
Feature Enhancement with a Reservoir-based
Denoising Auto Encoder

Azarakhsh Jalalvand, Kris Demuynck, Jean-Pierre Martens
Multimedia Lab, ELIS, Ghent University/iMinds, Sint-Pietersnieuwstraat 41, B-9000, Ghent, Belgium

Email: Azarakhsh.Jalalvand@ugent.be

Abstract—Recently, automatic speech recognition has ad-
vanced significantly by the introduction of deep neural networks
for acoustic modeling. However, there is no clear evidence yet that
this does not come at the price of less generalization to conditions
that were not present during training. On the other hand, acoustic
modeling with Reservoir Computing (RC) did not offer improved
clean speech recognition but it leads to good robustness against
noise and channel distortions. In this paper, the aim is to establish
whether adding feature denoising in the front-end can further
improve the robustness of an RC-based recognizer, and if so,
whether one can devise an RC-based Denoising Auto Encoder
that outperforms a traditional denoiser like the ETSI Advanced
Front-End. In order to answer these questions, experiments are
conducted on the Aurora-2 benchmark.

Keywords—recurrent neural networks, reservoir computing,
denoising auto encoder, robust speech recognition

I. INTRODUCTION

If one wants to apply automatic speech recognition (ASR)
on mobile devices, an ASR system is needed that is accu-
rate and robust against the presence of noise and channel
distortions. Despite many years of work, achieving robust
recognition remains a big challenge.

Since an ASR is composed of a front-end (for the extracting
acoustic feature vectors) and a back-end (for decoding these
feature vectors) one can envision two types of techniques to
tackle the problem. One is to enhance (denoise) the feature
vectors in the front-end [1], [2], the other is to take account
of the noise during feature decoding in the back-end [3], [4].
On top of that, one can develop acoustic model types that are
intrinsicaally more resistant to noise [5]–[8].

Typical feature enhancement adopts signal processing tech-
niques such as Wiener filtering (single-channel) and beam-
forming (multi-channel). They gave rise to an Advanced Front-
end (AFE) [1] and the SPLICE [9] algorithms, respectively.
Less typical is to adopt a neural network to convert the noisy
feature vectors to clean vectors [10]. Such a network is called
a Denoising Auto Encoder (DAE). Back-end techniques are
usually restricted to GMM-based acoustic modeling (GMM =
Gaussian Mixture Model) because for this type of model it is
‘easy’ to understand how to include the variations due to the
noise into the decoder.

In previous work we investigated Reservoir Computing
(RC) [11], [12] as a neural-based approach to acoustic model-
ing. The argument was that RC-networks are dynamical sys-
tems which are able to focus on meaningful speech dynamics
which are bound to differ from the dynamics induced by

the noise. We achieved quite competitive results for noise-
robust continuous digit recognition (CDR) on Aurora-2 [7],
[13]. A deep RC-HMM hybrid (HMM = Hidden Markov
Model) can apparently compete with a traditional GMM-
HMM system in clean conditions and clearly outperform it
in noisy environments. More recently, we also discovered that
supplying AFE features to the RC-HMM system can further
increases its noise robustness [8].

In this work we further investigate the impact of the front-
end in an RC-HMM system. In particular, we propose to apply
an RC-network for feature denoising before recognition. We
argue that such complex nonlinear dynamical system is bound
to capture better the complex relationships between noisy and
clean utterances than the traditional signal processing methods
that have only a very short memory.

The rest of the paper is organized as follows: Section II
provides a concise outline of the basic principles of RC,
Section III describes ways of integrating reservoir networks
in an RC-HMM hybrid speech recognizer, Section IV reviews
the RC-based denoising of the acoustic features we propose
and Sections V and VI summarize the experimental framework
(Aurora-2) and the results obtained within this framework. The
paper ends with conclusions and future work.

