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Abstract

This paper presents a multivariable relay-based PID

autotuning strategy, which ensures a specified modulus

margin (i.e. robustness). The algorithm is applied on

the coupled quadruple tanks from Quanser. The system

is challenging for control since it presents non-minimum

phase transmission zeros. The performance of the auto-

tuner is validated against a computer-aided design tool

based on the frequency response, i.e. FRTool. The ex-

perimental results suggest that the proposed autotuning

procedure has similar performance as the control design

based on full knowledge of the system. This is a remark-

able conclusion and provides a good motivation to claim

that our algorithm may be useful in chemical process ap-

plications where full knowledge of the systems model is

still a burden for the control engineer.

1 Introduction

Industrial applications of inter-connected systems are
manifold and present difficult control issues, such as time
delays, multivariable interaction, non-minimum phase dy-
namics, etc [1]. Process identification is usually very chal-
lenging and time consuming. To simplify this task and
to reduce the time required for it, many PID regulators
nowadays include autotuning capabilities, i.e. they are
equipped with a mechanism capable of computing the cor-
rect parameters automatically when the regulator is con-
nected to the plant. A specific class of autotuners use re-
lay feedback in order to obtain some information on the
process frequency response [2, 3]. For multivariable sys-
tems, the autotuning procedure needs to take into account
the cross-coupling dynamics in order to converge to sta-
ble closed loop controllers [4]. Using a relay controller,
the outputs will oscillate in the form of limit cycles (after
an initial transient).The controller parameters are then it-
eratively obtained such that these output oscillations con-
verge to the critical frequency of the entire coupled system
[4, 5]. The number of iterations is usually related to the

number of input-output pairings [6].
Classical PID autotuning approaches such as the

Astrom-Hagglund (AH) autotuner and Phase Margin
(PM) autotuner [7, 8, 9, 10], identify the critical point
on the process frequency response using such relay feed-
back. Their advantage is that they are very simple to ap-
ply, i.e. few choices are left for the user (which is indeed
an advantage if the industrial user is lacking theoretical
control engineering insight). The autotuner performance
is compared against model-based techniques, employing
a computer-aided design toolbox based on the frequency
response (i.e. FRTool, also developed in-house) [11]. A
typical chemical process setup for laboratory use is the
quadruple tank from Quanser (www.Quanser.com). The
process is multivariable, highly coupled and presents non-
minimum phase transmission zero. This setup is then used
to illustrate the effectiveness of the proposed algorithm in
real-life tests.

The outline of this paper is as follows. The setup is
briefly given in section 2. The system model and identifi-
cation (for validation purposes only) are presented in the
third section. The control algorithms are described in the
fourth section and their results are presented in the fifth
section. A conclusion section summarizes the main out-
come of this work.

2 Description of the MIMO system

Figure 1 presents the schematic overview of the mul-
tivariable system represented by the quadruple tank water
level control. The control objective is to regulate the level
of the water in the tanks below by manipulating the wa-
ter flows. The plant has two manipulated inputs, i.e. the
voltages of the two pumps Vp1(t) and Vp2(t) (expressed in
Volts), and two controlled outputs, i.e. the water levels of
the two tanks below, L2(t), the level in Tank2, and L4(t),
the level in Tank4 (both expressed in cm). There is a
strong coupling effect between the inputs and the outputs,
(e.g. in Tank2 there are two inputs: the flow from Pump1
through Out2, marked with dashed red line, and the flow
from Pump2 through Out1, denoted with green continuous



line, that is the output flow from Tank1). Hence, the con-
trolled level in Tank2 is influenced by the two inputs, and
by adjusting the percentage of water flow from each input,
one can change the system for having minimum phase or
non-minimum phase dynamics.

Figure 1. Schematic diagram of the quadru-
ple tank process from Quanser

Based on the configuration depicted in Figure 1, in
Tank2 there is a greater flow coming from Pump2, via
Tank1, than the flow coming directly from Pump1. This
exotic situation originates from the fact that the outlet di-
ameter Out1 is bigger than the diameter Out2, while the
outgoing orifices from each tank Doi , i=1...4 have all the
same diameter. The same situation applies for Tank4. It
follows the conclusion that the dominant flow in the tanks
2 and 4 comes from the manner in which the physical cou-
pling is implemented via the choice of the setup.

