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Abstract—The Stepwise Relaxed Value Picking (SRVP) reg-
ularization technique, proposed earlier for the iterative recon-
struction of piecewise (quasi-)homogeneous objects, is a non-
spatial technique, whereby the reconstruction unknowns are
clustered around a limited number of—a-priori unknown—
reference values. Artifacts have been observed in some 2D and 3D
complex permittivity reconstructions. This paper therefore com-
bines the non-spatial SRVP technique with a spatial smoothing
technique, whereby the reference values provided by the former—
in each iteration—are employed by the latter to define separate
smoothing regions. This way edges are preserved, since the spatial
smoothing constraints in the cost function are active within but
not accross the region boundaries. This combined technique,
denoted as Stepwise Relaxed Piecewise Smoothed Value Picking
(SRPSVP) regularization, is formulated for the 2.5D microwave
inverse scattering problem and is illustrated with reconstructions
from the Institut Fresnel 2D scattering database.

Index Terms—Regularization, piecewise smoothing, recon-
struction, optimization, inverse scattering, microwave imaging,
complex permittivity.

1. INTRODUCTION

Regularization by imposing spatial smoothing constraints
on the entire reconstructed profile as in [1]-[3] is less suit-
able for piecewise homogeneous objects. Imaging piecewise
homogeneous objects is of interest in various applications
in non-destructive testing [4] and subsurface sensing [5].
Several spatial smoothing techniques have been proposed
to enhance edges in nonlinear inverse scattering algorithms,
e.g. Ll-norm total variation (TV) regularization [6], edge-
preserving regularization [7] with weighted L2-norm TV [§]
and with various potential functions [9], [10]. Other methods
are dedicated specifically to piecewise homogeneous profiles,
e.g. the level-set algorithm for binary or n-ary objects [11],
[12]. Stepwise Relaxed Value Picking (SRVP) regularization
[13] was proposed for piecewise (quasi-)homogeneous objects
and has yielded promising results for the inversion of the
three-dimensional (3D) [14] and 2D [15] microwave scattering
databases from Institut Fresnel and for 2.5D millimeter-wave
imaging of concealed objects [16].

Value Picking (VP) regularization is a non-spatial technique—
it does not operate on the spatial neighborhood of the recon-
struction variable—which gradually clusters the reconstruction
unknowns around a limited number of a-priori unknown
reference values—the VP values—which in turn are adjusted
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during the iterative reconstruction process by means of a well-
chosen regularizing function. The regularization thus encour-
ages each reconstruction variable to converge towards one of
these VP values. The basic idea of enforcing piecewise homo-
geneity by introducing reference values in the cost function
has been explored for binary objects in [17], [18] and for
one extra permittivity value in [19], but the choice function
in those previous works differs from the one used in the VP
regularization technique. The VP choice function is defined
for any number of permittivities and has well-documented
properties [13]; in particular it is “less than quadratic”, hence
it easily can be incorporated in the Gauss-Newton algorithm
through a sequence of quadratic approximations. The Stepwise
Relaxed (SR) approach refers to applying a severe regular-
ization in the beginning of the iterations, by using only one
VP value—the complex permittivity of the background—and
gradually relaxing the regularization by adding new VP values.
This considerably improves the convergence of the algorithm.
Some reconstructions with SRVP regularization [13]-[15] have
shown isolated (groups of) cells that are attracted to a wrong
VP-value. Note that those reconstructions were quite chal-
lenging, since only single frequency data were used. When
the information content of the data is low with respect to the
number of degrees of freedom [20], additional regularization
is recommended.

This paper thus proposes to combine the non-spatial SRVP
technique with a piecewise spatial smoothing technique. This
combined technique, further denoted as Stepwise Relaxed
Piecewise Smoothing Value Picking (SRPSVP) regularization,
is more explicit in enforcing homogeneity within the image
parts that are recognized to be so: it additionally imposes
spatial smoothing within but not across a group of neighbor
cells that are attracted to the same VP value. Note in this
context also the approach in the Bayesian estimation frame-
work presented in [21] for a finite number of dielectric and
conductive materials, which applies a Gauss-Markov field for
the distribution of the contrast with a hidden Potts-Markov
field for the class of materials. Furthermore the presence of
one-cell-artifacts can be strongly reduced if smoothing accross
such cells is allowed. Ofcourse, this should be avoided in ap-
plications where the object actually contains small inclusions
with the size of one cell.