II. RESERVOIR COMPUTING (RC)

The basic principle of RC is that one can retrieve infor-
mation from sequential inputs by means of a two-layer RNN
with the following characteristics (see Fig. 1). The inputs are

 …

Input
layer Reservoir

Readout
layer

random input weights

random recurrent weights

trained output weights

Ut Yt Win Wout

readout vector

output weight matrix

input weight matrix

reservoir state vector

input feature vector

Wrec

recurrent weight matrix

 …

Rt

Ut

Yt

Win

Wout

Wrec

Rt

Feature

extraction

Mean &

Variance

Normalization

GMMs

Reservoi

r

R
ead

o
u
ts

Front-end component

Classical GMM-HMM
component

Decoder

Digits

Speech RC component In
p
u
t lay

er

Decorrelation

Reservoir

Intermediate-processing
component

Feature

extraction

Mean &

Variance

Normalization

GMMs

Front-end component Speech

Hybrid RC-HMM component

Readouts to

Log-Likelihood

converter

Decoder

Digits

Posterior
probabilities

Reservoi

r

R
ead

o
u
ts

In
p
u
t lay

er

Reservoir

Windowing

Speech

DFT
Log Mel-

filter bank

P1 P2 P3
DCT

Reservoi

r

R
ead

o
u
ts

In
p
u
t lay

er

Reservoir
Derivatives

Calculator
Ut±∆

n

/

3n

/ Ût

n

/

Fig. 1. A basic RC system consists of a reservoir and a readout layer. The
reservoir is composed of interconnected non-linear neurons with randomly
fixed weights. The readout layer consists of linear neurons with trained
weights.

sparsely connected to a pool of recurrently interconnected non-
linear neurons – forming so-called reservoir – and the outputs

are obtained as a linear combinations of the reservoir outputs.
The reservoir neurons constitute a hidden layer that, at time
t, is driven by inputs Ut and delayed hidden layer outputs
Rt−1. Important is that (1) the weights of the hidden neurons
are fixed, (2) the output neurons are linear, and consequently,
(3) the output weights can be optimized by means of a least
squared linear regression. The entire system is called a reser-
voir network. Its outputs Yt are usually called readouts [11]
so as to differentiate them unambiguously from the reservoir
outputs Rt. In order to become more resistant to random inter-
frame changes in the inputs (e.g. changes due to the spectral
analysis or the ambient noise), one can create a reservoir of
Leaky Integrator Neurons [14]). A network containing such a
reservoir is governed by the following equations:

Rt = (1− λ)Rt−1 + λ fres(W
inUt + WrecRt−1) (1)

Yt = WoutRt (2)

with a leak rate λ between 0 and 1, with Win, Wrec

containing the input and recurrent weights to the reservoir
neurons, and with Wout containing the output weights.

The weights of the hidden neurons are fixed by means
of a random process characterized by four control parameters
(see [15] for more details): (1) αU , the maximal absolute
eigenvalue of the input weight matrix Win, (2) ρ, the maximal
absolute eigenvalue of the recurrent weight matrix Wrec, (3)
Kin, the number of inputs driving each reservoir neuron and
(4) Krec, the number of delayed reservoir outputs driving
each reservoir neuron. The first two parameters control the
strengths of the input and the recurrent stimulations of a
reservoir neuron, whereas the latter two control the sparsity
of the input and recurrent weight matrices. Together with λ
they constitute the reservoir control parameters which have to
be set properly in order to assure the reservoir is well behaved.
Any effective reservoir should at least have the so-called echo
state property, stating that with time, the reservoir should forget
about the initial state it was in. That is also why a reservoir
network was originally called an Echo State Network [11]. It
was shown in [11] that the echo state property holds if ρ –
called the spectral radius – is smaller than 1.

The reservoir can be envisioned as a predefined but com-
plex non-linear dynamical system that performs a temporal
analysis of the input stream. Our claim is that such a system
can extract features which are resistant to the presence of noise
whose dynamics differ from the speech dynamics.

The output weights are determined so that they minimize
the mean squared error between the readouts Yt and the desired
readouts Dt over the training examples [7]. As a consequence,
they follow from a set of linear equations. If a reservoir
network is trained for recognition, the desired output Dt is
a unit vector with one non-zero entry encoding the desired
HMM-state at time t. If it is trained for denoising, Dt is the
desired clean speech feature vector at time t.

