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Abstract

Context-aware platforms consist of dynamic algorithms that take the context

information into account to adapt the behavior of the applications. The

relevant context information is modeled in a context model. Recently, a trend

has emerged towards capturing the context in an ontology, which formally

models the concepts within a certain domain, their relations and properties.

Although much research has been done on the subject, the adoption of

context-aware services in healthcare is lagging behind what could be ex-

pected. The main complaint made by users is that they had to significantly

alter workflow patterns to accommodate the system. When new technology is

introduced, the behavior of the users changes to adapt to it. Moreover, small

differences in user requirements often occur between different environments

where the application is deployed. However, it is difficult to foresee these
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changes in workflow patterns and requirements at development time. Con-

sequently, the context-aware applications are not tuned towards the needs

of the users and they are required to change their behavior to accommodate

the technology instead of the other way around.

To tackle this issue, a self-learning, probabilistic, ontology-based frame-

work is proposed, which allows context-aware applications to adapt their

behavior at run-time. It exploits the context information gathered in the

ontology to mine for trends and patterns in the behavior of the users. These

trends are then prioritized and filtered by associating probabilities, which ex-

press their reliability. This new knowledge and their associated probabilities

are then integrated into the context model and dynamic algorithms. Finally,

the probabilities are in- or decreased, according to context and behavioral

information gathered about the usage of the learned information.

A use case is presented to illustrate the applicability of the framework,

namely mining the reasons for patients’ nurse call light use to automatically

launch calls. Detecting Systemic Inflammatory Response Syndrome (SIRS)

as a reason for nurse calls is used as a realistic scenario to evaluate the

correctness and performance of the proposed framework. It is shown that

correct results are achieved when the dataset contains at least 1,000 instances

and the amount of noise is lower than 5%. The execution time and memory

usage are also negligible for a realistic dataset, i.e., below 100 ms and 10 MB.
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1. Introduction1

Computerized tools, health monitoring devices and sensors are being ac-2

tively adopted in modern healthcare settings, especially to support adminis-3

trative tasks, data management and patient monitoring (Orwat et al., 2008;4

Colpaert et al., 2009). Today, caregivers are directly faced with these tech-5

nologies, which increases the complexity of their daily activities (Tentori6

et al., 2009). The caregiver has to use several devices to manually consult,7

insert and combine data, even when carrying out a single task. This is very8

time-consuming. Due to this inadequate integration of the technology, as well9

as the large amount of data being generated by the devices and the heavy10

workload of staff members, it is not rare for important events to be missed,11

e.g., early indications of worsening condition of a patient. To resolve this12

issue, context-aware techniques are often proposed to automatically exploit13

the medical information available to improve continuous care and personalize14

healthcare (Burgelman and Punie, 2006).15

Although much research has been done on the subject, the adoption of16

context-aware services is lagging behind what could be expected. Most of17

the projects are prototypes and real applications are still difficult to find.18

Whereas the healthcare industry is quick to exploit the latest medical technol-19

ogy, they are reluctant adopters of modern health information systems (Chin,20

2004). Half of all computer-based information systems fail due to user resis-21

tance and staff interference (Anderston and Aydin, 1997). The main com-22

plaint made against mobile, context-aware systems is that users had to sig-23

nificantly alter workflow patterns to accommodate the system (Jahnke et al.,24

2004). This is due to inadequate techniques for personalization of the ser-25
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vices, a lack of focus on the soft aspects of interaction, e.g., automated and26

personalized alerts, and the lack of tackling problems such as the need of the27

users for control (Criel and Claeys, 2008).28

The context-aware platforms use dynamic algorithms, which take the con-29

text information into account, to adapt the behavior of the applications ac-30

cording to the context and offer personalized services to the users. However,31

these algorithms are defined at development time. When new technology32

is introduced, the behavior of the users changes to adapt to it. Moreover,33

different environments in which the application is deployed, e.g., different34

nursing units or hospital departments, might have slightly different require-35

ments pertaining to how the context information is taken into account. It is36

difficult to foresee these changes in behavior and small nuances in workflows37

at development time. This means that the context model might be incom-38

plete or the algorithms of the applications built on it may no longer apply.39

As the applications do not adapt to the requirements and workflow patterns40

of the users, they feel less in control of the technology and have to adapt their41

behavior to accommodate the technology instead of the other way around.42

To tackle this issue, this paper proposes a self-learning framework, which43

allows the context-aware applications to adapt their behavior at run-time to44

accommodate the changing requirements of the users. The proposed frame-45

work consist of the following techniques. First, an ontology-based context46

model with accompanying rule-based context-aware algorithms is used to47

capture the behavior of the user and the context in which it is exhibited.48

This captured information is then filtered, cleaned and structured so that it49

can be used as input for data mining techniques. The results of these data50
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mining techniques are then prioritized and filtered by associating probabil-51

ities with the obtained results expressing how reliable or accurate they are.52

These results and their associated probabilities are then integrated into the53

context model and dynamic algorithms. These probabilities clarify to the54

stakeholders that this new knowledge has not been confirmed by rigorous55

evaluation. Finally, the probabilities are adapted, i.e., in- or decreased, ac-56

cording to context and behavioral information gathered about the usage of57

the learned information.58

The remainder of this article is organized as follows. In Section 2 the59

relevant related work is discussed and our contribution is highlighted. Sec-60

tion 3 presents the architecture of the proposed probabilistic ontology-based61

framework for self-learning context-aware healthcare applications. Section 462

discusses the generic implementation of the framework, i.e., the classes that63

can be extended to implement the specific use cases. The implementation64

of a specific use case, namely mining the reasons for patients’ call light use65

to automatically launch calls, is presented in Section 5. Finally, the main66

conclusions of this research are highlighted and the future work is discussed67

in Section 6.68

2. Related work69

2.1. Context-aware systems70

Dey and Abowd (2000) refer to context as “any information that can be71

used to characterize the situation of entities (i.e., whether a person, place or72

object) that are considered relevant to the interaction between a user and an73

application, including the user and the application themselves”. A system74
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may be labeled as “context-aware” if it can acquire, interpret and use context75

information to adapt its behavior to the current context in use (Byun and76

Cheverst, 2004). A number of generic context platforms have been developed77

to relieve application developers from the aggregation and abstraction of con-78

text information and the derivation of high-level contexts (Hong et al., 2009a;79

Baldauf et al., 2007; Xue and Pung, 2012; Yilmaz and Erdur, 2012). Unor-80

ganized, unprocessed raw data can be voluminous, but has no meaning on81

itself as it has no relationships or context. Information is data that has been82

given meaning by defining relational connections. The proposed platforms83

employ several techniques to model this context information, i.e., key-value,84

markup scheme, graphical, object-oriented, logic-based and ontology-based85

models (Strang and Linnhoff-Popien, 2004). A notable trend is emerging to-86

wards ontology-based context-aware platforms (Gu et al., 2005; Chen, 2004;87

Santos et al., 2007; Román et al., 2002).88

To write the dynamic algorithms, which take the context information89

captured in the ontology into account to achieve personalized and context-90

aware applications, two approaches are commonly used, namely rules or ma-91

chine learning techniques (Tsang and Clarke, 2008). Rules are manually con-92

structed at development time and thus require developers to foresee all pos-93

sible situations that can occur at runtime and define the appropriate corre-94

sponding actions. Rules are difficult to modify, maintain and scale (Prentzas95

and Hatzilygeroudis, 2007). Machine learning techniques, e.g., Bayesian net-96

works and neural networks, are also trained at development time. Bayesian97

networks suffer from similar maintenance and scalability problems as the rule-98

based approach and acquiring accurate probabilities is a tedious job (Russell99
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and Norvig, 2003). Neural Networks require a lot of processing power and100

have consequently only been sparsely applied in context-aware applications.101

Their black-box nature also makes it difficult to gain insight into relations102

between context and actions, increasing the fear of technology and loss of103

control from the users. Consequently, with each of these approaches, the104

context-aware system is only able to cope with a fixed set of context changes105

that were taken into accounted during the design of the system.106

As mentioned previously, run-time adaptation of the dynamic algorithms107

is needed to adapt to changing behavior of the stakeholders and to truly offer108

personalized services tuned to the work practices of the specific environment109

where the application is deployed. A couple of context-aware systems exist110

that try to tackle this problem by mining historical information (Tsang and111

Clarke, 2008; Baralis et al., 2011; Strobbe et al., 2012a; Hong et al., 2009b).112

