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ABSTRACT: This work introduces a variable-fidelity optimization
methodology for simulation-driven design optimization of filters. Our

approach is based on electromagnetic (EM) simulations of different
accuracy controlled by the mesh density. A Kriging interpolation model

(the surrogate) is created using sampled low-fidelity EM data and
optimized to approximately locate the optimum of the high-fidelity EM
model of the filter. This initial surrogate is subsequently improved by

blending in the high-fidelity data accumulated during the optimization
process using the co-Kriging technique. The algorithm convergence is

ensured by embedding it into the trust region framework. The operation
and performance of our method is demonstrated using three filter design
cases. VC 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett

55:765–769, 2013; View this article online at wileyonlinelibrary.com.
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1. INTRODUCTION

Electromagnetic (EM) simulation is a primary tool used in the

design of microwave structures. In many cases, the initial designs

can be obtained using simplified models, e.g., analytical formulas

or equivalent circuits. However, in order to satisfy given perform-

ance requirements, these initial designs have to be further fine-

tuned. Often, the adjustment of geometry/material parameters is

realized through repetitive simulations or parameter sweeps (usu-

ally, one parameter at a time). This approach is tedious and does

not guarantee optimum results. It is therefore desirable to auto-

mate the design closure by employing numerical optimization

techniques and making the design cycle shorter and more robust.

Unfortunately, automated EM-simulation-driven design using

conventional optimization techniques (e.g., gradient-based ones)

may be impractical. This is because accurate EM analysis is compu-

tationally expensive and large number of such analyses may be nec-

essary to find an optimal design. Reduction of the design cost is pos-

sible through the use of surrogate models, i.e., cheap and yet

reasonably accurate representations of the structure under considera-

tion. A popular way of creating the surrogate is by approximating

high-fidelity EM simulation data using, e.g., Kriging [1], support

vector regression [2], or neural networks [3]. However, decent accu-

racy of the model can only be ensured if the design space is sampled

sufficiently dense. In practice, hundreds or even thousands of sam-

ples may be necessary. This can be justified for multiple use library

models but not for one-time optimization of a given structure.

Simulation-driven design can be realized more efficiently

through surrogate-based techniques exploiting physics-based mod-

els. The most popular methods include space mapping (SM) [4]

and simulation-based tuning [5]. Unfortunately, these and other

similar methods lack robustness necessary for their full automation,

or their implementation is too complex to be widely accepted by

engineering community. Recently, adjoint sensitivity techniques [6]

have become available through commercial EM solvers (e.g., [7]),

which permits obtaining derivative information at little or no extra

computational cost. Adjoint sensitivities can substantially speed up

conventional gradient-based optimization [8, 9]. Nevertheless, the

development of robust algorithms that exploit this technology is a

relatively complex task for an inexperienced user. On the other

hand, even when using derivative information, a gradient-based

routine may still require considerable number of EM analyses.

In this work, a robust algorithm for microwave design optimi-

zation is introduced that exploits the co-Kriging methodology [10].

The co-Kriging technique is a convenient tool to combine coarse-

discretization EM simulations (much cheaper than the high-fidelity

ones) and limited number of high-fidelity EM data into a single

surrogate model which is fast to compute. The high-fidelity data is

accumulated during the optimization process, so no extra expen-

sive EM simulations are necessary. The iterative updating and re-

optimization of the co-Kriging surrogate is embedded into the trust

region framework to ensure good convergence properties. Several

microstrip filter examples are considered for demonstration pur-

poses with satisfactory designs obtained at the cost of a few high-

fidelity EM simulations in each case.

2. DESIGN OPTIMIZATION OF FILTERS USING CO-KRIGING
AND TRUST REGIONS

Design closure of many microwave devices, including filters, is

performed using high-fidelity EM simulations, which is a neces-

sary, although tedious, task often performed using repetitive pa-

rameter sweeps. In this section, we formulate the design task as a

nonlinear minimization problem, as well as describe the proposed

solution approach that exploits variable fidelity EM simulations,

namely, Kriging and co-Kriging interpolation and the trust region

framework. The main purpose of our methodology is to reduce

the computational cost of the design process while making it as

robust as possible. We also formulate the complete optimization

algorithm. Its numerical verification is postponed until Section 3.

