
Java and the Power of Multi-Core Processing
Peter Bertels

Supervisor: Dirk Stroobandt

Abstract—The new era of multi-core processing challenges software de-
signers to efficiently exploit the parallelism that is now massively available.
Programmers have to exchange the conventional sequential programming
paradigm for parallel programming: single-threaded designs must be de-
composed into dependent, interacting tasks.

The Java programming language has built-in thread support and is
therefore suitable for the development of parallel software. We are working
on a framework and tool support to assist the programmer with the tedious
task of parallel programming.

Keywords—Java; multi-core; parallel programming

I. INTRODUCTION

AC cording to Moore’s law the number of transistors on a
single die is doubling every two years. During the last

decades this evolution has lead to an exponential performance
increase because processor clock speeds also doubled at the
same rate. Due to power limitations this clock speed doubling
came to an end. Computer architects came up with the idea
of multi-core computing: large and complex processors are re-
placed by simpler and slimmer cores working together.

In this new era of multi-core computing, Moore’s law can be
applied to the number of cores. Current multi-core architec-
tures consist of only a few cores, but this number is expected
to increase as exemplified by the announcement of an 80 core
architecture by Intel.

Software designers are challenged to efficiently exploit the
massive parallelism available on these future multi-core archi-
tectures. In Section II we discuss parallelisation of sequential
code as a first attempt to meet the multi-core challenge and we
explain why this cannot completely solve the problems we are
faced with. We feel that software designers have to exchange
the conventional sequential programming paradigm for parallel
programming. This transition requires a fundamentally differ-
ent way of thinking about algorithms and programming prob-
lems. We elaborate on the challenges imposed by this transition
in Section III.

Parallel programming languages and programming models
are needed to help programmers with this ‘parallel thinking’.
Multi-threaded programming languages can be used to describe
parallel behaviour, e.g. Java. We feel that Java alone is not suffi-
cient, because multi-threaded programming is cumbersome. In
Section IV we explain how Java can be extended to make it bet-
ter suited for multi-core programming and we discuss related
work and similar approaches.

II. WHY PARALLELISATION CANNOT SOLVE THE PROBLEM

After more than 40 years of research in the field of parallelis-
ing compilers, the results are still limited. For fairly simple and

Peter Bertels is with the Department of Electronics and Information Systems
(ELIS), Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium.
E-mail: peter.bertels@ugent.be.

regular code, loop nests in particular, parallelising is straight for-
ward. But automatic parallelisation of irregular code with lots
of data dependencies is still not completely solved.

Control dependencies severely limit the available parallelisa-
tion. The control flow in useful and real-world applications is
often complex and highly data dependent. Lam et al. propose to
relax the constraints imposed by control flow and they suggest
several techniques: speculative execution, control dependence
analysis and following multiple flows of control [1].

Although these techniques for automatic parallelisation in-
crease the possible parallelism in applications, these efforts are
still too limited to effectively use 80 cores on a multi-core ar-
chitectures for general purpose applications. We can conclude
that automatic parallelisation is useful for very regular applica-
tions but that other applications require a more specific, manual
approach. Software designers have to adopt to the parallel pro-
gramming paradigm and have to come up with new, inherently
parallel, software solutions.

III. CHALLENGES OF PARALLEL PROGRAMMING

The most important challenge for parallel programmers is the
decomposition of a single application into several, dependent
and interacting tasks. The efficiency of the parallel program is
highly dependent on this decomposition step: it determines the
synchronisation and communication overhead.

Other challenges are synchronisation and communication be-
tween parallel threads. Synchronising parallel threads is a te-
dious task: synchronising too often leads to inefficient program
execution but not enough synchronisation can lead to incorrect
results due to data races or conditional hazards. Faulty synchro-
nisation can lead to deadlocks.

We identify load balancing as our fourth important challenge.
If we can achieve an appropriate decomposition of the problem
in several tasks that can be run on multiple cores, we have to
think about executing these tasks efficiently in parallel. How
can we divide the work load equally among all these cores? Can
we avoid that some cores remain idle? A related challenge is
scheduling of all these parallel threads and tasks.

Finally we want to add scalability to our list of challenges. If
we want to execute the same application as well as on a multi-
core architecture with 4 cores as on an architecture with 80
cores, we have to think about scalability. Can we describe our
parallel algorithms in such a way that we can exploit the avail-
able parallelism on an 80 core machine and nevertheless execute
the same parallel program efficiently on a quad core?

IV. CAN JAVA BE THE SOLUTION?

The Java programming language has built-in thread support.
Therefore, it seems a good candidate to become the ultimate
language for parallel programming. However, as Edward Lee



pointed out, there are some problems with threads. Threads are
fundamentally flawed as a computation model because they are
wildly nondeterministic [2]. Executing the same program twice
can lead to different results. Programmer’s are expected to prune
this determinism by adding synchronisation, semaphores, moni-
tors etc. This is a tedious task and synchronisation errors are al-
most impossible to avoid. Moreover synchronisation problems
often remain undetected: the nondeterminism makes it difficult,
if not impossible, to write test cases that cover all these possible
faults.

