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based on a sine wave measurement.
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Abstract—We present an off-line calibration procedure to correct the
non-linearity due to DAC mismatch in multi-bit Σ∆-modulation A/D-
converters. The calibration uses a single measurement on a sinusoidal input
signal, from which the DAC-errors can be estimated. The main quality of
the calibration method is that it can be implemented completely in the digi-
tal domain (or in software) and does not intervene in any way in the analog
modulator circuit. This way, the technique is a powerful tool for verifying
and debugging designs. Due to the simplicity of the method it may also be
a viable approach for factory calibration.

I. INTRODUCTION

It is well known that the linearity of a multi-bit Σ∆ modulator
is limited by the linearity of its feedback D/A-converter (DAC).
This way, some kind of linearization scheme is needed if a lin-
earity beyond the intrinsic device matching is required. For this
purpose, dynamic element matching techniques, which achieve
spectral shaping of the DAC errors, have been successfully ex-
ploited [1–9]. However, at low oversampling ratios, such dy-
namic element matching techniques become inefficient and cal-
ibration techniques come into the picture [10–14].

In this paper we present such a calibration technique. It is
based on storing a digital estimation of the DAC errors in a
look-up-table (LUT), which is used during the normal conver-
sion to correct the DAC-errors. Obviously, the performance of
such a LUT-based scheme depends on the accuracy of the digi-
tal estimation of the DAC-errors. Therefore, the actual calibra-
tion, i.e. the process of obtaining the calibration data is essen-
tial. Moreover, the technique should not increase the complex-
ity of the rest of the A/D-converter circuitry. In this manuscript
we present such a calibration scheme that minimally intervenes
with the A/D-conversion. It uses a single calibration measure-
ment on a spectrally pure sinusoidal input signal, which is per-
formed in an off-line calibration cycle. From this measurement
the calibration data are calculated which are stored in the LUT.

Alternative calibration techniques [10–14], (be it on-line or
off-line) invariably add some circuitry in the modulator’s feed-
back loop (typically additionally gates for multiplexing logic).
This puts stress on the timing budget. Compared to those tech-
niques, the presented approach has the main distinct feature
that the calibration is completely outside the Σ∆ control loop
and does not require any modification of the actual core A/D-
converter circuit. As a result it has the advantage that it does
not add to the timing budget of the overall feedback path, and
hence is readily applicable to the highest speed converters. As
will be shown, the algorithm is simple and may be implemented
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Figure 1. Block diagram of a typical Σ∆-modulation A/D-converter

Figure 2. Typical feedback DAC input output relationship.

in production testing, without significantly adding to the test-
ing time. This way, it is a potential candidate for factory-level
calibration. But probably the most important application is in
debuging prototypes and monitoring device matching.

The rest of this paper is organized as follows: section II re-
views DAC non-linearity in multibit Σ∆ modulators, section III
covers look-up-table based digital calibration. In section IV we
describe the algorithm to estimate the DAC errors from a sinu-
soidal measurement. Section V discusses application consider-
ations. Section VI describes the application of the approach on
an actual silicon ADC circuit and finally we present our conclu-
sions in section VII.

II. DAC-NON-LINEARITY IN Σ∆-MODULATORS

Fig. 1 shows a Σ∆-modulator with input signal vin. It con-
sists of a multi-bit quantizer embedded in a control loop with
loopfilter H . The digital output signal u of the quantizer is fed
back by means of a digital-to-analog converter (DAC).

In most practical implementations the feedback DAC will not
be perfectly linear and will have an input-output behavior as
shown in Fig. 2. To quantify this, we introduce the DAC-level
selection signals xi, which are defined as1:

xi (n) =

{
+1, if the ith code is selected
0, else

This way, there are N selection signals for an N -level DAC and
there is always exactly 1 selection signal high at each time step.
Then we can write the DAC-output signal sequence vD as:

vD (n) =

N∑
i=1

xi (n) ·Di, (1)

1 In this work lowercase letters are used for time-domain representation of
signals, whereas uppercase letters are used for more abstract transformed (Z-
domain or frequency domain) representations.
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Figure 3. Equivalent diagram of a typical Σ∆-modulation A/D-converter with
a non-linear DAC.

Figure 4. Normal operation of LUT-based calibration.

where the Di values correspond to the actual DAC-levels. The
DAC-non-linearity manifests itself in the sense that the actual
DAC-levels Di deviate from their nominal values Di,nom by
a mismatch error εi (see Fig. 2). As a result the DAC-output
signal vD will exhibit an error eDAC and can be written as:

vD (n) =

N∑
i=1

xi (n) · (Di,nom + εi) = u(n)+

N∑
i=1

xi (n) · εi︸ ︷︷ ︸
DAC error eDAC

(2)
Here, we have defined the uncalibrated output signal u(n) as:

u (n) =

N∑
i=1

xi (n) ·Di,nom

With this definition of the output signal u(n), the DAC has unity
gain (see Fig. 3). Now we can solve this system by inspection:

U = STF · Vin +NTF ·Q− STF · EDAC (3)

Here the signal transfer function (STF), the noise transfer func-
tion (NTF) and the quantization noise (Q) are defined as usually.
Since the signal transfer should have a gain close to unity in the
signal band, we find that the non-linearity error EDAC of the
DAC is found directly in the output signal.