2.1. Design Problem Formulation
Let Rf [ Rm denote the response vector of a high-fidelity model

of the filter structure of interest, typically, S-parameters eval-

uated at m different frequencies, x [ Rn be a vector of design

variables (e.g., geometry parameters), and U be a given objec-

tive function which is formulated so that a better design corre-

sponds to a lower value of U(Rf(x)). The filter design problem

can be formulated as a nonlinear minimization task of the form

x� 2 arg min
x

U

 
Rf ðxÞ

!
(1)

where x* is the design variable vector corresponding to an opti-

mum design.

2.2. Surrogate-Based Optimization
The high-fidelity model is typically obtained using accurate CPU-

intensive EM simulation. Due to the high computational cost,

direct optimization of Rf (using, e.g., gradient-based algorithms)

may be impractical as it requires a large number of model evalua-

tions. In this work, we focus on a surrogate-based approach, where

the direct solution to Eq. (1) is replaced by an iterative scheme

xðiþ1Þ ¼ arg min
jjx�xðiÞjj�dðiÞ

U

 
RðiÞ
s ðxÞ

!
(2)
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that produces a sequence x(i) of approximate solutions to Eq. (1).

Here, Rs
(i) is a surrogate model at iteration i, which is a computa-

tionally cheap representation of Rf. In order to ensure conver-

gence of the algorithm (2), the surrogate model optimization is

constrained to the vicinity of the current design x(i) defined by a

trust region radius d(i) [11]. The value of the trust region radius is

updated based on the gain ratio defined as follows

qðiÞ ¼ UðRf ðxðiþ1ÞÞÞ � UðRf ðxðiÞÞÞ
UðRðiÞ

s ðxðiþ1ÞÞÞ � UðRðiÞ
s ðxðiÞÞÞ

(3)

q(i) measures the quality of the objective function improvement

prediction made by the surrogate model. The trust region radius is

increased if q(i) is sufficiently large (i.e., the prediction made by

the surrogate model can be trusted) and decreased if it is too small.

If U(Rf(x
(iþ1))) 	 U(Rf(x

(i))), the new design x(iþ1) is rejected and

the search starts again from x(i) using the reduced d(i).

2.3. Surrogate Modeling Using Kriging and Co-Kriging
In this work, the surrogate model is created using the co-Kriging

methodology that allows us to combine EM simulations of dif-

ferent fidelity. Densely sampled low-fidelity EM data (referred

to as Rc) is used to create the initial Kriging interpolation

model, which is subsequently enhanced by a limited number of

high-fidelity EM data points using co-Kriging. The high-fidelity

data is obtained by evaluating Rf at all previous iteration points

x(i), which has to be done anyway for verification purposes. By

using the co-Kriging technique, we are able to create a surrogate

model that is almost as accurate as the high-fidelity model but

substantially cheaper, because the majority of training data

comes from the low-fidelity EM simulations.

Kriging is a popular technique for interpolating deterministic

noise-free data [12]. We will denote by XB.c ¼ {xc
1, xc

2, …,

xc
N.c} the training set and by Rc(XB.c) the associated coarse-dis-

cretization model responses. The Kriging interpolation model

with a constant mean a is defined as

Rs:KRðxÞ ¼ aþ rðxÞ �W�1 � ðRcðXB:CÞÞ � 1a (4)

where 1 is a column vector of ones. The coefficient vector a is

determined by generalized least squares. ri(x) ¼ w(x,xc
i), for i ¼

1 … Nc, is a vector of correlations, and Wi,j ¼ w(xc
i, xc

j), for i
¼ 1 … Nc and j ¼ 1 … Nc. W is a correlation matrix. The pa-

rameters h1, …, hn of the correlation function w(�,�) are identi-

fied by a Maximum Likelihood Estimation (MLE).

Co-Kriging interpolation [10] combines the fine data Rf and

the coarse data Rc to make an accurate prediction. In particular,

the autoregressive co-Kriging model of Kennedy et al. [10] is

used.

First, a Kriging model Rs.KRc of the coarse data

(XB.c,Rc(XB.c)) is constructed and, subsequently, a second Krig-

ing model Rs.KRd is constructed on (XB.f,Rd), where Rd ¼
Rf(XB.f) � q�Rc(XB.f). The parameter q of the second Kriging

model Rs.KRd is included in the MLE. The response values

Rc(XB.f) (or an approximation thereof) are easily obtained by

evaluating the first Kriging model Rs.KRc, namely, Rc(XB.f) �
Rs.KRc(XB.f). Lastly, the two Kriging models are combined to

construct the co-Kriging interpolant

RsðxÞ ¼ Maþ rðxÞ �W�1 � ðRd � FaÞ (5)

where the block matrices M, F, r(x) and W can be written as a

function of the two Kriging models Rs.KRc and Rs.KRd:

rðxÞ ¼ ½q � r2
c � rcðxÞ;q2 � r2

c � rcðx;XB�f Þ þ r2
drdðxÞ


W ¼ r2
dWc

0

q � r2
cWcðXB�C;XB�f Þ

q2 � r2
cWcðXB�f ;XB�f Þ þ r2

c �Wd

" #
(6)

