
Migrating Medical Communications Software to a
Multi-Tenant Cloud Environment

Pieter-Jan Maenhaut∗†, Hendrik Moens∗, Marino Verheye‡, Piet Verhoeve‡, Stefan Walraven§,
Eddy Truyen§, Wouter Joosen§, Veerle Ongenae† and Filip De Turck∗
∗iMinds – INTEC, Ghent University, Dept. of Information Technology

Gaston Crommenlaan 8 bus 201, 9050 Ghent, Belgium
†Faculty of Applied Engineering Sciences (INWE), University College Ghent,

Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
‡Televic Healthcare, Leo Bekaertlaan 1, 8870 Izegem, Belgium
§ iMinds – DistriNet, KU Leuven, Dept. Computer Science

Celestijnenlaan 200A, B-3001 Heverlee, Belgium
Email: pieterjan.maenhaut@intec.ugent.be

Abstract—The rise of cloud computing has paved the way for
many new applications. Many of these new cloud applications
are also multi-tenant, ensuring multiple end users can make
use of the same application instance. While these technologies
make it possible to create many new applications, many legacy
applications can also benefit from the added flexibility and cost-
savings of cloud computing and multi-tenancy.

In this paper, we describe the steps required to migrate a
.NET-based medical communications application to the Windows
Azure public cloud environment, and the steps required to add
multi-tenancy to the application. We then discuss the advantages
and disadvantages of our migration approach. We found that the
migration to the cloud itself requires only a limited amount of
changes to the application, but that this also limited the benefits,
as individual instances would only be partially used. Adding
multi-tenancy requires more changes, but when this is done, it has
the potential to greatly reduce the cost of running the application.

I. INTRODUCTION

In recent years, there has been a growing interest in cloud
computing [1], a technology that enables elastic, on-demand
resource provisioning. A concept that is often used together
with cloud computing to reduce costs is multi-tenancy [2],
where multiple end users make use of a single instance.
Without multi-tenancy, the cost savings using cloud computing
are minimal for applications requiring continuous availability,
as for every client a separate Virtual Machine (VM) instance
must be provisioned. This instance must be available at all
times, even if it is only used sporadically. In such a case,
the cost reductions are limited to a reduced maintenance cost.
When during the cloud migration multi-tenancy is added to
the application, this problem is mitigated, as all tenants can
make use of the same application instance.

In this paper, we will describe the steps needed to add
multi-tenancy to a commercial Medical Communications (MC)
application, and to migrate it to the Microsoft Windows Azure
public cloud environment. A MC application offers various
functionalities within hospitals surrounding its central nurse
call component. A nurse call system consists of physical

Customer BCustomer A

Administrator

Device
Manager

Administration
Service

Customer A

Administrator

Customer B

Peripherals

Peripherals

Device
Manager

Administration
Service

Cloud Migration
+ Multi-Tenancy

Fig. 1: An overview of the Medical Communications (MC)
application before and after the migration.

terminals that are installed within various hospital locations
which can be used by patients to call hospital personnel.

Migrating management infrastructure to a cloud environ-
ment increases the flexibility of the application, as it is no
longer necessary to physically update the servers which were
on-premise, making it easier to change the application features
used by the client. By also adding multi-tenancy, resources can
be shared between different tenants. This makes it possible
to reduce costs and to offer features to clients which would
previously have been unable to afford the required server
hardware. The system setup before migration, and result of
the migration are illustrated in Figure 1.

In the next section we will discuss related work. Af-
terwards, in Section III we outline the use case. Next, in
Section IV we will discuss the high-level architecture of the
MC application, both before and after the cloud migration. In
Section V, we elaborate on the steps required to add multi-

tenancy and migrate to the cloud. This is followed by a
discussion of the used approach in Section VI. Finally, we
will end with our conclusions in Section VII.