III. A HYBRID RC-HMM FOR SPEECH RECOGNITION

An RC-HMM hybrid works with an HMM that represents
the task and a neural network that is supposed to convert
the inputs Ut into HMM state likelihoods. The search for
the best path through the HMM is found using a Viterbi
search. In the case of an RC-HMM hybrid, the readouts

yt,i (with i indexing the readouts) are assumed to resemble
the posterior probabilities P (qt = i|U t1). This means that
zt,i = yt,i/P (qt = i) is a scaled likelihood and consequently,
that the best state sequence follows from

q̂ = arg max
q
P (q, y) = arg max

q

T∏
t=1

zt,qt P (qt|qt−1),

Fig. 2 shows the architecture for the case of continuous digit
recognition (CDR) and a multi-stage RC network in which
each network output is supplied to the next stage [8]. The
transition probability P0 which is added to the digit loop
controls the balance between deletions and insertions.

Since yt,i is not confined to [0,1] it is first mapped to
that interval before computing zt,i. The mapping is achieved
by a simple clip-and-scale approach, as described in [8]. The
different stages of the RC-network are trained independently,
one after the other.

As in [8], [16] we use a bi-directional RC-network with
one reservoir processing the frames from left-to-right and
another one processing them from right-to-left. The readouts
at time t are then computed as a linear function of the two
reservoir outputs at time t.

IV. AN RC-BASED DENOISING AUTOENCODER

A system that aims at reconstructing clean feature vectors
from noisy feature vectors is called a denoising autoencoder
(DAE) [17]. A traditional example of a DAE is spectral
subtraction: it is able to remove part of the noise by work-
ing frame-by-frame (= memory-less). One can argue that a
complex dynamical system with memory should be able to do
a better job. Therefore, we propose to create a DEA by means
of an RC-network incorporating one unidirectional reservoir
because such a system has memory and it permits to perform
a non-linear transformation of the noisy features to ‘clean’
features. The back-side of this approach is of course that the
DAE has to be trained and that during this training one needs
the clean version of the noisy speech feature vectors.

Since we use MFCCs (Mels-scale Frequency Cepstral
Coefiificients) as the feature vectors, and as the DAE has
to denoise these MFCCs, one can adopt different strategies
for achieving this. In fact, the MFCC-computation includes a
chain of processing stages (See Fig. 3), and the denoising RC-
network could be inserted at different positions in this chain.
Traditional speech enhancement for instance often works in
the Discrete-time Fourier Transform (DFT) domain [18], [19]
(at position P1), whereas most work on robust ASR applies de-
noising in the log mel-frequency domain [20] (at position P2)
and in the MFCC-domain [21], [22] (at position P3). Note that
although the high dimensionality of the input normally leads
to a higher computational cost [23], this may not necessarily
be the case here due to the sparse interconnection between
inputs and reservoir neurons, and also due to employing linear
nodes as the readouts. Therefore, we consider a RC-network
at all positions.

Furthermore, each RC-network is supposed to have access
to static as well as the dynamic features, but the network is
only expected to produce denoised static features. The dynamic
parameters of the input to the ASR are then derived from these
denoised static features.

U Y1

Layer 1 Inputs

 …

 …

Yk

Intermediate layers

 …

YL

Layer L

 …

P(U|q)

F

...

D1 D11

I1

Po

I2

 …

Fig. 2. Architecture of an RC-HMM hybrid comprising a multi-layer reservoir network for CDR. The HMM has two initial states (I1 and I2), one final state
(F) and it comprises 11 multi-state digit models (D1 ... D11) and a single state silence model (#)

 …

Input
layer Reservoir

Readout
layer

random input weights

random recurrent weights

trained output weights

Ut Yt Win Wout

readout vector

output weight matrix

input weight matrix

reservoir state vector

input feature vector

Wrec

recurrent weight matrix

 …

Rt

Ut

Yt

Win

Wout

Wrec

Rt

Feature

extraction

Mean &

Variance

Normalization

GMMs

Reservoi

r

R
ead

o
u

ts

Front-end component

Classical GMM-HMM
component

Decoder

Digits

Speech RC component In
p

u
t lay

er

Decorrelation

Reservoir

Intermediate-processing
component

Feature

extraction

Mean &

Variance

Normalization

GMMs

Front-end component Speech

Hybrid RC-HMM component

Readouts to

Log-Likelihood

converter

Decoder

Digits

Posterior
probabilities

Reservoi

r

R
ead

o
u

ts

In
p

u
t lay

er

Reservoir

Windowing

Speech

DFT
Log Mel-

filter bank

P1 P2 P3
DCT

Reservoi

r

R
ead

o
u

ts

In
p

u
t lay

er

Reservoir
Derivatives

Calculator
Ut±∆

n

/

3n

/ Ût

n

/

Fig. 3. Possible points to apply the denoising system (top) and their structure
in more details (down)

V. EXPERIMENTAL SETUP

In this section we present the experimental framework that
was adopted to investigate the potential of the different system
configurations presented in the previous sections.

