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Abstract - In this study, a novel methodology is proposed to create heat maps that accurately 

pinpoint the outdoor locations with elevated exposure to radiofrequency electromagnetic 

fields (RF-EMF) in an extensive urban region (or, hotspots), and that would allow local 

authorities and epidemiologists to efficiently assess the locations and spectral composition of 

these hotspots, while at the same time developing a global picture of the exposure in the 

area. Moreover, no prior knowledge about the presence of radiofrequency radiation sources 

(e.g., base station parameters) is required. After building a surrogate model from the 

available data using kriging, the proposed method makes use of an iterative sampling 

strategy that selects new measurement locations at spots which are deemed to contain the 

most valuable information – inside hotspots or in search of them – based on the prediction 

uncertainty of the model. The method was tested and validated in an urban subarea of 

Ghent, Belgium with a size of approximately 1 km2. In total, 600 input and 50 validation 

measurements were performed using a broadband probe. Five hotspots were discovered and 

assessed, with maximum total electric-field strengths ranging from 1.3 to 3.1 V/m, satisfying 

the reference levels issued by the International Commission on Non-Ionizing Radiation 

Protection for exposure of the general public to RF-EMF. Spectrum analyzer measurements 

in these hotspots revealed five radiofrequency signals with a relevant contribution to the 

exposure. The radiofrequency radiation emitted by 900 MHz Global System for Mobile 

Communications (GSM) base stations was always dominant, with contributions ranging 

from 45% to 100%. Finally, validation of the subsequent surrogate models shows high 

prediction accuracy, with the final model featuring an average relative error of less than 

2 dB (factor 1.26 in electric-field strength), a correlation coefficient of 0.7, and a specificity 

of 0.96. 

 

Keywords - radiofrequency electromagnetic fields (RF-EMF); human exposure; exposure 

model; hotspots; surrogate modeling 



3 

 

 

 

This work was supported by the Interuniversity Attraction Poles Programme BESTCOM 

initiated by the Belgian Science Policy Office, and iMinds  'Green Wireless Efficient City 

Access Networks (GreenWeCan)' project, co-funded by iMinds (previously IBBT), a research 

institute founded by the Flemish Government in 2004, and the involved companies and 

institutions. 

 

  



4 

 

1 INTRODUCTION 

Public concerns about possible health effects due to the everyday exposure to radiofrequency 

electromagnetic fields (RF-EMF) are increasing. The general public is not familiar enough 

with the typical average and maximum levels of RF-EMF radiation they are exposed to in 

their everyday environment, although a number of studies have been performed on the matter 

using personal exposimeters (Bolte et al., 2012; Frei et al., 2009a, 2010; Joseph et al., 2008, 

2010; Rowley and Joyner, 2012; Röösli et al., 2010; Thuróczy et al., 2008; Viel et al., 

2009a,b), e.g., by defining a large number of microenvironments, based on time of the day, 

activity and place, and assessing therein the average magnitude of the RF-EMF one is 

exposed to. Another, more visual way of filling the public information gap would be the use 

of a heat map, an easily comprehensible graphical representation of the magnitude of the RF-

EMF exposure over an urban, suburban, or rural area. Naturally, heat maps can also be 

constructed using RF-EMF simulators, or from non-measurement-based models like the ones 

by Beekhuizen et al. (2013), Breckenkamp et al. (2008), Bürgi et al. (2008, 2010), Elliott et 

al. (2010), Frei et al. (2009b), and Neitzke et al. (2007), by calculating the exposure at 

arbitrary locations, probably using a uniform grid with a resolution of choice. However, these 

approaches are heavily dependent on accurate data, e.g., base station parameters, building 

coordinates, building heights, etc., data which is seldom readily available. Measurement-

based models, as found in Aerts et al. (2013), Anglesio et al. (2001), Azpurua and Dos Ramos 

(2010), Isselmou et al. (2008), Paniagua et al. (2013), on the other hand, encompass an 

accuracy that depends both on the number as well as the specific locations of the 

measurements. The importance of the latter can be seen from the fact that, in order to attain a 

similar accuracy, an area featuring a rapidly changing field distribution requires a denser 

sampling than an area of the same size featuring a more evenly field distribution. Nonetheless, 

studies involving measurement-based models typically select all of their measurement 
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locations at once, in a uniform or random grid, completely covering the area of the interest, 

hence disregarding the dependency of the accuracy of their model on the specific locations. 

