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1 Introduction

Chemical reaction kinetics are a reflection of the reaction mechanism. Therefore,
kinetic data are used with advantage to derive features of this reaction mecha-
nism. In this regard, it was shown by several authors that more information can
be extracted from transient experiments than from stationary ones, both for non-
catalytic (Hulburt & Kim, 1966) and catalytic reaction systems (Tamaru, 1964;
Boudart, 1968; Biloen, 1983; Zamostny & Belohlav, 2002). Furusawa et al. (1976),
Renken (1993), Efstathiou & Verykios (1997) and Bennett (2000) have reviewed
the transient experimental techniques available. Yet another review by Mills &
Lerou (1993) was written from the perspective of the industrial catalyst designer.
The role of transient experiments becomes crucial if reactions are studied which
take place in a transient regime in practice. The industrially most relevant example
is fluid catalytic cracking, where the catalyst deactivates on a time scale compa-
rable to that of the cracking itself. This imposes the use of riser reactors. Next to
this category of non-steady state operation of catalysts, the existence of oscillations
in the feed composition is an obvious reason for transient regimes, an important
example being catalytic automotive emission converters, where exhaust gases are
oscillatorily fed from a combustion engine.

Nonlinear least-squares (NLSQ) regression of kinetic data is the key to the statis-
tically sound discrimination between rival kinetic models, and hence between the
corresponding reaction mechanisms (Froment & Hosten, 1981). NLSQ regression
with a certain physico-chemical reaction model yields estimates of the parameters
occurring in this model and valuable statistical judgements about their significance
in the form of confidence intervals. However, the unbiasedness of the estimates,
the validity of the confidence intervals and that of the model discrimination algo-
rithms depend on whether the experimental data obey certain statistical prerequi-
sites which are discussed in section 2 of this paper. All too frequently, these condi-
tions are tacitly assumed fulfilled. However, the assumption that the experimental
errors are homoskedastic and uncorrelated are not always valid. The autocorrela-
tion of experimental errors when recording time series is well-known and is often
referred to as ‘coloured noise’. The necessary conditions unverified, there is a real
danger that experimentalists draw unfounded conclusions. They may, for exam-
ple, conclude that there is significant experimental support for certain mechanistic
details of a reaction while in there is not. This paper presents a second-order statis-
tical regression as a way to prevent such mistakes if replicate experimental data are
available.
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2 Theoretical background

2.1 Experimental time series

The experimentalist controls the conditions at which experiments are performed.
For kinetic experiments, these are typically the (inlet) temperature, the inlet con-
centrations of the reactants and, for reactions involving gases, the (inlet) pressure.
As a rule, during transient experiments, at least one of these is forced to undergo
a well-defined variation in time. In the steady-state isotopic transient kinetic anal-
ysis (SSITKA) for example, an isotopic reactant concentration step is applied to
the reactor. In the temperature programmed desorption (TPD), the desorption of
products from a catalyst surface is registered in response to a reaction tempera-
ture ramp. From now on, the experimental conditions and those parameters char-
acterizing their forced change will be referred to as the experimental conditions
in a broad sense. Let them be collected in a column vector ξξξ . In a way depen-
dent on ξξξ , nv physical variables, V1, V2, . . . , Vnv , evolve as the experiment pro-
gresses. They are recorded by measuring devices, resulting in time series of values
measured at equally spaced time points ti: ti+1− ti = ∆t, for all i ∈ {1, 2, . . . , nt}.
∆t is called the sampling period or sampling interval. Assume ne multiresponse
experiments are carried out at conditions ξξξ 1, ξξξ 2, . . . and ξξξ ne . At each condition
ξξξ e, e ∈ {1, 2, . . . , ne}, this results in one time series for each physical variable Vv,
v ∈ {1, 2, . . . , nv}:

ye,v =


ye,v(t1)

ye,v(t2)
...

ye,v(tnt )

 ∈Rnt×1, (1)

represented here as a column vector. Think of these time series as being stacked in
a single composite column vector y ∈Rn×1, with

n = ne nv nt . (2)

Throughout this paper, typical experimental data from a Temporal Analysis of
Products (TAP) setup are used for illustration purposes (Gleaves et al., 1988, 1997;
Yablonsky et al., 2003). The latter contains a tubular reactor (length typically 3 cm,
diameter 5 mm) loaded with a fixed bed of solid catalyst and/or inert particles.
Vacuum (10−4 to 10−5 Pa) is maintained to ensure that gas transport occurs via
well-defined Knudsen diffusion. The reactor is isothermal in time and space, with
a temperature to be set by the user. At the beginning of each experiment, a reactant
pulse having a typical width between 250 and 500 µs is fed at one side of the reac-
tor. A mass spectrometer monitors the flow of products and unconverted reactants
leaving the reactor at the other side during typically 1 s. It records a fixed mass of
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the spectrum so that unless use is made of a multitrack system (Nijhuis et al., 1997),
to observe multiple components, the experiment has to be repeated as least as many
times as there are components to be monitored. For TAP, the variables V1, V2, . . . ,
Vnv are thus the mass spectrometer measurements, in volt, at the selected spectrum
masses. The pressure varies in time and space in a way fully determined by the reac-
tant pulse size. Hence, unless it is unknown, the latter is an experimental condition
but the former is not. The reaction temperature is another experimental condition.
As an example, Figure 1 shows a typical experimental TAP pulse response.

2.2 Model-calculated time series

The TAP reactor is modelled by a system of partial differential equations with initial
and boundary conditions (Gleaves et al., 1988; Constales et al., 2004, 2006). Usu-
ally, numerical techniques are applied to integrate the model equations, although an
analytical integration is possible in some cases. In general, time series equivalent
to those experimentally recorded can be calculated from reactor simulations. As a
rule, use has to be made of calibration data of the measurement equipment in a final
stage. For TAP for example, the mass spectrum of all products has to be known to
be able to convert the product flow pulse responses in moles per second, calculated
from the reactor model, to the mass spectrometer signals measured in volt.

The time series calculated from the model depend on some physico-chemical pa-
rameters b1, b2, . . . , bp (mostly kinetic and transport parameters) appearing in the
reactor model. These are collected in a vector b∈Rp×1. The model-calculated time
series can therefore be represented as

fv(ξξξ e, b) =


fv(t1, ξξξ e, b)

fv(t2, ξξξ e, b)
...

fv(tnt , ξξξ e, b)

 , (3)

with e ∈ {1, 2, . . . , ne} and v ∈ {1, 2, . . . , nv}. Furthermore, let f(b) ∈Rn×1 be the
model-calculated analogue of y: a composite of all vectors fv(ξξξ e, b). In f(b), f is
the model function (Graybill & Iyer, 1994).

2.3 Least-squares regression of time series

Regression analysis is a statistical tool in the hands of the empiricist to investi-
gate the causal relation between certain well-known independent variables, possi-
bly controlled by the empiricist, on the one hand, and some observed dependent
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variables on the other. Regression analysis is useful in those cases where a causal
model is known (or assumed valid) except for some parameters occurring in it, such
as pre-exponential factors and activation energies in kinetic models. By regression,
these parameters are estimated as those that make the model-calculated dependent
variables coincide as near as possible with the empirical ones.

