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ABSTRACT
Many vision-based applications, especially in the domain of
augmented reality, must align the camera position in the
observed scene. However, traditional cameras only regis-
ter textures of the observed scene. The reconstruction of
depth information from 2D images is compute intensive and
inevitably results in loss of accuracy. In this article, we
present Mercator, a cloudlet-based system to build a 3D
model of the world on which other applications can be built.
The model is continuously updated, refined and expanded
by crowd-sourcing depth data from 3D cameras on head-
mounted devices such as Google Glass. Mercator scales up
to a worldwide system by distributing the model over the
network edge in geographically close cloudlets. We present
the software building blocks of the system, and discuss chal-
lenges related to data management, privacy and program-
ming model.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing; C.2.4 [Distributed Systems]: Distributed Ap-
plications

Keywords
crowd-sourcing, wearable computing, 3D map, cloudlet, com-
puter vision, smartphone

1. INTRODUCTION
Of all sensors embedded in today’s smartphones, the cam-

era provides the richest form of information. Despite the om-
nipresence of cameras in smartphones, the variety in vision-
based applications has been extremely limited for reasons of
usability and computational requirements. Whereas sensors
like gyroscopes or GPS provide their data without notice-
able effort of the user, cameras must be manually held in
the right position. Moreover, today’s mobile devices lack
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the computational power to fully tap into the vast amount
of information that is embedded in visual sensor input.

The emergence of elegant and light head-mounted devices
(HMD), such as Google Glass, and the convergence between
mobile and cloud computing may however enable a new wave
of vision-based applications [6]. The form factor of HMDs
allows for continuous, effortless capture of first-person view-
point video, while compute intensive algorithms can be of-
floaded with low latency owing to the advances in mobile
broadband and the emergence of cloud infrastructure at the
network edge.

Most vision-based applications require a 3D structural
model of the observed scene and spent many processing cy-
cles to infer this model from the 2D texture information
that is captured by commodity cameras. Twodimensial com-
puter vision can only derive relative measures of depth in the
scene, but no absolute distances between objects. The re-
construction of depth information inevitably results in loss
of accuracy as it is intrinsically limited. Objects can be
detected through contour identification, but without depth
information it is hard to ascertain whether the user is look-
ing at the actual object or a picture of that object.

In this paper, we present our vision on Mercator, a dis-
tributed system to create a 3D map of the complete world
by crowd-sourcing depth information streamed from sensors
mounted on HMDs. Figure 1 illustrates our vision. Each
movement of a user, no matter how small, results in depth
data from a different perspective that makes the map more
accurate, complete and up-to-date. Setting aside compu-
tational and memory constraints, Mercator will eventually
result in a high-resolution, up-to-date 3D map of the com-
plete world.

For reasons of latency and scalability, we distribute the 3D
map over different cloudlets. Cloudlets are distributed cloud
infrastructure at the network edge and have been proposed
for offloading real-time applications from mobile devices [20].
Beyond this original motivation, we exploit data locality and
store on each cloudlet only the data of its immediate geo-
graphical environment. Real-time applications of users that
have been offloaded to the same cloudlet consequently have
fast, reliable access to the data of nearby scenes.

New hardware and software technologies have emerged
that lower the barriers to realizing our vision. Both the cost
and size of depth cameras have dropped to allow their inte-
gration into HMDs. PrimeSense [5] unveiled earlier this year
the Capri sensor, a System on a Chip that is 10x smaller than
today’s depth sensors, small enough to fit in today’s smart-
phones. An alternative are stereoscopic cameras such as Go-
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Figure 1: Depth sensors on head-mounted devices
continuously update and refine the 3D model of
the world. The model is distributed over multiple
cloudlets, according to geographical proximity.

Pro 3D [2]. A recent milestone in the domain of computer
vision was the demonstration of Kinect Fusion [19], a GPU-
based software framework reconstructing in real-time geo-
metrically precise 3D models of medium-sized indoor scenes
based on the depth data of handheld Kinect sensors.

