
Noname manuscript No.
(will be inserted by the editor)

Multi-device Application Middleware: Leveraging
the Ubiquity of the Web with Webinos

Heiko Desruelle · Simon Isenberg ·
John Lyle · Frank Gielen

Received: date / Accepted: date

Abstract The broad range of connected devices has turned the Internet into
a ubiquitous concept. In addition to desktop and laptop PCs, the Internet cur-
rently connects mobile devices, home entertainment systems, and even in-car
units. From this ubiquitous evolution towards sensor-rich devices, the oppor-
tunity arises for various new types of innovative software applications. How-
ever, alongside rises the issue of managing the increasing diversity of device
characteristics and capabilities. As device fragmentation grows, application
developers are facing the need to cover a wider variety of target devices and
usage scenarios. In result, maintaining a viable balance between development
costs and market coverage has turned out to be an important challenge when
developing applications for a ubiquitous ecosystem. In this article, we present
the webinos platform, a distributed Web runtime platform that leverages the
Web for supporting self-adaptive cross-device applications. In order to enable
the development of such immersive ubiquitous applications, we introduce and
evaluate the concept of a context-aware federated overlay architecture.

Keywords Ubiquitous Web · Context-awareness · Multi-device applications ·
Webinos

1 Introduction

The diversity of personal computing devices is increasing at an incredible pace.
People are nowadays using a multitude of consumer electronic devices that

H. Desruelle · F. Gielen
Department of Information Technology, Ghent University – iMinds, Ghent, Belgium
E-mail: heiko.desruelle@intec.ugent.be

S. Isenberg
BMW Forschung und Technik GmbH, Munich, Germany

J. Lyle
Department of Computer Science, University of Oxford, Oxford, UK



2 Heiko Desruelle et al.

have the ability to run third-party developed applications. Such devices cur-
rently range from desktop PC, to mobile and tablet devices, to home enter-
tainment and even in-car units [27]. However, the fragmentation of devices
and usage contexts makes it for applications particularly difficult to target a
broad segment of devices and end-users. From a development perspective, the
greatest common denominator amongst the available multi-device approaches
is the Web [11]. By adopting the Web as an application platform, applications
can be made available whenever and wherever the user wants, regardless of
the device type that is being used.

Nevertheless these clear advantages, existing Web application platforms
are generally founded on the principles of porting traditional API support
and operating system aspects to the Web. The evolution towards large-scale
distributed service access and sensor usage is often not supported [16]. In
result, the true immersive nature of ubiquitous web applications is mostly left
behind. To enable developers to set up Web applications and services that
fade out the physical boundaries of a device, the webinos platform has been
proposed. Webinos is a virtualized application platform that spans across the
various Web-enabled devices owned by an end-user. Webinos integrates the
capabilities of these devices by seamlessly enabling the distribution of API
requests.

The remainder of this article is structured as follows. Section 2 discusses
background and related work regarding the evolution and challenges in Web
engineering. Furthermore, we explore the complexity and various dimensions
of context-aware application engineering in a ubiquitous environment. Section
3 provides a general overview of our proposed federated application platform.
We introduce the concept of context-aware Personal Zones, through which
webinos aims to enable developers to create applications that transcend a
device’s physical boundaries. Section 4 elaborates on the platform’s structures
and models for setting up secure context-awareness support. Section 5 covers
a use case on exploiting the capabilities of the proposed platform. We present
the case of developing an immersive ubiquitous application that enables users
to access the internal state of their vehicle, regardless of the device that is
being used to run the application. In Section 6 we subsequently cover the
implementation and evaluation of both the platform and the proof-of-concept
application. Finally the conclusion and future work are outlined in Section 7.

2 Background and Related Work

2.1 The Web as an Application Platform

The development and deployment of ubiquitous applications introduces an
important series of resource consuming requirements [4]. The combinations
of existing hardware characteristics, operating systems, software frameworks,
etc. are virtually endless. For software developers, this diversity has turned out
to be a double-barreled asset. It provides consumers the freedom to execute



Multi-device Application Middleware 3

applications at will across various devices. On the other hand, the device diver-
sity asset heavily fragments the application’s delivery targets. By the absence
of a general native development solution, developers often have no alternative
than to create and maintain a set of device-dependent versions of their appli-
cations. Hence, ensuring a viable balance between development costs and an
application’s market coverage will more than ever become a challenging issue.
Against this backdrop, the use of Web technologies for application develop-
ment purposes has proven to be a viable long-term solution [25]. Through
years of standardization efforts and the wide adoption of languages such as
HTML, CSS, and JavaScript, the Web can be deployed as a powerful foun-
dation for universal application development and delivery. Moreover, running
on top of the Internet infrastructure the Web-based application paradigm is
rapidly gaining momentum amongst developers.