However, most of the research focusses on the development of data mining113

techniques, which can be used to learn the patterns and requirements, or use114

a black-box approach. Litte research has been done on the development of a115

complete framework for self-learning, context-aware applications and on how116

the learned knowledge should be integrated in an ontology-based platform.117

2.2. Context-aware systems in healthcare118

The use of context and context-awareness in healthcare is an active re-119

search area (Bricon-Souf and Newman, 2007; Varshney, 2009). First, there120

is a large amount of available information, specific healthcare situations and121

related tasks, which create a potentential for cognitive overload amongst the122

caregivers. Second, the patients, healthcare professionals and some equip-123

ment are fairly mobile, which requires accurate localization and adaptation124
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of the healthcare services to the environment. Third, the financial and human125

resources are limited. This implies a need to cut cost while improving the126

quality of service to an increased number of people. Context-aware and per-127

vasive prototypes have been developed for a number of hospital (Bardram,128

2004; Skov and Hoegh, 2006; Mitchell et al., 2000; Stanford, 2003; Munoz129

et al., 2003) and homecare & residential care (Fishkin et al., 2003; Floerke-130

meier and Siegemund, 2003; Korhonen et al., 2003; de Toledo et al., 2006;131

Hu et al., 2010; Mihailidis et al., 2003; Suzuki and Doi, 2001; Jansen and132

Deklerck, 2006) use cases. Examples of context-aware healthcare systems133

based on ontologies can also be found in literature (Fook et al., 2006; Zhang134

et al., 2005; Paganelli and Giuli, 2011; Ongenae et al., 2011d).135

2.3. eHealth ontologies136

An ontology (Gruber, 1993) is a semantic model that formally describes137

the concepts in a certain domain, their relationships and attributes. In this138

way, an ontology encourages re-use and integration. By managing the data139

about the current context in an ontology, intelligent algorithms that take ad-140

vantage of this information to optimize and personalize the context-aware141

applications, can more easily be defined. The Web Ontology Language142

(OWL) (McGuinness and Harmelen, 2004) is the leading language for en-143

coding these ontologies. Because of the foundation of OWL in Description144

Logics (DLs) (Baader et al., 2003), which are a family of logics that are de-145

cidable fragments of first-order logic, the models and description of data in146

these models can be formally proved. It can also be used to detect inconsis-147

tencies in the model as well as infer new information out of the correlation of148

this data. This proofing and classification process is referred to as Reason-149
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ing. Reasoners are implemented as generic software-modules, independent150

of the domain-specific problem. Ontologies thus effectively separate the do-151

main knowledge, which can be re-used across different applications, from the152

application logic, which can be written as rules on top of the ontology.153

The definition and use of ontologies in the medical domain is an ac-154

tive research field, as it has been recognized that ontology-based systems155

can be used to improve the management of complex health systems (Valls156

et al., 2010). Most of the developed ontologies focus on biomedical research157

and are mainly employed to clearly define medical terminology (Ongenae158

et al., 2011b), e.g., Galen Common Reference Model (Rector et al., 2003),159

the Foundational Model of Anatomy Ontology (FMA) (Rosse and Jr, 2008)160

or the Gene Ontology (Blake and Harris, 2008). Little work has been done161

on developing high-level ontologies, which can be used to model context162

information and knowledge utilized across the various continuous care set-163

tings (Ongenae et al., 2011a). However, ontologies have been developed for164

specific subdomains of continuous care, e.g., ontologies for structuring organi-165

zation knowledge in homecare assistance (Valls et al., 2010), representing the166

context of the activity in which the user is engaged (Rodŕıguez et al., 2011)167

and modeling chronic disease management in homecare settings (Paganelli168

and Giuli, 2011).169

2.4. Our contribution170

In this paper, we propose a self-learning and probabilistic framework171

to adapt the behavior of ontology-based, context-aware applications to the172

changing requirements of the users and their workflow patterns. To our173

knowledge, little previous research has been done on how discovered trends174

9



and patterns can be integrated into ontology-based platforms without making175

the existing model inconsistent. To tackle this issue, we use a probabilistic176

approach, which conveys the reliability of the learned knowledge to the users177

and ensures the compatibility with existing knowledge in the context model.178

Moreover, the existing research on self-learning, context-aware applications179

concentrates on exploring data mining techniques, which can be used to dis-180

cover the trends and patterns. Our research focuses on the development181

of a complete framework to enable self-learning, context-aware healthcare182

applications.183

3. Architecture of the self-learning, context-aware framework184

The general architecture of the proposed self-learning, context-aware frame-185

work is visualized in Figure 1. The following subsections discuss the different186

components and modules of this framework in more detail.187

3.1. Context-aware platform188

The general architecture of a context-aware, ontology-based platform can189

be split up into five layers. The Device Layer includes all the devices and190

the software on those devices that deliver context information. The modern191

healthcare settings contains a plethora of computerized medical equipment192

to convey the condition of a patient, e.g., monitoring equipment, electronic193

patient records and laboratory results stored in a database, and support the194

caregivers in their daily activities, e.g., nurse call systems and task manage-195

ment and planning tools.196

The Context Provider Layer takes care of the acquisition of specific con-197

text information, e.g., location or presence information, and translates it to198
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Figure 1: General architecture of the self-learning, context-aware framework

ontology instances. These ontology instances are then added to the Knowl-199

edge Base in the Semantic Reasoning Layer. This Knowledge Base aggre-200

gates all the relevant context information into a formal context model, i.e.,201

an ontology. Existing Medical and Context-Aware Ontologies are integrated202

into the platform and extended with Domain Ontologies which model the203

information specific to a particular healthcare setting, e.g., the specific roles204

and competences of the caregivers and how they map on each other, the205

available monitoring equipment and their threshold values and specific tasks206

that need to be performed. These Domain Ontologies can also contain prob-207

abilistic information, e.g., a call made by patient with a heart disease has208

25% chance of being urgent.209

Reasoning components are then used to derive new, high-level knowledge210
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from the information aggregated in the Knowledge Base. Due to the foun-211

dation of ontologies in Description Logics (DL), the models can be formally212

proofed by using a DL Reasoner. This DL Reasoner is used to detect incon-213

sistencies in the model as well as infer new information from the correlation of214

the data. For example, a concept Fever is created in the ontology, which au-215

tomatically detects patients with a temperature above 38 ◦C. More complex216

logic is expressed by defining Rules on top of this ontology and performing217

Rule-based Reasoning.218

The Knowledge Query Layer facilitates the retrieval of context informa-219

tion such that it can be used by the different applications and services. The220

Application Layer includes all the devices and the software on those devices221

that use the (derived) context information to adapt their behavior.222

Finally, the Persistence Layer ensures the persistence of context informa-223

tion. Static contextual information about users, devices and the environment224

can be easily obtained from these databases. More importantly, the Persis-225

tence Layer can also be used to store more dynamic information, such as226

previous locations of caregivers and patients or actions taken by the users.227

The Semantic Reasoning and Persistence Layers are the most important228

layers to facilitate a self-learning Context-Aware Platform. As the Knowledge229

Base integrates all the context information, it gives insight into the behavior230

and changing requirements of the users. All the collected context information231

and the knowledge derived from it is then persisted in the databases from232

the Persistence Layer. This lets the Learning Engine exploit this history of233

context information to derive trends and patterns and adapt the information234

in the ontology and accompanying rules accordingly.235
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3.2. Monitoring algorithms and configuration module236

Monitoring Algorithms determine missing or inaccurate knowledge in the237

ontology. An example: situations are logged where a suggestion is given by238

the system to the staff to do an action, but under certain circumstances the239

caregivers consistently execute a different action. The Monitoring Algorithms240

constantly monitor the ontology for interesting situations. They gather these241

situations and store them collectively in the Persistence Layer. The results242

of the Monitoring Algorithms can intermediately be shown to Stakeholders,243

i.e., domain experts such as nurses, doctors and professionals working for the244

healthcare industry, and Application Developers. When enough data has been245

collected, the Learning Engine can be initiated. The amount of data that246

should be gathered depends on the specific use case and the used data mining247

technique. The input parameters are specified in the Configuration Module248

and the Data Collection Module automatically extracts the appropriate data249

from the Persistence Layer. The Configuration Module is also responsible250

for configuring the pipeline. A default pipeline can be used or a specific251

configuration can be indicated by the Stakeholders or Application Developers.252

Note, that the Configuration Module can be configured both by the Moni-253

toring Algorithms themselves and by the Stakeholders & Application Develop-254

ers. It can thus be regulated how much autonomy the Learning Engine has.255

Moreover, the possibility of human intervention avoids unnecessary learn-256

ing steps in case the new knowledge, which should be added to the ontology257

based on the observation from the Monitoring Algorithms, is straightforward.258

Finally, the results of the Monitoring Algorithms give the Stakeholders & Ap-259

plication Developers insight into the behavior and requirements of the users.260
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3.3. Learning engine261