In the rest of this paper, we expose our vision to taking
these new technologies to a global scale. In section 2, we
speculate on innovative applications enabled by the Merca-
tor framework. In section 3, we elaborate on key aspects of
the Mercator architecture. The major challenges related to
data retrieval, user privacy, programming model and spatial
and temporal data accuracy are discussed in section 4.

2. APPLICATIONS
The 3D map of the world provides a cloud-based equiv-

alent of the observed reality. In this section, we list a few
applications in the domain of augmented reality that ex-
ploit Mercator for accurate placement of virtual objects or
for annotating physical objects with metadata.

Cognitive assistance: where are my keys? Users can
carry a virtual purse in their smartphone with 3D models of
personal objects. These models can be used to locate lost
objects. Instead of asking everybody if they have seen your
keys, you simply upload the 3D representation of your keys
for matching against the 3D map. People who have quickly
glanced over your keys are probably unaware that they actu-
ally have seen your keys, but their gaze has been registered
in the cloud and provides the necessary information to guide
you to your lost keys.

Personal tagging We envision Mercator to provide func-
tionality to augment the 3D model with one or more mul-
tiple virtual layers. Users attach virtual objects or tags to
specific parts in the model. Systems like Airbrush [17] have
already demonstrated virtual tagging of real-life objects, but
the work is limited to a single user. With Mercator, multi-
ple users can query the 3D model for virtual objects added

by others that are within their current field of view.. Imag-
ine leaving a virtual scribble on the fridge, automatically
rendered on the HMD of each person entering the kitchen.
Each object becomes a potential pervasive display for com-
municating with others [16].

Pervasive object manipulation Apart from adding vir-
tual objects, we can also expand the 3D model with meta-
data on physical objects, such as their interface, or their IP
address. Applications query the model to locate available
sensors and actuators in the immediate environment of the
user and to retrieve the interface to manipulate these. By
aligning the current gaze to the Mercator data set, a vision-
based application can retrieve the metadata of the object
the user is currently looking at. Until now, pervasive inter-
action with physical objects has mainly been restricted to
confined, well-controlled environments, such as Google’s In-
teractive Space [1], where the IP address and interface of ob-
jects is known. Through Mercator, any authorized user can
enter a room and communicate with any networked object,
by retrieving the IP address and the appropriate interface
from Mercator’s metadata.

Indoor navigation Despite many years of research, no
single solution has yet crystallized that is as elegant, ac-
curate and simple as GPS for outdoor environments. Many
approaches to indoor positioning use signal readings, such as
Wi-Fi [18] fingerprints or FM signals [8]. These signals are
however unstable over time and not intrinsic to the structure
of the indoor environment. Vision-based indoor localization
closely resembles the human orientation mechanism and is
based on relative positioning against the structural land-
marks of the scene. Good results with depth cameras have
been demonstrated in the field of robotics [7].

3. ARCHITECTURE
The current cloud infrastructure model is based on a lim-

ited number of large datacenters. Services can rapidly scale
up by cloning VMs inside the datacenter. This model is not
suited for the type of the vision-based services presented in
the previous section, which are personalized and depend on
real-time processing of high-bandwidth streams with very
low-latency to large numbers of geographically distributed
users. In our architecture, presented in Figure 2, applica-
tions running inside personal VMs access the distributed
model data through tailored Mercator components.

3.1 Cloudlets for low-latency
Increasing the coverage of users with low-latency access to

cloud infrastructure requires a substantial increase of data
centers that must be deployed closer to the user. To il-
lustrate the problem, in [9] researches have experimentally
verified that Amazon EC2 can only serve 70 % of the US
population with a latency low enough for cloud-based gam-
ing [9]. To overcome network latency, the VM-based cloudlet
model has been widely studied [20]. Note that cloudlets
were originally positioned as soft-state mini-clouds, but we
assume that Mercator components, e.g. to merge incom-
ing depth data with the model, are persistently running on
the cloudlet. This requires the cloudlet infrastructure to be
managed by network operators who may charge the users of
Mercator, either as part of their monthly subscription plan
or implicitly via advertising. This vision is becoming a real-
ity: IBM and Nokia Siemens Networks recently introduced
CloudServer: service hosting infrastructure fully integrated
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with the base station of mobile networks [3]. Note that the
base station is the network location closest to the user that
is still under control of the network operator. Revenues can
be generated through user licensing, or by selling advertise-
ments on virtual billboards in the Mercator data set.