The approach proposed by Aerts et al. (2013), however, tackles this problem by introducing 

an iterative sampling algorithm composed by Crombecq et al. (2011), in which repeatedly 

new batches of measurement spots are selected after analyzing the data from preceding 

measurements. In order to attain a globally accurate model that characterizes the overall 

exposure in the area, the algorithm selects measurement locations in such a way that they are 

both spread out as evenly as possible, as well as fine grained in those regions that are harder 

to interpolate (i.e., regions in which the electric field strength changes more rapidly). This 

methodology has also proven to be successful in various other research disciplines 

(Deschrijver et al., 2011, 2012). Experimental results in Aerts et al. (2013) confirm that the 

method is able to give an accurate prediction of the global RF-EMF exposure in the area. 

Using this approach, however, implies that several measurements must also be performed in 

regions with very low electric-field strength. In practice, however, such regions are often less 

interesting in terms of exposure assessment and risk evaluation, and in some cases, the 

electric-field strength is even immeasurable because of the measurement device’s sensitivity. 

In this article, a new urban RF-EMF exposure assessment method is proposed that focuses on 

the detection and characterization of regions with elevated or high RF-EMF exposure 

(hotspots), regions which are of particular interest for concerned citizens and epidemiologists, 

and applied to a large urban area. Moreover, accurate exposure measurements are performed 

in the identified hotspots to distinguish the contributions of various radiofrequency sources, 

and to check compliance with international exposure guidelines. Finally, our method is 

validated globally, to assess the overall prediction accuracy of the resulting model, as well as 

locally, to assess the hotspot prediction accuracy of the model and the performance of our 

method. 
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2 METHODS 

2.1 AREA 

The area of study, shown in Figure 1, is urban with an approximate area of 1 km
2
, comprising 

the city center of Ghent, Belgium. This area contains various schools (from kindergarten to 

University), multi-dwelling residences (mainly student dormitories), shops, restaurants, and 

other leisure spots (e.g., parks, concert venues, bars, etc.). There are multiple radiofrequency 

transmit antennas inside the area as well as close by, including frequency modulation (FM) 

radio, digital radio and television broadcasting (e.g., terrestrial digital audio broadcasting, or 

T-DAB), emergency service communication networks, mobile telephony base stations 

(Global System for Mobile Communications (GSM) at 900 and 1800 MHz, and Universal 

Mobile Telecommunications System (UMTS) at 2100 MHz), etc. 

2.2 SEQUENTIAL SURROGATE MODELING 

As in previous RF-EMF exposure assessment studies, the exposure metric of choice is the 

electric-field strength, E, in V/m (Volts per meter). Assuming we have no prior knowledge 

about the electric-field strength in the area under study, we can consider it as an unknown 

function of the location. An exact evaluation of this function is essentially impossible. 

However, it can be approximated by a so-called surrogate model, which can be defined as an 

approximation model for a computationally expensive simulation or a physical experiment, 

built from generally time-expensive samples at well-chosen locations (Crombecq et al., 2011). 

This choice of sample locations is called the design of experiments and is critical for the 

model's reliability. In measurement-based RF-EMF modeling studies, the design of 

experiments is usually a uniform or random grid, which is fixed before any measurements are 

performed. However, a design of experiments can also be built sequentially by founding the 

choice of new locations on previously chosen locations and their respective measurement 
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outcomes, as in the study by Aerts et al. (2013), in which a surrogate model was built to 

accurately approximate the electric-field distribution from GSM base station radiation at 

900 MHz in a small urban area, and subsequently used for analysis and mapping of the 

exposure. The advantage of sequential sampling consists both in performing relatively more 

measurements in regions that are potentially interesting (e.g., highly-varying electric-field 

strength in (Aerts et al., 2013), or hotspot regions where the electric-field strength is high or 

elevated, on which this study focuses), and in performing only as many measurements as is 

needed to obtain the desired accuracy. 

Another reason for focusing on hotspots lies in the fact that specificity (a measure for 

correctly identifying what is unexposed) is highly important in exposure assessment. Because 

only a small percentage of people are exposed to higher levels of RF-EMF, one should make 

sure that those who are modeled to be exposed, are in fact exposed (Neubauer et al., 2007). 

Therefore, it is of importance for a measurement-based model that when hotspots are found, 

they are densely sampled and hence accurately modeled, and regions of high exposure are 

accurately delineated. 