II. RELATED WORK

In [3], an approach for partially migrating applications to
the cloud is presented. The approach focuses on identifying
components to migrate, taking into account various rules such
as performance and security. We similarly focus on a migration
to a hybrid cloud, taking into account legal and performance
limits. We however discuss the concrete steps needed to
migrate a specific application use case.

In [4] a checklist that can be used to determine whether
applications are compatible with a chosen Platform as a
Service (PaaS) provider is presented. The approach is evaluated
by three case studies where a Java and two Python applications
are migrated to Google App Engine. Similarly, we focus on
how a complex .NET application can be executed on Windows
Azure, but more specifically we focus on how the resulting
application can be made multi-tenant, increasing cost savings.

Cost savings and other organizational benefits and risks of
migration to Infrastructure as a Service (IaaS) are discussed
in [5]. We however focus on migration to a PaaS platform,
rather than an IaaS platform. Furthermore, we describe how
multi-tenancy can be added, making it possible to better utilize
individual application instances.

In [6], the migration of an on-premises web application to
Windows Azure is described, with a comparison of the appli-
cation’s performance when deployed to a traditional Windows
server versus its deployment to Windows Azure. While the
cloud migration of a .NET application requires limited effort,
Azure has no built-in support for multi-tenancy, so it must be
added during the migration process. In this paper, we discuss
both the steps needed to migrate a specific application use case,
and the steps needed to add multi-tenancy to the application.

Within our approach, we make use of customization by
specification of features with associated code modules, which
we have previously discussed in [7] and [8].

In [9], we describe an architecture of a multi-tenancy
enablement layer, which amongst others can be used for
data isolation, feature management and tenant-specific cus-
tomizations. We use the discussed approaches in this paper,
in which we specifically focus on the architectural changes
required to migrate an existing MC application to a multi-
tenant environment on Windows Azure.

III. USE CASE: MEDICAL COMMUNICATIONS SYSTEMS

The central functionality of a MC system is nurse call. The
basic concept of a nurse call system is simple: a call device is
located in every room. When a button is pressed on the device,
a message is sent to a controller after which nurses are notified
of the call.

A nurse call system consists of many different elements,
that are installed within a hospital. These elements include
amongst others 1) end user equipment installed in the rooms,
which patients can use to contact hospital personnel, and
terminals used by the personnel; 2) embedded servers, used to

O
n-
Si
te

Cl
ou

d

Administration Service
(Azure Web Role)

Tenant Configuration
Service

(Azure Web Role)

Feature 2

Device Manager

Feature Selection
Tenant-specific
configuration

Create/Modify/
Delete tenants

 Data Storage (Microsoft SQL Azure) Tenant
Database

Config
Database

HTTPS

Feature 1

Module 1 Module 2

Filter

O
n-
Si
te Administration Service

Feature 2

Device Manager

 Data Storage (Microsoft SQL) Tenant
Database

Feature 1

Module 1 Module 2

Dedicated Service
for single Tenant

(a) Initial architecture of the software before moving to the cloud.

O
n-
Si
te

Cl
ou

d

Administration Service
(Azure Web Role)

Tenant Configuration
Service

(Azure Web Role)

Feature 2

Device Manager

Feature Selection
Tenant-specific
configuration

Create/Modify/
Delete tenants

 Data Storage (Microsoft SQL Azure) Tenant
Database

Config
Database

HTTPS

Feature 1

Module 1 Module 2

Filter

O
n-
Si
te Administration Service

Feature 2

Device Manager

 Data Storage (Microsoft SQL) Tenant
Database

Feature 1

Module 1 Module 2

Dedicated Service
for single Tenant

(b) Architecture after migration to the cloud.

Fig. 2: The architecture of the MC application before and after
the cloud migration.

communicate between the terminals and management servers;
and 3) servers for logging, registration and visualization.

While the center of the MC application is the nurse call
system, additional services, such as intercom, video over IP,
access control and other health services are offered as well.

