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Using numerical simulations of quenched SU(2) gauge theory we demonstrate that an external magnetic
field leads to spontaneous generation of quark condensates with quantum numbers of electrically charged
ρ mesons if the strength of the magnetic field exceeds the critical value eBc = 0.927(77) GeV2 or Bc =
(1.56 ± 0.13) · 1016 Tesla. The condensation of the charged ρ mesons in strong magnetic field is a key
feature of the magnetic-field-induced electromagnetic superconductivity of the vacuum.

© 2012 Elsevier B.V. All rights reserved.
Effects caused by very strong magnetic fields attract increas-
ing interest motivated by the fact that the hadron-scale strong
magnetic fields may emerge in the heavy-ion collisions at the Rel-
ativistic Heavy-Ion Collider at Brookhaven National Laboratory and
at the Large Hadron Collider at CERN [1]. Such fields may, presum-
ably, have arisen in the early Universe [2].

The strong magnetic field causes exotic effects in hot quark–
gluon matter, the well-known example is the chiral magnetic ef-
fect [3]. In the absence of matter the magnetic-field background
leads also to unusual effects like the magnetic catalysis [4], shift of
finite-temperature transitions in QCD [5] and anisotropic conduc-
tivity [6].

It was recently suggested that a sufficiently strong exter-
nal magnetic field should turn the vacuum into an electromag-
netic superconductor [7,8]. The superconductivity emerges due to
spontaneous condensation of electrically charged vector particles,
ρ± mesons, if the magnetic field exceeds the critical strength

eBc = m2
ρ ≈ 0.6 GeV2, Bc = m2

ρ/e ≈ 1016 T, (1)
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where mρ = 775.5 MeV is the mass of the ρ meson and e is the
elementary electric charge. In terms of the up-quark (u) and down-
quark (d) fields the suggested ρ-meson condensate should have
the following form [8]:

〈ūγ1d〉 = −i〈ūγ2d〉 = ρ, 〈ūγ3d〉 = 〈ūγ0d〉 = 0, (2)

where ρ = ρ(x⊥) is a certain complex-valued periodic function of
the coordinates x⊥ = (x1, x2) of a plane which is perpendicular to
the magnetic field �B = (0,0, B).

The superconducting vacuum should have many unusual fea-
tures. Firstly, no matter is required to create the superconduc-
tor so that the electromagnetic superconductivity appears literally
“from nothing”. Secondly, the superconductivity is anisotropic so
that the vacuum acts as a superconductor along the magnetic-field
axis only. Thirdly, the superconductivity is inhomogeneous because
the ρ-meson condensate is not uniform in the �B-transverse direc-
tions due to the presence a new type of topological defects, the
ρ vortices. Fourthly, the net electric charge of the superconducting
vacuum is zero despite of the presence of the charged conden-
sates (2) [7,8].

The spontaneous generation of the ρ-meson condensate (2) —
which plays a role of the Cooper pair condensate in the con-
ventional superconductivity — is the key feature of the vacuum
superconductor mechanism [7,8].
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The appearance of the ρ-meson condensate was found analyt-
ically in a phenomenological model based on the vector meson
dominance (VMD) [7], in the Nambu–Jona-Lasinio (NJL) model [8],
and in holographical approaches based on gauge/gravity dual-
ity [9]. We use numerical simulations of the lattice gauge theory to
demonstrate that strong magnetic field indeed leads to emergence
of the superconducting condensate of the charged ρ mesons.

In QCD the charged ρ-meson field is identified with ρμ =
ūγμd. The condensation pattern (2) corresponds to the condensate
of the ρ mesons with the spins aligned along the axis of the mag-
netic field, with the sz = +1 projection of the spin onto the z axis.
It is convenient to introduce two combinations of the negatively-
charged ρ-meson fields,2

ρ± = 1

2
(ρ1 ± iρ2) ≡ 1

2
ū(γ1 ± iγ2)d, (3)

which correspond to the spin projections sz = ±1, respectively. In-
deed, according to the simplified arguments of Ref. [7], the invari-
ant masses Mn,sz of the ρ-mesons states in the magnetic field B
should behave as follows:

M2
n,sz

= m2
ρ + (1 + 2n − 2sz)|eB|, (4)

with the nonnegative integer n and the spin projection onto the
z axis sz = −1,0,+1. The ground state is identified with the quan-
tum numbers n = 0 and sz = +1, and the charged ρ mesons
should get condensed, M2

0,+1 < 0, if the magnetic field exceeds the
critical value (1).