Web-based application development approaches have been explored from
various perspectives. Developers can opt for pure Web applications, running in
a standard browser environment. However, due to the sandboxed execution of
browsers this approach drastically limits the available APIs to the underlying
device. In turn, a hybrid Web application approach was introduced provid-
ing developers access to a richer API set, whilst still maintaining most of
the cross-platform advantages of pure Web applications. This type of applica-
tion is still built using Web technology, but no longer uses the browser as its
client-side runtime environment. A separate client-side Web runtime frame-
work is deployed to bridge the gap between native and Web applications by
granting the application access to most device APIs. Hybrid Web applications
are currently being developed using Web widget engines such as provided by
the BONDI/WAC initiatives [44], device-independent frameworks such as the
PhoneGap [8] and Appcelerator [2] application wrappers, and even completely
Web-centered operating systems such as Chromium OS [40] and Open webOS
[43].

For distributed application solutions, existing work is still largely confined
to specifically targeted platforms and vendors (e.g., Connected TV platforms
supporting second screen applications via smartphone devices). As a counter,
the Funf project aims to open up the ecosystem by deploying light-weight sen-
sor probes on mobile devices [28]. The probes’ states are aggregated within the
cloud. In result, Funf mainly focuses on unidirectional state extraction from
the probed devices. The Munin toolkit broadens this scope with a more flex-
ible peer-to-peer design for distributed mobile applications over the Internet
[18]. Furthermore, the Gibraltar framework adds up to Munin’s approach with
security-related design measures and resource usage monitoring [26].

These existing hybrid Web application solutions,however, only partially
succeed in enabling a ubiquitous user experience [36]. Their main focus lies
with porting traditional API support and operating system aspects to the Web.
Applications built upon these old principles result in virtual silos, unable to
truly cross the physical boundaries of a device. By neglecting the evolution
towards distributed user interfaces and adaptive context-aware application
behavior, the true immersive nature of ubiquitous computing is mostly left



4 Heiko Desruelle et al.

behind[14,15]. The absence of elaborate context-awareness is a key element
driving this issue. In order for ubiquitous applications to adaptively support
various contextual situations, the underlying application platform needs to
provide structured, as well as secure and up-to-date access to the user’s con-
textual setting. This requirement is not just limited to providing access to
a detailed description of the target delivery context (screen size, interaction
methods, available sensors, etc). Moreover, structured access to details regard-
ing the user context (personal preferences, social context, disabilities, etc.) and
the physical environment (location, time, etc.) ought to be supported.

2.2 Modeling Ubiquitous Context-awareness

The availability of detailed and reliable metadata regarding a user’s contex-
tual situation provides an important driver for enabling rich ubiquitous appli-
cations. The exact entities represented by this contextual information can be
of a very dynamic nature, potentially affecting the consumer’s expectations
towards the application’s user interface, behavior, content, etc. In general,
context-aware computing identifies five contextual categories: the device con-
text, user context, environment context, time context, and historical context
[9,37].

The device context describes the characteristics of the target device that is
being used to access the application. A ubiquitous ecosystem covers a diversity
of screen sizes, interaction methods, software support, etc. In Web-based envi-
ronments, the device capabilities are generally retrieved through Resource De-
scription Framework (RDF) devices profiles, i.e., User Agent Profile (UAProf)
[29] and Composite Capability/Preference Profiles (CC/PP) [24]. The neces-
sary device identification step in this process is handled through HTTP header
user agent matching. In order to facilitate the collection and aggregation of
these device profiles, the W3C Mobile Web Initiative (MWI) standardized the
Device Description Repository specification (DDR). The specification provides
an API and its associated vocabulary for structured access to context providers
services [33]. In essence, a DDR thus provides a standardized means for retriev-
ing contextual information about a-priori knowledge on the characteristics of
a particular target device or Web runtime. Various open as well as proprietary
DDR implementations are actively being maintained. Most notably OpenDDR
[30], WURFL [31], and DeviceAtlas [17].

In a ubiquitous setting, the end-user’s profile description gains more and
more importance. Besides exposing information on user preferences and spe-
cific experience, this model should also comprise knowledge regarding the
user’s specific abilities and disabilities. E.g., enabling accessibility require-
ments for providing support to elderly people, and people with disabilities.
From this perspective, Heckmann proposed the GUMO formalism as a gen-
eral user model ontology for representing generic user descriptions using the
Web Ontology Language semantics (OWL) [21]. The current challenge in this
domain is modeling the enormous amount of parameters and relationships



Multi-device Application Middleware 5

Fig. 1 High-level overview of webinos ubiquitous application platform

that characterize the user context [35]. To overcome this issue, forces are be-
ing joined with other ontology-driven projects such as Linked Data [20] and
UbisWorld [22].

The environment-, time-, and historical context aspects define where, how,
and when the interaction between the user and an application is exactly taking
place. The environment context is specified by observing the numerous sensors
available on the user’s device (e.g., location, temperatures, network service
discovery, the level of background noise, etc.). Furthermore, the notion of time
and historical context is not to be neglected. As context is a dynamic concept,
support for temporal patterns recognition and management is needed. The
W3C Ubiquitous Web Domain is currently in the process of standardizing
the Delivery Context Ontology specification (DCO) [6]. The DCO provides
a formal model of the characteristics of the environment in which devices,
applications, and services are operating.