In this section we elaborate on several approaches to over-
come the problem with Java threads: the zJava project devel-
oped at the University of Toronto [3] and the DataRush frame-
work developed by Pervasive Software [4].

A. The zJava project

The zJava project investigates automatic parallelisation of
Java programs [3]. The basic idea of this project is to combine
a compile-time and a run-time method to exploit parallelism
among methods in Java applications. The zJava run-time sys-
tems starts a new independent thread for each method invoca-
tion. This thread executes asynchronously with the main thread
which consists of the main method of the application. The run-
time systems uses compile-time information about memory ac-
cesses to determine when a thread may execute and which de-
pendencies need to be enforced.

Chan and Abdelrahman have evaluated their approach on a
Sun quad core multiprocessor. They report a scalable speedup
when using 1, 2, 3 or 4 cores. For some benchmarks the ideal
speedup, equal to the number of processors, was achieved.

This approach overcomes the nondeterminism problem in the
sense that the original program is fully sequential and that the
run-time systems which creates the threads is supposed to do
this in a correct-by-construction manner. The zJava project is
essentially an automatic parallelisation tool as explained in Sec-
tion II: it helps the programmer to make use of the parallelism
available in the sequential program, but it does not increase the
parallelism. This seems to be a viable approach for speeding
up applications on multi-core architectures with a few cores, de-
pending on the inherent parallelism in the sequential program.

B. Pervasive DataRush

The DataRush framework [4] developed by Pervasive Soft-
ware enables the programmer to describe parallel programs as
a directed dataflow graph in an XML based DataRush process
composition language, DFXML. The basic operators in this
dataflow graph are written in standard Java. DFXML also al-
lows to specify hierarchical dataflow graphs. A run-time system
can execute these applications efficiently on a multi-core plat-
form.

DataRush provides special operators which can be used to
wrap collections of processes and other operators together.
These operators can be used to express several forms of par-
allel decomposition: horizontal decomposition, i.e. one process
can be duplicated on several cores to process multiple data ob-
jects in parallel, vertical decomposition, i.e. several processes
can process the same data object in parallel and pipelining. The
run-time systems uses this information to efficiently map the

application on the given platform. The number of available pro-
cessor cores determines the amount of parallel decomposition.

The nondeterminism problem with threads is solved because
the programmer has to specify interactions and dependencies
between threads explicitly. This framework is also scalable from
multi-core platforms with only a few cores to much larger multi-
processors. The only drawback is that the DataRush framework
somewhat limits the possibilities, e.g. cyclic dataflow graphs
cannot be represented — this is an easy way to guarantee dead-
lock freedom — and processes can only communicate via input
and output streams whereas shared variables would be an inter-
esting feature, especially if we want to transform legacy code
for single processing into code for multi-core platforms.

C. The best of both worlds

We propose something which could be described as a com-
bination of the aforementioned techniques. Currently we are
working on a theoretical basis for a new framework which will,
as the DataRush framework, enable programmers to explic-
itly describe interaction between processes described in Java,
but which on the other hand would support communication via
shared memory. Our research is currently focussed on the defi-
nition of a subset of the shared memory paradigm which is lim-
ited enough to guarantee that it would fit in such a framework
but which is nevertheless practically useful.

V. CONCLUSIONS AND FUTURE WORK

Multi-core architecture have recently become the name of
the game in computer industry. These platforms provide mas-
sive parallelism to software designer who are trained to write
inherently sequential code. In this article we summarised the
challenges these programmers are facing when they make the
transition from the conventional programming paradigm into
the new era of parallel programming. New programming mod-
els and tools can support this transition. We described recent
approaches to extending the Java language to make it more
suitable for programming multi-core architectures and propose
some new ideas and extensions to alleviate the burden of parallel
programming.

In order for our new programming model to be useful we plan
to implement a run-time environment — built on top of the Java
virtual machine — to execute our parallel programs.

ACKNOWLEDGMENTS

Peter Bertels is supported by a PhD grant of the Institute for
the Promotion of Innovation through Science and Technology
in Flanders (IWT-Vlaanderen). His research is also partially
funded by the IWT grant 060086.

REFERENCES

[1] Monica S. Lam and Robert P. Wilson, “Limits of control flow on paral-
lelism,” in ISCA 1992: Proceedings of the 19th annual international sym-
posium on Computer architecture. 1992, pp. 46–57, ACM Press.

[2] Edward A. Lee, “The problem with threads,” Computer, vol. 39, no. 5, pp.
33–42, 2006.

[3] Bryan Chan and Tarek S. Abdelrahman, “Run-time support for the auto-
matic parallelization of Java programs,” Journal of Supercomputing, vol.
28, pp. 91–117, 2004.

[4] Pervasive DataRush, “A java framework for dataflow applications: unleash
the power of multi-core,” http://www.pervasivedatarush.com/.