The proposed method is discussed in Section III and illus-
trated in Section IV with permittivity reconstructions from the
Institut Fresnel 2D database [22], which contains multiple-
frequency scattered field data for piecewise homogeneous
objects from TM- and TE-polarized 2D incident fields—only
single frequency data are used here. It is advantageous to
employ the 2.5D forward scattering solver [23], since both



polarization cases then can be computed with the same solver.
Consequently, the inverse scattering problem is formulated in
Section II for this more general 2.5D configuration, thus with
2D material properties and 3D fields. An expression for the
2.5D field derivatives is derived in the Appendix.

II. THE ELECTROMAGNETIC INVERSE SCATTERING PROBLEM

Consider an inhomogeneous, possibly lossy, dielectric cylin-
der with an arbitrary cross-sectional shape and with the axis
along the z-direction in a 3D cartesian coordinate system
p = r+zu, where r = xu, + yu,. A 2D rectangular
investigation domain P is defined as the area in the cross-
sectional x, y-plane where the (unknown) complex permittivity
€(r) = €é€.(r) + jo(r)/w can differ from the free space permit-
tivity €. Here €,(r) is the relative dielectric permittivity, o (r)
the conductivity and w the angular frequency. To numerically
solve the inverse problem, the unknown €(r) is parameterized
over D by approximating it as a piecewise constant function
on a uniform grid with N* and N” identical square cells in,
respectively, the x- and y-directions :
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with @,,; the unit expansion function and ¢,,; the unknown co-
efficients. The latter are gathered in the N = N*N?-dimensional
relative complex permittivity vector €, also {¢,}, v=1...N.
The input data of the inverse problem are a set of scattered
fields Ei(r,,z,) = Ei(r,, z,)—Ei.(r,, z,), obtained by successively
illuminating the scatterer with known incident fields Ei(r, z),
i =1...N', and by measuring the corresponding total fields
Ei(r,z) in a set of receiver points (r,,z,), r = 1...N". A time
dependency exp(—jwt) of the fields is assumed. The measured
scattered fields are collected in the N?-dimensional vector
e"eas with N¢ = 3NIN', the factor 3 stands for the x, V,2
components. The excitations are realized by (3D) angular di-
versity (N’ transmitter positions or propagation directions) and
polarization diversity (N? polarizations), hence N' = N'N?,
where for N = 1, TM- or TE- and for N? = 2, TM- and
TE-polarizations are applied.
The relation between the scattered field and the permittivity is
governed by a non-linear integral equation [16]. The inverse
problem thus is solved iteratively by minimizing a cost func-
tion ¥, which consists of a data fit and regularization terms:

F(e,¢) = FL€) + yF (e, ¢) + (FS(e) 2)

with F% the VP regularizing function, ¢ a P—dimensional
vector (P < N) with the complex VP values c,, FPS the
Piecewise Smoothing (PS) regularizing function and vy and ¢
positive regularization parameters. The least squares data fit,
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is a measure for the difference between the experimentally
obtained scattered field and the corresponding simulated scat-
tered field e*“(e)—also an N¢-dimensional vector—for the
current value of €, which is computed with a 2.5D volume
integral equation solver [23].

III. REGULARIZATION AND OPTIMIZATION
A. The VP regularization term
The function % is given by [13]

N
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where fF is the P-dimensional choice function, defined as

S, .. up) = FP(uy, ... up: 0) )

with FP(uy, ..., up; x) defined through the recursion formula
FPVuy, ..., up_y;

FPur, .. upi x) = (up + x) 0P80 )

FP~Wuy, ... ,up_1;up + x)

with F'(up;x) = up + x.
The function (4) can be reformulated as a weighted sum of
penalty functions |e, — c,|* [13]:
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The behavior of F7 is as follows: (i) when the permittivity
of a cell is close to one of the VP values, the choice
function tries to enforce equality with this VP value (i.e.
the corresponding weight b” of that term in (7) is close to
1), (ii) when there is no clear preference of a permittivity
cell for a particular VP value, no choice is made (b” being
somewhere intermediate between 0 and 1) and (iii) VP values
that are clearly far away from the considered permittivity cell
are neglected (their b” are almost zero). Each VP value is
initialized randomly (but different from already present VP
values) within some predefined upper and lower bounds—the
values of these bounds are not critical—and is updated in each
iteration, see Section III-C, except for cp, which is kept fixed
to the background permittivity.