III. LUT-BASED CALIBRATION

The non-linearity of the DAC can be counteracted by digi-
tal calibration. Here, a digital estimation ε̂i of each of the N
mismatch errors ε̂i is stored in the look-up-table. This look-
up-table is quite small because the number of DAC-levels N is
relatively small in a Σ∆ modulator (typically of the order of 8 to
32). Then, during normal operation, the calibrated output signal
ucal (n) is obtained by retrieving a correction term êDAC from
the LUT, as shown in Fig. 4:

ucal (n) = u(n) +

N∑
i=1

xi (n) · ε̂i︸ ︷︷ ︸
estimated DAC error êDAC

(4)

Here, the digital correction term êDAC can be interpreted as a
digital approximation of the actual DAC error eDAC . An impor-
tant advantage of this scheme is that the correction is completely

Figure 5. Equivalent diagram showing the error sources in a Σ∆-modulation
A/D-converter with a LUT-based digital calibration.

outside the Σ∆ loop. There is one minor disadvantage: i.e. the
digital representation of the overall calibrated output ucal now
consists of significantly more bits. This way, the complexity of
the decimation filter that follows, is increased. But in today’s
ultra deep submicron technologies, this is not a major concern.

The effectiveness of the calibration will depend on how accu-
rately the estimated DAC-error êDAC corresponds to the actual
DAC error eDAC . To quantify this, we can obtain the equivalent
system-level diagram of Fig. 5. Here, we have introduced the
calibration error ecal, which equals the difference between the
actual DAC error eDAC and its digital estimation êDAC :

ecal = eDAC − êDAC =

N∑
i=1

xi (n) · (εi − ε̂i)

This allows to obtain an exact (Z-domain) expression of the cal-
ibrated output signal:

Ucal = STF · Vin +NTF · (Q+ ÊDAC)− STF · Ecal (5)

If the digital estimation matches the error well, the calibration
error ecal will be negligible and the effect of the DAC-errors will
be nearly zero, because it is filtered by the modulator’s NTF.
However if the calibration error is not negligible, it will directly
affect the accuracy of the calibration scheme.

IV. ESTIMATING THE MISMATCH ERRORS

The estimation of the mismatch errors, occurs in an off-line
procedure prior to the normal operation. Here, a spectrally pure
sinusoidal input signal s(t) is applied to the Σ∆ ADC. The fre-
quency of the calibration sine wave should be low, because the
sine’s harmonics have to be within the ADC’s signal band. The
amplitude should be high enough to use all DAC levels.

Let us now consider the digital (decimation) low-pass filter
that is needed to remove the modulator’s quantization noise.
This filter has a transfer function L(z) and an impulse response
l(n). When we apply this low-pass filter L(z) to the digital
output signal u, we obtain the filtered output signal uLP (n):

uLP (n) = l(n) ? u(n),

where the ? operator stands for the convolution. The filtered
output signal uLP then consists of the undistorted (low-pass
filtered) calibration signal s(n), the filtered DAC-error signal
eDAC,LP (n) which is due to the DAC-errors and the noise sig-
nal enoise,LP (n). This noise signal corresponds to all the sys-
tem noise that is not related to the DAC-signals, and contains
the shaped quantization noise [the term NTF · Q in Eq. (3)],
but also potential additive circuit noise:

uLP (n) = sLP (n) + enoise,LP (n) + eDAC,LP (n)
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Applying the definition of the DAC-error in Eq. (2):

uLP (n) = sLP (n) + enoise,LP (n) +

N∑
i=1

l(n) ? xi(n) · εi

Now, we introduce the filtered selection signals xi,LP (n) =
l(n) ? xi and the residue signal r(n) which equals:

r (n) = uLP (n)− sLP (n)

To calculate this residue signal we need to know the filtered
calibration signal sLP (n), which corresponds to the analog cal-
ibration signal. In principle this is not known, but we know that
it is a sinusoidal signal. This way, this signal can be obtained
by curve-fitting a sine wave to the uncalibrated filtered output
signal uLP . Very efficient algorithms for accurate sine-wave fit-
ting such as IEEE-STD-1057 are well known [15, 16] and may
already be deployed in the circuit evaluation setup. The residue
signal r(n) is then evaluated as the curve fit error and hence can
be considered to be known. Then we can write:

r (n) = enoise,LP (n) +

N∑
i=1

xi,LP (n) · εi

From this equation, we observe that we can obtain an estima-
tion ε̂i of the DAC-errors, by performing a least mean square
(LMS) minimization of r (n)−