3.2 Data locality
The regions of interest to a user are heavily correlated

with his current geographical location, either to upload new
scene perspectives or to import the model data of the im-
mediate surroundings in their own vision-based applications.
Scenarios with users exploring more remote regions, such as
map navigation, are typically less stringent on latency.

This data locality can be exploited by spatially distribut-
ing the model data over cloudlets. This strategy ensure the
tractability of the 3D computer vision algorithms for align-
ing new sensor input and fusing this data into the model,
or for monitoring changes to the map by tracking individual
objects. Such computer vision algorithms typically scale lin-
early with the spatial size and accuracy of the scene model.
As an example, Microsoft Kinfu realizes real-time mapping
of 3D data of a single Kinect by keeping the complete model
in GPU memory, trading off memory efficiency for speed.
The surface of the earth not covered by water is about 150
million km2. Assuming an average mapping height of 10 m
(more in cities, less in rural areas) with a medium resolu-
tion of 4 bytes per voxel of 1 cm3, the complete model of
the world requires approx. 6 zettabytes of memory. Hence,
Mercator’s scalability can only be provided by distributing
the data model, especially since the GPU memory on the
cloudlet is not only needed for aligning uploaded depth data
with the model, but also for the vision-based applications
running inside the personal VMs.

3.3 Public and private data
Spatially distributing the model data does however not

address the privacy requirements of users. Some parts of
the world should not be fused into the global model ac-
cessible to everyone. Many of the speculative applications
described in section 2 require sharing of personal, typically
indoor environment models with a strictly defined subset of
users. As shown in Figure 2, we distinguish between public
and private scenes.

Mercator must provide the necessary authorization and
authentication mechanisms to regulate access to different
parts of the data set. Turning Mercator into a success-
full service requires users trusting the system to preserve
the integrity of their private models. Given the popular-
ity of cloud-based services like Dropbox for storing personal
files, we advocate that most users have no strong objec-
tions against storing data in the cloud an sich. However,
the biggest challenge of trust is to prevent users from unin-
tentionally sharing sensitive data with other users, without
hampering the usability of the system. In section 4, we elab-
orate on this trade-off between privacy and user friendliness.

3.4 Personal Virtual Machines
Each user instantiates a personal VM on the cloudlet, run-

ning computationally heavy and latency sensitive applica-
tions. We assume this personal VM contains the Mercator
library, with specific components to interface with the 3D
model. On the one hand, users must install privacy filters
inside their personal VM, that forwards sensor data to the
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distributed data
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filter data fuser

l VM

application
personal
objects

personal VM

Figure 2: Cloudlet-based architecture of Mercator.

public or private parts of the model. On the other hand,
the data fuser must hide the underlying complexity of dis-
tributed access to the application.

The data fuser synthesizes the requested scenes from both
public and private 3D models. Note that as users move to
other places, data will be needed stored on other cloudlets.
As the latency of data retrieval increases, the data fuser
might initiate a migration to another cloudlet. Live mi-
gration of personal VMs is a challenging issue. However,
through a series of optimization techniques, the time for
provisioning such a customized VM from a baseline image
has been reduced to approx. 10 s [11].

Mercator also offers a software component to manage the
models of personal belongings (such as your keys). These
models never leave the personal VM, turning this VM into
an electronic purse. The models of your personal belonging
are automatically carried with you as you move.

4. CHALLENGES
The computer vision domain has evolved significantly in

the past decade. Tracking the camera position in a twodi-
mensional map was first demonstrated in 2007 [15], and in
2011 real-time tracking in a 3D map in medium-sized rooms
up to 7 m2 was realized by KinFu [13].

