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Abstract: The purchase and download of new applications on all types of smartphones and tablet
computers has become increasingly popular. On each mobile device, many applications are installed,
often resulting in crowded icon-based interfaces. In this paper, we present a framework for the prediction
of a user's future mobile application usage behavior. On the mobile device, the framework continuously
monitors the user's previous use of applications together with several context parameters such as speed
and location. Based on the retrieved information, the framework automatically deduces application usage
patterns. These patterns define a correlation between a used application and the monitored context
information or between different applications. Furthermore, by combining several context parameters,
context profiles are automatically generated. These profiles typically match with real life situations such
as 'at home' or 'on the train' and are used to delimit the number of possible patterns, increasing both the
positive prediction rate and the scalability of the system. A concept demonstrator for Android OS was
developed and the implemented algorithms were evaluated in a detailed simulation setup. It is shown that
the developed algorithms perform very well with a true positive rate of up to 90% for the considered
evaluation scenarios.
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Mobile Application Usage Prediction through
Context-based Learning

Philip Leroux ®*Klaas Roobroeck # Bart Dhoedt * Piet Demeester * and Filip De Turck #

& Ghent University - IBBT - Department of Information Technology, Gaston Crommenlaan 8/201, 9050 Ghent,
Belgium
E-mail: Philip.Leroux, Klaas.Roobroeck, Bart.Dhoedt, Piet.Demeester, Filip.DeTurck@intec.ugent.be

Abstract. The purchase and download of new applications on all types of smartphones and tablet computers has become in-
creasingly popular. On each mobile device, many applications are installed, often resulting in crowded icon-based interfaces. In
this paper, we present a framework for the prediction of a user’s future mobile application usage behavior. On the mobile device,
the framework continuously monitors the user’s previous use of applications together with several context parameters such as
speed and location. Based on the retrieved information, the framework automatically deduces application usage patterns. These
patterns define a correlation between a used application and the monitored context information or between different applications.
Furthermore, by combining several context parameters, context profiles are automatically generated. These profiles typically
match with real life situations such as at home’ or ’on the train’ and are used to delimit the number of possible patterns, increas-
ing both the positive prediction rate and the scalability of the system. A concept demonstrator for Android OS was developed
and the implemented algorithms were evaluated in a detailed simulation setup. It is shown that the developed algorithms perform
very well with a true positive rate of up to 90% for the considered evaluation scenarios.

Keywords: context modeling, context prediction, mobile application development

1. Introduction more work-related applications (e.g. Email, Agenda

or QuickOffice) during working hours while in the

1.1. Mobile Services: Situation

On many currently popular smartphone and tablet
computer platforms, the continuous selling of mobile
applications has shown to be a major (commercial)
success. Mobile application markets are flooded with
hundreds of thousands of mobile applications, often
with limited free and more advanced commercial ver-
sions in all types of categories. With users installing
all kinds of free and paid applications on their mo-
bile phone, the icon-based interfaces, currently applied
on many popular mobile operating systems, are often
composed of several window containers loaded with
application icons. However, the usage of many of these
applications may be specifically tied to specific con-
text parameters. For example, an employee may use

*Corresponding author. E-mail: Philip.Leroux @intec.ugent.be

evening he (or she) might use more fun-related appli-
cations such as Youtube, Music or Facebook. While
driving, a user might often consult the GPS applica-
tion and for instance just before going to bed he might
set his alarm clock. All these patterns are related to
context parameters such as traveling speed, location or
time. There may also exist patterns between applica-
tions such as frequently consulting the agenda after a
phone conversation.

With the static user interfaces that are currently im-
plemented on many mobile platforms, the most ad-
vanced type of implemented personalization with re-
spect to mobile application usage is the integration of
one or more home screens containing the user’s fa-
vorite applications and widgets. These home screens
are configured by the user and remain static irrespec-
tive of the user’s current context or situational environ-
ment. A more efficient way of home screen interaction

1876-1364/0-1900/$17.00 (© 0 — IOS Press and the authors. All rights reserved



2 P. Leroux et al. / Mobile Application Usage Prediction through Context-based Learning

would be to dynamically adapt some elements of the
home screen based on the user’s current context situ-
ation. In this paper, the design of algorithms for the
automatic detection of only those applications that are
most likely to be used, based on the user’s current con-
text, is studied and evaluated in detail.

1.2. Contributions

In this paper, a framework is proposed for the au-
tomatic detection and prediction of mobile application
usage behavior patterns by taking different context pa-
rameters into account. The detection of the usage pat-
terns is performed automatically, i.e. without the re-
quirement of explicit user input. Moreover, the algo-
rithms can be applied for different types of users while
no predefined types of context situations or fixed rules
are defined. We will show that a 3 phase approach is
most suited, this approach consists of the following
steps: (i) Expectation-Maximization clustering on (a
combination of) the different context parameters that
define a user situation: time, location, speed and day
of the week together with used applications to learn
from previous user behavior and to generate different
context situation clusters or context profiles; (ii) The
detection of application usage patterns supporting con-
text profile dependent patterns through graph analysis,
popular application patterns by using a short time win-
dow and intra-cluster correlation patterns by using as-
sociation rules. Intra-cluster patterns are usage patterns
that may exist between different applications or be-
tween applications and very specific (individual) con-
text parameters, and not to context profiles which are
defined by the total context situation; (iii) Generation
of a combined recommendation by bundling the in-
formation of all pattern types. A prototype application
has been implemented running on an Android mobile
phone. This application is composed of a data gath-
ering service and a mobile widget application show-
ing the top six recommended applications on the home
screen of the user. For performance reasons, the imple-
mentation of the algorithm-specific modules was of-
floaded to a server-side component. This prototype and
the generated recommendations are also extensively
evaluated by means of two different scenarios A and B,
respectively containing 17 and 26 different mobile ap-
plications. For scenario A, the framework generated a
true positive rate of up to 90% when the top six ranked
applications were taken into account. For scenario B a
maximum true positive rate of 78.89% was found for
similar conditions.

1.3. Related Work

A lot of research has already been focusing on
the detection and representation of and the reason-
ing about the context or activity of users in a mo-
bile or smart (home) environment. For instance, within
the domain of activity detection, solutions have been
proposing the usage of for example video data [21],
different types of sensor data, such as door sensors
and light switches [7], wireless sensors [25], RFID
tags [20], accelerometer data [10], etc. In addition,
several mobile context-aware service platforms have
been designed in order to simplify the development
of context-aware mobile applications [19,5,14,6]. For
instance, the Reconfigurable context-sensitive mid-
dleware (RCSM) [26] is a middleware framework
that facilitates the development of mobile applica-
tions that require context-sensitive ad hoc communi-
cation. Based on a context-sensitive interface descrip-
tion, compilers build application-specific adaptive ob-
ject containers that allow for runtime context data ac-
quisition, monitoring, and detection. Our research dif-
fers from these mobile context service architectures as
the goal is not to build a service platform able to pro-
vide context-awareness to mobile applications, but to
predict the use of such applications based on the avail-
able context. Although a feasible option would be to
offload the context gathering and interpretation algo-
rithms to one of the presented service platforms, no
platforms were found that monitor the actual use of
mobile applications.

For the representation of and the reasoning about
context data, many solutions [4] propose the applica-
tion of ontology languages as they are well-suited to
represent a formal context model that can be shared,
reused and extended for specific use case scenarios
or domains. In addition, semantic reasoners allow
for the reasoning about the different context mod-
els and user preferences described by these ontology
languages. For example, the European FP7 research
project m:Ciudad demonstrates [9] an approach to in-
tegrate contextual information with other search at-
tributes to enable efficient service retrieval and rec-
ommendation in mobile user and application scenar-
i0s. Ontologies are used to describe services, users,
situations and their domain knowledge. The ontology-
based data representations are then used as the ba-
sis for search and proactive recommendations. Sev-
eral other semantics-based frameworks for both con-
text capturing and reasoning are evaluated in [4].



P. Leroux et al. / Mobile Application Usage Prediction through Context-based Learning 3

The work described in this paper differs from these
semantic approaches as its goal is to automatically de-
tect or predict patterns in the user’s behavior based on
the user’s raw context data without the need of seman-
tic interpretation of or reasoning about specific context
situations. Such an approach has the advantage that it
does not require the in advance semantic definition of
context situations and rules and thus can be automati-
cally applied in any situation and for all types of users,
even without the need of user interaction during the
learning phase. A similar approach [11] combines K-
Means clustering [16] and Self-Organizing Maps [17]
for unsupervised clustering of mobile context data.
Naive Bayesian networks have been applied to clas-
sify the contexts of a mobile device user in his normal
daily activities [18]. In this paper, the context infor-
mation was derived mainly from audio features. In or-
der to support media recommendation, adaptation and
delivery for smartphones a context-aware recommen-
dation platform for mobile devices is described [28]
which uses an N x M-dimensional model and a hybrid
processing approach. Many of the techniques that were
proposed in these papers have been evaluated for our
application domain. As will be stated in Section 2 a
combination of other techniques and new algorithms
was required for our use case scenario.