As this study focuses on hotspots, a different approach from the one presented in Aerts et al. 

(2013) is proposed. More specifically, we implemented a different search strategy for our 

sample locations. The iterative sampling method used in this study is based on the kriging 

surrogate modeling technique by Couckuyt et al. (2012). The use of kriging as interpolation 

technique has some distinct advantages. It takes into account the spatial structure of the 

interpolated variable (here, the electric-field strength), determines the best estimator of the 

variable (the error is minimized at all points), and it gives us information about the accuracy 

of the interpolation, by calculating an error estimate, called kriging variance (Matheron, 

1963). Because of this, kriging is an often used interpolation technique in environmental 

research (e.g., Liu and Rossini, 1996; Paniagua et al., 2013; Sanders et al., 2012; Zirschky, 
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1985). The kriging variance can be used to quantify the model uncertainty, and to assist the 

sample search strategy in identifying potentially interesting regions in the study area based on 

a given condition. In this study, that condition is defined as "electric-field strength is higher 

than x V/m", with x a certain value to be determined. The sample search strategy enables both 

the efficient and dense sampling of identified interesting regions, as well as the efficient 

search of additional interesting regions, using a space-filling search pattern. 

The considered search strategy consists in a weighted combination of two criteria. The first 

criterion is called the generalized probability of improvement criterion, defined as "the 

probability that the electric-field strength at a certain location lies within a certain output 

range", with the output range corresponding to the stated condition. In this case, the output 

range is defined as "all values of the electric-field strength higher than x V/m". This criterion 

ensures that interesting regions where hotspots are located are sampled more densely. The 

second criterion is called the minimum distance criterion, which calculates the distance to the 

closest measurement location. Maximizing the minimum distance criterion ensures the 

research area is properly searched and samples are widely spread (called space-filling). The 

mathematical breakdown of the two criteria is given in Couckuyt et al. (2012). 

2.3 MEASUREMENT EQUIPMENT 

For model input and validation measurements, we used an NBM-550 broadband field meter 

with an EF-0391 isotropic electric field probe (Narda Safety Test Solutions, Pfullingen, 

Germany). The probe has a frequency range of 100 kHz - 3 GHz, covering all relevant 

radiofrequency signals (e.g., (digital) radio, digital television, wireless telecommunications, 

etc.), and a measurement range of 0.2 - 320 V/m. During the measurements, which were 

performed at outdoor places that were accessible to the general public (e.g., streets, 

pavements, parking spots), the device was held at a height of 1.5 m, a typical height to 

characterize human exposure (ECC, 2004), as far as possible from the body, and carefully 
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moved over an area of approximately 1 m
2
, keeping the same height, but varying the 

orientation, to account for small-scale fading and possible shadowing of the body. The 

measurements were taken as the temporal averages over 30 s using the root-mean-square 

mode of the device. All measurements were performed between March and August 2012, on 

weekdays and during the daytime (avoiding the busy hours at noon and at 4pm). 

The spectrum analyzer setup, used for narrow-band measurements at the revealed hotspots, 

consists of a Precision Conical Dipole PCD 8250 antenna (Austrian Research Centers 

Seibersdorf Research GmbH, Seibersdorf, Austria), with a dynamic range of 

1.1 mV/m - 100 V/m and a frequency range of 80 MHz - 3 GHz, in combination with a 

spectrum analyzer of type Rohde & Schwarz FSL6 with frequency range 9 kHz - 6 GHz 

(Rohde & Schwarz, Zaventem, Belgium). The measurement uncertainty (the expanded 

uncertainty evaluated using a confidence interval of 95%) for the considered setup is ± 3 dB 

(CENELEC, 2008; Joseph et al., 2012). Optimal spectrum analyzer settings for both 

measurements are discussed in Joseph et al. (2002, 2012). During the measurements the tri-

axial probe was positioned at a height of 1.5 m. After performing an overview measurement, 

which consists in scanning the wireless communication frequency bands for existing signals, 

the frequency bands corresponding to those signals were measured in detail. The total 

duration of a single measurement depended on the number of dominating signals present, but 

was typically 30 min per location. 