B. The PS regularization term

PS regularization penalizes permittivity fluctuations within
but not across image parts that are considered—at a given
iteration—to be homogeneous, further denoted as smoothing
regions. Smoothing regions are derived from a mapping of
the grid cells to VP-groups. A VP-group is the collection of
cells that clusters around one VP value and is determined as
follows: at a given iteration, the weights bf,”v(e, ¢) in (7) for
cell v indicate how close the permittivity of this cell is to each
VP value c,; the two largest weights for cell v are compared
and if their difference is larger than a threshold value (e.g. 0.2),
then cell v is assigned to the VP-group that corresponds with
the largest weight; otherwise, it is assigned to the indefinite
group. VP-groups (and also the indefinite group) can consist
of several spatially disconnected image parts. A smoothing
region is an as large as possible spatially connected group of
cells belonging to one VP-group (or to the indefinite group).
Whereas with multiplicative smoothing (MS) as in [3]—
the cost function then is ¥ = F Lsfl + aF”’ R), with @ a
positive regularization parameter—the regularizing function
FR penalizes permittivity variations over all cell boundaries
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Fig. 1. Illustration of defining Sl Cells of the same color belong to the
same VP-group. Allowed (arrow) and prohibited (cross) smoothing.

in the grid, 775 only does so over cell boundaries within each
smoothing region. This is achieved by two matrices, S' and
S? for the x- and y-directions, respectively,
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where A% is a normalization constant which accounts for the
dimensions of the object and the size of the cells. If cell (m —
1,1) belongs to the same VP-group as cell (m,[), smoothing
in the x-direction is allowed and S1 = 1, otherwise S1 =0.
This is also illustrated in Fig. 1(a) and (b), where cells havmg
the same color are assigned to the same VP-group. Similarly,
if cells (m,l — 1) and (m,[) belong to the same VP-group (or
to the indefinite group), Sm , = 1, otherwise S2 = 0. Note that
the MS regularizing function ?‘R is as (8) W1th all entries in
S' and S? equal to 1. To smooth out one-cell-artifacts nested
in a quasi-homogeneous image part, the second neighbor is
taken into account. For example, if the neighbor cell (m—1,1)
does not belong to the same VP-group as cell (m,[) but cell
(m—-2,1) does, it is assumed that cell (m—1,[) was attracted to
a wrong VP value, hence it is also allowed to smooth towards
this cell and S}n!l =1, see Fig. 1(c).

C. The optimization

Each iteration k in the optimization of (2) is a three-step
procedure. Firstly, the permittivity profile is updated from
iteration k to k + 1 as:

€r+1 = € + PiSk &)

where s; is a Gauss-Newton descent direction and Gy is the
step size which approximately minimizes the cost function 7
along this direction, computed with a line search [24]. During
this step, the VP values ¢ in #7 and the smoothing matrices
S!. 8% in F%S are kept fixed. The Gauss-Newton direction s;
for F is the solution of

(I + 2 s = — (I [ e -

where A% denotes [le”*||?, ()¥ and (.)* stand for conjugate
transpose and complex conjugate, respectively and

Q = yQL+,90°
L = yIP+oxrs,

’"] + /129;) (10)

Y

Equation (10) follows from the equation for the Newton
correction in complex notation [25] for the cost function
(2), by neglecting in the Hessian matrix the second order
derivatives of the scattered field with respect to the permittivity
unknowns, in a manner similar as in [13]. In the following,
the subscript k is mostly omitted. Elements of the Jacobian
matrix J are J,, = d(e*“), /0¢,, an expression is derived in
the Appendix. Q¥ and Q" contain the first order derivatives
of the regularizing functions:
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where Q" is an approximation to #7, obtained by considering
the weights at their current values b[’:,v(ek, ¢,) as constants. X%
and ¥ contain the second order derivatives:
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with ¢; ; the Kronecker symbol; for the diagonal elements:
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and for the non-diagonal elements (which are zero except if v
denotes a neighbor of u):
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Note that with MS regularization (used as a benchmark in
Section IV) the employed modified Gauss-Newton direction
satisfies an equation as (10) with Q; = Qf, X, = Zf and
A2 = a,”emeas”27:k£8/(l + a,?-l;R) [3].