3 Modelling and identification

In order to simplify matters, the modelling principle for
a single-input single output setup is given below, but it is
valid for the multivariable setup as well. The outflow from
Tank1 can be expressed as Fo1 = Ao1vo1, with vo1 the
flow velocity.The cross-section area of the outflow orifice
in Tank1 can be expressed as Ao1 = 1

4πD
2
o1, with Do1 the

diameter. Using Bernoullis equation, we have that:

Fo1 = Ao1

√
2
�
gL1 (1)

Using the mass balance equation in Tank1 it follows that

At1
d

dt
L1 = Fi1 − Fo1 (2)

Substituting for Fi1 and Fo1 we have that:

d

dt
L1 =

KfVp −Ao1

√
2
√
gL1

At1
. (3)

In steady-state, all time derivatives are zero and it re-
sults KfVp0 − Ao1

√
2
√
gL10 = 0. For any value of the

desired level in Tank1 (L10 = 10cm), the value of the

pump voltage in equilibrium can be calculated. Applying
linearization and Laplace transform, we have that:

L11

Vp
(s) =

K1

τ1s+ 1
, (4)

where K1 = Kf

√
2
√
gL10

Ao1g
and τ1 = At1

√
2
√
gL10

Ao1g
Simi-

larly, the outflow from Tank2 can be expressed as Fo2 =
Ao2vo2. The cross-section area of the outflow orifice
in Tank2 can be expressed as Ao2 = 1

4πD
2
o2. Using

Bernoullis equation and the mass balance equation in
Tank2 it follows that:

At2

�
d

dt
L2

�
= Fi2 − Fo2, (5)

Substituting for Fi2 and Fo2 assuming steady-state, it fol-
lows that:

L10 =
A2

o2L20

A2
o1

. (6)

Applying linearization and Laplace transform, we have
that:

L21

L11
(s) =

K2

τ2s+ 1
, (7)

where K2 = Ao1
√
L20

Ao2
√
L10

and τ2 = At2

√
2
√
gL20

Ao2g
.

Identification was performed in order to allow valida-
tion of our autotuner method. A PRBS signal was applied
to the plant around the operating point of 10 cm. In Figure
2 are shown the deviation values of the two outputs, where
0 corresponds with the operating point of 10 cm. Signals
were sampled at a period of 1 second and de-trended. Pre-
diction error estimation algorithm has been used, resulting
in the following transfer function matrix:

G (s) =

� 1.78
22.71s+1

2.49
178.8s2+26.74s+1

2.76
159.2s2+33.41s+1

1.28
15.92s+1

�
(8)

The transmission zeros are:

z1 = −0.32; z2 = 0.07;
z3 = −0.06; z4 = −0.04;

(9)

To check input-output pairings, we apply the relative gain
array (RGA) method and obtain:

Λ =

�
−0.49 1.49
1.49 −0.49

�
(10)

The RGA matrix Λ suggests that the pairing 1-1/2-2
is not suitable, since the main diagonal has negative val-
ues. This outcome was expected, as already mentioned
in the description of the process, since u2 is the domi-
nant input for y1. Hence, the 1-2/2-1 pairing from figure
3 will be further used in the remaining of the paper. In
this schematic representation of the MIMO closed loops,
w1,2 denote the setpoints for the outputs y1,2, C1,2 are the
controllers for each loop, and Gi,j with i, j = 1...2 are the
transfer functions from input j to the output i.



Figure 2. The PRBS signal and the output
levels in the two lower tanks

Figure 3. Control Scheme with 1-2/2-1 pair-
ing

4 Control strategies

4.1 Proposed autotuning algorithm

The proposed autotuner is based on the classic idea of
exposing the process to an experiment, during the normal
operation. This requires careful design of the excitation
signal, to avoid de-stabilizing the process from its oper-
ating point. Traditional relay-based autotuning methods
such as AH identify one point on the Nyquist curve of the
process P: the intersection of the process beeline with the
negative real axis, ref. Figure 4 [8].

Using an appropriate PID controller, denoted by C, this
point is then moved to a specific point in the complex
Nyquist plane; e.g. for the original AH-tuner, the beeline
of C∗P goes through the specific point −0.6−0.28j (dis-
tance to the point -1 is then 0.5). The insights from [10]
show that specification of only 1 point in the Nyquist plane
might be sufficient for some type of processes, but might
as well result in poor (low) modulus margin for other types
of processes.

The development of the proposed MIMO autotuning
algorithm can be described in an iteratively manner.

Step1: Simultaneously close all the loops with a re-
lay feedback in order to take into account the coupling
effects while tuning the controller parameters [6, 4]. As
a result, both outputs will oscillate at the common critical

Figure 4. The Nyquist plot of the process
and its intersection with the negative real
axis

frequency of the MIMO system (i.e. the critical frequency
of the dominant loop).

Step2: Arbitrarily chose one output and find the oscil-
lations magnitude and phase.