2.4 MEASUREMENT AND MODELING PROCEDURE 

We developed a measurement and modeling procedure specifically for electromagnetic-field 

modeling in an outdoor environment, comprising an iterative choice of measurement 

locations. Apart from the actual measurements, the procedure is fully automated, using the 

Matlab "surrogate-model toolbox" (Gorissen et al., 2010). The followed procedure can be 

broken down in a series of steps. 
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Step 1: Characterization of the area. In order to select measurement spots only at accessible 

locations, the coordinates of the building blocks inside the area should be known. For this 

purpose, we use an online Google maps tool 

(http://www.birdtheme.org/useful/googletool.html) to draw and export the building block 

polygons. 

Step 2: Initial design. The initial design is the distribution of the first batch of measurement 

locations (i.e., batch 0). Since there is no knowledge available yet on which to base our 

choice, we are free to choose any distribution. However, we opt for an optimized Latin 

Hypercube Design (Joseph and Hung, 2008), a space-filling design that distributes the 

positions in such a way that the area of interest is covered as evenly as possible. Because of 

the size of the research area, we chose an initial batch of 100 locations. 

Step 3: Measurements. Broadband measurements are performed at the chosen locations. After 

the first batch, we decided to take the 75
th

 percentile of the initial measurements as the x-value 

in the condition "all values of the electric-field strength higher than x V/m". It should be noted 

that this value is not updated after additional measurements are performed, as doing so could 

result in overlooking hotspots (if the 75
th

 percentile would increase after additional batches), 

or designating too many less exposed regions as hotspots (if the 75
th

 percentile would 

decrease after additional batches). 

Step 4: Modeling and sampling. The kriging interpolation technique is used to model the 

measurement data, and the sample search strategy is used to determine the locations where 

additional measurements should be performed (see search algorithm described in Section 2.2 

and the work of Couckuyt et al. (2012)). 

Repeat steps 3 and 4. As new batches of locations are chosen, and new measurements are 

performed, more and more information about the electric-field strength and the hotspots is 

gained, and the surrogate model is subsequently updated, going from state K0 to Kn, with n the 
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total number of iterations. At a certain moment, however, this gain is outweighed by the effort 

to perform the measurements. Hence, we insert a stopping criterion, a certain condition that 

takes into account the information gain per additional measurement and when met, halts the 

procedure. In this study, the stopping criterion is defined as “the relative change of the 

surrogate model, Ki, compared to its previous state, Ki-1, is 2% or lower”. This relative change 

of the model compared to its previous state is the mean of the relative change in electric-field 

strength calculated over the whole grid of the model (excluding indoor areas), with a 

resolution of 1x1 m
2
, and is a measure for the amount of information added to the model by 

performing more measurements (Aerts et al., 2013). 

Step 5: Final surrogate model and analysis of the hotspots. When the procedure is finished, 

the result is a model that outlines the RF-EMF exposure hotspots in the streets of the area 

under study. However, only the total electric-field strength has been measured, and no 

information about the contribution of individual radiofrequency signals has been obtained yet. 

In order to identify the signals bearing a relevant contribution to the total field in the 

discovered hotspots, accurate narrow-band measurements are performed with a spectrum 

analyzer setup (see Section 2.3, and Joseph et al. (2012)). 

2.5 VALIDATION 

In order to assess the overall accuracy of our surrogate model as well as the performance of 

our iterative method, we applied two kinds of validations to our models. 

The first kind of validation was a global validation, in which the models’ predictions were 

tested against 50 (broadband) measurements, performed throughout the area under study. The 

locations of these validation measurements were randomly chosen, but such that the distance 

between any pair of them was at least 100 m, and the distance from any (model input) 

measurement location at least 10 m. As such, the global prediction accuracy of the subsequent 

states of our surrogate model is assessed. 
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The second kind of validation was a two-fold local hotspot validation, in which the 

predictions of models K0 to K4 (i.e., the models built from measurement batches 0 to 4) were 

tested against the measurements of the last batch (i.e., batch 5). On the one hand, we assessed 

whether a batch 5 measurement location X exhibiting a measured electric-field strength Emeas 

higher than 0.7 V/m, was indeed predicted by models K0 to K4 to lie inside a hotspot; or, in 

other words, whether the modeled electric-field strength Emodel at location X was also higher 

than 0.7 V/m. On the other hand, we assessed whether the locations of batch 5 that were 

predicted to lie inside a hotspot (Emodel > 0.7 V/m) indeed exhibited an elevated electric-field 

strength, Emeas > 0.7 V/m.  

Performing this local validation allowed us to assess the prediction accuracy of the subsequent 

model states in the hotspot regions, as this could not be done in the global validation due to 

the distance constraints, as well as determine the overall performance of our method and the 

evolution of the hotspot prediction accuracy as the model was updated. 