The Pipes-and-Filters architectural design pattern (Bass et al., 2003) was262

used to design the Learning Engine. This data-driven pattern divides a263

larger processing task into a sequence of smaller, independent processing264

steps, called filters, that are connected by channels, called pipes. Each filter265

provides a simple interface, namely it receives messages on the incoming pipe,266

processes them and provides the results to the outgoing pipe. A filter is thus267

unaware of its position in the pipeline and which filter precedes and follows268

it. Because all the filters use similar interfaces they can be combined into269

different pipelines. Filters can thus easily be added, omitted or rearranged.270

As a result, the architecture becomes very modular, extensible, re-usable and271

flexible.272

3.3.1. Data collection & input conversion273

To be able to use a flexible Pipes-and-Filters architecture, the data ex-274

changed between the filters needs to be expressed in the same format. A275

format was developed, which allows expressing both the information which276

is used as input and the knowledge that is obtained as output, e.g., rules.277

The format is largely based on the Attribute-Relation File Format (ARFF),278

which is the text file format used by WEKA (Witten et al., 2011).279

The Data Collection Module is responsible for gathering the necessary280

input information for the Learning Engine from the Persistence Layer. The281

Input Convertor converts this data to the data format used by the Learning282

Pipeline. The Data Collection Module and Input Convertor cannot be con-283

sidered as actual filters for two reasons. First, for any use case scenario they284

will always appear as the first two steps of the pipeline. Second, the input285
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and output format of these modules is dependent on the source from which286

the information is collected, e.g., a triple store.287

3.3.2. Learning pipeline288

The Pre-Processor contains several modules to clean up the data. For289

example, the Remove Outliers component removes unrealistic entries from290

the input data, e.g., impossible sensor values. The Scale component centers291

the input values at zero. This is often beneficial for the learning algorithms292

of various machine learning techniques. Feature Selection can be used to293

reduce the size of the input data set and thus speed up the data mining.294

Other examples of pre-processing techniques can easily be integrated into295

the pipeline as new Filters.296

The cleaned data is then passed to the Data Mining component that pro-297

vides several techniques to discover trends, e.g., classification rules, decision298

trees, Bayesian networks or clustering. The results of the Data Mining are299

then processed by the Post-Processor to derive the actual information which300

can be added to the ontology, e.g., rules or thresholds can be derived from a301

decision tree by the Rule or Threshold Extractor.302

The conclusions of the Post-Processor are studied further by the Decision303

Module. To ensure that the Knowledge Base does not become inconsistent304

when the new knowledge is added, i.e., because it contradicts with already305

defined knowledge, probabilistic relations are defined between the new and306

existing knowledge. Moreover, this probability also makes clear to the Stake-307

holders that the new knowledge has not been confirmed by rigorous evalua-308

tion yet. The Probabilistic Relevance Algorithms are used to determine the309

initial probability that should be associated with this new knowledge. For310
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example, it can be calculated how many times a derived rule occured in the311

data set on which the data mining technique was trained. However, wrong312

trends can easily be detected because of skewed or too small data sets. It313

is also important to only include trends that reflect good and general work314

practices. Wrong information could clutter the Knowledge Base and make315

the context-aware platform less useable. The Filter Algorithms are responsi-316

ble for detecting and removing these anomolies, e.g., by removing knowledge317

that received a too low probability by the Probabilistic Relevance Algorithms.318

The Learning Pipeline cannot only be used to learn new information, but319

also to reassess knowledge that has been previously added to the Knowledge320

Base. In this case, the Probabilistic Relevance Algorithms are responsible321

for in- or decreasing the probability depending on the new information that322

becomes available about the usage of this knowledge.323
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3.3.3. Integration module & adapting the probabilities324

Finally, the Integration Module is responsible for defining the probabilis-325

tic relations that connect the new knowledge to the existing knowledge in326

the Knowledge Base. For the same reasons as were already explained in Sec-327

tion 3.3.1 for the Data Integration and Input Convertor Modules, this module328

cannot really be considered a filter.329

For new knowledge, the probability calculated by the Probabilistic Rel-330

evance Algorithms is used. When the Stakeholders are confronted with a331

probabilistic decision in their daily work practices, they might be interested332

in the origin of the information, i.e., how the information was learned, be-333

fore deciding to follow the recommendation of the context-aware platform or334

not. Therefore, the Learning Ontology was created, which allows associat-335

ing the learned knowledge with its origin. The most important concepts of336

this ontology are visualized in Figure 2. This ontology also allows Applica-337

tion Developers to easily identify learned knowledge. This enables them to338

treat this knowledge differently if needed, e.g., ignore it in reliability critical339

applications or highlight it for the users.340

For reassessed knowledge, two thresholds are checked. If the probability341

calculated by the Probabilistic Relevance Algorithms falls below the lowest342

threshold, the knowledge is removed from the Knowledge Base as it is clearly343

not being used or confirmed by the stakeholders. If the probability exceeds344

the highest threshold, the knowledge is added to the ontology as generally345

accepted knowledge, i.e., without an associated probability. Finally, if the346

probability lies between the two thresholds, the probabilitiy of the reassessed347

knowledge is updated to this probability to reflect its changed reliability. As348
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Figure 3: The class diagram of the Learning Engine and Configuration Mod-

ule

such, a self-learning, context-aware platform is obtained in which knowledge349

can be added and removed on the fly based on historical information.350
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4. Implementation details351

The implementation details of the Context-Aware Platform are described352

in Strobbe et al. (2007, 2012b). The platform uses OWL (McGuinness and353

Harmelen, 2004) as ontology language, Pellet (Sirin et al., 2007) as DL Rea-354

soner, Jena Rules (Carroll et al., 2004) and SWRL (Horrocks et al., 2004)355

to express the Rules and SPARQL (Prud’hommeaux and Seaborne, 2008) to356

query the context information. The platform was extended with the Proba-357

bilistic Reasoner Pronto (Klinov, 2008) to enable probabilistic reasoning on358

the ontologies. Jena is used to manage and persist the ontologies.359

The Learning Engine, Monitoring Algorithms and Configuration Module360

were implemented in Java. The class diagram of the Learning Engine is361

visualized in Figure 3. These are the (abstract) classes, which can be used for362

any scenario. To implement a specific use case, subclasses can be created that363

implement the specific requirements of the scenario, e.g., a specific pipeline364

configuration or a specific input convertor. An example of how a specific use365

case can be implemented is thoroughly explained in Section 5. How these366

classes can be used to construct and use a specific Learning Pipeline with367

associated Data Collection Module, Input Convertor and Integration Module368

is visualized with a sequence diagram in Figure 4.369

As can be seen, the different filters in the Learning Pipeline are resp-370

resented by FilterInstance objects. Specific filters, e.g., pre- and post-371

processors, filter algorithms and data mining techniques, are created as sub-372

classes of this FilterInstance class by implementing the doProcessing373

method. This method specifies how the data is processed by the specific374

filter, e.g., a ScalingFilter that scales the data or a ClusterFilter that375
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cm :
Configuration

Module

im :
Integration

Module

Filter Algorithm e :
FilterInstance

Probabilistic
Relevance

Algorithm d :
FilterInstance

Post-Processor c :
FilterInstance

Data Miner b :
FilterInstance

Pre-Processor a :
FilterInstance

ic : Input
Convertor

cd :
DataCollection

Module

pm :
Mining

Manager

1: startAdaptationEngine(pm,params)

7: startPipeline()

6: setParameters(params)

5: setUpPipeline()

4: setIntegrationModule(im)

3: setInputConvertor(ic)

2: setDataCollectionModule(cd)

6.1:

5.7:

4.1:

3.1:

2.1:

12.1.2:

12.1.1: integrateKnowledge(L6)

12: process(L6)

11.1.1: filter(L5) : L6

11.1:  doProcessing(L5)

11: process(L5)

5.6: connectNextFilter(self)

10.1.1: calculate probabilistic relevance(L4) : L5

10.1: doProcessing(L4)

10: process(L4)

5.5: connectNextFilter(e)

9.1.1: post-process(L3) : L4

9.1: doProcessing(L3)

9: process(L3)

5.4: connectNextFilter(d)

8.1.1: mine(L2) : L3

8.1: doProcessing(L2)

8: process(L2)

5.3: connectNextFilter(c)

7.5.1.1: pre-process(L1) : L2

7.5.1: doProcessing(L1)

7.5: process(L1)

5.2: connectNextFilter(b)

7.4: LearningDataObject L1

7.3: convert(context data)

7.2: context data

7.1:

12.1: finishPipeline(L6)

5.1: connectNextFilter(a)

Figure 4: Sequence diagram illustrating the construction and usage of a

Learning Pipeline with associated Data Collection Module, Input Convertor

and Integration Module

clusters it.376

As mentioned previously, the data exchanged between the filters in the377

pipeline uses the same data format, which is represented by the Learning-378

DataObject Java-Object. This object contains the information about the379

different attributes, i.e., ontology concepts, which will be mined, and their380
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data instances. However, to enable logging of the data at any point during381

the pipeline, this object can easily be serialized to XML.382

As can be seen, (de)convertors can be used to translate the specific data383

format to other formats. This is not only necessary to convert the context384

data gathered by the Context-Aware Platform to the data format used by385

the pipeline, but also to allow the usage of external libraries, e.g., WEKA for386

data mining. The (de)convertors allow to transform the LearningDataOb-387

ject to the format used by the external libraries, e.g., the ARFF format388

used by WEKA. Each FilterInstance indicates which datatype it employs389

to process the data by using ‘generic types ’. Based on the indicated type,390

the framework is able to automatically find the appropriate Convertor and391

Deconvertor. This eases the development of specific use cases and the usage392

of external libraries. The Application Developers only have to develop Con-393

vertor and Deconvertor subclasses that implement the conversion to the394

specific file format used by the FilterInstance.395

To manage the complete pipeline, a special type of FilterInstance was396

created, namely the MiningManager. This class is responsible for construct-397

ing the Learning Pipeline out of the separate filters, starting it and processing398

the results. To implement a specific Learning Pipeline, a subclass of the Mi-399

ningManager needs to be constructed that implements the setupPipeline400

method. This method initializes the different filters of the pipeline and con-401

nects them to each other. Each FilterInstance is connected to the next402

FilterInstance in the pipeline by using the connectNextFilter method.403

The first FilterInstance is connected to the MiningManager, while the last404

FilterInstance indicates the MiningManager as next filter to ensure proper405
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processing of the result of the Learning Pipeline.406