By far, the most widely applied regression technique is NLSQ regression. Some
recent text books on the matter are (Seber & Lee, 2003; Seber & Wild, 2003)
(mathematical) and (Graybill & Iyer, 1994; Draper & Smith, 1998) (applied). If
the model-calculated dependent variables are linear functions of the unknown pa-
rameters, their estimates can be found in a direct linear-algebraic way. If not, they
are to be found iteratively, starting from some initial estimates, which is computa-
tionally more expensive. The Levenberg-Marquardt iterative method is commonly
used (Levenberg, 1944; Marquardt, 1963).

Hougen & Watson (1947) introduced the least-squares regression approach as a
means to estimate kinetic parameters from stationary kinetic experiments. They re-
arranged the concentration and rate variables in Langmuir-Hinshelwood-Hougen-
Watson type rate equations to render them linear in the parameters to be estimated.
This allowed them to apply the computationally inexpensive linear least-squares re-
gression theory. With the advent of the digital computer, direct nonlinear regression
of the reaction rates was preferred over this method (Kittrell et al., 1965). Cutlip et
al. (1972) first applied nonlinear least-squares regression to transient kinetic data.

In transient kinetic experiments, the independent variables are the experimental
conditions ξξξ e,v and the time t. The dependent variables are the experimental record-
ings ye,v. The physico-chemical parameters b are to be estimated by nonlinear least-
squares regression. Figure 2 gives a schematic overview. The number of parameters
that can be estimated is limited to the dimension of the data set y:

p ≤ n. (4)

Strictly speaking, least-squares regression should only be applied under the follow-
ing six conditions.

Condition 1 The independent variables contain no experimental errors.

Condition 2 The model is adequate.

Condition 3 The mean experimental error is zero.

Condition 4 All errors are normally distributed.

Condition 5 The errors are homoskedastic, which means that their standard devi-
ation is finite and constant.
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Condition 6 The errors are uncorrelated.

Condition 1 requires ξξξ and t to be known without (significant) error. In kinetic
studies, the experimental conditions are usually temperature and pressure. These
are typically known with very good accuracy and precision. The same is true for
the time t. The adequacy of the model referred to in condition 2 means that it applies
with some real, unknown parameters βββ , aside from additive random experimental
errors εεε (Draper & Smith, 1998):

y = f(βββ )+εεε . (5)

In fulfilment of the other conditions, εεε has to be a random error vector with multi-
dimensional normal distribution with mean zero (0n) and variance matrix In σ2:

εεε ∼ N
(
0n,In σ

2) . (6)

If conditions 1 to 6 are fulfilled, the parameters β̂̂β̂β minimizing of the residual sum
of squares S(b) are the maximum-likelihood estimates of the real parameters βββ .
(Joint) confidence regions of the parameter estimates β̂̂β̂β can be estimated, which
allow the experimentalist to judge the significance of the regression and of the
individual parameter estimates. Appendix A gives a concise overview of the theory.

Generally, at best a simplifying model can be conceived of the experimental system,
failing to grasp all its subtleties. Condition 2 is then fulfilled at most in approxima-
tion, and practically translates to the requirement that the bias between experimen-
tal and model-calculated time series, so-called lack of fit (Graybill & Iyer, 1994;
Draper & Smith, 1998), is small compared with the experimental error. In the con-
text of time series the latter consists of noise: similarly to y and f(b), εεε in (5) is a
composite vector containing the noise εεεe,v in all time series ye,v. As is always the
case in regression analysis, condition 2 is assumed valid. Condition 3 expresses a
basic experimental requirement and is also assumed fulfilled here on that account.

Assumption 1 The conditions 1, 2 and 3 are fulfilled.

The fulfilment of the conditions 4, 5 and 6 should not be taken for granted. For
TAP pulse responses, at least, they are generally not met. This was demonstrated
previously by Roelant et al. (2007) and Schuurman (2007). Condition 5 requires
the level of noise to be constant in time, its variance σ2 unvarying. Moreover, in
absolute terms, the noise must be equally important in all experimental time se-
ries, σ2 being independent of the experimental conditions ξξξ e and the variable Vv
monitored. Fulfilment of condition 6 implies different noise time series to have no
cross-correlation. In this paper, the latter is assumed to be valid as a relaxed form
of condition 6.

Assumption 2 Different experimental time series have no cross-correlation.
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In particular, assumption 2 involves that the nv time series measured during each
experiment have no cross-correlation. This is the case for most TAP systems, where
a single ‘experiment’ requires a series of nv independently repeated experiments at
the same experimental conditions (see section 2.1). Additionally to assumption 2,
condition 6 requires all noise to be white, i.e. free of time autocorrelation. This is
not assumed to be the case in this paper: the population variance matrix

V(εεεe,v) = E
[
εεεe,vεεε

T
e,v

]
(7)

need not be diagonal.

This paper will show how the conditions 4, 5 and 6 can be fulfilled. Section 3
attends to the case where V(εεεe,v) is known, a situation rarely met in practice. By
contrast, in section 4, V(εεεe,v) is not assumed known.

3 Conditioning data with known noise population variance matrix for least-
squares regression: population principal component analysis and rescaling

By its nature, the population variance matrix V(εεεe,v) of the noise εεεe,v in an exper-
imental time series ye,v is a symmetric, positive definite matrix. Thus, there exists
an eigendecomposition

V(εεεe,v) = Ue,vΛΛΛe,vUT
e,v, (8)

where ΛΛΛe,v ∈Rnt×nt is a diagonal matrix holding the positive eigenvalues of V(εεεe,v)
in its diagonal, ranked from high to low, i.e.

ΛΛΛe,v =


σ2

e,v,1 0 · · · 0

0 σ2
e,v,2 · · · 0

...
... . . . ...

0 0 · · · σ2
e,v,nt

 , (9)

with
σe,v,1 > σe,v,2 > . . . > σe,v,nt > 0 (10)

and Ue,v is a nt × nt matrix having the associated, orthonormal eigenvectors as
columns:

Ue,v =

ue,v,1 ue,v,2 · · · ue,v,nt

 , (11)

with

uT
e,v,kue,v, l =

{
1, if k = l
0, else.

