
	187
Hoffman, R.	417
Hofland, B.	390, 417, 613
Horstmann, N.	277
Hsieh, SC.	427
Ibañez, O.	831 524 647 666 676 821
Iglesias, G.	524, 647, 666, 676, 831
Ikeya, T.	837
Inagaki, S.	837
Iwamae, N.	837
Jakobsen, M.M.	400
Jonkman, S Junning B	119
Junning P. Kana Kalah Vising J	504
Kann Kelch Vieira, L.	225
Kao, MJ.	427
Karmpadakis, J.	818

Khellaf, M.C.	437
Kimura K.	305
Kirova, A.	592
Kitagawa, SI.	197
Klopman, G.	465
Knox, P.	167
Kofoed, J.P.	787
Koftis, T.	699
Kortenhaus, A.	187, 217
Koufali, M.	583
Kudella, M.	277
Kuiper, C.	465
Laurich, P.	403
Lauridsen, H. Lieftabber F	264
Liefhebber, F.	390
Lin, C.	427
Lindenbergh, R.	417
Llana, A.	351
Loman, G.	603, 613
Lomonaco, P.	244, 634
Loncar, G.	433
Loosveldt, N.	287
Lopes, H.	109
Lopez, I.	524, 647
López, J.D.	351
López, M.	524, 647
Luck, M.	79
Lykke Andersen, T.	157
Macineira, E.	623
Mai, T.C.	147
Marzeddu, A.	689
Masashi, O.	305
Masjedi, A.	296
Mattarolo, G.	79
Mayerle, R.	446
Mazet, M.	244
Medina, J.R.	380
Memos, C.	719
Mendoza, A.	244
Mendoza Munizaga A.	634
· · · · · · · · · · · · · · · · · · ·	264
Mengin, G.	204 844
Mertens, T.	
Mestres, M.	857
Meys, P.	390
Miyatake M.	305
Molina, R.	343, 351
Molines, J.	380
Molina Sanchez R.	109
Mönnich, J.	232
Monteiro Cabral J.	109
Moutzouris, C.	177, 583, 818

Neves, D.R.C.B.	494, 531
Neves M.G.	531
Nokes, R.	561
Noya, F.	623
Ocvirk, E.	433
Oumeraci, H.	28, 127, 187, 217, 277, 769
Papathanassiou, B.	177
Pardo V.	380
Pattiaratchi, C.	514
Peetz, N.	187
Peña, E.	623
Penchev, V.	504, 592
	656
Pengzhilin Bérez C	
Pérez, C.	666
Perez, T.J.	3880
Petrillo, A.F.	689
Petruzzelli, V.	689
Peymani Foroushani, E.	296
Pohl, R.	333
Poot, J.G.	603, 613
Prinos, P.	699
Qihua, Z.	504
Raaijmakers, T.	390
Raikar, R.V.	427
Ramachandran, K.	769
Ramos, V.	647, 676
Reis, M.T.	109, 531
Rigden, T.	370
Rodriguez-Sanchez, M.C.	343
Rodriguez, A.	343
Roels, R.	603
Rogers, B.	728
Roman, F.	857
Romano, A.	456
Rosa Santos, P.	254
Rubin, H.	232
Ruiz, A.	623
Sadjadi, B.	408
Sanchez-Arcilla, A.	779, 857
Sánchez-Tembleque, F.	623
	676
Sanchez, M.	623
Sande, J.	573
Sas M.	
Sasaki, M.	312
Schimmels, S.	277, 769
Schlurmann, T.	147
Schüttrumpf, H.	232
Shukrieva, S.	504
Sicilia, C.L.	809
Silva, R.	322
Skourup, J.	157

0 14 P	
Smith, E.	867
Smith, J.	797
Sospedra, J.	779
Spinneken, J.	485
Stallard, T.	787
Stewart, T.	370
Stratigaki, V.	787
Suzuki, T.	360, 748
Taveira Pinto, F.	109, 254, 322
Thiruvenkatasamy, K.	656
Thotagamuwage, D.	514
Tokarev, D.	232
Tomasicchio, G.R.	708
Toorman, E.	573
Touhami, H.E.	437
Troch, P.	89, 287, 573, 787
Trouw, K.	360, 844
Tsoukala, V.	583
Uijttewaal, W.	119
Van der Biezen, S.	603, 613
Van der Meer, J.	15
Van Dingenen, B.	761
Van Doorslaer, K.	769, 844
Van Nuffel, D.	137
Van Paepegem, W.	137
Vannieuwenhuyse, K.	287
Vantorre, M.	787
Vaquero, J.	343
Veale, W.	360
Veloso Gomes, F.	109, 254
Vepa, K.S.	137
Vermander, J.	360, 844
Verwaest, T.	119, 360, 475, 738, 748, 761, 844
Victor, L.	89
Wenneker, I.	551
Whittaker, C.	561
Willems, M.	475, 761
Yu, MS.	427
Zenker Gireli, T.	225
un a sananan attan an a n	