 

In our analysis of both kinds of validations, we distinguish between correlation and error 

metrics. The correlation parameters (including coefficients of agreement) of choice are 

Pearson’s correlation coefficient, r, the Spearman rank correlation coefficient, ρ, Cohen’s 

kappa, κ, sensitivity, and specificity. Cohen's kappa is a statistical measure of the agreement 

between two data sets, taking into account the agreement occurring by chance. It represents 

the fraction of samples that were expected not to be in agreement (as in 'fall in the same 

exposure category') when only chance agreement would be present, but, in fact, are in 

agreement. For the calculation of this value, we use the 50
th

 and 90
th

 percentiles of the 

predicted and measured electric-field values as cut-offs (Frei et al., 2009b). The sensitivity is 

the ratio of the number of correctly identified "exposed" samples to the total number of 

measured "exposed" samples. The specificity is the ratio of the number of correctly identified 
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"unexposed" samples to the total number of measured "unexposed" samples. A certain sample 

is classified as "exposed" when it lies above a certain percentile or a fixed field value, while 

"unexposed" means that the sample lies below a certain percentile. In this paper, we used the 

90
th

 percentiles as cut-off values. In our analysis, we assume the broadband measurements are 

the gold standard against which the model predictions are tested. 

In case of the local hotspot validation, we introduce an additional metric, namely the 

prediction accuracy, i.e., the percentage of correctly predicting either a measurement result of 

Emeas > 0.7 V/m or whether a measurement location lies inside a hotspot. 

3 RESULTS AND DISCUSSION 

3.1 BROADBAND MEASUREMENTS 

Altogether, 650 broadband measurements were performed during this study; six batches of 

100 measurements used as input for our sequential modeling method, the locations of which 

are portrayed on Figure 1, and 50 measurements for the global validation of the resulting 

surrogate models. The electric-field parameters of these broadband measurements are listed 

in Table 1. 

The 75
th

 percentile of the first batch, 0.70 V/m, is thereafter selected as threshold value for a 

hotspot, and the generalized probability of improvement criterion (Section 2.2) is then 

defined as “the probability that the electric-field strength at a certain location is higher than 

0.70 V/m”. It should be noted that this value is retained through the course of the study, even 

though the 75
th

 percentile of later batches is an increasingly higher value (Table 1). 

The subsequent input measurement batches show a steady increase in average electric-field 

strength (from 0.56 to 0.85 V/m), 75
th

 (from 0.70 to 1.20 V/m) and 95
th

 (from 0.96 to 

2.29 V/m) percentiles, and in the observed standard deviation (0.23 to 0.68 V/m). Moreover, 

the minimum-maximum electric-field strength range is mostly expanded, going from 
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0.30 - 1.60 V/m (batch 0) to 0.12 - 3.10 V/m (batch 5), while the median electric-field 

strength stays relatively constant, around 0.49 V/m. 

Remember that the combination of the two criteria in our search strategy, namely generalized 

probability of improvement and minimum distance, ensure that both the interesting regions 

(hotspots) are sampled more densely, and the research area is properly searched and samples 

are widely spread. The behavior of the electric-field parameters of the subsequent 

measurement batches perfectly reflects this search strategy (Table 1). On the one hand, 

generally higher field values are measured by focusing part of the sampling on the hotspots 

(increase in Eavg, Ep75, and Ep95), while on the other hand, “randomly” distributed electric-field 

strengths are measured in regions which had not been properly investigated, including both 

low electric-field values (hence sometimes, lower Emin are obtained in later batches), and high 

electric-field values (e.g., when a new hotspot is discovered). However, the majority of the 

electric-field values measured this way are situated around the region’s average electric-field 

strength, which is why Emedian barely changes. 

In total, the input measurements vary between 0.04 and 3.10 V/m, with an average electric-

field strength of 0.70 V/m and a median of 0.49 V/m. The validation measurements, on the 

other hand, vary between 0.16 and 1.18 V/m with an average electric-field strength of 

0.49 V/m and a median of 0.41 V/m, respectively. Being performed at randomly chosen 

locations, the validation set offers us a better estimation of the average electric-field strength 

in the area (0.49 V/m). The standard deviation of the two measurement sets are comparable 

(0.54 vs. 0.52 V/m). 