Secondly, the VP values {c,} are updated, while the permit-
tivity and smoothing matrices are kept fixed. Since they are
subject to upper and lower bounds on their real and imaginary
parts, a constrained optimization is performed by an active set
method [24], which acts on F% only. Similarly as with SRVP
regularization, VP values are also updated whenever a new VP
value is introduced.

Thirdly, the VP-groups/indefinite group and next the smooth-
ing matrices S' and S? are updated, see Section III-B. The
iterations are stopped when the data fit reaches the noise level,
FLS ~ TN, The noise level TV = FL3(€%) is defined as the
data fit for €°, which is the discretized permittivity profile that
yields the closest approximation to the true profile.

With MS regularization it was observed [3] that the data fit is
able to reach TV with choices of the regularization parameter
@ in a wide range of values and that £ is not much



further minimized once this happens; a rather large « in this
range yields an appropriately smoothed reconstruction, see the
discrepancy principle [26].

With SRVP regularization the iterations start with only one
VP value (strong regularization) and proceed until a local
minimum of the corresponding cost function ¥ is reached
(i.e. its gradient is small) or until F£5 increases again. For
a sufficiently large regularization parameter 7, this first step
terminates with 745 > TV The regularization then is relaxed
by adding an extra VP value and the optimization proceeds as
before. New VP values are added this way until #£5 reaches
(an estimate of) TV. Ideally, P = Py at this stage, with P, the
number of different permittivity values in the exact profile, but
when 7 is chosen too large, the algorithm typically stops with
P > Py; some of these VP values tend to merge such that still
a satisfactory reconstruction is obtained. When v is too small,
FLs easily reaches TV, even with too few VP values, but the
reconstruction then is of poorer quality.

In this paper, the choice of y results from numerical experi-
mentation, but a priori knowledge of the exact profile—apart
from its piecewise-homogeneous character with Py < N—
is not assumed: if the final reconstruction shows insufficient
clustering of the permittivity unknowns around the VP values,
a larger vy is tried; if the clustering is sufficient, a smaller y
can be tried to see if a comparable clustering can be achieved
with fewer VP values and/or with fewer iterations. We did not
perform an in-depth study on the choice of the parameters y
and ¢ in case of SRPSVP regularization. In the examples of
Section IV, y is chosen as with the SRVP regularization case
and ¢ as with the MS regularization.

IV. ReconsTrRUCTIONS FROM EXPERIMENTAL DATA
A. Objects, measurement set-up and general settings

Single frequency scattering data at 4 GHz (1p = 74.9 mm)
are considered for two objects from the Institut Fresnel 2D
database [22]: the FoamDielExt object, which consists of a
plastic cylinder with radius r, = 15.5 mm = 0.2y and relative
permittivity €., = 3+0.3 that is placed against a foam cylinder
with , = 40 mm = 0.54y and €., = 1.45 = 0.15 (Fig. 3(a))
and the FoamTwinDiel object, which is as FoamDielExt plus
an extra plastic cylinder off-centered inside the foam cylinder,
with their centers Smm apart (Fig. 3(e)).