The ConfigurationModule is notified of which data should be collected407

for the mining process, either by the Stakeholders and Application Develop-408

ers or by the Monitoring Algorithms. It configures the MiningManager to409

use the appropriate DataCollectionModule, InputConvertor and Integra-410

tionModule that suits this type of data. It also passes the correct parameters411

to the DataCollectionModule, which are needed to retrieve the data from412

the Persistency Layer. Next, the ConfigurationModule calls the setup-413

Pipeline and startPipeline methods of the MiningManager to create the414

pipeline and start the learning process. The latter method first collects the415

necessary data by using the associated DataCollectionModule and converts416

it to the LearningDataObject format with the InputConvertor. Next, the417

MiningManager calls the process method of the first FilterInstance in the418

pipeline. This FilterInstance processes the data with its doProcessing419

method and then calls the process method of the next FilterInstance in420

the pipeline. This continues until the last FilterInstance calls the process421

method of the MiningManager. The MiningManger then finishes the learning422

process by calling the IntegrationModule to integrate the knowledge in the423

Knowledge Base.424

It can be noted that the implemented framework is very extensible, mod-425

ular and flexible, which allows easy adoption for any use case, as illustrated426

in the following section.427
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5. Use case: Mining the reasons for patients’ call light use to au-428

tomatically launch calls429

5.1. Scenario description430

Nurse call systems are a fundamental technology in continuous care as431

they are used by caregivers to coordinate work, be alerted of patients’ needs,432

communicate with them through intercoms and request help from other staff433

members. When patients feel unwell they push a button. The nurses then434

receive a message with the room number on a beeper. This brings up the435

question: which nurse goes to the room? The closest one? the one on call,436

etc.? Current systems often have a very static nature as call buttons have437

fixed locations, e.g., on the wall next to the bed. There is an increased438

risk when patients become unwell inside a hallway, staircase or outside as439

they cannot use the nurse call system. Additionally, the current nurse call440

algorithms consist of predefined links between beeper numbers and rooms.441

Consequently, the system presently does not take into account the various442

factors specific to a given situation, such as the pathology of a patient, e.g.,443

heart patient or confused, nor the competences of the staff, e.g., nurse or444

caregiver.445

The increased introduction of electronic devices in continuous care set-446

tings facilitated the development of the ontology-based Nurse Call System447

(oNCS), which allows patients to walk around freely and use wireless nurse448

call buttons. Additionally, this platform manages the profiles of staff mem-449

bers and patients in an ontology. A sophisticated nurse call algorithm was450

developed by the authors. It first determines the priority of the call us-451

ing probabilistic reasoning algorithms, which take into account the origin452
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of the call and the pathology of the patient. Next, the algorithm finds the453

most appropriate staff member to handle the call. It dynamically adapts to454

the situation at hand by taking into account the context, e.g., location of455

the staff members and patients, the priority of the call and the competence456

of the different caregivers. The oNCS was implemented according to the457

Context-Aware Platform architecture discussed in Section 3 and visualized458

in Figure 1. A detailed description of this platform can be found in Ongenae459

et al. (2011d).460

The oNCS is also able to automatically launch context calls based on the461

data generated by the electronic equipment and sensors in the environment,462

e.g., when a patient spikes a fever or when the light intensity is too high in the463

room of a patient with a concussion. It is however very difficult for developers464

to determine in advance all the risky situations for which a context call should465

be launched. These parameters and their thresholds are very dependent on466

the specific environment where the oNCS is deployed. Moreover, some of the467

relations between parameter measurements and calls made by the patient468

might not even be directly apparent to the caregivers as these relations are469

not rigorously studied.470

To detect relations between the parameter measurements and the calls471

made by patients, the oNCS was extended with Monitoring Algorithms, the472

Configuration Module and Learning Engine. To evaluate this extension, a473

relation was simulated and it was investigated whether the Learning Engine474

was able to detect this trend and add it to the Knowledge Base. The trend475

that patients make a call when they exhibit symptoms for Systemic Inflam-476

matory Response Syndrome (SIRS) (Davies and Hagen, 1997; Nyström, 1998)477
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was chosen as simulated relation. This medically relevant use case could be478

easily generated, but is challenging for the Learning Engine to detect. SIRS479

is a generalized inflammatory reaction of the organism to a severe medical480

condition such as acute pancreatitis, severe burn injury, trauma, surgical481

procedure or infection. If SIRS is the response to an infection, the patient482

is diagnosed with sepsis. Sepsis has a high mortality rate (30%-40%). The483

criteria for diagnosing a patient with SIRS are:484

• Tachycardia: heart rate > 90 beats per minute (bpm)485

• Fever or hypothermia: body temperature > 38 ◦C or < 36 ◦C486

• Tachypnea: arterial partial pressure of carbon dioxide (PaCO2) < 32487

mmHg488

• White Blood Cell (WBC) count < 4,000 cells/mm3 or > 12,000 cells/mm3
489

For the diagnosis of SIRS, two or more of these criteria must be fulfilled. This490

is a challenging scenario for the Learning Engine as it involves both param-491

eters measured at regular intervals by sensors, i.e., the heart rate and body492

temperature, as well as parameters obtained through the analysis of a blood493

sample by the laboratory, i.e., WBC and PaCO2. Moreover, a combination494

of conditions needs to be fulfiled before the call should be launched.495

The following sections illustrate how the Learning Engine was imple-496

mented and the Learning Pipeline was constructed, using the (abstract)497

classes discussed in Section 4, to detect this relation and add it to the Knowl-498

edge Base. The resulting pipeline is visualized in Figure 5.499

25



Configuration 

module

SIRSData

Generator

F
ile

D
a

ta
C

o
lle

c
to

r

A
R

F
F

In
p

u
tC

o
n

v
e

rt
o

r

T
re

e
M

in
e

r

A
R

F
F

C
o

n
v
e

rt
o

r

A
R

F
F

D
e

c
o

n
v
e

rt
o

r

T
h

re
s
h

o
ld

F
ilt

e
rA

lg
o

ri
th

m

C
o

n
te

x
tC

a
llI

n
te

g
ra

ti
o

n
M

o
d

u
le

C
o

u
n

te
rR

e
le

v
a

n
c
e

A
lg

o
ri
th

m

B
o

o
le

a
n

R
u

le
E

x
tr

a
c
to

r

Figure 5: The pipeline used by the Learning Engine to tackle the SIRS use

case

5.2. Scenario implementation500

5.2.1. Generating the SIRS data501

To realize the scenario, a dataset needs to be generated in which the trend502

can be detected that patients make calls when they exhibit SIRS symptoms.503

This dataset consists of a set of instances, each consisting of five data values,504

namely a value for the four SIRS parameters and whether or not a call505

was made. A SIRS Instance is defined as an instance, which consists of506

a combination of the four SIRS parameters that fulfills two or more SIRS507

criteria. Logically, a Non-SIRS Instance is defined as an instance, which508

fulfills at most one SIRS criterion at a time.509

When the different instances are generated, each instance has 15% chance510

of being a SIRS Instance. The parameter values are randomly generated,511

while ensuring that at least two parameters fulfill the SIRS criteria for SIRS512

Instances and at most one criterion is fulfilled for Non-SIRS Instances. The513

values are generated within realistic bounds, e.g., temperature must be lower514
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than 43 ◦C. Whether the SIRS Instance fulfills two, three or four criteria515

and whether the Non-SIRS Instance fulfills one criterion or none, is also516

randomly chosen.517

Finally, each instance needs to be associated with a context call or not.518

To achieve a realistic dataset, noise is introduced by wrongly classifying the519

instances, i.e., associating Non-SIRS Instances with a call and vice versa. A520

noise percentage of x means that each Non-SIRS Instance has x% chance of521

being associated with a call and vice versa.522

Some example instances are illustrated in Table 1. The first four instances523

are Non-SIRS Instances, while the latter four are SIRS Instances. The pa-524

rameter values that fulfill SIRS criteria are indicated in italic. The calls525

marked with a ∗-symbol represent noise. A Data Generator was written to526

create the needed instances and provide them in the ARFF format, i.e., the527

data format used by WEKA. The resulting file is stored in the Persistence528

Layer.529

5.2.2. The oNCS and continuous care ontologies530

As mentioned in Section 2, little work has been done on the development531

of high-level ontologies, which can be used to model context information and532

knowledge utilized across the various continuous care settings, e.g., hospitals,533

homecare and residential care settings. Therefore we developed the Continu-534

ous Care Ontology, which models the generic context information gathered by535

the various sensors and devices, the different devices, the various staff mem-536

bers and patients and their profile information, medical conditions, roles and537

competences and the variety of tasks that need to be performed. A detailed538

description of this ontology can be found in Ongenae et al. (2011a). The539
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Heart Body
PaCO2