Considering the medical use case, the MC application
is subject to stringent security and performance constraints,
which need to be taken into account when the components to
migrate to the cloud are selected.

In this paper, we will describe the steps required to
convert a dedicated nurse calling solution, with a historical
and proprietary architecture to a cloud based multi-tenant
implementation. This is important from the perspective of
reducing the IT management cost and risks when applications
get more sophisticated, and need to be deployed in an intra-
and inter-hospital context.

IV. ARCHITECTURE

The MC application consists of two main components:
the device manager and the administration service. Figure 2a
shows the initial architecture of the application. After mi-
grating the application to the cloud, a new component is
introduced, the tenant configuration service. The architecture
after migration is shown in Figure 2b.

A feature is a distinct functionality or set of functionalities
that can be offered by an application. The concept of features
plays a central role in the architecture, as every customer can
have its own customized service, including different feature
selections. For every feature, the customer currently needs
some peripherals installed on-site. Example features include
nurse call, voice over IP, video over IP, access control, etc. The
device manager, deployed on-site, is responsible for controlling
these features. For every feature, the corresponding module is
loaded in the device manager.

The device manager communicates with the administration
service to know which features should be activated and to
get the specific configuration. As the administration service
is deployed as Software as a Service (SaaS) in the public
cloud, communication between the two should be secured,
for example by using HTTPS. The administration service has
a user interface to configure all tenant-specific information:
which features should be activated, feature-specific configura-
tion, user administration, etc.

All tenant-specific data is stored in the tenant database,
running on SQL Azure. Tenant data includes configuration of
features, tenant-specific configuration, and other information
related to individual tenants. Tenant databases can be colocated
into a single SQL Azure instance, to limit the number of
SQL Azure instances. The configuration database is a shared
database containing general configuration for the different
tenants. For example, for each tenant, the connection string
pointing to the tenant database is stored in this database.

The tenant configuration service is used to configure the
different tenants. It is the only service that has write access
to the configuration database. During authentication, the ad-
ministration service reads the configuration database to get
all needed information about the tenant before accessing the
tenant database.

The initial application only consisted of two components:
the device manager for activating and controlling the fea-
tures and the administration service with the tenant database.
The administration service was designed as a single tenant
application, meaning that every tenant would have its own
instance of this service. During migration, we decided to
make the administration service multi-tenant, and introduced
the configuration database and tenant configuration service for
managing the different tenants.

V. CLOUD MIGRATION

In this section, we will describe the steps needed to migrate
a part of the existing .NET application to the public cloud, and
to add multi-tenancy to the administration service.

A. Cloud Migration

C1: Preparing the application. The parts of the existing
software to migrate need to be selected based on the quality
attributes to guarantee the required QoS. Some changes need
to be done before moving the .NET web application to the
cloud. First of all, the SQL database has to be moved to SQL
Azure. As a result, the connection strings should be altered
to point to the SQL Azure instance. Next, Azure Web roles
need to be added to the .NET project. Once the application is

running correctly in the Azure simulator, the project can be
packaged and deployed onto Windows Azure [10].

C2: Impact analysis on client networks. A side effect of
the migration to cloud environments, is that communication
between the device manager and the administration service
now needs to pass over the internet, and if we want to move
the device manager to the cloud in future, even more traffic
bandwidth will be needed. Because of this, it is important
to perform an impact analysis when client configurations are
changed. We have previously covered this in-depth in [11].

B. Multi-Tenancy

M1: Introduce multiple connection strings. As applica-
tion behaviour can differ for every tenant, the configuration for
every tenant must be stored in a tenant database. Each tenant
will have its own application data stored in a shared or dedi-
cated SQL server instance. Using shared database instances is
cheaper, while dedicated databases lead to a better security,
but at a higher cost. To connect to the correct database,
a connection string is associated with each tenant. These
connection strings will be stored in the central configuration
database.