The simplest way to check numerically the possible appearance
of the superconducting condensate (2) is to calculate the equal-
time correlation function along the direction of the magnetic field,

G±(z) = 〈
ρ

†
±(0)ρ±(z)

〉
, (5)

where the separation in the transverse coordinates of the two
probes is set to zero, x⊥ = (0,0). The long-distance behavior of
the sz = +1 correlation function (5) should expose the expected
emergence of the condensate (2) due to the factorization property:

lim|z|→∞ G+(z) = ∣∣〈ρ〉∣∣2
, (6)

while the ρ mesons with the opposite orientation of the spins,
sz = −1, should not be condensed3:

lim|z|→∞ G−(z) = 0. (7)

We calculate the correlation functions (5) numerically, using
lattice Monte Carlo simulations of quenched SU(2) lattice gauge
theory following numerical setup of Ref. [6]. The quark fields are
introduced by the overlap lattice Dirac operator D with exact chi-
ral symmetry [10]. The correlation function (5) is a linear com-
bination of the current–current correlators in the vector meson
channel. The vector correlator is represented in terms of Dirac
propagators in fixed background of Abelian and non-Abelian gauge
fields and is then averaged over an equilibrium ensemble of non-
Abelian gauge fields Aμ:

2 One can equivalently work with the positively-charged ρ-meson fields, d̄(γ1 ±
iγ2)u. The magnitudes of the positive and negative condensate are equivalent be-
cause the vacuum state is electrically neutral. Our results on vacuum condensation
are the same for positive and negatively charged operators.

3 The condensed component is identified by the positiveness of the product eBsz .
If the magnetic field is reversed and becomes negative, eB < 0, then the condensed
component corresponds to sz = −1 while the component with sz = +1 is not con-
densed.
〈
ū(x)γμd(x)d̄(y)γνu(y)

〉

=
(∫

D Aμe−SYM[Aμ]
)−1

·
∫

D Aμe−SYM[Aμ] Tr

(
1

Du + m
γμ

1

Dd + m
γν

)
, (8)

where SYM[Aμ] is the lattice action for gluons Aμ .
A uniform time-independent magnetic field B is introduced into

the Dirac operator D f for the flavor f = u,d in a standard way by
substituting the su(2)-valued vector potential Aμ with the u(2)-
valued potential Aμ i j → Aμ i j + δi jq f Fμνxν/2, where q f is the
electric charge of the corresponding quark, qu = +2e/3, qd = −e/3,
and i, j are color indices. We also introduce an additional twist
for fermions in order to account for periodic boundary conditions
in spatial directions [11,12]. For technical reasons the bare quark
mass m0 is fixed at a small value am0 = 0.01, where a is the lat-
tice spacing. The vector correlation functions depend very weakly
on the bare quark mass if they are calculated with the help of the
overlap Dirac operator [13].

Our numerical approach is done in two complimentary ways.
Firstly, we study in details the superconducting condensate for
eleven values of the magnetic field B at a relatively small sym-
metric 144 lattice at a single lattice gauge coupling β = 3.281.
These parameters correspond to the physical volume of the lat-
tice is L4 = (1.44 fm)4 and the lattice spacing a = 0.103 fm [14].
Then we use an heuristic fitting method to find the superconduct-
ing condensate without taking a long-range limit (6) because the
factorization (6) does not work well in too small volume. Secondly,
we consider a set of lattices of various physical volumes L4 and
four values of magnetic-field strengths B , and then utilize a con-
ventional fitting procedure to extract the condensate η = η(L). The
extrapolation to the infinite volume, L ≡ la → ∞, shows that these
two methods give the same results. In both approaches the ultra-
violet lattice artifacts are reduced with the help of the tadpole-
improved Symanzik gluon action [15].