A. Speech corpus: Aurora-2

The Aurora-2 corpus consists of clean and noise corrupted
digit sequences counting 1 to 7 digits per utterance. Each
utterance is passed through a G712 or a MIRS filter [24], and
then sampled at 8 kHz. Since there are two variants of ‘0’
in American English, namely zero and oh, the vocabulary is
composed of 11 digits.

The data is divided into a training part and an evaluation
part. The framework supports two types of experiments: clean
training experiments in which systems are developed on 8440
clean training utterances from 110 adults and multi-style
training experiments in which systems are developed on 8440
noise corrupted versions of the same utterances. The corruption
is randomly chosen out of four noise types and five SNRs (∞
(clean), 20, 15, 10 and 5 dB). The evaluation utterances come
from speakers that are not present in the training data. They
are divided into three tests. Tests A and B each contain 28,028
utterances covering 4004 different digit sequences, 4 noise
types and 7 SNRs (∞ (clean), 20, 15, 10, 5, 0, and -5 dB).
The noise types occurring in Test B do not occur in the multi-
style training data, while those of Test A do. Test C contains
14,014 utterances covering 2002 different digit sequences, 2
noise types (one matched and one mismatched) and 7 SNRs.
Unlike all other utterances they passed through a MIRS instead
of a G712 filter (see Table I).

TABLE I. NOISE TYPES AND FILTERS USED IN AURORA-2 DATASET

Train & Test A Test B Test C

N1: subway N1: restaurant N1: subway
Noise N2: babble N2: street N2: street
types N3: car noise N3: airport

N4: exhibition hall N4: train station

Filter G712 G712 MIRS

B. Evaluation results

We report average Word Error Rates (WERs) on tests A-C
for all SNRs, and we consider both clean speech training and
multi-style training. In multi-style training, clean utterances
and utterances with SNRs between 20 and 5 dB are used for
training.

In the final evaluation phase both the acoustic models
and the DAE are trained on the complete training set, but
using the control parameters that were found optimal in a
development phase during which two thirds of the training
set are used for training and the remaining third for control
parameter optimization (e.g. the Viterbi decoder penalty, P0

of the recognizer). In this paper, we only report the results of
the final evaluation phase for each experiment.

C. Reference systems

In order to set a reference, we first report some state-of-
the-art system performances (see Table II). In particular, we
consider the ML-based GMM systems using AFE-features pro-
posed in [25], the ML-based and MCE-based GMM systems
proposed in [2] and [26], two GMM systems embedding more
sophisticated back-ends based on joint uncertainty decoding
(JUD) and Vector Tylor Series (VTS) respectively [4] and the
tandem system embedding deep belief networks and GMMs
(T-DBN-GMM), reported in [5]. The figures show that ad-
vanced back-end techniques (JUD and VTS) lead to a larger
gain in noise robustness than advanced front-end techniques,
but it is not clear from the papers how much degradation they
induce for clean speech recognition.

D. Front-end setups

We will investigate three different acoustic feature sets:
MFCCs (log energy and c1 . . . c12), Mel filterbank features
(MelFB) (24 channel log energies), and the AFE features
(denoised c0 . . . c12 without dropping non-speech frames) [1].
In all cases, the analysis is performed on 30 ms Hamming-
windowed frames and the hop size between frames is τfr =

TABLE II. COMPARING AVERAGE WERS (IN %) PER CONDITION FOR
TEST SETS A-C OF AURORA-2 USING A 3-LAYER HYBRID RC-HMM FOR

BOTH CLEAN AND MULTI-STYLE TRAINING.