WBC
Call

rate temperature count

61.42 38.62 34.54 4969 No

78.55 37.47 32.68 7746 No

88.37 35.76 46.53 7253 Yes∗

67.92 36.10 42.53 12096 Yes∗

66.63 40.95 30.56 3740 Yes

91.59 36.78 29.94 12301 No∗

94.52 40.67 28.89 4866 Yes

95.23 35.93 31.61 8737 No∗

Table 1: Some example instances of the SIRS dataset

most important classes of these ontologies pertaining to the use case are vi-540

sualized in Figure 6. This ontology references the Galen Common Reference541

Model (Rector et al., 2003) as Medical Ontology. The concepts from the Galen542

Common Reference Model are preceded by the galen namespace in Figure 6.543

The concepts preceded with the temporal namespace are imported from the544

SWRLTemporalOntology (O’Connor and Das, 2010) to represent temporal545

information. Finally, the Wireless Sensor Network (WSN) Ontology (Ver-546

stichel et al., 2010) was imported, as shown by the concepts preceded by547

the wsn namespace, to represent the knowledge pertaining to observations548

made by sensors. The Probabilistic Domain Ontology then models the spe-549

cific properties of the environment where the oNCS is deployed, e.g., the550

specific roles and competences of the staff members and how they map on551
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Figure 6: Prevalent classes of the Continuous Care, Medical and Probabilistic

Domain ontologies pertaining to the SIRS use case

each other.552

As can be seen, the model contains a System concept which models a sys-553

tem and its components. The ontology allows interpreting the data values554

monitored by the sensors. For this the ontology uses an observation pattern.555

A data value monitored by a system is modeled in the ontology as an Ob-556

servation. Rules and axioms added to the ontology allow detecting specific557

phenomena in these observations, which are modeled as Symptom concepts.558

For example, the TemperatureAbove38Symptom class is defined as follows:559
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BodyTemperatureObservation AND ∃hasValue “ > 38”

This axiom ensures that a BodyTemperatureObservation of more than560

38 ◦C is reclassified as a TemperatureAbove38Symptom. Similarly, symptoms561

can also be reclassified as faults and even as solutions and actions that should562

be taken.563

People are modelled through the Person concept and their roles and564

competences can be indicated. It can also be indicated with which person565

the sensors are associated through the associatedWith relationship. The566

medical parameters collected about a patient, either by sensors, the obser-567

vations of staff members or the analysis of blood samples, are modelled as568

MedicalParameters. Similar to observations, these parameters can also be569

reclassified as symptoms. The medical condition of a person can also be570

modeled, e.g., Fever.571

To model the daily activities of the caregivers and patients, the Task572

concept is used, which is further divided into planned and unplanned tasks.573

Each task can be assigned a Status, e.g., Active or Finished, a Priority574

and the competences which are needed to execute the task. People can be575

connected to the tasks through various relationships, e.g., hasCurrentTask,576

isAssignedTo or executedBy. A Call is modelled as an unPlannedTask. A577

call can be associated with a Reason, e.g., Fever. Four types of calls can be578

discerned. A NormalCall is a call made by a patient, while an Assistance-579

Call is launched by a caregiver to request help from another staff member.580

An UrgencyCall is only used for emergency situations, e.g., when a patient581

needs to be reanimated. Finally, a ContextCall is call that is automatically582

30



generated by the oNCS as a consequence of certain conditions being fulfilled.583

Consider for example the following Jena rule:584

[FeverContextCall:

(?symp rdf:type oncs:TemperatureAbove38Symptom)

noValue(?symp task:hasAssociatedCall)

(?symp wsn:isObservationOf ?system)

(?kind rdf:type oncs:FeverContextCall)

→

createContextCall(?system, ?kind)

(?symp task:hasAssociatedCall ‘true’̂ x̂sd:boolean)]

The first line represents the name of the rule. First, it is sought if a585

body temperature of more than 38 ◦C was observed for which a call has not586

been launched yet. Next, the system that made the observation is retrieved.587

Finally, the type of call that should be created is specified. As a result, the588

functor createContextCall is called, which creates a ContextCall of type589

FeverContextCall and associates the system that made the observation with590

this call. The functor also assigns the status Active to the call. Moreover,591

the hasAssociatedCall relationship is set to true to make sure that the592

rule does not fire again.593

The oNCS contains rules that fire when active calls are added to the594

ontology. Based on the context information, these rules assign the most ap-595

propriate staff member to the call. More information about these assignment596
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rules can be found in Ongenae et al. (2011d).597

Similar to how the fever example was modeled, the SIRS use case can598

be easily represented using these classes. Individuals of type BodyTempera-599

tureSensor and HeartRateSensor are created to represent the sensors that600

measure the medical parameters of the patients. These sensors make obser-601

vations of type BodyTemperatureObservation and HeartRateObservation602

respectively, which are associated with their sensors through the hasObser-603

vation relation. The measured value is indicated with the hasValue relation.604

Individuals of type BloodSample are created, that represent the blood sam-605

ples analyzed by the laboratory to determine the WBC count and PaCO2 of606

the patient. These results are captured in the ontology as medical parameters607

of type WBC and PaCO2. They are associated with their blood sample through608

the hasAssociatedSample relationship. Finally, when a patient makes a call609

by pressing a button, an individual of type Call is created in the ontology,610

which is connected through the callMadeBy relationship with the patient.611

Through reasoning, this call is reclassified as a NormalCall as it is made by612

a person with as role Patient.613

A mobile nurse call application was also developed, which is used by the614

caregivers to receive, assess and accept, i.e., indicate that they are going to615

handle, calls. A nurse can also use the application to contact other staff616

members or the patient, e.g., to request the reason for the call or to give617

feedback. Before a nurse is able to indicate a call as finished, the reason for618

the call must be indicated either on the mobile application or the terminal619

next to the bed of the patient. This reason is also entered in the ontology.620

The mobile application is further explained in Ongenae et al. (2011c).621
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5.2.3. Collecting the data & input conversion622

As the data is generated, no Monitoring Algorithms are needed. However,623

a Monitoring Algorithm could easily be written as follows. Relationships624

need to be found between medical parameters of patients and the calls that625

they make. The Context Call Monitoring Algorithm, monitors the ontology626

for calls of type NormalCall. When such a call is added to the ontology,627

the algorithm collects the most recent value for each medical parameter that628

is measured about the patient who made the call. This information can629

easily be retrieved using SPARQL queries. As not every medical parameter630

is measured for every patient, the dataset possibly contains missing values.631

When the call has been completely handled by the caregiver, the algorithm632

also retrieves the reason, which was attached to the call. As such, different633

data sets can be created, grouping calls together which have similar reasons.634

These datasets can differ in granularity of the reason. For example, a dataset635

could be created for all the calls with a MedicalReason or for all the calls636

with the more specific reason Fever. All calls of the second dataset would637

also be part of the first dataset, as Fever is a subclass of MedicalReason.638

Each of these datasets could be used as input for the Learning Engine. Other639

ways of grouping the data instances can also be employed, e.g., grouped per640

patient or grouping the instances of patients that have a similar pathology.641

The Context Call Monitoring Algorithm keeps track of how many instances642

have been collected for each dataset. When a representative amount has been643

gathered, the dataset is expanded with negative examples. For example, the644

medical parameters of the patients already present in the dataset can be645

collected at a timepoint when they have not seen a caregiver or made a call646
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for a while or at a timepoint they made a call for a different reason. Finally,647

the Monitoring Algorithms invoke the Configuration Module to initiate the648

Learning Engine. The datasets can also be intermediately shown to the649

Stakeholders and Application Developers for inspection. In this use case, the650

Data Generator takes on the role of the Monitoring Algorithm.651

The Monitoring Algorithms can store the datasets in the Persistence652

Layer in a format that best suits their needs. For the Data Generator,653

the ARFF format was chosen. Ontology individuals could also be directly654

stored in a triple store. The Monitoring Algorithm or the Data Generator655

indicates the location of the data and its format to the Configuration Mod-656

ule. They also indicate which MiningManager should be used to process the657

data. Different types of Learning Pipelines, which each consist of a combina-658

tion of filters that suit the needs of a particular use case, can be created by659

implementing several subclasses of the MiningManager. This allows multiple660

Monitoring Algorithms to run at the same time and the collected data to be661

processed by the MiningManager, and thus Learning Pipeline, that matches662

with the goal of the algorithm.663

The Configuration Manager configures the MiningManager to use the ap-664

propriate DataCollectionModule and InputConvertor that suits the format665

of the data. The subclass FileDataCollector of the DataCollectionMod-666

ule class was implemented, which is able to read the data from a file at667

a specified location. The result is a String, which is provided to the ap-668

propriate ARFFInputConvertor. This subclass of InputConvertor is able669

to translate this ARFF-String to the LearningDataObject format, which is670

used by the Learning Pipeline. During the translation it also checks if the671
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specified value for an attribute, e.g., 38 for the body temperature param-672

eter, is compatible with the type of this attribute. For example, it is not673

allowed to assign a String to a numerical attribute. Illegal data instances674

are discarded.675

5.2.4. Mining the sensor data using a C4.5 decision tree676

A Pre-Processing filter was not implemented for this use case, as it works677

on generated data. If the previously discussed Context Call Monitoring Al-678

gorithm was used, several Pre-Processing filters could be used. For example,679

a RemoveOutliers filter could be employed to remove outliers or impossi-680

ble parameter values in the dataset. Moreover, the number of features, i.e.,681

measured medical parameters, in the dataset would be relatively high. A682

FeatureSelection filter could be used to select the most interesting fea-683

tures for the Data Mining step. Finally, a MissingValues filter would be684

able to deal with the missing values in the dataset.685

The Data Mining filter needs to find relations in the generated dataset be-686

tween the sensor measurements and the occurence of a call. Supervised (Wit-687

ten et al., 2011) classification techniques (Kotsiantis, 2007) consider a set of688

input attributes, e.g., the different sensor types, and a output attribute, also689

called the class attribute or the label, e.g., whether a call was made or not.690

