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Abstract— Σ∆ force-feedback loops have to deal with a stability
problem due to phase-lag occurring in the sensor. To tackle this problem
traditionally a compensator is introduced in the loop. We show that
this traditional approach imposes a constraint on the realizable NTF
such that the NTF cannot be optimized. Next we propose a novel
unconstrained architecture that allows to implement any NTF. This way
greatly improved quantisation noise shaping can be obtained. In a typical
design example the improvement was 12 dB

I. INTRODUCTION

The concept of Σ∆ force-feedback for inertial sensors, has many
benefits [1]–[6]. It is a closed-loop approach where the inertial force
is counterbalanced by a single-bit feedback force. Due to this, it has
the possibility of improving bandwidth, increasing dynamic range,
and reducing sensitivity to process and temperature variations of the
mechanical transfer. Next to this, the use of bi-level actuation in the
feedback path provides a good overall linearity. Last but not least, the
inherent A/D conversion is important for easy downstream processing
of the sensor data.

From a designer’s point of view, Σ∆ force-feedback loops are
more difficult to design as purely electrical Σ∆ modulators. The
main problem is an inherent stability problem which originates from
the fact that the mechanical sensor behaves as a second order mass-
damper-spring system. Put explicitly, the relation between the force
acting on the proof mass and the resulting displacement is given by:
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In this, k denotes the spring constant, Q the quality factor and
ω0/(2π) the resonant frequency. An equivalent system-level rep-
resentation of the mechanical sensor is shown in fig. 1. Its main
signal path contains two integrations. Unfortunately, the inner node
(corresponding to the speed v of the proof mass) is not directly
accessible. When used within a Σ∆ feedback loop, the mechanical
system contains — roughly speaking — “one integration too much”,
which causes problems with respect to the stability of the loop.
In literature, control-theory-based solutions have been proposed to
stabilize the loop [1]–[5]. These approaches consist of adding a
compensating filter with some differentiating action to the loop.
Typically, a first order FIR filter such as 2−z−1 is used. Unfortunately,
this compensator also introduces extra poles in the loop (here at
z = 0) and affects the noise-shaping performance of the Σ∆ system.
As a result, the relation between stability and performance of the
Σ∆ loop gets cluttered, making it difficult to optimize the trade-off
between them.

II. TRADITIONAL ARCHITECTURES

A. Architectural structure

The typical architecture for a Σ∆ force-feedback is largely inspired
on electrical Σ∆ modulators. We illustrate this by means of a fifth-
order discrete time electrical modulator displayed in fig. 2. In this
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Fig. 1. System-level diagram of the mechanical sensor, which behaves as a
second order mass-damper-spring system.

architecture, full control of the noise transfer function (NTF) poles
is obtained by direct observation of all integrator states: the NTF-
poles can be placed at arbitrary positions through the five coefficients
ai. The coefficients γj are used to set the zeros of the NTF at the
optimized positions within the passband.
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Fig. 2. Conceptual steps in converting a feedforward type electrical Σ∆
modulator to a single-feedback force-feedback architecture.

To convert this structure to a mixed mechanical-electrical architec-
ture, we conceptually isolate the first integrator and replace it with
the mechanical transfer. However, as already explained in the intro-
duction, in comparison with the replaced integrator, the mechanical
transfer contains two integrations. From the transfer of eq. (1) it
can easily be seen that for frequencies above the resonant frequency
phase-lags of up to 180◦ occur. The traditional approach to deal
with this is to add a compensation filter with differentiating action to
introduce enough phase-lead to stabilize the system. Therefore, for
reasons of stability, the first integrator of fig. 2 is replaced by the
mechanical transfer and this compensation filter HC(z).

The rest of the Σ∆ integrator stages of fig. 2 can be thought of as
an (electrical) filter HNS(z). We will call this the noise-shaping filter.
This additional filter HNS(z) is needed to improve the quantisation
noise shaping [3]. It can readily be seen that the position of the filters
HC(z) and HNS(z) can be exchanged without affecting the system
behavior. Finally, the loop contains a one-bit quantizer which outputs
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the digital value Dout, which has two possible values: ±1.
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Fig. 3. Single-feedback Σ∆ force-feedback loop.

Until now, the introduced transformations have been conceptu-
ally. In reality, we also need to take care of the proper domains
(mechanical/electrical) in which the different transfer functions take
place and introduce the interfacing steps explicitly. This is shown in
fig. 3, where two extra blocks can be noted. First, a readout circuit
is present, translating the mechanical displacement into a sampled
output voltage. Second, we also have the actuator translating the
one-bit digital output to a bi-level actuation force-pulse used for
mechanical feedback.