3 The Webinos Application Platform

To enable application developers to set up services that fade out the physi-
cal boundaries of a device, we propose the webinos platform. Webinos defines
a federated Web application platform and its runtime components are dis-
tributed over the devices, as well as the cloud. Fig. 1 depicts a high-level
overview of the platform’s structure and deployment. The system’s seamless



6 Heiko Desruelle et al.

Fig. 2 Callback broker system architecture for the discovery and management of remote
services within a Personal Zone

interconnection principle is cornered around the notion of a so called Personal
Zone.

The Personal Zone represents a secure overlay network, virtually grouping
a user’s personal devices and services. To enable external access to and from
the devices in this zone, the webinos platform defines a centralized Personal
Zone Hub (PZH) component. Each user has his own PZH instance running
in the cloud. The PZH is a key element in this architecture, as it contains a
centralized repository of all devices and contextual data in the Personal Zone.
The PZH keeps track of all services in the zone and provides functionality
to enable their discovery and mutual communication. This way, the PZH fa-
cilitates cross-device interaction with personal services over the Internet [1].
Moreover, PZHs are federated, allowing applications to easily discover and
share data and services residing on other people’s devices. Webinos achieves
this structure by incorporating two service discovery abstraction mechanisms.
On a local level, webinos supports various fine-grained discovery techniques to
maximize its capability to detect devices and services (e.g., through multicast
DNS, UPnP, Bluetooth discovery, USB discovery, RFID/NFC, etc.). Secondly,
on a remote level, the local discovery data is propagated within the Personal
Zone and with authorized external PZHs. Based on webinos’ aim for flexible
Personal Zones in terms of scalability and modifiability, the overlay network
is designed in line with the callback broker system pattern [5] (see Fig. 2).
With this pattern, the availability of locally exposed services is communicated
throughout the Personal Zone via a service broker in the PZH. Moreover, the
platform’s high-level communication infrastructure is founded on a direct han-
dle tactic via JSON-RPC (JavaScript object notation - remote procedure call),
which is invoked over HTTP and WebSockets [23]. This in order to bypass the
risk of the service broker becoming a communication bottleneck (see use case
description in Section 5 for more details on the communication handle).

On the device-side, a Personal Zone Proxy (PZP) component is deployed.
The PZP abstracts the local service discovery and handles the direct communi-
cation with the zone’s other devices and PZH. As all external communication
goes through the PZP, this component is responsible for acting as a policy en-



Multi-device Application Middleware 7

forcement point and managing the access to the device’s exposed resources [12].
In addition, the PZP is a fundamental component in upholding the webinos
platform’s offline usage support. Although the proposed platform is designed
with a strong focus on taking benefit from online usage, all devices in the Per-
sonal Zone have access to a locally synchronized subset of the data maintained
by the PZH. The PZP can thus temporarily act in place of the PZH in case no
reliable Internet connection can be established. This allows users to still op-
erate the basic functionality of their applications even while being offline and
unable to access the Internet. In result, the synchronized data allows the local
PZP to avoid the constant need for PZH-mediated communication between
devices via its ability to set up a peer-to-peer (P2P) based connections with
PZPs in the same local network. Through communication queuing, all data to
and from the PZP is again synchronized with the PZH as soon as the device’s
Internet access gets restored.

The Web Runtime (WRT) represents the last main component in the webi-
nos architecture. The WRT can be considered an extension to traditional Web
rendering engines (e.g., WebKit, Mozilla Gecko). The WRT contains all nec-
essary components for running and rendering Web applications designed with
standardized Web technologies: a HTML parser, JavaScript engine, CSS pro-
cessor, rendering engine, etc. Furthermore, the WRT maintains a tight binding
with the local PZP. The WRT-PZP binding exposes JavaScript interfaces, al-
lowing the WRT to be much more powerful than traditional browser-based
application environments. Through this binding, applications running in the
WRT are able to securely interface with the APIs and services offered by
devices throughout the user’s Personal Zone.

4 A Context-aware Personal Zone

The innovative nature of the proposed platform lies with webinos’ capability
to establish a cross-device, cross-service, cross-user overlay network. For this
Personal Zone concept to be successfully adopted by ubiquitous application
developers, the platform needs to provide these developer access to a rich at-
runtime overview of the user’s contextual setting. As stipulated in Section 2.2,
elaborate platform support for transparent context management is vital. In
this section we provide more detail on the available developer tools for setting
up secure context-awareness within a webinos Personal Zone.