∑N
i=1 xi,LP (n) · ε̂i. Indeed:

E


(
r (n)−

N∑
i=1

xi,LP (n) · ε̂i

)2
 =

E
{
e2noise,LP (n)

}︸ ︷︷ ︸
noise variance

+E


(

N∑
i=1

xi,LP (n) · (εi − ε̂i)

)2
︸ ︷︷ ︸

calibration error variance

(6)

The calibration error variance cannot be negative. Moreover,
it is observed that it becomes zero when the estimated DAC-
errors ε̂i are equal to the actual DAC-errors εi. This implies that
the correct estimation ε̂i of the DAC-errors corresponds to the
LMS optimization. In practice, the expectation value of Eq. (6)
must be approximated as the mean value over a finite data set of
L data points. This way, we obtain the estimated DAC errors ε̂i
by minimizing:

L∑
n=1

(
r(n)−

N∑
i=1

xi,LP (n)ε̂i

)2

with regard to ε̂i. Or:

∂

∂ε̂j

L∑
n=1

(
r(n)−

N∑
i=1

xi,LP (n)ε̂i

)2

= 0,∀j

This yields a system of N equations (j = 1..N ) for the N un-
known DAC-errors ε̂i:

L∑
n=1

r(n)xj,LP (n) =

L∑
n=1

N∑
i=1

xj,LP (n)xi,LP (n)ε̂i, ∀j (7)

All the coefficients in this system of equations can easily be
evaluated, and solving this system is trivial. The corresponding
setup for the calibration is shown in Fig. 6.

Figure 6. Calibration setup.
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Figure 7. Simulated output spectrum of the uncalibrated modulator: (a) without
and (b) with DAC-mismatch.

V. APPLICATIONS

A. Prototype debug and evaluation

A first important application of the proposed technique is in
the debugging and evaluation of prototype Σ∆ A/D converters.
Indeed, sine wave tests are always an essential part of any pro-
totype evaluation. Moreover, these tests are usually performed
in a low-noise laboratory environment. This way, the proposed
technique can be added to the arsenal of evaluation techniques.
To illustrate how the technique behaves in such a situation, we
have built a behavioral model of a 3rd order 5-bit Σ∆ ADC de-
signed according to [17] with h∞ = 2.8 for an OSR = 16.
We modeled a unit-element DAC where the 31 unit-elements
were assigned mismatch errors with a σ of 3% (intentionally
relatively large for the purpose of illustration).

Fig. 7 shows the simulated spectra of the test modulator for a
sinusoidal input signal with an input amplitude of -1dBfs. This
amplitude is chosen as large as possible, while still avoiding
modulator overloading. 64K data points were used for the sim-
ulation, corresponding to L = 4K baseband data points. The
figure shows the ideal case (without mismatch) and the real case
(with mismatch). It is clear that the mismatch ruins the perfor-
mance completely.

Fig. 8 shows the simulated spectra of the test modulator for
the case with mismatch but with LUT-based calibration. Here
the same simulation result as Fig. 7(b) was used, but now cor-
rected with the LUT-based calibration described above. Two
cases were considered. First the case where the simulated signal
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Figure 8. Simulated output spectrum of the modulator with mismatch and with
calibration for the case where the look-up-table uses (a) the estimated mismatch
errors ε̂i and (b) the exact value εi of the mismatch errors .
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Figure 9. Mismatch errors (marked with ◦) and estimated mismatch errors
(marked with ×).

sequence was used to obtain the estimated DAC-errors ε̂i. This
result is shown in Fig. 8(a). Here the SNDR is nearly identical
to the case of the ideal modulator (88 dB vs. 89 dB), but some
harmonic spurs are visible, corresponding to a THD of 96dB.
However, this is not due to calibration errors. To illustrate this,
Fig. 8(b) shows the result where the LUT uses the exact values
εi of the DAC-mismatch. Here the calibration error is strictly
equal to 0, but this case also exhibits the spurs. Upon inves-
tigation it turns out that these spurs originate from the shaped
mismatch error i.e. the termNTF · ÊDAC in Eq. (5). This term
is greatly suppressed, and nearly has no effect on the SNDR, but
it is visible in an FFT-result.

The calibration result is also illustrated in Fig. 9 which shows
the actual mismatch errors εi and the estimated DAC-errors ε̂i.
Here we can see that the estimation matches the actual value
nearly perfectly.