(12)
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In matrix form, the orthonormality (12) of the eigenvectors translates to

UT
e,vUe,v = Int . (13)

Consider the linear transformation of time series ye,v by UT
e,v:

y′e,v = UT
e,vye,v. (14)

The random part εεεe,v of ye,v is hereby transformed to the random part εεε ′e,v of y′e,v:

εεε
′
e,v = UT

e,vεεεe,v. (15)

The variance matrix of εεε ′e,v is found as

V(εεε ′e,v) = E
[
εεε
′
e,vεεε

′
e,v

T
]

(16)

(15)
= E

[
UT

e,vεεεe,vεεε
T
e,vUe,v

]
(7)
= UT

e,vV(εεεe,v)Ue,v
(8)
= UT

e,vUe,vΛΛΛe,vUT
e,vUe,v

(13)
= ΛΛΛe,v. (17)

εεε ′e,v is the result of expressing εεεe,v in a coordinate system constituted by the or-
thonormal eigenvectors of V(εεε ′e,v). In other words, for each k, the kth component
of εεε ′e,v is the euclidean length of the orthogonal projection of the random noise
vector εεεe,v on ue,v,k. According to (17), (9) and (10), these components are mutu-
ally uncorrelated and have variances decreasing as a function of k. Apparently, the
largest variability of the noise is parallel to the first eigenvector ue,v,1, the second
largest variability parallel to the second eigenvector ue,v,2, etc. For this reason, the
eigenvectors, and particularly the first few of them, are called the population prin-
cipal components (pPCs) of the noise. The linear transformation (15) is called the
population principal component analysis (pPCA) or the discrete Karhunen-Loève
transformation of the noise (Therrien, 1992; Massart et al., 1997; Vandeginste et al.,
1998; Jolliffe, 2004). In fulfilment of condition 6 for least-squares regression, trans-
formation (14) projects the time series on the pPCs of their noise. Simple rescaling
of the components of the resulting vector y′e,v by the reciprocal of their standard de-
viation suffices to also render their errors homoskedastic, in fulfilment of condition
5. Define

y′′e,v = ΛΛΛ
−1/2
e,v y′e,v

= ΛΛΛ
−1/2
e,v UT

e,vye,v (18)
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with

ΛΛΛ
−1/2
e,v =


1/σe,v,1 0 · · · 0

0 1/σe,v,2 · · · 0
...

... . . . ...

0 0 · · · 1/σe,v,nt

 . (19)

Then, taking into account that ΛΛΛ
−1/2
e,v is symmetric, the variance matrix of the ran-

dom part
εεε
′′
e,v = ΛΛΛ

−1/2
e,v εεε

′
e,v (20)

of y′′e,v becomes

V(εεε ′′e,v) = E
[
εεε
′′
e,vεεε

′′
e,v

T
]

(20)
= E

[
ΛΛΛ
−1/2
e,v εεε

′
e,vεεε

′
e,v

T
ΛΛΛ
−1/2
e,v

]
(16)
= ΛΛΛ

−1/2
e,v V(εεε ′e,v)ΛΛΛ

−1/2
e,v

(17)
= ΛΛΛ

−1/2
e,v ΛΛΛe,vΛΛΛ

−1/2
e,v

= Int . (21)

Assumption 2 implies that there is no cross correlation between the different trans-
formed noise vectors εεε ′′e,v. Hence, it follows from (21) that the variance matrix of
their composite vector εεε ′′ is

V(εεε ′′) = In. (22)
This fulfils conditions 5 and 6 for regression of y′′ with f′′(b), the composite vectors
of y′′e,v and

f′′v (ξξξ e, b) = ΛΛΛ
−1/2
e,v UT

e,vfv(ξξξ e, b), (23)
respectively. The fulfilment of the conditions 1, 2 and 3 (see assumption 1) holds.
However, condition 4 generally remains unfulfilled. Moreover, observe that the ma-
trices ΛΛΛe,v and Ue,v were calculated from the noise’s population variance matrix
V(εεεe,v), while this matrix is usually not known. These problems can be solved
making use of replicate experiments, as will be explained in the sections 4.1 and
4.2.

4 Conditioning replicate experimental data with unknown noise variance
matrix for least-squares regression: second-order statistical regression

4.1 Sample principal component analysis and rescaling

It is often possible to replicate transient experiments at low additional cost. The
replicate time series recorded must be stochastically homogeneous and mutually
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independent. Therefore, for catalytic experiments, the experimentalist has to make
sure that any changes in the catalyst’s surface between the replicate experiments
remain negligible. The availability of replicate experiments offers three advantages.

(1) Replicate time series can be averaged to obtain time series with an increased
signal-to-noise ratio. Regression of such averages thus yields more significant
information.

(2) The noise of the average of, say, minimum ten time series can be considered
normally distributed in good approximation, whatever the distribution of the
original noise, because of the central limit theorem. This fulfils condition 4
for least-squares regression of the average time series.

(3) From replicates, second-order statistical information (the variance matrix) can
be derived about the noise. This information can be used to transform linearly
the time series to fulfil the conditions 5 and 6. An approach similar to the one
presented in section 3 can be followed.

Advantage 2 involves an assumption.

Assumption 3 A sufficient amount of replicate time series is available to consider
the noise of the average time series normally distributed in good approximation.

Assume there are re ≥ 2 replicates of each experimental time series ye,v: y(1)
e,v, y(2)

e,v,
. . . , y(re)

e,v . Not all experiments have to be replicated an equal amount of times, which
is why a subscript e is provided in re. Define ye,v as the average time series and the
error matrix Ee,v ∈Rnt×re as the block matrix

Ee,v =

y(1)
e,v−ye,v y(2)

e,v−ye,v · · · y(re)
e,v −ye,v

 (24)

Then the population variance matrix V(εεεe,v) of the noise εεεe,v in the time series ye,v
can be estimated from the replicates as the sample variance matrix

V̂(εεεe,v) =
1

re−1
Ee,vET

e,v. (25)

Normally, the following assumption applies.

Assumption 4 The number of replicate experiments does not exceed the number
of samples in one time series:

re ≤ nt . (26)

In the case of TAP for example, re would typically be 20 while nt would be 1000.
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By construction and assumption 4, V̂(εεεe,v) ∈Rnt×nt is a symmetric, positive-semi-
definite matrix of rank re−1. Thus, there exists an eigendecomposition

V̂(εεεe,v) = Ûe,vΛ̂ΛΛe,vÛT
e,v, (27)

where Λ̂ΛΛe,v ∈R(re−1)×(re−1) is a diagonal matrix with the re−1 nonzero eigenvalues
of V̂(εεεe,v) as diagonal elements, ranked from high to low, i.e.

Λ̂ΛΛe,v =


s2

e,v,1 0 · · · 0

0 s2
e,v,2 · · · 0

...
... . . . ...

0 0 · · · s2
e,v,re−1

 , (28)

with

se,v,1 > se,v,2 > . . . > se,v,re−1 > 0 (29)

and Ûe,v is a nt × (re−1) matrix with the associated eigenvectors as columns:

Ûe,v =

ûe,v,1 ûe,v,2 · · · ûe,v,re−1

 . (30)

The eigenvectors are orthonormal:

ûT
e,v,kûe,v, l =

{
1, if k = l
0, else.