4.1 Delivery Context Model

The webinos delivery context model is defined to span all the platform’s con-
textual knowledge within the user’s Personal Zone. The model builds upon the
W3C’s Delivery Context Ontology (DCO) specification [6] and the Context of
Use (COU) model proposed by the NEXOF-RA Project [7]. The webinos con-
text delivery model can be represented as the quad-tuple



8 Heiko Desruelle et al.

Fig. 3 Simplified webinos Personal Zone context model

C = {U,D,E,A} . (1)

The context model thus comprises four sub models: U denotes the user
context, D denotes the device context, E denotes the environment context,
and the application context is denoted by A (see Fig. 3). The first three sub
models are internally managed and updated by the webinos platform, whilst
the application context model for additional application-specific knowledge is
to be maintained by the application developer. The contextual information
regarding the Personal Zone’s owner is described by the user context model.
This model consists of an aggregation of user profile data, user preferences,
social context information, etc. Furthermore, each device and its physical envi-
ronment are described by a separate instance of respectively the device context
model and the environment context model. A device context model comprises
knowledge regarding the corresponding device’s availability and status in the
Personal Zone, hardware characteristics, supported software, etc. The envi-
ronment context model contains a description of a certain device’s location,
surrounding noise levels, etc. Lastly, the application context model provides
developers the freedom to store a number of contextual properties, describing
a situation from the perspective of their application.

Each of the above described models consists of a dynamic set of context
properties

∀(Φ ∈ C) : Φ = {pa1
, pa2

, . . . , pan
} , (2)

where the properties pai
keep track of the historical evolution of context at-

tributes ai by maintaining a timestamped list of their associated context values

pai
= (τ1 : v1, τ2 : v2, . . .) . (3)

The values v represent the state of attribute ai within the context model at a
certain time τ . The historical values are stored in support of the context frame-
work’s mechanisms for historical evaluation, pattern detection and reasoning,
and the implementation of conflict resolution strategies.



Multi-device Application Middleware 9

4.2 Context Aggregation and Retrieval

The webinos context framework is built on top of the above described context
models. As depicted in Fig. 1, this framework is one of the core services pro-
vided by webinos. The context framework provides functionality for acquiring,
storing, inferring new knowledge, and granting external access to contextual-
ized data. Web applications running within the webinos WRT, as well as other
background webinos services, can rely on the context framework to support
their at-runtime need for contextualized information.

The context acquisition process is autonomously managed by the context
framework and operates completely transparent for both the user and the ap-
plication developers. As discussed in Section 3, a broker-based communication
and synchronization architecture has been put in place between the device
PZPs and the centralized PZH. The webinos context framework utilizes this
structure to retrieve contextual knowledge from within the Personal Zone. The
context framework hooks into the PZP’s synchronization mechanism. These
events are intercepted by the framework’s context acquisition component and
subsequently filtered for relevant data through rule-based reasoning. To phys-
ically store the extracted knowledge, the framework maintains a mapping be-
tween the webinos context models and a triplestore infrastructure. Moreover,
the context framework is closely coupled with the PZP’s security and pol-
icy enforcement framework. As will be discussed in Section 4.3, this binding
ensures the secure handling of context data that is being stored as well as
accessed.

Listing 1 Webinos context retrieval API

1 if ("webinos" in window)

2 {

3 // request service broker a handle for the context API

4 webinos.findServices(

5 "http://webinos.org/api/context.query",

6 function(service) {

7 // execute SPARQL context query

8 }, null);

9 }

For application developers seeking to create context-aware ubiquitous ap-
plications, the context framework provides an API for accessing Personal Zone
wide contextual information. The API supports two access modes for retrieving
context information: a generic query mode, and a change subscription mode.
The generic query mode allows applications to execute targeted queries for
specific context data in the storage system. The change subscription mode, on
the other hand, enables an application to subscribe for specific context update
events. These events are triggered by the context framework when new contex-
tual knowledge is acquired or inferred through reasoning. The code example
in Listing 1 demonstrates an application’s access to the context retrieval API
via webinos’ service broker mechanism. The application can then query start



10 Heiko Desruelle et al.

querying the context store once a handle for the API has been returned. The
context API supports W3C’s standardized SPARQL RDF query language for
unambiguously querying context knowledgebases [32]. Context queries can be
structured along the knowledge represented by the four webinos context mod-
els. Listing 2 shows an example query for accessing all vehicular sensor data
within the user’s Personal Zone. All context API requests are passed to a query
processor component. The processor parses the request and checks its execu-
tion rights in collaboration with the PZP’s policy enforcement framework. In
case the request is granted by the PZP, the query is optimized and dispatched
for execution.

Listing 2 Context query vehicular sensor status

1 PREFIX webinos: <http://www.webinos.org/api/context/>

2

3 SELECT ?sensor ?reading

4 WHERE {

5 ?device a webinos:Vehicle.

6 ?device webinos:sensor ?sensor.

7 ?sensor webinos:reading ?reading.