It should be noted that both the semantic and the ma-
chine learning approaches should not always be seen
as an if/if scenario, as they may also be combined with
each other within a general context framework. Such a
framework should apply ontologies and semantic rea-
soning as a basis for the overall context interpreta-
tion. Specific techniques and algorithms are then used
for automatic pattern deduction and pattern matching
for very specific use case scenarios. An example of
a framework encompassing both the interpretation of
raw sensor data and the translation to a semantic model
has already been presented [27].

Within the domain of context-based application us-
age prediction, a context-aware user modeling frame-
work is described [23] that retrieves user-related infor-
mation from a desktop environment to learn a user’s
preferences for different application actions. In order
to generate predictions, a combination of a learning
classifier system and a decision tree learner were used.
For each new supported application a new decision tree
was implemented. As one of the main functional re-
quirements of our system is not to make presumptions
about certain user behavior, context situations or used
application such an approach was not feasible for our
framework.

1.4. Paper Structure

This paper describes the implementation of a frame-
work that is able to predict a user’s future use of mo-
bile applications on a mobile device. In order to gener-
ate such predictions, certain patterns should be found
in the user’s application usage. These patterns can be
based on two types of information: (i) (physical) envi-
ronment parameters that define a certain context situa-
tion or profile during which an application is used; (ii)
actions that the user performs on the mobile device.
In this paper, both types of patterns are integrated and
combined. Therefore, a three-step sequential process
flow was designed:

1. Processing of the monitored data in order to pro-
vide more structure to the data and the discovery
of user context situations.

2. The parallel detection of different types of pat-
terns that model the user’s application use.

3. Evaluation of the different pattern prediction val-
ues in order to generate a final prediction.

The first step is described in Section 2. Section 3
provides a more detailed overview of the process flow
and describes the different patterns that are supported
in step 2 and the classification process of step 3. Im-
plementation details of our framework are provided in
Section 4. This section also describes several perfor-
mance measurements. Section 5 describes our evalua-
tion setup and methodology and Section 6 presents the
obtained evaluation results. Finally, Section 7 states
our conclusions.

2. Data Interpretation and Context Profile
Creation

In this section, the first step of our three-step pro-
cess flow, as introduced in Section 1.4 and described
in more detail in Section 3, is explained. The goal of
this first step is twofold:

— To discover structure in the monitored data (i.e.
context data and application usage data). The out-
put of this process can be used as input for the
application pattern algorithms of step 2.

— To detect user context situations based on the
monitored context data. The detected context situ-
ations, in this paper labeled as ’Profiles’, are then
used to limit the scope of certain application pat-
terns.
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For both objectives, the concept of context is in-
troduced. A definition of context often cited in liter-
ature comes from Dey [8], a pioneer in the research
on context-aware services and architectures: *Context
is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or
object that is considered relevant to the interaction be-
tween a user and an application, including the user and
applications themselves.” In this paper when referring
to context we specifically target the context of the user,
measured by a predefined set of four parameters: time,
location, day of week and speed. Contrary to the def-
inition of Dey, the user’s application usage was delib-
erately not included in the set of context parameters
from which a context profile may be deduced. This ap-
proach enables to limit the scope of certain application
patterns to the currently active context profile. This is
described in Section 3. For both objectives, the han-
dling of context data is described in Section 2.2. Note
that in the first objective, also monitored application
usage data are processed. This is defined as *Applica-
tion Data Clustering’ and is detailed in Section 2.3.

2.1. Expectation-Maximization (EM) Clustering

In order to find sets of relating context parameter
values or a profile defined by a combination of value
sets taken from each context parameter, a technique
should be applied that is able to detect structure in the
unstructured context data that were gathered. One of
the main challenges is the continuous nature of several
context parameters such as time and location, as the lo-
cation is indicated by its geographic coordinates. This
requires a technique that is able to match or group sim-
ilar but not equal values while the exact or numerical
definition of similar is not known in advance. As there
is no previous knowledge about the data, an unsuper-
vised learning technique is required. Based on the re-
lated work, as described in the Related Work section,
several possible techniques were selected: Competitive
Networks [22], Adaptive Resonance Theory (ART)
models [13,24] and several clustering algorithms [15]
such as hierarchical, k-means and Expectation Maxi-
mization (EM) clustering.

An extra criterion that was imposed was that all
types of users and scenarios should be supported with-
out making any presumptions about the context data.
In addition, neither predefined rules nor training of the
system based on generic user profiles should be al-
lowed. Due to this restriction only EM clustering and
ART models remained, as only those two techniques

(out of the ones selected) do not require to set a fixed
number of output nodes or clusters. Finally EM was
chosen as no suitable conversion method was found to
convert the different input data to a one-dimensional
vector of binary values, as required by the ART base
network (ART1). Furthermore, E.M. supports a Gaus-
sian function as underlying distribution function which
allows to detect very different shapes of clusters, in-
cluding more stretched out clusters that represent ac-
tions like driving, traveling, etc. Therefore, the Expec-
tation Maximization (EM) algorithm [1] was selected
for the first step of our process flow and was used for
both the context and the application data processing.

The EM algorithm is a method for finding the max-
imum likelihood for the model parameter(s) for which
the observed data are the most likely. In an iterative
process, the algorithm alternates between performing
an expectation (E) step and a maximization (M) step.
During the E-step, using the conditional expectation,
the missing data are estimated given the observed data
and a current estimate of the model parameters. In
the M-step, the expected likelihood function found in
the E-step is maximized under the assumption that the
missing data are known. These new parameter esti-
mates are then used to determine the distribution of the
latent variables in the next E-step. The algorithm ends
when the iterated solutions converge or when a given
number of iterations has been reached.

With respect to the structure discovery use case sce-
nario, mixtures of Gaussian functions were chosen to
model the clusters of points. A Gaussian function is
assigned to each cluster, with its mean in the middle
of the cluster, and with a standard deviation that mea-
sures the spread of that cluster. The EM algorithm iter-
atively estimates the maximum likelihood of the mean
and standard deviation of the Gaussian distributions
and the probability for each point being drawn by a
specific Gaussian.

This iterative process allows for the discovery of dif-
ferent clusters without the need to define in advance
the number of clusters that ought to be found. With the
application of Gaussian mixtures, these clusters may
have very different shapes (in the n dimensional space)
allowing to detect both compact and stretched out clus-
ters. In our use case scenario, the latter type of clusters
are found when users are e.g. driving or walking.

In order to evaluate the performance of EM cluster-
ing on the different types of data, a data set containing
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Table 1

Monitoring sample of user data containing the user’s context data
and currently used applications. A question mark denotes that the
context parameter could not be monitored, a back-slash denotes that
no application was used.

latitude longitude | day of week | time | speed (km/h) applications
51.03419 421742 Monday 7:40 0.027 AlarmClock
51.03418 421739 Monday 7:50 0.025 Agenda
51.03950 421611 Monday 8:00 71.255 Music, Email
51.04300 4.21559 Monday 8:10 81.010 Music, Facebook
51.04877 4.21504 Monday 8:20 69.877 Music, Email
51.05122 4.21401 Monday 8:30 0.020 Quickoffice
51.05122 4.214 Monday 11:00 0.015 \
51.05122 421415 Monday 15:20 0.028 Phone
51.04328 4.21558 Monday 17:00 70.444 Music, Facebook
? ? Monday 17:10 ? Music, Email
51.03417 421742 Monday 22:30 0.027 \
51.03418 4.21738 Tuesday 0:05 0.025 Youtube

four weeks of user data was used. A sample of this user
data set, containing the four monitored context param-
eters (with location indicated by a combination of lon-
gitude and latitude variables) and the at that moment
used application(s) is shown in Table 1. Based on this
data sample, the process of context clustering and ap-
plication clustering will be detailed in the following
sections.

While the rows in this example are chronologically
listed, the actual data are more fine-granularly moni-
tored, containing extra rows between each listed row
of data in this sample. Additionally, larger data sam-
ples typically contain more repetitive patterns allow-
ing to cluster more accurately. Note that some parame-
ters may not be available during a monitoring session.
For instance, GPS functionality may not be available
resulting in the omission of the latitude and longitude
parameters in some monitoring samples. In the listed
fragment in Table 1, a user first finds himself at the
same location, then moves at a high speed to another
location from which he returns at the end of the frag-
ment. The next section details the clustering process of
these parameters based on the sample of Table 1.