Clean Multi
System Clean 0-20 -5dB Clean 0-20 -5dB

GMM (AFE) [25] 0.77 13.2 69.9 0.83 8.4 59.2
GMM (MFCC) [2] 0.84 19.7 82.2 1.77 8.5 59.1
GMM (SPLICE) [27] 0.55 17.6 83.7 - 12.7 -
GMM (MFCC-MCE) [26] 0.41 15.7 77.2 0.92 6.4 55.3
GMM (VTS) [4] - 9.4 - - - -
GMM (JUD) [4] - 10.3 - - - -
T-DBN-GMM [5] 1.26 21.0 74.6 - - -

RC (MelFB) 0.74 11.0 63.8 1.06 5.4 45.0
RC (MFCC) 0.93 10.7 59.7 1.46 6.2 46.5
RC (AFE) 0.84 8.9 54.4 1.40 5.7 43.2

10 ms. Each feature set is supplemented with ∆ and ∆∆
features.

Before supplying the feature vectors to the ASR, an
utterance-wise normalization that creates zero-mean and unit-
variance inputs per feature is performed.

E. RC-HMM hybrid setup

Following our previous work, the reservoir control pa-
rameters of each reservoir are determined in the same way.
Defining τλ

.
= −τfr/ ln(1 − λ) as the leaky integration time

constant and T as the expected state duration, we select
(ρ, τλ,K

in,Krec) = (0.8, T, 10, 10) and we chose αU so that
the average variance of the reserevoir outputs reaches a certain
level [15]. In this work we utilize a 3-layer RC-HMM system
and since layers 2 and 3 see basically the same inputs, αU is
taken the same for both layers.

The size of the reservoir – defined as the number of
neurons it contains (Nres) – is considered to be an independent
variable. Note that since Kin and Krec are kept fixed to 10, the
CPU-time needed for calculating the readouts scales linearly
with the size of the reservoir.

The reservoir networks are trained by means of a Tikhonov
regression [28] and each digit is modeled by a 7-state left-to-
right HMM whilst the silence is modeled by a single state.
The target outputs encode the visited HMM state at time t.

F. RC-based DAE setup

In line with [15], we contemplate that ρ and λ are the
only task-dependent control parameters of a reservoir. Conse-
quently, even though denoising is a completely different task
than digit state recognition, we keep Kin = Krec = 10 and
we maintain the same method as before for computing αU .
Furthermore, since leaky integration is a form of smoothing
corresponding to a some low-pass filter, we argue that no
leaky integration should be applied here as the spectrum of
the denoised inputs is not expected to be narrower than that
of the noisy inputs. Consequently, there is only one parameter
left to optimiza, namely ρ.

In all experiments, irrespective of the chosen feature set,
we have used a 2-layer RC-network with one unidirectional
reservoir of 1K neurons per layer.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Se
en

U
ns

ee
n

Cross correlation

Ref

P1

P2

P3

P3′

P3′′

Fig. 4. The correlation between the output of the DAE and the clean
normalized features, by denoising the data stream in different points.

VI. EXPERIMENTAL RESULTS

In this section we review the experiments we conducted to
assess the capacity of an RC-network to denoise the features
and the capacity it has to further raise the robustness of the
CDR system.

A. Denoising capacity of an RC-network

During assessment of the denoising capacity of the RC-
networks we adopt the average correlations between the 39
denoised and the clean MFCCs features as the quality criterion.
However, since the ASR will always work with utterance based
mean and variance normalized features, the correlations are
computed after this normalization step.

We conducted two experiments: one in which the test
samples come from Test A and represent conditions that are
present during training (= ”Seen”) and one in which the test
samples come from Test C and represent another channel and
unseen SNRs (= Unseen”). In each experiment, the DAE is
imputed at all three positions P1, P2 and P3 (see Section IV).
The results are depicted in Fig. 4. ”Ref” denotes to the
correlation existing between the raw (noisy) and the clean
features. The data show that denoising in the DFT-domain is
not working well but denoising in the two other domains does.
In fact, irrespective of the experiment, denoising the MelFB
and the MFCC features seem to be equally effective. We will
therefore evaluate them both in combination with CDR.

In an additional experiment we constructed RC-networks
that were trained to denoise the dynamic as well as the static
MFCCs instead of just the static features. This approach lead
to the average correlation marked by P3’. There seems to be
no benefit in working this way.