8 }

4.3 Policy Enforcement Support

The webinos platform aims to meet the security and privacy requirements of
applications and end users primarily by means of an access control policy sys-
tem. Every access to a webinos API is mediated by policies and is enforced by
the PZP on each device as well as in the central PZH. This action follows the
principle of minimal privilege, granting applications only the permissions they
require. Furthermore, the policy system allows webinos to securely dispatch
API access to specific devices within the Personal Zone. The policy system is
derived from the BONDI/WAC architecture [44] and uses XACML (eXtensible
Access Control Markup Language) including a number of mobile extensions
developed by the PrimeLife project [39]. XACML is a general-purpose access
control language for defining policies based on subjects, resources, action and
conditions [34]. By including the PrimeLife XACML extensions, webinos’ pol-
icy enforcement framework allows users to specify detailed situation-specific
access and dispatching control policies. This is a significant advantage over
current Web runtime solutions and native application platforms. Once an ap-
plication has been granted access to a particular asset this access can easily
be reused without further control.

Context data is often privacy-sensitive, as its analysis might reveal a user’s
history of actions or the people and devices that have been interacted with
[10]. The webinos platform aims to follow an approach of least surprise, so that
a minimum of unexpected data disclosures ought to occur. This is achieved
by disabling the collection of most context data by default, and providing the



Multi-device Application Middleware 11

user a simple interfaces to turn it on again, complete with feedback about the
kind of data that is being shared and stored. Where possible, data is filtered
to remove unnecessary personal data. The main advantage of the webinos
platform is that context data remains within the zone and under the control
of the end-user. This compares favorably to online user tracking, as users
are able to view and manage the data stored about them, and applications
will have to request specific access to this information. The policy example
in Listing 3 shows a filter to restrict vehicular information access to devices
within the same Personal Zone (lines 1-14). In case an external device tries
to access this data, the Personal Zone owner will first be prompted to grant
the request (lines 16-23). Alternatively, the owner can configure the policy to
reject external devices by default access without any user intervention.

Listing 3 Webinos XACML vehicular API access policy

1 <!−−Accept requests from devices within zone−−>
2 <policy combine=”first−applicable” description=”owner”>
3 <target>
4 <subject>
5 <subject−match attr=”user−id” value=”owner”/>
6 <subject−match attr=”device−id” value=”∗”/>
7 </subject>
8 </target>
9 <rule effect=”permit”>

10 <condition>
11 <resource−match attr=”api−feature” value=”http://webinos.org/api/

vehicle”/>
12 </condition>
13 </rule>
14 </policy>
15

16 <!−−Prompt owner for all other requests from external devices−−>
17 <policy combine=”first−applicable” description=”untrusted”>
18 <rule effect=”prompt−oneshot”>
19 <condition>
20 <resource−match attr=”api−feature” value=”http://webinos.org/api/

vehicle”/>
21 </condition>
22 </rule>
23 </policy>

5 Use Case: Vehicle Interaction

To further elaborate on the application possibilities of the webinos platform,
we present an application use case that has been built with the platform. The
use case covers a cross-device parking assistance application that is able to
access the user’s internal vehicle status through the webinos Personal Zone.
Within the ubiquitous ecosystem, vehicles can be valuable data providers.
As elaborated in the previous sections, this type of data source can enable
developers to build a completely new breed of distributed applications. Fig. 4
depicts the webinos park distance control (PDC) application. The application



12 Heiko Desruelle et al.

Fig. 4 Vehicle interaction use case. A ubiquitous park distance control (PDC) application
able to access a vehicles internal state

is capable of assisting a driver whilst maneuvering a car by monitoring its
parking sensors and gear status. The PDC application interface is activated
when the car is put in reverse gear (R) and remains active until the gear is
put into neutral (N), parking (P), or above 2nd gear. The application provides
visual feedback based on the car’s parking sensor status. This Web application
can be run on any device in the user’s Personal Zone (smartphone, tablet,
car headunit, etc.) and is able to retrieve its sensor data by accessing the
webinos context API. In this use case we distinguish three different device
setups supported by the webinos platform:

– Local setup: The PDC application runs within the vehicle’s own webinos
WRT. All required APIs and data are offered by the local PZP, without
webinos having to access an external PZP instance.

– Peer-to-peer PZP setup: The PDC application is being executed on a sec-
ondary webinos device. The executing device’s PZP needs to access the
vehicle’s PZP in case its own context knowledgebase does not contain up-
to-date data on the car’s sensor data. Both devices are connected via a
local area network (LAN). Webinos’ local discovery mechanisms are able
to detect the vehicle’s PZP and the services it offers. The communication
between the two PZPs is set up through a direct peer-to-peer connection.

– PZH mediated setup: As with the previous setup, the PDC application
is being executed on a secondary webinos device. However, in some cases
the devices’ PZPs will not be able to establish direct communicate, due to
firewall and network address translation (NAT) boundaries. In this case,
the PZ is used to mediate the communication setup between the two PZPs.