B. Factory level calibration

The calibration flow may also be sufficiently efficient to be
used for factory-level calibration. Indeed, most of the blocks
that are needed, are anyway available in some form in the fac-
tory testing of ADC’s (e.g. the sine wave stimulation test and
curve fit set up). However, the situation of a factory-level cali-
bration is different in the sense that the speed is important. This
way, it is desirable that the number of samples L that are needed
to perform a calibration measurement is not too high. In addi-
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Figure 10. Effect of the SNR and the number of data-points during the calibra-
tion cycle on the obtainable SNDR after calibration.

tion to this, also the environment is more hostile than a typical
laboratory environment and may exhibit higher interference and
noise levels. To study this, we performed Monte Carlo simula-
tions where we generated 100 sets of DAC-mismatch (with σ
of 3%). Then we obtained the error estimations ε̂i from dif-
ferent calibration cycles where we intentionally added noise to
the calibration sine wave, corresponding to a noisy environment
during chip testing. In addition to the ideal case (with an SNR
of 89dB), the cases of a baseband SNR during calibration of
[40, 50, 60, 70, 80] were considered. Then these estimations,
were used to calibrate a normally operating ADC (which should
be able to reach an SNDR=88dB). The corresponding SNDR
was evaluated and this experiment was repeated for increasing
numbers of data points used in the calibration cycle. The re-
sults are summarized in Fig. 10, which shows the SNDR of the
calibrated ADC vs. the number L of baseband data points used
in the calibration. The errorbars in the plot correspond to the
10% and 90% percentiles. The plot indicates that when the cal-
ibration is performed with a good SNR (of at least 80dB), about
1K of data-points is sufficient to obtain nearly perfect calibra-
tion results. However, when the noise during the calibration
cycle is higher, more data-points are needed: e.g. 4K for a cal-
ibration SNR of 70dB and 64K for a calibration SNR of 60dB.
With even lower SNR’s the technique still works, but here the
accuracy of the calibration improves only by roughly 3 dB for
each doubling of L, which indicates a typical 1/

√
L averaging

behavior. This way, it appears that when the calibration SNR is
low, the amount of data points that are needed to obtain perfect
calibration results, rapidly increases and becomes unpractical.

VI. EXPERIMENTAL RESULTS

In the previous section, the approach was applied to simu-
lated Σ∆ ADCs, where static DAC-errors were the only error
occuring in the ADC. In addition to this, the technique was
also applied for calibration of actual prototype integrated cir-
cuits [18,19]. Here, other parasitic effects (e.g. opamp slewing,
dynamic DAC errors, . . . ) can occur as well. To illustrate the
performance of the technique in such a real life situation, we
consider the 960MSample/s continuous time Σ∆ ADC of [18].
Here the quantizer resolution was 5-bits and the OSR was 12,
which corresponds to a 40 MHz bandwidth. This circuit was
designed such that the circuit noise level would allow 12-bit
performance. The full circuit details are discussed in [18]. The
measured spectra for a low-frequency input signal are shown
in Fig. 11, both for the case without as well as with calibra-
tion. In the uncalibrated case, the SNDR is limited by distortion
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Figure 11. Measured output spectrum of a 960MSamples/s Σ∆ modulator with
40 MHz bandwidth for the case of a low input frequency (a) without calibration
and (b) with calibration.
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Figure 12. Measured output spectrum of a 960MSamples/s Σ∆ modulator with
40 MHz bandwidth for the case of a high input frequency (a) without calibration
and (b) with calibration.

and is only 63 dB (about 10-bit performance). The same mea-
surement was used to calculate the correction terms and then
to calibrate the converter (according to the method described in
sections III-IV). The corresponding results are also shown in
the figure, where the distortion is entirely eliminated and a peak
SNDR of 71 dB is observed now.

The case of a higher input frequency of 7.5 MHz (which still
has its first 5 harmonics in the signal band), is shown in Fig. 12.
Here the calibration coefficients that were obtained previously
from the low-frequency measurement were used to calibrate the
DAC. The figure shows that the calibration nearly eliminates
the distortion for this case as well, although, in this case, a 2nd
harmonic distortion component of -81dBc is visible. Since the
DAC-calibration is not able to eliminate this distortion, this in-
dicates that there is another source of distortion in this circuit.
However, in this case, this distortion component does not limit

the SNDR. Experiments on other prototypes with very different
modulator designs e.g. [19] confirm that the calibration tech-
nique behaves well in typical real-life situations, and eliminates
distortion due to static DAC-errors.

VII. CONCLUSION

An off-line calibration method to correct static DAC-errors in
Σ∆-modulation ADCs is presented. This technique uses a spec-
trally pure sinusoidal input signal and calculates the DAC errors
from the resulting digital output signal. The straightforward im-
plementation gives only little overhead to the digital post pro-
cessing of the modulator output. This makes this method tai-
lored for verifying and debugging designs and potentially also
for factory calibration.
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