Let us first look at the readout circuit. Typically a differential
capacitive readout interface is used, based on measuring the relative
magnitude of two parallel-plate sensing capacitors Cs+ and Cs−:

Cs+ =
Cs0

1 − x/d0
Cs− =

Cs0

1 + x/d0

In this, Cs0 denotes the zero-displacement capacitance. We see
that these capacitances change as a function of the normalized
displacement x/d0. Hence, the readout circuit delivers an output
voltage proportional to the normalized displacement (to first order).
We assume that, by design, the bandwidth of the readout circuit is
high enough to represent this as a simple scale factor A0. Therefore,
the transfer from displacement x to the readout voltage reduces to
a mere factor A0/d0. In the diagram, the sampling operation is
placed after the readout gain. Frequently, readout circuits based on
switched-capacitor techniques are used [2], [5]. While these circuits
directly generate sampled outputs, they can still conceptually be
represented by a continuous-time readout followed by an explicit
sampling operation, as shown in fig. 3. Therefore, both cases are
covered by this system-level diagram.

With respect to the feedback path, we assume the possibility to
generate a constant actuation force Fel0 in either the positive or the
negative direction. The direction of the feedback force is determined
by the digital output Dout, which assumes values +1 or −1. In the
simplest case, the feedback force is applied during an entire sampling
period. In practice, this requires the use of separate capacitors for
actuation. If the same set of capacitors is multiplexed in time for
both readout and actuation, the actual time interval available for force-
feedback is smaller than one full sampling interval [0, T ]. Therefore,
we consider the more general case where the feedback force is applied
for a time interval [τ1, τ2], with 0 ≤ τ1 < τ2 ≤ T . We then have the
following s-domain relation that represents actuation:

Fel(s) = Fel0
e−sτ1 − e−sτ2

s
Dout(z)|z=esT

This is also shown on the system-level diagram of fig. 3.
We now want to examine the noise-shaping properties of this

Σ∆ force feedback loop with respect to quantization noise. This is
represented by the discrete-time transfer NTF(z). Note however, that

the system of fig. 3 contains both continuous-time and discrete time
blocks. In order to extract the NTF, we first calculate the equivalent
discrete-time transfer function from the digital output Dout to the
sampled readout voltage.

B. Equivalent discrete-time loop transfer

Combining the transfers from the (actuation) pulse shaper, the
mechanical system and the readout circuit, we obtain the continuous-
time transfer:

Tc(s) =
e−sτ1 − e−sτ2
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with M0 = Fel0
k·x0

. Note that we have introduced a “damping angle”
θ = arccos(1/(2Q)) as a measure of the quality factor of the
mechanical system. With this notation, the (complex conjugate)
mechanical poles sm and s∗m have the following simple expression:

sm = −ω0 e+jθ s∗m = −ω0 e−jθ (3)

The equivalent discrete-time transfer obtained from sampling Tc(s)
is given by (detailed calculations are omitted for compactness):

Td(z) =
R0

z − zm
+

R∗
0

z − z∗
m

(4)

with

R0 =
M0 e−jθ(e−smτ1 − e−smτ2)zm

2j sin θ

In this, zm and z∗
m represent the discrete-time poles corresponding to

the mechanical system. These poles are related to the continuous-time
mechanical poles through the mapping esT , that is zm = esmT and
z∗

m = es∗mT . We see that, next to two complex conjugate mechanical
poles, Td(z) also has a zero:

zz =
R0 z∗

m + R∗
0 zm

R0 + R∗
0

(5)

With the equivalent discrete-time transfer function Td(z), it is very
easy to write down the discrete-time loop filter H(z) of the Σ∆
force-feedback architecture of fig. 3:

H(z) = Td(z)HC(z)HNS(z) (6)

Now we will examine the corresponding NTF and show that the
architecture imposes a (hidden) constraint.