(31)

In matrix form:

ÛT
e,vÛe,v = Ire−1. (32)

Analogously to (14), say

y′e,v = ÛT
e,vye,v. (33)

y′e,v is ye,v orthogonally projected on the space spanned by the eigenvectors of
V̂(εεεe,v) corresponding to nonzero eigenvectors, expressed in the orthonormal co-
ordinate system they constitute. Observe that the transformed replicates of ye,v can
be considered replicates themselves of y′e,v. For each k ∈ {1, 2, . . . , re}, define

y′(k)e,v = ÛT
e,vy(k)

e,v. (34)
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Moreover the average of the transforms is equal to the transformed average, y′e,v.
Corresponding to (24), define the error matrix

E′
e,v =

y′(1)
e,v −y′e,v y′(2)

e,v −y′e,v · · · y′(re)
e,v −y′e,v

 (35)

= ÛT
e,vEe,v. (36)

The variance matrix V(εεε ′e,v) is estimated as

V̂(εεε ′e,v) =
1

re−1
E′

e,vE′
e,v

T

(36)
=

1
re−1

ÛT
e,vEe,vET

e,vÛe,v

(25)
= ÛT

e,vV̂(εεεe,v)Ûe,v
(27)
= ÛT

e,vÛe,vΛ̂ΛΛe,vÛT
e,vÛe,v

(32)
= Λ̂ΛΛe,v. (37)

As this matrix is diagonal, the transformation is expected to fulfil condition 6 for
least-squares regression. The eigenvectors ûe,v,1, ûe,v,2, . . . , ûe,v,re−1 are called
sample principal components (sPCs) of the noise. Transformation (36) is analo-
gous to the pPCA (15) and is referred to as sample principal component analysis
(sPCA). As before, rescaling enables to meet condition 5. Define

y′′e,v = Λ̂ΛΛ
−1/2
e,v y′e,v

= Λ̂ΛΛ
−1/2
e,v ÛT

e,vye,v, (38)

where Λ̂ΛΛ
−1/2
e,v is defined analogously to ΛΛΛ

−1/2
e,v in (19). Then the sample variance

matrix of the error εεε ′′e,v of y′′e,v is the unit matrix:

V̂
(
εεε
′′
e,v

)
= Ire−1. (39)

The sample variance matrix V̂(εεε ′′e,v) is an estimate of the unknown population vari-
ance matrix V(εεε ′′e,v) based on the replicate data available. While transformation
(38) was constructed to equate the first with the unit matrix Ire−1, the latter is close
but probably not equal to Ire−1:

V(εεε ′′e,v)≈ Ire−1. (40)

Correspondingly, the components of εεε ′′e,v are neither fully uncorrelated nor per-
fectly homoskedastic. However, the approximate validity of (40) improves as more
replicates become available.
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As a consequence of (39), the sample variance matrix of the error vector εεε
′′
e,v of the

transformed average time series, y′′e,v = Λ̂ΛΛ
−1/2
e,v ÛT

e,vye,v, is calculated as

V̂
(
εεε
′′
e,v

)
=

1
re−1

Ire−1. (41)

A subsequent rescaling

y′′′e,v =
√

re−1y′′e,v
=

√
re−1Λ̂ΛΛ

−1/2
e,v ÛT

e,vye,v (42)

enables to obtain
V̂

(
εεε
′′′
e,v

)
= Ire−1, (43)

where εεε
′′′
e,v is the random part of y′′′e,v. All transformed average time series y′′′e,v ∈

R
(re−1)×1 can then be stacked in a single vector y′′′ ∈ Rn′′′×1, with n′′′ the total

number of replicate experimental times series,

n′′′ = nv

ne

∑
e=1

(re−1). (44)

It follows from assumption 2 and equation (43) that the sample variance matrix of
the random part εεε

′′′ of y′′′ is calculated as

V̂(εεε ′′′) = In′′′ . (45)

y′′′ can now be regressed with its model-calculated analogue f′′′(b), a composite
vector of transformed model-calculated time series f′′′v (ξξξ e, b):

f′′′v (ξξξ e, b) =
√

re−1Λ̂ΛΛ
−1/2
e,v ÛT

e,vfv(ξξξ e, b). (46)

Conditions 5 and 6 are expected to be fulfilled by (45). Moreover, as the transfor-
mation presented is linear, the fulfilment of the conditions 2, 3 and 4, assured by
the assumptions 1 and 3, holds. In summary, y′′′ is provisionally found suited for
regression with f′′′(b). Obviously, this regression is only possible if the number of
parameters is not larger than the dimensionality of these vectors. This is assumed
in this paper.

Assumption 5 The number of parameters does not exceed the total number of
replicate experimental time series:

p ≤ n′′′. (47)

Taking into account equations (2), (44) and (26), comparison of (47) with (4)
teaches that by application of the sPCA (33), the number of parameters that can
be estimated was reduced. In reality, rarely more than, say, ten parameters have
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to be estimated. Keeping in mind assumption 3, the limitation is unlikely to raise
problems in practice. The dimensionality reduction would decrease the computa-
tional load of the regression, were it not that the most time-consuming part is the
evaluation of the model function f, which generally requires the numerical integra-
tion of one or more systems of partial differential equations. On the other hand,
because y′′′ and f′′′(b) have less components than their originals, the transforma-
tion is noninvertible. Hence, a part of the information is lost for regression. This can
lead to an unnecessary increase of the width of the parameter confidence intervals.
Preferably, y is well aligned with the vector space S spanned by all sPCs. In that
case, the orthonormal coordinate system they constitute is able to describe y well,
y’s orthogonal projection on S not differing so much from its original. The angle
θ between y and the space S can be calculated from

cosθ =
‖y′‖
‖y‖

, (48)

where y′ is the composite of all vectors y′e,v. θ is a measure for the distortion
of the experimental set by switching to a smaller coordinate system at sPCA. In
other words, θ is a rough measure of the fraction of information lost. In the most
favourable case, evidently, θ ≈ 0◦.

Figure 3 visualizes the first four sPCs calculated from a set of eight hundred repli-
cate TAP pulse responses, one of which was shown in Figure 1. Figure 4 shows the
sample standard deviations along the first few sPCs. The data used stem from argon
pulsed over quartz at room temperature. Hence, the experiment was non-reactive,
so that the reactor bed was not affected by the gas pulses. This made it possible
to collect a number of replicates as large as eight hundred (see remark on catalytic
experiments at the beginning of this section). Figures 3 and 4 also show sPCs and
sample standard deviations calculated from a reduced set of 20 replicates, a realis-
tic number. The angle θ calculated for the full set of 800 replicates was found to
be 1.3◦. This would perhaps be acceptable, but for the reduced set of 20 replicates,
θ = 53◦. This is by all means unacceptable. Section 4.2 will show how precondi-
tioning the data enables reduction of the information loss.

4.2 Data preconditioning

On the basis of replicates, section 4.1 presented the sPCA as a way to decorrelate
the experimental data. This was at the expense of a dimensionality reduction. The
coordinate system constituted by the sPCs ûe,v,1, ûe,v,2, . . . , ûe,v,re−1 was found
unable to describe the time series well, resulting in a serious loss of experimental
information at sPCA. Compare the sPCs calculated for a set of replicate TAP pulse
responses, shown in Figure 3, with one of these responses depicted in Figure 1.
While the pulse response shows a relatively slow variation, the sPCs show very fast
random fluctuations. This is probably a general feature. It is no surprise that the
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coordinate system constituted by the sPCs is unable to give a good representation
of the (average) pulse response. A better result would be obtained if the sPCs were
smoother. This can be achieved by transforming the original time series so that
their noise, although still random, becomes smoother. To this end, the experimental
time series will be submitted to an extra conditioning transformation before least-
squares regression.