F ¼ 1 0

q � 1 1

� �
; M ¼ ½q 1


where rc
2 and rd

2 are process variances, while Wc(�,�) and

Wd(�,�) denote correlation matrices of two datasets with the opti-

mized h1, …, hn parameters and correlation function of the

Kriging models Rs.KRc and Rs.KRd, respectively. In this work, the

exponential correlation function is used for both Kriging models,

i.e., w (x,x0) ¼ exp(Rk¼1,…,n � hk|x
k � x0k).

2.4. Optimization Flow
The proposed design optimization procedure can be summarized

as follows (here, xinit is the initial design):

1. Starting from xinit, optimize Rc to find x(0)—the initial

design for the co-Kriging optimization;

2. Sample Rc in the vicinity of x(0); evaluate Rc to obtain the

base set (XB.c,Rc(X B.c));

3. Set the iteration index i ¼ 0;

4. Create a co-Kriging model Rs
(i) as in Eq. (5) using

(XB.c,Rc(XB.c)) and (XB.f,Rf(XB.f)) with XB.f ¼ {x(0), …, x(i)};

5. Find the new design x(iþ1) by optimizing Rs
(i) as in Eq. (2);

6. Calculate gain ratio q(i) ¼ [U(Rf(x
(iþ1))) � U(Rf(x

(i)))]/

[U(Rs
(i)(x(iþ1))) � U(Rs

(i)(x(i)))];

7. If q(i) > qincr, set d(iþ1) ¼ d(i)�mincr, elseif q(i) < qdecr, set

d(iþ1) ¼ d(i)/mdecr, else d(iþ1) ¼ d(i);

8. If ||x(i) � x(i�1)|| e or d(i) < e, terminate;

9. If U(Rf(x
(iþ1))) < U(Rf(x

(i))), set i ¼ i þ 1 and go to 4,

else set d(i) ¼ d(iþ1) and go to 5;

In order to reduce the number of training samples necessary to

set up the co-Kriging model, it is only created in the vicinity of the

Rc optimum, which is the best approximation of the optimal design

we can get at a low cost. The size of the vicinity is typically 5 to

20% of the design space. The initial co-Kriging surrogate is created

using only one evaluation of Rf and then updated using the designs

obtained by optimizing the surrogate. As co-Kriging is an interpo-

lative model for the expensive data, we have Rs
(i)(x(k)) ¼ Rf(x

(k))

for k ¼ 0, …, i, so that the surrogate accuracy improves in the vi-

cinity of the expected optimum upon the algorithm convergence.

The parameters used to update the trust region radius (cf. Step

7 of the algorithm) are the following: qincr ¼ 0.5, qdecr ¼ 0.01,

mincr ¼ 2, mdecr ¼ 5. The termination condition parameter e is set

to 10�3. As indicated above, the algorithm is terminated either

upon convergence or if the trust region size is sufficiently small.

3. DESIGN EXAMPLES

In this section, a numerical verification of the co-Kriging-based

filter optimization procedure is provided. We consider three

examples of microstrip filter structures and investigate the per-

formance of the proposed algorithm both with respect to the

quality of the final design obtained in the course of optimization

and the computational cost of the design process.

3.1. Half-Wavelength Stepped Impedance Resonator Filter
A half-wavelength stepped impedance resonator (SIR) bandpass

filter [13], shown in Figure 1, is considered. The EM simula-

tions are carried out in FEKO [14] for both the high-fidelity

model Rf (total mesh number is 1090, simulation time 22 min)
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and the low-fidelity model Rc (total mesh number 128, simula-

tion time 30 s). The design variables are x ¼ [L1 L2 L3 L4 S W1

W2]T. The design specifications are |S21| 	 �1 dB for 2.35 GHz

to 2.45 GHz, and |S21| � �20 dB for 1.5 GHz to 2.15 GHz and

2.65 GHz to 3.2 GHz. The initial design is xinit ¼ [2.5 1.5 11.6

2.95 0.328 0.305 1.613]T mm. Optimization of the filter was

performed using the co-Kriging-based algorithm of Section 2.