In our first approach we use 30 configurations of the gluon
gauge field for each value of the background magnetic field. The
periodicity of the lattice leads to the quantization (k ∈ Z) of the
magnetic field,

B = kBmin, eBmin = 3 · 2π

L2
= 0.354 GeV2, (9)

because of the requirement∫
d2x⊥ q f B ∈ Z for f = u,d. (10)

In Eq. (9) the integer k = 0,1, . . . , L2
s /2 determines the number of

elementary magnetic fluxes which pass through the boundary of
the lattice in the (x1, x2) plane.

The maximal possible value of the fluxes k = l2/2 = 98 corre-
sponds to an extremely large magnetic field with the magnetic
length LB ∼ (eB)−1/2 being of the order of the lattice spacing,
LB ∼ a. In order to avoid associated ultraviolet artifacts, in our sim-
ulations we limit the maximal value of the fluxes by kmax = 10 

l2/2, so that our maximal magnetic field, eBmax = 3.54 GeV2 is
much larger than the expected critical magnetic field (1).

In Fig. 1 we show correlator (5) for a few relatively small values
of the magnetic field. As we have anticipated, the sz = ±1 corre-
lators split in the external magnetic field [in Fig. 1 we show both
spin orientations for B = Bmin]. The observed splitting reflects the
change in the relevant lowest energies (4), M2± = m2

ρ ∓|eB|, so that
the expected hierarchy of the masses, M+<mρ<M− , is encoded in
the slopes of the correlators

G±(z) ∼ e−M±|z| + · · · .
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Table 1
Values χ2/d.o.f. for the fit functions in the regions of weak (11) and strong (12) magnetic field (separated by the double vertical line) vs the magnetic field eB for 144 lattice.

eB , GeV2 0 0.35 0.71 1.06 1.42 1.77 2.12 2.83 3.54

weak 0.30 0.46 1.8 4.5 5.8 5.8 5.8 5.4 5.0
strong – – – 2.1 1.9 1.1 0.23 0.25 0.37
Fig. 1. The G+ correlator (sz = +1) at eB = 0, 0.35, 0.71 GeV2 and the G− correlator
(sz = −1) at eB = 0.35 GeV2 in the insulator (weak magnetic-field) phase (in lattice
units). The lines illustrate the best fits by the heuristic function (11).

The splitting of the sz = ±1 masses was also found in SU(3) lattice
gauge theory at weak magnetic fields [16]. We have checked that
the no-condensation property (7) for the sz = −1 correlator G− is
valid for all studied values of the magnetic field.

In the weak field region, B < Bc , the long-distance behavior
of the correlator G+ is expected to be proportional to the func-
tion e−μ|z| , or cosh[(|z| − L/2)μ] in a finite volume with periodic
boundary conditions. Here μ is a massive parameter and L = la is
the physical lattice size.

We have found, however, that our numerical data for the cor-
relators (5) are consistent with the cosh-like behavior only in a
very narrow interval of the coordinate z. Therefore, in at B < Bc

we used a heuristic fit function

Gfit,weak
+ = Cweake−μγ L/2 coshγ

[
μ

(|z| − L/2
)]

, (11)

which reduces to the exponential (“no-condensate”) behavior in
the thermodynamic limit L → ∞. In Eq. (11) μ > 0, γ > 0 and
Cweak > 0 are the fitting parameters.

The function (11) which works surprisingly well at weak values
of the magnetic field (9) with k = 0,1,2. The values of χ2/d.o.f.
are shown in Table 1. The heuristic function fits nicely our nu-
merical data for the G+ correlator (5) in the weak field domain
while at larger fields (B � 1.06 GeV2) the fit gives unacceptably
high values of χ2/d.o.f. The best fit values for the parameter γ are
γ ∼ 5, . . . ,7. The k = 0,1 (k = 2) fits exclude the short-distance
separations z � a (z � 2a) and their periodic mirrors. The data and
the best fits are shown in Fig. 1.