Observe that any linear transformation preserves the fulfilment of the conditions
2, 3 and 4 (assumptions 1 and 3). It is therefore allowed to transform linearly the
time series, before performing a sPCA and rescaling in fulfilment of conditions 5
and 6. Indeed, say T is a nonsingular nt × nt matrix. Then Tye,v contains all the
information of ye,v. Instead of regressing the y′′′e,v, defined by (42), with f′′′v (ξξξ e, b)
from (46), vectors

y′′′e,v,T =
√

re−1Λ̂ΛΛ
−1/2
e,v,TÛT

e,v,TTye,v (49)

can just as well be regressed with

f′′′v,T(ξξξ e, b) =
√

re−1Λ̂ΛΛ
−1/2
e,v,TÛT

e,v,TTfv(ξξξ e, b). (50)

In the latter two expressions, a subscript T has been added to the matrices Ûe,v and
Λ̂ΛΛe,v to indicate that an eigendecomposition is performed of V̂(Tεεεe,v) instead of
V̂(εεεe,v), so that Ûe,v,T and Λ̂ΛΛe,v,T indeed depend on T. Many matrices T have the
desired smoothing effect on the noise. As an example, the lower triangular matrix,

T =


1 0 · · · 0

1 1 · · · 0
...

...
...

1 1 · · · 1

 ∆t, (51)

involves the replacement of each sample y(ti) in the time series by the Riemann
sum ∑

i
j=1 y(t j)∆t of the preceding samples and itself.

Figure 5 shows the average y of the eight hundred Ar pulse responses used in sec-
tion 4.1, and its Riemann cumulative Ty. Still for the same set of experimental data,
Figure 6, analogous to Figure 3, visualizes the first four sPCs of the transformed
pulse responses. Figure 7, analogous to Figure 4, shows the sample standard de-
viations along the first few sPCs. As desired, the sPCs are smoother. This was ex-
plained intuitively at the beginning of this section, but there is also a mathematical
explanation. The linear transformation T renders the unknown population variance
matrix near-singular in such a way that the population standard deviations along
the latter nt − (re − 1) pPCs, σre , σre+1, . . . , σnt , become negligible. As a con-
sequence, the sPCs and the corresponding standard deviations can be considered
nearly unbiased estimates of the pPCs and the corresponding standard deviations.
The pPCs are generally smooth and hence so are their estimates, the sPCs, apart
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from their random part. That the sPCs and the corresponding standard deviations
indeed evolve to the smooth pPCs and the corresponding standard deviations is ap-
parent in Figure 6 and Figure 7. As intended, the relative smoothness of the sPCs
causes a better alignment of the space S they span and the experimental data y.
This is illustrated by the angle θ which is 0.0022◦ for the complete data set of eight
hundred replicates and still 0.47◦ for the reduced set of twenty replicates.

The regression of y′′′T , composite vector of the y′′′e,v,T with f′′′T (b), composite of
the f′′′v,T(ξξξ e, b) with a suitable T will be called second-order statistical regression
(SOSR). Figure 8 gives a summarizing overview.

Figure 7 illustrates that the sample standard deviation along the successive sPCs
drops to zero very quickly. This means that the first few of them already account
for most of the variability of the noise. In some cases, a physical meaning can be
attributed to one or more of the principal components. For example, comparison of
Figure 6 (a) with Figure 5 shows that the first sPC, in particular, assumes the shape
of the Riemann-cumulated pulse response itself. Accordingly, the first sPC shown
in Figure 3 (a), assumes the shape of the pulse response itself. These observations
show that the most important variability in the pulse responses is in their size and
not so much in their shape. This is rooted in the experimental hardware, the size of
the TAP inlet pulse being poorly reproducible. The pulse size is proportional to the
Riemann sum of the average pulse response, which is

SR = ∆t ·
nt

∑
j=1

(y) j = (Ty)nt
, (52)

where (Ty)nt
is the nt th component of vector Ty with T chosen as in (51). SR’s

standard deviation relates to the standard deviation sT,1 corresponding to the first
sPC as

sSR = sT,1(ûT,1)nt
. (53)

The relative error of SR and therefore also of the pulse size is quantified here as

sSR

SR
≈ 1.13% (54)

using (52) and (53) for the full set of eight hundred replicates. This is a typical
number (Gleaves et al., 1997; Roelant et al., 2007).

4.3 Practical implementation of the SOSR

Figure 2 provided a schematic overview of how physico-chemical parameters can
be estimated by NLSQ regression of experimental time series. It contains two com-
putational operations: the simulation and the NLSQ regression. For TAP, the simu-
lation and regression were carried out numerically as outlined by van der Linde et
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al. (1997), making use of the Livermore solver for ordinary differential equations
(LSODE) from ODEPACK (Hindmarsh, 1983) for the simulation and ODRPACK
(in ordinary least-squares mode) for the regression (Boggs et al., 1987).

Comparison of Figure 8 with Figure 2 shows that the difference between SOSR
and NLSQ regression is the application of a three-part conditioning transformation
before the regression stage: preconditioning, sPCA and rescaling. Here, the precon-
ditioning transformation used was Riemann cumulation. However, other smoothing
operations would work as well. The subsequent sPCA and rescaling are based on
a once-only calculation of the nonzero eigenvalues and corresponding -vectors of
the sample variance matrices V̂(εεεe,v), calculated from replicate data as in (25). Ex-
plicit calculation of V̂(εεεe,v) is not necessary, as the eigenvalues and -vectors can be
found directly from the computationally efficient singular value decomposition of
the error matrices Ee,v. The reader is referred to (Therrien, 1992), (Vandeginste et
al., 1998) or (Jolliffe, 2004) for details. Here, the DGESVD routine from LAPACK
was used. The main program was written in Fortran 95.

5 Validation of the second-order statistical regression

5.1 Numerical experiment

The theory presented above was tested with a numerical experiment. A realistic
TAP experiment was simulated with the model of Constales et al. (2004). An un-
specified inert species A was thought pulsed in a 3 cm long TAP reactor filled with
an inert packing at a constant, unspecified temperature, ne = 1. As only species
A is to be monitored: nv = 1. The only model parameter is the effective Knudsen
diffusivity De of A through the reactor tube. A simulation was carried out with a
realistic value of 2 · 10−3 m2/s for De. The A pulse response calculated from this
simulation, was hereupon subjected four hundred times to artificial TAP noise with
some typical characteristics, see (Roelant et al., 2007):

(1) A normally distributed variability of the pulse size with relative standard de-
viation of 5 %.