The illumination - receiver configuration, with 360 (1° spaced)
possible antenna positions on a circle with radius 1.67 m in the
xy-plane, is detailed in [27]. Here, we use a subset of 8 (45°
spaced) transmitter positions for FoamDielExt and 18 (20°
spaced) positions for FoamTwinDiel, and 241 receiving an-
tenna positions on an arc (from 60° to 300°) facing the source
(when at 0°). We invert both TM and TE data simultaneously,
whence separate inversions are presented in [28], the only
contribution in [22] that exploits both polarizations for the con-
sidered objects. This means that we include both polarizations
in the field vectors €¢”“* and e**“ in (3), e.g. by filling each
vector first with the TE-data followed by the TM-data. Since
the fields in this paper are considered purely 2D [27], all TM-
fields are parallel to the z-axis, in particular Es™ = EZ’TMuZ,
Ef;TM =0, E;’TM =0, and all TE-fields are parallel to the xy-
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Fig. 2. Data fit FLS a5 a function of the iteration number: SRVP (dash-dots),
SRPSVP (solid). Vertical lines indicate when a VP value was added.

plane, in particular E*™F = EY™u,+Ey ™ u,, EX™" = 0 (the TE
scattered field furthermore is tangential to the measurement
circle). For this configuration, the 2.5D solver [23] solves
both polarization cases at once, if the incident field is chosen
as the sum of the TE and TM incident fields at a given
source position, i.e. E' = Ey"u, + Ey™u, + EX™u, yields
E* = Ey™u, + E}"™"u, + EZ™u,. The dimension of the data
vector €™ then is N = 3N'N" = 5784 complex numbers for
FoamDielExt and N? = 13014 for FoamTwinDiel. A simple
calibration is applied to match phase and energy between
measured and simulated fields [27]: all measured field values
are multiplied by a complex factor, which is the ratio of the
simulated and measured incident fields at the receiver location
opposite to the source. The incident fields are treated as plane
waves.

In each experiment, the foam cylinder was positioned in the
center of the antenna circle (within the positioning uncer-
tainty), which is also the center of the reconstruction grid.
This grid is a 150 mm X 150 mm square, that is discretized
in 30 x 30 square cells with edge 5 mm (roughly 15 cells
per Ay), yielding a total of 900 permittivity unknowns. This
relatively small cell size should facilitate the reconstruction of
the curved object contours. For the forward problem solution,
each cell is subdivided further in 2 X 2 = 4 forward problem
cells, the tolerance for the BICGSTAB routine is set to 1073
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[23] and a marching-on-in-source-position approach [29] using
three previous solutions is applied. Since the fields are 2D,
the 2.5D computations only need to be done for one Fourier
component k, = 0.

During the reconstructions, constraints are imposed on the
VP values but not on the permittivity profile. They are
1.1 < R(cp) <5 and —0.001 < J(cp) <0.001,p=1...P—-1,
knowing that the permittivities under test do not have a
significant imaginary part. Consequently, most figures in this
paper only show the real part of the permittivity (see [15]
for the imaginary parts). The iterations are stopped when the
data fit reaches ¥<5 =5 1073 or as soon as a sixth extra VP
value is to be introduced. All computations are performed on
a machine with two AMD Opteron 270 Quad core processors
occupying all 8 CPU cores (each core solves a set of forward
problems). In the following, reconstructions with MS, SRVP
and SRPSVP regularization are discussed.

B. Reconstructions of FoamDielExt

For all the reconstructions of FoamDielExt a free space
grid is chosen as the initial permittivity estimate. First a
reconstruction with MS regularization is performed with a
regularization parameter @ = 2 1073, Fig. 3(b) shows the
result after 16 iterations, when the data fit stagnates around
FL5 = 1.4 1073, The plastic cylinder is clearly visible and its
permittivity is well estimated (approximately 3), but the foam
cylinder is rather blurry without a clear shape or permittivity
and artifacts are present in the background. Due to the globally
imposed smoothness, permittivities are not well clustered.
Next a reconstruction with SRVP regularization is performed
with ¥ =3 and ¢ = 0 in (2). It was observed that with y = 1
the data fit decreased too fast, leaving insufficient influence
for the regularization, while with y = 5 convergence was too
slow. The reconstruction is obtained after 32 iterations (3h

40min), see Fig. 2(a). The algorithm adds more VP values
than there are materials (in the last iterations a new VP
value is introduced in each step), but most of these end up
merging or approaching one another. The final VP values are
c1 =299, ¢ =1.39, ¢3 = c4 = 2.70 and ¢5 = 2.8. They all
lie within the specified uncertainties on the object properties
(6,4 =3+0.3 and ¢, = 1.45+£0.15). None of the weights (7)
corresponding with ¢y, c3, ¢4 and cs are dominant, but the cells
of the plastic cylinder are slightly more attracted to c3 = 2.70,
which may explain why the cylinder dimensions are somewhat
overestimated, see Fig. 3(c). Some artifacts are clearly visible
in the three permittivity regions: cells in the plastic cylinder
pick the VP value corresponding to the foam cylinder and
vice versa; a similar exchange of VP values is observed for
the background and foam. These artifacts also appear in the
dash-dot curves in Fig. 4, which show the permittivity along
lines parallel to the x- and y- axes of the grid at y = =5 mm
and x = —5 mm respectively.