M2: Add tenant configuration database. A new database,
which we refer to as the configuration database, needs to be
added to store general information about all tenants. While this
database is shared between all tenants, it only contains minimal
information, and is only accessed sporadically so it should not
become a bottleneck. The connection strings introduced in the
previous part should be stored in this database, together with
some general tenant information.

M3: Tenant configuration interface. Migration to the
cloud makes it possible to more flexibly select the application
features used by different clients, as the tenant configuration is
stored in a separate database, the tenant database. It is however
also necessary to create a separate tenant configuration service,
which can be used by administrators to quickly change the
general tenant configuration.

M4: Dynamic feature selection. As explained in Sec-
tion IV, the device manager consists of multiple modules for
the different features, which are dynamically loaded on start-
up. These modules can be configured from the administration
service. Because every tenant has its own features, the user
interface of the administration service is automatically adapted
for the different clients based on the tenant configuration.

M5: User roles and tenants. Every tenant has its own
users and custom roles, stored in the tenant database. These
users and roles can be created and modified from the adminis-
tration service by a user with an administrator role. By intro-
ducing multi-tenancy, tenant administrators which can create
and modify the different tenants configurations using the tenant
configuration service are needed. These tenant administrators
will be stored in the shared configuration database and should
also be able to access the administration service for every
tenant if needed.

M6: Mitigate security risks. A major disadvantage of
using multi-tenancy is an increased security risk, as by defini-
tion multiple tenants use the same application instance. These

risks are mitigated in multiple ways: 1) by implementing URL-
based filtering of application requests, taking into account the
permissions of the user and tenant; 2) by separating tenant
configuration from tenant data; and for cases where this is
not deemed sufficient 3) by offering single-tenant instances of
specific components at a higher cost.

VI. DISCUSSION

Moving the administration service to the cloud introduces
new opportunities for the MC software. First of all, there
is the increased flexibility and elasticity. When the workload
on the administration service increases, new instances can be
created and deployed in an automatic way. Similarly, when the
workload decreases, instances can again be deleted. For new
customers, deployment time decreases as there is no need to
physically install a new server, and by using Azure’s platform,
there is also no need to install, configure and manage the
guest OS. The hardware maintenance cost is also eliminated
as the virtual machines are automatically migrated when the
hardware is broken, and the physical hardware is frequently
updated.

An additional advantage of the cloud migration is that
administration and access become easier, as the software is
located centrally on the Azure platform. This ensures all
managing server instances can be accessed in a uniform way,
and no VPN access is needed for every customer. This ensures
software updates and patches can easily be deployed to all
instances at once. One disadvantage of the cloud is that the
device manager needs a working internet connection to get the
tenant configuration. However, in our architecture the device
manager only checks the administration service in certain
intervals to update the configuration, and can continue to work
when there is no internet connection.

Using a public cloud provider comes at a small cost. For
running the administration service in the cloud, there is the cost
for using the Azure web roles, which is linear with the number
of instances, and there is the cost for storing the data in SQL
Azure. To minimise this impact and enable cost savings, we
modified the architecture of the application to support multi-
tenancy. Doing so does come with an overhead, as a number
of steps are required to convert the single-tenant application.
Most of the discussed steps can however be executed without
too many changes to the architecture and code, and within a
limited time frame.

By introducing multi-tenancy, administration and mainte-
nance become less complex as the number of instances remains
limited, and costs can be reduced [9]. Additionally, the Azure
platform has functionality which allows to update all instances
at once, without downtime [12]. Note that the service must be
deployed to at least two instances for this to work. The changes
necessary to enable multi-tenancy come at a one-time cost,
but these costs will be recovered on short-term as the number
of instances needed will decrease significantly. On the long-
term, the introduction of multi-tenancy becomes even more
interesting as the number of customers grows.