First, the low-fidelity model Rc is optimized directly, at the

cost of 100 evaluations, to yield x(0) ¼ [2.96 1.54 10.41 3.76

0.59 0.35 1.81]T mm. Figure 2 shows the responses of Rc and Rf

at xinit, and the response of Rc at x(0). The co-Kriging surrogate

is then created in the region [x(0) � d, x(0) þ d], with d ¼ [0.5

0.1 0.2 0.2 0.1 0.1 0.1]T mm, using 100 Rc samples. The co-

Kriging optimization process yields the design x(6) ¼ [2.68 1.56

10.38 3.72 0.61 0.38 1.85]T mm after six iterations. Figures 3

and 4 show the high-fidelity model response at x(6) and the con-

vergence plot, respectively. The total design cost (Table 1) cor-

responds to about 13 evaluations of Rf.

Figure 1 Geometry of the half-wavelength SIR bandpass filter [13]

Figure 2 Responses of the half-wavelength SIR bandpass filter: low-

(- - -) and high-fidelity (—) models at the initial design xinit. [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com]

Figure 3 Responses of the half-wavelength SIR bandpass filter: Rc

(…) and Rf (- - -) at x(0) as well as Rf (—) at the final design x(6).

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com]

Figure 6 Responses of the fourth-order ring-resonator bandpass filter:

low- (- - -) and high-fidelity (—) models at the initial design xinit. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com]

TABLE 1 Half-wavelength SIR Filter: Optimization Results

Algorithm

Component

Number of

Model Evaluations

CPU Time

Absolute (min) Relative to Rf

Evaluation of Rc 200�Rc 100 4.5

Evaluation of Rf 9�Rf 198 9.0

Total cost N/A 298 13.5

Includes 100 evaluations necessary to optimize Rc and 100 evaluations
to set up the co-Kriging model.
Excludes Rf evaluation at the initial design.

Figure 5 Geometry of the fourth-order ring resonator bandpass filter

[15]

Figure 4 Convergence of the co-Kriging-based optimization algorithm

for the half-wavelength SIR bandpass filter
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3.2. Fourth-Order Ring Resonator Bandpass Filter
We now consider the fourth-order ring resonator bandpass filter

[15] shown in Figure 5, with the design parameters x ¼ [L1 L2

L3 S1 S2 W1 W2]T mm. As before, FEKO [14] is employed to

evaluate both Rf (total mesh number 978; evaluation time 20

min) and Rc (mesh number 174; evaluation time 30 s). The

design specifications are |S21| 	 �1 dB for 1.75 GHz � x �
2.25 GHz, and |S21| � �20 dB for 1.0 GHz � x � 1.5 GHz

and 2.5 GHz � x � 3.0 GHz. The initial design is xinit ¼ [25

20 25 0.1 0.1 1.2 0.8]T mm. The filter was optimized using the

co-Kriging-based algorithm of Section 2.

An approximate optimum of Rc, x
(0) ¼ [22.9 20.4 26.6 0.12

0.05 1.2 0.72]T mm, is obtained at the cost of 80 evaluations.

The responses are shown in Figure 6. The co-Kriging surrogate

is created using 100 Rc samples in the region [x(0) � d, x(0) þ
d] with d ¼ [0.5 0.5 0.5 0.05 0.05 0.1 0.1]T mm. The final

design, x(7) ¼ [22.5 20.2 26.5 0.169 0.061 1.16 0.72]T mm, is

found in seven iterations of the co-Kriging optimization process.

The results are given in Figure 7 and Table 2. The total design

cost corresponds to about 14 evaluations of Rf.

3.3. Capacitively Coupled Dual-Behavior Resonator Microstrip
Filter
Now we consider the second-order capacitively coupled dual-

behavior resonator (CCDBR) microstrip filter [16] shown in Fig-

ure 8, with the design variables x ¼ [L1 L2 L3 S]T. Both high-

(total mesh number 1134; evaluation time 30 min) and low-fi-

delity (mesh number 130; evaluation time 36 s) models are

simulated in FEKO [14]. The design specifications are |S21| 	
�3 dB for 3.8 GHz � x � 4.2 GHz, and |S21| � �20 dB for

2.0 GHz � x � 3.2 GHz and 4.8 GHz � x � 6.0 GHz. The

initial design is x(0) ¼ [3.0 5.0 1.0]T mm.

An approximate optimum of Rc, x
(0) ¼ [3.2 4.96 1.2]T mm,

is obtained at the cost of 50 evaluations of Rc. The responses

are shown in Figure 8. The co-Kriging surrogate is setup in a

region with the size d ¼ [0.25 0.25 0.25]T mm. The optimized

design, x(3) ¼ [3.2 4.98 1.22]T mm, is found in three iterations.