Finally, we wanted to assess the limits of the RC-based
DAE by raising the reservoir size from 1K to 4K neurons. The
results obtained with the larger reservoirs (marked as P3”) are
only slightly better than the ones obtained with the smaller
reservoirs.

In order to illustrate the effect of the DAE, we have
depicted on Fig. 5 the MelFB spectrograms for a noisy speech
sample (SNR = 5dB) before and after denoising together with
the clean speech spectrogram. It is especially noteworthy that
the DAE does an excellent job in the silence parts. This is
partly due to the large number of non-speech (silent) frames
in the training data.

(a) Noisy MelFB features

(b) Clean copy

(c) Denoised MelFB

Fig. 5. Denoising MelFB features of a sample with street noise of SNR 5 dB
from Test C.

B. Need for a denoising front-end in an RC-based CDR

In a first recognition experiment we test the three acoustic
feature sets described in the previous section in combination
with a three-layer bi-directional RC-HMM hybrid with 8K
neurons per layer. The results of this experiment are listed
in the bottom section of Table II.

Apparently, in the clean speech training experiment there is
only a little difference between the feature sets in the matched
condition (clean). In the mismatched conditions however, the
AFE does lead to more robustness, be it that the gain is
very much less impressive than it is for GMM-based systems.
This finding seems to confirm the hypothesis that a reservoir
can filter out a large part of the noise without having been
confronted with noise during training.

In the multi-style training experiment, where the mismatch
between the test and the training remains much smaller, the
positive effect of the AFE is also much smaller, but neverthe-
less remaining to some extent. Consequently, if an RC-based
DAE could outperform the AFE it could lead to increased the
robustness.

C. Can RC-based DAE outperform the AFE?

In order to answer the question, we conducted experiments
with a front-end incorporating an RC-based DAE at posi-
tion P3. We considered three configurations: (1) the baseline
features and acoustic models are used (= Baseline), (2) the
denoised features are used but the acoustic models are left un-
changed (= Test on Baseline) and (3) the denoised features are
used in combination with acoustic models that are retrained on
these features (= Retrain & Test). In the case of retraining, we
maintained the distinction between clean speech training and

TABLE III. COMPARING AVERAGE WERS (IN %) ON TEST SETS A-C
PER CONFIGURATION: (1) THE BASELINE RC-HMM RECOGNIZER

TRAINED ON MFCC AND AFE, (2) THE BASELINE RECOGNIZER TRAINED
ON MFCC AND AFE BUT TESTED ON DENOISED FEATURES, AND (3) THE

RETRAINED RECOGNIZER TESTED ON DENOISED FEATURES.

Clean Multi
Clean 0-20 -5dB Clean 0-20 -5dB

Baseline MFCC 0.93 10.7 59.8 1.46 6.2 46.5
AFE 0.84 8.9 54.4 1.40 5.7 43.3

Test on MFCC 2.08 8.9 53.4 3.35 8.0 50.0
Baseline AFE 2.56 9.4 49.7 3.57 8.1 45.9

Rerain & MFCC 1.36 8.6 54.5 1.77 6.6 48.4
Test AFE 1.38 7.7 50.0 1.85 6.2 43.6

multi-style training, but of course, the clean speech training
results have to be interpreted with care because after all, the
DAE has already seen the noisy training examples that belong
to the multi-style training corpus.

The results listed in Table III show that the RC-based
denoiser does not outperform the AFE as the performance of
the baseline system with AFE features is slightly better than
that of a system working with plain MFCCs and an RC-based
DAE on all conditions.

In spite of this, comparing the AFE rows of the baseline
and the new system, demonstrates that the RC-based DAE does
lead to a small extra gain in strongly mismatched conditions
(clean speech training and noisy test samples) but that this
comes at the expense of a significant loss of the performance
for matched conditions (clean test samples). In the multi-style
training experiment where the mismatch remains moderate, the
RC-based denoiser even has a (small) detrimental effect in all
conditions. This can only mean that the DAE removes infor-
mation from the feature stream that is otherwise exploitable
by the RC back-end.

As could be expected, the Test on Baseline configuration
is characterized by a strong detrimental effect in matched
conditions because the features used during training and test
have become different even in these conditions.