2.2. Context Data Clustering

A first series of data clustering is performed on the
level of the context parameters. First, EM clustering
is performed based on each separate context parame-
ter. For instance, to find clusters based on the differ-
ent locations where a user has been, longitude and lati-
tude are taken as the input parameters for the EM clus-

tering algorithm. Similar to this two-dimensional clus-
tering, one-dimensional clustering is performed on the
context parameters time and speed. With respect to the
context parameter day of the week, no additional clus-
tering is required as a week can be considered as a
composition of 7 days or clusters. The resulting clus-
ters, based on the example of Table 1, are shown in
Table 2.

For the context parameters location, speed and day
of the week all monitored data points are clustered,
even when no applications were used during that mon-
itoring point. The more data are known about e.g. the
location, the more accurate location clusters can be
found. However, for the context parameter time, taking
every monitoring point into account would only create
a uniform time axis. Therefore, for time-based clus-
tering, only those monitoring points are taken into ac-
count where the user was actually using an application.
The adjective time clusters are also shown in Table 2.

When clustering is performed based on each sep-
arate context-parameter, too many clusters may be
found in some scenarios. This is shown in Figure 1
where two-dimensional location (Figure 1a) and one-
dimensional speed (Figure 1b) monitoring values of
the same data set are first separately clustered. In this
example a person took the train from one location to
another. For the person this feels as being on one lo-
cation, i.e. on the train, but through EM clustering the
train journey results in multiple clusters for each of the
context parameters. This is due to the fact that a train
does not move at a constant speed (e.g. due to inter-
mediate stops or acceleration) and that several location
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Fig. 1. EM clustering on two-dimensional location data points (a) and one-dimensional speed data points (b).
Table 2 Table 3
Data sample after clustering on individual context parameters. User data sample after context profile clustering.
lat. | long. | dayof | time speed applications lat. ‘ long.‘ day of ‘ time ‘ speed applications
week (km/h) AlarmClock
Profile 1
. . AlarmClock Agenda
Location 1 Time 1 | Speed 1
Agenda Music, Email
Music, Email Profile 2 Music, Face-
Location 2 X Speed 2 | Music, Face- book
Time 2 . :
book Music, Email
Day 1 Music, Email Quickoffice
Quickoffice Profile 3 \
Location 3 11:00 Speed 1 | \ Phone
Time 3 Phone Music, Face-
- Profile 2
. . Music, Face- book
Location 2 Time 4 Speed 2 - -
book Music, Email
Music, Email il \
Profile 1
22:30 \
Location 1 - Speed 1 Youtube
Day 2 Time 5 Youtube

points on the train’s path are also monitored resulting
in additional and different location clusters.

In order to cope with this problem, an additional
clustering is performed on the monitored data, com-
bining all context parameters. This results in a five-
dimensional clustering. Through EM clustering, this
complex clustering was found to result in clusters
which very much resemble typical real-life profiles
such as on the train, at work or sleeping at home. The
result of this combined clustering on the data sample
of Table 1 is shown in Table 3.

It is important to note that these five-dimensional
clusters or profiles are not replacing the previously
found clusters. In our process flow, the profile clusters
are used in the second step to find profile-specific pat-
terns. These are patterns that only take data into ac-

count that were gathered during the occurrences of the
same profile. The clusters found by clustering on the
individual parameters are used as input data for certain
application patterns of step 2.

2.3. Application Data Clustering

A second type of clustering is performed on the level
of the monitored applications. When a monitoring ses-
sion is initiated, the application that is currently run-
ning in the foreground (i.e. which is visible to the user)
is registered. As only one application can run in the
foreground at one given point in time, only one ap-
plication can be registered. An exception is made for
the music application. Although the concepts of (real)
multitasking and background services vary depending
on the mobile platform that is used, on all popular mo-
bile platforms the platform’s native music application
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is able to perform its main task (i.e. playing music)
in parallel with other active applications. As a result,
each monitoring session may contain up to two active
foreground applications. When the phone is in standby
mode or when the home screen of the mobile platform
is shown, no active application is registered (with the
exception of the music application when active). For
the clustering on application level, the standby mode
of a device is taken as the reference point. All applica-
tions that are used between two standby modes of a de-
vice are taken as one cluster. Typically, such a cluster
contains only a small number of applications. In Ta-
ble 4, an example of combining context data and ap-
plication data clustering is shown.

2.4. EM Performance and Configuration

Time and memory complexity of EM clustering are
harder to predict due to the unknown number of itera-
tions. It is shown [2] that EM clustering generally per-
forms well for huge data sets when compared to other
clustering algorithms such as for instance hierarchical
clustering.

The exact configuration of parameters is a complex
process as it is hard to define values that perfectly
match all types of users and user scenarios. Further-
more, this process requires manual involvement and
often a trade-off between performance and accuracy
should be made. Therefore, the impact of the sev-
eral configuration parameters was evaluated based on
a data sample encompassing four weeks of user data
containing different types of realistic user scenarios.
The following configuration parameters were evalu-
ated:

— maxlterations: the number of maximum itera-
tions, has an impact on accuracy and perfor-
mance.

— seed: determines the initial number of random
clusters.

— minStdDev: the minimum standard deviation of
each Gaussian distribution.

maxlterations and seed were found to perform weakly
for lower values, while too high values had a major
impact on the time performance with little accuracy
improvement. During all further experiments both pa-
rameters were set to 1000 which was found to pro-
duce accurate results within a reasonable time frame.
For the parameter minStdDey evaluation values ranged
from 10~ up to 100. An optimal value for minStdDev
was found to be subject to the proper interpretation of

the data. For example as opposed to the application of
lower values, the application of higher values resulted
for instance in the distinction between evening at home
during the working week and weekend at home profile
clusters while this configuration was not able to distin-
guish between working at home and weekend at home
data clusters. Overall, when taking the proposed con-
text parameters into account, several appropriate pro-
file clusters were found for both high and low values
for minStdDev.

3. Application Usage Pattern Recognition

EM clustering on both context and application level,
as described in the previous section, is performed to
obtain more structure in the unstructured data. After
this initial data preparation phase, the algorithm starts
with the discovery of patterns in the user’s application
behavior.

3.1. Application Usage Pattern Overview

Several user application behavior patterns may exist.
The following patterns are taken into account in our
recommendation framework:

1. Profile-specific applications. E.g. in a working
profile the applications Quickoffice, Agenda and
Email are typically used.

2. Sequential patterns between applications. E.g.
after the email application, the mobile agenda is
often consulted. The sequence of application us-
age within a profile, e.g. an application that is al-
ways used at the beginning of a profile, is also
included in this pattern search.

3. Applications that are used together. E.g. the mu-
sic application is often used together with the
Facebook application.

4. Applications that are typical for specific context
parameters. E.g. a user may have certain applica-
tion routines when waking up, while driving, at
the super market or during the weekend.

5. Applications that have recently been used. When
a user has recently used an application several
times, there is a certain chance that he or she will
use that application again. E.g. when a new game
has been installed on the mobile phone.

Figure 2 provides a schematic overview of the clus-
tering process on the different instances of input data
together with the subsequent pattern deduction meth-
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Table 4
Monitoring sample of user data after application usage clustering.

lat. | long. | day of time speed app.

week (km/h)
Location 2 Dav 1 Time 4 | Speed2 (Music,Email,Facebook)
Location 3 Y Time 2 Speed 1 (Quickoffice),(Phone)
Location 1 Day?2 | Timel P (AlarmClock,Agenda),(Youtube)

New instance New clustered instance

(51.03420, 4.21557, Tuesday, 21:00, ...
...0.0230km/h, [music, email]

¥

(Location 1, Day 2, Time 5, Speed 1, Profile 1, [music, email]