(2) Oscillatory noise with a frequency of 50 Hz and a time-varying amplitude of
2 % of the calculated response signal strength. For each pulse response, the
initial phase was chosen between 0 and 2π in a uniformly random way.

(3) Ornstein-Uhlenbeck noise, also called Gauss-Markov noise, with a correlation
time of 0.789 ms. The standard deviation was taken partly constant (0.5 % of
the response maximum), and partly proportional (5 %) to the signal strength.

The set of four hundred pulse responses was divided in twenty groups of twenty.
Each of these were used to estimate De by regression. This was done twice each
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time: once by NLSQ regression of the average pulse response and once by SOSR.
Conditions 1, 2 and 3 presented in section 2.3 are fulfilled by construction. Hence,
the artificial TAP pulse responses are consistent with assumption 1. The responses
were also constructed to be consistent with assumption 2.

Figure 9 shows the 95 % confidence intervals obtained for De. In the case of the
NLSQ regression, the true value lies within the confidence interval only once. In
the case of the new regression, this number increases to fifteen. With a confidence
limit of 95 %, the true value would be expected to lie in the confidence interval
in nineteen out of twenty cases. That a similar number is not attained even with
the new regression approach, can be understood because a number of replicates
as small as twenty gives rise to imperfect second-order statistical estimates. The
sPCs inherit to a certain extent the randomness of the data set and are thus not
able to fulfil conditions 5 and 6 perfectly (see sections 4.1 and 4.2). Note that the
confidence intervals aside, the parameter estimates themselves are more accurate
with the new regression approach than with the classical NLSQ regression.

Figure 10 shows the ranked parameter estimates in a normal probability graph.
The fraction of estimates that fall below values indicated on the x-axis are pre-
sented on the y-axis. The y-axis has a normal probability scaling. If the estimates
are normally distributed around the true value, a straight line through the point
(2 ·10−3 m2/s,50%) is expected. This is more or less the case for both regression
approaches, which is in conformity with property 1 presented in appendix A.

5.2 Regression of experimental TAP data

5.2.1 Irreversible adsorption of oxygen on a vanadia based catalyst

A TAP experiment was performed to study the model V150 catalyst (Poelman et
al., 2007): V2O5|SiO2–ZrO2. Oxygen was pulsed over a three-zone TAP reactor at
773 K. The diameter of the reactor tube was 5 mm. A 4.0 mm long catalytic bed
was sandwiched between two inert zones filled with quartz beads. The one at the
inlet was 4.4 mm long, the one at the outlet 20.0 mm. The interparticle porosity of
all three zones was 0.42. The total catalyst mass was 189.2 mg. Twenty replicate
oxygen pulse responses were collected after reduction of the catalyst surface. The
calibration coefficient was estimated at 9.9 ·105 V·s/mol.

The interaction between oxygen and the catalyst was modelled as simple irre-
versible adsorption. The kinetics of this adsorption are of first order in oxygen,
with a specific adsorption rate ra in mol/kg.s, expressed as

ra = kaC02 , (55)

where ka is the specific adsorption rate coefficient in m3/kg.s and C02 the concen-
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tration of oxygen in the interparticle pores, in mol/m3.

The oxygen pulse responses were regressed with the TAP model of Constales et al.
(2004), once by NLSQ regression of the average pulse response and once by SOSR.
Aside from the kinetic parameter ka, 2 physical parameters were estimated: the
average oxygen pulse size N02 and the Knudsen diffusion coefficient De,O2 through
the reactor bed. Knudsen diffusion is indeed expected to proceed at an equal speed
in all three zones as both the catalytic and inert particles were nonporous and had
the same size (diameters of 250 to 425 µm). An additional parameter estimated was
the average pulse response’s baseline position U0: the voltage corresponding to a
zero reactor outflow.

Differences between the pulse responses calculated from direct NLSQ regression
and SOSR are hardly observable. Therefore, only the latter is shown in Figure 11.
However, there is quite some difference in the corresponding parameter estimates,
which are displayed in Table 1. SOSR applies a transformation to fulfil the con-
ditions for the subsequent NLSQ regression. Therefore, the parameter estimates
from SOSR are more reliable than those obtained from direct NLSQ regression.
The same is true a fortiori for the statistics accompanying the parameter estimates:
F and t statistics for global and individual parameter regression significance, where
the latter determine the width of the parameter confidence intervals. Indeed, no
meaning should be attached to these statistics if they are supplied by the direct
NLSQ regression. Table 1 shows that both for NLSQ and SOSR, the F value is
larger than the 95% quantile, indicating that the regression is significant. How-
ever, the difference is much more pronounced in the case of NLSQ regression.
Analogously, the confidence intervals are narrower. This way, the significance of
regression is clearly misrepresented.

For the sake of completeness, Table 2 displays the estimates of the binary correla-
tion coefficients ρ

(
β̂i, β̂ j

)
between the parameter estimates resulting from SOSR:

ρ
(
β̂i, β̂ j

)
= cov

(
β̂i, β̂ j

)/√
var

(
β̂i

)
·var

(
β̂ j

)
. (56)

They follow directly from the estimated variance matrix V̂
(
β̂̂β̂β

)
, see (70) in appendix

A. The estimated binary correlation coefficients all are between -0.9 and 0.9. Such
favourable figures would certainly be unattainable with steady-state kinetic data.
ka is actually the only parameter of interest. Its estimate is most correlated with
the Knudsen diffusivity De,O2 , which indicates that if the latter would be known
in advance, a narrower confidence interval would be obtained for ka. At the same
time however, it is clear that the value assumed for De,O2 should be accurate, since
it strongly affects the estimate for ka. In general, an accurate independent determi-
nation of the physical parameters De,O2 , N02 and U0 is advisable.
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5.2.2 Interaction of propane with a copper/ceria catalyst

CuO–CeO2|γ–Al2O3 was studied as a total oxidation catalyst for volatile organic
compounds (VOCs). Propane, chosen as model VOC, was pulsed over a three-zone
TAP reactor at 773 K. Part of the propane reacts with the catalyst surface oxygen
to form carbon dioxide and water. The first and third zones contained quartz beads
and had a length of 2.5 mm and 25.0 mm. The central zone contained 48.6 mg of
catalyst and was 3.6 mm long. The interparticle porosity of all zones was 0.53.
Ten replicate propane pulse responses were collected after oxidation of the catalyst
surface. The calibration coefficient for propane was 4.6 ·105 V·s/mol.