These techniques then try to build a model that fits this data set and derives691

relationships between the input attributes and the label. Building a decision692

tree (Kotsiantis, 2013) based on the information captured in the dataset is693

a well-known and easy supervised classification technique. A decision tree is694

a tree structure in which each leaf represents a value that the label can as-695

sume, e.g., Yes or No. The internal nodes of the tree represent the attributes696
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< 32 mmHg ≥ 32 mmHg 

Yes Yes No 

< 4000 cells/mm3 > 12,000 cells/mm3 ≥ 4000 cells/mm3 AND ≤ 12,000 cells/mm3 

Figure 7: Part of the decision tree of the SIRS example

on which a decision is based, while the branches represent conditions that697

the attributes need to fulfill. As an example, a part of the decision tree of698

the SIRS example is shown in Figure 7. To determine the label of a certain699

data instance, one just needs to follow the tree from the root to the leaves700

along the branches for which the instance fulfills the conditions. Essentially,701

a decision tree forms a compact representation of classification rules. For702

example, the decision tree shown in Figure 7 contains the classification rule:703

HeartRate > 90 bpm AND BodyTemperature > 38 ◦C AND

< 32 mmHg AND < 4000 cells/mm3 → Yes

Different techniques can be used to build such a decision tree out of a data704
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set, e.g., the Iterative Dichotomiser 3 (ID3) (Quinlan, 1986) or C4.5 (Quinlan,705

1993) algorithm. The latter is a more sophisticated algorithm as it allows706

that attributes have numeric values (Quinlan, 1996), is able to handle missing707

values and prunes the tree in order to make it more compact and avoid708

overfitting (Everitt and Skrondal, 2010).709

To implement the C4.5 decision tree, an external library is used, namely710

WEKA. WEKA provides its own implementation of the C4.5 algorithm,711

namely J4.8, which was used in this research. A subclass of the Fil-712

terInstance abstract class was implemented, called TreeMiner. As pre-713

viously mentioned, WEKA uses the ARFF data format to represent data.714

Therefore, an ARFFDataObject was created as a subclass of DataObject and715

(de)convertors were implemented that are able to translate the internal data716

format of the Learning Engine, i.e., LearningDataObject, to and from the717

ARFF data format. As mentioned in Section 4, it is enough to indicate in718

the TreeMiner that the filter uses the ARFFDataObject in the getDataType719

method and the framework will automatically use the correct (de)convertors720

to transform the data. Which attribute should be used as label can be indi-721

cated in the TreeMiner class. In case the label is not indicated, the TreeM-722

iner assumes that the last attribute in the data format is the label. The723

ARFFInputConvertor, discussed in the previous section, makes sure that the724

last attribute is indeed the label. The doProcessing method then calls the725

Java API of WEKA to build the decision tree. However, the J4.8 algorithm726

does not allow to retrieve separates branches and nodes of the tree. Only727

a textual representation of the complete decision tree can be obtained. For728

example, the textual representation of the tree visualized in Figure 7 is:729
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N0 [label=“HeartRate” ]

N0→ N1 [label=“ > 90”]

N1 [label=“BodyTemperature” ]

N1→ N2 [label=“ > 38”]

N2 [label=“PaCO2” ]

N2→ N3 [label=“ < 32”]

N3 [label=“WBC” ]

N3→ N4 [label=“ < 4000”]

N4 [label=“Yes”]

The nodes and branches are identified and translated to the Learning-730

DataObject format such that the result can be forwarded to the next step731

in the pipeline. It is important to note that new results are always added to732

the data being exchanged, so that the original data set also stays available733

for the following steps in the pipeline.734

The Post-Processing filter is responsible for deriving the rules out of the735

textual representation of the decision tree provided by the J4.8 algorithm.736

Therefore, the BooleanRuleExtractor subclass of the FilterInstance class737

was implemented. The implemented doProcessing method takes into ac-738

count that the label has a boolean value, i.e., Yes or No. Only the branches739

that result in a positive leaf need to be translated into a rule, as only those740

rules will result in calls. The doProcessing method starts from a positive741

leaf and follows the branches until the root is reached. Each branch that is742

crossed is added as a condition in the rule. The iterative build-up of the rule743
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according to the output of the J4.8 algorithm illustrated in Figure 7 is as744

follows:745

Step 1: → Y es

Step 2: WBC < 4000 → Yes

Step 3: PaCO2 < 32 AND WBC < 4000 → Yes

Step 4: BodyTemperature > 38 AND PaCO2 < 32 AND

WBC < 4000 → Yes

Step 5: HeartRate > 90 AND BodyTemperature > 38 AND

PaCO2 < 32 AND WBC < 4000 → Yes

The resulting rules are represented in the LearningDataObject format746

such that they can be processed by the Decision Module.747

5.2.5. Filtering and integrating the rules748

As mentioned in Section 3, probabilities are attached to the discovered749

rules to express their reliability to the users and to ensure that the Knowledge750

Base remains consistent, i.e., that the new knowledge does not contradict751

already existing knowledge.752

To calculate the initial probability, the CounterRelevanceAlgorithm was753

implemented as a subclass of the FilterInstance class. This algorithm ap-754

plies the rule to the original dataset, which is still included in the Learning-755

DataObject. The percentage of times that the rule labels the data correctly,756

i.e., the conditions of the rule are fulfilled and the label is Yes, is used as757

probabilistic value. As the data for this use case was generated, this prob-758

ability thus reflects the amount of noise in the dataset. For the remainder759

39



of the text, it assumed that the rule, which was presented in the previous760

section, receives a probability of 85%.761

A simple filter algorithm, namely the ThresholdFilterAlgorithm was762

implemented as subclass of the FilterInstance class. This algorithm filters763

the rules for which the probability is lower than a specified probability, e.g.,764

50%. This rule is thus not added to the Knowledge Base. However, the rule765

and its associated probability is archived in the Persistence Layer.766

Finally, the ContextCallIntegrationModule, a subclass of the Inte-767

grationModule class, is responsible for integrating the rules and associated768

probabilities in the Knowledge Base. First, new subclasses of ContextCall769

and Reason are introduced in the ontology, with as name the condition of770

the rule added before the suffix ContextCall and Reason respectively. For771

brevity, SIRSContextCall and SIRSReason are used to refer to the concepts772

that are created for the rule, which is used as running example, i.e., the rule773

that fulfills each of the four criteria. These concepts are visualized in grey in774

Figure 6. Pronto is used to represent and reason on the probabilistic infor-775

mation in the ontology. To express generic probabilistic knowledge, Pronto776

uses Generic Conditional Constraints (GCCs) (Lukasiewicz, 2007). Generic777

means that the knowledge does not apply to any specific individual but rather778

to a fresh, randomly chosen one. A GCC is of the form (D—C)[l,u] where D779

and C are classes in the ontology and [l,u] is a closed subinterval of [0,1]. To780

represent these GCCs in the ontology, Pronto employs subsumption axiom781

annotations. For example, to express the fact that the SIRSContextCall is782

a ContextCall with only 85% probability, the following subsumption axiom783

annotation is added to the ontology:784
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< owl11:Axiom >

< rdf:subject rdf:resource=“#SIRSContextCall” >

< rdf:predicate rdf:resource=“&rdfs;subClassOf” >

< rdf:object rdf:resource=“#ContextCall” >

< pronto:certainty > 0.85;1 < /pronto:certainty >

< owl11:Axiom >

Second, a Symptom concept is created for each parameter condition in the785

discovered rule, for example HeartRateAbove90Symptom, BodyTemperature-786

Above38Symptom, PaCO2Below32Symptom and WBCBelow4000Symptom. These787

classes are defined by axioms, for example the HeartRateAbove90Symptom is788

defined as:789

HeartRateObservation AND ∃hasValue “ > 90”

If a class with a similar definition already exists, the existing class is used.790

This can be checked by searching for equivalent classes in the ontology with791

a Reasoner. For example, BodyTemperatureAbove38Symptom is not added792

to the ontology, as TemperatureAbove38Symptom is an equivalent class. The793

newly created Symptom classes are visualized in grey in Figure 6.794

Third, the rules are translated to a Jena Rule using the created classes795

and added to the Knowledge Base. For example, the rule from the previous796

section is translated to four Jena Rules. For example, the following Jena797

Rule launches when all the requirements are met and at least one of the798

symptoms does not have an associated call yet:799
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[SIRSContextCall:

(?symp1 rdf:type oncs:HeartRateAbove90Symptom)

noValue(?symp1 wsn:hasNextObservation)