C latitude | longitude | dayof week | time | applications
profile 1 AlarmClock
L Agenda
Music, Email
U profile 2 Music, Facebook
e H Music, Email
Original instances L
latitude | longitude | dayofweek | time | speed (km/h) | _applications S Profile 3 ©
5103419 | 421742 Monday 7:40 0027 AlarmClock "’“’"eb - L
SLO3I8 | 421739 | Monday | 750 0025 Agenda T Profile 2 7"”‘;;"'”;9 °‘"
5103950 | 421611 | Monday | 800 71.255 Music, Email wsle el
5104300 | 421559 | Monday | 810 81010 | Music Facebook E Profile 1 o A
utube
5104877 | 421504 | Monday | 820 69.877 Music, Email
5105122 | 421401 | Monday | 830 0020 Quickoffice R S
51.05122 4214 Monday 11:00 0.015 ~
latitude | longitude | day of week | ti licat
SL0522 | 42145 | Monday | 1520 | ooz Phone I ide | longtude | dayofweek | time o 11]S
[ 510438 | 42158 | WMonday | 1700 | 70444 | Music Facebook Location 1 Time1 |  Speed1 yv i Ranki
? ? Monday 17:10 ? Music, Email ‘N Mui e 'A__J H anking
5103417 | 421742 Monday 2:30 0.027 - St 1. E i
Location 2 Speed2 Music, Facebook o “ . Emai
5103418 | 421738 | Tuesday | 005 0025 Youtube . ! Time 2 P % INTRA-CLUSTER F
G oot ot CORRELATION 2. Music
Location3 100 | Speed1 I 3. News
Time 3 Phone ASSOCIATION 4.GPS
Music, Facebook .
Location2 Timed | Speed2 (oo dENOOC
cation me pee Music, Email RU LE C
22:30
Location 1 Speed 1
! D2 | Times| Youtube A
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i
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latitude | longitude | dayofweek | time | applications H i
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2

Recent instances
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ALGORITHM
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Fig. 2. Schematic overview of the data input, clustering process and subsequent pattern recognition processes.

ods. For the first two types of patterns, a graph algo-
rithm is applied. These are the profile-specific patterns.
For pattern types 3 and 4 association rule learning is
used to find the intra-cluster correlations. Finally for
the recently used applications a statistical algorithm is
applied.

As shown in Figure 2, a distinction is made between
three types of input data. The original or historic data
instances are clustered on both application and con-
text level. For the context level clustering both separate
and combined clustering of the context parameters are
taken into account. Combined context or profile clus-
tering is taken as the input for the profile-dependent
patterns (types 1 and 2) while individual context pa-
rameter clustering is used to find the intra-cluster pat-
terns (types 3 and 4). The most recent monitoring in-
stances are used as the input for the short term func-

tionality that is encompassed by pattern type 5. Every
new data instance that is monitored is clustered on both
application and context level and taken as input for all
three algorithms.

3.2. Graph Algorithm for Profile-dependent Patterns

The usage of applications is often very closely re-
lated with the different user profiles as found through
EM clustering of the combined context parameters.
E.g. at home, more leisure-related applications such as
the mobile browser, facebook or the mobile TV guide,
are used while at work more business-related applica-
tions such as the agenda, office, etc. may be consulted.
Once the profiles have been detected, as detailed in the
previous section, a weighted directed graph is com-
posed for the currently active profile. An example of
such a graph is shown in Figure 3.
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In this graph, the nodes represent the applications
that have been used most during a specific profile, in
this case a working profile. Each of these nodes has a
value representing the number of times that the appli-
cation has been used during that specific profile. Ad-
ditionally, in order to represent the sequential patterns
between applications, directed and weighted edges are
used between the nodes with each edge containing two
weights: the number of times an application has been
used after another application and the average time be-
tween the usage of those two applications. E.g. in the
working profile represented by the graph of Figure 3,
the agenda has been consulted 27 times of which 8
times occurred almost immediately (i.e. within an av-
erage time span of 1 minute) after a phone conversa-
tion.

This graph allows the system to take into account
both the current active profile and the current time pe-
riod since the last opened application. This last opened
application is used as a starting point in the graph to de-
termine which applications should be taken into con-
sideration. For each of these applications, the ratio of
the time since the last application has been opened
with the average time of each application, is multiplied
by the number of times each application was started
after the last opened application. The resulting scores
of all applications are then compared to calculate the
probabilities of the applications.

For example, if the Phone application was last used
during the working profile as shown by the graph in
Figure 3 only the Email, QuickOffice and Agenda ap-

Browser
42

Fig. 3. A weighted directed graph for a working profile, taking into
account the time differences between different applications.

plications should be taken into consideration. If half
a minute passed since last opening the Phone appli-
cation, the corresponding probabilities for the applica-
tions are about 20% for the Email application, 2% for
the QuickOffice application and 78% for the Agenda
application. Note that when the last opening time ex-
ceeds the average time, the inverse time ratio is taken
into account. As such, after 10 minutes of not open-
ing any application the corresponding probabilities are
respectively 64%, 26% and 10%.

3.3. Association Rules for Intra-cluster Correlations

Application usage is not necessarily profile-related.
A user may have certain routines which are linked to
a specific point in time, a day, a place, etc. For exam-
ple, a student may set his alarm clock every evening
regardless of his location (e.g. at home or at his student
flat). This is defined as a more time-specific action. In
order to retrieve this type of patterns, association rule
learning is used. This is a method for discovering inter-
esting relations between variables in large databases.
More precisely, in our system the Apriori algorithm
[3] was applied to the context parameter cluster in-
formation, found by clustering each context parame-
ter separately, and to the application level clustering
information. This algorithm is designed to operate on
databases containing transactions, for example collec-
tions of items bought by customers. Given a series of
itemsets, the algorithm attempts to find subsets which
are common to at least a minimum number of the item-
sets. In our scenario, the combined context and appli-
cation clusters are used as transactions and the differ-
ent attributes day of week, time, location, applications,
etc. are considered as the items of the transactions. An
example set of association rules that may be found is

e.g.

[88%] Location 1,Time 5==>AlarmClock

[97%] Location 1,Time 5, Speed 1l==>AlarmClock
[1%] Location 1, Time 5, Speed 2==>AlarmClock
[74%] Location 2,Email==>GoogleMaps

[77%] Facebook,Email==>Youtube

The premise of such association rules (e.g. Location
1, Time 5) is the condition that needs to be fulfilled
to have, with a certain confidence (88%), the conse-
quence AlarmClock as a result. For the recommenda-
tion of applications at a certain moment, the contextual
information of that moment is clustered and the result-
ing clusters are compared with the premises of the as-
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sociation rules. If a premise of an association rule is
fulfilled, the application of the consequence receives
the association rule’s accompanying confidence. This
value is set as the probability of that application. When
multiple association rules correspond to certain con-
text parameters, only those with the highest number of
corresponding parameters are taken into account. For
instance, in the above set of association rules, if the
current context is indicated by the clusters Location I,
Time 5, Speed 1, a probability of 97% is awarded to
the AlarmClock application, neglecting the 88% that is
stated in the first association rule. Not only context pa-
rameters can be part of the premise, also applications
can be taken into account. For instance, the last rule of
the above set of association rules indicates that the re-
cent use of the Facebook and Email applications may
lead to the usage of the Youtube application. A premise
containing a combination of context and application
parameters is also supported.

3.4. Statistic Algorithm for Short-Time Window
Analysis

When a user has recently used an application mul-
tiple times, there is a certain chance that he or she
will use the same application again in the near future.
To take recently opened applications into account a
short-term window is mapped on to the user’s appli-
cation usage. This window determines which applica-
tions should be taken into account. All applications
that are not included in the window, receive for this
pattern a probability of zero per cent. While the com-
position of the short-term window may be changed,
in our system the window encompasses a fixed num-
ber of the most recently opened application instances.
Each application instance receives an index based on
the position in the window. For each application in the
window, the index values of its instances are averaged
and compared to those of the other applications that
are encompassed by the window. The mutual index ra-
tios are then taken as the probability values for this
pattern. Note that for this algorithm, no input from the
data preprocessing phase is required.

3.5. Combined Recommendation

When the probabilities of all patterns have been cal-
culated, these probabilities are combined via a func-
tion f{) to achieve a combined recommendation value
for each application. These different probabilities can
be combined in several ways. During the experiments,

a weighted sum and a maximum function have been
evaluated. The weighted sum function weights the pre-
dictions of all three algorithms while the maximum
value only takes the relative highest prediction value
for each application into account.

4. Implementation Details

This section provides details of our framework ar-
chitecture, describing how the required information
was gathered on a mobile device and how the algo-
rithms were implemented. The implementation of the
prototype widget application is also described. Due
to performance considerations, a client-server oriented
approach was chosen, where all computational inten-
sive tasks are offloaded to the server component. The
Android platform was chosen as the target OS for the
mobile device, Java was chosen for server side devel-
opment.

4.1. Client-Server Communication

Communication between mobile client and server is
performed by means of the REST (REpresentational
State Transfer) protocol. Server side an Apache Tom-
cat v7.0 web server was used together with the Jersey
library, an open source JAX-RS implementation for
the creation of RESTful Web services. On the Android
client, an Android version of the Spring framework
was used to handle REST communication in combina-
tion with the Jackson JSON processor for the serializa-
tion of Java objects.