Let us therefore apply the proposed SRPSVP regularization,
with y =3 and £ =2 1073 (N® = 1). Compared to the SRVP
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Fig. 4. Real part of the reconstructed permittivity along x— and y—directions
for FoamDielExt. Solid: exact profiles from Fig. 3(a), Dash-dots: SRVP
profiles from Fig. 3(c), Dashes: SRPSVP profiles from Fig. 3(d).



cost function, the weight of the regularizing terms relative to
the data fit term has increased, resulting in a slower decrease of
the data fit, see Fig. 2(a). Consequently, VP values are added
later in the optimization process. The final VP values (after 53
iterations) are ¢; = 3.00, ¢, = 1.48 and ¢3 = ¢4 = ¢5 = 2.75.
They fit even better within the uncertainties on the object
properties than those obtained with SRVP. None of the weights
corresponding with ¢y, ¢3, ¢4, cs are dominant, hence all cells
within the plastic cylinder end up in the indefinite group
and the smoothing is performed over this complete cylinder.
Also the cells in almost the exact foam cylinder contour
belong to the same VP-group. The reconstructed permittivity
profile in Fig. 3(d) shows that most artifacts of Fig. 3(c)
have disappeared. Dimensions and positions of both cylinders
are correctly reconstructed and the shapes are better than
with SRVP regularization alone. The dashed curves in Fig. 4
show that the permittivity of the foam cylinder is accurately
reconstructed while that of the plastic cylinder is somewhat
underestimated.

C. Reconstructions of FoamTwinDiel

A reconstruction with MS regularization is performed, with
@ = 2 1073 and starting from a free space permittivity
grid. Figure 3(f) shows the result after 22 iterations, when
F£S = 2.4 1073, The presence of the two plastic cylinders
is clearly visible, although their shape is harder to determine.
As with FoamDielExt the foam cylinder is less perceptible and
there are fluctuations in the background.
Next a reconstruction with SRVP regularization is performed
with ¥ = 3 and ¢ = 0 in (2). Since the number of transmitters
now is about twice that for FoamDielExt, resulting in a longer
computation time, the initial permittivity is chosen as the
available profile at iteration 5 of the MS reconstruction, see
Fig. 5 (with #£5 = 9.5 1073 after 2h 30min). Note that the
final result of Fig. 3(f) cannot be used since the corresponding
data fit is on the noise level and leaves no room for further
optimization. The reconstruction is obtained after 10 iterations
(3h 35min), see Fig. 2(b). The VP values then are given by
c1 =3.00, ¢, =1.39 and ¢3 = ¢4 = ¢5 = 2.59. The values ¢,
and c; lie well within the uncertainties on the object properties,
while ¢3 = ¢4 = c¢5 are slightly too low. However, the
clustering of the permittivities (Fig. 3(g)) compared to the MS
reconstruction (Fig. 3(f)) is apparent. As with FoamDielExt
artifacts are visible in all permittivity regions: cells in the
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Fig. 5. Initial estimate for the reconstructions of FoamTwinDiel with SRVP
and SRPSVP.
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Fig. 6. Mapping of the permittivity cells into VP-groups at different iterations
(it.) during the reconstruction of FoamDielTwin. Each VP-group is represented
by its VP value, ¢y stands for the fixed background VP value and indef for
the indefinite group.

plastic cylinders pick VP values corresponding to the foam
cylinder and background and vice versa. Figure 7 shows cross-
sections along the x- and y- axis and through the center of the
reconstruction grid.