Given these impressive advancements in the domain of
computer vision, we will focus on the challenges in other do-
mains that must be overcome to extend Kinfu-alike single-
user, indoor systems to the scale of Mercator: a multi-user,
trustable global 3D map service that can be used indoor and
outdoor. In the remainder of this section, we discuss chal-
lenges related to capturing depth data, preserving privacy,
ensuring model accuracy and the need for a good program-
ming model.

4.1 Map accuracy
Point clouds are the narrow waist of the data models used

in 3D computer vision algorithms. For reasons of scalabil-
ity and speed, higher-level surface models are inferred from
point clouds, such as meshes or surfels [12]. To support
the broadest range of applications, Mercator must (at least)
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provide a detailed point cloud of the complete world. The
accuracy of this point cloud model involves both spatial (res-
olution) and temporal (lifetime) aspects.

The ultimate goal of Mercator is to provide each possible
perspective on the world. Unfortunately, no depth cameras
exist with a depth of field matching the human gaze, which
may stretch several kilometers. Mercator must support mul-
tiple input formats, including depth maps from Kinect-like
sensors and 3D videos. Depth measurement techniques like
time-of-flight or infrared scanning do not suffer from ad-
verse lightning effects, but the random measurement er-
ror increases quadratically with the distance from the sen-
sor [14]. In outdoor environments, other sensor techniques
will be needed to crowd-source the map with high-resolution
data. One solution is to infer depth information from stereo-
scopic 3D cameras such as the GoPro 3D [2]. The con-
cept may build on existing work such as Photosynth [4]
that creates a navigable 3D map by stitching multiple pic-
tures. However, such an approach requires powerful post-
processing and accuracy can be hurted in low-light condi-
tions, through reflections, etc.

The world is continuously evolving, with objects being re-
placed and people moving around. By fusing new perspec-
tives into the model each time users glance over a scene,
the map is kept temporally consistent. However, providing
up-to-date maps for a busy street with fast moving cars is
extremely challenging. The paradox is that the more devices
are observing a scene, the more accurate the map will be. On
the other hand, the movement of these users will cause more
dynamism and result in more changes. We therefore propose
to maintain short-term and more stable models. Mercator
must gradually learn to distinguish between structural ele-
ments with a fixed position in the world, and objects that
are continuously being replaced. For example, if an object is
placed on the table, Mercator should retain the data about
the covered area for fast surface reconstruction once the ob-
ject is removed.

4.2 Energy overhead
Continuously sensing and uploading depth data inevitably

stresses battery lifetime of the wearable device. The Kinect
sensor generates a depth map with a resolution of 640x480, a
framerate of 30 fps and a depth of 16 bpp, resulting in a raw
data stream of 150 Mbps. Although depth data is captured
in a pixel grid similar to RGB color information, 2D video
codecs cannot directly be applied because of the random
noise introduced by depth measurement techniques such as
time-of-flight or infrared scanning. State-of-the-art depth
compression techniques apply adaptive depth coding, allo-
cating more bits to active regions, to reduce the bitstream
to approx. 3 Mbps [10]. Assuming the energy cost of data
upload to 1 J/MB [21] and the Samsung Galaxy S4’s bat-
tery capacity of 2600 mAh, the upload of depth data would
drain the battery in less than 7 hours. The actual battery
autonomy will even be shorter owing to the power needed
for continuous sensing and compression.

An additional complexity is that lowering the fidelty of
the uploaded depth data directly impacts the accuracy of
the computer vision algorithms. Only when lossless com-
pression is applied, the depth data will be accurate enough
to be fused into the global model. Apart from lossless com-
pression, adding application-layer intelligence can mitigate
the power consumption. For example, we could correlate
the density of the uploaded depth map to the lifetime of the

observed scene in the cloudlet model. If a scene has just
been refreshed, there is no need to upload depth data with
full fidelity. If a device runs low on energy, the density of
the uploaded depth maps can be temporarily reduced to the
lowest level needed for tracking the camera position in the
observed scene. An optimal trade-off must be found between
reducing the load for individual users and the global goal of
keeping the 3D map up to date.