Multi-device Application Middleware 13

Fig. 5 Webinos’ transparant overlay network for accessing remote API capabilities via the
platform’s callback broker system mechanism

The UML sequence diagram in Fig. 5 demonstrates how the PZH mediated
setup process for dispatched vehicular API calls operates. At startup time, the
vehicle’s PZP starts by broadcasting its exposed APIs and services to devices
within local network reach. Moreover, the PZP registers these services with the
central PZH in order to ensure synchronization over the entire Personal Zone.
Next, the user can use his/her mobile device to launch the webinos-enabled
PDC application. As webinos offers location transparency with regards to APIs
and services, the application does not need handle the communication with
remote devices in order to access external services (such as the vehicular API).
The mobile PZP will identify a vehicular API call as a remote request and ask
the Service Broker in the PZH for a device within the Personal Zone with
matching capabilities. Based on the returned handle, the mobile PZP will set
up a connection with the vehicle’s PZP and dispatch the application’s API
call. The vehicle’s PZP will subsequently check its configured access policies
whether or not to exectute the incoming request (see Listing 3). In case the
request is granted, the vehicle PZP will execute the call locally and return
results to the mobile PZP, which are in turn passed to the PDC application.

6 Evaluation

A prototype of the proposed platform has been implemented and made avail-
able as part of the webinos open source project [42]. Based on the project’s
extensive analysis of the current ubiquitous ecosystem [41], the following pro-
totype platforms have been selected: PC (Linux, Windows, MacOS), mobile
(Android), vehicles (Linux), home entertainment (Linux), machine-to-machine
(Arduino). The PZP as well as PZH prototypes all extend NodeJS, an high-
performance evented runtime for Google’s V8 JavaScript engine [38]. For the



14 Heiko Desruelle et al.

Fig. 6 Webinos PZP vehicle simulator. Supporting application developers to easily simulate
vehicle data through a Web interface

vehicle implementation, the prototype platform is developed on Pandaboard
hardware, as it reflects the resource limitations of in-car headunits and is in-
dented for mobile and embedded software development. The headunit hosts a
car’s navigation system, as well as portable media interaction, and connects
to the built-in GSM/CDMA modem, the rear-seat entertainment system, etc.
Application access to the system internals is controlled through the webinos
context API and policy framework. To enable the easy evaluation of webinos-
enabled in-car applications, a vehicle simulator was added to the project. The
simulator emulates a vehicle PZP and allows an application developer to sim-
ulate the various internal states and parameters of a car (see Fig. 6).

The context framework is implemented as a platform-independent NodeJs
module. The designed context models are specified using W3C’s Web Ontology
Language (OWL) [13]. Moreover, the framework integrates Jena [3], a toolkit
for semantic storage, rule-based reasoning, and SPARQL query access on the
Web. By applying the RETE algorithm for executing rule-based reasoning
within the context framework as well as the policy enforcement point, the
worst case computational complexity of this process remains linear



Multi-device Application Middleware 15

Fig. 7 Comparing the mean latency breakdown for sensor data access requests initiated by
the PDC application

O
(
P ·WC

)
, (4)

with P the average number of rules or policies, W the number of facts in the
knowledgebase, and C the average number of conditions in each rule [19]. Our
performance analysis on the actual implementation confirm these theoretical
predictions. For a policy base containing 50 policies, the policy framework
is able to reach conclusions within 20ms (see Fig. 7). For context reasoning,
however, the knowledgebase is generally much larger. Our context framework
prototype is designed to run a context store containing between 1.000 and 5.000
context facts. Reasoning time about this amount of data increases linearly and
takes between 500 and 2.500ms.

The vehicle use case application is implemented on top of the prototype
webinos platform. The park distance control application is designed as a regu-
lar Web application, using HTML, CSS, Canvas, and JavaScript. In addition,
the APIs with the webinos platform are provided through JavaScript inter-
faces by the local PZP. Fig 7 depicts the mean latency breakdown for the
PDC application to access vehicular sensor data. The graph covers the three
device setup scenarios discussed in Section 5. The Personal Zone overlay ab-
stracts the communication between devices. API calls by the PDC applications
are automatically dispatched by the platform based on decisions made by the
policy framework and the available knowledge within the context framework.
The webinos platform manages the inter-device communication, which is im-



16 Heiko Desruelle et al.

Fig. 8 Webinos inter-device communication over WebSocket interfaces. Mean latency in
terms of 512b message throughput and connection type

plemented to use the JSON-RPC protocol running over WebSockets. Fig. 8
visualizes the communication latencies for 512b messages between the webi-
nos PZPs on a Android smartphone and a Pandaboard vehicle instance. For
reference, the latencies for the same type of communication over HTTP are
included, as WebSockets are optimized to reduce communication overhead to
a minimum, with a header of only 2 byte compared to the 8 Kbyte header for
conventional HTTP messages. Especially on a mobile connection the imple-
mentation of WebSocket communication shows its use. The median latency for
a typical Personal Zone containing 5 devices stays well below 25ms in a LAN
environment and below 125ms over a 3G mobile network connection. Even at a
throughput rate of more than 100 messages/s, e.g., for communicating sensor
data updates.