We have found that in the high-strength region, eB > 1 GeV2,
the numerical data for the correlator G+(z) can well be described
by another heuristic function

Gfit,strong
+ (z) = η2e−V (z), (12)

V (z) = Cstronge−μL/2 cosh
[
μ

(|z| − L/2
)]

, (13)

for all separations z excluding the ultraviolet region with z � a
(and its periodic mirror). In Eqs. (12) and (13) μ > 0, η > 0 and
Chigh < 0 are the fitting parameters. The G+ correlator in the
strong magnetic-field region and the corresponding best fits (12)
are shown in Fig. 2.

The parameter η in the fitting function (12) plays a role of the
charged ρ-meson condensate, η ≡ |〈ρ〉|, because in the thermody-
Fig. 2. The G+ correlator (5) in the superconducting (strong magnetic-field) phase.
The lines are the best fits by Eq. (12).

Fig. 3. The superconducting condensate η = |〈ρ〉| of the charged ρ mesons as the
function of the magnetic field B . The green points correspond to the condensate
calculated for small lattice 144, while the blue squares represent the data extrap-
olated to an infinite volume L → ∞. The dashed blue line is the fit by the linear
function (15). The red arrow marks the point of the insulator–superconductor phase
transition (16). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this Letter.)

namic limit, L → ∞, the function V (z) reduces to an exponential
e−μ|z| so that

lim
z→∞ lim

ls→∞
Gfit,strong

+ (z) = η2. (14)

Thus, the fits of the G+ correlators provide us with the values of
the condensate of the charged ρ mesons, Fig. 3. The corresponding
values of χ2/d.o.f. are shown in Table 1. In the weak field domain
the fitting does not converge properly due to presence of flat di-
rections in the fitting parameter space.

In the weak field region the ρ-meson condensate η = |〈ρ〉| van-
ishes, while at higher values of the magnetic field the condensate
deviates spontaneously from zero signaling the presence of the su-
perconducting phase. We find that the dependence of the ρ-meson
condensate on the magnetic field can be described by the linear
function:

η(B) = Cρ · (eB − eBc), B � Bc. (15)

The best linear fit (shown by the dashed line in Fig. 3) of the con-
densate allows us to determine the critical magnetic field of the
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Fig. 4. The massive parameter μ corresponding to the best fits (11) and (12), (13).

Table 2
The parameters of the lattices used in the thermodynamic extrapolation for nonzero
values of B and the corresponding best fit parameters obtained with the help of
Eq. (17). The data is visualized in Fig. 5.

eB , GeV2 L, fm a, fm ls k η, GeV3 m, GeV χ2/d.o.f.

1.07 1.654 0.0973 17 4 0.00626(5) 3.1(1) 0.59
1.07 1.849 0.1027 18 5 0.00501(4) 3.1(2) 0.48
1.07 2.027 0.1126 18 6 0.00392(4) 2.5(3) 0.56
1.07 2.189 0.1152 19 7 0.00353(4) 2.5(2) 0.87

1.28 1.688 0.0993 17 5 0.00753(4) 3.4(1) 0.22
1.28 1.849 0.1027 18 6 0.00585(4) 3.0(1) 0.41
1.28 1.998 0.111 18 7 0.00446(5) 2.6(2) 0.49
1.28 2.135 0.1186 18 8 0.00486(5) 2.2(3) 0.33
1.28 2.136 0.1124 19 8 0.00454(5) 2.3(2) 0.61

2.14 1.754 0.1032 17 9 0.01257(7) 2.5(1) 0.20
2.14 1.849 0.1027 18 10 0.01028(6) 2.5(2) 0.33
2.14 1.940 0.1078 18 11 0.00981(8) 2.2(2) 0.41
2.14 2.025 0.1066 19 12 0.00881(7) 2.2(2) 0.54
2.14 2.109 0.111 19 13 0.01001(6) 2.1(3) 0.32

insulator–superconductor transition,

eBc = 0.924(77) GeV2, (16)

or Bc = (1.56 ± 0.13) · 1016 T, in satisfactory agreement with
the theoretical relation (1), eBc = m2