Three interface classes were defined for communi-
cation between client and server. One class, labeled
Fix, bundled all context parameter values from one
monitoring session, such as time, speed, whether or
not music was playing and the active application. For
the applications only the package name of the appli-
cation was required and saved as a String. For the
mobile Facebook application for instance, the string
com.facebook.home is used. A second class bundled
extra information about the currently active context
profile, such as the average speed or the typical lo-
cation in coordinates. Finally, a third communication
object contained a sorted list of the predicted appli-
cations, in order of prediction rank, together with the
identification of the relevant profile.
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Fig. 4. Component diagram of the server components that handle the core functionality.

4.2. Server Component

The server can be split up in two main parts: compo-
nents that handle all web or communication function-
alities and components that handle the core function-
ality. Figure 4 shows the main components that handle
the core framework. The Engine classes are responsi-
ble for the intelligence of the framework and imple-
ment the different algorithms that have been described
in this paper. All engines have a build method to ex-
ecute the data mining algorithms and a get method to
retrieve the results of that operation. This distinction is
made as the detection of patterns is not always directly
linked with the prediction of applications. For instance,
association rules are built after every cluster genera-
tion or update, while the predictions are only required
when new application recommendations or predictions
are actually required.

The ClusterEngine clusters all received Fix ob-
jects, as described in Section 2. For the Expectation-
Maximization clustering, the Weka framework was
used from within our Java code. Weka is a collection
of machine-learning algorithms for data mining tasks.
An introduction to the Weka workbench can be found
in [12]. During clustering, Weka builds up a cluster

model, which allows to cluster new data to one of the
previously found clusters. This is required to classify
new contextual data to the clusters that are common
for that user.

The AssociationRuleEngine bundles all methods
that are required to build up or request info from the
association rules. The A Priori algorithm was used,
which is also found in the Weka framework. After
each new generation of association rules, all associ-
ation rules that contain no application information in
the consequence of the rule are filtered out of the result
set, as they are not relevant for our use case scenario.
This greatly improves the performance and efficiency
of the predictions.

During the build method of the ProfileWindowEngine
new graphs are generated, based on previous user be-
havior. When a prediction is requested, the engine runs
trough the active graph of the current context profile,
starting from the last opened application, to predict
the usage probability for each application. The Short-
TermWindow continuously keeps track of the most re-
cent applications to calculate their probability rating.

ProfileManager and Classifier are the main inter-
face points between the web-oriented modules and the
core functionality. The former is responsible to man-
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Table 5

Time overhead for the creation of context clusters and association rules.

Duration [s]

Clustering: Location 9.08
Day 0.905

Time 45.691

Speed 6.174

Profile 16.146

Association Rules 3.886
Overhead 13.234

Total 95.116

age all tasks that are related to the context profile cre-
ation while the latter manages the creation of the pre-
dictions.

In order to situate the time overhead of each al-
gorithm some time benchmarks with respect to the
performance of the server components and algorithms
were executed. The server components were running
on an Intel Core 15-520M (2.4 GHz) dual core proces-
sor with 5.8 GB of internal RAM storage and a data
set containing 2,046 data samples was used. Table 5
shows the time that is required for the creation of con-
text clusters and association rules.

As opposed to clustering based on the day of the
week, Table 5 shows that location-based clustering
(two dimensional) and Profile clustering (five dimen-
sional) require much more time. A very high time over-
head was found for clustering on the parameter time.
This is due to the fact that it is very hard to detect struc-
ture or coherence in the time-related data. The creation
of association rules only requires around 4 seconds
while the extra time overhead that is introduced by the
framework is more than 13 seconds. This is mainly due
to the preparation and filtering of the data. In total all of
these operations take up around 95 seconds. While this
is relatively long, it should be noted that these opera-
tions are not continuously required. It should be suffi-
cient to regenerate the clusters of rules only once a day.
If a considerable amount of data from one user have
been collected, it should be sufficient to execute these
steps even less frequently.

Table 6 shows the results of the time overhead that
is imposed for the generation of new predictions. This
shows that most time is taken up by the classification of
a new Fix with the active association rules. This is due
to the fact that thousands of rules have to be compared
with the Fix to determine if they are valid or not. For
each comparison, the clustered attribute values have to
be compared with the attribute values of the Fix, which
induces wrapping and unwrapping of objects.

Table 6

Time overhead of the different prediction algorithms.

Duration [s]

Profile Graph 0.021
Association Rules 4.864
Short Time Window 0.04
Total 4.889
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Fig. 5. Component diagram of the client service and widget compo-
nents.

In this evaluation scenario, the total required time
for the generation of predictions for a given context
situation was almost 5 seconds. If we want to recalcu-
late the predictions every minute for one user, this 5
second overhead time causes no problems. However,
if the service has to be offered to many users at the
same time, additional techniques or better hardware is
required. A possible optimization would be the intro-
duction of a classifier, for instance decision trees, in
the filtering step of the association rule creation phase
in order to filter the created association rules and only
retain the most relevant rules.

4.3. Client Component and Mobile Prototype
Application

For the implementation of the mobile client, the
Android OS was chosen. As shown in Figure 5, the
client architecture was built upon the Model-View-
Controller paradigm and was composed of two sepa-
rate components: a widget component and a service
component. The service component should be seen as
a substantial part of the overall architecture, while the
widget component was only implemented as a proto-
type in order to visualize the predictions.

The service component provides the following func-
tionalities:
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Monitoring of the context data and the application
usage data on the mobile device.

Temporary storage of the monitored data on the
mobile phone.

Sending data to the server component.

Sending predictions to the prototype widget ap-
plication.

All the monitored context data are bundled in a Fix
object. Two types of monitoring requests can be made.
A first request monitors the current context situation,
containing the currently active application (if open)
together with other disposable context data. A sec-
ond request retrieves all applications that have been
opened since the last standby modes of the device.
These applications are also bundled into one Fix ob-
ject. In order to detect the standby mode of an Android
mobile phone, a class was created that inherits from
BroadcastReceiver in order to intercept the intents
ACTION_SCREEN_OF and ACTION_SCREEN_ON
that are sent via sendBroadcast.

Fix objects are not directly sent to the server upon
creation, but will first be internally stored until multi-
ple Fix objects have been monitored. Both the monitor-
ing rate of new fixes and the required number of fixes
in order to send them to the server can be dynamically
changed depending on the battery consumption, inter-
nal storage capacity and speed and network character-
istics. The average size of one Fix object was found to
be 577 bytes.

The prototype application that was developed is an
Android widget that visualizes relevant information
with respect to the current context situation together
with a pyramid construction containing the icons of the
top six predicted applications for the current context
state of the mobile user. A screenshot of the prototype
widget is shown in Figure 6.

In addition to the display of current context informa-
tion such as the typical average speed or average loca-
tion, the contact person that was last called during that
context profile, or a previous active state of that con-
text profile, is shown. The widget also keeps track of
the mobile phone’s sound mode (normal, silent, etc.)
for each context situation and automatically switches
to the last active sound mode of a context profile when
an active context profile is detected.

5. Evaluation Setup

A profound evaluation of the generated predictions
requires an extensive data set containing detailed mon-

Fig. 6. Screenshot of the prototype widget application running on
the home screen of an Android OS mobile device.

itoring samples of different types of user profiles over
a relatively long period. A proper evaluation method-
ology is also required to determine whether the pre-
dictions are considered to be good or bad. This section
first details how evaluation data were obtained by im-
plementing a modeling tool. Second, a proper evalua-
tion metric is presented.

5.1. Modeling Tool

In order to evaluate the predictions that are made by
the presented algorithms, realistic user data from dif-
ferent user profiles and over a longer period of time
should be obtained. Instead of continuously monitor-
ing real users, we chose to implement an advanced
modeling tool. This modeling tool emulates users’ be-
havior in terms of context parameters and application
usage. The advantages of using the modeling tool over
real user data consists in the fast evaluation of different
user profiles over a longer period of time together with
the easy integration of ’exceptional situations’ such as
only working half a day at work or a significant train
delay. It should be noted that the modeled user scenar-
ios are based on realistic use cases, encompassing real-
life context situations, based on actual context data
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(e.g. coordinates from the authors’ home and work ad-
dress, actual train route and speed).

Figure 7 shows the profile generation work flow of
the modeling tool. This flow encompasses the follow-
ing consecutive steps:

1. First, different context profile building blocks are
generated. These profile blocks correspond to the
profile clusters that were found in Section 2.2.
Examples of such building blocks are Wake Up,
Work, Train, etc. All of these profile blocks are
defined by one or more context parameters. A
certain random factor is automatically added to
the context information. The addition of time
information is compulsory and can be variably
configured for each profile block. E.g. a Working
block may in some cases take up the whole day,
while in other cases or on certain days, it may
only take up half a day.