All measured electric-field strengths (with a maximum of 3.10 V/m) are well below the 

reference levels issued by the International Commission on Non-Ionizing Radiation 

Protection for the various contributing frequencies (e.g., 41 V/m for 900 MHz, which is the 

dominating frequency in our area, see Section 3.3) (ICNIRP, 1998). 
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3.2  MODELING 

Steps 3 and 4 in Section 2.4 were repeated six times; six batches of 100 measurements 

resulted in six successive surrogate models of the total radiofrequency electromagnetic field 

exposure in the area under study. The electric-field parameters of these models, calculated 

with a grid resolution of 1 m x 1 m, are listed in Table 2. It should be noted that these 

parameters were calculated considering only those grid points located in the streets of the 

area under study. 

The surrogate model’s average electric-field strength steadily decreases from 0.57 to 

0.49 V/m over the subsequent model states, K0 to K5. From model K4 on, it settles at 

0.49 V/m, which is in excellent agreement with the average value of the validation 

measurements (Section 3.1). A similar trend is seen in the evolution of the 95
th

 percentile, 

which decreases from 0.75 to 0.64 V/m. This behaviour indicates that, although higher 

electric-field strengths are measured (Section 3.1), they represent a smaller area than the 

lower measured electric-field strengths.  

The minimum-maximum range of the electric-field strength widens as the model is updated, 

from 0.25 - 1.59 V/m to 0.05 - 3.02 V/m, closely following the expansion of the minimum-

maximum electric-field strength range of the measurement batches. The slight difference 

observed can be attributed to the finite grid size (1 m x 1 m) of the analyzed models. 

The metric introduced as a measure for the stopping criterion, the relative change of the 

current model, Ki, compared to its previous state, Ki-1, is also listed in Table 2. After a slight 

rise in the change going from K0 to K2 (7.62 to 8.41%), the change drops below 2% after the 

sixth iteration, at model K5, and we stop the algorithm. This parameter was also calculated 

considering only the grid points located in the streets. 

Figure 2 shows (a) the heat map constructed from the final surrogate model, K5, along with 

(b) its associated kriging variance, a measure for the prediction error. A number of regions 
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with electric-field strengths higher than 0.7 V/m, both large and small, are identified: five of 

these hotspots of reasonable size and highest maximum measured electric-field strengths are 

indicated on Figure 2 (a), numbered 1 to 5, corresponding to the spectrum analyzer 

measurement results in Section 3.3. The greater part of the area under study exhibits electric-

field strengths between 0.35 and 0.70 V/m, while large regions feature a relatively low 

exposure, with electric-field strengths below 0.35 V/m. The variance ranges from about 

0.4 V
2
/m

2
, in areas which have not been and/or could not be surveyed (mainly due the 

presence of large building blocks and canals), to less than 0.1 V
2
/m

2
, with minimum variance 

at the specific measurement locations. As the hotspots were densely sampled, they exhibit a 

very low kriging variance. The global minimization of this variance is inherent to kriging 

interpolation. 

3.3 CONTRIBUTIONS TO THE EXPOSURE 

Following the construction of the RF-EMF exposure heat map of Figure 2 (a), accurate 

narrow-band spectrum analyzer measurements were performed inside the five identified 

hotspots of reasonable size and highest maximum electric-field strengths (ranging from 1.30 

to 3.10 V/m), allowing us to identify the relative contributions of the radiofrequency signals 

to the total exposure therein. After an initial spectral overview measurement, only the signals 

showing an electric-field strength of 0.05 V/m or higher were considered relevant and 

subsequently measured more accurately. Then, the individual, relative contributions to the 

total exposure (defined here as the percentual contribution to the total power density) were 

calculated, the results of which are shown in Figure 3. Altogether, five signals were found to 

contribute to the exposure in the identified hotspots. A radio signal (FM, at approximately 

100 MHz) was present in two hotspots, with relative contributions of 1% and 8%; a digital 

radio signal (T-DAB, at 224 MHz) was present in four hotspots, with relative contributions 

ranging from 0.1% to 11%; GSM base station signals at 900 MHz were present in all five 
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hotspots, with relative contributions ranging from 45% to 100%; GSM base station signals at 

900 MHz were present in two hotspots, with relative contributions of 9% and 44%; and 

UMTS base station signals (at 2100 MHz) were present in two hotspots, with relative 

contributions of 9% and 29%. Of the five contributing sources, only GSM base station signals 

at 900 MHz were always present, and always represent the dominant source, which is 

consistent with the findings of Joseph et al. (2008) and Aerts et al. (2013). At one location, 

GSM base station signals at 1800 MHz, however, were a close contender (hotspot 1, with 

44% and 45% for GSM base station signals at 1800 and 900 MHz, respectively). A digital 

radio signal was also often present, but contributed, on average, the least. FM radio signals, 

GSM base station signals at 1800 MHz, and UMTS base station signals were all present in 

only two hotspots, with GSM base station signals at 1800 MHz having, on average, a higher 

contribution. 