Let us again apply SRPSVP with y = 3 and £ = 2 1073, The
final VP values after 12 iterations are ¢; = 3.50, ¢, = 1.40 and
c3 = ¢4 = c5 = 2.88. Fig. 6 shows the VP-groups mapping at
some iterations when a new VP value is added. It follows that
no cells finally are attracted to ¢; = 3.50 (Fig. 6(d)). However,
the introduction of ¢; has not been useless, as appears from
Fig. 6(a), when c¢; = 3.03 and the two plastic cylinders start
to appear at the correct locations. After introducing ¢, = 1.34
(Fig. 6(b)), the foam cylinder also appears at the correct
position. In Fig. 6(d), all cells at the location of the plastic
cylinders pick ¢3 = ¢4 = ¢5 = 2.88 and belong to the indefinite
group, while those located in the foam cylinder are attracted
to ¢ = 1.40. We can conclude that also for FoamTwinDiel
the smoothing is performed in the appropriate regions. The
reconstructed permittivity in Fig. 3(h) shows that the artifacts

Resl part of permittivity
Rel part of permitivity

006 004 002 002 004 006 006 -004 -002

o [
X (m) y(m

(a) along x at y = 0 mm (b) along y at x =0 mm

Fig. 7. Real part of the reconstructed permittivity along x— and y—directions
for FoamTwinDiel. Solid: exact profiles from Fig. 3(e), Dash-dots: SRVP
profiles from Fig. 3(g), Dashes: SRPSVP profiles from Fig. 3(h).



of Fig. 3(g) have disappeared. The reconstruction quality
is comparable to that of Fig. 3(d): shape, dimensions and
positions of all cylinders are correctly reconstructed, except
for a slight translation (approximately two cells) of the foam
cylinder to the left. The dashed curves in Fig. 7 show that
the permittivities of the foam and exterior plastic cylinders
are almost exactly reconstructed while the permittivity of the
inner plastic cylinder is somewhat underestimated.

Concluding, the combination of piecewise smoothing with
SRVP regularization can significantly improve the results
compared to applying SRVP regularization alone. The re-
constructions obtained here from single frequency data vis-
ibly are of superior quality than those presented in [22]
for the same objects and also using single frequency data,
e.g. with a multi-resolution inversion technique [30]. They
even are comparable to and in many cases better than the
reconstructions from multi-frequency or frequency-hopping
data in [22], see e.g. with m-ary level-sets [11], with an
adaptive multiscale approach [31], with a frequency-weighted
data fit cost function [32], with an extended Born inversion
with Tikonov regularization [33], with multiplicative weighted
TV regularized contrast source inversion (CSI) [28], with a
diagonal tensor approximation CSI [34], and with compound
Markov modelling [21]. Compared to the weighted L2-norm
TV regularization applied to CSI in [28] or applied to a
hybrid technique in [35], both using multi-frequency data,
the SRPSVP regularization yields sharper edges, especially
for the foam cylinders in [28] and for the plastic cylinder
in [35]. Also in the 3D case, edges are clear when using
SRVP regularization [14] while some smoothing is observed
with weighted L2-norm TV regularization [36]. A possible
explanation is that with SRPSVP regularization, the smoothing
strength is set equal to zero accross cell boundaries that
are assumed, at a given iteration, to coincide with edges,
while with L2-norm TV regularization, the spatially dependent
smoothing weights then are small but still non-zero. Therefore,
SRPSVP regularization may present advantages compared to
TV when dealing with piecewise constant objects.

V. CONCLUSION

In this contribution we have presented a regularization
strategy for piecewise (quasi-)homogeneous objects, that com-
bines a non-spatial value picking regularization method with
a piecewise spatial smoothing regularization. In each iteration
of the optimization scheme, the VP values provided by the
former serve to determine the separate smoothing regions
in the image for the latter. The new method is validated
by reconstructions of real world objects from experimental
data. In particular reconstructions from single-frequency TM-
and TE-polarized scattering data from the Institut Fresnel
2D database were presented for two piecewise homogeneous
objects, FoamDielExt and FoamTwinDiel. These reconstruc-
tions are quite accurate and show a significant improvement
compared to those obtained with the non-spatial technique
only or with a global spatial smoothing approach. They also
compare well to reconstructions of the same objects with
various techniques by other authors. It can be concluded that

SRPSVP is indeed a valuable approach to deal with artifacts
that may appear when SRVP only is applied to piecewise
(quasi-)homogeneous objects.