2. To each profile block, certain applications are
connected, each application having a certain
probability that it may be used during that spe-
cific profile block.

3. If necessary, additional patterns are further de-
scribed. These additional patterns can be coupled
to one specific context profile block or can be
defined in general, applying to all context situa-
tions. The supported patterns are:

— Start profile patterns, defining which applica-
tion is typically first used when a new profile
starts.

— Application patterns, to couple application us-
age to one specific context parameter. For in-
stance using the AlarmClock application be-
fore going to bed.

— Cluster patterns: define relations between ap-
plications that are often used together.

— Repetitive patterns: encompass applications
that may be frequently used during a given pe-
riod of time.

4. Once all building blocks and patterns are defined,
the different context profile blocks are coupled to
generate a context time line composed of (vari-
able) day and weekend schedules. In addition,
special conditions may apply to each context pro-
file block such as a delay during a train journey.

5. Finally, output data are automatically generated
for the defined context time line, based on the de-
fined patterns and on the context profile blocks’
characteristics. The output data contain a contin-

uous set of realistically changing context data to-
gether with the used applications.

5.2. Evaluation Methodology

In order to measure the performance of our recom-
mendation system, two different user scenarios have
been evaluated based on the data that were generated
by the modeling tool. Both scenarios were defined in
and generated by the modeling tool. In the first sce-
nario A a moderate mobile application user was de-
fined, consuming up to 17 different applications per
week with each application being used several times
a week. In the second scenario B a more active user
was created, consuming around 25 different applica-
tions per week with some applications being used only
very occasionally. Both user scenarios are composed
of several types of working, home, weekend and trans-
portation profile blocks. Scenario A encompasses two
weeks of data, for user scenario B a time line for three
varying weeks was created.

In order to evaluate the recommendations, both his-
torical user data and new evaluation data are required.
Therefore at least two sets of data should be generated
for each user scenario and compared to each other. For
each user scenario five different data sets were created
by the modeling tool. Just like in real-life situations
these data sets should not contain exactly the same data
as context parameters and application usage often vary.
However, when evaluating over a longer period, simi-
lar profiles and patterns should be detected in both the
training and the evaluation scenarios. By means of the
modeling tool, enough variation was created between
the different sets for each scenario while similar pro-
files and patterns were generated. This is shown in the
diagrams in Figure 8a and Figure 8b, which compare
the five different data sets of respectively user scenario
A, encompassing 17 applications (N=17) frequently
spread over a period of two weeks, and user scenario
B, encompassing 26 applications in total spread over
a period of three weeks. In order to obtain valid eval-
uation results the number of disjunct applications was
set large enough. In addition, the chance that an appli-
cation may be opened was limited so that no extreme
scenarios are evaluated as this could lead to extreme
positive or negative evaluation results.

For both user scenarios, each generated data set is
once used as training data set, while the other four
data sets are used as evaluation data, resulting in 20
similar evaluation experiments per scenario to measure
the impact of one recommendation configuration. For
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Fig. 7. Profile generation work flow of the modeling tool.

the training data, both the context data and application
data are clustered and used as input for the detection of
the different patterns, described in Section 3. Concern-
ing the evaluation scenarios, the context data are used
as input for the recommendation algorithms. Based on
the training data and the context data of the evaluation
scenario, the recommendation engine then proposes a
list of applications. During our evaluation, different list
sizes are taken into account, with a maximum of up to
six applications as this corresponded with our mobile
client’s widget interface. In order to evaluate the per-
formance of the recommendation engine, the recom-
mended applications are compared with the used ap-
plications of the evaluation data by means of an eval-

uation metric, which is described in the following sec-
tion.

5.3. Evaluation Metrics

Within the field of recommendation systems, sev-
eral evaluation metrics have been defined. One of the
most commonly used metrics is the Mean Absolute Er-
ror (MAE), a quantity used to measure how close pre-
dictions are to the evaluation data. This metric is less
applicable for our evaluation setup as both the predic-
tions and the evaluation data are not exactly quanti-
fied. Another approach is to compare the recommen-
dation set with the evaluation set. Two often applied
metrics are Kendall’s 7 and Spearman’s p. Both met-
rics focus on the similarity of the orderings of the two
data sets when both are ranked by a specific function.
A requirement for this type of metrics is that both data
sets should contain the same number of elements. As
the evaluation data set is only composed of one appli-
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Fig. 8. Distribution of the mobile applications in the different generated data sets for scenario A (a) and scenario B (b).

cation while the recommendation set contains six ap-
plications, this type of metrics is not applicable.

Finally, a third type of evaluation metrics focuses
on the fact how well a recommendation engine is able
to distinguish correct from incorrect predictions or
recommendations. Receiver Operating Characteristic
(ROC) curve analysis is a well-known example of this
type of evaluation metric. It is created by plotting the
fraction of true positives out of the positives versus the
fraction of false positives out of the negatives at vari-
ous threshold settings. The set of positives bundles the
items that an engine predicts as good or relevant items.
Negatives are the set of items that are predicted by an
engine to be unrelevant or unsuitable items (for a user).
The concepts of ’true’ and ’false’ indicate whether the
engine was right or wrong for that prediction. For in-
stance, true positives are all items that were predicted
to be relevant and after evaluation indeed proved to be
relevant to the user.

For our evaluation, the concepts of true negatives
and false positives are harder to define accurately and
therefore a proper metric was applied, only taking into

account the concepts of true positives and false nega-
tives. For each application that was used in the eval-
uation sets, it was evaluated whether that application
was included in the recommendation list at the moment
the user started to use that specific application. Sub-
sequently, the ratio of the number of used and recom-
mended applications on the total number of used ap-
plications is taken. This metric is labeled the Informa-
tion Parameter (IP) and its formula is shown in Equa-
tion (1).

T

' 1ifr(a) <M
with R(r(at)) = {0 :f]\E[ <) r(a;) <N

In this formula, M is the size of the recommenda-
tion set (varying between 1, 3 and 6 in our experi-
ments) and N is the number of disjunct applications



P. Leroux et al. / Mobile Application Usage Prediction through Context-based Learning 17

that can be opened on the user’s phone. T is the num-
ber of data instances in the evaluation data set (Used B)
where the actual usage of an application a; was moni-
tored. A high value is required in order to guarantee a
certain accuracy. In our experiments 7 was varied be-
tween 890 and 1008 for user scenario A and between
1758 and 1901 for user scenario B. r(a;) is the position
(between 1 and N) of the application a; in the list of
applications, sorted based on the calculated probabil-
ity for each application at the moment that application
a; was opened. Finally, R(r(a;)) translates the posi-
tion to a value. If the application was included in the
recommendation list, R(r(a;)) is set to 1, otherwise it
would be zero.

In this formula, normalization should be applied to
take into account that even a random recommender
has a certain chance % that the used application is
included in the recommendation set. This Normalized
Information Parameter (NIP) is defined as follows:

SEoR(r(a) M

NIP(M,N,T) =100 x T_ 7 N (2)

N

6. Evaluation Results

During the evaluation phase, each pattern deduction
technique was first separately evaluated and then the
combined recommendation based on different classifi-
cation functions was evaluated.

6.1. Profile-dependent Patterns

For the evaluation of the profile-dependent pattern
deduction techniques, the graph algorithm described in
Section 3.2 was slightly simplified by not taking intra-
application time changes into account as the model-
ing tool was not able to model such time changes. Ta-
ble 7 shows the performance of the recommender sys-
tem when only taking the profile-dependent patterns
into account, by means of the graph algorithm as de-
tailed in Section 3.2.

For the true positives, i.e. the applications that were
used and recommended, a distinction is made between
M (=6) different recommendation values, dependent
on the relative position of the applications in the rec-
ommendation set, with the smallest value being those
applications that were recommended most for a given
context situation (and as such appear on top of the rec-
ommendation list). For the evaluation of multiple con-

text situations, the term bin is used to encompass those
applications that received the same recommendation
position, with a bin for each position (up to 6). The
objective of these experiments is to obtain a higher
percentage of true positives in bin i than the number
of true positives in bin i+1. IP-3 and NIP-3 are re-
spectively the Information Parameter and Normalized
Information Parameters in case the recommendation
list was only composed of the top 3 recommendations
(Bin 1 up to 3), while IP-6 and NIP-6 take all six bins
into account. The results of both scenario A and B are
listed in Table 7. As explained in the description of the
evaluation methodology of Section 5.2, five different
data sets were generated for each scenario and each
of these data sets is once used as input for the train-
ing set. Table 7 shows the average percentages (Avg)
obtained over 20 experiments, together with the stan-
dard deviation (StDev) and the minimum (Min) and
maximum (Max) values that were found during the
experiments. Note that the column with header Bin
1 corresponds to IP-1, i.e. the Information Parame-
ter when only the highest recommended application is
taken into account.