ρ , for the quenched mass of

the ρ meson in SU(2) lattice gauge theory, mρ ∼ 1.1 GeV2 [17].
The prefactor in Eq. (15) is Cρ = 7.5(5) MeV. Notice that in our
quenched model the exponent in Eq. (15) is ν = 1 while the
mean field methods both in the bosonic VMD model [7] and in
the fermionic NJL model [8] predict ν = 1/2 (so that theoretically
η ∼ √

B − Bc for B � Bc).
The behavior of the fitting parameter μ in the fitting functions

at both sides of the critical phase transition (11) and (12), (13), are
shown in Fig. 4.

The unusual forms of the fit functions (11) and (12) is used
to absorb the finite volume effects. In order to support our small-
volume results we have performed an infinite-volume extrapola-
tion of the condensate η obtained at larger lattices (l = 17, . . . ,21
with L ≈ 1.65–2.2 fm). The condensate was obtained by fitting of
the numerical data by the standard function,

Gfit+ (z, L) = A cosh
[
m(z − ls/2)

] + η2(L), (17)

where A, m and η are the fitting parameters. The fitting parame-
ters and parameters of the lattice at B �= 0 are shown in Table 2.

It turns out that in the insulator phase, B < Bc , the data for
η(L) can very well be fitted by the exponentially decaying (in the
L → ∞ limit) function

ηfit(L) = Ce−L/L0 , (18)
Fig. 5. The superconducting condensate η(L) vs. the lattice size L at fixed values of
the magnetic field B . The dashed lines are shown to guide eye. The solid lines are
the best fits of the data by the exponential function (18).

where L0 and C are fitting parameters. The condensate in the infi-
nite volume tends zero at B < Bc , as expected. The fits are shown
in Fig. 5 by the solid lines. The corresponding slopes are L0 =
0.42(2) fm and L0 = 0.90(8) fm for eB = 0 and eB = 1.07 GeV2,
respectively.

At higher values of B , the condensate shows plateaux as L in-
creases. We get the L → ∞ extrapolation for the condensate by av-
eraging the data for η(L) at two largest values of the lattice size L
(the horizontal dotted lines in Fig. 5). The extrapolated data —
shown by the blue squares in Fig. 3 — agrees quantitatively well
with our small-volume analysis. The nonzero values of the extrapo-
lated condensates are η = 0.0046(4) GeV2 and η = 0.0095(1) GeV2

for eB = 1.28 GeV2 and eB = 2.14 GeV2, respectively.
Thus, our numerical results support the theoretical prediction

of Refs. [7,8] that the superconducting charged condensate of the
ρ mesons forms spontaneously at strong magnetic field. Using the
simulations of the quenched QCD vacuum, we determined the crit-
ical magnetic field (16) which is remarkably close to the theoretical
prediction (1).

Finally, we would like to stress that theoretical calculations
show that the condensate in the vacuum ground state should
be an inhomogeneous function of spatial coordinates [7,8]. The
ground state can be represented as a coherent static lattice of the
topological (vortex-like) defects in the ρ-meson condensates, the
ρ vortices, which are directed along the magnetic-field axis. Qual-
itatively, the ρ-vortex state is very similar to the Abrikosov vortex
lattices observed in the type-II superconductors in a background of
a strong magnetic field [18].

It turns out, however, that in the QCD vacuum the energy gap
between the lowest vortex energy state (given by a triangular vor-
tex lattice) and excited vortex lattice states is parametrically very
small [19], implying that the spatial lattice order of the vortex
state may be destroyed by quantum (or thermal) fluctuations. The
latter fact indicates that the actual vortex structures in the super-
conducting phase may resemble a much less ordered but persistent
“spaghetti state”, where the correlation functions, given by Eq. (5)
and/or Eq. (8), get additional suppression factors due to almost
random vortex motion. The investigation of the detailed features
of the superconducting ground state is currently underway [20].
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