APPENDIX
ScATTERED FIELD DERIVATIVES

A closed form expression is derived for the scattered field
derivatives JE*(r, 2)/d€,. In the 2.5D formulation [23] Fourier
field expansions are employed, hence the derivative is written
as

B (r,z) 1 [ OEr,k,) |
Tt =g [ Fedha
where . stands for the Fourier transform,
gr,k;) = f g(r,2)e %dz. (18)

An operator G acting on a vector function p with support V
is defined as

1 = _
[6” (@) = jowuo (I + pVV) : IV G(r,x’; k)p(r')dr’ (19)
0

where 1 is the 3 x 3 identity dyadic, V = (Z, (%, jk.) and

Gk =200 (Jg -2 w-v1) @0

which corresponds to the 2D scalar Green’s function of

homogeneous space with relative permittivity €, = 1 — k2/k2.
The CSIE [23] for the total field E(r, k,) then is formulated as

E(r, k) = [65I)](x) + [GP(~ jwle - &lE)](r)

where J' and —jw[e— E()]E are the applied and induced current
densities, respectively. Since the incident field does not depend
on the permittivity, derivation of (21) and using (1) yields

AES(r, k,)
Jde,

2n

= [G°(-jwe®,E)](r)

OES(r, k)
Je,

Comparing (22) with (21), it follows that JES(r, k,)/de, satis-
fies an equation as (21) corresponding to an applied current
density — jweod)vﬁ in cell v. Consequently, an expression is
readily obtained from the total field solution of (21) when it is
expressed as a function of T, by replacingff‘ with —jwey @, E.
Therefore the 3x3 dyadic Green’s function of inhomogeneous
space Ginn(r, 1’; k;) is constructed by applying a 2D elementary
dipole current density

+ [G°(-jwle - ] ). (22)

Jspr—1) =

8(r —r'u, (23)

JwHo
along a unit vector u,, in a point r’ in presence of the scatterer
for the threg orthogonal directions p = x,y,z. The resulting
total fields Ef,j,lp("e yield the columns of the inhomogeneous
dyadic Green’s function:

EﬁiPOIE(rskz) = JjwHo L ainh(l',l‘”;kz)-T]:s,p(r”—r’)dr”

Ginn(r,1'; k) - u,,. (24)



The total field resulting from the current density Jr, k;) in
presence of the scatterer then is expressed as

E(r.k) = jomo f G s k) - T k)dr'. (25
D

It follows that

AES(r, k,)
Oe,

Now the elements E‘;p(r,,z,) -u,,, of the scattered field

vector €% are considered. These are the x,y,z scattered

field components in receiver points (r,,z,) resulting from
illuminations E} ,u, . It follows that

=k f D,(t")Ginn(r. 1’ k) - E(r', k)dr'. (26)
D

s
Lp

Oe,

(rr,k;) - W, = k(% fq)v(r/) Uy, - ainh(rr, r’; k;)
D

B, (r, ko)dr. 27)

Due to reciprocity ainh(rr,r';kz) = a;h(r’,r,;kz) and from

(24) it follows that

ainh(r’7 I kz) : ur,p’
= EPC0. k).

Here, ’E\‘jﬁo le(r’,kz) is the total field generated by a 2D dipole

in the point r, oriented along u,.,» in presence of the scatterer.

Introducing (28) into (27) finally yields

ur,p’ . Ginh(rra l'/; kz)

(28)

aEil’ 2 e ’ Tdipole ,_ s ’
a—ev(r,, k) -u.,y =k; L O,(r") E.,(x', k) - E, 7 (x', k)dr’.

(29)
To compute (29), two types of forward problems must be
solved for each spectral component k; of the incident field:
(i) a regular forward problem to compute E, ,(r’, k;) on D for
each incidence (z, p), or a total of #kZN’N,p forward problems;
these have been solved already to determine the data fit term
(3); (ii) a dipole forward problem to compute Eillﬁ’f’ (', k,) on
D for dipole excitations in each receiver position r,, or a total
of #k,N"N? forward problems.
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