Table 7 shows that, despite the fact that during
the evaluation experiments the intra-application time
changes are not taken into account, the simplified
graph algorithm is still able to perform relatively well
with average IP-6 values of 69.73% and 59.62% for
respectively scenarios A and B. This implies that for
scenario A in almost 70% of the cases, the opened ap-
plication was in the list of top 6 recommended appli-
cations at that moment. For one experiment (out of 20)
for scenario A a maximum IP-6 value of 73.47% was
obtained while the minimum IP-6 value for scenario
B was found to be 59.62%. When taking only the top
3 recommended applications into account an average
IP-3 of 48% was found for scenario A, for scenario B
an average percentage of 39.06% was obtained. The
rather low standard deviation values for all parameters
also indicate that the listed average value is a good es-
timation of the overall performance. One of the main
reasons the simplified graph algorithm was still able
to result in these relatively high values was due to the
precendence of the data preparation phase. During this
preparation phase, each new context situation is first
mapped to one of the already known context profiles.
Because for each of these context profiles a separate
graph was used, often several applications had already
been filtered out as recommendation candidates when
they are never used for such a context situation.
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Table 7

Profile-dependent pattern evaluation: percentage true positives (TP)
per bin together with different IP and NIP values for both user
scenarios.

Binl Bin2 Bin3 Bin4 Bin5 Biné6 IP-3  NIP-3 IP-6  NIP-6

Scenario A
Avg 2257 13.66 11.78 9.15 7.30 526 48.01 36.87 69.73 53.21
StDev 2.33 1.63 1.73 1.82 1.79 1.39 2.02 245 2.30 3.55

Min 16.72 11.29 8.70 5.72 4.45 339 42.82 30.56  64.57 45.25

Max 25.66 16.86 1457 1283 10.58 8.11 50.59  40.01 7347 58.99
Scenario B

Avg 1550 1225 1131 8.81 6.23 552  39.06 31.12  59.62 4751

StDev 1.52 0.99 1.01 1.36 0.87 1.35 1.52 1.72 1.70 2.21

Min 1291 10.69 9.94 6.53 4.82 370 34.68 26.16  57.15 44.30

Max 1857 13.73 1393 10.85 8.24 8.46 41.86 3427 62.54 51.30

Table 7 shows that the recommendation system
clearly performs better for scenario A than for scenario
B. This is due to the more complex character of user
scenario B with the inclusion of more defined patterns
(of all types), more applications that are used and a
longer period of data in which more slightly diverse
day time lines are introduced. In addition, some appli-
cations were defined to be used only very sporadically.
However, when filtering out the chance that a random
recommended application would be a true positive, by
analyzing the Normalized IP values, it is shown that
the real difference in performance is around 5.7% for
both the NIP-3 and NIP-6 values. After normalization,
the NIP-6 minimum values for both scenarios were
found to be almost equally low.

A final observation is that for both scenarios, the
highest percentage of true positives was found in the
first bin while the number of true positives decreases
with increasing bin number from 22.57% in Bin 1
down to 5.26% in Bin 6 for scenario A and from
15.50% down to 5.52% for scenario B. This implies
that the highest impact on system performance is made
by the upper bins, which contain the most recom-
mended applications.

6.2. Intra-Cluster Correlations

As described in Section 3.3, association rules were
used for finding the intra-cluster correlation patterns.
Table 8 shows the evaluation results when only the re-
sults of these association rules are taken into account
for both scenario A and B.

With an average IP-6 of 84.12% and an average IP-
3 of 61.89%, the association rules perform very well
for scenario A. Similar to the graph algorithm, a lower

but still very good performance is measured for all pa-
rameters of scenario B. After normalization a perfor-
mance difference of around 6% for NIP-6 and of 4.3%
for NIP-3 was found between both scenarios. In the
worst experiment of this series still 72.80% of the used
applications was included in a recommendation list
with size 6. The standard deviation values indicate that
again, the obtained results did not vary a lot. Similar
to the graph algorithm, it should be noted that cluster-
ing of the current context situation is first performed.
As such, these relatively high performance results not
only indicate that the association rule mechanism is
able to define and distinguish correct association rules
but that the data preprocessing and clustering is able to
deliver very relevant input information to the pattern
recognition engines. A second reason that these asso-
ciation rules perform so well is that they are searching
for patterns between the different context clusters, and
some of these clusters may coincide with profile clus-
ters. As such, profile-related associations may also be
found by applying association rules. However, sequen-
tial structures between different applications or within
a specific context profile can not be found with this
technique. Overall, it can be concluded that association
rules in combination with EM clustering perform very
well for the tested scenarios.

6.3. Short Time Window Analysis

Short time window analysis was used to recommend
recently often used applications. The evaluation of this
technique is shown in Table 9. Different window sizes
(W_Size) were evaluated for both scenarios, taking into
account the last 5, 10 and 20 recently opened applica-
tions. The average values are shown in Table 9.
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Table 8

Intra-cluster pattern evaluation: percentage true positives per bin together with different IP and NIP values for both user scenarios.

Binl Bin2 Bin3 Bin4 Bin5 Biné6 IP-3  NIP-3 IP-6 NIP-6
Scenario A
Avg 28.68 18.88 14.33 9.37 8.23 462 61.89 53.73  84.12 75.46
StDev 1.94 1.60 1.65 1.97 1.31 0.72 2.39 2.90 2.27 3.51
Min 2483 15.69 10.70 6.13 5.67 337 5649  47.16 77.55 65.30
Max 3196 2151 16.86 13.93 10.60 6.38 66.41 59.21  88.28 81.89
Scenario B
Avg 2678 16.02 12.44 9.37 6.52 534 5524 4940 7647 69.42
StDev 0.91 1.20 0.97 1.12 1.06 0.92 1.60 1.81 2.24 291
Min 2492 14.09 10.34 7.74 4.42 334 5226  46.03 72.80 64.64
Max 2794 1831 1438 11.66 8.67 7.17  58.34 5291  79.68 73.58
Table 9

Short time window evaluation: average percentage true positives per bin together with different IP and NIP values for both user scenarios and

different window sizes.

Binl Bin2 Bin3 Bin4 Bin5 Biné6 IP-3  NIP-3 IP-6 NIP-6
Scenario A
5 11.87 18.07 10.28 7.33 7.84 7.78  40.22 2741 63.17 43.08
W_Size 10 12.64 1521 12.70 8.43 6.43 727  40.56 27.82  62.69 42.33
20 12.08 13.84 11.09 10.54 7.95 7.28 37.01 2351  62.79 42.49
Scenario B
5 6.69 12.49 7.04 4.40 5.55 594  26.22 16.60 42.11 24.74
W_Size 10 634 1142 7.60 5.72 4.27 425 25.36 15.62  39.60 21.48
20 6.90 9.58 5.80 6.52 6.41 496 22.28 12.15  40.18 22.23

With an average IP-6 of approximately 63% for sce-
nario A and around 40% for scenario B, this algo-
rithm yielded relatively bad results in comparison to
the other two algorithms. In addition, the number of
true positives is not monotonously decreasing with in-
creasing bin number with the highest percentage of
true positives found in the second bin. It should be
noted that the performance of the time window algo-
rithm is strictly bound to the extreme popularity of cer-
tain applications during a given time frame. In addi-
tion, this pattern does not gain from the data prepro-
cessing phase as it does not need to take into account
the information from the context (profile) clusters. The
advantage is that this algorithm allows the overall rec-
ommendation system to be partially independent of the
clustering process while still providing reasonable rec-
ommendations.

With respect to the size of the short time windows, a
window size of length 20 was found to perform worse
than the other two window sizes when taking the top
3 recommendations into account. Overall, a window
size of 5 was found to perform best for the calculated
IP and NIP values. It should be noted that the smallest

window size was subject to the highest deviation be-
tween the obtained results with a standard deviation of
up to 4.49% and extreme IP-6 minimum and maximum
ratings of respectively 53.53% and 70.71%. Similar to
the previous results, the standard deviation values for
scenario B were smaller than those of scenario A.