After some regression attempts, the interaction between propane and the catalyst
was found to be modelled well by reversible adsorption followed by an irreversible
surface reaction. Schematically:

C3H8 + ∗ � C3H∗
8, (57)

C3H∗
8 → . (58)

The steps following the latter do not affect the propane response. Adsorption (57) is
pseudo first order in propane, in accordance with the assumption that the quantity
of propane pulsed is a lot smaller than the number of active sites ∗. The specific
rates ra and rd of propane adsorption and desorption (57), and r of reaction (58),
all in mol/kg.s, are expressed as

ra = kaCC3H8 , (59)
rd = kd CC3H∗

8
, (60)

r = kCC3H∗
8
, (61)

where CC3H8 is the concentration of propane, in mol/m3, and CC3H∗
8

the quantity
of propane reversibly adsorbed per unit mass of catalyst, in mol/kg. The adsorption
rate coefficient ka is in m3/kg.s. The desorption and reaction rate coefficients kd and
k are in Hz. All three rate coefficients were estimated by regression. The former ex-
ample revealed that the simultaneous estimation of unknown physical variables has
a negative effect on the width of the confidence intervals of the chemical param-
eters. For this reason, the (average) quantity of propane pulsed was determined
independently by pulsing propane/krypton mixtures with known composition. The
propane responses were collected in alternation with krypton responses. This al-
lowed to determine the (average) quantity of propane pulsed to be 12 nmol. The
propane pulse responses were also submitted to baseline correction before regres-
sion, eliminating the baseline position as an unknown parameter. As in the former
example, the Knudsen diffusion coefficient De,CC3H8

, in m2/s, of propane could be
assumed equal for all zones of the reactor. De,CC3H8

could not, however, be deter-
mined independently and therefore had to be estimated by regression simultaneous
with ka, kd and k.

Figure 12 shows the average of the ten propane pulse responses and the correspond-
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ing SOSR-fitted model-calculated response. The NLSQ-fitted pulse response is not
depicted as it is again hardly distinguishable from the SOSR-fitted response. The
parameter estimates resulting from both regressions are shown in Table 3. Again,
the confidence intervals obtained from SOSR are wider than those from NLSQ
regression. Table 3 also contains the F statistics for global significance of the re-
gression. In both cases, the F value exceeds the 95 % quantile. However, for NLSQ
regression, the difference is artificially high. This shows again that the F test and
confidence intervals from NLSQ regression can mislead the experimentalist if the
conditions 1 to 6 are not fulfilled.

Finally, Table 4 displays the binary correlation coefficients of the parameters esti-
mated by SOSR. The strongest correlations exist between the rate coefficients of the
reversible adsorption, ka and kd , and the reaction rate coefficient k. Though impor-
tant, these correlations are still reasonably far from perfect. As was already pointed
out in the former example, this is due to the transient nature of the experiment.

6 Conclusions

A sample principal component analysis (sPCA) of replicate data has lead to a
maximum-likelihood parameter regression technique with higher accuracy for both
the estimates and the corresponding statistics. The so-called second order statistical
regression (SOSR) technique allows to relax several of the assumptions that under-
lie the classic regression techniques, in particular the assumptions of whiteness and
homoskedasticity.

The proposed technique can be applied in a straightforward way to time series re-
lated to chemical reaction kinetics or other physico-chemical phenomena. Although
based on second-order statistics, i.e. covariances, the procedure does not require the
explicit calculation of the latter and is not computationally demanding.

7 Notation

Arabic symbol:

0n zero column vector with n components, –

Roman symbols:

b vector of physico-chemical parameters to be varied during regression

b physico-chemical parameter, component of b
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CA concentration of gas A, mol/m3

C∗
A quantity of A adsorbed per unit mass of catalyst, mol/kg

De,A effective Knudsen diffusivity of gas A through a TAP reactor, m2/s

E[. . .] expected value of a stochastic variable, vector or matrix

Fχ:m,n χ quantile of the F distribution with m and n degrees of freedom, –

f vector function of ξξξ and b to a model-calculated analogue of y

In (n×n) unit matrix, –

k specific surface reaction rate coefficient, Hz

ka specific adsorption rate coefficient, m3/kg.s

kd specific desorption rate coefficient, Hz

NA quantity of gas A pulsed in a TAP experiment, mol

n number of components of y, –

n′′′ total number of replicate experimental time series, –

ne number of experiments carried out, not counting their replicates, –

nt number of time samples in one time series, –

nv number of variables recorded during a transient kinetic experiment, –

p number of unknown physico-chemical parameters, –

r specific rate of a surface reaction, mol/kg.s

ra specific rate of adsorption, mol/kg.s

rd specific rate of desorption, mol/kg.s

re number of replicates obtained at experimental conditions ξξξ e, –

s2 population variance

T smoothing matrix, –

t time, s

tχ:n χ quantile of the t distribution with n degrees of freedom, –

U matrix with population principal noise components as columns, –

Û matrix with sample principal noise components as columns, –

u population principal noise component, –

û sample principal noise component, –
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U0 baseline position of a TAP pulse response, V

V population variance matrix

V̂ sample variance matrix

V physical variable monitored during a transient experiment

y vector representing one or more experimental time series

y average of replicate y’s

zχ χ quantile of the unit normal z distribution, –

Greek symbols:

βββ vector of true, unknown physico-chemical parameters

β true, unknown physico-chemical parameter, component of βββ

β̂̂β̂β estimate of βββ obtained by regression

β̂ estimate of β obtained by regression, component of β̂̂β̂β

∆t sampling interval, s

εεε vector representing the noise in one or more experimental time series

θ angle between the experimental set and the space spanned by the sample

principal noise components, –

ΛΛΛ diagonal matrix of population principal variances

Λ̂ΛΛ diagonal matrix of sample principal variances

ρ binary correlation coefficient, –

σ2 population variance

ξξξ vector of experimental conditions

Abbreviations:

NLSQ nonlinear least-squares

pPC population principal component

pPCA population principal component analysis

SOSR second-order statistical regression

sPC sample principal component
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sPCA sample principal component analysis

TAP temporal analysis of products

Column vectors are represented by small bold letters, e.g. a. The ith element of a
is represented by (a)i. Matrices are represented by bold capitals, e.g. A. To avoid
overloading the reader with symbols, no symbolic difference was made in this paper
between stochastic variables and the values they assume. The distinction should be
clear from the context.
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A Least-squares regression: theory

Very generally, say y ∈Rn×1 is a vector of empirical values and f(b) its analogue
calculated from a model with parameters collected in the vector b∈Rp×1. Assume
that the model applies with some real, unknown parameters βββ :

y = f(βββ )+εεε (62)

with εεε a random error vector with multidimensional normal distribution with aver-
age zero (0n) and variance matrix In σ2:

εεε ∼ N
(
0n,In σ

2) . (63)

βββ is estimated as β̂̂β̂β , minimizing the residual sum of squares

S(b) = ‖y− f(b)‖2. (64)

The following important properties apply in good approximation if a first order
Taylor expansion of f is valid in good approximation in a sufficiently large domain
about βββ :

f
(
βββ +∆∆∆b

)
≈ f

(
βββ

)
+J∆∆∆b, (65)
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with J the Jacobian matrix

J =
∂ f
∂b

(
βββ

)
∈Rn×p. (66)

Property 1 β̂̂β̂β is multidimensional normally distributed with mean βββ and variance
matrix

V
(
β̂̂β̂β

)
=

(
JT J

)−1
σ

2, (67)

It follows that β̂̂β̂β is an unbiased and maximum-likelihood estimator of βββ . The Jaco-
bian J is calculated from

J ≈ ∂ f
∂b

(
β̂̂β̂β

)
, (68)

and the error variance σ2 is estimated as the mean squared residual:

s2 =

(
y− f

(
β̂̂β̂β

))T (
y− f

(
β̂̂β̂β

))
n− p

. (69)

The variance matrix V
(
β̂̂β̂β

)
is estimated as

V̂
(
β̂̂β̂β

)
=

(
JT J

)−1 s2. (70)

Property 2 The variable

ti =
β̂i−βi√
V̂ii

(
β̂̂β̂β

) , (71)

where V̂ii
(
β̂̂β̂β

)
is the i th diagonal element of V̂

(
β̂̂β̂β

)
, is distributed as Student’s t

distribution with n− p degrees of freedom.