The results are given in Figure 9 and Table 3. The total design

cost corresponds to less than eight evaluations of Rf. Figure 10

shows the responses of the CCDBR filer.

4. CONCLUSION

A reliable and low-cost procedure for EM-simulation-driven

design optimization of microwave filters has been described.

Figure 7 Responses of the fourth-order ring-resonator bandpass filter:

Rc (…) and Rf (- - -) at x(0) as well as Rf (—) at the final design x(7).

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com]

Figure 8 Second-order CCDBR filter: geometry [16]

Figure 9 Responses of the CCDBR filter: low- (…) and high-fidelity

(—) models at the initial design xinit, and the low-fidelity model at x(0)

(- - -). [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com]

TABLE 3 CCDBR Filter: Optimization Results

Algorithm

Component

Number of Model

Evaluations

CPU Time

Absolute

(min)

Relative

to Rf

Evaluation of Rc 150�Rc 90 1.5

Evaluation of Rf 6�Rf 180 6.0

Total cost N/A 270 7.5

a Includes 50 evaluations necessary to optimize Rc and 100 evaluations
to set up the co-Kriging model.
b Excludes Rf evaluation at the initial design.

Figure 10 Responses of the CCDBR filter: high-fidelity model Rf at

the final design found by the co-Kriging algorithm. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com]

TABLE 2 Fourth-order Ring Resonator Filter: Optimization
Results

Algorithm

Component

Number of

Model Evaluations

CPU Time

Absolute

(min)

Relative

to Rf

Evaluation of Rc
a 180�Rc 90 4.5

Evaluation of Rf
b 10�Rf 200 10.0

Total cost N/A 290 14.5

a Includes 80 evaluations necessary to optimize Rc and 100 evaluations
to set up the co-Kriging model.
b Excludes Rf evaluation at the initial design.
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The procedure exploits variable-fidelity EM simulations that are

combined into an accurate and computationally cheap surrogate

model using co-Kriging interpolation. The surrogate is utilized

in a prediction-correction scheme that is embedded into the trust

region framework to ensure convergence. Three filter examples

are considered to demonstrate performance of the proposed

technique.
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ABSTRACT: A free-space experimental set-up for measuring the

quadrature components of weak-coherent-state laser signals, based on a
homodyne Costas loop configuration is presented. Loop parameters are

optimized as a trade-off between quantum and phase noises. Using
binary phase-shift-keying modulation, measurements on the mutual
information are presented for different photon numbers and phase

errors. VC 2012 Wiley Periodicals, Inc. Microwave Opt Technol Lett

55:769–772, 2013; View this article online at wileyonlinelibrary.com.

DOI: 10.1002/mop.27459

Key words: mutual information; optical Costas loop; weak-coherent-
state; homodyne detection

1. INTRODUCTION

In communication systems, the main goal is the maximization

of the mutual information between the transmitter and the re-

ceiver, that is, Alice and Bob in cryptography systems. In opti-

cal communications, both with fiber and free space, and particu-

larly those using low-optical power levels (i.e. quantum-level

signals), several practical structures for the mutual information

maximization have been proposed, to approach the information

theoretical limits [1]. Theoretical analysis and experimentation

with coherent states are widely reported since they are easily

produced with standard stabilized semiconductor laser sources,

and the generation of faint signals for quantum levels is easily

obtained by strong attenuation of the laser light, leading to

weak-coherent-states (WCS) [2, 3].

For the optimum detection of WCS, several configurations

have been proposed and experimentally demonstrated, such as

the Kennedy and Dolinar receivers, operating in open and closed

loops, respectively, approaching the fundamental detection limit;

however, these are based on single photon counting [4], which

performs poorly at the telecommunications waveband of 1550

nm, in terms of efficiency and speed.

2. HOMODYNE AND COSTAS LOOP RECEIVERS

On the other hand, homodyne detection with standard p.i.n. pho-

todetectors has been extensively used in the optical telecommu-

nications waveband, providing the required speed and, for very

low-photon numbers, performing better than the Kennedy re-

ceiver [4].

Furthermore, the adaptive homodyne detection is linear in

the optical-electric field, therefore, many of the results from the

communications theory in the radio electric domain could be

incorporated, such as error correction and advanced post-proc-

essing signal. For example, adaptive homodyne detection has

been proposed and experimentally demonstrated for quantum
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