6.4. Combined Recommendation

In this section the overall recommendation of our
framework is evaluated. As described in section 3.5,
different functions may be used to combine the pre-
dictions of all three techniques. Two different types of
functions have been evaluated: a weighted sum and a
maximum function. As a reference, a simple recom-
mender system was developed that issues predictions
based on the overall usage of applications: the more an
application was used in the past, the higher it ranks in
the recommendation list. Figure 9 compares this sim-
ple recommender, referred to as Popular due to its na-
ture of recommending only popular applications, with
the results of the weighted sum and maximum classi-
fication functions of our framework. As both classifi-
cation functions also take the results of the short time
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window algorithm into account, their performance is
also subject to the size of the short time window. In
Figure 9, a window size of length 10 was chosen for
both classification functions. As the association rules
already performed exceptionally well, this algorithm
was also added to the comparison chart. All values are
average IP values over 20 experiments, while mini-
mum and maximum values are indicated by the error
bars.

It is shown that our framework, irrespective of the
combined prediction function or evaluation scenario,
clearly outperforms the popular recommender clas-
sifier. When comparing the weighted sum with the
maximum function, the latter performs slightly better
than the former for scenario B. More specifically, for
IP-3 the maximum function has an average gain of
4.3% over the weighted function. For scenario A, the
weighted function performs overall slightly better. The
impact of the association rules is also clearly shown
in this Figure. More specifically, the maximum func-
tion has a rather similar performance than the asso-
ciation rule algorithm. The main difference between
both approaches is that the maximum function reduces
the more extreme performance results of the associ-
ation rules. This results in higher minimum perfor-
mance values, while the maximum values still approx-
imate those of the association rules.

Figure 10 shows the bin level performance of all
four algorithms for scenario A (left) and scenario B
(right) and clearly acknowledges the direct correlation
between the association rules and the maximum clas-
sification function. Only for scenario A, from bin 3 up
to 6, the maximum function is slightly performing bet-
ter than the association rules approach. Furthermore,
it is shown that both algorithms have a much higher
percentage of true positives in Bin 1 in comparison to
the weighted function, but their performance is more
rapidly decreasing with increasing bin number while
the weighted function has a slower gradual decreasing
curve.

While the difference between the two classification
functions and the association rules approach is rela-
tively small, it should be noted that for our evaluation
the implementation of the profile-dependent patterns
was slightly simplified by not taking time changes into
account as these could not be modeled by the modeling
tool. This implies that the training and evaluation data
were missing a part of one common application us-
age pattern. A pattern that cannot typically be detected
by association rules. When this missing pattern part
would also have been integrated in the evaluation data,

the obtained scores of the association rules would have
been (slightly) lower while the impact on the scores
of the combined classification methods, both weighted
sum and maximum, should at least be less negative, or
even positive.

Table 10 provides an overview of the performance
of both the weighted and maximum classification func-
tions for different short time window sizes. With re-
spect to the IP-6 performance, the window size clearly
has a very small impact, both on average performance
and on minimum and maximum values.

However, for Bin 1 and IP-3 performance, the ap-
plication of a shorter window size clearly produced
worse results.While the opposite results were found
when only taking the short time window algorithm into
account, as described in Section 6.3, this can be ex-
plained by the added value of the short time window in
comparison to the two other algorithms. For short win-
dow sizes, the short time window’s knowledge is very
fast only related to applications that were used during
the currently active profile. Within such a profile, the
two other pattern algorithms also take all this informa-
tion into account. As a result, the shorter the window
size, the larger the percentage of overlap and the less
added value that is produced by the short time window
algorithm. For longer window sizes, the knowledge is
longer (partially) based on application usage from the
previous active profile cluster. This can be a main ad-
vantage over the other algorithms, especially when ap-
plications are suddenly very actively used, but are not
yet much known to a context profile that has just been
activated.

As shown in Table 10, the highest obtained result of
all experiments was an IP-6 of 90.76%, produced by a
weighted classification function with a short time win-
dow size of length 10. When only taking the top 3 rec-
ommendations into account, a maximum classification
function with window size 10 was able to recommend
the correct application in 67.94% of the cases during
one evaluation run. Maximum classification with win-
dow size 20 scored the highest Bin 1 percentage with
32.70%. All maximum values were found for scenario
A. The minimum percentages were found during the
application of the weighted classification function for
scenario B, with an IP-6 of 71.73% for window size
20 and and an IP-3 of 45.80% for window size 5. The
standard deviation was relatively low for all experi-
ments, while the smallest margin after normalization
was found for the minimum IP-3 values, still showing
a 3% margin.
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Fig. 9. Combined recommendation algorithm evaluation: IP-3 and IP-6 performance for scenarios A and B and short time window size 10.
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Fig. 10. Combined recommendation algorithm evaluation: average percentage of true positives per bin for scenarios A (a) and B (b) and short

time window size 10.

6.5. Evaluation conclusions

To conclude the analysis of the experiment re-
sults, it can be stated that the combination of first
EM (Expectation-Maximization) clustering followed
by the application of association rules, produces a very
high rate of true positives for different scenarios. The
overall recommender system further improves this per-
formance, especially when higher short time window
sizes are used. When only taking the top 1 or top 3
recommendations into account, the maximum func-

tion produces the best results, while the weighted func-
tion performs better for longer recommendation lists in
combination with user profiles that were not too com-
plex. For more complex profiles, both classification
functions perform equally well for longer recommen-
dation lists.

7. Conclusions

In this paper, a framework was presented for the au-
tomatic prediction of a user’s future mobile application
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Table 10

Combined recommendation algorithm evaluation: Bin 1, IP-3 and IP-6 performance of the weighted and maximum classification functions for

different short time window sizes.

Bin 1 IP-3 IP-6
Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.
Scenario A
W5 2490 22.14 2929 | 60.78 58.85 6424 | 87.66 8577 90.66
Weighted W10 2624 23.89 2945 | 62.18 60.11 64.84 | 87.47 8540 90.76
W20 2673 24.05 2929 | 6246 6053 65.04 | 87.30 84.80 89.76
WS 2813 2497 3236 | 60.87 57.18 63.86 | 86.15 83.78 88.87
Maximum W10 2895 2538 3240 | 62.10 57.74 6794 | 8551 8279 88.43
W20 29.04 25.66 32770 | 6220 58.16 67.64 | 8545 8243 88.58
Scenario B
WS 1690 14.07 1897 | 49.03 4580 52.89 | 75.19 7224 77.89
Weighted W10  19.16 1586 21.62 | 49.71 47.36 5225 | 7494 7154 77.89
W20 2041 17.57 2323 | 50.71 4837 5289 | 75.04 71.73 78.05
W5 2510 22.88 27.23 | 53.04 5037 5579 | 7593 7255 78.39
Maximum W10  26.16 24.57 2851 | 5398 51.53 56.86 | 75.89 73.09 78.78
W20 2652 2488 2851 | 5454 5249 56.86 | 7591 73.09 78.47

usage. The described framework works fully transpar-
ently to the user as no additional user interaction is re-
quired and all types of users are supported as no prede-
fined scenarios or assumptions are made. For this pur-
pose, the framework learns from the user’s previous
mobile application usage and his previous context sit-
uations which are both continuously monitored by the
framework’s client application. The Expectation Maxi-
mization clustering algorithm is then applied on differ-
ent combinations of context data, resulting in an unde-
fined number of clusters that clearly approaches users’
real-life perception of different context situations. Af-
ter this first phase, three different algorithms are per-
formed, each specifically designed to find or support
its own specific application usage patterns and to pre-
dict which application shall be used based on the cur-
rent context situation. Association rules are used to
find correlations between contextual parameters and
used applications. Profile-related graphs are developed
to find profile-dependent patterns and a short time win-
dow is applied for analyzing the most recently used
applications. Finally, the predictions that are made by
all three algorithms are bundled into one final rating
for each application and for each new context situa-
tion. For the evaluation of these three separate algo-
rithms and the final combined ratings a proper model-
ing tool and evaluation metric were used. After a pro-
found analysis based on two different user scenarios,

it is shown that the application of association rules re-
sulted in a very high ratio of true positives, while the
combined classification functions were able to further
optimize these scores. When only taking the top 1 or
top 3 recommendations into account, the maximum
function produced the best results. The weighted func-
tion performed best for longer recommendation lists in
combination with user profiles that are not too com-
plex while for more complex profiles, both classifica-
tion functions performed equally well for longer rec-
ommendation lists. Finally, to further demonstrate the
applicability of the framework, an Android-based mo-
bile prototype application was developed, consisting
of a dynamic home screen widget showing the appli-
cation icons of the top six predicted applications, to-
gether with the most recently called contact person and
the previous phone settings (e.g. ringing mode) for the
currently active context situation.
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