3.4 VALIDATION 

3.4.1 Global validation 

The results of the global validation analysis (correlation and error metrics) of the subsequent 

models are listed in Table 3. Pearson’s correlation coefficient, r, shows an overall increasing 

trend, namely from 0.55 (confidence interval (CI) 95% 0.31 - 0.72) for the first model, K0, to 

0.73 (CI 95% 0.56 - 0.84) for the last, K5, which is an excellent value in this research (Frei et 

al., 2009b). A similar trend is seen for the Spearman rank correlation coefficient, ρ, which 

evolves from 0.58 to 0.72. Cohen’s kappa, κ, on the other hand, shows a less linear evolution, 

with values ranging between 0.28 (CI 95% 0.04 - 0.51) to 0.55 (CI 95% 0.34 - 0.76), before 

settling at 0.41 (CI 95% 0.19 - 0.64) for K5. The specificity ranges between 0.93 and 0.96, and 

the sensitivity between 0.40 and 0.60, settling at respectively 0.96 and 0.60 for the final 

model, K5.  
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Both error metrics listed in Table 3, the average relative error, REavg, (in dB) and the 

percentage of relative errors above 3 dB, develop more linearly, showing a near-constant 

decrease, or, in other words, improvement. REavg decreases from 3.14 to 1.96 dB, while the 

percentage of relative errors above 3 dB decreases from 44 to 22%. In terms of correlation, 

the second model, K1, surprisingly, features the best results with slightly better correlation 

coefficients, and the same sensitivity and specificity as K5. In terms of accuracy, K5 is the best 

model. 

The very low average error, good correlation and very good specificity – all indispensable 

traits – of our final surrogate model indicate the usefulness of our methodology. Although the 

sensitivity is moderate, this should not be an obstacle, since only a small fraction of the much 

larger unexposed area will be, in fact, exposed (Neubauer et al., 2007). 

3.4.2 Hotspot validation 

The results of the local hotspot validation analysis are listed in Table 4. The first model, K0, 

constructed from batch 0 (which locations are distributed in a uniform, space-filling grid) 

gives a very poor prediction of the hotspot locations; only about half of the locations of 

batch 5 with a measured electric-field strength Emeas higher than 0.7 V/m were, in fact, 

predicted to lie inside a hotspot. K0 is, however, better at demarcating the hotspots it did find; 

77% of the batch 5 locations inside its predicted hotspots indeed yield electric-field values 

above 0.7 V/m. Over the course of the sequential design (models K0 to K4), the results 

improve considerably. For K4, REavg is about 1.7 dB, only approximately 20% of the errors 

are larger than 3 dB, and the prediction accuracy has increased to 90%, while the correlation 

coefficient r is about 0.75, and κ is larger than 0.60. Since the error metrics, as well as the 

correlation coefficients, are even superior to the respective results from the global validation, 

we can also conclude that the functioning of our methodology is sufficiently demonstrated; 

the hotspots are well-defined and accurately modeled. 
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3.5 STRENGTHS AND LIMITATIONS 

The exposure modeling approach proposed in the study is based upon a new sequential design 

to select its sample locations by focusing on the regions that are particularly of interest, i.e., 

regions with elevated exposure to RF-EMF (hotspots). As such, an efficient sampling scheme 

is constructed that ultimately results in a heat map of the outdoor RF-EMF exposure in a large 

area that features well-defined hotspots, representing important graphical information for risk 

communication. Using classical sampling methods (e.g., Joseph et al., 2012; Paniagua et al., 

2013), it is not possible to identify and characterize hotspots except coincidentally. Validation 

shows excellent agreement between model and measurements, both in terms of error and 

validation metrics as well as the overall average electric-field strength. Our model, however, 

is not valid indoors, and has not been validated in indoor environments. 