(?symp2 rdf:type oncs:TemperatureAbove38Symptom)

noValue(?symp2 wsn:hasNextObservation)

(?symp3 rdf:type oncs:PaCO2Below32Symptom)

noValue(?symp3 medical:hasNextValue)

(?symp4 rdf:type oncs:WBCBelow4000Symptom)

noValue(?symp4 medical:hasNextValue)

noValue(?symp1 task:hasAssociatedCall)

(?symp1 wsn:isObservationOf ?system)

(?kind rdf:type oncs:SIRSContextCall)

→

createContextCall(?system, ?kind)

(?symp1 task:hasAssociatedCall ‘true’̂ x̂sd:boolean)]

(?symp2 task:hasAssociatedCall ‘true’̂ x̂sd:boolean)]

(?symp3 task:hasAssociatedCall ‘true’̂ x̂sd:boolean)]

(?symp4 task:hasAssociatedCall ‘true’̂ x̂sd:boolean)]

For each symptom a rule is created. The only difference between the800

rules is that the condition for an associated call is checked for a different801
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symptom each time. This is because the different symptoms on their own802

might already have launched context calls for other reasons, e.g., the Temper-803

atureAbove38Symptom might already have launched a FeverContextCall.804

Afterwards, all the symptoms are associated with a call to ensure that only805

one context call is launched. The rule also ensures that the most recent806

parameter values are taken into account by checking whether there are no807

next observations or parameter values through the hasNextObservation and808

hasNextValue relations.809

When the rule is fulfilled, a new context call is added to the Knowledge810

Base. Consequently, the oNCS will detect the new context call and assign811

a staff member to it. The Pronto reasoner can then be used to retrieve the812

probabilistic information associated with the call. This information can then813

be conveyed to the assigned caregiver through the mobile application.814

As only subclasses are added to the ontology and no knowledge is re-815

moved, it is unlikely that the ontology will become inconsistent. However,816

if the ontology does become inconsistent, the following solution can be em-817

ployed. When new information is added to the ontology, the consistency is818

checked. If the ontology is no longer consistent, the information is identified819

with which the new knowledge conflicts. Pronto allows that different chunks820

of probabilistic information conflict with each other. For example, a bird is821

flying object with high probability and all penguins are birds, but a penguin822

has a low probability of flying. More specific probabilistic constraints are thus823

allowed to override more generic ones. The conflicting information is anno-824

tated with the probabilistic interval [1,1], which indicates that the knowledge825

is generally true. Consequently, we are now dealing with conflicting, proba-826
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bilistic knowledge and the rule of increasing specificity can be employed to827

resolve the conflict. As such, we ensure that the ontology remains consistent.828

Finally, the Integration Module also associates the learned knowledge with829

information about the Learning Engine that created it by using concepts830

from the Learning Ontology. The individuals, which are created to realize831

this goal, are visualized in bold in Figure 2.832

Note that ContextCall, Symptom and Reason concepts and an associated833

probabilistic annotation axiom and Jena Rule are created for each discovered834

rule.835

5.2.6. Adapting the probabilities836

This step was not implemented as it requires the system to be deployed837

such that information about the usage of the new knowledge by the caregivers838

can be acquired. However, it is briefly discussed how this task of adapting839

the probabilities could be realized for this use case.840

A Monitoring Algorithm could be implemented, which takes as parame-841

ter the newly created context call, e.g., in this case SIRSContextCall. The842

algorithm monitors the Knowledge Base and collects calls of this type, which843

have been launched by the system. For each call, its reason and the symp-844

toms that caused the calls to be launched are retrieved. When nurses handle845

calls, they need to input the reason for the call. For context calls, they can846

affirm the reason, which was assigned by the framework, e.g., SIRS. They can847

also choose to change it, e.g., to false because the call was unnecessary. As848

such a dataset is created for each rule, which maps the values of the medical849

parameters on the associated reason. When a representative amount of data850

has been collected, this dataset can be retrieved by the FileDataCollector851
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and converted by the ARFFInputConvertor. The output can then be pro-852

cessed by a Learning Pipeline consisting of only one filter. This filter is a853

Probabilistic Relevance Algorithm, which simply calculates the percentage of854

calls for each rule for which the reason was not changed. This means that855

caregivers deemed the reason to be correct. This percentage is than given856

to the Integration Module, which adapts the probability for this rule in the857

ontology to this calculated percentage. As explained in Section 3.3.3, if the858

calculated percentage exceeds or falls below the probability thresholds spec-859

ified in the Integration Module, the knowledge is removed from the ontology860

or added as generally accepted knowledge without a probability.861

5.3. Evaluation set-up862

To evaluate the applicability of the framework, it is important to assess863

the correctness of the derived rules. The correctness of the used data mining864

techniques is influenced by the size of the dataset and the amount of noise.865

To assess the influence of the latter, the Learning Pipeline was consecutively866

applied to datasets of the same size, but with an increasing amount of noise.867

The amount of noise is varied from 0% to 50% in steps of 1%. As mentioned in868

Section 5.2.1, a noise percentage of x means that each Non-SIRS Instance has869

x% chance of being associated with a call and vice versa. It is unnecessary to870

increase the noise percentage beyond 50% as a random label is assigned at this871

point and the dataset becomes meaningless. The amount of noise needs to872

be increased in a dataset of realistic size. The WBC and PaCO2 parameters873

are derived by the laboratory by analyzing a blood sample. Consequently,874

it is unlikely that more than two different values for these parameters will875

be generated per patient per day. If we assume that a department contains876
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on average 30 patients and that we want to wait at most 28 days before we877

run the self-learning framework for the first time, a realistic dataset contains878

1,680 instances, i.e., 30 patients x 28 days x 2 entries per patient per day.879

The influence of the size of the dataset on the correctness is evaluated by880

consecutively applying the Learning Pipeline to datasets of increasing size.881

The dataset sizes range from 100 to 2,000 instances in steps of 100 instances.882

It can be noted that this range also contains the size of the dataset used for883

the correctness tests that evaluate the influence of noise, i.e., 1,680 instances.884

It is also important to evaluate the performance, i.e., execution time and885

memory usage, of the developed Learning Engine. Although, the learning886

process will mostly run in the background, it is important to assess the887

amount of resource usage. Most healthcare environments have a limited888

amount of resources and delegating the processing to the cloud is often dif-889

ficult because of privacy issues. To evaluate the influence of noise on the890

performance, the same datasets were used as for the correctness tests. How-891

ever, to assess the influence of the size of the dataset, datasets were generated892

with sizes ranging from 1,000 to 30,000 in steps of 1,000 instances. Bigger893

datasets were used as it is important to explore the limits of the proposed894

framework.895

To achieve reliable results, each test was repeated 35 times, of which the896

first three and the last two were omitted during processing. For each run,897

a new dataset was generated. Finally, the averages across the 30 remaining898

runs are calculated and visualized in the form of graphs. The tests were899

performed on a computer with the following specifications: 4096 megabyte900

(MB) (2 x 2048 MB) 1067 megahertz (MHz) Double Data Rate Type Three901
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Synchronous Dynamic Random Access Memory (DDR3 SDRAM) and an902

Intel Core i5-430 Central Processing Unit (CPU) (2 cores, 4 threads, 2.26903

gigahertz (GHz), 3 MB cache).904

The term detection rate is introduced to assess the correctness. The SIRS905

use case is detected when the criteria for each of the four parameters of the906

SIRS use case are discovered. If one or more criteria is not learned, the SIRS907

use case is considered undetected. The detection rate of a dataset with a908

particular size is defined as the percentage of the 30 test runs for this size for909

which the SIRS use case was completely detected. For example, a detection910

rate of 50% for a dataset of 100 instances means that for 15 test runs of this911

dataset size the SIRS criteria were detected.912

To assess the correctness, the relative error of the SIRS criteria is calcu-913

lated. The relative error expresses how much the learned criterion deviates914

from the actual SIRS criterion. For example, a relative error of 5% for the915

“heart rate > 90 ” criterion indicates that the discovered threshold deviates916

from 90 by 5%. Note that the body temperature and WBC parameters have917

both an upper and lower threshold, while the heart rate and PaCO2 have918

only one threshold.919

5.4. Results920

5.4.1. Correctness921

Figure 8 depicts the detection rate as a function of the size of the dataset.922

The detection rate is relatively low for small datasets, but it quickly increases923

and reaches 100% for a dataset with 800 instances. When a dataset contains924

at least 1,000 instances, the detection rate is always 100%.925

The detection rate is off course related to the relative error. In Figure 9926
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Figure 8: The detection rate of the SIRS use case as a function of the size of

the dataset

the relative error is depicted for each of the SIRS criteria as a function of927

the size of the dataset. A missing value, i.e., the criterion was not learned,928

corresponds to a relative error of 100%. Consequently, a low detection rate929

corresponds to high relative error. When the dataset reaches a 1,000 in-930

stances and a detection rate of 100% is thus achieved, the relative error stays931

below 1%. This means that for a dataset of 1,000 instances, the threshold is932

discovered for each criterion and it only deviates from the actual threshold by933