4.3 Virtual curtains and fences: privacy
We discern two major questions regarding privacy. Mer-

cator must provide strict guarantees about access rights to
the models of private environments. More fundamentally,
the question raises about how to prevent people uninten-
tionally uploading data through their HMD.

People passing by your house should not have access to
a detailed model of its inside. As stated earlier, we conjec-
ture users to trust their cloudlet infrastructure provider that
the model of sensitive spaces is not publicly exposed. The
major challenge is rather to design a non-intrusive user in-
terface for configuring access rights to private scenes. Appli-
cations must not constantly bother users with authorization
requests popping up in their HMD, yet users want to keep
track about who uses the model of their property. In a first
version of Mercator, we will apply surface detection on the
model to detect when users enter a new room and query the
user if no access rights have been configured.

As no one can prohibit people to take images at public
places, it is nearly impossible to avoid that people upload
models of public or semi-public places. Therefore, we would
propose an opt-out model for Mercator, similar to Google
Streetview where house owners can ask to blur the model
of their facade. Conversely, models of private domains are
only included upon explicit request of the owner.

The biggest privacy thread stems from the fact that oth-
ers might, perhaps unconciously, upload models of your in-
terior through their always-on HMD. In the past, recording
was an explicit act and required to take the smartphone out
of your pocket. Social control was mostly sufficient to re-
frain people from recording private conversations. Wearable
head-mounted devices have a radically different user inter-
face that makes recording nearly effortless and unconscious:
it only involves pressing a button on the shank of the glasses.
Chances are that people will not notice when they are be-
ing recorded through the HMD of their correspondent. We
believe that strong legislative regulation will be needed, pos-
sibly inspired by the existing legislation on portrait rights.

4.4 Programming Model
Mercator must provide appropriate interfaces for read and

write operations on the data set. This includes a power-
ful interface to specify access rights on subsets of the data.
To ensure scalability, Mercator should intelligently provide
only relevant parts of the data set and associated metadata
when serving read requests from applications. Possibly, data
must be fused from multiple VMs and cloudlets. All other
functionality, such as aligning the user’s viewpoint with the
Mercator data set for camera tracking is assumed to be ap-
plication specific.

The global model will be divided in submodels with their
own access rights. Each submodel contains multiple point-
ers to the location of adjacent models. Applications request-
ing data from Mercator must prove their identity through
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a certificate issued by a central registration authority. In a
pilot trial, we would aim to infer submodels automatically
through surface detection. Like the physical world, private
property is demarcated through walls, fences and curtains.
This should prevent occassional passers-by in the street from
looking behind the facades. Users must then manually con-
figure access rights for each room. Based on these expe-
riences, we might evolve to semi-automatic algorithms for
configuring user access. For example, users might configure
Mercator to grant access to everybody entering their house.

Apart from providing an API, Mercator will design soft-
ware blocks to annotate the 3D model with metadata. The
same levels of authorization apply: some objects may be
shared with the public, whereas others may only be shared
with relatives. A distinction should be made between read
and write operations. Allowing everybody to add metadata
to public parts of the world will immediately clutter the
map. Service providers can restrict write rights to specific
places and/or to (paying) instances. In private places, social
control might suffice to keep the map clean.

5. CONCLUSIONS
The emergence of head-mounted devices with an elegant

form factor allows for nearly effortless and continuous cap-
ture of the carrier’s first person viewpoint. In this paper,
we have explained our vision towards Mercator, a system
for building a 3D map of the world by crowd-sourcing data
from depth cameras mounted on HMDs. Many compelling
applications can be built on top of this system, from indoor
navigation to advanced augmented reality. The global map
is distributed over different cloudlets and split in public and
private parts. In addition to structural information, the map
can contain metadata about physical and virtual objects.

Many open questions remain, especially pertaining to pri-
vacy, which we believe can only be tackled through a combi-
nation of pilot trials, user surveys and legislative actions. By
building Mercator, we hope to bring valuable contributions
in this domain. The challenge to preserve privacy is how-
ever not specific to Mercator, but fundamentally originates
from the fact that people now have the ability to continously
and almost unnoticeable record their interactions with other
people. We invite researchers to think along this way.
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