7 Conclusion and Future Work

In this article we presented the webinos application platform, aiming to enable
immersive ubiquitous software applications by leveraging the cross-platform
possibilities of the Web. The proposed platform utilizes the Internet infras-
tructure to establish its Personal Zone concept, a virtual overlay network for
grouping all of the user’s devices and available services. Through the federated
structure of Personal Zones, webinos is able to provide application developers
access to elaborate at-runtime context data regarding the current user, his de-
vices, and the surrounding environment. The availability of this information
allows developers to more accurately anticipate to a user’s contextual situa-
tion. The webinos platform’s context-awareness enables numerous applications
that make full use of the diversity and interconnectivity of devices. From this



Multi-device Application Middleware 17

perspective, webinos aims to be a key enabler in the realization of ubiquitous
applications that are able to execute across the physical boundaries of devices.

Although the webinos project addresses challenging issues in the ubiqui-
tous application development domain, the current architecture only represents
a first milestone in the pursuit of true ubiquitous application convergence.
Whilst the webinos platform provides structured access to rich contextual
knowledge, it is still the application developers’ responsibility to incorporate
the necessary logic that allows their applications to act accordingly. Therefore,
future work should include research on extending the webinos platform with
(semi-) automated application adaptation mechanisms, driven by the plat-
form’s rich context-awareness. Regarding the privacy and security impact of
such an application runtime, there will undoubtedly be a need to further ex-
periment with user interfaces. This in order to strike an acceptable balance
between the advantages that context sensitivity can offer, as well as privacy
and user and developer convenience.

Acknowledgements The research leading to these results has received funding from the
European Union’s Seventh Framework Programme (FP7-ICT-2009-5, Objective 1.2) under
grant agreement number 257103 (webinos project) and number 258348.

References

1. Aikebaier A, Enokido T, Takizawa M (2011) Trustworthy Group Making Algorithm in
Distributed Systems. HCIS 2011, 1(6). doi: 10.1186/2192-1962-1-6

2. Allen S, Graupera V, Lundrigan L (2010) Pro Smartphone Cross-Platform Development.
Apress, New York

3. Apache Software Foundation (2012) Apache Jena project. http://incubator.apache.
org/jena. Accessed 10 December 2012

4. Banavar G, Bernstein A (2004) Challenges in design and software infrastructure
for ubiquitous computing applications. Advances in computers 62(1):179-202. doi:
10.1016/S0065-2458(03)62004-8

5. Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M (2001) Pattern-oriented
software architecture: A system of patterns. John Wiley & Sons, West Sussex

6. Cantera JM, Rhys L (2010) Delivery Context Ontology. W3C Working Group Note.
http://www.w3.org/TR/dcontology. Accessed 10 December 2012

7. Cantera JM, Tsouroulas N (2010) Context model and universal APIs. NEXOF-RA.
http://www.nexof-ra.eu. Accessed 10 December 2012

8. Charland A, Leroux B (2011) Mobile application development: web vs. native. Commu-
nications of the ACM 54(5):49-53. doi: 10.1145/1941487.1941504

9. Chen G, Kotz D (2000) A Survey of Context-aware Mobile Computing Research. Tech-
nical report TR2000-381, Dept. of Computer Science, Dartmouth College

10. Chuan D, Lin Y, Linru M, Yua C (2011) Towards a Practical and Scalable Trusted
Software Dissemination System. JoC 2(1):53-60

11. Cozza R, Zimmermann A, Milanesi C, De La Vergne HJ, Sato A, Lu CL, Glenn D,
Nguyen TH, Shen S, Gupt A (2011) Market Share: Mobile Communication Devices by
Region and Country. Gartner inc.

12. Dafir Ech-Cherif El Kettani M, En-Nasry B (2011) MIdM : an Open Architecture for
Mobile Identity Management. JoC 2(2):25-32

13. Dean M, Schreiber G (2004) OWL Web Ontology Language Reference. W3C Recom-
mendation. http://www.w3.org/TR/owl-ref. Accessed 10 December 2012



18 Heiko Desruelle et al.

14. Desruelle H, Blomme D, Gielen F (2011) Adaptive Mobile Web Applications: A Quan-
titative Evaluation Approach. In: Proceedings of the 11th International Conference on
Web Engineering (ICWE 2011). Springer, Heidelberg, pp 375-378. doi: 10.1007/978-3-
642-22233-7 29

15. Desruelle H, Blomme D, Gionis G, Gielen F (2011) Adaptive user interface support for
ubiquitous computing environments. In: Proceedings of the 2nd International Workshop
on User Interface eXtensible Markup, Thales Research and Technology, Paris

16. Desruelle H, Lyle J, Isenberg S, Gielen F (2012) On the challenges of building a Web-
based ubiquitous application platform. In: Proceedings of the 14th ACM International
Conference on Ubiquitous Computing, ACM, New York, pp 733-736

17. DotMobi (2012) DeviceAtlas. https://deviceatlas.com. Accessed 10 December 2012
18. Elmqvist N (2011) Munin: a peer-to-peer middleware for ubiquitous visualization spaces.