Step3: Add a delay to the ’the chosen’ output, while
maintaining the same relay on the other loop (as in Step1).
Find the oscillations magnitude and phase for the re-
lay+delay loop.

Step4: Compute a PID controller for ’the chosen’ loop.
Step5: Replace the relay+delay from the loop selected

at step 2 with the computed controller (Step 4). Find for
the second loop the oscillations magnitude and phase.

Step6: Repeat steps 3-4 (with the mention that the
other loop is closed with PID).

Step7: Alternate between the two loops and repeat
steps 5-6 for each loop until the output magnitude and
phase found at Step 3 does not change from those found
at Step 2.

Thus, the convergence of the algorithm is established
when the output magnitude and phase in the relay+delay
test is the same like in the relay test. This was performed
with the help of the designer, but can be easily automated.
A condition for convergence is that minimum one of the
loops in the system has a characteristic locus with at least
180 degrees phase lag [4, 5].

The controllers from this paper were obtained after
four iterations of the above procedure. Next, the method-
ology behind steps 2-4 is presented. The development of
the proposed autotuning algorithm is based on imposing
a user-specified robustness. The robustness specification
can be translated using Nyquist plots as a circle of spec-
ified radius (r) around the point -1 as drawn in Figure 5
(r=the Modulus Margin, 0 < r < 1).

Using a relay test, two points from the process fre-
quency response and critical frequency are obtained.

P (jωc) = MP e
jϕP = MP e

j180◦ = −MP (11)

The algorithm searches for the angle α under which the
Nyquist curve of the process and controller P (jω)C(jω)



Figure 5. Supporting figure for algorithm
development

touches the circle in A. From (11) we get:

P (jωc)C(jωc) = MP e
jϕP ∗MCe

jϕC =

= MPMCe
j(180◦+ϕC) = Me

j(180◦+ϕ)
(12)

where:
ϕ = ϕC and M = MPMC (13)

Next, the textbook frequency response for the PID con-
troller is written:

C (jωc) = Kp

�
1 +

1

Tijωc
+ Tdjωc

�
=

Kp

�
1 + j

�
Tdωc −

1

Tiωc

�� (14)

Considering

tanϕC = Tdωc −
1

Tiωc
(15)

and
MC = Kp

�
1 + tanϕ2

C =
Kp

cosϕC
(16)

and imposing two identical zeros for the controller (Ti =
4Td), we obtain

tanϕC = Tdωc −
1

4Tdωc
⇒ Tdωc =

1 + sinϕ

2 cosϕ
(17)

Replacing (16) and (17) into (13) we get the parameters
for the PID controller:

Kp = M
MP

cosϕ

Td = 1+sinϕ
2ωc cosϕ

Ti = 4Td

(18)

where M and ϕ are obtained from Pythagorean Theorem
applied in figure 5:

M =
�

(r sinα)2 + (1− r cosα)2 =
=

√
r2 − 2r cosα+ 1

(19)

ϕ = arctan
r sinα

1− r cosα
(20)

Now we can express the variation of the modulus with
the phase, which describes the tangent to a circle of radius
r around the point -1:

dM

dϕ

����
ωc

=
dM/dω
dϕ/dω

(21)

with

dM

dω
=

d(MPMC)

dω
= MP

dMC

dω
+

M

MP

dMP

dω
(22)

and
dϕ

dω
=

d(ϕP + ϕC)

dω
=

dϕP

dω
+

dϕC

dω
(23)

In order to compute, we need

dMC

dω
=

dMC

d tanϕC

d tanϕC

dω
(24)

which is further equal to

Kp sinϕC
1

ω cosϕC
=

M sinϕC

MPω
(25)

and

dϕC

dω
=

d tanϕC/dω
d tanϕC/dϕC

=
1/ω cosϕC

1�
cosϕC

2
=

cosϕC

ω
(26)

Substituting, we have

dM

dϕ

����
ωC

= M

sinϕ
ωc

+ 1
MP

dMP
dω

��
ωc

cosϕ
ωc

+ dϕP

dω

���
ωc

(27)

Since for autotuning purposes we do not have a model
for the process, we will approximate the derivative of the
process frequency response in ωC using differences:

dMP

dω

����
ωc

≈ ∆MP

∆ω

����
ωc

=
MP (jωc)−MP (jω�)

ωc − ω� (28)

dϕP

dω

����
ωc

≈ ∆ϕP

∆ω

����
ωc

=
ϕP (jωc)− ϕP (jω�)

ωc − ω� (29)

where MP (jω�) and ϕP (jω�) are the modulus and phase
of the process at a frequency ω� which is close to the criti-
cal frequency ωc. This can be easily obtained using a relay
test with time delay, τd = ∆ϕP

ωC
, corresponding to a spec-

ified ∆ϕP [12]. Next, we compute the variation of the
modulus with the phase, in the point A, from figure 5:

dM

dϕ

����
A

=
dM/dα
dϕ/dα

= M
sinα

cosα− r
(30)

where
dM

dα
=

r sinα

M
(31)

dϕ

dα
=

r (cosα− r)

M2
(32)



Then, by finding iteratively the angle ∝∗ for which the

error
����
dM
dϕ

���
ωC

− dM
dϕ

���
A

���� is minimum, we obtain the opti-

mal parameters of the controller for a specified modulus
margin r.