Due to the large amount of measurements necessary in a study covering an area of this size, 

we used a broadband probe as measurement device, despite its inherent inaccuracy compared 

to other available devices, such as the spectrum analyzer. However, its portability and 

measurement speed are essential in a measurement-based exposure assessment of this scope, 

and we believe that the purpose of this study – assessment of the total, outdoor RF-EMF 

exposure – validates its use. The “total RF-EMF exposure” in this study encompasses only 

RF-EMF emanating from base station (for mobile telecommunication) or transmitter (e.g., 

television) antennas. Thus, we do not consider signals from personal devices (e.g., mobile 

phones, cordless telephones, etc.) here. And while no distinction can be made between 

different radiofrequency sources when using a broadband probe, performing accurate narrow-

band spectrum analyzer measurements in the revealed hotspots permits us to identify the 

sources that are present in the different areas of elevated exposure, and their respective, 

relative contributions. The influence of the buildings and the topography is inherent in the 

measurements, however, it was not considered during the interpolation. Also, temporal 
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variations are not accounted for. However, we assume that the locations of the hotspots do not 

change during the measurement campaign, unless infrastructural changes would be applied to 

base station or transmitter antennas. 

It should be mentioned that electric-field values below the broadband measurement device’s 

sensitivity of 0.2 V/m were nonetheless measured by the device, and hence retained, although 

accuracy could not be ensured. However, no relevant errors are introduced in the models, 

because the values and possible associated absolute errors are small. 

A model input batch of 100 measurements might have been too extensive, so as to improve 

the efficiency of our methodology, we will investigate in following studies making use of our 

sequential sampling method for exposure assessment, if smaller measurement batches could 

be used, reducing the required total number of measurements. 

4 CONCLUSIONS 

Our approach results in the relatively fast construction of an accurate heat map of the outdoor 

exposure to radiofrequency electromagnetic fields that characterizes and outlines the hotspot 

regions, using kriging as interpolation technique. As such, it supplies an accurate, graphical 

representation of the exposure, which can be easily understood by laymen, and where the aim 

is to identify regions of relatively high exposure (hotspots). Analysis of the validation shows a 

good correlation (0.7), low average relative error (below 2 dB), and near-perfect specificity 

(0.96). The constructed surrogate model can serve as input, optimization, or validation to 

more sophisticated epidemiological exposure models. Future research will consist of 

accounting for temporal variations as well as exposure to personal and indoor devices. Also 

indoor exposure prediction is a further step in this research.  
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Table 1: Summary of the electric-field parameters of the broadband probe measurements for 

input (per batch of 100 measurements, and in total) and validation (50 measurements). 

 

Table 2: Summary of the electric-field parameters of the subsequent interpolation models. 

 

Table 3: Analysis of the global validation of the subsequent surrogate models, K0 to K5. 

 

Table 4: Analysis of the two-fold local hotspot validation of the subsequent surrogate models, 

K0 to K4. Emeas (batch 5) > 0.7 V/m: it is assessed whether the batch 5 locations with 

Emeas > 0.7 V/m are predicted by models K0 to K4 to lie inside a hotspot. Emodel (batch 5) > 0.7 

V/m: it is assessed whether the batch 5 locations that are predicted to lie inside a hotspot by 

models K0 to K4 (Emodel > 0.7 V/m) exhibit an elevated electric-field strength, Emeas > 0.7 V/m. 

 

 

Figure 1: Area under study of about 1 km
2
 in Ghent, Belgium, with indication of the input 

measurement locations (red dots). The (approximately triangular) area is demarcated by the 

outer measurement locations. 

 

Figure 2: (a) Heat map of the RF-EMF exposure (in V/m); (b) map of the kriging variance 

(Var, in V
2
/m

2
). Locations of the five hotspots are indicated, with the numbers corresponding 

to Figure 3. 

 

Figure 3: Relevant radiofrequency signals and their contributions (in %) to the total exposure 

(power flux density, shortly noted as power density) in the five hotspots. While electric-field 

strength is used as the exposure metric, only the signals’ power densities (in W/m
2
, or Watts 
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per square meter) can be added linearly. The relation between power density (S) and electric-

field strength (E) is given by S = E
2
/377. The numbers on the Hotspot-axis correspond to 

Figure 2 (a). (UMTS = Universal Mobile Telecommunications System, GSMx = Global 

System for Mobile Communications at x MHz, T-DAB = Terrestrial Digital Audio 

Broadcasting, FM = frequency modulation). 