In: Proceedings of the 1st Workshop on Distributed User Interfaces (DUI 2011). Uni-
versity of Castilla-La Mancha, pp 17-20

19. Forgy F (1976) On the efficient implementation of production systems Dissertation,
Carnegie-Mellon University

20. Heath T, Bizer C (2011) Linked data: Evolving the web into a global data space.
Synthesis Lectures on the Semantic Web: Theory and Technology, 1:1-136. doi:
10.2200/S00334ED1V01Y201102WBE001

21. Heckmann D (2005) Ubiquitous User Modeling. Dissertation, Dept. of Computer Sci-
ence, Saarland University

22. Heckmann D, Loskyll M, Math R, Recktenwald P, Stahl C (2009) Ubisworld 3.0: A Se-
mantic Tool Set for Ubiquitous User Modeling. In: Proceedings of the 17th International
Conference on User Modeling, Adaptation, and Personalization, Springer, Heidelberg

23. JSON-RPC Working Group (2011) JSON-RPC 2.0 Specification. http://json-rpc.org.
Accessed 10 December 2012

24. Kiss C (2010) Composite Capability/Preference Profiles (CC/PP): Structure
and Vocabularies 2.0. W3C Working Group Note. http://www.w3.org/TR/

CCPP-struct-vocab2. Accessed 10 December 2012
25. Lawton G (2008) Moving the OS to the Web. Computer, 41(3):16-19. doi:

10.1109/MC.2008.94
26. Lin K, Chu D, Mickens J, Zhuang L, Zhao F, Qiu J (2012) Gibraltar: Exposing Hardware

Devices to Web Pages Using AJAX. In: Proceedings of the 3rd USENIX conference on
Web Application Development (WebApps 2012). USENIX Association, Berkeley

27. Lyle J, Faily S, Flechais I, Paul A, Goker A, Myrhaug H, Desruelle H, Martin A (2012)
On the design and development of webinos : a distributed mobile application middle-
ware. In: Proceedings of the 12th IFIP WG 6.1 International Conference on Distributed
Applications and Interoperable Systems (DAIS 2012). Springer, Heidelberg, pp 140-147.
doi: 10.1007/978-3-642-30823-9

28. MIT Media Lab (2011) Funf Open Sensing Framework. http://funf.media.mit.edu/.
Accessed 10 December 2012

29. Open Mobile Alliance (2001) WAG UAProf. Technical report WAP-
248-UAProf-20010530. http://www1.wapforum.org/tech/terms.asp?doc=

WAP-248-UAProf-20010530-p.pdf. Accessed 10 December 2012
30. OpenDDR (2012) Version 1.0. http://www.openddr.org. Accessed 10 December 2012
31. Passani L (2012) WURFL: Mobile device database. http://wurfl.sourceforge.net.

Accessed 10 December 2012
32. Prud’hommeaux E, Seaborne A (2008) SPARQL Query Language for RDF W3C Rec-

ommendation. http://www.w3.org/TR/rdf-sparql-query. Accessed 10 December 2012
33. Rabin J, Trasatti A, Hanrahan R (2012) Device Description Repository Core Vocabulary

W3C Working Group Note. http://www.w3.org/TR/ddr-core-vocabulary. Accessed 10
December 2012

34. Rissanen E (2010) eXtensible Access Control Markup Language (XACML)
Version 3.0 OASIS standard. http://docs.oasis-open.org/xacml/3.0/xacml-3.

0-core-spec-cd-03-en.pdf. Accessed 10 December 2012
35. Silva JLT, Moreto Ribeiro A, Boff E, Primo T, Viccari RM (2011) A Reference On-

tology for Profile Representation in Communities of Practice. Metadata and Semantic
Research. 240:68-79. doi: 10.1007/978-3-642-24731-6 7



Multi-device Application Middleware 19

36. Taivalsaari A, Mikkonen T (2011) The Web as an Application Platform: The Saga Con-
tinues. In: Proceedings of the 37th EUROMICRO Conference on Software Engineering
and Advanced Applications, IEEE Press, New York, pp 170-174

37. Teraoka T (2012) Organization and exploration of heterogeneous personal data collected
in daily life. HCIS 2012, 2(1). doi: 10.1186/2192-1962-2-1

38. Tilkov S, Vinoski S (2010) Node. js: Using JavaScript to build high-performance network
programs. Internet Computing, 14(6):80-83. doi: 10.1109/MIC.2010.145

39. Trabelsi S, Njeh A (2011) Policy Implementation in XACML. Privacy and Identity
Management for Life. Springer, Heidelberg

40. Tsai WT, Shao Q, Sun X, Elston J (2010) Real-Time Service-Oriented Cloud Comput-
ing. In: Proceedings of the 6th World Congress on Services, IEEE Press, New York, pp
473-478

41. Webinos (2011) Industry landscape, governance, licensing and IPR frameworks. Tech-
nical report D2.3

42. Webinos (2012) Webinos Developer Portal. https://developer.webinos.org/. Ac-
cessed 10 December 2012

43. Weiss, A (2005) WebOS: say goodbye to desktop applications. Networker, 9(4):18-26.
doi: 10.1145/1103940.1103941

44. Wholesale Application Community (2010) WAC Home. http://www.wacapps.net/. Ac-
cessed 10 December 2012