VII. CONCLUSIONS

In this paper, we described how a large part of an existing
medical communications software can be migrated to a public

cloud provider. We briefly described the different steps needed
to convert the dedicated application to a cloud application, and
the steps required to add multi-tenancy to the application. We
found that migrating an application to Microsoft Azure only
requires a limited number of changes, while the conversion
from a single-tenant to a multi-tenant application requires more
steps. We ended by describing the advantages of both the cloud
and multi-tenancy for our use case, and conclude that in the
long term, the benefits of a cloud migration outweigh the costs
of implementing the described changes.

ACKNOWLEDGMENT

This research is partly funded by the iMinds CUSTOMSS[13]
project.

REFERENCES

[1] M. Armbrust, R. Fox, Armandoand Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Za-
haria, “Above the clouds : A Berkeley view of cloud computing,”
University of California at Berkley, Tech. Rep., 2009.

[2] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao, “A framework
for native multi-tenancy application development and management,” in
9th IEEE International Conference on E-Commerce and the 4th IEEE
International Conference on Enterprise Computing, E-Commerce, and
E-Services, 2007. CEC/EEE 2007., 2007, pp. 551 – 558.

[3] M. Hajjat, X. Sun, Y.-w. E. Sung, D. Maltz, S. Rao, K. Sripanidkulchai,
and M. Tawarmalani, “Cloudward bound: Planning for beneficial mi-
gration of enterprise applications to the cloud,” in Proceedings of the
ACM SIGCOMM 2010 conference, 2010, pp. 243–254.

[4] Q. H. Vu and R. Asal, “Legacy application migration to the cloud:
Practicability and methodology,” in 2012 IEEE Eighth World Congress
on Services. Ieee, Jun. 2012, pp. 270–277.

[5] A. Khajeh-Hosseini, D. Greenwood, and I. Sommerville, “Cloud mi-
gration: A case study of migrating an enterprise IT system to IaaS,” in
2010 IEEE 3rd International Conference on Cloud Computing. IEEE,
Jul. 2010, pp. 450–457.

[6] P. J. P. da Costa and A. M. R. da Cruz, “Migration to
Windows Azure - analysis and comparison,” Procedia Technology,
vol. 5, no. 0, pp. 93 – 102, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2212017312004422

[7] H. Moens, E. Truyen, S. Walraven, W. Joosen, B. Dhoedt, and
F. De Turck, “Feature placement algorithms for high-variability appli-
cations in cloud environments,” in Proceedings of the 13th Network
Operations and Management Symposium (NOMS2012), 2012, pp. 17–
24.

[8] H. Moens, E. Truyen, S. Walraven, W. Joosen, B. Dhoedt, and F. D.
Turck, “Developing and managing customizable software as a service
using feature model conversion,” in Proceedings of the 3rd IEEE/IFI
Workshop on Cloud Management (CloudMan), 2012, pp. 1295–1302.

[9] S. Walraven, E. Truyen, and W. Joosen, “A middleware layer for flexible
and cost-efficient multi-tenant applications,” in Middleware 2011, 2011,
pp. 370–389.

[10] D. Betts, S. Densmore, M. Narumoto, E. Pace, and M. Woloski, Moving
Applications to the Cloud on Microsoft Windows Azure. Microsoft ;
O’Reilly distributor, 2010.

[11] H. Moens, E. Truyen, S. Walraven, W. Joosen, B. Dhoedt, and
F. De Turck, “Network-aware impact determination algorithms for
service workflow deployment in hybrid clouds,” in Proceedings of
the 8th Conference on Network and Service Managment (CNSM2012),
2012, pp. 28–36.

[12] (2012) Overview of updating a Windows Azure
service. [Online]. Available: http://msdn.microsoft.com/en-
us/library/windowsazure/hh472157.aspx

[13] (2012) CUSTOMSS: CUSTOMization of Software Services in the
cloud. [Online]. Available: http://www.iminds.be/en/research/overview-
projects/p/detail/customss