This allows to test if the real, unknown parameter βi differs significantly from a
certain value β ∗

i . It is concluded with likelihood 1−α that it does not if∣∣∣∣∣∣ β̂i−β ∗
i√

V̂ii
(
β̂̂β̂β

)
∣∣∣∣∣∣ < t1−α/2:n−p, (72)

where the t1−α/2:n−p quantile can be calculated with a suitable statistical package.
If βi = β ∗

i , there is a probability 1−α that (72) leads to the correct conclusion,
namely that βi does not differ significantly from β ∗

i . Typically, α is taken to be
5 %. This test can be used to verify whether a parameter differs significantly from
a neutral (trivial) value (mostly 0), or, shortly, whether the parameter estimate is
significant. (72) is readily transformed into

β̂i−
∆βi

2
< β

∗
i < β̂i +

∆βi

2
, (73)

25



representing the 1−α confidence interval for parameter β ∗
i , with

∆βi = 2 t1−α/2:n−p

√
V̂ii

(
β̂̂β̂β

)
. (74)

In the frequently occurring case that

n− p � 1, (75)

ti in (71) can be considered unit normally distributed. Consequently, the approxi-
mation

t1−α/2:n−p ≈ z1−α/2 (76)
can then be applied in equations (72) and (74).

Property 3 The variable

F =

(
β̂̂β̂β −βββ

)T JT J
(
β̂̂β̂β −βββ

)
ps2 (77)

is distributed as Snedecor’s F distribution with p and n− p degrees of freedom.

This allows to test whether βββ as a whole differs significantly from a certain vector
of parameters β ∗β ∗

β ∗. It is concluded with 1−α likelihood that it does not if(
β̂̂β̂β −β ∗β ∗

β ∗)T JT J
(
β̂̂β̂β −β ∗β ∗

β ∗)
ps2 < F1−α : p,n−p. (78)

Mostly β ∗β ∗
β ∗ is taken to be a vector of neutral parameters (mostly the null vector). (78)

then means that the regression is globally insignificant. Inequality (78) implicitly
defines the joint confidence region of all parameters, delimited by a hyperellipsoid.
pF with F given by (77) can be considered χ2 distributed with p degrees of freedom
if (75) is valid. The approximation

F1−α : p,n−p ≈
1
p

χ
2
1−α : p (79)

can then be applied in (78).
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Figure 1. A typical TAP pulse response, consisting of a thousand samples: i∈ {1, 2, . . . , 1000}. For this response, argon was
pulsed over quartz.
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(û
2)

i

i

ti (s)

0

0

0 500 1000

0 0.5 1

(û
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Figure 6. The first (a), second (b), third (c) and fourth (d) sample principal noise component of the Riemann cumulative of
an experimental TAP pulse response of which eight hundred replicates were taken. (ûT,k)i refers to the ith element of the
kth sample principal component ûT,k. The lower graphs show the sample principal components estimated from the full set
of replicates. The upper graphs show those estimated from a reduced set of twenty replicates.
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Figure 9. 95 % confidence intervals for the Knudsen diffusivity De estimated by NLSQ regression and SOSR, ranked
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Figure 10. Normal probability graph of estimates of the Knudsen diffusivity De, obtained by regression of different sta-
tistically homogeneous artificial TAP data sets. The fraction of estimates that fall below values indicated on the x-axis are
presented on the y-axis, which has a normal probability scaling. If the estimates are normally distributed around the true
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Figure 11. The average of twenty replicate experimental oxygen pulse responses over a three-zone TAP reactor with central
vanadia/silica catalytic zone and the model-calculated analogue resulting from SOSR. The TAP reactor model used assumes
irreversible adsorption of oxygen on the catalyst.
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Figure 12. The average of ten replicate experimental propane pulse responses over a three-zone TAP reactor with central
copper/ceria catalytic zone and model-calculated analogue resulting from SOSR. The interaction of propane with the catalyst
is modelled as reversible adsorption followed by an irreversible surface reaction.
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Table 1
Parameter estimates and approximate individual 95% probability level confidence limits by regression of a set of twenty
replicate experimental oxygen TAP pulse responses. The regression was carried out by NLSQ regression, and by SOSR. The
F values for global significance and corresponding 95% quantile are indicated for both approaches.

NLSQ SOSR

ka (10−3 m3/kg·s) 2.927±0.206 3.731±0.640

De,O2 (10−3 m2/s) 2.047±0.017 1.982±0.059

N02 (nmol) 0.7951±0.0113 0.8396±0.0510

U0 (µV) −93.00±13.46 −68.79±12.95

F 9.142 ·104 1.395 ·103

F95% 2.38 3.01
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Table 2
Estimates of the binary correlation coefficients ρ

(
β̂i, β̂ j

)
between the parameter estimates obtained by SOSR of twenty

replicate experimental oxygen TAP pulse responses.

β̂i → ka De,O2 N02 U0

↓ β̂ j

ka 1 −0.8908 0.8264 0.6711

De,O2 −0.8908 1 −0.8722 −0.4115

N02 0.8264 −0.8722 1 0.4090

U0 0.6711 −0.4115 0.4090 1
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Table 3
Parameter estimates and approximate individual 95% probability level confidence limits by regression of a set of ten replicate
experimental propane TAP pulse responses. The regression was carried out by NLSQ regression, and by SOSR. The F values
for global significance and corresponding 95% quantile are indicated for both approaches.

NLSQ SOSR

ka (10−3 m3/kg·s) 271.0±1.7 300.9±53.2

kd (Hz) 10.41±0.17 12.2±2.0

k (Hz) 9.74±0.13 10.27±0.49

De,C3H8 (10−3 m2/s) 3.391±0.007 3.520±0.146

F 3.080 ·105 615.2

F95% 2.38 5.19
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Table 4
Estimates of the binary correlation coefficients ρ

(
β̂i, β̂ j

)
between the parameter estimates obtained by SOSR of ten replicate

experimental propane TAP pulse responses.

β̂i → ka kd k De,C3H8

↓ β̂ j

ka 1 0.9139 0.7330 0.6335

kd 0.9139 1 0.8812 0.6677

k 0.7330 0.8812 1 0.2913

De,C3H8 0.6335 0.6677 0.2913 1
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