C. Constrained NTF of traditional architectures

As is common, we approximate the 1-bit quantizer as an additive
quantisation noise source with an approximate linear (noise) gain Gn

[7]. With this, the expression for NTF(z) becomes:

NTF(z) =
1

1 + Gn H(z)
(7)

It is especially useful to look at the NTF in factored form. Let us
first consider the case when no compensator is present (HC(z) ≡ 1).
Then, within the loop we have an electrical filter HNS(z) of order
N−1 and a mechanical transfer Td(z) of order two, resulting in a
system of order N + 1. Therefore, the NTF has N+1 zeros and an
equal number of poles:

NTF(z) =

mechanicalz }| {
(z − zm)(z − z∗

m)

electrical noise-shapingz }| {
(z − zns,1) . . . (z − zns,N−1)

(z − z1)(z − z2)(z − z3) . . . (z − zN+1)
(8)

The primary objective of a Σ∆-system is to keep the quantization
noise level low in the baseband. For this purpose, the NTF-zeros
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play a crucial role. Here, in the electromechanical Σ∆, two complex
conjugate zeros (zm and z∗

m) due to the mechanical transfer are
present. Typically, these NTF-zeros do not allow a very aggressive
noise shaping. Especially for lower quality factors, zm is located
inside the unit circle, limiting its noise-shaping effect. Practical
implementations confirm that in this case the performance is limited
by quantization noise. For instance, the closed-loop performance
of the sensor in [5] is up to ten times worse compared to open-
loop operation. To overcome this, an electrical noise-shaping filter
HNS(z) is needed to introduce extra NTF-zeros. By building this
filter as a sequence of resonators (as in fig. 2), these zeros can be
located on the unit circle at a position controlled by the local feedback
factors γi. If these zeros are spread optimally over the baseband, a
significant performance increase can be obtained [8].

Having placed the NTF-zeros such as to optimize baseband noise-
shaping, we next turn to the stability of the Σ∆ system. It is
widely known that the stability of higher-order Σ∆ systems requires
a judicious choice of the NTF poles [8]. I.e., the N+ 1 NTF-
poles (z1, z2 . . . zN+1) must be placed appropriately. However, by
inspection it is observed that the Σ∆ loop of fig. 3 only provides N
degrees of freedom. Hence the N+1 NTF-poles cannot be placed
at arbitrary positions. It even turns out that none of the realizable
pole constellations provide enough system stability to be of practical
value. This is reminiscent of the fact that the electrical Σ∆ of fig. 2
cannot be stable if for instance a1 is zero.

As already explained, the tradtional way to deal with this stability
problem is to add a compensation filter HC(z) to the loop. With an
M th order compensation filter, the NTF takes the form:

NTF(z) =

mechanicalz }| {
(z − zm)(z − z∗

m)

electrical noise-shapingz }| {
(z − zns,1) . . . (z − zns,N−1)

(z − z1)(z − z2)(z − z3) . . . (z − zN+1)

×

compensatorz }| {
(z − zC,1) . . . (z − zC,M )

(z − zN+2) . . . (z − zN+M+1)

The M compensator poles (zC,1, . . . , zC,M ) appear as extra zeros
in the NTF. While the compensator increases the order of the loop,
in general, the added NTF-zeros do not contribute to the baseband
noise-shaping or, even worse, have a negative effect on the in-band
noise. The only added value is that now the N +M +1 NTF poles
can be placed at locations where we at least obtain a stable system.
However, with N+M degrees-of-freedom for placing N+M+1 poles,
the architecture still imposes an implicit constraint on the realizable
NTF.

III. UNCONSTRAINED ARCHITECTURE

From the analysis above, we know that the traditional architectures
lack one degree-of-freedom to allow arbitrary placement of NTF
poles. We will now construct an unconstrained architecture, which has
sufficient degrees-of-freedom to place the poles in a designed, stable
position. It is obvious that this allows to remove the compensator
filter.

In order to understand the principle, we refer to fig. 4. We
start again from an unconstrained electrical architecture. Instead of
focussing on the first integrator, we rather look at the front-side
resonator stage (consisting of two integrators). As a first step, we
convert the feedback path to the inner node of the first integrator to
a feedforward path, as shown in fig. 4 (b). It is easy to see that that
the transfers from X to Y for structures (a) and (b) are identical.
This can be demonstrated by direct calculation, but it is also a direct

consequence of the equivalence of a feedforward-type and a feedback-
type Σ∆ modulators of second order. From this, we further deduce
that the loop filters of structure (a) and (b) are equivalent. The next
step is to displace the feedforward path of the first resonator stage
to the right, resulting in fig. 4 (c). The equivalence of structures
(b) and (c) can again be derived from the fact that the loop filters
are identical. Since in structure (c) the signal at the inner node of
the first resonator stage is not needed, it can be replaced by the
mechanical resonator without loss of degrees-of-freedom. This way,
we have demonstrated that by simply adding one feedforward path in
a mixed-feedback architecture, an unconstrained Σ∆ force-feedback
architecture can be obtained.