The procedure presented above, can be summarized as:
1) Find ωc and MP (ωc) via relay test [ϕc = −180◦]
2) Find ω�

c, MP (ω�
c) and ϕP (ω�

c) via a relay+delay test
3) Calculate ∆MP

∆ω and ∆ϕP

∆ω
4) For α = 0...90◦, calculate M(α), ϕ(α) and

δ (α) =

����
dM
dϕ

���
ωC

− dM
dϕ

���
A

����
5) Calculate M(α∗) and ϕ(α∗) with

α∗ = argminαδ(α)
6) Calculate {Kp, Ti, Td}.
This method of autotuning has been successfully vali-

dated on numerous examples for single input-single out-
put systems [12, 13].

4.2 Computer Aided PID Design: FRTool

In this paper, a proof of concept for a MIMO autotun-
ner is shown, thus as a reference performance the auto-
tuner is compared against an ’in-house’ developed tool,
namely the Frequency Response tool (FRtool) for Mat-
lab as described in [11]. The next step could be compar-
ing the performance against a controller tuned for MIMO
processes [14]. Figure 6 shows the tuning of the PID con-
troller on the process P (s) with the specifications: over-
shoot %OS < 5%, robustness Ro > 0.7 and settling time
Ts < 200 seconds. In this figure, C denotes controller
and P denotes process transfer function (in this case, the
closed loop transfer function, from input 1 to output 1,
taking into account the coupling effect). Also in the fig-
ure, with the blue continuous line is denoted the Nichols
plot corresponding with the first loop and the numerical
values of the gain and zeros are given, while with black
dashed line, the interval for all MIMO loops is marked.
The corresponding PID parameters are given in Table 1.
Notice that P(s) in case of multivariable system is the total
closed loop of the loop(s), which are not employed in this
tuning step. In this way, interaction is already taken into
account. A simple K = 1 controller was put on the other
loops, to be able to close the loop.

5 Results and Conclusions

Tuning of the model-based controllers via FRTool has
been done using the specifications described in section
4.2. The FRTOOL-PID controller parameters are given in
table 1. Tuning of the MM controller has been performed
using a relay test on the real plant for each loop, giving a
robustness specification of 0.7 (70%). An example of such
a relay feedback test on the real plant is given in Figure 7.
The final MM-PID controller parameters are also given in
table 1.

Figure 8 depicts the results for setpoint tracking closed
loop performance for the PID controllers tuned with FR-

Figure 6. The Nichols plot of the FRTool
CAD interactive graphical user interface.

Tool and with MM autotuner. The controllers for Tank2
and Tank4 are denoted by FR2, MM2 and FR4, MM4,
respectively. The reference for water level in Tank2 is
changed from 10cm to 11cm, while keeping the reference
for water level in Tank4 constant to 10cm. Next, the ref-
erence for Tank4 as been changed to 11cm, while keeping
the water level in Tank2 constant to 11cm. Coupling ef-
fects are observed, but remarkably, both controllers (i.e.
the model based PID and the PID autotuner) have similar
closed loop performance.

Figure 9 depicts the results for disturbance rejection
performance for the same PID controllers. The distur-
bance consists in eliminating the water from tank1 directly
in the reservoir, without going to Tank2 first. As a result,
the level in Tank2 drops and the controller changes the
pump voltage to recover the reference value of 11cm. Due
to the coupling between the pumps (recall figures 1), the
level in Tank4 will be also disturbed. Again, both model
based PID controllers and PID autotuners have similar
performance.

Table 1. Controller parameters. See text for
explanation.

Kp Ti Td

FR2 1 5 20
FR4 1.1 4.54 18.18
MM2 0.86 4.96 19.16
MM4 1.09 5.19 20.39

This paper presented successful real-life tests of a
novel PID autotuning procedure based on relay feedback
for multivariable system with transmission zero and sig-
nificant coupling. Further extension of this work could be
the validation on other MIMO processes.



Figure 7. Example of relay test on the real
plant

Figure 8. Real life test for setpoint tracking
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