In a control experiment, we also trained and tested the RC-
based denoising of MFCCs by inserting a DAE at position P2.
In line with the correlations measured before, the emerging
systems achieved very similar result showing no preference
for positions P2 and P3.

VII. CONCLUSION AND FUTURE WORK

Recently, we were able to show that reservoir computing
(RC) is a viable acoustic modeling technique that can lead to
more robust automatic speech recognition (ASR). Experiments
on the Aurora-2 benchmark demonstrated that our RC-based
systems already outperform the most complex GMM-HMM
based systems on the task of continuous digit recognition.

The main objectives of the present paper were: (1) to
establish whether reservoir networks can be trained to denoise
the feature vectors, (2) to investigate how much benefit can
be attained by applying denoising in the front-end of the
RC-recognizer, (3) to establish whether RC-based denoising
can outperform traditional signal processing based techniques
(e.g. like in the ETSI advanced front-end (AFE)), and (4)

to find out whether the two denoising techniques are maybe
complementary.

First of all, we could show that an RC-based denoising auto
encoder (DAE) imputed at a suitable position in the MFCC
front-end can lead to increasing mean correlations between
the features of the noisy and the clean speech utterances.

Next, we could demonstrate that adopting feature denoising
in the front-end of an RC-based ASR is beneficial, but not as
much as it is in the case of a traditional GMM-based ASR.
A somewhat disappointing result is that an RC-based DAE
fails to induce as much improvement as the AFE. However,
by combining the two tecniques, a small gain is possible to
achieve in severely mismatched conditions, be it at the expense
of a small degradation in the matched condition.

In the near future we will compare the RC-based DAE with
the AFE in situations where the noise is more non-stationary.
Furthermore, we hope to apply some of the ideas which lead
to uncertainty decoding in an RC-backend. Finally, we intend
to extend our research to noise robust large vocabulary speech
recognition (e.g. Aurora-4).

ACKNOWLEDGEMENT

The research leading to the results presented here has
received funding from Flemish Science Foundation (FWO)
under grant agreement G.0088.09N (RECAP).

REFERENCES

[1] ETSI, “Speech processing, transmission and quality aspects STQ;
distributed speech recognition; advanced front-end feature extraction
algorithm; compression algorithms,” ES 202 050, Tech. Rep., 2002.

[2] C.-P. Chen and J. A. Bilmes, “MVA processing of speech features,”
IEEE Trans. Audio, Speech and Language Processing, vol. 15, no. 1,
pp. 257–270, jan. 2007.

[3] M. Van Segbroeck and H. Van Hamme, “Advances in missing feature
techniques for robust large vocabulary continuous speech recognition,”
IEEE Trans. Audio, Speech and Language Processing, vol. 19, no. 1,
pp. 123–137, 2011.

[4] H. Xu, M. Gales, and K. Chin, “Joint uncertainty decoding with
predictive methods for noise robust speech recognition,” IEEE Trans.
Audio, Speech and Language Processing, vol. 19, no. 6, pp. 1665–1676,
2011.

[5] O. Vinyals and S. Ravuri, “Comparing multilayer perceptron to deep
belief network tandem features for robust ASR,” in Proc. ICASSP, 2011,
pp. 4596–4599.

[6] S.-X. Zhang and M. Gales, “Structured support vector machines for
noise robust continuous speech recognition,” in Proc. Interspeech, 2011,
pp. 989–992.

[7] A. Jalalvand, F. Triefenbach, and J.-P. Martens, “Continuous digit
recognition in noise: Reservoirs can do an excellent job!” in Proc.
Interspeech, 2012, p. ID:644.

[8] A. Jalalvand, K. Demuynck, and J.-P. Martens, “Noise robust contin-
uous digit recognition with reservoir-based acoustic models,” in Proc.
ISPACS, 2013, p. ID:99.

[9] L. Deng, A. Acero, L. Jiang, J. Droppo, and X. Huang, “High-
performance robust speech recognition using stereo training data,” in
Proc. ICASSP, vol. 1, 2001, pp. 301–304.

[10] S. Tamura and A. Waibel, “Noise reduction using connectionist models,”
in Proc. ICASSP, apr 1988, pp. 553–556.