Note that, apart from the first resonator, other resonator stages in
fig. 4 are of the feedback type. It can readily be demonstrated that
the “construction method” equally applies if feedforward stages are
present, provided that the feedback path to the input of the second
stage is maintained (corresponding to coefficient a3 in fig. 4).
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Fig. 4. Conceptual steps in converting an electrical Σ∆ modulator with
partial feedforward and feedback to an unconstrained force-feedback archi-
tecture.

Because we now have knowledge of an unconstrained Σ∆ force-
feedback architecture, we can follow an analogous design flow as
used for purely electrical Σ∆ modulators [8], [9].

IV. COMPARATIVE DESIGN EXAMPLE

In order to illustrate the possibilities offered by the unconstrained
architecture when it comes to quantization noise shaping, we work
out a comparative design example. As a reference design, we take
the single-feedback architecture of [3] for implementing a bandpass
Σ∆ force-feedback loop. The resulting structure, shown in fig. 5 (a),
can for instance be used for readout of the secondary mode of
a gyroscope. Starting from the values τ1 = 3/16, τ2 = 10/16,
f0 = 5KHz, fs = 850KHz, and assuming Q = 5 (not specified in
[3]), the equivalent mechanical transfer Td(z) is given by

Td(z) = 0.0016729
z + 0.6819

(z − zm)(z − z∗
m)

(9)
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where zm equals 0.99631 ej2π0.0058545 . By choosing
γ = 2(1 − cos(ω0/fs)), the electrical filter is set to resonate
also at the mechanical resonant frequency, which significantly
improves the quantization noise shaping around this frequency. For
exactly the same mechanical transfer Td, also an unconstrained
modulator structure is designed based on conventional design
techniques for electrical Σ∆ modulators [8], [9]. The result (after
rounding of some coefficients to convenient values) is shown in fig.
5 (b). Note that the scale factor of Td(z) in Eq. (9) was chosen
based on the mixed-feedback design. This scale factor is controlled
by the readout gain and is not important for the single-feedback
architecture (and not specified in [3]).
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Fig. 5. Comparative design example: (a) original structure according to [3]
and (b) unconstrained architecture.

Both structures have been simulated for the same sinusoidal input
signal. The (averaged) output spectrum is displayed in fig. 6. Also
shown is a theoretical prediction of this spectrum based on NTF(z).
Clearly, the unconstrained architecture realizes a better shaping of
quantization noise, resulting in an SNR improvement of 12dB.

Fig. 6. Comparative design example: quantization noise shaping of the single-
feedback architecture and the new unconstrained architecture.

V. ROBUSTNESS TO PARAMETER VARIATIONS

Because a one-bit quantizer only looks at the sign of its input
signal, any change in the loop gain which can be modelled as a

positive scale factor theoretically does not affect system stability. This
implies that structures with only one feedback path (e.g. the tradi-
tional structure of fig. 5(a)) are very insensitive to variations of some
parameters, e.g., the actuation voltage, the actuation capacitance, the
readout capacitance (and in general the readout gain). The tolerances
on these parameters are so large that it is possible to use the same
single-feedback architectures with different sensors [3].

The unconstrained architecture has multiple feedback paths. The
overall feedback is mechanical in nature, whereas the others are
electrical in nature. Here, the relative strength of the mechanical
path compared to the electrical path(s) influences the stability of the
system. Therefore, the allowed tolerances on the above parameters
are considerably less. This does not mean, however, that these
tolerances are difficult to meet, as is also evidenced from prototype
development [6]. Moreover, in practice, the stability of a mixed-
feedback architecture can easily be tuned. The tuning principle relies
on the fact that the stability of the system increases by strenghtening
the electrical path(s). E.g., in a (switched-capacitor) implementation,
this can easily be done by calibrating the reference voltage of the
feedback DAC.

VI. CONCLUSIONS

We have shown that traditional Σ∆ force-feedback architectures
cannot implement an arbitrary NTF, because they lack one degree of
freedom. Moreover, these structures require a compensation filter in
the loop to obtain an acceptable stable structure. In this manuscript,
we have presented an unconstrained architecture by replacing the
front-side resonator stage of an electrical Σ∆ modulator with the
mechanical sensor in such a way that the signal at the inner node
is not needed. This unconstrained architecture allows to implement
any NTF, and hence does not require a compensator filter. Moreover,
established design techniques for electrical Σ∆ modulators can now
also be applied to Σ∆ force-feedback loops. We demonstrated that
this way, greatly improved quantization noise performance can be
obtained (in our design example 12 dB).
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