at most 1%, which is a very good result. If we consider that the parameters934

are collected twice a day for each patient in a department with 30 patients,935

enough instances would be collected after 17 days.936

Figure 10 visualizes the relative errors for each of the SIRS criteria as937

a function of the amount of noise in a realistically sized dataset of 1,680938
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Figure 10: The relative errors for each of the SIRS criteria as a function of

the amount of noise in the dataset

instances. It is clear that the Learning Engine is insensitive to a noise rate of939

less than 5%. If the amount of noise increases, the relative errors quickly rise940

to 10% and higher. A relative error of 10% on the lower threshold of the body941

temperature, already implies a difference of 3.6 ◦C. This is unacceptable.942

In contrast, a relative error of 10% on the lower bound of the WBC only943

indicates a difference of 400 cells/mm3. The acceptability of the relative944

error thus depends on the kind and range of the parameter.945

5.4.2. Performance946

The execution time as a function of the size of the dataset is depicted947

in Figure 11. Only the execution time of the most relevant pipeline steps948
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Figure 11: Execution time as a function of the dataset size

is shown. The execution time of the CounterRelevanceAlgorithm and949

ThresholdFilterAlgorithm is negligible compared to the execution times950
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of the visualized modules. The execution time of the ContextCallInte-951

grationModule depends heavily on the complexity and the amount of data952

in the ontology. As the ontology was not initialized with a realistic data953

set, e.g., representing a realistic amount of staff members and patients, the954

execution time of this module is not shown. The size of the decision tree955

build by WEKA depends on the number of attributes in the dataset, but956

is independent of the number of instances, i.e., the size of the dataset. As957

the number of attributes, namely the four SIRS parameters and the label,958

stays constant and the Post-Processing step only processes the model build959

by WEKA, the execution time of this step is not influenced by the size of960

the dataset. Moreover, the execution time of the BooleanRuleExtractor961

was also negligible compared to the execution times of the depicted modules.962

The processing of the data by WEKA can be split up into two steps, namely963

transforming the ARFF format to Java Objects and the actual execution of964

the J4.8 algorithm to build the model. The execution times of both these965

steps are visualized.966

It can be derived from Figure 11a that the execution time of the self-967

learning framework is linear as a function of the size of the dataset. The968

execution of the J4.8 algorithm by WEKA consumes the largest amount of969

execution time. It can also be noted that the ARFFInputConvertor con-970

sumes a considerable amount of execution time. This InputConvertor needs971

to translate a String-based representation of an ARFF-file to the internal972

data format used by the Learning Pipeline, namely LearningDataObject.973

Moreover, it needs to check if each value also fulfills the type requirements974

of the attribute, e.g., that a String is not provided where a numerical value975
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is expected. The ARFFConvertor and ARFFDeconvertor, which are used by976

the Data Mining step to translate the internal data format to and from the977

ARFF format used by WEKA, are more performant. This is because these978

convertors translate to and from a Java Object representation of the internal979

format, which is more structured and is thus processed more easily.980

Figure 11b illustrates that the execution time of each of the visualized981

modules is also linear as a function of the size of the dataset. The complexity982

of the J4.8 algorithm is O(m ∗ n2) for a dataset with m instances and n983

attributes (Su and Zhang, 2006). Since the number of attributes is constant984

in this use case, this reduces to a complexity, which is linear in the number985

of instances, i.e., O(m). The ARFFInputConvertor, ARFFConvertor and986

ARFFDeconvertor are also linear in the size of the dataset, as they need to987

(de)convert all the instances in the dataset one by one.988

The execution time needed to process the dataset of realistic size, i.e.,989

1,680 instances, is lower than 100 ms, which is a negligible delay. This means990

that the monthly patient data of a department with on average 30 patients991

can be processed very efficiently.992

Figure 12a depicts the execution time as a function of the amount of993

noise for the realistic dataset containing 1,680 instances. As the measured994

execution times are quite small, i.e., lower than 30 ms, the graphs are quite995

erratic and unpredictable. To get a clear view on the underlying trends, the996

performance tests were repeated for a dataset consisting of 5,000 instances.997

The amount of noise in this dataset is also gradually increased. The resulting998

graph is visualized in Figure 12b. It can be noted that only the execution time999

of the J4.8 algorithm is influenced by the amount of noise in the dataset. The1000
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(b) Dataset of 5,000 instances

Figure 12: Execution time as a function of the amount of noise in the dataset
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Figure 13: The memory usage as a function of the size of the dataset

execution time of the J4.8 algorithm decreases as the amount of noise in the1001

dataset increases. It can be derived that the execution time decreases faster1002

when the percentage of noise is higher than 5%. As shown in the previous1003

section, the relative error quickly increases once the amount of noise rises1004

above 5%. This is because the J4.8 algorithm will more quickly decide that1005

it is no longer useful to try to split up the decision tree. On the one hand,1006

this leads to a lower detection rate as not all the criteria are discovered. On1007

the other hand, this decreases the needed execution time of the algorithm.1008

Figure 13 illustrates the memory usage of the framework as a function of1009

the size of the dataset. The fluctuating pattern of the graphs can be explained1010

by the memory that is consumed by the Garbage Collector in Java. However,1011

trend lines can clearly be discerned. It can be noted that the memory usage1012
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is linear as a function of the amount of instances. Moreover, the total amount1013

of consumed memory stays quite low, i.e., at most 80 MB. For the realistic1014

dataset of 1,680 instances the memory usage is negligible, namely about 101015

MB.1016

It can be concluded that a dataset of realistic size for the SIRS use case1017

can be processed by any modern PC or server and no cloud-based solutions1018

are needed to run the framework.1019

6. Conclusions1020

In this paper a self-learning, probabilistic, ontology-based framework was1021

presented, which allows context-aware applications to adapt their behavior at1022

run-time. The proposed framework consists of the following steps. First, an1023

ontology-based context model with accompanying rule-based context-aware1024

algorithms is used to capture the behavior of the user and the context in1025

which it is exhibited. Historical information is then gathered by algorithms1026

that identify missing or inaccurate knowledge in the context-aware platform.1027

This historical information is filtered, cleaned and structured so that it can1028

be used as input for data mining techniques. The results of these data min-1029

ing techniques are then prioritized and filtered by associating probabilities,1030

which express how reliable or accurate they are. These results and the asso-1031

ciated probabilities are then integrated into the context model and dynamic1032

algorithms. These probabilities clarify to the stakeholders that this new1033

knowledge has not been confirmed by rigorous evaluation. Finally, these1034

probabilities are adapted, i.e., in- or decreased, according to context and1035

behavioral information gathered about the usage of the learned information.1036
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The pipeline architecture of the framework was presented and its imple-1037

mentation was detailed. Finally, a representative use case was presented to1038

illustrate the applicability of the framework, namely mining the reasons for1039

patients’ nurse call light use to automatically launch calls. More specifically,1040

detecting SIRS as a reason for nurse calls was used as a realistic scenario to1041

evaluate the correctness and performance of the proposed framework. It is1042

shown that correct results are achieved when the dataset contains at least1043

1,000 instances and the amount of noise is lower than 5%. The execution1044

time and memory usage are also negligible for a realistic dataset, i.e., below1045

100 ms and 10 MB.1046

Future work will mainly focus on the development of more intricate moni-1047

toring, probabilistic relevance and filter algorithms. Moreover, a prototype of1048

the proposed framework will be deployed and evaluated in a real-life setting.1049
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Korhonen, I., Paavilainen, P., Särelä, A., 25 October 2003. Application of1157

ubiquitous computing technologies for support of independent living of1158

the elderly in real life settings. In: Proceedings of the 2nd International1159

Workshop on Ubiquitous Computing for Pervasive Healthcare Applications1160

at International Conference on Ubiquitous Intelligence and Computing.1161

Seattle, Washington, USA.1162

Kotsiantis, S. B., 2007. Supervised machine learning: A review of classifica-1163

tion techniques. Informatica 31 (3), 249–268.1164

Kotsiantis, S. B., 2013. Decision trees: a recent overview. Artificial Intelli-1165

gence Review 39 (4), 261–283.1166

Lukasiewicz, T., 2007. Probabilistic description logics for the semantic web.1167

Tech. rep., Technical University of Wien, Institute for Information Sys-1168

tems, Wien, Austria.1169

McGuinness, D. L., Harmelen, F. v., February 10 2004. Owl web ontology1170

language overview. Tech. Rep. REC-owl-features-20040210, World Wide1171

Web Consortium, http://www.w3.org/TR/owl-features/.1172

62



Mihailidis, A., Carmichael, B., Boger, J., Fernie, G., 25 October 2003. An1173

intelligent environment to support aging-in-place, safety, and independence1174

of older adults with dementia. In: Proceedings of the 2nd International1175

Workshop on Ubiquitous Computing for Pervasive Healthcare Applications1176

at International Conference on Ubiquitous Intelligence and Computing.1177

Seattle, Washington, USA.1178

Mitchell, S., Spiteri, M. D., Bates, J., Coulouris, G., 17-20 September 2000.1179

Context-aware multimedia computing in the intelligent hospital. In: Pro-1180

ceedings of the 9th workshop on ACM SIGOPS European workshop: be-1181

yond the PC: new challenges for the operating system. New York, NY,1182

USA: ACM;, Kolding, Denmark, pp. 13–18.1183
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