[11] H. Jaeger, “The ‘‘echo state’’ approach to analysing and training
recurrent neural networks - with an erratum note,” GMD Report 148,
German National Research Center for Information Technology, Tech.
Rep., 2001.

[12] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt, “An
experimental unification of reservoir computing methods,” IEEE Trans.
Neural Networks, vol. 20, pp. 391–403, 2007.

[13] A. Jalalvand, F. Triefenbach, D. Verstraeten, and J.-P. Martens, “Con-
nected digit recognition by means of reservoir computing,” in Proc.
Interspeech, 2011, pp. 1725–1728.

[14] H. Jaeger, M. Lukoševičius, D. Popovici, and U. Siewert, “Optimization
and applications of echo state networks with leaky-integrator neurons,”
Neural Networks, vol. 20, no. 3, pp. 335–352, Apr 2007.

[15] M. Lukoševičius, “A practical guide to applying echo state networks,”
in Neural Networks: Tricks of the Trade, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2012, vol. 7700, pp. 659–686.

[16] F. Triefenbach, A. Jalalvand, K. Demuynck, and J.-P. Martens, “Acous-
tic modeling with hierarchical reservoirs,” IEEE Trans. Audio, Speech
and Language Processing, vol. PP, no. 99, 2013.

[17] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Proc.
ICML, 2008, pp. 1096–1103.

[18] Y. Ephraim and D. Malah, “Speech enhancement using a minimum-
mean square error short-time spectral amplitude estimator,” IEEE Trans.
Acoustics,Speech and Signal Processing, vol. 32, no. 6, pp. 1109–1121,
1984.

[19] P. J. Wolfe and S. J. Godsill, “Efficient alternatives to the ephraim and
malah suppression rule for audio signal enhancement,” in special issue)
EURASIP JASP on Digital Audio for Multimedia Communications,
2003, pp. 1043–1051.

[20] D. Yu, L. Deng, J. Droppo, J. Wu, Y. Gong, and A. Acero, “Ro-
bust speech recognition using a cepstral minimum-mean-square-error-
motivated noise suppressor,” IEEE Trans. Audio, Speech and Language
Processing, vol. 16, no. 5, pp. 1061–1070, 2008.

[21] K. Indrebo, R. Povinelli, and M. Johnson, “Minimum mean-squared
error estimation of mel-frequency cepstral coefficients using a novel
distortion model,” IEEE Trans. Audio, Speech and Language Process-
ing, vol. 16, no. 8, pp. 1654–1661, 2008.

[22] L. Deng, J. Droppo, and A. Acero, “Estimating cepstrum of speech
under the presence of noise using a joint prior of static and dynamic
features.” IEEE Trans. Speech Audio Processing, vol. 12, no. 3, pp.
218–233, 2004.

[23] R. Rotili, E. Principi, S. Cifani, F. Piazza, and S. Squartini, “Multi-
channel feature enhancement for robust speech recognition,” Speech
technologies. InTech, ISBN, pp. 978–953, 2011.

[24] H.-G. Hirsch and D. Pearce, “The AURORA experimental framework
for the performance evaluation of speech recognition systems under
noise conditions,” in Automatic Speech Recognition: Challenges for the
Next Millennium. ISCA ITRW, 2000, pp. 181–188.

[25] H. G. Hirsch and D. Pearce, “Applying the advanced ETSI frontend to
the Aurora-2 task,” version 1.1, Tech. Rep., 2006.

[26] X. Xiao, J. Li, E.-S. Chng, H. Li, and C.-H. Lee, “A study on
the generalization capability of acoustic models for robust speech
recognition,” IEEE Trans. Audio, Speech and Language Processing,
vol. 18, no. 6, pp. 1158–1169, 2010.

[27] T. Kai, M. Suzuki, and K. Chijiiwa, “Combination of SPLICE and fea-
ture normalization for noise robust speech recognition,” Intl. Workshop
on Nonlinear Circuits, Communications and Signal Processing, vol. 16,
no. 4, pp. 323–326, 2012.

[28] C. M. Bishop, “Training with noise is equivalent to Tikhonov regular-
ization,” Neural Computation, vol. 7, pp. 108–116, 1994.

